WO2021201151A1 - リチウムイオン二次電池を失活化する方法 - Google Patents

リチウムイオン二次電池を失活化する方法 Download PDF

Info

Publication number
WO2021201151A1
WO2021201151A1 PCT/JP2021/013974 JP2021013974W WO2021201151A1 WO 2021201151 A1 WO2021201151 A1 WO 2021201151A1 JP 2021013974 W JP2021013974 W JP 2021013974W WO 2021201151 A1 WO2021201151 A1 WO 2021201151A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion secondary
secondary battery
lithium ion
lithium
aqueous solution
Prior art date
Application number
PCT/JP2021/013974
Other languages
English (en)
French (fr)
Inventor
哲也 宇田
勇樹 谷ノ内
章宏 岸本
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2022512651A priority Critical patent/JPWO2021201151A1/ja
Publication of WO2021201151A1 publication Critical patent/WO2021201151A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the present invention relates to a method for deactivating a lithium ion secondary battery.
  • lithium-ion secondary batteries contain highly reactive lithium (Li), and it has been reported that they ignite due to improper handling. In the past, hydrogen explosions have also occurred when processing waste lithium-ion secondary batteries in the United States. For this reason, "safe deactivation and dismantling" has become an issue, especially for large lithium-ion secondary batteries used in electric vehicles and the like. At present, it is assumed that waste lithium-ion secondary batteries are incinerated at high temperatures or treated with high-temperature steam, but harmful gases generated by combustion, decomposition, evaporation, etc.
  • Patent Document 1 describes that the waste lithium ion secondary battery is incinerated after being discharged.
  • Patent Document 2 describes that a lithium ion secondary battery is mechanically dry-pulverized in an atmosphere of argon, carbon dioxide or the like.
  • Patent Document 1 At present, as in Patent Document 1, many studies have been conducted on the premise that lithium is inactivated by high-temperature incineration, but in this case, high-temperature incineration equipment is required, and a large-scale processing equipment is required. This is unavoidably unsuitable for distributed treatment in urban areas, and also poses a problem of detoxifying harmful fluorine-containing gas generated by combustion of an organic solvent contained in an electrolytic solution of a lithium ion secondary battery. Further, in the method of Patent Document 1, lithium and graphite are distributed in the slag phase and cannot be recovered.
  • Patent Document 2 is a very dangerous method because the waste lithium ion secondary battery violently ignites and generates heat by dry pulverization even in an atmosphere of argon, carbon dioxide, etc. It cannot be applied to the deactivation treatment of lithium-ion secondary batteries. Therefore, in order to prevent heat generation and generation of harmful gas, in Patent Document 3, the lithium ion secondary battery is cut or crushed in a liquid of water, alcohol, or acid or in an inert gas, and in Patent Document 4, shredder crushed in water. A method has been developed to do this. However, when the lithium ion secondary battery is cut in water and acid without controlling the atmosphere, gas is generated by hydrolysis of an organic solvent such as carbonate contained in the electrolytic solution, and the liquid is stored after deactivation. There is a danger in transportation.
  • the present invention is intended to solve the above problems, and an object of the present invention is to provide a method for easily and safely inactivating a waste lithium ion secondary battery.
  • the present inventors have opened a lithium ion secondary battery in an alkaline aqueous solution, or lithium ions in water under an inert gas atmosphere or a reducing gas atmosphere. It has been found that the waste lithium ion secondary battery can be easily and safely deactivated by opening the secondary battery. Based on these findings, the present inventors further studied and completed the present invention. That is, the present invention includes the following aspects.
  • Item 1 A method of deactivating a lithium-ion secondary battery, (A) A step of opening the lithium ion secondary battery in an alkaline aqueous solution, or (B) a step of opening the lithium ion secondary battery in water under an inert gas atmosphere or a reducing gas atmosphere. How to prepare.
  • Item 2. The method according to Item 1, wherein the amount of the alkaline aqueous solution used in the step (A) and the amount of water used in the step (B) is 10 mL or more with respect to the capacity of 1 Wh of the lithium ion secondary battery.
  • Item 3 The method according to Item 1 or 2, wherein the step (A) is carried out in an inert gas atmosphere or a reducing gas atmosphere.
  • Item 4. The method according to any one of Items 1 to 3, wherein the pH of the alkaline aqueous solution in the step (A) is 10 to 14, and the pH of the water in the step (B) is 6 to 14.
  • the alkaline compound used as the alkaline aqueous solution is at least one selected from the group consisting of calcium hydroxide, calcium oxide, magnesium hydroxide, magnesium oxide, sodium hydroxide, potassium hydroxide and lithium hydroxide. The method according to any one of 4 to 4.
  • Item 6. The method according to any one of Items 1 to 5, wherein in the step (A), the alkaline aqueous solution is lime water.
  • Item 7. The method according to any one of Items 1 to 6, wherein the content of the alkaline compound in the alkaline aqueous solution is larger than the saturation concentration.
  • the step of opening the lithium ion secondary battery is to crush or cut the lithium ion secondary battery, to make a hole penetrating the casing of the lithium ion secondary battery, or to make a casing of the lithium ion secondary battery.
  • Item 2. The method according to any one of Items 1 to 7, which is a step of opening a part or all of the above.
  • Item 9 The method according to any one of Items 1 to 8, wherein the steps (A) and (B) are carried out at 10 to 80 ° C.
  • Item 10. The method according to any one of Items 1 to 9, wherein the timing of completion of deactivation is determined from the state of generation of air bubbles from the opening.
  • Item 11 It is a method of visualizing the deactivation status of lithium-ion secondary batteries.
  • a step of opening the lithium ion secondary battery in an alkaline aqueous solution or
  • B a step of opening the lithium ion secondary battery in water under an inert gas atmosphere or a reducing gas atmosphere.
  • Item 12. It is a method of separating and recovering metal elements from a lithium ion secondary battery.
  • a method comprising a step of deactivating a lithium ion secondary battery by the method according to any one of Items 1 to 11 and then crushing and physically sorting the deactivated lithium ion secondary battery. ..
  • Item 13 The method according to Item 12, wherein at least one selected from the group consisting of lithium, nickel and cobalt is recovered as a solid oxide, and copper and / or aluminum is recovered as a metal.
  • Item 14 A step of sorting a casing with a control substrate by size from the inactivated solid matter of a lithium ion secondary battery and recovering aluminum.
  • Item 12 or 13 comprising a step of recovering at least one selected from the group consisting of copper scraps, aluminum scraps and separator pieces by sieving (1) from the solid matter remaining in the step (A1). The method described in.
  • Item 15 After the step (A2) (A3) A step of recovering a separator piece by sieving (2) from the solid matter remaining in the step (A2), and (A4) Copper scrap and aluminum scrap from the solid matter remaining in the step (A3). Item 14. The method according to Item 14, further comprising a step of separating.
  • Item 16 After the step (A2) (B3) The suspension of the deactivated lithium ion secondary battery is filtered, and at least selected from the group consisting of oxides of lithium, cobalt, nickel and manganese, graphite powder, aluminum hydroxide and calcium fluoride. Item 12. The method according to Item 14, further comprising a step of separating one type.
  • a lithium ion secondary battery deactivating device used to deactivate a lithium ion secondary battery in an alkaline aqueous solution or water.
  • a lithium ion secondary battery deactivating device that is arranged in the chamber and includes a mechanism for opening the lithium ion secondary battery charged into the chamber.
  • Item 18 An openable and closable lid that is placed on the chamber and is formed on the alkaline aqueous solution or water to isolate the closed space from the outside.
  • Item 12. The lithium ion secondary battery deactivating apparatus according to Item 17, further comprising a gas supply unit that supplies an inert gas or a reducing gas to the closed space.
  • Item 19 A vehicle comprising the lithium ion secondary battery deactivating device according to item 17 or 18.
  • Item 20 A lithium ion secondary battery recycling method using the method according to any one of Items 1 to 11.
  • the waste lithium ion secondary battery can be easily and safely deactivated. Therefore, the deactivated product can be transported easily and safely, and the recycling of the waste lithium ion secondary battery can be promoted.
  • the configuration of a general small lithium-ion secondary battery and the raw material price of each member are shown.
  • An example of a method for separating and recovering a metal element from a lithium ion secondary battery is shown.
  • An example of a vehicle in which waste lithium ion secondary batteries can be deactivated on-site (automobile dismantling factory, accident site, etc.) and separated and recovered for each element is shown.
  • the schematic diagram of the lithium ion secondary battery deactivation apparatus of this invention is shown.
  • C) Cross-sectional view It is a photograph explaining the meaning of "no pretreatment", "opening” and “cutting” in this embodiment.
  • Comparative Example 3 the result when the lithium ion secondary battery is cut by the dry type is shown.
  • Example 2 the result when the lithium ion secondary battery was opened in lime water is shown.
  • Test Example 1 the result of analyzing the oxygen concentration and the hydrogen concentration during the deactivation treatment by using gas chromatography (GC) is shown.
  • GC gas chromatography
  • Test Example 1 a flowchart of the deactivation treatment and the element separation treatment of the lithium ion secondary battery is shown. The state of the separated sample is also shown.
  • Test Example 1 a flowchart of the deactivation treatment and the element separation treatment of the lithium ion secondary battery is shown. The recovery rate of the separated samples is also shown.
  • Test Example 2 the ultraviolet-visible absorption spectrum when ethylene carbonate is added to deionized water is shown.
  • Test Example 3 the corrosion behavior of iron balls in lime water, hydrofluoric acid and NaCl aqueous solution is shown.
  • FIG. 1 shows the configuration of a general small lithium ion secondary battery and the raw material price of each member.
  • a casing made of aluminum or the like and having a control substrate appears.
  • the positive electrode active material accounts for about 79% of the total, and all of them contain lithium. That is, considering the recycling efficiency from the lithium ion secondary battery, it is preferable to recover lithium, and it is more preferable to recover the metal elements in the positive electrode active material, particularly nickel and cobalt.
  • the method of deactivating the lithium ion secondary battery of the present invention is (A) A step of opening the lithium ion secondary battery in an alkaline aqueous solution, or (B) a step of opening the lithium ion secondary battery in water under an inert gas atmosphere or a reducing gas atmosphere. Be prepared.
  • the lithium ion secondary battery is opened in neutral or alkaline water or an aqueous solution to form the lithium ion secondary battery. It is possible to gently inactivate the lithium contained. Moreover, in the method of deactivating the lithium ion secondary battery of the present invention, lithium, nickel and cobalt can be recovered as solid oxides, and copper and aluminum can be recovered as metals. Is also useful.
  • the method of deactivating the lithium ion secondary battery of the present invention does not generate toxic gas, can be carried out in a relatively small facility, and can safely disassemble the lithium ion secondary battery. be.
  • the lithium ion secondary battery can be easily and safely disassembled in various places in urban areas such as automobile dismantling sites, and the lithium ion secondary battery can be easily and safely disassembled and transported. be.
  • step (A) Alkaline aqueous solution and water
  • step (B) the lithium ion secondary battery is opened in water under an inert gas atmosphere or a reducing gas atmosphere.
  • the alkaline compound used as the alkaline aqueous solution in the step (A) is not particularly limited as long as it is a compound that exhibits alkalinity (particularly about pH 10 to 14) when dissolved in water, and is, for example, calcium hydroxide, calcium oxide, or water. Examples thereof include magnesium oxide, magnesium oxide, sodium hydroxide, potassium hydroxide and lithium hydroxide. These alkaline compounds may be used alone or in combination of two or more.
  • the alkaline aqueous solution is adopted in the step (A), if the content of the alkaline compound in the alkaline aqueous solution is not more than the saturation concentration, the alkaline compound is consumed by the reaction during the deactivation treatment of the lithium ion secondary battery. Specifically, it will be described in detail below.
  • the carbonate in the lithium ion secondary battery is ethylene carbonate
  • the carbonate is hydrolyzed in water, causing the following reaction.
  • the alkaline compound is calcium hydroxide
  • carbon dioxide reacts with carbon dioxide to form calcium carbonate as follows.
  • the alkaline compound is also consumed in the decomposition reaction of LiPF 6 described later. Therefore, when the content of the alkaline compound in the alkaline aqueous solution is set to the saturation concentration or less, the alkaline compound is consumed by the reaction during the deactivation treatment of the lithium ion secondary battery, and the decomposition reaction of carbonate and LiPF 6 proceeds. It becomes difficult and may not be completely detoxified.
  • step (A) it is preferable that a part of the alkaline compounds is precipitated so that the content of the alkaline compounds in the alkaline aqueous solution is larger than the saturation concentration.
  • the precipitation can be dissolved in the alkaline aqueous solution to replenish the concentration of the alkaline compound.
  • the alkaline compound when calcium hydroxide is used as the alkaline compound, only 0.17 g of calcium hydroxide is dissolved in 100 mL of water at room temperature, but the amount of calcium hydroxide contained in the alkaline aqueous solution is regarded as an excess amount and is dissolved. It is preferable to add, for example, 0.17 to 100 g, particularly 0.4 to 10 g, with respect to 100 mL of water.
  • the pH of the alkaline aqueous solution used in the step (A) is not particularly limited, but 10 to 14 are set from the viewpoint of efficiency, safety, economy, etc. of the deactivation treatment of the lithium ion secondary battery. Preferably, 11 to 13 are more preferable.
  • the water used in the step (B) is not particularly limited, and various types of water such as distilled water, tap water, industrial water, ion-exchanged water, deionized water, pure water, and electrolyzed water can be used.
  • the water used in the step (B) is preferably neutral or alkaline (6 ⁇ pH ⁇ 14).
  • the amount of the alkaline aqueous solution used in the step (A) and the amount of water used in the step (B) is preferably excessive. Specifically, it will be described in detail below.
  • active lithium in a lithium ion secondary battery comes into contact with water and reacts preferentially, and gently deactivates while generating hydrogen.
  • the reaction at this time is the reaction formula: LiC x + yH 2 O ⁇ y / 2H 2 + Li + + yOH - + xC Proceed according to.
  • the flammable organic solvent contained in the electrolytic solution of the lithium ion secondary battery is dissolved in water and diluted, and the oxygen concentration is constant before and after the reaction, that is, oxygen is not generated by the reaction. Since the alkaline aqueous solution or water also functions as a coolant for preventing a rapid temperature rise, ignition and heat generation can be suppressed, which is a safe method. In addition, the excess water in the reaction water (H 2 O) nor insufficient.
  • the amount of the alkaline aqueous solution used in the step (A) and the amount of water used in the step (B) is preferably excessive, and 10 mL or more is used with respect to the capacity of the target lithium ion secondary battery of 1 Wh.
  • 70 mL or more is more preferable, and 130 mL or more is further preferable.
  • the larger the amount of the alkaline aqueous solution used in the step (A) and the amount of water used in the step (B), the better, and the upper limit is not particularly limited. It is not preferable to use water. Therefore, the alkaline aqueous solution or water is preferably 1000 mL or less with respect to the capacity of the target lithium ion secondary battery of 1 Wh. Usually, it is about 50 to 500 mL with respect to a capacity of 1 Wh of the target lithium ion secondary battery.
  • the lithium ion secondary battery is opened by opening the lithium ion secondary battery in neutral or alkaline water or an aqueous solution, thereby forming the lithium ion secondary battery. It is possible to gently inactivate the lithium contained in.
  • the step (A) that is, the alkaline aqueous solution
  • the hydrolysis of the organic solvent such as carbonate is fast as described below. It is possible to shorten the time for gas generation.
  • step (A) that is, when an alkaline aqueous solution is adopted, the reaction is shortened and the generated carbon dioxide is reacted with the alkaline aqueous solution. Since it is easy to capture (when lime water is used as the alkaline aqueous solution, it is easy to immobilize it as calcium carbonate), it is also useful in that the exhaust time can be further shortened.
  • LiPF 6 contained as an electrolyte salt of the electrolytic solution existing in the lithium ion secondary battery is eluted in the treatment liquid during the deactivation treatment of the lithium ion secondary battery. At this time, LiPF 6 is easily hydrolyzed while producing HF.
  • step (A) that is, the alkaline aqueous solution
  • harmful fluoride ions are easily immobilized as salts.
  • fluoride ions can be easily immobilized as calcium fluoride (CaF 2 ) on the spot, and the step of separating fluoride ions can be omitted.
  • step (B) that is, when water is used, it is preferable to use an alkaline aqueous solution in a later step in order to remove the fluoride ions generated. Therefore, even when the step (B), that is, water is adopted, it is preferable to use the alkaline aqueous solution in combination. Therefore, it is preferable to adopt the step (A), that is, the alkaline aqueous solution from the beginning.
  • the step (A) that is, when the alkaline aqueous solution is adopted, the iron-based material is not rusted, so that the lithium ion secondary battery is not used.
  • the deactivation treatment facility, etc. it is possible to use an inexpensive iron-based material even for the members that come into contact with the treatment liquid, and the range of material selection is widened.
  • the atmosphere is not particularly limited. Of these, an inert gas atmosphere such as a nitrogen gas atmosphere and an argon gas atmosphere, and a reducing gas atmosphere such as a hydrogen gas atmosphere are preferable.
  • the step (B) that is, when water is adopted, is under an inert atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere, or hydrogen.
  • the temperature at which the method for deactivating the lithium ion secondary battery of the present invention is carried out is not particularly limited, and for example, it can be carried out at room temperature. That is, unlike the conventional method, high temperature incinerator is not required, and a simpler and safer method can be used.
  • the temperature at which the method for deactivating the lithium ion secondary battery of the present invention is carried out can be, for example, 10 to 80 ° C, preferably 15 to 45 ° C.
  • the opening treatment of the lithium ion secondary battery is not particularly limited, and various various methods can be adopted. Specifically, crushing or cutting a lithium ion secondary battery, making a hole through the casing of the lithium ion secondary battery, or opening a part or all of the casing of the lithium ion secondary battery. Can be mentioned. In addition, “crushing the lithium ion secondary battery” means breaking and crushing the lithium ion battery. Further, “crushing or cutting a lithium ion secondary battery” does not mean only crushing or cutting only the casing of a lithium ion secondary battery to expose the inside.
  • crushing or cutting a lithium ion secondary battery means crushing or cutting an unspecified position of a lithium ion secondary battery to crush or cut a storage part such as a current collector and a separator arranged in a casing. Or it also means cutting.
  • the number of times the lithium ion secondary battery is crushed or cut is not particularly limited as long as it is once or more, but it is preferably a plurality of times. Further, when the lithium ion secondary battery is crushed or cut a plurality of times, it is preferable to crush or cut the lithium ion secondary batteries at different positions. As a result, it is possible to achieve rapid deactivation and to rapidly proceed with processes such as physical sorting in the process after deactivation.
  • the lithium ion secondary of the present invention is particularly safe.
  • the battery can be deactivated.
  • the deactivation time can be shortened in particular.
  • the conventional dry method of deactivating in air if a method of crushing or cutting the lithium ion secondary battery or making a hole penetrating the casing of the lithium ion secondary battery is adopted, The lithium ion secondary battery ignites or generates heat.
  • the method for deactivating the lithium ion secondary battery of the present invention is adopted, the lithium ion secondary battery can be crushed or cut, or the lithium ion secondary battery can be crushed or cut.
  • the lithium-ion secondary battery can be safely deactivated by making a hole through the casing of the battery.
  • the deactivation is completed when the generation of bubbles is completely stopped.
  • the deactivation may be completed when the bubble generation rate becomes equal to or lower than a predetermined standard.
  • optical means, quantitative means, and the like can be adopted in determining the standard.
  • it may be measured by a spectroscopic device, or may be photographed or visually observed. If it is a measuring means, for example, the volume of bubbles generated within a predetermined time may be measured by collecting the generated bubbles.
  • the lithium ion secondary battery After opening the lithium ion secondary battery, it is preferable to immerse it in an alkaline aqueous solution or water until no bubbles are visually generated.
  • the specific immersion time can be, for example, 10 minutes to 24 hours, particularly 30 minutes to 6 hours.
  • the method of deactivating the lithium ion secondary battery of the present invention does not generate toxic gas and can be performed in a relatively small facility, which is safe. It is possible to disassemble the lithium-ion secondary battery.
  • the lithium ion secondary battery or its crushed product safely deactivated in this way contains metal elements such as lithium, aluminum, copper, nickel, cobalt, and manganese, and is physically sorted or chemically selected. It is possible to separate and collect each of them by various treatments.
  • FIG. 2 shows an example in which the lithium ion secondary battery is deactivated by the cutting treatment using the attritor shown in FIG.
  • the casing with the control board can be sorted by size from the deactivated solids. From here it is possible to recover a lot of aluminum. Then, it can be cut into a desired size (20 mm ⁇ 20 mm in FIG. 2), and then crushed by a ball mill or the like using an iron ball or the like.
  • oxides such as lithium, cobalt, nickel and manganese, graphite powder, aluminum hydroxide, calcium fluoride and the like can be separated by filtering the suspension after the above sieving (1). Can be done. These can be processed in medium-sized smelters specializing in waste lithium-ion secondary battery processed products or in existing smelters. From here, about 70% of lithium, nickel, cobalt and most of them can be recovered.
  • the transportation of large-sized waste lithium-ion secondary batteries to a centralized facility or a smelter can be transformed into a safe and convenient one.
  • the problem of transporting waste lithium-ion secondary batteries, which has been a bottleneck due to the deactivation treatment of lithium-ion secondary batteries at each treatment plant, by setting up treatment plants at dismantling sites of automobiles in various places. Can be solved.
  • a waste lithium ion secondary battery such as a defective vehicle is placed in a chamber of a container soaked with an alkaline aqueous solution or water in advance. Then, the waste lithium ion secondary battery can be cut and crushed by a cutting and crushing unit (for example, a pair of rollers facing the cutting blade), and then each element can be separated from the crushed material.
  • a cutting and crushing unit for example, a pair of rollers facing the cutting blade
  • a lid is provided to cover the upper part of the container so that it can be opened and closed at the part where the waste lithium ion secondary battery is inserted.
  • the upper part of the container is closed by the lid, the space formed on the alkaline aqueous solution or water is sealed with the lid, and a closed space isolated from the outside is formed.
  • an inert gas nitrogen gas
  • the gas supply unit nitrogen generator
  • the closed space is filled with the inert gas, and an inert gas atmosphere is formed.
  • a reducing gas for example, hydrogen gas or the like
  • the vehicle is provided with a single sieve or a plurality of sieves having different mesh sizes, and the crushed material is separated by passing the crushed material together with the alkaline aqueous solution or water in the chamber. Is possible. When a plurality of sieves having different meshes are provided, it is possible to separate the crushed material according to the size. The alkaline aqueous solution or water from which the crushed material has been removed is supplied into the chamber again.
  • the vehicle is equipped with a compressor and a hydrogen storage tank in order to recover the hydrogen generated when lithium is deactivated.
  • the compressor has a function of compressing hydrogen from a closed space and supplying it to a hydrogen storage tank.
  • the vehicle may be provided with a fuel cell that generates electricity using hydrogen.
  • no pretreatment means that the casing is not damaged and the lithium ion secondary battery existing in the casing is not exposed, as shown in the left figure of FIG.
  • opening exists in the casing by cutting off only a part of the casing so as not to damage the lithium ion secondary battery existing in the casing. It means exposing the lithium-ion secondary battery.
  • cutting means cutting the casing together with the lithium ion secondary battery existing in the casing, as shown in the right figure of FIG.
  • the lithium ion secondary battery (3 cm x 4 cm x 0.7 cm; nominal voltage 3.7 V; charging capacity 895 mAh; charged) was newly purchased and charged, and used as a sample.
  • Comparative Example 1 In a glove box with no underwater pretreatment and a nitrogen atmosphere (oxygen concentration: less than 1% by volume), the resin extrapolation of the lithium ion secondary battery was removed, and the deionized water was removed without cutting the casing. 250 mL of the treatment liquid was placed in an air collecting bottle, and the presence or absence of ignition and air bubbles when the lithium ion secondary battery was immersed was confirmed.
  • Comparative Example 2 Calcium hydroxide in a glove box in a nitrogen atmosphere (oxygen concentration: less than 1% by volume) without pretreatment in lime water, with the resin extrapolation of the lithium ion secondary battery removed and the casing not excised. 250 mL (1 g of calcium hydroxide put into the treatment liquid) was put into an air collecting bottle as a treatment liquid in which lime water coexisting with the above was put, and the presence or absence of ignition and air bubbles when the lithium ion secondary battery was immersed was confirmed.
  • Comparative Example 3 Dry cutting In a glove box with a nitrogen atmosphere (oxygen concentration: less than 1% by volume), the resin extrapolation of the lithium ion secondary battery was removed, and the casing was cut by about 1 cm together with the internal lithium ion secondary battery. And confirmed the reactivity. That is, the same method as in Patent Document 2 was performed.
  • Example 1 Opened in water In a glove box with a nitrogen atmosphere (oxygen concentration: less than 1% by volume), the resin extrapolation of the lithium ion secondary battery is removed, and the internal lithium ion secondary battery is not damaged. As described above, a part of the casing (only the side surface) was excised, 250 mL of deionized water was put into an air collecting bottle as a treatment liquid, and the presence or absence of ignition and air bubbles was confirmed.
  • Example 2 Opened in lime water In a glove box in a nitrogen atmosphere (oxygen concentration: less than 1% by volume), the resin extrapolation of the lithium ion secondary battery is removed, and the internal lithium ion secondary battery is damaged. Part of the casing (only the side surface) was excised so that there was no such thing, and 250 mL of lime water in which calcium hydroxide (calcium hydroxide put into the treatment liquid was 1 g) was precipitated was put into an air collecting bottle as a treatment liquid, and ignited and fired. The presence or absence of air bubbles was confirmed.
  • oxygen concentration less than 1% by volume
  • Example 3 Cutting in lime water In a glove box with a nitrogen atmosphere (oxygen concentration: less than 1% by volume), the resin extrapolation of the lithium ion secondary battery is removed, and the casing is about 1 cm together with the internal lithium ion secondary battery. 250 mL of lime water obtained by cutting and precipitating calcium hydroxide (1 g of calcium hydroxide added to the treatment liquid) was placed as a treatment liquid in an air collecting bottle, and the presence or absence of ignition and air bubbles was confirmed.
  • gas containing hydrogen gas was generated from the terminal and the inside of the cell, and deactivation proceeded.
  • the deactivation of the lithium ion secondary battery is completed because bubbles are not generated in about 1 hour without ignition during the reaction.
  • Test Example 1 Deactivation treatment in lime water and deactivation behavior when the lithium ion secondary battery immersed in the element recovery aqueous solution was cut were investigated at 23 to 25 ° C.
  • FIG. 2 shows a flowchart of the deactivation process of the lithium ion secondary battery.
  • the resin extrapolation of the lithium ion secondary battery was removed to expose the aluminum casing.
  • the lithium ion secondary battery installed on the table 2 was immersed. After that, the apparatus was operated, and the lithium ion secondary battery was pressed against the stainless steel blade 3 installed in the chamber 1 with the rotary rod 4 to cut the lithium ion secondary battery. At this time, in order to operate more safely, the drop lid 5 was arranged in the chamber 1. When the lithium ion secondary battery could not be cut by one operation of the device, the device was repeatedly operated to cut the lithium ion secondary battery.
  • the cut lithium-ion secondary battery was left to stand in the treatment liquid until the generation of bubbles was completed, and gas was sampled as appropriate.
  • the sampled gas was analyzed for oxygen concentration and hydrogen concentration by gas chromatography (manufactured by Shimadzu Corporation, GC-8A). The results are shown in FIG.
  • the treatment liquid and the solid matter were carried out from the glove box into the atmosphere, and the solid matter was cut into a size of about 2 cm ⁇ 2 cm by removing the aluminum casing piece by hand. From the casing thus removed, it was possible to recover 86.7% of aluminum as metallic aluminum.
  • the cut solid matter was placed in a polypropylene bottle together with about 20 iron balls (average diameter 0.9 cm) and 100 mL of deionized water, and ball milled for 10 hours.
  • the solid matter crushed in this way was separated by a sieve having a mesh size of 1 mm, and then the solid on the sieve was further separated by magnetic force sorting and sieving with a mesh size of 10 mm to separate iron balls, copper scraps / aluminum scraps, and separator pieces. .. Since a black suspension was collected under the sieve, the black powder and the transparent ball mill liquid were collected by filtering the suspension. A part of these recovered products was sampled and dissolved in a mixed solution of hydrochloric acid and hydrogen peroxide, and the metal elements contained in each were quantified by the ICP-AES method. The results are shown in FIGS. 9 and 10. As a result, it was possible to recover 69% of lithium metal, 99.2% of nickel, and 98.9% of cobalt as solid oxides, and 94.2% of copper as metallic copper.
  • Test Example 2 In the carbonate decomposition aqueous solution in the electrolytic solution, the carbonate contained as the organic solvent of the electrolytic solution existing in the lithium ion secondary battery is hydrolyzed to gradually generate carbon dioxide. Prolonged carbon dioxide generation raises concerns about the safety of storage and transportation of the treatment fluid. As for the expected decomposition reaction at this time, for example, when the carbonate is ethylene carbonate, the following reaction formula is assumed.
  • FIG. 11 shows an ultraviolet-visible absorption spectrum when ethylene carbonate is added to deionized water.
  • Test Example 3 Utilization of iron-based material in lime water treatment In order to examine the use of steel material for equipment materials such as reaction vessels in deactivation treatment of lithium ion secondary batteries in aqueous solution, in various solutions. The corrosion behavior of the iron sample was investigated.
  • the aqueous solution used in this test example was lime water in which calcium hydroxide (10 g of calcium hydroxide was added to the treatment solution) was precipitated, 0.01 mM hydrofluoric acid, and 0.25 M NaCl aqueous solution. used.
  • the NaCl aqueous solution was adopted because salt water is used for the discharge treatment of the lithium ion secondary battery. The results are shown in FIG. 12 and Table 1.
  • an iron-based material such as a steel material can be used as a device material such as a reaction vessel, and the range of material selection is widened. ..

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

リチウムイオン二次電池を失活化させる方法であって、 (A)アルカリ水溶液中で、前記リチウムイオン二次電池を開口する工程、又は (B)不活性ガス雰囲気下又は還元性ガス雰囲気下に、水中で、前記リチウムイオン二次電池を開口する工程 を備える、方法により、廃リチウムイオン二次電池を簡便且つ安全に失活化させることができる。

Description

リチウムイオン二次電池を失活化する方法
 本発明は、リチウムイオン二次電池を失活化する方法に関する。
 現代社会においてリチウムイオン二次電池の需要が増加するとともに、使用済みリチウムイオン二次電池(廃リチウムイオン二次電池)の効率的なリサイクルの重要性も増している。しかしながら、リチウムイオン二次電池は反応性の高いリチウム(Li)を含んでおり、不適切な取り扱いによって発火する事故が報告されている。また、過去には米国で廃リチウムイオン二次電池の処理を行う際に水素爆発も起こっている。このような理由から、特に電動車等に利用される大型のリチウムイオン二次電池については、「安全な失活と解体」が課題となっている。現状では、廃リチウムイオン二次電池を高温で焼却処理する、又は高温水蒸気処理することが想定されているが、リチウムイオン二次電池中の有機溶媒の燃焼、分解、蒸発等によって生じる有害なガスの無害化等のために大型の処理設備が必要となる。また、このような大型設備を備える処理場は都市部から離れており、大型の廃リチウムイオン二次電池を処理場まで輸送する際には安全性を担保するために特殊な容器に入れて輸送する必要がある。
 このような状況下、廃リチウムイオン二次電池をリサイクルのために失活化させる方法としては、例えば、特許文献1には、放電後に廃リチウムイオン二次電池を焼却処理することが記載されている。また、特許文献2には、アルゴン、二酸化炭素等の雰囲気下でリチウムイオン二次電池を機械的に乾式粉砕することが記載されている。
米国特許出願公開第2005/0235775号 特表2007-531977号公報 特開平6-141805号公報 国際公開第2017/006209号
 現状では、特許文献1のように、高温焼却によってリチウムを失活化することを前提とした研究が多くなされているが、この場合は高温焼却設備が必要となり、大型の処理設備が必要となることは避けられず都市部における分散型処理には適さないうえに、リチウムイオン二次電池の電解液中に含まれる有機溶媒の燃焼により生じる有害なフッ素を含むガスを無害化させる課題が生じる。また、特許文献1の方法では、リチウムや黒鉛はスラグ相に分配されるため回収することができない。一方、特許文献2の方法では、アルゴン、二酸化炭素等の雰囲気下であっても、乾式粉砕することによって廃リチウムイオン二次電池が激しく発火及び発熱して非常に危険な方法であるため、大型のリチウムイオン二次電池の失活処理には適用できない。そこで、発熱及び有害なガスの発生を防ぐために、特許文献3では水、アルコール、酸の液体中又は不活性ガス中でリチウムイオン二次電池を切断又は破砕を、特許文献4では水中でシュレッダー破砕を行う方法が開発されている。ただし、水及び酸中で雰囲気を制御せずにリチウムイオン二次電池を切断した場合、電解液に含まれるカーボネート等の有機溶媒の加水分解によってガスが発生し、失活後の液の保管や輸送に危険性がある。
 本発明は、上記のような課題を解決しようとするものであり、廃リチウムイオン二次電池を簡便且つ安全に失活化させる方法を提供することを目的とする。
 本発明者らは、上記問題点を解決するために鋭意検討した結果、アルカリ水溶液中で、リチウムイオン二次電池を開口するか、不活性ガス雰囲気下又は還元性ガス雰囲気下に水中でリチウムイオン二次電池を開口することにより、廃リチウムイオン二次電池を簡便且つ安全に失活化させることができることを見出した。これらの知見に基づいて、本発明者らは、さらに研究を重ね、本発明を完成させた。即ち、本発明は以下の態様を包含する。
 項1.リチウムイオン二次電池を失活化させる方法であって、
(A)アルカリ水溶液中で、前記リチウムイオン二次電池を開口する工程、又は
(B)不活性ガス雰囲気下又は還元性ガス雰囲気下に、水中で、前記リチウムイオン二次電池を開口する工程
を備える、方法。
 項2.前記工程(A)において使用するアルカリ水溶液及び工程(B)で使用する水の使用量が、前記リチウムイオン二次電池の容量1Whに対して、10mL以上である、項1に記載の方法。
 項3.前記工程(A)を不活性ガス雰囲気下又は還元性ガス雰囲気下で行う、項1又は2に記載の方法。
 項4.前記工程(A)におけるアルカリ水溶液のpHが10~14であり、前記工程(B)における水のpHが6~14である、項1~3のいずれか1項に記載の方法。
 項5.前記アルカリ水溶液として使用されるアルカリ化合物が、水酸化カルシウム、酸化カルシウム、水酸化マグネシウム、酸化マグネシウム、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムよりなる群から選ばれる少なくとも1種である、項1~4のいずれか1項に記載の方法。
 項6.前記工程(A)において、前記アルカリ水溶液が石灰水である、項1~5のいずれか1項に記載の方法。
 項7.前記アルカリ水溶液中のアルカリ化合物の含有量が飽和濃度より大きい、項1~6のいずれか1項に記載の方法。
 項8.前記リチウムイオン二次電池を開口する工程が、前記リチウムイオン二次電池を破砕又は切断するか、前記リチウムイオン二次電池のケーシングを貫通する穴を開けるか、又は前記リチウムイオン二次電池のケーシングの一部又は全部を開封する工程である、項1~7のいずれか1項に記載の方法。
 項9.前記工程(A)及び(B)を10~80℃で行う、項1~8のいずれか1項に記載の方法。
 項10.開口部からの気泡の発生状況から、失活化完了の時期を決定する、項1~9のいずれか1項に記載の方法。
 項11.リチウムイオン二次電池の失活化状況を可視化する方法であって、
(A)アルカリ水溶液中で、前記リチウムイオン二次電池を開口する工程、又は
(B)不活性ガス雰囲気下又は還元性ガス雰囲気下に、水中で、前記リチウムイオン二次電池を開口する工程
を備え、開口部から気泡を発生させることで、リチウムイオン二次電池の失活化状況を可視化する、方法。
 項12.リチウムイオン二次電池から金属元素を分離回収する方法であって、
項1~11のいずれか1項に記載の方法によりリチウムイオン二次電池を失活化させた後、前記失活化させたリチウムイオン二次電池を粉砕し、物理選別する工程
を備える、方法。
 項13.リチウム、ニッケル及びコバルトよりなる群から選ばれる少なくとも1種を固体酸化物として回収し、銅及び/又はアルミニウムを金属のまま回収する、項12に記載の方法。
 項14.(A1)前記失活化させたリチウムイオン二次電池の固形物から、制御基板付きのケーシングをサイズで選別し、アルミニウムを回収する工程、
(A2)前記工程(A1)で残留する固形物から、篩分け(1)により、銅屑、アルミニウム屑及びセパレータ片よりなる群から選ばれる少なくとも1種を回収する工程
を備える、項12又は13に記載の方法。
 項15.前記工程(A2)の後、
(A3)前記工程(A2)で残留する固形物から、篩分け(2)により、セパレータ片を回収する工程、及び
(A4)前記工程(A3)で残留する固形物から、銅屑及びアルミニウム屑を分離する工程
を備える、項14に記載の方法。
 項16.前記工程(A2)の後、
(B3)前記失活化させたリチウムイオン二次電池の懸濁液を濾過し、リチウム、コバルト、ニッケル及びマンガンの酸化物、黒鉛粉末、水酸化アルミニウム並びにフッ化カルシウムよりなる群から選ばれる少なくとも1種を分離する工程
を備える、項14に記載の方法。
 項17.アルカリ水溶液中又は水中でリチウムイオン二次電池を失活化させるために使用されるリチウムイオン二次電池失活化装置であって、
アルカリ水溶液又は水が貯留されるチャンバーと、
前記チャンバー内に配置され、前記チャンバー内に投入された前記リチウムイオン二次電池を開口する機構と
を備える、リチウムイオン二次電池失活化装置。
 項18.前記チャンバー上に配置され、アルカリ水溶液又は水の上に形成される閉鎖空間を外部から隔離するための開閉可能な蓋と、
不活性ガス又は還元性ガスを前記閉鎖空間に供給するガス供給部と
をさらに備える、項17に記載のリチウムイオン二次電池失活化装置。
 項19.項17又は18に記載のリチウムイオン二次電池失活化装置を備える、車両。
 項20.項1~11のいずれか1項に記載の方法を用いる、リチウムイオン二次電池リサイクル方法。
 本発明によれば、廃リチウムイオン二次電池を簡便且つ安全に失活化させることができる。このため、失活処理物を簡便且つ安全に輸送することができ、廃リチウムイオン二次電池のリサイクルを促進することができる。
一般的な小型リチウムイオン二次電池の構成及び各部材の原料価格を示す。 リチウムイオン二次電池から金属元素を分離回収する方法の一例を示す。 廃リチウムイオン二次電池をオンサイト(自動車解体工場や事故現場等)で失活処理及び各元素分離回収可能な車両の一例を示す。 本発明のリチウムイオン二次電池失活化装置の概略図を示す。(a)外観写真。(b)平面図。(c)断面図。 本実施例において、「前処理なし」、「開封」及び「切断」の意味を説明する写真である。 比較例3において、乾式でリチウムイオン二次電池を切断した場合の結果を示す。 実施例2において、石灰水中でリチウムイオン二次電池を開封した場合の結果を示す。 試験例1において、ガスクロマトグラフィー(GC)を用いて失活処理中の酸素濃度及び水素濃度を分析した結果を示す。 試験例1において、リチウムイオン二次電池の失活化処理及び元素分離処理のフローチャートを示す。分離された試料の様子も示す。 試験例1において、リチウムイオン二次電池の失活化処理及び元素分離処理のフローチャートを示す。分離された試料の回収率も示す。 試験例2において、脱イオン水に炭酸エチレンを投入した場合の紫外可視吸収スペクトルを示す。 試験例3において、石灰水、フッ化水素酸及びNaCl水溶液中での鉄球の腐食挙動を示す。
 本明細書において、数値範囲を「A~B」で表示する場合、A以上B以下を意味する。また、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」及び「のみからなる(consist of)」のいずれも包含する。
 1.リチウムイオン二次電池を失活化させる方法
 まず、一般的な小型リチウムイオン二次電池の構成及び各部材の原料価格を図1に示す。一般的なリチウムイオン二次電池から樹脂製外装を除去すると、アルミニウム等で構成され、制御基板が付されているケーシングが現れる。この中には、正極活物質、正極集電体(アルミニウム箔)、負極活物質、負極集電体(銅箔)、電解液、セパレータ、絶縁フィルム等が包含されている。これらのうち、各部材の原料価格を比較すると、正極活物質が全体の約79%を占めており、いずれもリチウムを含んでいる。つまり、リチウムイオン二次電池からのリサイクル効率を考慮すれば、リチウムを回収することが好ましく、さらに、正極活物質中の金属元素、特にニッケル及びコバルトも合わせて回収することがより好ましい。
 一方、従来のリチウムイオン二次電池を失活化させる方法では、特許文献1のように、高温焼却によってリチウムを失活化することを前提とした研究が多くなされている。この場合は高温焼却設備が必要となり、大型の処理設備が必要となることは避けられず都市部における分散型処理には適さないうえに、リチウムイオン二次電池の電解液中に含まれる有機溶媒の燃焼により生じる有害なフッ素を含むガスを無害化させる必要がある。
 特許文献1のように、高温焼却によってリチウムを失活化させる方法では、高温炉でリチウムイオン二次電池を加熱融解し、有価物を溶融合金中に溶け込ませる。この後、合金を酸浸出し、溶媒抽出によって各元素を分離することとなる。しかしながら、特許文献1の方法では、リチウムや黒鉛はスラグ相に分配されるため回収することができない。このことから、リチウムイオン二次電池中に含まれるリチウムを回収できていない。つまり、従来の従来のリチウムイオン二次電池を失活化させる方法では、効率のよいリサイクル方法とは言えない。
 それに対して、本発明のリチウムイオン二次電池を失活化させる方法は、
(A)アルカリ水溶液中で、前記リチウムイオン二次電池を開口する工程、又は
(B)不活性ガス雰囲気下又は還元性ガス雰囲気下に、水中で、前記リチウムイオン二次電池を開口する工程
を備える。
 このように、本発明のリチウムイオン二次電池を失活化させる方法においては、中性又はアルカリ性の水又は水溶液中でリチウムイオン二次電池の開口を行うことで、リチウムイオン二次電池中に含まれるリチウムを穏やかに失活させることが可能である。しかも、本発明のリチウムイオン二次電池を失活化させる方法では、リチウム、ニッケル及びコバルトを固体酸化物として回収することができ、銅及びアルミニウムを金属のまま回収することが可能である点においても有用である。
 本発明のリチウムイオン二次電池を失活化させる方法においては、有毒ガスも発生せず、比較的小型の設備で行うことができ、安全にリチウムイオン二次電池の解体を行うことが可能である。
 このため、自動車解体場等の都市部の各所においても簡便且つ安全にリチウムイオン二次電池の解体処理を行うことができ、リチウムイオン二次電池を簡便且つ安全に解体及び輸送することが可能である。
 (1-1)アルカリ水溶液及び水
 工程(A)では、アルカリ水溶液中で、前記リチウムイオン二次電池を開口する。また、工程(B)では、不活性ガス雰囲気下又は還元性ガス雰囲気下に、水中で、前記リチウムイオン二次電池を開口する。
 工程(A)においてアルカリ水溶液として使用されるアルカリ化合物は、水中に溶解させることでアルカリ性(特にpH10~14程度)を呈する化合物であれば特に制限はなく、例えば、水酸化カルシウム、酸化カルシウム、水酸化マグネシウム、酸化マグネシウム、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が挙げられる。これらのアルカリ化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。
 工程(A)においてアルカリ水溶液を採用する場合、アルカリ水溶液中のアルカリ化合物の含有量は、飽和濃度以下とすると、リチウムイオン二次電池の失活化処理中の反応によりアルカリ化合物が消費される。具体的には、以下に詳述する。
 例えばリチウムイオン二次電池中のカーボネートが炭酸エチレンの場合は、水中でカーボネートが加水分解され、以下の反応が引き起こされる。
Figure JPOXMLDOC01-appb-C000001
 このとき発生する二酸化炭素はアルカリ化合物と反応して沈殿するため、上式のカーボネートの加水分解が促進される。例えば、アルカリ化合物が水酸化カルシウムである場合は、以下のように二酸化炭素と反応して炭酸カルシウムを形成する。
Figure JPOXMLDOC01-appb-C000002
 また、アルカリ化合物については、上記のカーボネートの分解反応に加え、後述のLiPFの分解反応にも消費される。このため、アルカリ水溶液中のアルカリ化合物の含有量は、飽和濃度以下とすると、リチウムイオン二次電池の失活化処理中の反応によりアルカリ化合物が消費され、カーボネートやLiPFの分解反応が進行しにくくなり、完全に無害化処理できない可能性がある。
 このため、工程(A)において、アルカリ水溶液中のアルカリ化合物の含有量は、飽和濃度より大きい含有量として、一部のアルカリ化合物を沈殿させておくことが好ましい。これにより、リチウムイオン二次電池の失活化処理中の反応によりアルカリ化合物が消費されたとしても、その分沈殿からアルカリ水溶液中に溶解してアルカリ化合物の濃度を補充することができる。
 例えば、アルカリ化合物として水酸化カルシウムを採用する場合は、水酸化カルシウムは水100mL中に室温で0.17gしか溶解しないが、アルカリ水溶液中に含ませる水酸化カルシウムの量は過剰量として、溶解分と沈殿分を合わせて、水100mLに対して、例えば0.17~100g、特に0.4~10g添加することが好ましい。
 工程(A)において使用されるアルカリ水溶液のpHは、特に制限されるわけではないが、リチウムイオン二次電池の失活化処理の効率、安全性、経済性等の観点から、10~14が好ましく、11~13がより好ましい。
 工程(B)において使用される水としては特に制限はなく、蒸留水、水道水、工業用水、イオン交換水、脱イオン水、純水、電解水等の各種の水を用いることができる。なお、工程(B)において使用される水は中性又はアルカリ性(6≦pH≦14)であることが好ましい。
 なお、工程(A)において使用するアルカリ水溶液及び工程(B)で使用する水の使用量は過剰量が好ましい。具体的には、以下に詳述する。
 本発明では、リチウムイオン二次電池中の活性なリチウムが水と接触して優先的に反応し、水素を発生しながら穏やかに失活していく。この際の反応は、反応式:
LiC+yHO→y/2H+Li+yOH+xC
に従って進行する。この際、リチウムイオン二次電池の電解液中に含まれる可燃性の有機溶媒は、水中へ溶解させて希釈されるうえに、反応前後において酸素濃度は一定、つまり、反応により酸素が発生せず、アルカリ水溶液又は水が急激な温度上昇を防止する冷却剤としても機能するので、発火及び発熱を抑制することができ、安全な方法である。また、過剰量の水により、上記反応において水(HO)が不足することもない。
 なお、この反応では、水酸化物イオンが発生するが、後述のカーボネートやLiPFの分解反応に消費されるため、pHを中性又はアルカリ性領域のうちの適切な範囲で維持し、失活化処理を継続して行うことが可能である。
 以上のことから、工程(A)において使用するアルカリ水溶液及び工程(B)で使用する水の使用量は過剰量が好ましく、対象とするリチウムイオン二次電池の容量1Whに対して、10mL以上が好ましく、70mL以上がより好ましく、130mL以上がさらに好ましい。なお、工程(A)において使用するアルカリ水溶液及び工程(B)で使用する水の使用量は多いほどよく、上限値は特に制限はないが、装置の小型化の観点からあまり多くのアルカリ水溶液又は水を用いるのは好ましくない。このため、アルカリ水溶液又は水は、対象とするリチウムイオン二次電池の容量1Whに対して、1000mL以下であるのが好ましい。通常、対象とするリチウムイオン二次電池の容量1Whに対して50~500mL程度である。
 以上のように、本発明のリチウムイオン二次電池を失活化させる方法においては、中性又はアルカリ性の水又は水溶液中でリチウムイオン二次電池の開口を行うことで、リチウムイオン二次電池中に含まれるリチウムを穏やかに失活させることが可能である。
 特に、本発明のリチウムイオン二次電池を失活化させる方法において、工程(A)、つまり、アルカリ水溶液を採用した場合には、以下に述べるようにカーボネート等の有機溶媒の加水分解が速く、ガス発生の時間を短縮することが可能である。
 水溶液中では、リチウムイオン二次電池中に存在する電解液の有機溶媒として含まれているカーボネート等が加水分解し、徐々に二酸化炭素を発生する。この際予想される分解反応は、例えばカーボネートが炭酸エチレンの場合は、以下の反応式が想定される。
Figure JPOXMLDOC01-appb-C000003
 本発明のリチウムイオン二次電池を失活化させる方法において、工程(A)、つまり、アルカリ水溶液を採用した場合には、反応を短くするとともに、発生する二酸化炭素をアルカリ水溶液と反応させることによって捕捉しやすい(アルカリ水溶液として石灰水を使用する場合は、炭酸カルシウムとして固定化しやすい)ため、排気時間をより短縮できる点においても有用である。
 また、水溶液中では、リチウムイオン二次電池中に存在する電解液の電解質塩として含まれているLiPFは、リチウムイオン二次電池の失活処理時には処理液に溶出する。この際、LiPFはHFを生成しながら容易に加水分解する。
Figure JPOXMLDOC01-appb-C000004
 本発明のリチウムイオン二次電池を失活化させる方法において、工程(A)、つまり、アルカリ水溶液を採用した場合には、有害なフッ化物イオンを塩として固定化しやすい。例えば、アルカリ水溶液として石灰水を使用する場合は、フッ化物イオンをフッ化カルシウム(CaF)としてその場で固定化しやすく、フッ化物イオンの分離工程を省略することができる。
 なお、工程(B)、つまり、水を採用する場合は、生成するフッ化物イオンを除去するために、後の工程でアルカリ水溶液を使用することが好ましい。このため、工程(B)、つまり、水を採用する場合であっても、アルカリ水溶液を併用することが好ましいため、当初から工程(A)、つまり、アルカリ水溶液を採用することが好ましい。
 また、本発明のリチウムイオン二次電池を失活化させる方法において、工程(A)、つまり、アルカリ水溶液を採用した場合には、鉄系材料を錆びさせることもないため、リチウムイオン二次電池の失活化処理施設等において、処理液が接する部材においても安価な鉄系材料を使用することが可能であり、材料選択の幅が広がる。
 (1-2)雰囲気
 本発明のリチウムイオン二次電池を失活化させる方法として、工程(A)、つまり、アルカリ水溶液を採用する場合は、雰囲気は特に制限されない。なかでも、窒素ガス雰囲気下、アルゴンガス雰囲気下等の不活性雰囲気下や、水素ガス雰囲気下等の還元性ガス雰囲気下が好ましい。
 一方、本発明のリチウムイオン二次電池を失活化させる方法として、工程(B)、つまり、水を採用する場合は、窒素ガス雰囲気下、アルゴンガス雰囲気下等の不活性雰囲気下、又は水素ガス雰囲気下等の還元性ガス雰囲気下を採用する。
 このような雰囲気を採用した場合には、雰囲気中に酸素が存在しないことから、リチウムイオン二次電池の失活化処理中において、発生する水素が化学的に安定となり、リチウムイオン二次電池の発火及び発熱の危険性をさらに抑制しやすい。
 (1-3)温度
 本発明のリチウムイオン二次電池の失活化方法を行う温度は特に制限されず、例えば常温で行うこともできる。つまり、従来の方法のように高温焼却が不要であり、より簡便で安全な方法とすることが可能である。具体的には、本発明のリチウムイオン二次電池の失活化方法を行う温度は、例えば、10~80℃、好ましくは15~45℃とすることができる。
 (1-4)開口処理
 本発明のリチウムイオン二次電池を失活化させる方法において、リチウムイオン二次電池の開口処理としては、特に制限されず、種々様々な方法を採用することができる。具体的には、リチウムイオン二次電池を破砕又は切断したり、リチウムイオン二次電池のケーシングを貫通する穴を開けたり、リチウムイオン二次電池のケーシングの一部又は全部を開封したりすることが挙げられる。なお、「リチウムイオン二次電池を破砕」とは、リチウムイオン電池を破き、砕くことを意味する。また、「リチウムイオン二次電池を破砕又は切断」は、リチウムイオン二次電池のケーシングのみを破砕又は切断して内部を露出させることのみを意味するものではない。「リチウムイオン二次電池を破砕又は切断」は、リチウムイオン二次電池の不特定の位置を破砕又は切断することによって、ケーシング内に配置される集電体、セパレータ等の収納部品も合わせて破砕又は切断することも意味する。
 また、本発明では、リチウムイオン二次電池の破砕又は切断する回数は1回以上であれば特に限定されないものの、複数回数であることが好ましい。さらに、リチウムイオン二次電池を複数回数破砕又は切断する場合は、各々異なる位置を破砕または切断するのが好ましい。これにより、迅速な失活を図れるととともに、失活化後の工程における物理選別等の工程を迅速に進めることが可能である。
 この場合、リチウムイオン二次電池のケーシングの一部又は全部を切断する方法によれば、本発明のリチウムイオン二次電池の失活化方法のなかでも、特に安全に本発明のリチウムイオン二次電池の失活化処理を行うことができる。
 また、リチウムイオン二次電池を破砕又は切断したり、リチウムイオン二次電池のケーシングを貫通する穴を開けたりする方法によれば、本発明のリチウムイオン二次電池の失活化方法のなかでも、失活化時間を特に短縮することができる。なお、従来の空気中で失活化を行う乾式法によれば、リチウムイオン二次電池を破砕又は切断したり、リチウムイオン二次電池のケーシングを貫通する穴を開けたりする方法を採用すると、リチウムイオン二次電池が発火したり発熱したりするが、本発明のリチウムイオン二次電池の失活化方法を採用すれば、リチウムイオン二次電池を破砕又は切断したり、リチウムイオン二次電池のケーシングを貫通する穴を開けたりしても、安全にリチウムイオン二次電池の失活化を行うことができる。
 (1-5)浸漬処理
 上記のようにしてリチウムイオン二次電池に対して開口処理を施した後は、リチウムイオン二次電池中の活性なリチウムが水と接触して優先的に反応し、水素を発生しながら穏やかに失活していく。この際の反応は、反応式:
LiC+yHO→y/2H+Li+yOH+xC
に従って進行する。この際、リチウムイオン二次電池の電解液中に含まれる可燃性の有機溶媒は、水中へ溶解させて希釈されるうえに、反応前後において酸素濃度は一定、つまり、反応により酸素が発生せず、アルカリ水溶液又は水が急激な温度上昇を防止する冷却剤としても機能するので、発火及び発熱を抑制することができ、安全な方法である。
 なお、上記の反応が進行しない、つまり、水素が発生しなくなった場合は、リチウムイオン二次電池の失活化処理が完了したと判断することができるので、目視で気泡が出なくなった時点で、リチウムイオン二次電池の失活化処理が完了したと判断することができる。このため、本発明によれば、気泡の発生速度(発生状況)によりリチウムイオン二次電池の失活化進行状況を可視化できる。このため、従来の処理方法に比べ、安全かつ効率的な処理が実現できる。
 なお、安全確保の観点からは、気泡の発生が完全に停止した時点で失活化を完了したものとすることが好ましい。ただし、作業効率の観点から、気泡の発生速度が所定の基準以下となった時点で、失活化を完了したものとしてもよい。ここで、基準の決定にあたっては、光学的手段、計量的手段などが採用できる。光学的手段であれば、たとえば、分光学的装置による測定であってもよく、撮影や目視による観察であってもよい。計量的手段であれば、たとえば、発生した気泡を捕集するなどして、所定時間内に発生した気泡体積を計ればよい。
 また、発生した水素は回収することも可能である。
 以上から、リチウムイオン二次電池に対して開口処理を施した後は、目視で気泡が出なくなるまで、アルカリ水溶液又は水中に浸漬しておくことが好ましい。具体的な浸漬時間は、例えば、10分~24時間、特に30分~6時間とすることができる。
 2.リチウムイオン二次電池から金属元素を分離回収する方法
 本発明のリチウムイオン二次電池を失活化させる方法においては、有毒ガスも発生せず、比較的小型の設備で行うことができ、安全にリチウムイオン二次電池の解体を行うことが可能である。
 このため、自動車解体場等の都市部の各所や自働車の事故現場においても簡便且つ安全にリチウムイオン二次電池の失活処理を行うことができ、リチウムイオン二次電池を簡便且つ安全に解体及び輸送することが可能であり、ここから各元素を分離回収することができる。この分離回収方法の一例を図2に示す。
 このようにして安全に失活処理されたリチウムイオン二次電池又はその破砕物には、リチウム、アルミニウム、銅、ニッケル、コバルト、マンガン等の金属元素等が含まれており、物理選別又は化学的な処理によって、それぞれ分離回収することが可能である。
 本発明のリチウムイオン二次電池を失活化させる方法において、例えば、リチウムイオン二次電池のケーシングを貫通する穴を開けたり、リチウムイオン二次電池のケーシングの一部又は全部を開封したりしている場合は、その後の処理を容易とするため、対象物を小粒径化することが好ましい。なお、図2では、図4に記載のアトライタを用いた切断処理によりリチウムイオン二次電池の失活化を行った例を記載している。
 具体的には、失活後の固形物から、まず、制御基板付きのケーシングをサイズで選別することができる。ここから、多くのアルミニウムを回収することが可能である。その後、所望の大きさ(図2では20mm×20mm)の大きさに切断し、その後、鉄球等を用いたボールミル等により、破砕することができる。
 その後、例えば目開き0.5~3mm程度(図2では1mm)の篩分け(1)により、銅屑、アルミニウム屑、セパレータ片、ボールミルに使用した鉄球等を回収することが可能である。この混合物から磁力選別することで鉄球を回収し、また、目開き5~15mm程度(図2では10mm)の篩分け(2)により、セパレータ片を回収することが可能である。残部は銅屑及びアルミニウム屑の混合物であり、例えば、渦電流選別等の物理選別によって両者を分離し、既存の処理所へと出荷することが可能である。
 一方、上記篩分け(1)を施した後の懸濁液を濾過することで、リチウム、コバルト、ニッケル、マンガン等の酸化物や、黒鉛粉末、水酸化アルミニウム、フッ化カルシウム等を分離することができる。これらは廃リチウムイオン二次電池処理物専門の中規模製錬所や既存の製錬所で処理することが可能である。ここから、リチウムの約7割、ニッケル、コバルト等のほとんどを回収することができる。
 なお、有価元素はほとんど固体として回収することができ、特に、従来の乾式処理では回収することが困難であるリチウムや黒鉛等も、本発明の方法では固体として濃縮分離ができる点において有用である。また、本発明の方法では、銅及びアルミニウムについては金属として回収できるので、従来の方法のように酸浸出や還元等の化学的な処理が不要であり、その後容易にリサイクルが可能である。
 以上から、本発明のリチウムイオン二次電池を失活化させる方法によれば、従来の乾式プロセスと比較して、極めて小型且つ有価物の回収率が高い湿式リサイクルプロセスを実現することが可能である。好ましくは大型の廃リチウムイオン二次電池の集約施設や製錬所への輸送を安全且つ簡便なものへと変革することができる。例えば、各地の自動車の解体現場等に分散して処理場を設置し、各処理場でリチウムイオン二次電池の失活化処理することでネックとなっていた廃リチウムイオン二次電池の輸送問題を解決することが可能である。
 また、図3に示す一例のようなリチウムイオン二次電池失活化装置を備える車両を用意すれば、あらかじめアルカリ水溶液又は水を浸した容器のチャンバー中に故障車等の廃リチウムイオン二次電池を投入し、次いで当該廃リチウムイオン二次電池を切断破砕部(例えば、切断刃と対向する一対のローラ)により切断及び破砕し、次いで、破砕物から各元素を分離することが可能である。
 ここで、廃リチウムイオン二次電池を投入する部分には、容器の上部を開閉可能に覆う蓋が設けられている。この蓋に容器の上部が閉鎖された状態では、蓋とアルカリ水溶液又は水の上に形成される空間が密閉されて、外部から隔離された閉鎖空間が形成される。この状態で、チューブを介してガス供給部(窒素生成機)から不活性ガス(窒素ガス)が供給されると、閉鎖空間に不活性ガスが満たされて、不活性ガス雰囲気が形成される。なお、還元性ガス(例えば、水素ガス等)が供給されると、閉鎖空間に還元性ガスが満たされて、還元性ガス雰囲気を形成することが可能である。
 そして、車両には、単一の篩、又は目開きの大きさの異なる複数の篩が設けられており、チャンバー内のアルカリ水溶液又は水とともに破砕物が通過することによって、破砕物を分離することが可能である。目開きの異なる複数の篩を設けた場合には大きさ毎に破砕物を分別することも可能である。なお、破砕物が取り除かれたアルカリ水溶液又は水は、再度チャンバー内に供給される。
 また、車両には、リチウムが失活する際に生じる水素を回収するために、コンプレッサーと水素貯蔵タンクとが設けられている。コンプレッサーは、閉鎖空間からの水素を圧縮し、水素貯蔵タンクに供給する機能を有している。また、車両には、水素を用いて発電等を行う燃料電池が設けられていてもよい。
 つまり、別途処理設備を用意せずとも、図3に示す車両中で、廃リチウムイオン二次電池の失活化から各元素の回収まで行うことが可能であり、自動車解体現場や廃リチウムイオン二次電池の生じた現場でも実施することが可能である。その後、専用処理設備や製錬所に輸送し、各種金属元素のリサイクルや、処理液の廃液処理を行うことができる。以上から、オンサイト型の失活をともなった粗分離処理を実現することができ、発展途上国を含む世界各地でモバイル一次製錬所として利用することが可能である。
 以下、実施例及び比較例を挙げ、本発明を具体的に説明するが、本発明は実施例のみに限定されるものではない。
 本実施例において、「前処理なし」は、図5左図に示すように、ケーシングに対して何ら傷をつけず、ケーシング内に存在するリチウムイオン二次電池を露出させないことを意味する。
 本実施例において、「開封」は、図5中図に示すように、ケーシング内に存在するリチウムイオン二次電池には傷をつけないようにケーシングの一部だけを切除し、ケーシング内に存在するリチウムイオン二次電池を露出させることを意味する。
 本実施例において、「切断」は、図5右図に示すように、ケーシング内に存在するリチウムイオン二次電池ごと、ケーシングを切断することを意味する。
 なお、リチウムイオン二次電池(3cm×4cm×0.7cm;公称電圧3.7V;充電容量895mAh;充電済)は、新規に購入し、充電したものをサンプルとして使用した。
 比較例1:水中前処理なし
 窒素雰囲気(酸素濃度:1体積%未満)のグローブボックス中で、リチウムイオン二次電池の樹脂製外挿を除去し、ケーシングは切除せずに、脱イオン水を処理液として集気瓶に250mL入れ、リチウムイオン二次電池を浸漬した際の発火及び気泡の有無を確認した。
 この場合、発火もしなかったものの、気泡の発生もなく、リチウムイオン二次電池の失活化は全く進行しなかった。
 比較例2:石灰水中前処理なし
 窒素雰囲気(酸素濃度:1体積%未満)のグローブボックス中で、リチウムイオン二次電池の樹脂製外挿を除去し、ケーシングは切除せずに、水酸化カルシウムを共存させた石灰水を処理液として集気瓶に250mL(処理液中に投入した水酸化カルシウムは1g)入れ、リチウムイオン二次電池を浸漬した際の発火及び気泡の有無を確認した。
 この場合、発火もしなかったものの、気泡は約3日~1週間ほど発生し続け、電池のセル電圧は1V程度までしか低下しなかった。このことから、リチウムイオン二次電池の放電には少なくとも3日以上必要であり、しかも、リチウムイオン二次電池を完全に失活させるにはいたらなかった。
 比較例3:乾式切断
 窒素雰囲気(酸素濃度:1体積%未満)のグローブボックス中で、リチウムイオン二次電池の樹脂製外挿を除去し、ケーシングを内部のリチウムイオン二次電池ごと約1cm切断し、反応性を確認した。つまり、特許文献2と同様の方法を行った。
 この結果、切断すると即座に火花を発してリチウムイオン二次電池全体が激しく発熱し、白煙が発生し、ケーシングが赤熱するほど高温となり、非常に危険な方法であることが理解できた。結果を図6に示す。
 実施例1:水中開封
 窒素雰囲気(酸素濃度:1体積%未満)のグローブボックス中で、リチウムイオン二次電池の樹脂製外挿を除去し、内部のリチウムイオン二次電池には傷をつけないようにケーシングの一部(側面のみ)を切除し、脱イオン水を処理液として集気瓶に250mL入れ、発火及び気泡の有無を確認した。
 この場合、端子部及びセル内部から水素ガスを含むガスが発生し、失活が進行した。また、反応中、発火することなく、気泡も約16時間で発生しなくなった。このため、約16時間でリチウムイオン二次電池の失活化が完了したことが理解できる。
 実施例2:石灰水中開封
 窒素雰囲気(酸素濃度:1体積%未満)のグローブボックス中で、リチウムイオン二次電池の樹脂製外挿を除去し、内部のリチウムイオン二次電池には傷をつけないようにケーシングの一部(側面のみ)を切除し、水酸化カルシウム(処理液中に投入した水酸化カルシウムは1g)を沈殿させた石灰水を処理液として集気瓶に250mL入れ、発火及び気泡の有無を確認した。
 この場合、端子部及びセル内部から水素ガスを含むガスが発生し、失活が進行した。また、反応中、発火することなく、気泡も約9時間で発生しなくなってセル電圧は1V以下となり、24~30時間程度で0Vまで低下した。このため、約9時間でリチウムイオン二次電池の失活化が完了したことが理解できる。また、反応終了時には、ケーシングの材料であるアルミニウムが酸化され、白色の被膜が形成されており、LiAl(OH)(HO)及びCaCOの生成を確認した。このため、石灰水を用いた開封浸漬処理によって、リチウムイオン二次電池の失活が実施例1よりも速く進行したことが示唆される。結果を図7に示す。
 実施例3:石灰水中切断
 窒素雰囲気(酸素濃度:1体積%未満)のグローブボックス中で、リチウムイオン二次電池の樹脂製外挿を除去し、ケーシングを内部のリチウムイオン二次電池ごと約1cm切断し、水酸化カルシウム(処理液中に投入した水酸化カルシウムは1g)を沈殿させた石灰水を処理液として集気瓶に250mL入れ、発火及び気泡の有無を確認した。
 この場合、端子部及びセル内部から水素ガスを含むガスが発生し、失活が進行した。また、反応中、発火することなく、気泡も約1時間で発生しなくなってリチウムイオン二次電池の失活化が完了したことが理解できる。
 試験例1:石灰水中での失活処理及び元素回収
 水溶液中に浸漬したリチウムイオン二次電池を切断した際の失活挙動を23~25℃において調査した。図2にリチウムイオン二次電池の失活処理のフローチャートを示す。窒素雰囲気(酸素濃度:1体積%未満)のグローブボックス中で、リチウムイオン二次電池の樹脂製外挿を除去し、アルミニウム製のケーシングを露出させた。図4に示すリチウムイオン二次電池切断装置(アトライタ)のチャンバー1内に水酸化カルシウム(処理液中に投入した水酸化カルシウムは1g)を沈殿させた石灰水を処理液として300mL充填し、試料台2に設置したリチウムイオン二次電池を浸漬した。その後、装置を動作させ、チャンバー1内に取り付けたステンレス鋼製の刃3にリチウムイオン二次電池を回転棒4で押し付けて切断した。この際、より安全に操作するため、落とし蓋5をチャンバー1内に配置した。なお、1回の装置の動作でリチウムイオン二次電池を切断できない場合は、繰り返し装置を動作させ、リチウムイオン二次電池を切断した。
 切断後のリチウムイオン二次電池は気泡の発生が終了するまで処理液に浸漬した状態で静置し、ガスのサンプリングを適宜行った。サンプリングしたガスはガスクロマトグラフィー((株)島津製作所製、GC-8A)により、酸素濃度及び水素濃度を分析した。結果を図8に示す。
 この結果、失活処理時に水素ガスが発生しており、負極中のリチウムが水との反応によって失活していることが示唆された。また、酸素濃度はほぼ一定であり、正極活物質の分解や水の酸化は起こっていないことが示唆された。
 反応終了後、処理液と固形物をグローブボックスから大気中に搬出し、固形物はアルミニウム製のケーシング片を手選別で取り除き、2cm×2cm程度の大きさに切断した。このようにして取り除いたケーシングから、86.7%のアルミニウムを金属アルミニウムとして回収することが可能であった。次に、切断後の固形物を鉄球(平均直径0.9cm)20個程度、脱イオン水100mLとともにポリプロピレン製ボトルに入れ、10時間のボールミルを行った。このようにして粉砕した固形物を、目開き1mmの篩で分別後、篩上の固体をさらに磁力選別、目開き10mmの篩分けによって、鉄球、銅屑・アルミ屑、セパレータ片に分離した。篩下には黒色の懸濁液が回収されるため、これを濾過することで黒色の粉末と透明なボールミル液を回収した。これらの回収物については一部をサンプリングして塩酸と過酸化水素の混合液で溶解させ、それぞれに含まれる金属元素をICP-AES法によって定量した。結果を図9及び10に示す。この結果、リチウム金属の69%、ニッケルの99.2%、コバルトの98.9%を固体酸化物として、銅の94.2%を金属銅として回収することが可能であった。
 試験例2:電解液中のカーボネート分解
 水溶液中では、リチウムイオン二次電池中に存在する電解液の有機溶媒として含まれているカーボネートが加水分解し、徐々に二酸化炭素を発生する。二酸化炭素の発生が長時間続くと、処理液の貯蔵及び輸送の安全性に懸念が生じる。この際予想される分解反応は、例えばカーボネートが炭酸エチレンの場合は、以下の反応式が想定される。
Figure JPOXMLDOC01-appb-C000005
 そこで、炭酸エチレン8.8gを各溶液100mLに添加して挙動を比較した。
 脱イオン水に炭酸エチレンを投入した場合の紫外可視吸収スペクトルを図11に示す。この結果、1時間後、18時間後及び36時間後の結果と、3ヶ月後の結果とを比較すると、吸収スペクトルの強度がわずかに低下した。このため、脱イオン水中では、36時間経過してもリチウムイオン二次電池の失活化反応は完了しておらず、3ヶ月後まで徐々に反応が進行することが示唆され、カーボネートの分解に長時間を要することが示唆された。
 反対に、水酸化カルシウム(処理液中に投入した水酸化カルシウムは14g)を沈殿させた石灰水100mLを使用した場合は、加水分解が1時間以内という短時間で終了し、処理液の貯蔵及び輸送の安全面で有利であることが示唆された。
 試験例3:石灰水処理における鉄系材料利用
 水溶液中でのリチウムイオン二次電池の失活処理における反応容器をはじめとする装置材料への鉄鋼材料の利用を検討するため、種々の溶液中における鉄材サンプルの腐食挙動を調査した。
 鉄球(平均直径5mm、SUJ-2)約2gをポリプロピレン製ボトルに入れ、各水溶液を100mL加えて大気中で静置した。本試験例で使用する水溶液には、水酸化カルシウム(処理液中に投入した水酸化カルシウムは10g)を沈殿させた石灰水、0.01mMのフッ化水素酸、及び0.25MのNaCl水溶液を使用した。なお、NaCl水溶液は、リチウムイオン二次電池の放電処理に塩水が用いられることから採用した。結果を図12及び表1に示す。
Figure JPOXMLDOC01-appb-T000006
 この結果、フッ化水素酸及びNaCl水溶液中では、1日後から変色することから、鉄系材料を使用できないことが示唆された。一方、石灰水では、2ヶ月経過後も変化がなかった。酸素存在下の大気雰囲気でさえも、変化がなかったため、不活性雰囲気又は還元雰囲気を採用する場合も同様に変化がないことが示唆される。このため、本発明のリチウムイオン二次電池の失活化方法においては、反応容器をはじめとする装置材料に鉄鋼材料等を鉄系材料を使用できることが示唆されており、材料選択の幅が広がる。
 1 チャンバー
 2 試料台
 3 刃
 4 回転棒
 5 落とし蓋

Claims (20)

  1. リチウムイオン二次電池を失活化させる方法であって、
    (A)アルカリ水溶液中で、前記リチウムイオン二次電池を開口する工程、又は
    (B)不活性ガス雰囲気下又は還元性ガス雰囲気下に、水中で、前記リチウムイオン二次電池を開口する工程
    を備える、方法。
  2. 前記工程(A)において使用するアルカリ水溶液及び工程(B)で使用する水の使用量が、前記リチウムイオン二次電池の容量1Whに対して、10mL以上である、請求項1に記載の方法。
  3. 前記工程(A)を不活性ガス雰囲気下又は還元性ガス雰囲気下で行う、請求項1又は2に記載の方法。
  4. 前記工程(A)におけるアルカリ水溶液のpHが10~14であり、前記工程(B)における水のpHが6~14である、請求項1~3のいずれか1項に記載の方法。
  5. 前記アルカリ水溶液として使用されるアルカリ化合物が、水酸化カルシウム、酸化カルシウム、水酸化マグネシウム、酸化マグネシウム、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムよりなる群から選ばれる少なくとも1種である、請求項1~4のいずれか1項に記載の方法。
  6. 前記工程(A)において、前記アルカリ水溶液が石灰水である、請求項1~5のいずれか1項に記載の方法。
  7. 前記アルカリ水溶液中のアルカリ化合物の含有量が飽和濃度より大きい、請求項1~6のいずれか1項に記載の方法。
  8. 前記リチウムイオン二次電池を開口する工程が、前記リチウムイオン二次電池を破砕又は切断するか、前記リチウムイオン二次電池のケーシングを貫通する穴を開けるか、又は前記リチウムイオン二次電池のケーシングの一部又は全部を開封する工程である、請求項1~7のいずれか1項に記載の方法。
  9. 前記工程(A)及び(B)を10~80℃で行う、請求項1~8のいずれか1項に記載の方法。
  10. 開口部からの気泡の発生状況から、失活化完了の時期を決定する、請求項1~9のいずれか1項に記載の方法。
  11. リチウムイオン二次電池の失活化状況を可視化する方法であって、
    (A)アルカリ水溶液中で、前記リチウムイオン二次電池を開口する工程、又は
    (B)不活性ガス雰囲気下又は還元性ガス雰囲気下に、水中で、前記リチウムイオン二次電池を開口する工程
    を備え、開口部から気泡を発生させることで、リチウムイオン二次電池の失活化状況を可視化する、方法。
  12. リチウムイオン二次電池から金属元素を分離回収する方法であって、
    請求項1~11のいずれか1項に記載の方法によりリチウムイオン二次電池を失活化させた後、前記失活化させたリチウムイオン二次電池を粉砕し、物理選別する工程
    を備える、方法。
  13. リチウム、ニッケル及びコバルトよりなる群から選ばれる少なくとも1種を固体酸化物として回収し、銅及び/又はアルミニウムを金属のまま回収する、請求項12に記載の方法。
  14. (A1)前記失活化させたリチウムイオン二次電池の固形物から、制御基板付きのケーシングをサイズで選別し、アルミニウムを回収する工程、
    (A2)前記工程(A1)で残留する固形物から、篩分け(1)により、銅屑、アルミニウム屑及びセパレータ片よりなる群から選ばれる少なくとも1種を回収する工程
    を備える、請求項12又は13に記載の方法。
  15. 前記工程(A2)の後、
    (A3)前記工程(A2)で残留する固形物から、篩分け(2)により、セパレータ片を回収する工程、及び
    (A4)前記工程(A3)で残留する固形物から、銅屑及びアルミニウム屑を分離する工程
    を備える、請求項14に記載の方法。
  16. 前記工程(A2)の後、
    (B3)前記失活化させたリチウムイオン二次電池の懸濁液を濾過し、リチウム、コバルト、ニッケル及びマンガンの酸化物、黒鉛粉末、水酸化アルミニウム並びにフッ化カルシウムよりなる群から選ばれる少なくとも1種を分離する工程
    を備える、請求項14に記載の方法。
  17. アルカリ水溶液中又は水中でリチウムイオン二次電池を失活化させるために使用されるリチウムイオン二次電池失活化装置であって、
    アルカリ水溶液又は水が貯留されるチャンバーと、
    前記チャンバー内に配置され、前記チャンバー内に投入されたリチウムイオン二次電池を開口する機構と
    を備える、リチウムイオン二次電池失活化装置。
  18. 前記チャンバー上に配置され、アルカリ水溶液又は水の上に形成される閉鎖空間を外部から隔離するための開閉可能な蓋と、
    不活性ガス又は還元性ガスを前記閉鎖空間に供給するガス供給部と
    をさらに備える、請求項17に記載のリチウムイオン二次電池失活化装置。
  19. 請求項17又は18に記載のリチウムイオン二次電池失活化装置を備える、車両。
  20. 請求項1~11のいずれか1項に記載の方法を用いる、リチウムイオン二次電池リサイクル方法。
PCT/JP2021/013974 2020-03-31 2021-03-31 リチウムイオン二次電池を失活化する方法 WO2021201151A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512651A JPWO2021201151A1 (ja) 2020-03-31 2021-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-063509 2020-03-31
JP2020063509 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201151A1 true WO2021201151A1 (ja) 2021-10-07

Family

ID=77929086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013974 WO2021201151A1 (ja) 2020-03-31 2021-03-31 リチウムイオン二次電池を失活化する方法

Country Status (2)

Country Link
JP (1) JPWO2021201151A1 (ja)
WO (1) WO2021201151A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128587A1 (fr) * 2021-10-26 2023-04-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé d’inertage d’accumulateurs électrochimiques, notamment métal-ion, par immersion initiale dans une solution de chlorure de calcium à basse température, puis court-circuitage électrique en vue de leur broyage.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260426A (ja) * 1998-03-11 1999-09-24 Asaka Riken Kogyo Kk 非水電解液電池の不活性化装置
US20200078796A1 (en) * 2017-05-30 2020-03-12 Li-Cycle Corp. Process, apparatus, and system for recovering materials from batteries

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260426A (ja) * 1998-03-11 1999-09-24 Asaka Riken Kogyo Kk 非水電解液電池の不活性化装置
US20200078796A1 (en) * 2017-05-30 2020-03-12 Li-Cycle Corp. Process, apparatus, and system for recovering materials from batteries

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128587A1 (fr) * 2021-10-26 2023-04-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé d’inertage d’accumulateurs électrochimiques, notamment métal-ion, par immersion initiale dans une solution de chlorure de calcium à basse température, puis court-circuitage électrique en vue de leur broyage.
EP4175016A1 (fr) * 2021-10-26 2023-05-03 Commissariat à l'énergie atomique et aux énergies alternatives Procédé d'inertage d'accumulateurs électrochimiques, notamment métal-ion, par immersion initiale dans une solution de chlorure de calcium à basse température, puis court-circuitage électrique en vue de leur broyage

Also Published As

Publication number Publication date
JPWO2021201151A1 (ja) 2021-10-07

Similar Documents

Publication Publication Date Title
CA2559928C (en) Method for the mixed recycling of lithium-based anode batteries and cells
CA3085965C (en) A method for recycling lithium batteries
US20220274841A1 (en) Process for the recovery of lithium from waste lithium ion batteries
KR101516515B1 (ko) 배터리 팩의 리사이클링 방법 및 처리 장치
Castillo et al. Advances in the recovering of spent lithium battery compounds
Li et al. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries
JP2019178395A (ja) リチウムイオン電池スクラップからのリチウムの回収方法
JP3495707B2 (ja) 電池の解体処理方法
Baba et al. Development of a combined pyro-and hydro-metallurgical route to treat spent zinc–carbon batteries
JP7402733B2 (ja) 電池廃棄物の熱処理方法及び、リチウム回収方法
CA3144899A1 (en) Process for the recovery of lithium and other metals from waste lithium ion batteries
KR100716199B1 (ko) 폐 리튬 일차전지 처리장치 및 그 방법
KR20220038416A (ko) 리튬 배터리를 재활용하는 방법
Tanong et al. Metal recycling technologies for battery waste
Singh et al. Recovery of zinc and cadmium from spent batteries using Cyphos IL 102 via solvent extraction route and synthesis of Zn and Cd oxide nanoparticles
US7078122B1 (en) High efficiency process for treating mixed metal waste
WO2022085222A1 (ja) リチウムの回収方法及び炭酸リチウムの製造方法
WO2021201151A1 (ja) リチウムイオン二次電池を失活化する方法
US20210194075A1 (en) Waste Lithium Battery Recovery System
Ibiapina et al. Processing of spent zinc-MnO2 dry cells in various acidic media
CN114467214A (zh) 蓄电池、电池和类似物的处理方法和实施该方法的设备
US20240186604A1 (en) Treatment method for battery waste
JP2023124857A (ja) リチウムイオン二次電池を失活化する方法
Pattaraprakorn et al. Li Recovery via Physical-Chemical Treatment from Spent EV Lithium-Ion Battery for Circular Economy
WO2024094725A1 (en) Lfp battery recycling plant and process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782254

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512651

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782254

Country of ref document: EP

Kind code of ref document: A1