WO2021203274A1 - Transitioning to single connectivity mode to address data transfer interruptions - Google Patents

Transitioning to single connectivity mode to address data transfer interruptions Download PDF

Info

Publication number
WO2021203274A1
WO2021203274A1 PCT/CN2020/083680 CN2020083680W WO2021203274A1 WO 2021203274 A1 WO2021203274 A1 WO 2021203274A1 CN 2020083680 W CN2020083680 W CN 2020083680W WO 2021203274 A1 WO2021203274 A1 WO 2021203274A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
connectivity mode
dual connectivity
request
base station
Prior art date
Application number
PCT/CN2020/083680
Other languages
French (fr)
Inventor
Hao Zhang
Xiuqiu XIA
Tianya LIN
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/083680 priority Critical patent/WO2021203274A1/en
Publication of WO2021203274A1 publication Critical patent/WO2021203274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/34Selective release of ongoing connections

Definitions

  • the following relates generally to wireless communications and more specifically to techniques to enable single connectivity mode to address data transfer interruptions when 5G is enabled.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may establish a 5G connection in a non-standalone (NSA) mode of operation, in which the UE communicates with an LTE base station or cell for control plane signaling and with a 5G base station or cell to transmit and receive user plane data.
  • NSA non-standalone
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support techniques to enable single connectivity mode to address data transfer interruptions.
  • the described techniques provide for disabling a dual connectivity mode within cells which experience data transfer interruptions when NR5G is enabled.
  • data transfer at the UE may terminate when the UE enters a dual connectivity mode of operation with a 5G cells.
  • data transfer may be terminated when the UE enters the dual connectivity mode to establish a connection with two or more cells.
  • NSA non-standalone
  • such issues may result in increased power consumption by the UE as the UE attempts to re-establish the dual connectivity mode.
  • the UE may be required to rely on more obsolete wireless technology (e.g., 2G or 3G) in order to successfully maintain data transfer in the event data transfer is terminated after entering the dual connectivity mode.
  • a method of wireless communication at a UE may include establishing a first connection with a first cell in a non-standalone mode of operation, entering a dual connectivity mode of operation by establishing a second connection with a second cell, identifying a termination of data transfer at the UE based on entering the dual connectivity mode of operation, entering a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resuming data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to establish a first connection with a first cell in a non-standalone mode of operation, enter a dual connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the UE based on entering the dual connectivity mode of operation, enter a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the apparatus may include means for establishing a first connection with a first cell in a non-standalone mode of operation, entering a dual connectivity mode of operation by establishing a second connection with a second cell, identifying a termination of data transfer at the UE based on entering the dual connectivity mode of operation, entering a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resuming data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to establish a first connection with a first cell in a non-standalone mode of operation, enter a dual connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the UE based on entering the dual connectivity mode of operation, enter a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based on identifying the termination of data transfer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for entering an inactive mode of operation, and removing a restriction on one or more of the first cell or the second cell based on entering the inactive mode of operation.
  • restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE may include operations, features, means, or instructions for adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  • entering the dual connectivity mode of operation may include operations, features, means, or instructions for transmitting, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a TAU accept based on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  • entering the single connectivity mode of operation may include operations, features, means, or instructions for terminating the first connection with the first cell or the second connection with the second cell.
  • entering the single connectivity mode of operation may include operations, features, means, or instructions for transmitting, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell.
  • transmitting the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell may include operations, features, means, or instructions for transmitting, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a TAU accept based on the TAU request.
  • entering the single connectivity mode of operation may include operations, features, means, or instructions for transmitting, to a base station associated with one or more of the first cell or the second cell, a first control message including a request to enter the single connectivity mode of operation, and receiving, from the base station, a second control message including an acknowledgement to enter the single connectivity mode of operation.
  • a method of wireless communication at a base station may include establishing a first connection with a UE via a first cell supported by the base station, establishing a second connection with the UE via a second cell supported by the base station, determining an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resuming data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the apparatus may include means for establishing a first connection with a UE via a first cell supported by the base station, establishing a second connection with the UE via a second cell supported by the base station, determining an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resuming data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for restricting one or more of the first cell or the second cell from a dual connectivity mode of operation at the UE based on the indication that the UE may be entering a single connectivity mode of operation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  • restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE may include operations, features, means, or instructions for adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
  • establishing the second connection with the UE via the second cell supported by the base station may include operations, features, means, or instructions for receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a TAU accept based on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for terminating the first connection with the UE or the second connection with the UE based on the indication that the UE may be entering a single connectivity mode of operation.
  • determining the indication that the UE may be entering a single connectivity mode of operation may include operations, features, means, or instructions for receiving, from the UE, a request to disable a dual connectivity mode of operation of the UE within one or more of the first cell or the second cell.
  • receiving the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell may include operations, features, means, or instructions for receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a TAU accept based on the TAU request.
  • determining an indication that the UE may be entering a single connectivity mode of operation may include operations, features, means, or instructions for receiving, from the UE, a control message including a request to enter the single connectivity mode of operation, and transmitting, to the UE, a control message including an acknowledgement to enter the single connectivity mode of operation.
  • FIG. 1 illustrates an example of a system for wireless communications that techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a flow diagram that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a flow diagram that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • FIGs. 13 through 20 show flowcharts illustrating methods that support techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • data transfer e.g., packet-switched (PS) data transfer
  • PS packet-switched
  • data transfer may be successfully carried out within a particular cell (e.g., LTE cell) while the UE is operating in a single connectivity mode of operation. That is, data transfer may be successfully carried out when the UE establishes a connection with a single cell.
  • data transfer at the UE may terminate when the UE enters a NSA mode of operation by establishing dual connectivity with an LTE cell and a 5G cell. In this regard, data transfer may be terminated when the UE enters the dual connectivity mode to establish a connection with two or more cells.
  • this sudden termination of data may result in increased power consumption by the UE as the UE attempts to re-establish the dual connectivity mode.
  • the UE may be required to rely on more obsolete wireless technology (e.g., 2G or 3G) in order to successfully maintain data transfer in the event data transfer is terminated after entering the dual connectivity mode.
  • more obsolete wireless technology e.g., 2G or 3G
  • a UE operating in an NSA mode may identify a termination of data transfer (e.g., termination of PS data transfer) at the UE based at least partially on the UE entering a dual connectivity mode of operation.
  • the UE may cease operation in the dual connectivity mode and enter a single connectivity mode of operation.
  • the UE may enter the single connectivity mode by transmitting an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, where the TAU request includes an indication that a cell does not support the dual connectivity mode.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • the UE may subsequently transmit a control message including a request to enter a single connectivity mode of operation.
  • the UE may maintain a list of cells which do not support a dual connectivity mode. By maintaining a list of cells which do not support a dual connectivity mode, the UE may conserve power by refraining from attempting to re-establish the dual connectivity mode within the identified cells. Moreover, when returning to a cell which has been found not to support dual connectivity, the UE may disable the dual connectivity mode within the cell based at least in part on identifying the cell is included within the list of cells which do not support the dual connectivity mode. In some aspects, the UE may refresh the list of cells which have been found not to support dual connectivity based on the passage of some selected amount of time and/or after the UE has been powered off. According to some aspects, the techniques of the present disclosure may be configured to address dual connectivity issues within NR5G wireless communications, provide for improved data transfer stability, and reduce power consumption at the UE.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also illustrated by example process flow diagrams. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques to disable dual connectivity in cells which experience data transfer interruptions when NR5G is enabled.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • Acontrol region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling ofresources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number ofrows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • the UEs 115 and the base stations 105 of the wireless communications system 100 may support communications to support techniques to enable single connectivity mode to address data transfer interruptions.
  • the wireless communications system 100 may support communications which enable the UEs 115 and/or the base stations 105 to disable a dual connectivity mode of operation within cells served by the base stations 105 which experience data transfer interruptions when an NSA mode is enabled in 5G.
  • a UE 115 and/or a base station 105 of the wireless communications system 100 may identify an interruption in data transfer between the UE 115 and one or more of the base station 105 based on the UE 115 entering a dual connectivity mode to support an NSA mode of 5G.
  • the UE 115 and/or the base station 105 may cause the UE 115 to enter a single connectivity mode of operation, and resume data transfer with the base station 105 while operating in the single connectivity mode.
  • the UE 115 operating in an NSA mode of operation may enter a dual connectivity mode of operation by establishing a connection with a first cell and a second cell.
  • the UE 115 may enter the dual connectivity mode by transmitting an uplink NAS message including a TAU request, where the TAU request includes a request to enter the dual connectivity mode.
  • the UE 115 may identify a termination of data transfer at the UEs115 due to the UE 115 entering the dual connectivity mode.
  • the UE 115 may terminate the connection with the first cell or the second cell in order to end the dual connectivity mode at the UE 115 and enter a single connectivity mode.
  • the UE 115 may restrict the first cell and/or the second cell from the dual connectivity mode at the UE 115. In this regard, the UE 115 may add the first cell and/or the second cell to a set of blacklisted cells for dual connectivity. In some aspects, the UE 115 may enter the single connectivity mode by transmitting an uplink NAS message including a TAU request, where the TAU request includes a request to enter the single connectivity mode. In some aspects, the TAU request may further include an indication that the first cell and/or the second cell does not support the dual connectivity mode.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • Wireless communications system 200 may include a UE 115-a, a first base station 105-a, and a second base station 105-b, which may be examples of UE 115 and base stations 105, as described with reference to FIG. 1.
  • the UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of a 5G link between the UE 115-a and the first base station 105-a.
  • the UE 115-a may communicate with the second base station 105-b using a communication link 205-c, which may be an example of a 5G link between the UE 115-a and the second base station 105-b.
  • the communication links 205-a, 205-b may include examples of an access link (e.g., a Uu link) .
  • the communication links 205-a, 205-b may include a bi-directional link that includes both uplink and downlink.
  • the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a.
  • the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the second communication link 205-b and the second base station 105-b may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-b.
  • the first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-c.
  • the communication link 205-c may include an example of a link between two base stations (e.g., an Xn link) .
  • the first base station 105-a and the second base station 105-b may, in some cases, be collocated.
  • the communication link 205-c may include a bi-directional link.
  • the first base station 105-a and the second base station 105-b may be associated with one or more cells.
  • the first base station 105-a may be associated with a first cell
  • the second base station 105-b may be associated with a second cell different from the first cell.
  • the first base station 105-a and/or the second base station 105-b may facilitate (e.g., broker) communications between the UE 115-a and the other respective base station 105-a, 105-b.
  • the first base station 105-a may carry out communications with the UE 115-a to facilitate the establishment of a connection between the UE 115-a and the second base station 105-b.
  • data transfer at the UE 115-a may be successfully carried out within a particular cell (e.g., LTE cell) while the UE 115-a is operating in a single connectivity mode.
  • data transfer may be successfully carried out when the UE 115-a establishes a connection with the first base station 105-a (e.g., first cell) .
  • first base station 105-a e.g., first cell
  • data transfer at the UE 115-a may terminate when the UE 115-a enters a dual connectivity mode of operation with NR5G wireless communications.
  • data transfer may be terminated, or otherwise interrupted, when the UE 115-a enters the dual connectivity mode to establish a connection with the second base station 105-b (e.g., second cell) .
  • the dual connectivity mode may be associated with a non-standalone mode of5G in which the first base station 105-a provides an LTE cell for control plane signaling, and the second base station 105-b provides a 5G cell for transmitting and receiving user data.
  • the UE 115-a may be required to rely on more obsolete wireless communications (e.g., 2G or 3G) . This issue associated with dual connectivity in 5G may result in unstable data transfer as well as increased power consumption by the UE 115-a as the UE 115-a attempts to re-establish the dual connectivity mode.
  • the wireless communications system 200 may enable the UE 115-a and/or base stations 105-a, 105-b to identify data transfer interruptions attributable to the dual connectivity mode.
  • the UE 115-a may enter a dual connectivity mode by establishing a first connection with the first base station 105-a (e.g., first cell) and establishing a second connection with the second base station 105-b (e.g., second cell) .
  • the UE 115-a may determine an interruption of data transfer due to the UE 115-a entering the dual connectivity mode.
  • the UE 115-a may disable the dual connectivity mode by terminating the connection with the first base station 105-a or the second base station 105-b. In this regard, the UE 115-a may enter the single connectivity mode, and may resume data transfer with the first base station 105-a or the second base station 105-b while operating in the single connectivity mode. Aspects of the present disclosure may be further explained and understood with reference to FIG. 3.
  • FIG. 3 illustrates an example of a flow diagram 300 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • flow diagram 300 may implement aspects of wireless communications system 100 and/or wireless communications system 200.
  • flow diagram 300 may illustrate identifying data transfer issues associated with the dual connectivity mode, disabling the dual connectivity mode, and resuming data transfer in a single connectivity mode, as described with reference to FIGs. 1–2.
  • flow diagram 300 may include a UE 115-b and a base station 105-c, which may be examples of corresponding devices as described herein.
  • the UE 115-b and the base station 105-c illustrated in FIG. 3 may be examples of the UE 115-a and the first base station 105-a and/or second base station 105-b illustrated in FIG. 2.
  • the operations illustrated in flow diagram 300 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the UE 115-b may establish a first connection with a first cell.
  • the UE 115-a may establish the first connection with the first cell while operating in an NSA mode of operation.
  • the UE 115-b may establish a first connection with a first cell associated with the base station 105-c while in an NSA mode of operation.
  • the UE 115-b may establish the first connection with the first cell associated with the base station 105-c via the communication link 205-a illustrated in FIG. 2.
  • the UE 115-b may establish the first connection with the first cell associated with the base station 105-c by performing an attachment procedure.
  • the UE 115-b may transmit an attachment request to the base station 105-c, and the base station 105-c may transmit an attachment acknowledgement to the UE 115-b in response to the attachment request.
  • the UE 115-b may transmit a TAU request to the base station 105-c, where the TAU request includes a request for the UE 115-b to enter a dual connectivity mode of operation (e.g., enable dual connectivity NR (DCNR) support request) .
  • the UE 115-b may transmit an uplink NAS message including the TAU request.
  • the request to enter a dual connectivity mode may include a request for the UE 115-b to establish a second connection with a second cell.
  • the UE 115-b may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell.
  • the UE 115-b may transmit the TAU request to the base station 105-c associated with the first cell, as shown in FIG. 3.
  • the UE 115-b may additionally or alternatively transmit the TAU request to a base station (not shown in FIG. 3) associated with a second cell with which the UE 115-b is to establish a connection. It is noted herein, however, that a single base station 105-c is shown and described in FIG. 3 for the interests of simplicity.
  • the UE 115-b may receive a TAU accept from the base station 105-c.
  • the base station 105-c may transmit the TAU accept based at least partially in response to the TAU request.
  • the TAU accept may include an acceptance for the UE 115-b to operate in the dual connectivity mode.
  • the TAU accept may include an acceptance for the UE 115-b to establish a second connection with a second cell in addition to the first connection with the first cell.
  • the TAU accept may include an acceptance for the UE 115-b to establish a second connection with a second cell associated with a second base station different from the base station 105-c.
  • the UE 115-b may enter the dual connectivity mode of operation.
  • the UE 115-b may enter the dual connectivity mode of operation by establishing a second connection with a second cell.
  • the UE 115-b may enter the dual connectivity mode by establishing a second connection with a second cell different from the first cell.
  • the UE 115-b may enter the dual connectivity mode by establishing a second connection with a second cell associated with a second base station which is different from the base station 105-c.
  • the UE 115-b may identify an interruption (e.g., termination) of data transfer at the UE.
  • the interruption/termination of data transfer at the UE 115-b may be based at least in part on entering the dual connectivity mode.
  • the termination of data transfer may be attributable to the UE 115-b establishing the second connection with the second cell in addition to the first connection with the first cell.
  • the UE 115-b may be configured to determine that an identified interruption/termination of data transfer is attributable to the dual connectivity mode using any techniques known in the art.
  • the UE 115-b may be configured to determine a data transfer interruption is attributable to the UE 115-b entering the dual connectivity mode based on the fact that data transfer continued uninterrupted prior to the UE 115-b entering the dual connectivity mode.
  • the base station 105-c may be configured to identify the interruption/termination of data transfer. In cases where the base station 105-c identifies the interruption/termination of data transfer, the base station 105-c may be configured to determine the data transfer interruption is based at least in part on the UE 115-b entering the dual connectivity mode.
  • the UE 115-b may restrict the first cell or the second cell from the dual connectivity mode.
  • the UE 115-b may restrict the first cell or the second cell from the dual connectivity mode at the UE 115-b based at least in part on identifying the interruption/termination of data transfer. For example, upon identifying the termination of data transfer attributable to the dual connectivity mode, the UE 115-b may restrict the first cell and/or the base station 105-c associated with the first cell from dual connectivity at the UE 115-b. Conversely, by way of another example, the UE 115-b may restrict the second cell and/or the base station associated with the second cell from dual connectivity at the UE 115-b.
  • restricting the first cell or the second cell from dual connectivity at the UE 115-b may include adding the first cell and/or the second cell to a set of blacklisted cells for dual connectivity stored by the UE 115-b.
  • the UE 115-b may store a list of blacklisted cells which do not support dual connectivity.
  • the UE 115-b may store the list of blacklisted cells within a memory maintained by the UE 115-b.
  • the UE 115-b may transmit the list of blacklisted cells to a base station (e.g., base station 105-c) such that a list of cells within a wireless communications network (e.g., wireless communications system 100 or wireless communications system 200) may be compiled and flagged for service or inspection.
  • a base station e.g., base station 105-c
  • maintaining the list of blacklisted cells which do not support a dual connectivity mode may enable the UE 115-b to conserve power by refraining from attempting to re-establish the dual connectivity mode within the cells maintained within the list.
  • the UE 115-b may add the second cell and/or the second base station associated with the second cell to the list of blacklisted cells which do not support a dual connectivity mode.
  • the UE 115-b may thereafter leave a coverage area of the second cell. Subsequently the UE 115-b may return to the coverage area of the second cell.
  • the UE 115-b may determine that the second cell is maintained within the list of blacklisted cells, and may therefore refrain from attempting to establish the dual connectivity mode with the UE 115-b. By refraining from attempting to establish the dual connectivity mode, the UE 115-b may conserve power and prevent interruptions in data transfer which are attributable to the dual connectivity mode.
  • the UE 115-b may be configured to remove a dual connectivity restriction that was previously placed on one or more cells. Removing a restriction may allow the UE 115-b to re-attempt to establish the dual connectivity mode with a previously restricted cell.
  • the UE 115-b may be configured to remove a dual connectivity restriction from one or more cells based on any characteristic known in the art including, but not limited to, the passage of time, entering an inactive mode of operation (e.g., the UE powering off) , entering another mode of operation, and the like.
  • the UE 115-b may be configured to remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE 115-b based at least in part on an elapsed time since restricting the first cell or the second cell from the dual connectivity mode.
  • the elapsed time used to remove the dual connectivity restriction may be pre-configured, adaptively configured based on characteristics of the wireless communications system 100 or wireless communications system 200, indicated in signaling from a base station (e.g., base station 105-c) , and the like.
  • the UE 115-b may be configured to remove a dual connectivity restriction from a previously restricted cell based at least in part on the UE 115-b entering a given mode of operation including, but not limited to, an inactive mode of operation. For example, after restricting the first cell and/or the second cell from the dual connectivity mode, the UE 115-b may then enter an inactive mode of operation in which at least a portion of the UE 115-b is powered off or operated in a power-limited mode. In this example, the UE 115-b may be configured to remove the restriction on the first cell and/or second cell based at least in part on the UE 115-b entering the inactive mode of operation.
  • removing a restriction on one or more cells from the dual connectivity mode may include updating the list of blacklisted cells.
  • the UE 115-b may be configured to remove the first cell from the list of blacklisted cells maintained by the UE 115-b.
  • the UE 115-b may be configured to update the list of blacklisted cells based on characteristics including, but not limited to, the passage of an elapsed time, the UE 115-b entering an inactive mode of operation, and the like.
  • the base station 105-c may be configured to restrict the first cell or the second cell from the dual connectivity mode.
  • the base station 105-c associated with the first cell may be configured to restrict the second cell (e.g., the second base station) from the dual connectivity mode.
  • the UE 115-b may transmit a TAU request to the base station 105-c, where the TAU request includes an indication that the first cell (e.g., first base station 105-c) and/or the second cell (e.g., second base station) does not support the dual connectivity mode.
  • the UE 115-b may transmit an uplink NAS message including the TAU request.
  • the UE 115-b may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell.
  • the UE 115-b may transmit the TAU request to the base station 105-c associated with the first cell, as shown in FIG. 3.
  • the UE 115-b may additionally or alternatively transmit the TAU request to the base station (not shown in FIG. 3) associated with the second cell.
  • the TAU request including the indication that the first or second cell does not support the dual connectivity mode may serve as an indication to disable dual connectivity (e.g., disable DCNR) .
  • the TAU request may include a request to disable the dual connectivity mode within the first cell and/or the second cell.
  • the UE 115-b may transmit a request to disable the dual connectivity mode at the first cell and/or second cell using any signaling known in the art.
  • the UE 115-b may transmit a request to disable the dual connectivity mode at the first cell and/or the second cell via a control message.
  • the UE 115-b may receive a TAU accept from the base station 105-c.
  • the base station 105-c may transmit the TAU accept based at least partially in response to the TAU request.
  • the TAU accept may include an acknowledgement that the first cell or the second cell does not support the dual connectivity mode.
  • the UE 115-b may transmit a request to enter a single connectivity mode of operation to the base station 105-c.
  • the UE 115-b may be configured to transmit a control message including the request to enter the single connectivity mode.
  • the UE 115-b may transmit the request to enter the single connectivity mode (e.g., control message) to a base station associated with the first cell and/or a base station associated with the second cell.
  • the UE 115-b may transmit the request to enter the single connectivity mode to the base station 105-c associated with the first cell, as shown in FIG. 3.
  • the UE 115-b may additionally or alternatively transmit the request to enter the single connectivity mode to the base station (not shown in FIG. 3) associated with the second cell.
  • the UE 115-b may receive an acknowledgement for the UE 115-b to enter the single connectivity mode.
  • the base station 105-c may be configured to transmit a control message including the acknowledgement for the UE 115-b to enter the single connectivity mode.
  • the base station 105-c may transmit the acknowledgement based at least partially in response to the request received from the UE 115-b.
  • the UE 115-b may enter the single connectivity mode of operation.
  • the UE 115-b may terminate the first connection with the first cell or the second connection with the second cell to end the dual connectivity mode and enter the single connectivity mode.
  • the UE 115-b may establish and/or maintain a connection with the first cell (e.g., first base station 105-c) or the second cell (e.g., second base station) .
  • entering the single connectivity mode at 355 may include one or more of the functions/signaling illustrated in flow diagram 300.
  • the UE 115-b may perform any of the functions or signaling shown and described at 330-350.
  • the base station 105-c may be configured to determine an indication that the UE 115-b is entering the single connectivity mode of operation.
  • the base station 105-c may be configured to determine an indication that the UE 115-b is entering the single connectivity mode of operation based at least in part on an interruption/termination of data transfer at the UE 115-b between the UE 115-b and a cell communicatively coupled with the UE 115-b. It is contemplated herein that determining an indication that the UE 115-b is entering the single connectivity mode may include one or more of the functions/signaling illustrated in flow diagram 300.
  • the base station 105-c may be configured to determine an indication that the UE 115-b is entering a single connectivity mode of operation based at least in part on any of the functions or signaling shown and described at 330-350.
  • data transfer between the UE 115-b and the first cell or the second cell may resume. For example, in cases where the UE 115-c enters the single connectivity mode with the UE 115-c associated with the first cell, data transfer may resume between the UE 115-b and the first cell (e.g., base station 105-c) . In some aspects, the data transfer between the UE 115-b and the first cell or the second cell may be resumed based at least in part on the UE 115-b entering the single connectivity mode of operation (and/or an indication that the UE 115-b is entering the single connectivity mode of operation) .
  • FIG. 4 illustrates an example of a flow diagram 400 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • flow diagram 400 may implement aspects of wireless communications system 100, wireless communications system 200, and/or flow diagram 300.
  • flow diagram 400 may illustrate identifying data transfer issues associated with the dual connectivity mode, disabling the dual connectivity mode, and resuming data transfer in a single connectivity mode, as described with reference to FIGs. 1–3.
  • flow diagram 400 may include a UE 115-c and a base station 105-d, which may be examples of corresponding devices as described herein.
  • the UE 115-c and the base station 105-d illustrated in FIG. 4 may be examples of the UE 115-a and the first base station 105-a and/or second base station 105-b illustrated in FIG. 2.
  • the operations illustrated in flow diagram 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the UE 115-c may transmit a TAU request to the base station 105-d where the TAU request includes a request for the UE 115-c to enter a dual connectivity mode of operation (e.g., DCNR support request) .
  • the UE 115-c may transmit the TAU request from a NAS layer of the UE 115-c.
  • the UE 115-b may transmit an uplink NAS message including the TAU request.
  • the request to enter a dual connectivity mode may include a request for the UE 115-b to establish a second connection with a second cell.
  • the UE 115-b may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell. It is further noted herein that the UE 115-c and the base station 105-d may further exchange attach request and attach acknowledgement signaling in addition to the TAU request illustrated at 405.
  • TAU request e.g., TAU request
  • the UE 115-c and the base station 105-d may further exchange attach request and attach acknowledgement signaling in addition to the TAU request illustrated at 405.
  • the UE 115-c may receive a TAU accept from the base station 105-d.
  • the base station 105-d may transmit the TAU accept based at least partially in response to the TAU request.
  • the TAU accept may include an acceptance for the UE 115-c to operate in the dual connectivity mode.
  • the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell in addition to the first connection with the first cell.
  • the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell associated with a second base station different from the base station 105-d.
  • the UE 115-c may transmit a resource block re-establish request to the NAS layer of the UE 115-c.
  • the UE 115-c may transmit a service request to the base station 105-d.
  • the UE 115-c may transmit the service request to the base station 105-d from the NAS layer of the UE 115-c.
  • the UE 115-c may transmit the service request from the NAS layer based at least in part on the resource block re-establish request.
  • the UE 115-c and the base station 105-d may establish a radio resource control (RRC) connection.
  • the RRC connection established at 435 may be based at least in part on the service request transmitted from the UE 115-c to the base station 105-d.
  • the UE 115-c may enter the dual connectivity mode of operation.
  • the UE 115-c may enter the dual connectivity mode of operation by establishing a second connection with a second cell.
  • the UE 115-c may enter the dual connectivity mode by establishing a second connection with a second cell different from the first cell.
  • the UE 115-c may enter the dual connectivity mode by establishing a second connection with a second cell associated with a second base station which is different from the base station 105-d.
  • the base station 105-d may facilitate (e.g., broker) communications between the UE 115-c and the second base station associated with the second cell in order to enable the UE 115-c to establish a connection with the second cell and enter the dual connectivity mode.
  • the UE 115-c may identify an interruption (e.g., termination) of data transfer at the UE.
  • the interruption/termination of data transfer at the UE 115-c may be based at least in part on entering the dual connectivity mode.
  • the termination of data transfer may be attributable to the UE 115-c establishing the second connection with the second cell in addition to the first connection with the first cell.
  • the UE 115-c may be configured to determine that an identified interruption/termination of data transfer is attributable to the dual connectivity mode using any techniques known in the art.
  • the UE 115-c may be configured to determine a data transfer interruption is attributable to the UE 115-c entering the dual connectivity mode based on the fact that data transfer continued uninterrupted prior to the UE 115-c entering the dual connectivity mode.
  • the UE 115-c may transmit a request to disable the dual connectivity mode (e.g., disable DCNR request) to the NAS layer of the UE 115-c.
  • the disable DCNR request may be transmitted to the NAS layer based at least in part on the identification of data interruption/termination at the UE 115-c.
  • the UE 115-c may terminate or abort the RRC connection.
  • the NAS layer of the UE 115-c may terminate/abort the RRC connection based at least in part on the disable DCNR request and/or the identification of data interruption/termination at the UE 115-c.
  • the UE 115-c may transmit a TAU request to the base station 105-d, where the TAU request includes an indication that the first cell (e.g., first base station 105-d) and/or the second cell (e.g., second base station) does not support the dual connectivity mode.
  • the UE 115-b may transmit an uplink NAS message including the TAU request from the NAS layer of the UE 115-c.
  • the TAU request may include a request to disable the dual connectivity mode of the first cell or second cell (e.g., DCNR disable) .
  • the UE 115-c may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell.
  • the UE 115-c may receive a TAU accept from the base station 105-d.
  • the base station 105-d may transmit the TAU accept based at least partially in response to the TAU request.
  • the TAU accept may include an acknowledgement that the first cell or the second cell does not support the dual connectivity mode.
  • the UE 115-c may transmit a resource block re-establish request to the NAS layer of the UE 115-d.
  • the UE 115-c may transmit a service request to the base station 105-d.
  • the UE 115-c may transmit the service request to the base station 105-d from the NAS layer of the UE 115-c.
  • the UE 115-c may transmit the service request from the NAS layer based at least in part on the resource block re-establish request.
  • the UE 115-c and the base station 105-d may establish an RRC connection.
  • the RRC connection established at 470 may be based at least in part on the service request transmitted from the UE 115-c to the base station 105-d.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may establish a first connection with a first cell in a non-standalone mode of operation, resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation, enter a dual connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the user equipment based on entering the dual connectivity mode, and enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 505, thereby reducing and/or preventing interruptions of data reception by the receiver 510 and/or interruptions of data transmission by the transmitter 520. Furthermore, by preventing the device 505 from attempting to re-establish dual connectivity with cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce signaling overhead, and reduce power consumption of the device 505.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a UE 115 as described herein.
  • the device 605 may include a receiver 610, acommunications manager 615, and a transmitter 635.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a communications manager 615, a dual connectivity manager 620, a data transfer manager 625, and a single connectivity manager 630.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 615 may establish a first connection with a first cell in a non-standalone mode of operation and resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the dual connectivity manager 620 may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
  • the data transfer manager 625 may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode.
  • the single connectivity manager 630 may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
  • the transmitter 635 may transmit signals generated by other components of the device 605.
  • the transmitter 635 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 635 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a communications manager 710, a dual connectivity manager 715, a data transfer manager 720, a single connectivity manager 725, a power manger 730, a TAU transmitter 735, a TAU receiver 740, a control message transmitter 745, and a control message receiver 750.
  • Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 710 may establish a first connection with a first cell in a non-standalone mode of operation. In some examples, the communications manager 710 may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. In some examples, the communications manager 710 may transmit, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode within one or more of the first cell or the second cell.
  • the dual connectivity manager 715 may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
  • the dual connectivity manager 715 may restrict one or more of the first cell or the second cell from the dual connectivity mode at the UE based on identifying the termination of data transfer.
  • the dual connectivity manager 715 may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode.
  • the dual connectivity manager 715 may remove a restriction on one or more of the first cell or the second cell based on entering the inactive mode of operation.
  • the dual connectivity manager 715 may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  • the data transfer manager 720 may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode.
  • the single connectivity manager 725 may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. In some examples, the single connectivity manager 725 may terminate the connection with the first cell or the second cell.
  • the power manger 730 may cause the UE to enter an inactive mode of operation.
  • the TAU transmitter 735 may transmit, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
  • the TAU transmitter 735 may transmit, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • the TAU receiver 740 may receive, from the base station, a TAU accept based on the TAU request, the TAU accept including an acceptance for the user equipment to operate in the dual connectivity mode. In some examples, the TAU receiver 740 may receive, from the base station, a TAU accept based on the TAU request.
  • the control message transmitter 745 may transmit, to a base station associated with one or more of the first cell or the second cell, a control message including a request to enter the single connectivity mode of operation.
  • the control message receiver 750 may receive, from the base station, a control message including an acknowledgement/acceptance to enter the single connectivity mode.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
  • buses e.g., bus 845
  • the communications manager 810 may establish a first connection with a first cell in a non-standalone mode of operation, resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation, enter a dual connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the user equipment based on entering the dual connectivity mode, and enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include random-access (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 840 may include a programmable hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting techniques to enable single connectivity mode to address data transfer interruptions) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 805, thereby improving user experience and satisfaction with device 805. Furthermore, by preventing the device 805 from attempting to re-establish dual connectivity with cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce power consumption of the device 805, and improve overall battery performance.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a communications manager 915, and a transmitter 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the device 905.
  • the receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 910 may utilize a single antenna or a set of antennas.
  • the communications manager 915 may establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 915 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 915 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 915, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 915, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 920 may transmit signals generated by other components of the device 905.
  • the transmitter 920 may be collocated with a receiver 910 in a transceiver module.
  • the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 920 may utilize a single antenna or a set of antennas.
  • aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 905, thereby reducing and/or preventing interruptions of data reception by the receiver 910 and/or interruptions of data transmission by the transmitter 920. Furthermore, by preventing the device 905 from attempting to re-establish dual connectivity via cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce signaling overhead, and reduce power consumption of the device 905.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1030.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the receiver 1010 may utilize a single antenna or a set of antennas.
  • the communications manager 1015 may be an example of aspects of the communications manager 915 as described herein.
  • the communications manager 1015 may include a communications manager 1015, a single connectivity manager 1020, and a data transfer manager 1025.
  • the communications manager 1015 may be an example of aspects of the communications manager 1210 described herein.
  • the communications manager 1015 may establish a first connection with a UE via a first cell supported by the base station and establish a second connection with the UE via a second cell supported by the base station.
  • the single connectivity manager 1020 may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell.
  • the data transfer manager 1025 may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the transmitter 1030 may transmit signals generated by other components of the device 1005.
  • the transmitter 1030 may be collocated with a receiver 1010 in a transceiver module.
  • the transmitter 1030 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12.
  • the transmitter 1030 may utilize a single antenna or a set of antennas.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein.
  • the communications manager 1105 may include a communications manager 1110, a single connectivity manager 1115, a data transfer manager 1120, a dual connectivity manager 1125, a TAU receiver 1130, a TAU transmitter 1135, a control message receiver 1140, and a control message transmitter 1145. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 1110 may establish a first connection with a UE via a first cell supported by the base station. In some examples, the communications manager 1110 may establish a second connection with the UE via a second cell supported by the base station. In some examples, the communications manager 1110 may terminate the first connection with the UE or the second connection with the UE based on the indication that the UE is entering a single connectivity mode of operation. In some examples, the communications manager 1110 may receive, from the UE, a request to disable a dual connectivity mode of operation of the UE within one or more of the first cell or the second cell.
  • the single connectivity manager 1115 may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell.
  • the data transfer manager 1120 may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the dual connectivity manager 1125 may restrict one or more of the first cell or the second cell from a dual connectivity mode at the UE based on the indication that the UE is entering a single connectivity mode of operation. In some examples, the dual connectivity manager 1125 may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode. In some examples, the dual connectivity manager 1125 may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
  • the TAU receiver 1130 may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
  • the TAU receiver 1130 may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • the TAU transmitter 1135 may transmit, to the UE, a TAU accept based on the TAU request, the TAU accept including an acceptance for the user equipment to operate in the dual connectivity mode. In some examples, the TAU transmitter 1135 may transmit, to the UE, a TAU accept based on the TAU request.
  • the control message receiver 1140 may receive, from the UE, a control message including a request to enter the single connectivity mode of operation.
  • the control message transmitter 1145 may transmit, to the UE, a control message including an acknowledgement/acceptance to enter the single connectivity mode.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
  • buses e.g., bus 1250
  • the communications manager 1210 may establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1220 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 1230 may include RAM, ROM, or a combination thereof.
  • the memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein.
  • a processor e.g., the processor 1240
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include a programmable hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting techniques to enable single connectivity mode to address data transfer interruptions) .
  • the inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 1205, thereby improving user experience. Furthermore, by preventing the device 1205 from attempting to re-establish dual connectivity via cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce power consumption of the device 1205, and improve overall battery/power performance.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 1300 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, aUE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a first connection with a first cell in a non-standalone mode of operation.
  • the operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
  • the operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode.
  • the operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
  • the operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a single connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 1400 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a first connection with a first cell in a non-standalone mode of operation.
  • the operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
  • the operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode.
  • the operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the UE.
  • the UE may enter the single connectivity mode based at least in part on restricting one or more of the first cell or the second cell from the dual connectivity mode at the UE. restrict one or more of the first cell or the second cell from the dual connectivity mode at the UE based on identifying the termination of data transfer.
  • the operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a dual connectivity manager and/or single connectivity manager as described with reference to FIGs. 5 through 8.
  • the operations of 1435 may be performed according to the methods described herein.
  • the UE may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  • the operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode.
  • the operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the operations of 1440 may be performed according to the methods described herein. In some examples, aspects of the operations of 1440 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 1500 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, aUE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a first connection with a first cell in a non-standalone mode of operation.
  • the operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
  • the operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode.
  • the operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. In some aspects, the UE may enter the single connectivity mode based at least in part on restricting one or more of the first cell or the second cell from the dual connectivity mode at the UE.
  • the operations of 1540 may be performed according to the methods described herein. In some examples, aspects of the operations of 1540 may be performed by a dual connectivity manager and/or a single connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may enter an inactive mode of operation.
  • the operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a power manger as described with reference to FIGs. 5 through 8.
  • the UE may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  • the operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the operations of 1530 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may remove a restriction on one or more of the first cell or the second cell based on entering the inactive mode of operation.
  • the operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the operations of 1535 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the operations of 1545 may be performed according to the methods described herein. In some examples, aspects of the operations of 1545 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 1600 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a first connection with a first cell in a non-standalone mode of operation.
  • the operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • the operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
  • the UE may receive, from the base station, a TAU accept based on the TAU request, the TAU accept including an acceptance for the user equipment to operate in the dual connectivity mode.
  • the operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a TAU receiver as described with reference to FIGs. 5 through 8.
  • the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
  • the operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode.
  • the operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
  • the operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by a single connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the operations of 1635 may be performed according to the methods described herein. In some examples, aspects of the operations of 1635 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 1700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, aUE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may establish a first connection with a first cell in a non-standalone mode of operation.
  • the operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
  • the operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode.
  • the operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
  • the UE may transmit, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • the operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
  • the UE may receive, from the base station, a TAU accept based on the TAU request.
  • the operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a TAU receiver as described with reference to FIGs. 5 through 8.
  • the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
  • the operations of 1730 may be performed according to the methods described herein. In some examples, aspects of the operations of 1730 may be performed by a single connectivity manager as described with reference to FIGs. 5 through 8.
  • the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
  • the operations of 1735 may be performed according to the methods described herein. In some examples, aspects of the operations of 1735 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 1800 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may establish a first connection with a UE via a first cell supported by the base station.
  • the operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • the base station may establish a second connection with the UE via a second cell supported by the base station.
  • the operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • the base station may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell.
  • the operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a single connectivity manager as described with reference to FIGs. 9 through 12.
  • the base station may restrict one or more of the first cell or the second cell from a dual connectivity mode at the UE based on the indication that the UE is entering a single connectivity mode of operation.
  • the operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a dual connectivity manager as described with reference to FIGs. 9 through 12.
  • the base station may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode.
  • the operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a dual connectivity manager as described with reference to FIGs. 9 through 12.
  • the base station may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a data transfer manager as described with reference to FIGs. 9 through 12.
  • FIG. 19 shows a flowchart illustrating a method 1900 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 1900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may establish a first connection with a UE via a first cell supported by the base station.
  • the operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • the base station may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • the operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
  • the base station may establish a second connection with the UE via a second cell supported by the base station.
  • the operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • the base station may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell.
  • the operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a single connectivity manager as described with reference to FIGs. 9 through 12.
  • the base station may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a data transfer manager as described with reference to FIGs. 9 through 12.
  • FIG. 20 shows a flowchart illustrating a method 2000 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
  • the operations of method 2000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may establish a first connection with a UE via a first cell supported by the base station.
  • the operations of 2005 may be performed according to the methods described herein. In some examples, aspects of the operations of 2005 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • the base station may establish a second connection with the UE via a second cell supported by the base station.
  • the operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
  • the base station may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell.
  • the operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a single connectivity manager as described with reference to FIGs. 9 through 12.
  • the base station may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode.
  • NAS uplink non-access stratum
  • TAU tracking area update
  • the operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
  • the base station may transmit, to the UE, a TAU accept based on the TAU request.
  • the operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by a TAU transmitter as described with reference to FIGs. 9 through 12.
  • the base station may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
  • the operations of 2030 may be performed according to the methods described herein. In some examples, aspects of the operations of 2030 may be performed by a data transfer manager as described with reference to FIGs. 9 through 12.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a digital signal processor (DSP) and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • DSP digital signal processor
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may experience an interruption of data transfer upon entering a dual connectivity mode of 5G by establishing a connection with a first cell and a second cell. A UE may be configured to identify an interruption of data transfer at the UE based on entering the dual connectivity mode, enter a single connectivity mode upon identifying the interruption of data transfer, and resume data transfer with the first cell or the second cell while operating in the single connectivity mode. In some aspects, the UE may restrict the first cell or the second cell from the dual connectivity mode based on identifying the interruption of data transfer. In other aspects, the UE may enter the single connectivity mode by terminating a connection with the first cell or the second cell.

Description

TRANSITIONING TO SINGLE CONNECTIVITY MODE TO ADDRESS DATA TRANSFER INTERRUPTIONS
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to techniques to enable single connectivity mode to address data transfer interruptions when 5G is enabled.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some cases, a UE may establish a 5G connection in a non-standalone (NSA) mode of operation, in which the UE communicates with an LTE base station or cell for control plane signaling and with a 5G base station or cell to transmit and receive user plane data.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support techniques to enable single connectivity mode to address data transfer interruptions. Generally, the described techniques provide for disabling a dual  connectivity mode within cells which experience data transfer interruptions when NR5G is enabled.
While operating in a non-standalone (NSA) mode of operation, it has been observed that in some cases data transfer at the UE may terminate when the UE enters a dual connectivity mode of operation with a 5G cells. In this regard, data transfer may be terminated when the UE enters the dual connectivity mode to establish a connection with two or more cells. In addition to unstable data transfer, such issues may result in increased power consumption by the UE as the UE attempts to re-establish the dual connectivity mode. In some instances, the UE may be required to rely on more obsolete wireless technology (e.g., 2G or 3G) in order to successfully maintain data transfer in the event data transfer is terminated after entering the dual connectivity mode.
A method of wireless communication at a UE is described. The method may include establishing a first connection with a first cell in a non-standalone mode of operation, entering a dual connectivity mode of operation by establishing a second connection with a second cell, identifying a termination of data transfer at the UE based on entering the dual connectivity mode of operation, entering a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resuming data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to establish a first connection with a first cell in a non-standalone mode of operation, enter a dual connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the UE based on entering the dual connectivity mode of operation, enter a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for establishing a first connection with a first cell in a non-standalone mode of operation, entering a dual connectivity mode of operation by establishing  a second connection with a second cell, identifying a termination of data transfer at the UE based on entering the dual connectivity mode of operation, entering a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resuming data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a processor to establish a first connection with a first cell in a non-standalone mode of operation, enter a dual connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the UE based on entering the dual connectivity mode of operation, enter a single connectivity mode of operation based on identifying the termination of data transfer at the UE, and resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based on identifying the termination of data transfer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for entering an inactive mode of operation, and removing a restriction on one or more of the first cell or the second cell based on entering the inactive mode of operation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE may include operations, features,  means, or instructions for adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, entering the dual connectivity mode of operation may include operations, features, means, or instructions for transmitting, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a TAU accept based on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, entering the single connectivity mode of operation may include operations, features, means, or instructions for terminating the first connection with the first cell or the second connection with the second cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, entering the single connectivity mode of operation may include operations, features, means, or instructions for transmitting, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell may include operations, features, means, or instructions for transmitting, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, a TAU accept based on the TAU request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, entering the single connectivity mode of operation may include operations, features, means, or instructions for transmitting, to a base station associated with one or more of the first cell or the second cell, a first control message including a request to enter the single connectivity mode of operation, and receiving, from the base station, a second control message including an acknowledgement to enter the single connectivity mode of operation.
A method of wireless communication at a base station is described. The method may include establishing a first connection with a UE via a first cell supported by the base station, establishing a second connection with the UE via a second cell supported by the base station, determining an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resuming data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for establishing a first connection with a UE via a first cell supported by the base station, establishing a second connection with the UE via a second cell  supported by the base station, determining an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resuming data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for restricting one or more of the first cell or the second cell from a dual connectivity mode of operation at the UE based on the indication that the UE may be entering a single connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE may include operations, features, means, or instructions for adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, establishing the second connection with the UE via the  second cell supported by the base station may include operations, features, means, or instructions for receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a TAU accept based on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for terminating the first connection with the UE or the second connection with the UE based on the indication that the UE may be entering a single connectivity mode of operation.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining the indication that the UE may be entering a single connectivity mode of operation may include operations, features, means, or instructions for receiving, from the UE, a request to disable a dual connectivity mode of operation of the UE within one or more of the first cell or the second cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, receiving the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell may include operations, features, means, or instructions for receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the UE, a TAU accept based on the TAU request.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, determining an indication that the UE may be entering a single connectivity mode of operation may include operations, features, means, or  instructions for receiving, from the UE, a control message including a request to enter the single connectivity mode of operation, and transmitting, to the UE, a control message including an acknowledgement to enter the single connectivity mode of operation.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a flow diagram that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a flow diagram that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
FIGs. 13 through 20 show flowcharts illustrating methods that support techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some 5G wireless communications, data transfer (e.g., packet-switched (PS) data transfer) at a UE may be successfully carried out within a particular cell (e.g., LTE cell) while the UE is operating in a single connectivity mode of operation. That is, data transfer may be successfully carried out when the UE establishes a connection with a single cell. However, it has been found that data transfer at the UE may terminate when the UE enters a NSA mode of operation by establishing dual connectivity with an LTE cell and a 5G cell. In this regard, data transfer may be terminated when the UE enters the dual connectivity mode to establish a connection with two or more cells. In addition to unstable data transfer, this sudden termination of data may result in increased power consumption by the UE as the UE attempts to re-establish the dual connectivity mode. In some instances, the UE may be required to rely on more obsolete wireless technology (e.g., 2G or 3G) in order to successfully maintain data transfer in the event data transfer is terminated after entering the dual connectivity mode. There is a need in the art for a system and method which may address the issues associated with NR5G dual connectivity until they may be resolved.
In order to address issues associated with dual connectivity in NR5G wireless communications, a UE operating in an NSA mode may identify a termination of data transfer (e.g., termination of PS data transfer) at the UE based at least partially on the UE entering a dual connectivity mode of operation. Upon identifying a termination of data transfer at the UE, the UE may cease operation in the dual connectivity mode and enter a single connectivity mode of operation. According to some aspects, the UE may enter the single  connectivity mode by transmitting an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, where the TAU request includes an indication that a cell does not support the dual connectivity mode. The UE may subsequently transmit a control message including a request to enter a single connectivity mode of operation.
In some aspects, the UE may maintain a list of cells which do not support a dual connectivity mode. By maintaining a list of cells which do not support a dual connectivity mode, the UE may conserve power by refraining from attempting to re-establish the dual connectivity mode within the identified cells. Moreover, when returning to a cell which has been found not to support dual connectivity, the UE may disable the dual connectivity mode within the cell based at least in part on identifying the cell is included within the list of cells which do not support the dual connectivity mode. In some aspects, the UE may refresh the list of cells which have been found not to support dual connectivity based on the passage of some selected amount of time and/or after the UE has been powered off. According to some aspects, the techniques of the present disclosure may be configured to address dual connectivity issues within NR5G wireless communications, provide for improved data transfer stability, and reduce power consumption at the UE.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are also illustrated by example process flow diagrams. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques to disable dual connectivity in cells which experience data transfer interruptions when NR5G is enabled.
FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical)  communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable  terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the  symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s = 1/ (Δf max·N f) seconds, whereΔf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. Acontrol region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small  cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within  the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling ofresources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The network operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number ofrows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming  operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
The UEs 115 and the base stations 105 of the wireless communications system 100 may support communications to support techniques to enable single connectivity mode to address data transfer interruptions. In particular, the wireless communications system 100 may support communications which enable the UEs 115 and/or the base stations 105 to disable a dual connectivity mode of operation within cells served by the base stations 105 which experience data transfer interruptions when an NSA mode is enabled in 5G. In some aspects, a UE 115 and/or a base station 105 of the wireless communications system 100 may identify an interruption in data transfer between the UE 115 and one or more of the base station 105 based on the UE 115 entering a dual connectivity mode to support an NSA mode of 5G. Upon identifying the interruption (e.g., termination) of data transfer at the UE 115, the UE 115 and/or the base station 105 may cause the UE 115 to enter a single connectivity mode of operation, and resume data transfer with the base station 105 while operating in the single connectivity mode.
In some aspects, the UE 115 operating in an NSA mode of operation may enter a dual connectivity mode of operation by establishing a connection with a first cell and a  second cell. In some aspects, the UE 115 may enter the dual connectivity mode by transmitting an uplink NAS message including a TAU request, where the TAU request includes a request to enter the dual connectivity mode. Subsequently, the UE 115 may identify a termination of data transfer at the UEs115 due to the UE 115 entering the dual connectivity mode. In response to the termination of data transfer, the UE 115 may terminate the connection with the first cell or the second cell in order to end the dual connectivity mode at the UE 115 and enter a single connectivity mode.
In some aspects, the UE 115 may restrict the first cell and/or the second cell from the dual connectivity mode at the UE 115. In this regard, the UE 115 may add the first cell and/or the second cell to a set of blacklisted cells for dual connectivity. In some aspects, the UE 115 may enter the single connectivity mode by transmitting an uplink NAS message including a TAU request, where the TAU request includes a request to enter the single connectivity mode. In some aspects, the TAU request may further include an indication that the first cell and/or the second cell does not support the dual connectivity mode.
FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. Wireless communications system 200 may include a UE 115-a, a first base station 105-a, and a second base station 105-b, which may be examples of UE 115 and base stations 105, as described with reference to FIG. 1.
The UE 115-a may communicate with the first base station 105-a using a communication link 205-a, which may be an example of a 5G link between the UE 115-a and the first base station 105-a. Similarly, the UE 115-a may communicate with the second base station 105-b using a communication link 205-c, which may be an example of a 5G link between the UE 115-a and the second base station 105-b. In some cases, the communication links 205-a, 205-b may include examples of an access link (e.g., a Uu link) . The communication links 205-a, 205-b may include a bi-directional link that includes both uplink and downlink. For example, the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the first base station 105-a using the first communication link 205-a and the first base station 105-a may transmit downlink signals,  such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-a. By way of another example, the UE 115-a may transmit uplink signals, such as uplink control signals or uplink data signals, to the second base station 105-b using the second communication link 205-b and the second base station 105-b may transmit downlink signals, such as downlink control signals or downlink data signals, to the UE 115-a using the communication link 205-b.
The first base station 105-a and the second base station 105-b may communicate with one another via a communication link 205-c. In some cases, the communication link 205-c may include an example of a link between two base stations (e.g., an Xn link) . The first base station 105-a and the second base station 105-b may, in some cases, be collocated. The communication link 205-c may include a bi-directional link. In some aspects, the first base station 105-a and the second base station 105-b may be associated with one or more cells. For example, in some aspects, the first base station 105-a may be associated with a first cell, and the second base station 105-b may be associated with a second cell different from the first cell. In some aspects, the first base station 105-a and/or the second base station 105-b may facilitate (e.g., broker) communications between the UE 115-a and the other respective base station 105-a, 105-b. For example, upon establishing a connection with the UE 115-a via the communication link 205-a, the first base station 105-a may carry out communications with the UE 115-a to facilitate the establishment of a connection between the UE 115-a and the second base station 105-b.
As noted previously herein, while operating in an NSA mode of operation, it has been found that data transfer at the UE 115-a may be successfully carried out within a particular cell (e.g., LTE cell) while the UE 115-a is operating in a single connectivity mode. For example, data transfer may be successfully carried out when the UE 115-a establishes a connection with the first base station 105-a (e.g., first cell) . However, it has been found that data transfer at the UE 115-a may terminate when the UE 115-a enters a dual connectivity mode of operation with NR5G wireless communications. For example, data transfer may be terminated, or otherwise interrupted, when the UE 115-a enters the dual connectivity mode to establish a connection with the second base station 105-b (e.g., second cell) . For example, the dual connectivity mode may be associated with a non-standalone mode of5G in which the first base station 105-a provides an LTE cell for control plane signaling, and the second base station 105-b provides a 5G cell for transmitting and receiving user data. In order to  successfully maintain data transfer, the UE 115-a may be required to rely on more obsolete wireless communications (e.g., 2G or 3G) . This issue associated with dual connectivity in 5G may result in unstable data transfer as well as increased power consumption by the UE 115-a as the UE 115-a attempts to re-establish the dual connectivity mode.
Accordingly, some aspects of the disclosure are directed to techniques which address these identified issues with dual connectivity in 5G communications. In particular, the wireless communications system 200 may enable the UE 115-a and/or base stations 105-a, 105-b to identify data transfer interruptions attributable to the dual connectivity mode. For example, the UE 115-a may enter a dual connectivity mode by establishing a first connection with the first base station 105-a (e.g., first cell) and establishing a second connection with the second base station 105-b (e.g., second cell) . Subsequently, the UE 115-a may determine an interruption of data transfer due to the UE 115-a entering the dual connectivity mode. In order to address the data transfer interruption, the UE 115-a may disable the dual connectivity mode by terminating the connection with the first base station 105-a or the second base station 105-b. In this regard, the UE 115-a may enter the single connectivity mode, and may resume data transfer with the first base station 105-a or the second base station 105-b while operating in the single connectivity mode. Aspects of the present disclosure may be further explained and understood with reference to FIG. 3.
FIG. 3 illustrates an example of a flow diagram 300 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. In some examples, flow diagram 300 may implement aspects of wireless communications system 100 and/or wireless communications system 200. For example, flow diagram 300 may illustrate identifying data transfer issues associated with the dual connectivity mode, disabling the dual connectivity mode, and resuming data transfer in a single connectivity mode, as described with reference to FIGs. 1–2.
In some cases, flow diagram 300 may include a UE 115-b and a base station 105-c, which may be examples of corresponding devices as described herein. In particular, the UE 115-b and the base station 105-c illustrated in FIG. 3 may be examples of the UE 115-a and the first base station 105-a and/or second base station 105-b illustrated in FIG. 2. In some examples, the operations illustrated in flow diagram 300 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other  components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 305, the UE 115-b may establish a first connection with a first cell. In some aspects, the UE 115-a may establish the first connection with the first cell while operating in an NSA mode of operation. For example, the UE 115-b may establish a first connection with a first cell associated with the base station 105-c while in an NSA mode of operation. In some aspects, the UE 115-b may establish the first connection with the first cell associated with the base station 105-c via the communication link 205-a illustrated in FIG. 2. In some aspects, the UE 115-b may establish the first connection with the first cell associated with the base station 105-c by performing an attachment procedure. For example, the UE 115-b may transmit an attachment request to the base station 105-c, and the base station 105-c may transmit an attachment acknowledgement to the UE 115-b in response to the attachment request.
At 310, the UE 115-b may transmit a TAU request to the base station 105-c, where the TAU request includes a request for the UE 115-b to enter a dual connectivity mode of operation (e.g., enable dual connectivity NR (DCNR) support request) . For example, the UE 115-b may transmit an uplink NAS message including the TAU request. In some aspects, the request to enter a dual connectivity mode may include a request for the UE 115-b to establish a second connection with a second cell. In some aspects, the UE 115-b may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell. For example, in cases where the base station 105-c is associated with the first cell, the UE 115-b may transmit the TAU request to the base station 105-c associated with the first cell, as shown in FIG. 3. However, it is contemplated herein that the UE 115-b may additionally or alternatively transmit the TAU request to a base station (not shown in FIG. 3) associated with a second cell with which the UE 115-b is to establish a connection. It is noted herein, however, that a single base station 105-c is shown and described in FIG. 3 for the interests of simplicity.
At 315, the UE 115-b may receive a TAU accept from the base station 105-c. In some aspects, the base station 105-c may transmit the TAU accept based at least partially in  response to the TAU request. The TAU accept may include an acceptance for the UE 115-b to operate in the dual connectivity mode. In this regard, the TAU accept may include an acceptance for the UE 115-b to establish a second connection with a second cell in addition to the first connection with the first cell. For example, in cases where the base station 105-c is associated with the first cell, the TAU accept may include an acceptance for the UE 115-b to establish a second connection with a second cell associated with a second base station different from the base station 105-c.
At 320, the UE 115-b may enter the dual connectivity mode of operation. In some aspects, the UE 115-b may enter the dual connectivity mode of operation by establishing a second connection with a second cell. For example, the UE 115-b may enter the dual connectivity mode by establishing a second connection with a second cell different from the first cell. For instance, the UE 115-b may enter the dual connectivity mode by establishing a second connection with a second cell associated with a second base station which is different from the base station 105-c.
At 325, the UE 115-b may identify an interruption (e.g., termination) of data transfer at the UE. In some aspects, the interruption/termination of data transfer at the UE 115-b may be based at least in part on entering the dual connectivity mode. For example, the termination of data transfer may be attributable to the UE 115-b establishing the second connection with the second cell in addition to the first connection with the first cell. The UE 115-b may be configured to determine that an identified interruption/termination of data transfer is attributable to the dual connectivity mode using any techniques known in the art. For example, in some cases, the UE 115-b may be configured to determine a data transfer interruption is attributable to the UE 115-b entering the dual connectivity mode based on the fact that data transfer continued uninterrupted prior to the UE 115-b entering the dual connectivity mode.
While the identification of a termination of data transfer is shown in FIG. 3 as being carried out by the UE 115-b, this is not to be regarded as a limitation of the present disclosure, unless noted otherwise herein. In particular, in some aspects, the base station 105-c may be configured to identify the interruption/termination of data transfer. In cases where the base station 105-c identifies the interruption/termination of data transfer, the base  station 105-c may be configured to determine the data transfer interruption is based at least in part on the UE 115-b entering the dual connectivity mode.
At 330, the UE 115-b may restrict the first cell or the second cell from the dual connectivity mode. The UE 115-b may restrict the first cell or the second cell from the dual connectivity mode at the UE 115-b based at least in part on identifying the interruption/termination of data transfer. For example, upon identifying the termination of data transfer attributable to the dual connectivity mode, the UE 115-b may restrict the first cell and/or the base station 105-c associated with the first cell from dual connectivity at the UE 115-b. Conversely, by way of another example, the UE 115-b may restrict the second cell and/or the base station associated with the second cell from dual connectivity at the UE 115-b.
In some aspects, restricting the first cell or the second cell from dual connectivity at the UE 115-b may include adding the first cell and/or the second cell to a set of blacklisted cells for dual connectivity stored by the UE 115-b. In this regard, the UE 115-b may store a list of blacklisted cells which do not support dual connectivity. The UE 115-b may store the list of blacklisted cells within a memory maintained by the UE 115-b. In some cases, the UE 115-b may transmit the list of blacklisted cells to a base station (e.g., base station 105-c) such that a list of cells within a wireless communications network (e.g., wireless communications system 100 or wireless communications system 200) may be compiled and flagged for service or inspection.
It is contemplated herein that maintaining the list of blacklisted cells which do not support a dual connectivity mode may enable the UE 115-b to conserve power by refraining from attempting to re-establish the dual connectivity mode within the cells maintained within the list. For example, the UE 115-b may add the second cell and/or the second base station associated with the second cell to the list of blacklisted cells which do not support a dual connectivity mode. The UE 115-b may thereafter leave a coverage area of the second cell. Subsequently the UE 115-b may return to the coverage area of the second cell. In this example, upon returning to the coverage area of the second cell, the UE 115-b may determine that the second cell is maintained within the list of blacklisted cells, and may therefore refrain from attempting to establish the dual connectivity mode with the UE 115-b. By refraining from attempting to establish the dual connectivity mode, the UE 115-b may  conserve power and prevent interruptions in data transfer which are attributable to the dual connectivity mode.
In some aspects, the UE 115-b may be configured to remove a dual connectivity restriction that was previously placed on one or more cells. Removing a restriction may allow the UE 115-b to re-attempt to establish the dual connectivity mode with a previously restricted cell. The UE 115-b may be configured to remove a dual connectivity restriction from one or more cells based on any characteristic known in the art including, but not limited to, the passage of time, entering an inactive mode of operation (e.g., the UE powering off) , entering another mode of operation, and the like. For example, the UE 115-b may be configured to remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE 115-b based at least in part on an elapsed time since restricting the first cell or the second cell from the dual connectivity mode. The elapsed time used to remove the dual connectivity restriction may be pre-configured, adaptively configured based on characteristics of the wireless communications system 100 or wireless communications system 200, indicated in signaling from a base station (e.g., base station 105-c) , and the like.
In additional or alternative aspects, the UE 115-b may be configured to remove a dual connectivity restriction from a previously restricted cell based at least in part on the UE 115-b entering a given mode of operation including, but not limited to, an inactive mode of operation. For example, after restricting the first cell and/or the second cell from the dual connectivity mode, the UE 115-b may then enter an inactive mode of operation in which at least a portion of the UE 115-b is powered off or operated in a power-limited mode. In this example, the UE 115-b may be configured to remove the restriction on the first cell and/or second cell based at least in part on the UE 115-b entering the inactive mode of operation.
In some cases, removing a restriction on one or more cells from the dual connectivity mode may include updating the list of blacklisted cells. For example, in removing a restriction on the first cell from the dual connectivity mode, the UE 115-b may be configured to remove the first cell from the list of blacklisted cells maintained by the UE 115-b. In this regard, the UE 115-b may be configured to update the list of blacklisted cells based on characteristics including, but not limited to, the passage of an elapsed time, the UE 115-b entering an inactive mode of operation, and the like.
While the restriction of the first cell or the second cell from the dual connectivity mode is shown in FIG. 3 as being carried out by the UE 115-b, this is not to be regarded as a limitation of the present disclosure, unless noted otherwise herein. In particular, in additional or alternative aspects, the base station 105-c may be configured to restrict the first cell or the second cell from the dual connectivity mode. For example, in some cases, the base station 105-c associated with the first cell may be configured to restrict the second cell (e.g., the second base station) from the dual connectivity mode.
At 335, the UE 115-b may transmit a TAU request to the base station 105-c, where the TAU request includes an indication that the first cell (e.g., first base station 105-c) and/or the second cell (e.g., second base station) does not support the dual connectivity mode. For example, the UE 115-b may transmit an uplink NAS message including the TAU request. In some aspects, the UE 115-b may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell. For example, in cases where the base station 105-c is associated with the first cell, the UE 115-b may transmit the TAU request to the base station 105-c associated with the first cell, as shown in FIG. 3. However, it is contemplated herein that the UE 115-b may additionally or alternatively transmit the TAU request to the base station (not shown in FIG. 3) associated with the second cell.
The TAU request including the indication that the first or second cell does not support the dual connectivity mode may serve as an indication to disable dual connectivity (e.g., disable DCNR) . For example, the TAU request may include a request to disable the dual connectivity mode within the first cell and/or the second cell. It is noted herein that the UE 115-b may transmit a request to disable the dual connectivity mode at the first cell and/or second cell using any signaling known in the art. For example, in additional or alternative aspects, the UE 115-b may transmit a request to disable the dual connectivity mode at the first cell and/or the second cell via a control message.
At 340, the UE 115-b may receive a TAU accept from the base station 105-c. In some aspects, the base station 105-c may transmit the TAU accept based at least partially in response to the TAU request. The TAU accept may include an acknowledgement that the first cell or the second cell does not support the dual connectivity mode.
At 345, the UE 115-b may transmit a request to enter a single connectivity mode of operation to the base station 105-c. For example, the UE 115-b may be configured to transmit a control message including the request to enter the single connectivity mode. In some aspects, the UE 115-b may transmit the request to enter the single connectivity mode (e.g., control message) to a base station associated with the first cell and/or a base station associated with the second cell. For example, in cases where the base station 105-c is associated with the first cell, the UE 115-b may transmit the request to enter the single connectivity mode to the base station 105-c associated with the first cell, as shown in FIG. 3. However, it is contemplated herein that the UE 115-b may additionally or alternatively transmit the request to enter the single connectivity mode to the base station (not shown in FIG. 3) associated with the second cell.
At 350, the UE 115-b may receive an acknowledgement for the UE 115-b to enter the single connectivity mode. For example, the base station 105-c may be configured to transmit a control message including the acknowledgement for the UE 115-b to enter the single connectivity mode. In some aspects, the base station 105-c may transmit the acknowledgement based at least partially in response to the request received from the UE 115-b.
At 355, the UE 115-b may enter the single connectivity mode of operation. In this regard, the UE 115-b may terminate the first connection with the first cell or the second connection with the second cell to end the dual connectivity mode and enter the single connectivity mode. In the single connectivity mode, the UE 115-b may establish and/or maintain a connection with the first cell (e.g., first base station 105-c) or the second cell (e.g., second base station) . It is contemplated herein that entering the single connectivity mode at 355 may include one or more of the functions/signaling illustrated in flow diagram 300. For example, when entering the single connectivity mode at 355, the UE 115-b may perform any of the functions or signaling shown and described at 330-350.
In some aspects, the base station 105-c may be configured to determine an indication that the UE 115-b is entering the single connectivity mode of operation. The base station 105-c may be configured to determine an indication that the UE 115-b is entering the single connectivity mode of operation based at least in part on an interruption/termination of data transfer at the UE 115-b between the UE 115-b and a cell communicatively coupled  with the UE 115-b. It is contemplated herein that determining an indication that the UE 115-b is entering the single connectivity mode may include one or more of the functions/signaling illustrated in flow diagram 300. For example, the base station 105-c may be configured to determine an indication that the UE 115-b is entering a single connectivity mode of operation based at least in part on any of the functions or signaling shown and described at 330-350.
At 360, data transfer between the UE 115-b and the first cell or the second cell may resume. For example, in cases where the UE 115-c enters the single connectivity mode with the UE 115-c associated with the first cell, data transfer may resume between the UE 115-b and the first cell (e.g., base station 105-c) . In some aspects, the data transfer between the UE 115-b and the first cell or the second cell may be resumed based at least in part on the UE 115-b entering the single connectivity mode of operation (and/or an indication that the UE 115-b is entering the single connectivity mode of operation) .
FIG. 4 illustrates an example of a flow diagram 400 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. In some examples, flow diagram 400 may implement aspects of wireless communications system 100, wireless communications system 200, and/or flow diagram 300. For example, flow diagram 400 may illustrate identifying data transfer issues associated with the dual connectivity mode, disabling the dual connectivity mode, and resuming data transfer in a single connectivity mode, as described with reference to FIGs. 1–3.
In some cases, flow diagram 400 may include a UE 115-c and a base station 105-d, which may be examples of corresponding devices as described herein. In particular, the UE 115-c and the base station 105-d illustrated in FIG. 4 may be examples of the UE 115-a and the first base station 105-a and/or second base station 105-b illustrated in FIG. 2. In some examples, the operations illustrated in flow diagram 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
At 405, the UE 115-c may transmit a TAU request to the base station 105-d where the TAU request includes a request for the UE 115-c to enter a dual connectivity mode of operation (e.g., DCNR support request) . In some aspects, the UE 115-c may transmit the TAU request from a NAS layer of the UE 115-c. For example, the UE 115-b may transmit an uplink NAS message including the TAU request. In some aspects, the request to enter a dual connectivity mode may include a request for the UE 115-b to establish a second connection with a second cell. In some aspects, the UE 115-b may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell. It is further noted herein that the UE 115-c and the base station 105-d may further exchange attach request and attach acknowledgement signaling in addition to the TAU request illustrated at 405.
At 410, the UE 115-c may receive a TAU accept from the base station 105-d. In some aspects, the base station 105-d may transmit the TAU accept based at least partially in response to the TAU request. The TAU accept may include an acceptance for the UE 115-c to operate in the dual connectivity mode. In this regard, the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell in addition to the first connection with the first cell. For example, in cases where the base station 105-d is associated with the first cell, the TAU accept may include an acceptance for the UE 115-c to establish a second connection with a second cell associated with a second base station different from the base station 105-d.
At 415, the UE 115-c may transmit a resource block re-establish request to the NAS layer of the UE 115-c. At 420, the UE 115-c may transmit a service request to the base station 105-d. The UE 115-c may transmit the service request to the base station 105-d from the NAS layer of the UE 115-c. Furthermore, the UE 115-c may transmit the service request from the NAS layer based at least in part on the resource block re-establish request.
At 425, the UE 115-c and the base station 105-d may establish a radio resource control (RRC) connection. The RRC connection established at 435 may be based at least in part on the service request transmitted from the UE 115-c to the base station 105-d.
At 430, the UE 115-c may enter the dual connectivity mode of operation. In some aspects, the UE 115-c may enter the dual connectivity mode of operation by establishing a second connection with a second cell. For example, the UE 115-c may enter the dual  connectivity mode by establishing a second connection with a second cell different from the first cell. For instance, the UE 115-c may enter the dual connectivity mode by establishing a second connection with a second cell associated with a second base station which is different from the base station 105-d. As noted previously herein, in some cases, the base station 105-d may facilitate (e.g., broker) communications between the UE 115-c and the second base station associated with the second cell in order to enable the UE 115-c to establish a connection with the second cell and enter the dual connectivity mode.
At 435, the UE 115-c may identify an interruption (e.g., termination) of data transfer at the UE. In some aspects, the interruption/termination of data transfer at the UE 115-c may be based at least in part on entering the dual connectivity mode. For example, the termination of data transfer may be attributable to the UE 115-c establishing the second connection with the second cell in addition to the first connection with the first cell. The UE 115-c may be configured to determine that an identified interruption/termination of data transfer is attributable to the dual connectivity mode using any techniques known in the art. For example, in some cases, the UE 115-c may be configured to determine a data transfer interruption is attributable to the UE 115-c entering the dual connectivity mode based on the fact that data transfer continued uninterrupted prior to the UE 115-c entering the dual connectivity mode.
At 440, the UE 115-c may transmit a request to disable the dual connectivity mode (e.g., disable DCNR request) to the NAS layer of the UE 115-c. The disable DCNR request may be transmitted to the NAS layer based at least in part on the identification of data interruption/termination at the UE 115-c.
At 445, the UE 115-c may terminate or abort the RRC connection. In some aspects, the NAS layer of the UE 115-c may terminate/abort the RRC connection based at least in part on the disable DCNR request and/or the identification of data interruption/termination at the UE 115-c.
At 450, the UE 115-c may transmit a TAU request to the base station 105-d, where the TAU request includes an indication that the first cell (e.g., first base station 105-d) and/or the second cell (e.g., second base station) does not support the dual connectivity mode. For example, the UE 115-b may transmit an uplink NAS message including the TAU request from the NAS layer of the UE 115-c. The TAU request may include a request to disable the  dual connectivity mode of the first cell or second cell (e.g., DCNR disable) . In some aspects, the UE 115-c may transmit the uplink NAS message (e.g., TAU request) to a base station associated with the first cell and/or a base station associated with the second cell.
At 455, the UE 115-c may receive a TAU accept from the base station 105-d. In some aspects, the base station 105-d may transmit the TAU accept based at least partially in response to the TAU request. The TAU accept may include an acknowledgement that the first cell or the second cell does not support the dual connectivity mode.
At 460, the UE 115-c may transmit a resource block re-establish request to the NAS layer of the UE 115-d. At 465, the UE 115-c may transmit a service request to the base station 105-d. The UE 115-c may transmit the service request to the base station 105-d from the NAS layer of the UE 115-c. Furthermore, the UE 115-c may transmit the service request from the NAS layer based at least in part on the resource block re-establish request.
At 470, the UE 115-c and the base station 105-d may establish an RRC connection. In some aspects, the RRC connection established at 470 may be based at least in part on the service request transmitted from the UE 115-c to the base station 105-d.
FIG. 5 shows a block diagram 500 of a device 505 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may establish a first connection with a first cell in a non-standalone mode of operation, resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation, enter a dual  connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the user equipment based on entering the dual connectivity mode, and enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
Aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 505, thereby reducing and/or  preventing interruptions of data reception by the receiver 510 and/or interruptions of data transmission by the transmitter 520. Furthermore, by preventing the device 505 from attempting to re-establish dual connectivity with cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce signaling overhead, and reduce power consumption of the device 505.
FIG. 6 shows a block diagram 600 of a device 605 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a UE 115 as described herein. The device 605 may include a receiver 610, acommunications manager 615, and a transmitter 635. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a communications manager 615, a dual connectivity manager 620, a data transfer manager 625, and a single connectivity manager 630. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The communications manager 615 may establish a first connection with a first cell in a non-standalone mode of operation and resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. The dual connectivity manager 620 may enter a dual connectivity mode of operation by establishing a second connection with a second cell.
The data transfer manager 625 may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode. The single connectivity  manager 630 may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
The transmitter 635 may transmit signals generated by other components of the device 605. In some examples, the transmitter 635 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 635 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a communications manager 710, a dual connectivity manager 715, a data transfer manager 720, a single connectivity manager 725, a power manger 730, a TAU transmitter 735, a TAU receiver 740, a control message transmitter 745, and a control message receiver 750. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 710 may establish a first connection with a first cell in a non-standalone mode of operation. In some examples, the communications manager 710 may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. In some examples, the communications manager 710 may transmit, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode within one or more of the first cell or the second cell.
The dual connectivity manager 715 may enter a dual connectivity mode of operation by establishing a second connection with a second cell. In some examples, the dual connectivity manager 715 may restrict one or more of the first cell or the second cell from the dual connectivity mode at the UE based on identifying the termination of data transfer. In some examples, the dual connectivity manager 715 may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual  connectivity mode. In some examples, the dual connectivity manager 715 may remove a restriction on one or more of the first cell or the second cell based on entering the inactive mode of operation. In some examples, the dual connectivity manager 715 may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
The data transfer manager 720 may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode. The single connectivity manager 725 may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. In some examples, the single connectivity manager 725 may terminate the connection with the first cell or the second cell.
The power manger 730 may cause the UE to enter an inactive mode of operation.
The TAU transmitter 735 may transmit, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation. In some examples, the TAU transmitter 735 may transmit, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode.
The TAU receiver 740 may receive, from the base station, a TAU accept based on the TAU request, the TAU accept including an acceptance for the user equipment to operate in the dual connectivity mode. In some examples, the TAU receiver 740 may receive, from the base station, a TAU accept based on the TAU request.
The control message transmitter 745 may transmit, to a base station associated with one or more of the first cell or the second cell, a control message including a request to enter the single connectivity mode of operation. The control message receiver 750 may receive, from the base station, a control message including an acknowledgement/acceptance to enter the single connectivity mode.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports techniques to enable single connectivity mode to address data transfer interruptions in  accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a UE 115 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, an I/O controller 815, a transceiver 820, an antenna 825, memory 830, and a processor 840. These components may be in electronic communication via one or more buses (e.g., bus 845) .
The communications manager 810 may establish a first connection with a first cell in a non-standalone mode of operation, resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation, enter a dual connectivity mode of operation by establishing a second connection with a second cell, identify a termination of data transfer at the user equipment based on entering the dual connectivity mode, and enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2020083680-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include random-access (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include a programmable hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting techniques to enable single connectivity mode to address data transfer interruptions) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
Aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 805, thereby improving user experience and satisfaction with device 805. Furthermore, by preventing the device 805 from attempting to re-establish dual connectivity with cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce power consumption of the device 805, and improve overall battery performance.
FIG. 9 shows a block diagram 900 of a device 905 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a communications manager 915, and a transmitter 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the device 905. The receiver 910 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 910 may utilize a single antenna or a set of antennas.
The communications manager 915 may establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation. The communications manager 915 may be an example of aspects of the communications manager 1210 described herein.
The communications manager 915, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 915, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 915, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some  examples, the communications manager 915, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 915, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 920 may transmit signals generated by other components of the device 905. In some examples, the transmitter 920 may be collocated with a receiver 910 in a transceiver module. For example, the transmitter 920 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 920 may utilize a single antenna or a set of antennas.
Aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 905, thereby reducing and/or preventing interruptions of data reception by the receiver 910 and/or interruptions of data transmission by the transmitter 920. Furthermore, by preventing the device 905 from attempting to re-establish dual connectivity via cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce signaling overhead, and reduce power consumption of the device 905.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905, or a base station 105 as described herein. The device 1005 may include a receiver 1010, a communications manager 1015, and a transmitter 1030. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques to enable single connectivity mode to address data transfer interruptions, etc. ) . Information may be passed on to other components of the  device 1005. The receiver 1010 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The receiver 1010 may utilize a single antenna or a set of antennas.
The communications manager 1015 may be an example of aspects of the communications manager 915 as described herein. The communications manager 1015 may include a communications manager 1015, a single connectivity manager 1020, and a data transfer manager 1025. The communications manager 1015 may be an example of aspects of the communications manager 1210 described herein. The communications manager 1015 may establish a first connection with a UE via a first cell supported by the base station and establish a second connection with the UE via a second cell supported by the base station.
The single connectivity manager 1020 may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell.
The data transfer manager 1025 may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
The transmitter 1030 may transmit signals generated by other components of the device 1005. In some examples, the transmitter 1030 may be collocated with a receiver 1010 in a transceiver module. For example, the transmitter 1030 may be an example of aspects of the transceiver 1220 described with reference to FIG. 12. The transmitter 1030 may utilize a single antenna or a set of antennas.
FIG. 11 shows a block diagram 1100 of a communications manager 1105 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The communications manager 1105 may be an example of aspects of a communications manager 915, a communications manager 1015, or a communications manager 1210 described herein. The communications manager 1105 may include a communications manager 1110, a single connectivity manager 1115, a data transfer manager 1120, a dual connectivity manager 1125, a TAU receiver 1130, a TAU transmitter 1135, a control message receiver 1140, and a control message transmitter 1145. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 1110 may establish a first connection with a UE via a first cell supported by the base station. In some examples, the communications manager 1110 may establish a second connection with the UE via a second cell supported by the base station. In some examples, the communications manager 1110 may terminate the first connection with the UE or the second connection with the UE based on the indication that the UE is entering a single connectivity mode of operation. In some examples, the communications manager 1110 may receive, from the UE, a request to disable a dual connectivity mode of operation of the UE within one or more of the first cell or the second cell.
The single connectivity manager 1115 may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell. The data transfer manager 1120 may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
The dual connectivity manager 1125 may restrict one or more of the first cell or the second cell from a dual connectivity mode at the UE based on the indication that the UE is entering a single connectivity mode of operation. In some examples, the dual connectivity manager 1125 may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode. In some examples, the dual connectivity manager 1125 may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
The TAU receiver 1130 may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation. In some examples, the TAU receiver 1130 may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode.
The TAU transmitter 1135 may transmit, to the UE, a TAU accept based on the TAU request, the TAU accept including an acceptance for the user equipment to operate in  the dual connectivity mode. In some examples, the TAU transmitter 1135 may transmit, to the UE, a TAU accept based on the TAU request.
The control message receiver 1140 may receive, from the UE, a control message including a request to enter the single connectivity mode of operation. The control message transmitter 1145 may transmit, to the UE, a control message including an acknowledgement/acceptance to enter the single connectivity mode.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of device 905, device 1005, or a base station 105 as described herein. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 1210, a network communications manager 1215, a transceiver 1220, an antenna 1225, memory 1230, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication via one or more buses (e.g., bus 1250) .
The communications manager 1210 may establish a first connection with a UE via a first cell supported by the base station, establish a second connection with the UE via a second cell supported by the base station, determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell, and resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation.
The network communications manager 1215 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 1215 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 1220 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 1220 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 1220 may also include a modem to modulate the packets and  provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 1225. However, in some cases the device may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 1230 may include RAM, ROM, or a combination thereof. The memory 1230 may store computer-readable code 1235 including instructions that, when executed by a processor (e.g., the processor 1240) cause the device to perform various functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include a programmable hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting techniques to enable single connectivity mode to address data transfer interruptions) .
The inter-station communications manager 1245 may manage communications with other base station 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 1235 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or other type of  memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
Aspects of the present disclosure may provide a number of advantages as compared to conventional techniques. Specifically, aspects of the present disclosure may reduce and/or prevent interruptions in data transfer at the device 1205, thereby improving user experience. Furthermore, by preventing the device 1205 from attempting to re-establish dual connectivity via cells which have been found not to support dual connectivity, aspects of the present disclosure may reduce power consumption of the device 1205, and improve overall battery/power performance.
FIG. 13 shows a flowchart illustrating a method 1300 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 1300 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1300 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, aUE may perform aspects of the functions described below using special-purpose hardware.
At 1305, the UE may establish a first connection with a first cell in a non-standalone mode of operation. The operations of 1305 may be performed according to the methods described herein. In some examples, aspects of the operations of 1305 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
At 1310, the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell. The operations of 1310 may be performed according to the methods described herein. In some examples, aspects of the operations of 1310 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1315, the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode. The operations of 1315 may be performed according to the methods described herein. In some examples, aspects of the operations of 1315 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
At 1320, the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. The operations of 1320 may be performed according to the methods described herein. In some examples, aspects of the operations of 1320 may be performed by a single connectivity manager as described with reference to FIGs. 5 through 8.
At 1325, the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. The operations of 1325 may be performed according to the methods described herein. In some examples, aspects of the operations of 1325 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
FIG. 14 shows a flowchart illustrating a method 1400 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 1400 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1400 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1405, the UE may establish a first connection with a first cell in a non-standalone mode of operation. The operations of 1405 may be performed according to the methods described herein. In some examples, aspects of the operations of 1405 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
At 1410, the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell. The operations of 1410 may be performed according to the methods described herein. In some examples, aspects of the operations of 1410 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1415, the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode. The operations of 1415 may be performed according to the methods described herein. In some examples, aspects of the operations of 1415 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
At 1420, the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the UE. In some aspects, the UE may enter the single connectivity mode based at least in part on restricting one or more of the first cell or the second cell from the dual connectivity mode at the UE. restrict one or more of the first cell or the second cell from the dual connectivity mode at the UE based on identifying the termination of data transfer. The operations of 1420 may be performed according to the methods described herein. In some examples, aspects of the operations of 1420 may be performed by a dual connectivity manager and/or single connectivity manager as described with reference to FIGs. 5 through 8. The operations of 1435 may be performed according to the methods described herein.
At 1425, the UE may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE. The operations of 1425 may be performed according to the methods described herein. In some examples, aspects of the operations of 1425 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1430, the UE may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode. The operations of 1430 may be performed according to the methods described herein. In some examples, aspects of the operations of 1430 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1435, the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. The operations of 1440 may be performed according to the methods described herein. In some examples, aspects of the operations of 1440 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
FIG. 15 shows a flowchart illustrating a method 1500 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 1500 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1500 may be performed by a communications manager as described with reference to FIGs. 5  through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, aUE may perform aspects of the functions described below using special-purpose hardware.
At 1505, the UE may establish a first connection with a first cell in a non-standalone mode of operation. The operations of 1505 may be performed according to the methods described herein. In some examples, aspects of the operations of 1505 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
At 1510, the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell. The operations of 1510 may be performed according to the methods described herein. In some examples, aspects of the operations of 1510 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1515, the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode. The operations of 1515 may be performed according to the methods described herein. In some examples, aspects of the operations of 1515 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
At 1520, the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. In some aspects, the UE may enter the single connectivity mode based at least in part on restricting one or more of the first cell or the second cell from the dual connectivity mode at the UE. The operations of 1540 may be performed according to the methods described herein. In some examples, aspects of the operations of 1540 may be performed by a dual connectivity manager and/or a single connectivity manager as described with reference to FIGs. 5 through 8.
At 1525, the UE may enter an inactive mode of operation. The operations of 1525 may be performed according to the methods described herein. In some examples, aspects of the operations of 1525 may be performed by a power manger as described with reference to FIGs. 5 through 8.
At 1530, the UE may add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE. The operations of 1530 may be performed according to the methods described herein. In some examples, aspects of the  operations of 1530 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1535, the UE may remove a restriction on one or more of the first cell or the second cell based on entering the inactive mode of operation. The operations of 1535 may be performed according to the methods described herein. In some examples, aspects of the operations of 1535 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1540, the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. The operations of 1545 may be performed according to the methods described herein. In some examples, aspects of the operations of 1545 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
FIG. 16 shows a flowchart illustrating a method 1600 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 1600 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1600 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1605, the UE may establish a first connection with a first cell in a non-standalone mode of operation. The operations of 1605 may be performed according to the methods described herein. In some examples, aspects of the operations of 1605 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
At 1610, the UE may transmit, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation. The operations of 1610 may be performed according to the methods described herein. In some examples, aspects of the operations of 1610 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
At 1615, the UE may receive, from the base station, a TAU accept based on the TAU request, the TAU accept including an acceptance for the user equipment to operate in the dual connectivity mode. The operations of 1615 may be performed according to the methods described herein. In some examples, aspects of the operations of 1615 may be performed by a TAU receiver as described with reference to FIGs. 5 through 8.
At 1620, the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell. The operations of 1620 may be performed according to the methods described herein. In some examples, aspects of the operations of 1620 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1625, the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode. The operations of 1625 may be performed according to the methods described herein. In some examples, aspects of the operations of 1625 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
At 1630, the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. The operations of 1630 may be performed according to the methods described herein. In some examples, aspects of the operations of 1630 may be performed by a single connectivity manager as described with reference to FIGs. 5 through 8.
At 1635, the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. The operations of 1635 may be performed according to the methods described herein. In some examples, aspects of the operations of 1635 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
FIG. 17 shows a flowchart illustrating a method 1700 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 1700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1700 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a UE may execute a set of instructions to control the functional  elements of the UE to perform the functions described below. Additionally or alternatively, aUE may perform aspects of the functions described below using special-purpose hardware.
At 1705, the UE may establish a first connection with a first cell in a non-standalone mode of operation. The operations of 1705 may be performed according to the methods described herein. In some examples, aspects of the operations of 1705 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
At 1710, the UE may enter a dual connectivity mode of operation by establishing a second connection with a second cell. The operations of 1710 may be performed according to the methods described herein. In some examples, aspects of the operations of 1710 may be performed by a dual connectivity manager as described with reference to FIGs. 5 through 8.
At 1715, the UE may identify a termination of data transfer at the user equipment based on entering the dual connectivity mode. The operations of 1715 may be performed according to the methods described herein. In some examples, aspects of the operations of 1715 may be performed by a data transfer manager as described with reference to FIGs. 5 through 8.
At 1720, the UE may transmit, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode. The operations of 1720 may be performed according to the methods described herein. In some examples, aspects of the operations of 1720 may be performed by a TAU transmitter as described with reference to FIGs. 5 through 8.
At 1725, the UE may receive, from the base station, a TAU accept based on the TAU request. The operations of 1725 may be performed according to the methods described herein. In some examples, aspects of the operations of 1725 may be performed by a TAU receiver as described with reference to FIGs. 5 through 8.
At 1730, the UE may enter a single connectivity mode of operation based on identifying the termination of data transfer at the user equipment. The operations of 1730 may be performed according to the methods described herein. In some examples, aspects of  the operations of 1730 may be performed by a single connectivity manager as described with reference to FIGs. 5 through 8.
At 1735, the UE may resume data transfer with one or more of the first cell or the second cell based on entering the single connectivity mode of operation. The operations of 1735 may be performed according to the methods described herein. In some examples, aspects of the operations of 1735 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
FIG. 18 shows a flowchart illustrating a method 1800 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 1800 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1800 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1805, the base station may establish a first connection with a UE via a first cell supported by the base station. The operations of 1805 may be performed according to the methods described herein. In some examples, aspects of the operations of 1805 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
At 1810, the base station may establish a second connection with the UE via a second cell supported by the base station. The operations of 1810 may be performed according to the methods described herein. In some examples, aspects of the operations of 1810 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
At 1815, the base station may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell. The operations of 1815 may be performed according to the methods described herein. In some examples, aspects of the operations of 1815 may be performed by a single connectivity manager as described with reference to FIGs. 9 through 12.
At 1820, the base station may restrict one or more of the first cell or the second cell from a dual connectivity mode at the UE based on the indication that the UE is entering a single connectivity mode of operation. The operations of 1820 may be performed according to the methods described herein. In some examples, aspects of the operations of 1820 may be performed by a dual connectivity manager as described with reference to FIGs. 9 through 12.
At 1825, the base station may remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode at the UE based on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode. The operations of 1825 may be performed according to the methods described herein. In some examples, aspects of the operations of 1825 may be performed by a dual connectivity manager as described with reference to FIGs. 9 through 12.
At 1830, the base station may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation. The operations of 1830 may be performed according to the methods described herein. In some examples, aspects of the operations of 1830 may be performed by a data transfer manager as described with reference to FIGs. 9 through 12.
FIG. 19 shows a flowchart illustrating a method 1900 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 1900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1900 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1905, the base station may establish a first connection with a UE via a first cell supported by the base station. The operations of 1905 may be performed according to the methods described herein. In some examples, aspects of the operations of 1905 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
At 1910, the base station may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a  request for the UE to enter a dual connectivity mode of operation. The operations of 1910 may be performed according to the methods described herein. In some examples, aspects of the operations of 1910 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
At 1915, the base station may establish a second connection with the UE via a second cell supported by the base station. The operations of 1915 may be performed according to the methods described herein. In some examples, aspects of the operations of 1915 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
At 1920, the base station may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell. The operations of 1920 may be performed according to the methods described herein. In some examples, aspects of the operations of 1920 may be performed by a single connectivity manager as described with reference to FIGs. 9 through 12.
At 1925, the base station may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation. The operations of 1925 may be performed according to the methods described herein. In some examples, aspects of the operations of 1925 may be performed by a data transfer manager as described with reference to FIGs. 9 through 12.
FIG. 20 shows a flowchart illustrating a method 2000 that supports techniques to enable single connectivity mode to address data transfer interruptions in accordance with aspects of the present disclosure. The operations of method 2000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 2000 may be performed by a communications manager as described with reference to FIGs. 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 2005, the base station may establish a first connection with a UE via a first cell supported by the base station. The operations of 2005 may be performed according to the  methods described herein. In some examples, aspects of the operations of 2005 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
At 2010, the base station may establish a second connection with the UE via a second cell supported by the base station. The operations of 2010 may be performed according to the methods described herein. In some examples, aspects of the operations of 2010 may be performed by a communications manager as described with reference to FIGs. 9 through 12.
At 2015, the base station may determine an indication that the UE is entering a single connectivity mode of operation based on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell. The operations of 2015 may be performed according to the methods described herein. In some examples, aspects of the operations of 2015 may be performed by a single connectivity manager as described with reference to FIGs. 9 through 12.
At 2020, the base station may receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode. The operations of 2020 may be performed according to the methods described herein. In some examples, aspects of the operations of 2020 may be performed by a TAU receiver as described with reference to FIGs. 9 through 12.
At 2025, the base station may transmit, to the UE, a TAU accept based on the TAU request. The operations of 2025 may be performed according to the methods described herein. In some examples, aspects of the operations of 2025 may be performed by a TAU transmitter as described with reference to FIGs. 9 through 12.
At 2030, the base station may resume data transfer with the UE via the first cell or the second cell based on the indication that the UE is entering a single connectivity mode of operation. The operations of 2030 may be performed according to the methods described herein. In some examples, aspects of the operations of 2030 may be performed by a data transfer manager as described with reference to FIGs. 9 through 12.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise  modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a digital signal processor (DSP) and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a  processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (92)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    establishing a first connection with a first cell in a non-standalone mode of operation;
    entering a dual connectivity mode of operation by establishing a second connection with a second cell;
    identifying a termination of data transfer at the UE based at least in part on entering the dual connectivity mode of operation;
    entering a single connectivity mode of operation based at least in part on identifying the termination of data transfer at the UE; and
    resuming data transfer with one or more of the first cell or the second cell based at least in part on entering the single connectivity mode of operation.
  2. The method of claim 1, further comprising:
    restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on identifying the termination of data transfer.
  3. The method of claim 2, further comprising:
    removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  4. The method of claim 2, further comprising:
    entering an inactive mode of operation; and
    removing a restriction on one or more of the first cell or the second cell based at least in part on entering the inactive mode of operation.
  5. The method of claim 2, wherein restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE comprises:
    adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  6. The method of claim 1, wherein entering the dual connectivity mode of operation comprises:
    transmitting, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
  7. The method of claim 6, further comprising:
    receiving, from the base station, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  8. The method of claim 1, wherein entering the single connectivity mode of operation comprises:
    terminating the first connection with the first cell or the second connection with the second cell.
  9. The method of claim 1, wherein entering the single connectivity mode of operation comprises:
    transmitting, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell.
  10. The method of claim 9, wherein transmitting the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell comprises:
    transmitting, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  11. The method of claim 10, further comprising:
    receiving, from the base station, a TAU accept based at least in part on the TAU request.
  12. The method of claim 1, wherein entering the single connectivity mode of operation comprises:
    transmitting, to a base station associated with one or more of the first cell or the second cell, a first control message including a request to enter the single connectivity mode of operation; and
    receiving, from the base station, a second control message including an acknowledgement to enter the single connectivity mode of operation.
  13. A method for wireless communication at a base station, comprising:
    establishing a first connection with a user equipment (UE) via a first cell supported by the base station;
    establishing a second connection with the UE via a second cell supported by the base station;
    determining an indication that the UE is entering a single connectivity mode of operation based at least in part on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell; and
    resuming data transfer with the UE via the first cell or the second cell based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  14. The method of claim 13, further comprising:
    restricting one or more of the first cell or the second cell from a dual connectivity mode of operation at the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  15. The method of claim 14, further comprising:
    removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  16. The method of claim 14, wherein restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE comprises:
    adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
  17. The method of claim 13, wherein establishing the second connection with the UE via the second cell supported by the base station comprises:
    receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
  18. The method of claim 17, further comprising:
    transmitting, to the UE, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  19. The method of claim 13, further comprising:
    terminating the first connection with the UE or the second connection with the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  20. The method of claim 13, wherein determining the indication that the UE is entering a single connectivity mode of operation comprises:
    receiving, from the UE, a request to disable a dual connectivity mode of operation of the UE within one or more of the first cell or the second cell.
  21. The method of claim 20, wherein receiving the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell comprises:
    receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  22. The method of claim 21, further comprising:
    transmitting, to the UE, a TAU accept based at least in part on the TAU request.
  23. The method of claim 13, wherein determining an indication that the UE is entering a single connectivity mode of operation comprises:
    receiving, from the UE, a control message including a request to enter the single connectivity mode of operation; and
    transmitting, to the UE, a control message including an acknowledgement to enter the single connectivity mode of operation.
  24. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    establish a first connection with a first cell in a non-standalone mode of operation;
    enter a dual connectivity mode of operation by establishing a second connection with a second cell;
    identify a termination of data transfer at the UE based at least in part on entering the dual connectivity mode of operation;
    enter a single connectivity mode of operation based at least in part on identifying the termination of data transfer at the UE; and
    resume data transfer with one or more of the first cell or the second cell based at least in part on entering the single connectivity mode of operation.
  25. The apparatus of claim 24, wherein the instructions are further executable by the processor to cause the apparatus to:
    restrict one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on identifying the termination of data transfer.
  26. The apparatus of claim 25, wherein the instructions are further executable by the processor to cause the apparatus to:
    remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  27. The apparatus of claim 25, wherein the instructions are further executable by the processor to cause the apparatus to:
    enter an inactive mode of operation; and
    remove a restriction on one or more of the first cell or the second cell based at least in part on entering the inactive mode of operation.
  28. The apparatus of claim 25, wherein the instructions to restrict one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE are executable by the processor to cause the apparatus to:
    add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  29. The apparatus of claim 24, wherein the instructions to enter the dual connectivity mode of operation are executable by the processor to cause the apparatus to:
    transmit, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
  30. The apparatus of claim 29, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  31. The apparatus of claim 24, wherein the instructions to enter the single connectivity mode of operation are executable by the processor to cause the apparatus to:
    terminate the first connection with the first cell or the second connection with the second cell.
  32. The apparatus of claim 24, wherein the instructions to enter the single connectivity mode of operation are executable by the processor to cause the apparatus to:
    transmit, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell.
  33. The apparatus of claim 32, wherein the instructions to transmit the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell are executable by the processor to cause the apparatus to:
    transmit, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  34. The apparatus of claim 33, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, a TAU accept based at least in part on the TAU request.
  35. The apparatus of claim 24, wherein the instructions to enter the single connectivity mode of operation are executable by the processor to cause the apparatus to:
    transmit, to a base station associated with one or more of the first cell or the second cell, a control message including a request to enter the single connectivity mode of operation; and
    receive, from the base station, a control message including an acknowledgement to enter the single connectivity mode of operation.
  36. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    establish a first connection with a user equipment (UE) via a first cell supported by the base station;
    establish a second connection with the UE via a second cell supported by the base station;
    determine an indication that the UE is entering a single connectivity mode of operation based at least in part on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell; and
    resume data transfer with the UE via the first cell or the second cell based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  37. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    restrict one or more of the first cell or the second cell from a dual connectivity mode at the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  38. The apparatus of claim 37, wherein the instructions are further executable by the processor to cause the apparatus to:
    remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  39. The apparatus of claim 37, wherein the instructions to restrict one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE are executable by the processor to cause the apparatus to:
    add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
  40. The apparatus of claim 36, wherein the instructions to establish the second connection with the UE via the second cell supported by the base station are executable by the processor to cause the apparatus to:
    receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
  41. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  42. The apparatus of claim 36, wherein the instructions are further executable by the processor to cause the apparatus to:
    terminate the first connection with the UE or the second connection with the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  43. The apparatus of claim 36, wherein the instructions to determine the indication that the UE is entering a single connectivity mode of operation are executable by the processor to cause the apparatus to:
    receive, from the UE, a request to disable a dual connectivity mode of operation of operation of the UE within one or more of the first cell or the second cell.
  44. The apparatus of claim 43, wherein the instructions to receive the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell are executable by the processor to cause the apparatus to:
    receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  45. The apparatus of claim 44, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the UE, a TAU accept based at least in part on the TAU request.
  46. The apparatus of claim 36, wherein the instructions to determine an indication that the UE is entering a single connectivity mode of operation are executable by the processor to cause the apparatus to:
    receive, from the UE, a control message including a request to enter the single connectivity mode of operation; and
    transmit, to the UE, a control message including an acknowledgement to enter the single connectivity mode of operation.
  47. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for establishing a first connection with a first cell in a non-standalone mode of operation;
    means for entering a dual connectivity mode of operation by establishing a second connection with a second cell;
    means for identifying a termination of data transfer at the UE based at least in part on entering the dual connectivity mode of operation;
    means for entering a single connectivity mode of operation based at least in part on identifying the termination of data transfer at the UE; and
    means for resuming data transfer with one or more of the first cell or the second cell based at least in part on entering the single connectivity mode of operation.
  48. The apparatus of claim 47, further comprising:
    means for restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on identifying the termination of data transfer.
  49. The apparatus of claim 48, further comprising:
    means for removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  50. The apparatus of claim 48, further comprising:
    means for entering an inactive mode of operation; and
    means for removing a restriction on one or more of the first cell or the second cell based at least in part on entering the inactive mode of operation.
  51. The apparatus of claim 48, wherein the means for restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE comprises:
    means for adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  52. The apparatus of claim 47, wherein the means for entering the dual connectivity mode of operation comprises:
    means for transmitting, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
  53. The apparatus of claim 52, further comprising:
    means for receiving, from the base station, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  54. The apparatus of claim 47, wherein the means for entering the single connectivity mode of operation comprises:
    means for terminating the first connection with the first cell or the second connection with the second cell.
  55. The apparatus of claim 47, wherein the means for entering the single connectivity mode of operation comprises:
    means for transmitting, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell.
  56. The apparatus of claim 55, wherein the means for transmitting the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell comprises:
    means for transmitting, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update  (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  57. The apparatus of claim 56, further comprising:
    means for receiving, from the base station, a TAU accept based at least in part on the TAU request.
  58. The apparatus of claim 47, wherein the means for entering the single connectivity mode of operation comprises:
    means for transmitting, to a base station associated with one or more of the first cell or the second cell, a control message including a request to enter the single connectivity mode of operation; and
    means for receiving, from the base station, a control message including an acknowledgement to enter the single connectivity mode of operation.
  59. An apparatus for wireless communication at a base station, comprising:
    means for establishing a first connection with a user equipment (UE) via a first cell supported by the base station;
    means for establishing a second connection with the UE via a second cell supported by the base station;
    means for determining an indication that the UE is entering a single connectivity mode of operation based at least in part on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell; and
    means for resuming data transfer with the UE via the first cell or the second cell based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  60. The apparatus of claim 59, further comprising:
    means for restricting one or more of the first cell or the second cell from a dual connectivity mode of operation at the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  61. The apparatus of claim 60, further comprising:
    means for removing a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an  elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  62. The apparatus of claim 60, wherein the means for restricting one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE comprises:
    means for adding one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
  63. The apparatus of claim 59, wherein the means for establishing the second connection with the UE via the second cell supported by the base station comprises:
    means for receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
  64. The apparatus of claim 63, further comprising:
    means for transmitting, to the UE, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  65. The apparatus of claim 59, further comprising:
    means for terminating the first connection with the UE or the second connection with the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  66. The apparatus of claim 59, wherein the means for determining the indication that the UE is entering a single connectivity mode of operation comprises:
    means for receiving, from the UE, a request to disable a dual connectivity mode of operation of the UE within one or more of the first cell or the second cell.
  67. The apparatus of claim 66, wherein the means for receiving the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell comprises:
    means for receiving, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an  indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  68. The apparatus of claim 67, further comprising:
    means for transmitting, to the UE, a TAU accept based at least in part on the TAU request.
  69. The apparatus of claim 59, wherein the means for determining an indication that the UE is entering a single connectivity mode of operation comprises:
    means for receiving, from the UE, a control message including a request to enter the single connectivity mode of operation; and
    means for transmitting, to the UE, a control message including an acknowledgement to enter the single connectivity mode of operation.
  70. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    establish a first connection with a first cell in a non-standalone mode of operation;
    enter a dual connectivity mode of operation by establishing a second connection with a second cell;
    identify a termination of data transfer at the UE based at least in part on entering the dual connectivity mode of operation;
    enter a single connectivity mode of operation based at least in part on identifying the termination of data transfer at the UE; and
    resume data transfer with one or more of the first cell or the second cell based at least in part on entering the single connectivity mode of operation.
  71. The non-transitory computer-readable medium of claim 70, wherein the instructions are further executable to:
    restrict one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on identifying the termination of data transfer.
  72. The non-transitory computer-readable medium of claim 71, wherein the instructions are further executable to:
    remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  73. The non-transitory computer-readable medium of claim 71, wherein the instructions are further executable to:
    enter an inactive mode of operation; and
    remove a restriction on one or more of the first cell or the second cell based at least in part on entering the inactive mode of operation.
  74. The non-transitory computer-readable medium of claim 71, wherein the instructions to restrict one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE are executable to:
    add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the UE.
  75. The non-transitory computer-readable medium of claim 70, wherein the instructions to enter the dual connectivity mode of operation are executable to:
    transmit, to a base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request to enter the dual connectivity mode of operation.
  76. The non-transitory computer-readable medium of claim 75, wherein the instructions are further executable to:
    receive, from the base station, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  77. The non-transitory computer-readable medium of claim 70, wherein the instructions to enter the single connectivity mode of operation are executable to:
    terminate the first connection with the first cell or the second connection with the second cell.
  78. The non-transitory computer-readable medium of claim 70, wherein the instructions to enter the single connectivity mode of operation are executable to:
    transmit, to a base station associated with one or more of the first cell or the second cell, a request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell.
  79. The non-transitory computer-readable medium of claim 78, wherein the instructions to transmit the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell are executable to:
    transmit, to the base station of one or more of the first cell or the second cell, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  80. The non-transitory computer-readable medium of claim 79, wherein the instructions are further executable to:
    receive, from the base station, a TAU accept based at least in part on the TAU request.
  81. The non-transitory computer-readable medium of claim 70, wherein the instructions to enter the single connectivity mode of operation are executable to:
    transmit, to a base station associated with one or more of the first cell or the second cell, a control message including a request to enter the single connectivity mode of operation; and
    receive, from the base station, a control message including an acknowledgement to enter the single connectivity mode of operation.
  82. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    establish a first connection with a user equipment (UE) via a first cell supported by the base station;
    establish a second connection with the UE via a second cell supported by the base station;
    determine an indication that the UE is entering a single connectivity mode of operation based at least in part on a termination of data transfer at the UE between the UE and at least one of the first cell or the second cell; and
    resume data transfer with the UE via the first cell or the second cell based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  83. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    restrict one or more of the first cell or the second cell from a dual connectivity mode at the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  84. The non-transitory computer-readable medium of claim 83, wherein the instructions are further executable to:
    remove a restriction on one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE based at least in part on an elapsed time since restricting the one or more of the first cell or the second cell from the dual connectivity mode of operation.
  85. The non-transitory computer-readable medium of claim 83, wherein the instructions to restrict one or more of the first cell or the second cell from the dual connectivity mode of operation at the UE are executable to:
    add one or more of the first cell or the second cell to a set of blacklisted cells for dual connectivity stored by the base station.
  86. The non-transitory computer-readable medium of claim 82, wherein the instructions to establish the second connection with the UE via the second cell supported by the base station are executable to:
    receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including a request for the UE to enter a dual connectivity mode of operation.
  87. The non-transitory computer-readable medium of claim 86, wherein the instructions are further executable to:
    transmit, to the UE, a TAU accept based at least in part on the TAU request, the TAU accept including an acceptance for the UE to operate in the dual connectivity mode of operation.
  88. The non-transitory computer-readable medium of claim 82, wherein the instructions are further executable to:
    terminate the first connection with the UE or the second connection with the UE based at least in part on the indication that the UE is entering a single connectivity mode of operation.
  89. The non-transitory computer-readable medium of claim 82, wherein the instructions to determine the indication that the UE is entering a single connectivity mode of operation are executable to:
    receive, from the UE, a request to disable a dual connectivity mode of operation of the UE within one or more of the first cell or the second cell.
  90. The non-transitory computer-readable medium of claim 89, wherein the instructions to receive the request to disable the dual connectivity mode of operation within one or more of the first cell or the second cell are executable to:
    receive, from the UE, an uplink non-access stratum (NAS) message including a tracking area update (TAU) request, the TAU request including an indication that one or more of the first cell or the second cell does not support the dual connectivity mode of operation.
  91. The non-transitory computer-readable medium of claim 90, wherein the instructions are further executable to:
    transmit, to the UE, a TAU accept based at least in part on the TAU request.
  92. The non-transitory computer-readable medium of claim 82, wherein the instructions to determine an indication that the UE is entering a single connectivity mode of operation are executable to:
    receive, from the UE, acontrol message including a request to enter the single connectivity mode ofoperation; and
    transmit, to the UE, acontrol message including an acknowledgement to enter the single connectivity mode ofoperation.
PCT/CN2020/083680 2020-04-08 2020-04-08 Transitioning to single connectivity mode to address data transfer interruptions WO2021203274A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083680 WO2021203274A1 (en) 2020-04-08 2020-04-08 Transitioning to single connectivity mode to address data transfer interruptions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/083680 WO2021203274A1 (en) 2020-04-08 2020-04-08 Transitioning to single connectivity mode to address data transfer interruptions

Publications (1)

Publication Number Publication Date
WO2021203274A1 true WO2021203274A1 (en) 2021-10-14

Family

ID=78022782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083680 WO2021203274A1 (en) 2020-04-08 2020-04-08 Transitioning to single connectivity mode to address data transfer interruptions

Country Status (1)

Country Link
WO (1) WO2021203274A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110300461A (en) * 2018-03-23 2019-10-01 ***通信有限公司研究院 A kind of method for connecting network, device and terminal
CN110506438A (en) * 2017-03-23 2019-11-26 弗劳恩霍夫应用研究促进协会 Intelligent route selection in preemptive type switching preparation and tracking/paging domain processing and cellular network
US20200045762A1 (en) * 2018-08-03 2020-02-06 Intel Corporation Devices and methods for next generation technology indicators
CN110958653A (en) * 2018-09-27 2020-04-03 维沃移动通信有限公司 Dual-connection switching method, terminal and network equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110506438A (en) * 2017-03-23 2019-11-26 弗劳恩霍夫应用研究促进协会 Intelligent route selection in preemptive type switching preparation and tracking/paging domain processing and cellular network
CN110300461A (en) * 2018-03-23 2019-10-01 ***通信有限公司研究院 A kind of method for connecting network, device and terminal
US20200045762A1 (en) * 2018-08-03 2020-02-06 Intel Corporation Devices and methods for next generation technology indicators
CN110958653A (en) * 2018-09-27 2020-04-03 维沃移动通信有限公司 Dual-connection switching method, terminal and network equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA: "TS 23.401 Subscription Control for EPC_DC_NR", 3GPP DRAFT; S2-172317 WAS S2-172060_23-401_SUBSCRIPTIONCONTROL-CR-V2, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Busan, South Korea; 20170327 - 20170331, 3 April 2017 (2017-04-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051257885 *

Similar Documents

Publication Publication Date Title
US11849503B2 (en) Proximity service multi-hop relay configuration
US20210392466A1 (en) User equipment assistance information for multicast and broadcast services
US11825330B2 (en) Techniques for quality of service support in sidelink communications
US20210410013A1 (en) Indication of operating configuration priorities
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
WO2021179245A1 (en) Small data transmissions in an inactive state to disaggregated base stations
EP4118899A1 (en) On-demand multicast control channel messages
US11871344B2 (en) Preference signaling for a multi-subscription wireless device
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
WO2022160168A1 (en) Techniques for network-initiated panel activation or deactivation at a user equipment (ue)
US20220329371A1 (en) Techniques for switching a bandwidth part configuration
WO2021127959A1 (en) Uplink transmission power determination
WO2021203274A1 (en) Transitioning to single connectivity mode to address data transfer interruptions
US11849421B2 (en) Methods to avoid sounding reference signal suspension due to multi-subscriber paging occasion collision
WO2021207911A1 (en) Paging signal threshold for multiple subscription communications
WO2021232420A1 (en) Disabling dual connectivity at a multi-subscriber identity module user equipment
US11310768B2 (en) Monitoring periodicity for paging messages
US11943792B2 (en) Techniques for performing bandwidth part switching
WO2021253283A1 (en) Service recovery techniques for wireless communications systems
WO2021217541A1 (en) Paging signal monitoring for multiple subscription communications
WO2023024010A1 (en) Base station assistance for user equipment discovery
US20210345232A1 (en) Physical cell identifier limit configuration
WO2021212453A1 (en) Service recovery techniques for wireless communications systems
US20230138717A1 (en) Enhanced paging in wireless backhaul networks
WO2023004529A1 (en) Techniques for performing quality of service management for sidelink communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930019

Country of ref document: EP

Kind code of ref document: A1