WO2021200836A1 - 積層膜、前記積層膜を含む構造体、半導体素子、及び電子機器、並びに前記積層膜の製造方法 - Google Patents

積層膜、前記積層膜を含む構造体、半導体素子、及び電子機器、並びに前記積層膜の製造方法 Download PDF

Info

Publication number
WO2021200836A1
WO2021200836A1 PCT/JP2021/013330 JP2021013330W WO2021200836A1 WO 2021200836 A1 WO2021200836 A1 WO 2021200836A1 JP 2021013330 W JP2021013330 W JP 2021013330W WO 2021200836 A1 WO2021200836 A1 WO 2021200836A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
gallium nitride
substrate
laminated film
less
Prior art date
Application number
PCT/JP2021/013330
Other languages
English (en)
French (fr)
Inventor
祐也 末本
義弘 上岡
雅実 召田
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to JP2022512220A priority Critical patent/JPWO2021200836A1/ja
Priority to EP21780236.2A priority patent/EP4130331A4/en
Priority to US17/907,674 priority patent/US20230143194A1/en
Priority to CN202180025579.5A priority patent/CN115335548A/zh
Priority to KR1020227033866A priority patent/KR20220160596A/ko
Publication of WO2021200836A1 publication Critical patent/WO2021200836A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Definitions

  • the present invention relates to a laminated film, a structure including the laminated film, a semiconductor element, an electronic device, and a method for manufacturing the laminated film.
  • Gallium nitride (GaN) formed on a silicon (Si) substrate or a silicon carbide (SiC) substrate is subjected to tensile stress in the in-plane direction due to the difference in thermal expansion coefficient during the cooling process after high-temperature film formation, resulting in warpage. It is known that it occurs and cracks occur.
  • a technique has been conventionally known in which tensile stress is reduced by alternately laminating AlN films and AlGaN films to prevent cracks (see Non-Patent Document 1).
  • the conventional metalorganic vapor phase growth method which is a gallium nitride film forming method
  • a film is formed at a high temperature of 1000 ° C. or higher. Therefore, when the film is cooled from the film formation temperature to room temperature, a difference in the coefficient of thermal expansion occurs between the substrate and gallium nitride, and the difference in the coefficient of thermal expansion causes an internal stress in the gallium nitride thin film.
  • gallium nitride is formed on a substrate such as Si or SiC having a coefficient of thermal expansion smaller than that of GaN
  • tensile stress is generated in gallium nitride during the cooling process, and cracks are likely to occur in the gallium nitride film.
  • the film thickness increases due to the multilayer film structure, which may increase the cost.
  • the present inventors have obtained the finding that a laminated film containing a buffer layer and a gallium nitride based film and having a specific compressive stress has no cracks, and have completed the present invention.
  • An object of the present invention is to provide a crack-free laminated film including a buffer layer and a gallium nitride based film, and a structure containing the laminated film.
  • the present invention includes the following aspects (1) to (11).
  • the expression "-" includes the numerical values at both ends thereof. That is, "X to Y” is synonymous with “X or more and Y or less”.
  • a laminated film including a buffer layer and at least one gallium nitride-based film arranged on the buffer layer, wherein the compressive stress of the entire laminated film is ⁇ 2.0 GPa or more and 5.0 GPa or more.
  • the following is a laminated film.
  • a structure including a substrate and the laminated film according to any one of (1) to (3) above, which is arranged on the substrate.
  • a semiconductor device provided with the laminated film according to any one of (1) to (3) above, or the structure according to (4) or (5) above.
  • gallium nitride based film is a film formed by a sputtering method using a sputtering target containing gallium nitride as a main component.
  • gallium nitride based film is a film formed by a sputtering method using a sputtering target containing gallium nitride as a main component.
  • a substrate having a buffer layer is placed inside the chamber, and a gallium nitride-based target is placed at an inclined position within a range of 10 ° or more and 60 ° or less with respect to the direction perpendicular to the surface of the substrate.
  • a substrate having a buffer layer is placed inside the chamber, and a gallium nitride-based target is placed at an inclined position within a range of 10 ° or more and 60 ° or less with respect to the direction perpendicular to the surface of the substrate.
  • a crack-free laminated film including a buffer layer and a gallium nitride based film and a structure containing the laminated film are provided.
  • the present embodiment A specific embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described.
  • the present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention.
  • the laminated film of the present embodiment includes a buffer layer and at least one gallium nitride-based film arranged on the buffer layer.
  • the overall compressive stress of this laminated film is ⁇ 2.0 GPa or more and 5.0 GPa or less.
  • the buffer layer By including the buffer layer, it is possible to prevent the atoms constituting the substrate from diffusing into the gallium nitride based film, and as a result, the crystallinity of the gallium nitride based film can be improved.
  • the stress can be controlled by the compressive stress of the gallium nitride based film, and a crack-free laminated film can be obtained.
  • the material of the buffer layer is not particularly limited. Examples thereof include a diamond film, a zinc oxide film, a graphene film, a gallium oxide film, a boron nitride-based film, an aluminum nitride-based film, an indium nitride-based film, and a thallium nitride-based film.
  • Examples of the aluminum nitride based film include an aluminum nitride film and an aluminum nitride film containing an element other than aluminum and nitrogen. Specific examples thereof include an aluminum nitride film, an aluminum gallium nitride film, and an aluminum indium gallium nitride film.
  • the indium nitride based film examples include an indium nitride film and an indium nitride film containing elements other than indium and nitrogen. Specifically, an indium nitride film, an indium gallium nitride film, or the like is exemplified. From the viewpoint of productivity, the buffer layer is preferably an aluminum nitride based film, and an aluminum nitride film having a low production cost is particularly preferable.
  • the film thickness of the buffer layer is not particularly limited. From the viewpoint of suppressing the diffusion of atoms from the substrate to the gallium nitride film, 3 nm or more is preferable, 5 nm or more is more preferable, and 10 nm or more, 15 nm or more, 20 nm or more, 30 nm or more, and 50 nm or more are further preferable. Further, from the viewpoint of productivity, 1000 nm or less is preferable, 500 nm or less is more preferable, and 300 nm or less is further preferable. Regarding the film thickness of the buffer layer, any combination of the above-mentioned upper limit value and lower limit value is possible. For example, it may be 3 nm or more and 1000 nm or less, and may be 3 nm or more and 500 nm or less.
  • the laminated film of the present embodiment includes at least one gallium nitride based film in addition to the buffer layer.
  • This gallium nitride based film is arranged on the buffer layer.
  • Another layer may be interposed between the gallium nitride based film and the buffer layer.
  • the gallium nitride based film is arranged so as to be in contact with the buffer layer without interposing another layer.
  • the gallium nitride based film is composed of gallium nitride or gallium nitride containing atoms other than gallium and nitrogen.
  • a gallium nitride film, an aluminum gallium nitride film, an indium gallium nitride film, an aluminum indium gallium nitride film, or a gallium nitride film containing impurities such as magnesium and silicon can be mentioned.
  • a gallium nitride film or an aluminum gallium nitride film in which cracks are less likely to occur is preferable, and a gallium nitride film in which crystallinity is easily improved is particularly preferable.
  • the potassium nitride based film is preferably a Ga-polar or N-polar film having a cubic 111-plane or a hexagonal 0002-plane as the main phase because the surface flatness is improved.
  • the film thickness of the gallium nitride based film is not particularly limited. From the viewpoint of stress control by the gallium nitride film, 3 nm or more is preferable, 5 nm or more is more preferable, and 10 nm or more, 15 nm or more, 20 nm or more, 30 nm or more, and 50 nm or more are further preferable. Further, from the viewpoint of productivity, 5000 nm or less is preferable, 2000 nm or less is more preferable, and 1200 nm or less is further preferable. Regarding the film thickness of the gallium nitride based film, any combination of the above-mentioned upper limit value and lower limit value is possible.
  • the laminated film has a buffer layer / gallium nitride based film structure.
  • a buffer layer / gallium nitride film includes a buffer layer / gallium nitride film, a buffer layer / aluminum gallium nitride film, a buffer layer / indium gallium nitride film, and a buffer layer / aluminum gallium nitride film.
  • These laminated films are preferable from the viewpoint of productivity.
  • the aluminum nitride film / gallium nitride film is particularly preferable from the viewpoint of manufacturing cost.
  • the laminated film may include a film other than the buffer layer and the gallium nitride based film.
  • another layer may be interposed between the buffer layer and the gallium nitride based film.
  • another layer may be provided on the gallium nitride based film.
  • examples of such a film include an aluminum nitride film, an indium nitride film, an aluminum gallium nitride film, an indium gallium nitride film, and an indium aluminum gallium nitride film.
  • the compressive stress of the entire laminated film is ⁇ 2.0 GPa or more and 5.0 GPa or less.
  • the compressive stress of the gallium nitride based film enables stress control, and as a result, a crack-free laminated film can be obtained.
  • the compressive stress is preferably ⁇ 1.4 GPa or more and 5.0 GPa or less.
  • the compressive stress can be calculated from the radius of curvature of the crack-free substrate.
  • the compressive stress of the entire laminated film is limited to -2.0 GPa or more. If the compressive stress is excessively small, the stress on the tensile side becomes large, and cracks may occur in the film.
  • the compressive stress is preferably -1.2 GPa or more, -1.0 GPa or more, -0.8 GPa or more, -0.6 GPa or more, -0.5 GPa or more, -0.4 GPa or more, -0.2 GPa or more, -0. More preferably, it is 1 GPa or more, 0 GPa or more, 0.1 GPa or more, or 0.2 GPa or more.
  • the compressive stress of the entire laminated film is limited to 5.0 GPa or less. If the compressive stress is excessively large, the warp of the substrate becomes large, which adversely affects the performance of the gallium nitride based film and may make it difficult to send the laminated film to a normal device process.
  • the compressive stress is 4.5 GPa or less, 4.0 GPa or less, 3.5 GPa or less, 3.2 GPa or less, 3.0 GPa or less, 2.5 GPa or less, 2.0 GPa or less, 1.5 GPa or less, 1.0 GPa or less, 0. 9 GPa or less, or 0.8 GPa or less is more preferable.
  • the number of layers constituting the laminated film is preferably 100 layers or less, more preferably 50 layers or less, further preferably 20 layers or less, and particularly preferably 10 layers or less.
  • the number of layers may be 9 layers or less, 8 layers or less, 7 layers or less, 6 layers or less, 5 layers or less, 4 layers or less, 3 layers or less, or 2 layers or less.
  • a laminated structure including two or more layers (films) having a discontinuous composition is referred to as a laminated film.
  • a layer (membrane) whose composition changes continuously is regarded as one layer.
  • the total film thickness of the laminated film is preferably 5 ⁇ m or less.
  • the film thickness can be measured by TEM cross-sectional observation using a field emission transmission electron microscope.
  • the structure of the present embodiment includes a substrate and a laminated film arranged on the substrate.
  • the structure of the laminated film is as described above.
  • the substrate there are no particular restrictions on the substrate. From the viewpoint of productivity, silicon, silicon carbide, zinc oxide, sapphire, gallium arsenide, gallium nitride and the like are preferable. Further, a substrate having a coefficient of thermal expansion smaller than that of a gallium nitride based film is preferable. This is because it is possible to apply compressive stress to the gallium nitride based film itself.
  • a substrate having a coefficient of thermal expansion equal to or lower than the coefficient of thermal expansion of a gallium nitride film 5.59 ⁇ 10-6 / K
  • silicon carbide (4) Examples thereof include a substrate composed of ⁇ 5 ⁇ 10 -6 / K) and zinc oxide (4.75 ⁇ 10 -6 / K).
  • a substrate made of silicon or silicon carbide, which does not allow oxygen to enter as an impurity when forming a gallium nitride-based thin film is preferable, and a silicon (111) substrate that improves the crystallinity of the gallium nitride-based film, or 4H with an off-angle of 4 degrees.
  • -A silicon carbide (0001) substrate is more preferable
  • a silicon (111) substrate is particularly preferable from the viewpoint of substrate cost.
  • Specific structures include silicon / aluminum nitride based film / gallium nitride based film, silicon / aluminum nitride based film / gallium nitride based film / aluminum nitride based film, silicon carbide / aluminum nitride based film / gallium nitride based film, and the like.
  • n 2 or more, it is preferable that at least one gallium nitride
  • silicon / aluminum nitride film / gallium nitride film silicon / aluminum nitride film / gallium nitride film / aluminum nitride film, silicon carbide / aluminum nitride film / gallium nitride film, silicon carbide / aluminum nitride film / gallium nitride film / Aluminum nitride film, silicon / (aluminum nitride film / gallium nitride film /) x n (n is a natural number), silicon / (aluminum nitride film / gallium nitride film /) x n (n is a natural number) / aluminum nitride film, silicon carbide / (Aluminum nitride film / gallium nitride film /) ⁇ n (n is a natural number), silicon carbide / (aluminum nitride film
  • the total film thickness of the laminated film is preferably 5 ⁇ m or less.
  • the film thickness can be measured by TEM cross-sectional observation using a field emission transmission electron microscope.
  • FIG. 1 shows an example of the structure of the laminated film and the structure.
  • the laminated film (6) includes a buffer layer (2) and at least one gallium nitride-based film (4) arranged on the buffer layer (2).
  • the structure (10) includes a substrate (8) and a laminated film (6) arranged on the substrate.
  • FIG. 1 shows a one-layer gallium nitride-based film, the gallium nitride-based film is not limited to one layer.
  • the laminated film may include a plurality of gallium nitride based films. Needless to say, another layer may be provided between the buffer layer and the gallium nitride based film, or on the gallium nitride based film.
  • the laminated film or structure of the present embodiment is suitably used for a semiconductor element composed of a plurality of functional components.
  • a semiconductor element composed of a plurality of functional components.
  • it is used for light emitting elements such as LEDs and laser diodes, and power devices such as diodes and transistors.
  • this semiconductor element is suitably used for various electronic devices.
  • a laminated film including a gallium nitride-based film formed by a sputtering method using a sputtering target containing gallium nitride as a main component is produced.
  • a substrate provided with a buffer layer is arranged inside the chamber, and gallium nitride is the main component at an inclined position within a range of 10 ° or more and 60 ° or less with respect to the direction perpendicular to the substrate surface.
  • a gallium nitride based film is formed on the buffer layer by a sputtering method at a gas pressure of 5.0 Pa or less while the target is arranged and the relative positional relationship between the substrate and the target is maintained.
  • the details of the buffer layer, the gallium nitride based film, and the substrate are as described above.
  • the sputtering method is not particularly limited. It can be appropriately selected from DC sputtering method, RF sputtering method, AC sputtering method, DC magnetron sputtering method, RF magnetron sputtering method, DC pulse sputtering method, pulse laser sputtering method, ion beam sputtering method and the like. Of these, the DC magnetron sputtering method, the DC pulse sputtering method, or the RF magnetron sputtering method, which can form a uniform and high-speed film on a large area, is preferable.
  • the substrate provided with the buffer layer is arranged inside the chamber. Then, a target containing gallium nitride as a main component is placed at an inclined position within a range of 10 ° or more and 60 ° or less with respect to the direction perpendicular to the surface of the substrate on which the buffer layer is provided. A gallium nitride based film is formed on the buffer layer while maintaining the relative positional relationship between the two. That is, the target is placed at a position inclined from the vertical direction on the substrate surface (or the surface of the buffer layer) to form a sputtering film.
  • the inclination angle between the vertical direction of the substrate surface and the target position should be 10 ° or more and 60 ° or less. The inclination angle is preferably 15 ° or more and 55 ° or less, and more preferably 20 ° or more and 50 ° or less.
  • the sputtered particles enter the substrate with a component parallel to the substrate surface. Therefore, the atoms on the surface of the substrate are pushed by the sputtered particles in the direction parallel to the surface of the substrate. As a result, the compressive stress in the direction parallel to the substrate surface increases, which is considered to suppress the occurrence of cracks. It can be said that the incident direction of the sputtered particles contains a state in which a horizontal component and a vertical component are appropriately mixed, thereby realizing stress control.
  • the target when the target is placed at a position sufficiently perpendicular or horizontal to the substrate surface and sputtering is performed, it becomes difficult to control the stress in the laminated film and the structure including it.
  • the target when the target is arranged perpendicular to the substrate surface, there are few incident components of the sputtered particles that are horizontal to the substrate surface, and as a result, stress control becomes difficult.
  • the target is arranged horizontally with respect to the substrate surface, the energy of the sputtered particles when reaching the substrate is small, which makes stress control difficult.
  • the gas pressure during sputtering is 5.0 Pa or less.
  • the lower the gas pressure during sputtering the easier it is for the particles emitted from the sputtering target to reach the substrate in a high energy state. Therefore, the reached particles are rearranged and are likely to grow epitaxially.
  • the gas pressure is preferably 3.0 Pa or less.
  • the gas pressure is preferably 0.05 Pa or more.
  • any combination of the above-mentioned upper limit value and lower limit value is possible.
  • the oxygen content of the sputtering target used is preferably less than 3 at%, more preferably 1 at% or less, still more preferably 0.5 at% or less. This makes it possible to increase the crystallinity of the entire film. Further, the higher the purity of the target, the more preferable.
  • the content of metal impurities is preferably less than 0.1 wt%, more preferably less than 0.01 wt%. Impurities do not include components that were intentionally added, such as indium and aluminum.
  • the area of the sputtering target is preferably 18 cm 2 or more, more preferably 100 cm 2 or more.
  • the target area is the area of the surface of the target facing the substrate during sputtering.
  • the degree of vacuum in the apparatus (chamber) at the time of manufacture is preferably 3 ⁇ 10 -5 Pa or less, and more preferably 1 ⁇ 10 -5 Pa or less. This is because by lowering the degree of vacuum, it becomes difficult for residual gas to be mixed as impurities, and as a result, the crystallinity of the thin film is improved. It is preferable to bake the apparatus for the purpose of removing residual gas.
  • the pretreatment removes obstacles adhering to the surface of the substrate, thereby promoting epitaxial growth.
  • the pretreatment method include reverse sputtering treatment, acid treatment, and UV treatment.
  • acid treatment using hydrofluoric acid is preferable.
  • the silicon substrate may be allowed to stand in 5% hydrofluoric acid for 15 seconds or longer.
  • the processing time is preferably 15 seconds to 900 seconds. This makes it possible to obtain a preferable surface state while removing impurities on the surface of the substrate.
  • the sputtering is performed by heating the substrate to a temperature of 800 ° C. or lower. This is because when the substrate is heated, the diffusion of the sputtered particles on the substrate surface is promoted and the crystallinity is improved. Further, since the gallium nitride based film is expected to decompose at a temperature higher than 800 ° C., it is preferable to keep the heating temperature below 800 ° C.
  • the gas used is mainly nitrogen.
  • the film may be formed using only nitrogen or nitrogen to which a part of argon, which is usually used, is added.
  • the power density at the time of discharge is preferably 0.2 W / cm 2 or more and 20 W / cm 2 or less, more preferably 0.3 W / cm 2 or more and 10 W / cm 2 or less, and 0.4 W / cm 2 or more and 5 W / cm 2 or less. Is even more preferable.
  • the power density is calculated by dividing the power applied during discharge by the area of the sputtering target. The density of the sputtering target is generally low. Therefore, if the power density is higher than 20 W / cm 2, coarse polycrystalline particles may be exfoliated from the sputtering target due to the power applied to the gallium nitride-based target used.
  • the power density is less than 0.2 W / cm 2 .
  • the plasma is not stable and discharge becomes difficult. Further, since the film forming speed at the time of manufacturing is lowered, the productivity of the film may be lowered. Moreover, since the energy at the time of sputtering is low, the adhesive force of the film may decrease.
  • a gallium nitride based film may be laminated on the produced gallium nitride based film by another method.
  • a gallium nitride based film may be formed by the MOCVD method on the gallium nitride based film formed by the sputtering method.
  • Example 1 to 7 a structure composed of silicon (Si) / aluminum nitride (AlN) / gallium nitride (GaN) was produced. Of these, in Examples 1 to 5, a gallium nitride (GaN) film was formed on the surface of a Si (111) substrate provided with an aluminum nitride (Al) film by a sputtering method. Further, in Examples 6 and 7, an aluminum nitride (AlN) film and a gallium nitride (GaN) film were sequentially formed on the surface of the silicon substrate by a sputtering method.
  • AlN aluminum nitride
  • GaN gallium nitride
  • the aluminum nitride (AlN) film corresponds to the buffer layer
  • the gallium nitride (GaN) film corresponds to the gallium nitride based film.
  • the film forming conditions of Examples 1 to 7 are shown in Tables 1 to 3.
  • Example 8 to 11 In Examples 8 to 11, a structure composed of silicon carbide (SiC) / aluminum nitride (AlN) / gallium nitride (GaN) was produced. Specifically, an aluminum nitride (AlN) film and a gallium nitride (GaN) film were sequentially formed on the surface of a 4H-silicon carbide (0001) substrate having an off-angle of 4 degrees by a sputtering method. Table 4 shows the film forming conditions of Examples 8 to 11.
  • Comparative Example 1 a structure composed of silicon (Si) / aluminum nitride (AlN) / gallium nitride (GaN) was produced. Specifically, a gallium nitride (GaN) film was formed on a silicon (Si) (111) substrate by an organic metal vapor phase growth method (MOCVD method). Table 6 shows the film forming conditions of Comparative Example 1.
  • Comparative Example 2 a structure composed of sapphire (Al 2 O 3 ) / gallium nitride (GaN) was produced. Specifically, a gallium nitride (GaN) film was formed on a sapphire (Al 2 O 3 ) (0001) substrate by a sputtering method. Table 7 shows the film forming conditions of Comparative Example 2.
  • the film thicknesses of the AlN film (buffer layer) and the GaN film (gallium nitride based film) were determined by TEM cross-sectional observation.
  • a carbon coat was provided as a protective film on the surface of the sample (laminated film and the structure containing the laminated film).
  • a focused ion beam (FIB) process was performed to prepare an observation sample.
  • the cross section of the sample was observed using a field emission transmission electron microscope (JEOL Ltd., JEM-2100F). At this time, the electron beam acceleration voltage was set to 200 kV.
  • ⁇ Radius of curvature> The surface condition of the sample (circular substrate) was examined using a surface roughness measuring machine (Mitutoyo Co., Ltd., SURFTEST SV-3100). At this time, a standard stylus (12AAB403), a skidless nosepiece (12AAB355), and a detector (No. 178-397-2) were used, and the measurement was performed under the condition of a measuring force of 4 mN.
  • the equipment was calibrated using the roughness standard piece surf test (Mitutoyo Co., Ltd.).
  • the sample (board) is placed so that the convex side surface is on the upper side, passes through the position of the center of gravity of the structure, and has a length of 80% of the diameter or the long side so that the center of gravity is the midpoint of the measurement straight line.
  • the measurement was performed. For example, when the substrate was a 2-inch substrate, the range of 40 mm was measured.
  • the range of 40 mm was measured on the 2-inch substrate.
  • a range of 80% of the length of the long side parallel to the side was measured through the center of the substrate.
  • the range of 80% of the length of the side was measured from two directions so as to pass through the center of the substrate, be parallel to the side, and be orthogonal to the measurement direction by 90 °.
  • the lengths of the four sides of the square substrate were compared, and when the difference in length of each side was less than 1 mm, the substrate was regarded as a square square substrate.
  • the measurement was performed by the method described above with respect to the direction parallel to the longest olifra.
  • the measurement was repeated for all the oriflas in the direction parallel to one orifla by the method described above.
  • the substrate is installed and measured so that the distance between the measurement line and the notch when the measurement is performed by the above method is the longest.
  • the substrate When there are a plurality of notches, the substrate is installed so that the distance between the measurement line and one notch when the measurement is performed by the above method is the longest, and the measurement is repeated for all the notches. .. When both the olifra and the notch were present, the measurement was performed by the method described above with respect to the direction parallel to the olifra.
  • the radius of curvature was calculated based on the obtained measurement data.
  • the radius of curvature was calculated using a contour roughness analysis program (Mitutoyo Co., Ltd., FORMTRACEPAC), and the radius of curvature was calculated by circular measurement analysis in which the entire measurement range of the surface roughness measuring instrument was specified. This measurement was repeated three times in one measurement direction, and the average value of the obtained measured values was taken as the radius of curvature.
  • the measurement was performed in a plurality of directions on one substrate, the measurement was performed three times in each direction, and the one having the smallest absolute value among the calculated average values of the radius of curvature was regarded as the radius of curvature.
  • the measurement result of the radius of curvature is concave, that is, if the surface of the substrate is concave, the opposite surface is measured three times in the same manner, and the average value of the obtained values is calculated as the curvature. Considered as a radius.
  • the radius of curvature was set to a positive real number when the film surface was convex, and the radius of curvature was set to a negative real number when the substrate surface was convex.
  • Equation (1) E S is the Young's modulus of the substrate, t s is the thickness of the substrate, [nu s is Poisson's ratio of the substrate, R represents the radius of curvature, t F is the total thickness of the thin film (multilayer film) ..
  • Table 9 shows the Young's modulus, Poisson ratio, and substrate thickness of the substrates used in Examples 1 to 11 and Comparative Examples 1 and 2.
  • the numerical values disclosed in References V.A. Sethuraman et al., Electrochemistry Communications, 12, (2010), 1614-1617
  • the numerical values disclosed in References E. Konstantinova et al., Intermetallics, 16, (2008), pp.1040-1042
  • the numerical values disclosed in the sapphire substrate in Comparative Example 2 the numerical values disclosed in the Shinkosha General Catalog Co., Ltd. were used.
  • the thickness of the substrate and structure was measured using a digital micrometer (Mitutoyo Co., Ltd., MDC-25MJT). Specifically, the position of the center of gravity of the substrate, the edge of the substrate or structure on the extension line of the measurement line when measuring the radius of curvature, and the edge on the extension line of the line perpendicular to the measurement line and passing through the center of gravity position. The thickness at three points was measured, and the average value was taken as the thickness of the substrate or structure. The thickness of the substrate in the structure was calculated by subtracting the thickness of the entire thin film (laminated film) from the thickness of the structure.
  • ⁇ Crystal structure of GaN film The crystal phase and polarity of the gallium nitride thin film (GaN film) were evaluated using a time-of-flight atomic scattering surface analyzer (Pascal Co., Ltd., TOFLAS-3000). A sample (laminated film structure) was set in the apparatus so that the film-forming surface was on the upper surface, and measurement was performed. The polarity and crystal phase of the gallium nitride thin film were determined by comparing the pole figure obtained by the measurement with the pole figure of each crystal phase and polarity obtained by the simulation up to the four surface layers. The measurement conditions were as shown below.
  • Table 1 shows the evaluation results obtained for the structures (laminated film) of Examples 1 to 5.
  • Table 3 shows the evaluation results obtained for the structures (laminated film) of Examples 6 and 7.
  • Table 5 shows the evaluation results obtained for the structures (laminated film) of Examples 8 to 11.
  • Table 8 shows the evaluation results obtained for the structures (laminated film) of Comparative Examples 1 and 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Formation Of Insulating Films (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

クラックのない積層膜及びこの積層膜を含む構造体が提供される。この積層膜は、バッファー層と、前記バッファー層の上に配置される少なくとも1層の窒化ガリウム系膜と、を含む。また積層膜全体の圧縮応力が-2.0GPa以上5.0GPa以下である。

Description

積層膜、前記積層膜を含む構造体、半導体素子、及び電子機器、並びに前記積層膜の製造方法
 この出願は、2020年3月30日に出願された日本国特許出願2020-060747号に基づく優先権を主張するものであり、その全体の開示内容が参照により本明細書に組み込まれる。
 本発明は積層膜、前記積層膜を含む構造体、半導体素子、及び電子機器、並びに前記積層膜の製造方法に関する。
 シリコン(Si)基板や炭化ケイ素(SiC)基板の上に成膜された窒化ガリウム(GaN)は、高温成膜後の冷却過程で熱膨張係数差により面内方向に引張応力がかかり、反りが発生し、ひび割れ(クラック)が発生することが知られている。この問題に対処すべく、AlN膜とAlGaN膜を交互積層することで引張応力を軽減し、それによりクラックを防ぐ技術が従来から知られている(非特許文献1参照)。
矢野良樹,MOCVDによる窒化物系電子デバイス構造の大口径Si基板上への高速成長,太陽日酸技報、No.32(2013)
 従来の窒化ガリウム成膜方法である有機金属気相成長法では、1000℃以上の高温で成膜される。そのため、成膜温度から室温まで冷却する際に基板と窒化ガリウムとの間に熱膨張係数差が生じ、この熱膨張係数差により窒化ガリウム薄膜に内部応力が発生する。特に、GaNよりも熱膨張係数の小さいSiやSiC等の基板上に窒化ガリウムを成膜する場合には、冷却過程で窒化ガリウムに引張応力が発生し、窒化ガリウム膜にクラックが発生しやすい。また、クラック対策として提案されるAlN膜とAlGaN膜を交互積層する手法では、多層膜構造により膜厚が増加するためコストが高くなる恐れがある。
 本発明者らは、バッファー層と窒化ガリウム系膜を含み、特定の圧縮応力を有する積層膜はクラックが無いとの知見を得て、本発明を完成するに至った。
 本発明は、バッファー層と窒化ガリウム系膜を含む、クラックのない積層膜及びこの積層膜を含む構造体の提供を課題とする。
 本発明は、下記(1)~(11)の態様を包含する。なお本明細書において「~」なる表現は、その両端の数値を含む。すなわち「X~Y」は「X以上Y以下」と同義である。
(1)バッファー層と、前記バッファー層の上に配置される少なくとも1層の窒化ガリウム系膜と、を含む積層膜であって、前記積層膜全体の圧縮応力が-2.0GPa以上5.0GPa以下である、積層膜。
(2)前記圧縮応力が-1.4以上5.0GPa以下である、上記(1)の積層膜。
(3)前記積層膜を構成する層の数が100層以下である、上記(1)又は(2)の積層膜。
(4)基板と、前記基板上に配置される上記(1)~(3)のいずれかの積層膜と、を含む構造体。
(5)前記基板の熱膨張係数が、前記窒化ガリウム系膜の熱膨張係数よりも小さい、上記(4)の構造体。
(6)上記(1)~(3)のいずれかの積層膜、若しくは上記(4)又は(5)の構造体を備えた半導体素子。
(7)上記(6)の半導体素子を含む電子機器。
(8)前記窒化ガリウム系膜が、窒化ガリウムを主成分とするスパッタリングターゲットを用いたスパッタリング法により成膜された膜である、上記(1)~(3)のいずれかの積層膜。
(9)前記窒化ガリウム系膜が、窒化ガリウムを主成分とするスパッタリングターゲットを用いたスパッタリング法により成膜された膜である、上記(4)又は(5)の構造体。
(10)上記(1)~(3)及び(8)のいずれかの積層膜の製造方法であって、
 バッファー層を備えた基板をチャンバー内部に配置し、前記基板の面に垂直な方向に対して10°以上60°以下の範囲内の傾斜させた位置に窒化ガリウムを主成分とするターゲットを配置し、前記基板と前記ターゲットとの間の相対的位置関係を保持した状態で5.0Pa以下のガス圧力でスパッタリング法により前記バッファー層の上に窒化ガリウム系膜を形成する、方法。
(11)上記(4)、(5)及び(9)のいずれかの構造体の製造方法であって、
 バッファー層を備えた基板をチャンバー内部に配置し、前記基板の面に垂直な方向に対して10°以上60°以下の範囲内の傾斜させた位置に窒化ガリウムを主成分とするターゲットを配置し、前記基板と前記ターゲットとの間の相対的位置関係を保持した状態で5.0Pa以下のガス圧力でスパッタリング法により前記バッファー層の上に窒化ガリウム系膜を形成する、方法。
 本発明によれば、バッファー層と窒化ガリウム系膜を含む、クラックのない積層膜及びこの積層膜を含む構造体が提供される。
積層膜及び構造の構成の一例を示す。
 本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお本発明は以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。
<<1.積層膜>>
 本実施形態の積層膜は、バッファー層と、このバッファー層の上に配置される少なくとも1層の窒化ガリウム系膜と、を含む。この積層膜は全体の圧縮応力が-2.0GPa以上5.0GPa以下である。バッファー層を含むことで、基板を構成する原子の窒化ガリウム系膜内への拡散を防ぐことができ、その結果、窒化ガリウム系膜の結晶性を向上させることが可能になる。これにより窒化ガリウム系膜の有する圧縮応力により応力制御が可能となり、クラックのない積層膜が得られる。
 バッファー層の材質は、特に限定されない。ダイヤモンド膜、酸化亜鉛膜、グラフェン膜、酸化ガリウム膜、窒化ホウ素系膜、窒化アルミニウム系膜、窒化インジウム系膜、及び窒化タリウム系膜などが挙げられる。窒化アルミニウム系膜として、窒化アルミニウム膜、またはアルミニウム及び窒素以外の元素を含む窒化アルミニウム膜が挙げられる。具体的には、窒化アルミニウム膜、窒化アルミニウムガリウム膜、窒化アルミニウムインジウムガリウム膜などが例示される。窒化インジウム系膜として、窒化インジウム膜、またはインジウム及び窒素以外の元素を含む窒化インジウム膜が挙げられる。具体的には、窒化インジウム膜、または窒化インジウムガリウム膜などが例示される。生産性の観点から、バッファー層は窒化アルミニウム系膜が好ましく、製造コストの低い窒化アルミニウム膜が特に好ましい。
 バッファー層の膜厚は、特に限定されない。基板から窒化ガリウム膜への原子の拡散を抑制する観点から3nm以上が好ましく、5nm以上がより好ましく、10nm以上、15nm以上、20nm以上、30nm以上、50nm以上がさらに好ましい。また生産性の観点から1000nm以下が好ましく、500nm以下がより好ましく、300nm以下がさらに好ましい。なおバッファー層の膜厚について、上述した上限値及び下限値の任意の組み合わせが可能である。たとえば、3nm以上1000nm以下であってよく、3nm以上500nm以下であってもよい。
 本実施形態の積層膜は、バッファー層の他に、少なくとも1層の窒化ガリウム系膜を含む。この窒化ガリウム系膜はバッファー層の上に配置される。窒化ガリウム系膜とバッファー層との間には他の層が介在してもよい。しかしながら窒化ガリウム系膜は、他の層を介さずにバッファー層に接するように配置されていることが好ましい。
 窒化ガリウム系膜は、窒化ガリウム、またはガリウム及び窒素以外の原子を含む窒化ガリウムから構成される。例えば、窒化ガリウム膜、窒化アルミニウムガリウム膜、窒化インジウムガリウム膜、窒化アルミニウムインジウムガリウム膜、またはマグネシウム、シリコン等の不純物を含有する窒化ガリウム膜などが挙げられる。この中でもクラックが発生しにくい窒化ガリウム膜または窒化アルミニウムガリウム膜が好ましく、結晶性が向上しやすい窒化ガリウム膜が特に好ましい。窒化カリウム系膜は、表面平坦性が向上することから、立方晶111面または六方晶0002面を主相とするGa極性またはN極性の膜が好ましい。
 窒化ガリウム系膜の膜厚は、特に限定されない。窒化ガリウム膜による応力制御の観点から3nm以上が好ましく、5nm以上がより好ましく、10nm以上、15nm以上、20nm以上、30nm以上、50nm以上がさらに好ましい。また生産性の観点から5000nm以下が好ましく、2000nm以下がより好ましく、1200nm以下がさらに好ましい。なお窒化ガリウム系膜の膜厚について、上述した上限値及び下限値の任意の組み合わせが可能である。
 積層膜は、バッファー層/窒化ガリウム系膜の構成を有する。具体的には、バッファー層/窒化ガリウム膜、バッファー層/窒化アルミニウムガリウム膜、バッファー層/窒化インジウムガリウム膜、バッファー層/窒化アルミニウムインジウムガリウム膜が挙げられる。より具体的には、窒化アルミニウム膜/窒化ガリウム膜、窒化アルミニウム膜/窒化アルミニウムガリウム膜、窒化アルミニウム膜/窒化インジウムガリウム膜、窒化アルミニウム膜/窒化アルミニウムインジウムガリウム膜、窒化アルミニウムガリウム膜/窒化ガリウム膜、窒化アルミニウムガリウム膜/窒化インジウムガリウム膜、窒化アルミニウムガリウム膜/窒化アルミニウムインジウムガリウム膜が挙げられる。これらの積層膜は生産性の観点から好ましい。その中でも窒化アルミニウム膜/窒化ガリウム膜が製造コストの観点から特に好ましい。
 積層膜は、バッファー層及び窒化ガリウム系膜以外の膜を含んでもよい。例えば、バッファー層と窒化ガリウム系膜の間に他の層が介在してもよい。あるいは窒化ガリウム系膜の上に他の層が設けられてもよい。このような膜として、窒化アルミニウム膜、窒化インジウム膜、窒化アルミニウムガリウム膜、窒化インジウムガリウム膜、窒化インジウムアルミニウムガリウム膜が挙げられる。
 本実施形態の積層膜では、積層膜全体の圧縮応力が-2.0GPa以上5.0GPa以下である。窒化ガリウム系膜の圧縮応力により応力制御が可能になり、その結果、クラックのない積層膜を得ることができる。最表面の膜のクラックを抑えるためには、圧縮応力は-1.4GPa以上5.0GPa以下が好ましい。圧縮応力は、クラックのない基板の曲率半径から計算して求めることができる。
 積層膜全体の圧縮応力は-2.0GPa以上に限定される。圧縮応力が過度に小さいと、引張側の応力が大きくなり、膜中にクラックが生じる恐れがある。圧縮応力は-1.2GPa以上が好ましく、-1.0GPa以上、-0.8GPa以上、-0.6GPa以上、-0.5GPa以上、-0.4GPa以上、-0.2GPa以上、-0.1GPa以上、0GPa以上、0.1GPa以上、または0.2GPa以上がより好ましい。
 積層膜全体の圧縮応力は5.0GPa以下に限定される。圧縮応力が過度に大きいと基板の反りが大きくなり、窒化ガリウム系膜の性能に悪影響を及ぼすとともに、正常なデバイスプロセスに積層膜を送ることが困難になる恐れがある。圧縮応力は4.5GPa以下、4.0GPa以下、3.5GPa以下、3.2GPa以下、3.0GPa以下、2.5GPa以下、2.0GPa以下、1.5GPa以下、1.0GPa以下、0.9GPa以下、または0.8GPa以下がさらに好ましい。
 なお圧縮応力について、上述した上限値及び下限値の組み合わせが可能である。
 積層膜は、積層数が多いほど生産コストが増え、生産性が悪化する恐れがある。したがって、積層膜を構成する層の数は100層以下が好ましく、50層以下がより好ましく、20層以下がさらに好ましく、10層以下が特に好ましい。層の数は9層以下、8層以下、7層以下、6層以下、5層以下、4層以下、3層以下、または2層以下でもよい。なお本明細書において、組成が非連続な層(膜)を2層以上含む積層構造を積層膜とよぶ。組成が連続的に変化する層(膜)は1層とみなす。
 生産性を考慮すると、積層膜の膜厚は合計で5μm以下が好ましい。膜厚は電界放射型透過電子顕微鏡を使用したTEM断面観察により測定することができる。
<<2.構造体>>
 本実施形態の構造体は、基板と、この基板上に配置される積層膜と、を含む。積層膜の構成については上述したとおりである。
 基板としては特に制限はない。生産性の観点から、シリコン、炭化ケイ素、酸化亜鉛、サファイア、砒化ガリウム、または窒化ガリウム等などが好ましい。また窒化ガリウム系膜より小さい熱膨張係数を有する基板が好ましい。窒化ガリウム系膜そのものに圧縮応力を付与することが可能であるからである。例えば、窒化ガリウム膜の熱膨張係数(5.59×10-6/K)以下の熱膨張係数を有する基板として、シリコン(熱膨張率2.59×10-6/K)、炭化ケイ素(4~5×10-6/K)、酸化亜鉛(4.75×10-6/K)からなる基板が挙げられる。この中でも、窒化ガリウム系薄膜の成膜時に酸素が不純物として入りにくいシリコンまたは炭化ケイ素からなる基板が好ましく、窒化ガリウム系膜の結晶性が向上するシリコン(111)基板、またはオフ角4度の4H-炭化ケイ素(0001)基板がより好ましく、基板コストの観点からシリコン(111)基板が特に好ましい。
 具体的な構造体としては、シリコン/窒化アルミニウム系膜/窒化ガリウム系膜、シリコン/窒化アルミニウム系膜/窒化ガリウム系膜/窒化アルミニウム系膜、炭化ケイ素/窒化アルミニウム系膜/窒化ガリウム系膜、炭化ケイ素/窒化アルミニウム系膜/窒化ガリウム系膜/窒化アルミニウム系膜、シリコン/(窒化アルミニウム系膜/窒化ガリウム系膜)×n(nは自然数)、シリコン/(窒化アルミニウム系膜/窒化ガリウム系膜)×n(nは自然数)/窒化アルミニウム系膜、炭化ケイ素/(窒化アルミニウム系膜/窒化ガリウム系膜)×n(nは自然数)、炭化ケイ素/(窒化アルミニウム系膜/窒化ガリウム系膜)×n(nは自然数)/窒化アルミニウム系膜が挙げられる。n=2以上の場合には最表面層以外の部位に窒化ガリウム系膜を少なくとも1層以上含むことが好ましい。これによってクラックが発生しにくくなると考えられるからである。
 特に好ましくは、シリコン/窒化アルミニウム膜/窒化ガリウム膜、シリコン/窒化アルミニウム膜/窒化ガリウム膜/窒化アルミニウム膜、炭化ケイ素/窒化アルミニウム膜/窒化ガリウム膜、炭化ケイ素/窒化アルミニウム膜/窒化ガリウム膜/窒化アルミニウム膜、シリコン/(窒化アルミニウム膜/窒化ガリウム膜/)×n(nは自然数)、シリコン/(窒化アルミニウム膜/窒化ガリウム膜/)×n(nは自然数)/窒化アルミニウム膜、炭化ケイ素/(窒化アルミニウム膜/窒化ガリウム膜/)×n(nは自然数)、炭化ケイ素/(窒化アルミニウム膜/窒化ガリウム膜/)×n(nは自然数)/窒化アルミニウム膜である。製造コストが下がり、単層により結晶性が向上すると考えられるためである。
 nは、n=50以下が好ましい。積層回数が小さいほど製造コストが下がるため、n=40、30、20、10、9、8、7、6、5、4、3、2、1がより好ましい。
 生産性を考慮すると積層膜の膜厚は合計で5μm以下が好ましい。膜厚は電界放射型透過電子顕微鏡を使用したTEM断面観察により測定することができる。
 積層膜及び構造体の構成の一例を図1に示す。積層膜(6)は、バッファー層(2)と、このバッファー層(2)の上に配置される少なくとも1層の窒化ガリウム系膜(4)と、を含む。また構造体(10)は、基板(8)と、この基板上に配置される積層膜(6)と、を含む。なお図1は1層の窒化ガリウム系膜を示しているが、窒化ガリウム系膜は1層のみに限定される訳ではない。積層膜が複数層の窒化ガリウム系膜を含んでもよい。またバッファー層と窒化ガリウム系膜の間、または窒化ガリウム系膜の上に他の層が設けられてもよいのは言うまでもない。
<<3.半導体素子>>
 本実施形態の積層膜または構造体は、複数の機能部品と構成された半導体素子に好適に用いられる。例えば、LED、レーザーダイオード等の発光素子、ダイオード、トランジスタなどのパワーデバイスなどに用いられる。また、この半導体素子は種々の電子機器に好適に用いられる。
<<3.積層膜及び構造体の製造方法>>
 本実施形態の積層膜または構造体の製造方法では、窒化ガリウムを主成分とするスパッタリングターゲットを用いてスパッタリング法により成膜された窒化ガリウム系膜を含む積層膜を作製する。具体的には、バッファー層を備えた基板をチャンバー内部に配置し、この基板面に垂直な方向に対して10°以上60°以下の範囲内の傾斜させた位置に窒化ガリウムを主成分とするターゲットを配置し、基板とターゲットとの間の相対的位置関係を保持した状態で5.0Pa以下のガス圧力でスパッタリング法によりバッファー層の上に窒化ガリウム系膜を形成する。なおバッファー層、窒化ガリウム系膜、および基板についての詳細は、上述したとおりである。
 スパッタリング方式は特に限定されない。DCスパッタリング法、RFスパッタリング法、ACスパッタリング法、DCマグネトロンスパッタリング法、RFマグネトロンスパッタリング法、DCパルススパッタリング法、パルスレーザースパッタリング法、イオンビームスパッタリング法などから適宜選択することができる。これらのうち、大面積に均一かつ高速成膜可能なDCマグネトロンスパッタリング法、DCパルススパッタリング法、またはRFマグネトロンスパッタリング法が好ましい。
 本実施形態の製造方法では、バッファー層を備えた基板をチャンバー内部に配置する。そして、基板のバッファー層を設けた側の面に垂直な方向に対して10°以上60°以下の範囲内の傾斜させた位置に窒化ガリウムを主成分とするターゲットを配置し、基板とターゲットとの間の相対的位置関係を保持した状態でバッファー層の上に窒化ガリウム系膜を形成する。すなわち基板面(またはバッファー層の表面)垂直方向から傾けた位置にターゲットを配置してスパッタリング成膜する。また基板面垂直方向とターゲット位置との間の傾斜角は10°以上60°以下にする。傾斜角は15°以上55°以下が好ましく、20°以上50°以下がより好ましい。
 このようにターゲット位置を傾斜させることで、積層膜のクラックの発生を抑制することが可能になる。すなわち、スパッタ粒子が基板面に対して平行な成分をもって基板に入射する。そのため、基板表面の原子がスパッタ粒子によって基板面平行な方向に押し込まれる。その結果、基板面に対して平行方向の圧縮応力が増加し、これによりクラックの発生が抑制されると考えられる。スパッタ粒子の入射方向が水平成分と垂直成分を適度に混合した状態で含み、それにより応力制御が実現すると言うことができる。
 これに対して、基板面に対して十分に垂直または水平な位置にターゲットを配置してスパッタリングした場合には、積層膜及びそれを含む構造体における応力制御が困難になる。例えば、基板面に対して垂直にターゲットが配置される場合には、スパッタ粒子の入射成分のうち基板面に対して水平な成分が少なく、その結果、応力制御が困難になる。基板面に対して水平にターゲットが配置される場合には、基板到達時のスパッタ粒子の有するエネルギーが少ないため、応力制御が困難になる。
 また本実施形態の製造方法では、スパッタリング時のガス圧力は5.0Pa以下である。スパッタ時のガス圧力が低いほど、スパッタリングターゲットから放出された粒子が高エネルギー状態のまま基板に到達しやすい。そのため到達した粒子が再配列してエピタキシャル成長しやすくなる。ガス圧力は3.0Pa以下が好ましい。またスパッタ時の放電を安定にする観点から、ガス圧力は0.05Pa以上が好ましい。なおガス圧力について、上述した上限値及び下限値の任意の組み合わせが可能である。
 このような条件でスパッタリングすることで、六方晶窒化ガリウム系膜を得るとともに、窒化ガリウム系膜の有する圧縮応力を高くすることが可能となる。これは、放電ガス中の加速イオンや中性化された原子がより高いエネルギーで基板に到達するためと考えられる。すなわち表面原子を内部に叩き込むatomic peening効果が発現するとともに、膜中に捕獲されたイオンや原子が粒界拡散により内部に拡散し、薄膜の体積膨張を引き起こすと考えられる。高い被覆率を得るためには膜に他の結晶相が混在していないことが好ましい。
 使用するスパッタリングターゲットの酸素含有量は3at%未満が好ましく、1at%以下がより好ましく、0.5at%以下がさらに好ましい。これにより膜全体の結晶性を高めることができる。またターゲットの純度も高いほど好ましい。金属不純物の含有量は0.1wt%未満が好ましく、0.01wt%未満がより好ましい。なお不純物にはインジウムやアルミニウムなど、意図して添加された成分は含まれない。スパッタリングターゲットの面積は18cm以上が好ましく、100cm以上がより好ましい。ターゲット面積が大きくなるほど、放電が安定して低ガス圧力及び低電力密度でのスパッタリングが可能となるとともに、膜厚や膜質の均一性が向上するからである。なおターゲット面積とは、スパッタリング時に基板と対向するターゲットの面の面積である。
 製造時の装置(チャンバー)内の真空度は3×10-5Pa以下が好ましく、1×10-5Pa以下がより好ましい。真空度を低圧にすることで、残留気体が不純物として混入しにくくなり、その結果、薄膜の結晶性が向上するからである。残留気体を除去する目的で装置にベーキング処理を施すことが好ましい。
 また、事前に基板を前処理することが好ましい。前処理により、基板表面に付着する障害物が除去され、それによりエピタキシャル成長が促進されるからである。前処理方法は、逆スパッタ処理、酸処理、UV処理などが例示される。必要に応じて、使用する基板に適した前処理を行うことが好ましい。例えばシリコン基板を用いる場合には、フッ酸を用いた酸処理が好ましい。この場合には、5%フッ酸中にシリコン基板を15秒以上静置すればよい。処理時間は15秒~900秒が好ましい。これにより、基板表面の不純物を除去しつつ、好ましい表面状態にすることが可能となる。
 また、スパッタリングは、800℃以下の温度に基板を加熱して行うことが好ましい。基板を加熱するとスパッタ粒子の基板表面における拡散が促進され結晶性が向上するからである。また窒化ガリウム系膜は800℃より高温で分解が進行すると予想されるため、加熱温度を800℃以下に抑えることが好ましい。
 利用するガスは窒素を主成分とする。窒素のみ、あるいは通常よく用いられるアルゴンを一部添加した窒素を用いて成膜してもよい。
 放電時の電力密度は、0.2W/cm以上20W/cm以下が好ましく、0.3W/cm以上10W/cm以下がより好ましく、0.4W/cm以上5W/cm以下がさらに好ましい。電力密度は、放電時に加えられる電力をスパッタリングターゲットの面積で除することで計算される。スパッタリングターゲットの密度は一般的には低い。そのため電力密度が20W/cmより高いと、使用される窒化ガリウムを主成分とするターゲットに与えるパワーによりスパッタリングターゲットから粗大な多結晶体粒子が剥離する恐れがある。一方で電力密度が0.2W/cm未満であると、プラズマが安定しないため放電が難しくなる。また製造時の成膜速度が低下するため、膜の生産性が低下する恐れがある。その上、スパッタ時のエネルギーが低いため、膜の付着力が低下する恐れがある。
 なお、作製した窒化ガリウム系膜の上に、別の手法で窒化ガリウム系膜を積層してもよい。例えば、スパッタリング法にて成膜した窒化ガリウム系膜の上に、MOCVD法で窒化ガリウム系膜を成膜しても良い。
 本発明を、以下の実施例及び比較例を用いて更に詳細に説明する。しかしながら本発明は以下の実施例に限定されるものではない。
(1)積層膜及び構造体の作製
 [実施例1~7]
 実施例1~7では、シリコン(Si)/窒化アルミニウム(AlN)/窒化ガリウム(GaN)で構成される構造体を作製した。このうち、実施例1~5では窒化アルミニウム(Al)膜を備えたSi(111)基板の表面に窒化ガリウム(GaN)膜をスパッタリング法で成膜した。また実施例6及び7では、シリコン基板の表面に窒化アルミニウム(AlN)膜と窒化ガリウム(GaN)膜を順次、スパッタリング法で成膜した。ここで、窒化アルミニウム(AlN)膜がバッファー層に相当し、窒化ガリウム(GaN)膜が窒化ガリウム系膜に相当する。実施例1~7の成膜条件を表1~3に示す。
 [実施例8~11]
 実施例8~11では、炭化ケイ素(SiC)/窒化アルミニウム(AlN)/窒化ガリウム(GaN)で構成される構造体を作製した。具体的には、オフ角4度の4H-炭化ケイ素(0001)基板の表面に窒化アルミニウム(AlN)膜と窒化ガリウム(GaN)膜を順次、スパッタリング法で成膜した。実施例8~11の成膜条件を表4に示す。
 [比較例1]
 比較例1では、シリコン(Si)/窒化アルミニウム(AlN)/窒化ガリウム(GaN)で構成される構造体を作製した。具体的には、シリコン(Si)(111)基板上に、窒化ガリウム(GaN)膜を有機金属気相成長法(MOCVD法)で成膜した。比較例1の成膜条件を表6に示す。
 [比較例2]
 比較例2では、サファイア(Al)/窒化ガリウム(GaN)で構成される構造体を作製した。具体的には、サファイア(Al)(0001)基板上に、窒化ガリウム(GaN)膜をスパッタリング法で成膜した。比較例2の成膜条件を表7に示す。
(2)評価
 実施例1~11、比較例1及び2で得られた構造体(積層膜)について、各種特性の評価を以下のとおり行った。
 <膜厚>
 AlN膜(バッファー層)とGaN膜(窒化ガリウム系膜)のそれぞれの膜厚をTEM断面観察により求めた。まずサンプル(積層膜およびそれを含む構造体)の表面に保護膜としてカーボンコートを設けた。その後、収束イオンビーム(FIB)加工を施して観察用試料を作製した。次いで、電界放出形透過電子顕微鏡(日本電子株式会社、JEM-2100F)を用いて試料の断面観察を行った。この際、電子線加速電圧は200kVとした。
 <曲率半径>
 表面粗さ測定機(株式会社ミツトヨ、SURFTEST SV-3100)を用いてサンプル(円形基板)の表面状態を調べた。この際、標準スタイラス(12AAB403)、スキッドレスノーズピース(12AAB355)、および検出器(No.178-397-2)を使用し、測定力4mNの条件で測定を行った。
 まず粗さ標準片サーフテスト(株式会社ミツトヨ)を使用して装置校正を実施した。この粗さ標準片サーフテストは、Ra=2.92μm、Ry=11.3μmであった。次いで、凸側の面を上側となるようにサンプル(基板)を設置し、構造体の重心位置を通り、重心が測定直線の中点となるように直径または長辺の8割の長さに対して測定を行った。例えば、基板が2インチ基板の場合には、40mmの範囲を測定した。またオリエンテーション・フラット(オリフラ)が1つある場合には、オリフラに平行かつ基板の最大径となる直線に沿って、前記直線の中心位置を通り、前記直線の中心位置が測定直線の中点となるように2インチ基板では40mmの範囲を測定した。一方で角型基板の場合には、基板の中心を通り、辺に平行かつ長辺の長さの80%の範囲を測定した。正方形の角型基板の場合には、基板の中心を通り、辺に平行かつ測定方向が90°直交となるように2方向から辺の長さの80%の範囲を測定した。なお角型基板における4辺の長さを比較し、各辺の長さの差が1mm未満の場合には、基板を正方形の角型基板とみなした。オリフラが複数ある場合には、最も長いオリフラに平行となる方向に対して上述した方法で測定した。同じ長さのオリフラが複数ある場合には、1つのオリフラに平行となる方向に対して上述した方法で全てのオリフラに対して測定を繰り返し行った。ノッチが1つの場合には、上述した方法で測定を行った場合の測定線とノッチとの距離が最も遠くなるように基板を設置して測定した。ノッチが複数ある場合には、上述した方法で測定を行った場合の測定線と1つのノッチとの距離が最も遠くなるように基板を設置して、全てのノッチに対して測定を繰り返し行った。オリフラとノッチが両方ある場合には、オリフラに平行となる方向に対して上述した方法で測定した。
 次いで、得られた測定データに基づき、曲率半径を算出した。曲率半径の算出は、輪郭粗さ解析プログラム(株式会社ミツトヨ、FORMTRACEPAC)を使用し、表面粗さ測定器での測定範囲のうち全範囲を指定した円測定解析により曲率半径を算出した。1測定方向につき、この測定を3回繰り返し、得られた測定値の平均値を曲率半径とした。1つの基板に対して複数方向の測定を行う場合には、各方向につき3回の測定を行い、算出した曲率半径の平均値のうち、絶対値が最も小さいものを曲率半径とみなした。また曲率半径の測定結果が凹となった場合、すなわち基板表面が凹型になった場合には、反対側の面について同様の方法で3回の測定を行い、得られた値の平均値を曲率半径とみなした。
 表面粗さ測定機を用いた測定の際に、膜面が凸形状の場合には曲率半径を正の実数とし、基板面が凸形状の場合には曲率半径を負の実数とした。
 <内部応力>
 得られた膜厚及び曲率半径を用いて、下記(1)式に示すSroneyの式にしたがい内部応力σを算出した。下記(1)式において、Eは基板のヤング率、tは基板の厚さ、νは基板のポアッソン比、Rは曲率半径、tは薄膜(積層膜)全体の厚さである。
Figure JPOXMLDOC01-appb-M000001
 
 なお、実施例1~11、比較例1及び2で用いた基板のヤング率、ポアッソン比、および基板厚を表9にまとめて示す。実施例1~7におけるシリコン基板のヤング率およびポアッソン比は参考文献(V.A.Sethuraman et al., Electrochemistry Communications, 12, (2010), 1614-1617)に開示される数値を使用した。実施例8~11における炭化ケイ素基板のヤング率およびポアッソン比は参考文献(E. Konstantinova et al., Intermetallics, 16, (2008), pp.1040-1042)に開示される数値を採用した。比較例2におけるサファイア基板のヤング率およびポアッソン比は株式会社信光社総合カタログに開示される数値を使用した。
 基板および構造体の厚さはデジマチックマイクロメータ(株式会社ミツトヨ、MDC-25MJT)を使用して測定した。具体的には、基板の重心位置、曲率半径測定時の測定線延長線上にある基板または構造体の縁、およびこの測定線に対して垂直かつ重心位置を通る線の延長線上にある縁、の3点における厚さを測定し、その平均値を基板または構造体の厚さとした。構造体における基板の厚さは、構造体の厚さから薄膜(積層膜)全体の厚さを差し引いて、これを算出した。
 <クラックの有無>
 形状解析レーザー顕微鏡(株式会社キーエンス、VK-X200)の試料台にサンプル(基板)をセットし、50倍の対物レンズを使用して観察した。そして線状のひび割れ(クラック)の有無を確認した。
 <GaN膜の結晶構造>
 飛行時間型原子散乱表面分析装置(株式会社パスカル、TOFLAS-3000)を用いて、窒化ガリウム薄膜(GaN膜)の結晶相および極性を評価した。サンプル(積層膜構造体)をその成膜面が上面となるように装置にセットして、測定を行った。測定により得られた極点図を、シミュレーションにより得られた表層4層までの各結晶相及び極性の極点図と比較して、窒化ガリウム薄膜の極性及び結晶相を判断した。測定条件は以下に示すとおりにした。
 ‐プローブ         :He(原子散乱)
 ‐エネルギー        :3keV
 ‐ビーム源-ターゲット間距離:805mm
 ‐ターゲット-検出器間距離 :395mm
 ‐分析室真空度       :2×10-3Pa以下
(3)結果
 実施例1~5の構造体(積層膜)について得られた評価結果を表1に示す。実施例6及び7の構造体(積層膜)について得られた評価結果を表3に示す。実施例8~11の構造体(積層膜)について得られた評価結果を表5に示す。比較例1及び2の構造体(積層膜)について得られた評価結果を表8に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 
Figure JPOXMLDOC01-appb-T000010
 

Claims (11)

  1.  バッファー層と、前記バッファー層の上に配置される少なくとも1層の窒化ガリウム系膜と、を含む積層膜であって、前記積層膜全体の圧縮応力が-2.0GPa以上5.0GPa以下である、積層膜。
  2.  前記圧縮応力が-1.4以上5.0GPa以下である、請求項1に記載の積層膜。
  3.  前記積層膜を構成する層の数が100層以下である、請求項1又は2に記載の積層膜。
  4.  基板と、前記基板上に配置される請求項1~3のいずれか一項に記載の積層膜と、を含む構造体。
  5.  前記基板の熱膨張係数が、前記窒化ガリウム系膜の熱膨張係数よりも小さい、請求項4に記載の構造体。
  6.  請求項1~3のいずれか一項に記載の積層膜、若しくは請求項4又は5に記載の構造体を備えた半導体素子。
  7.  請求項6の半導体素子を含む電子機器。
  8.  前記窒化ガリウム系膜が、窒化ガリウムを主成分とするスパッタリングターゲットを用いたスパッタリング法により成膜された膜である、請求項1~3のいずれか一項に記載の積層膜。
  9.  前記窒化ガリウム系膜が、窒化ガリウムを主成分とするスパッタリングターゲットを用いたスパッタリング法により成膜された膜である、請求項4又は5に記載の構造体。
  10.  請求項1~3及び8のいずれか一項に記載の積層膜の製造方法であって、
     バッファー層を備えた基板をチャンバー内部に配置し、前記基板の面に垂直な方向に対して10°以上60°以下の範囲内の傾斜させた位置に窒化ガリウムを主成分とするターゲットを配置し、前記基板と前記ターゲットとの間の相対的位置関係を保持した状態で5.0Pa以下のガス圧力でスパッタリング法により前記バッファー層の上に窒化ガリウム系膜を形成する、方法。
  11.  請求項4、5及び9のいずれか一項に記載の構造体の製造方法であって、
     バッファー層を備えた基板をチャンバー内部に配置し、前記基板の面に垂直な方向に対して10°以上60°以下の範囲内の傾斜させた位置に窒化ガリウムを主成分とするターゲットを配置し、前記基板と前記ターゲットとの間の相対的位置関係を保持した状態で5.0Pa以下のガス圧力でスパッタリング法により前記バッファー層の上に窒化ガリウム系膜を形成する、方法。
     

     
PCT/JP2021/013330 2020-03-30 2021-03-29 積層膜、前記積層膜を含む構造体、半導体素子、及び電子機器、並びに前記積層膜の製造方法 WO2021200836A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022512220A JPWO2021200836A1 (ja) 2020-03-30 2021-03-29
EP21780236.2A EP4130331A4 (en) 2020-03-30 2021-03-29 FILM LAMINATE, STRUCTURE COMPRISING FILM LAMINATE, SEMICONDUCTOR ELEMENT, ELECTRONIC DEVICE, AND FILM LAMINATE PRODUCTION METHOD
US17/907,674 US20230143194A1 (en) 2020-03-30 2021-03-29 Laminated film, structure including laminated film, semiconductor element, electronic device, and method for producing laminated film
CN202180025579.5A CN115335548A (zh) 2020-03-30 2021-03-29 层叠膜、包含前述层叠膜的结构体、半导体元件和电子设备以及前述层叠膜的制造方法
KR1020227033866A KR20220160596A (ko) 2020-03-30 2021-03-29 적층막, 상기 적층막을 포함하는 구조체, 반도체 소자, 및 전자 기기, 그리고 상기 적층막의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060747 2020-03-30
JP2020-060747 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200836A1 true WO2021200836A1 (ja) 2021-10-07

Family

ID=77927503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013330 WO2021200836A1 (ja) 2020-03-30 2021-03-29 積層膜、前記積層膜を含む構造体、半導体素子、及び電子機器、並びに前記積層膜の製造方法

Country Status (7)

Country Link
US (1) US20230143194A1 (ja)
EP (1) EP4130331A4 (ja)
JP (1) JPWO2021200836A1 (ja)
KR (1) KR20220160596A (ja)
CN (1) CN115335548A (ja)
TW (1) TW202144599A (ja)
WO (1) WO2021200836A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164717A (ja) * 2011-02-03 2012-08-30 Advanced Power Device Research Association 半導体基板、半導体装置、および半導体基板の製造方法
JP2014512681A (ja) * 2011-09-29 2014-05-22 東芝テクノセンター株式会社 転位密度維持バッファ層を有する発光素子
WO2016009577A1 (ja) * 2014-07-18 2016-01-21 キヤノンアネルバ株式会社 窒化物半導体層の成膜方法及び半導体装置の製造方法
JP2016154221A (ja) * 2016-01-18 2016-08-25 住友電気工業株式会社 半導体基板および半導体装置
JP2020060747A (ja) 2018-10-12 2020-04-16 株式会社フジクラ 光デバイス及びレーザ装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8916906B2 (en) * 2011-07-29 2014-12-23 Kabushiki Kaisha Toshiba Boron-containing buffer layer for growing gallium nitride on silicon
CN105762247A (zh) * 2016-03-02 2016-07-13 厦门乾照光电股份有限公司 一种具有复合结构的氮化物缓冲层制作方法
US10566214B1 (en) * 2018-07-24 2020-02-18 Facebook Technologies, Llc Seed layer free nanoporous metal deposition for bonding
CN109524292A (zh) * 2018-10-30 2019-03-26 江苏晶曌半导体有限公司 一种在硅衬底上生长高质量氮化镓薄膜的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012164717A (ja) * 2011-02-03 2012-08-30 Advanced Power Device Research Association 半導体基板、半導体装置、および半導体基板の製造方法
JP2014512681A (ja) * 2011-09-29 2014-05-22 東芝テクノセンター株式会社 転位密度維持バッファ層を有する発光素子
WO2016009577A1 (ja) * 2014-07-18 2016-01-21 キヤノンアネルバ株式会社 窒化物半導体層の成膜方法及び半導体装置の製造方法
JP2016154221A (ja) * 2016-01-18 2016-08-25 住友電気工業株式会社 半導体基板および半導体装置
JP2020060747A (ja) 2018-10-12 2020-04-16 株式会社フジクラ 光デバイス及びレーザ装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E. KONSTANTINOVA ET AL., INTERMETALLICS, vol. 16, 2008, pages 1040 - 1042
V.A. SETHURAMAN ET AL., ELECTROCHEMISTRY COMMUNICATIONS, vol. 12, 2010, pages 1614 - 1617
YANO YOSHIKI: "High Speed Growth of Nitride-Based Electronic Device Structure on Large Diameter Silicon Substrate with MOCVD", TAIYO NIPPON SANSO TECHNICAL REPORT, no. 32, 2013

Also Published As

Publication number Publication date
US20230143194A1 (en) 2023-05-11
EP4130331A4 (en) 2023-08-16
CN115335548A (zh) 2022-11-11
TW202144599A (zh) 2021-12-01
JPWO2021200836A1 (ja) 2021-10-07
KR20220160596A (ko) 2022-12-06
EP4130331A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
Kim et al. Effects of step-graded Al x Ga 1− x N interlayer on properties of GaN grown on Si (111) using ultrahigh vacuum chemical vapor deposition
JP6947232B2 (ja) 窒化ガリウム系膜ならびにその製造方法
Panda et al. Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique
US8697564B2 (en) Method of manufacturing GaN-based film
JP7031181B2 (ja) 窒化ガリウム系膜ならびにその製造方法
JP2003277183A (ja) ダイヤモンド単結晶の製造方法ならびにダイヤモンド単結晶基板およびその製造方法
WO2017215146A1 (zh) 形成薄膜的方法以及形成氮化铝薄膜的方法
Panda et al. Effects of Cr doping on the mechanical properties of AlN films grown by the co-sputtering technique
WO2010089928A1 (ja) GaN基板およびその製造方法、GaN層接合基板の製造方法、ならびに半導体デバイスの製造方法
JP2010073760A (ja) Iii族窒化物半導体積層構造体およびその製造方法
WO2021200836A1 (ja) 積層膜、前記積層膜を含む構造体、半導体素子、及び電子機器、並びに前記積層膜の製造方法
JP2019151520A (ja) 基板および基板の製造方法
TWI620829B (zh) Film forming method of semiconductor device and aluminum nitride film forming method of semiconductor device
US8420185B1 (en) Method for forming metal film with twins
TW202118884A (zh) 積層膜結構體、半導體元件、電子設備、及積層膜結構體的製造方法
Xiao et al. Annealing effects on the formation of semiconducting Mg2Si film using magnetron sputtering deposition
Manova et al. Orientation dependent sputter yield of aluminium
WO2010005111A1 (ja) Iii族窒化物半導体積層構造体およびその製造方法
WO2021085411A1 (ja) 積層膜構造体及びその製造方法
WO2022215670A1 (ja) 積層膜構造体及びその製造方法
KR102430708B1 (ko) 대면적 코팅을 위한 박막 스트레스 제어 기반 코팅 방법 및 이를 이용한 코팅 구조물
Jesbains et al. Reduction of dislocation density of aluminium nitride buffer layer grown on sapphire substrate
US11421315B2 (en) Sputtering target and method of producing sputtering target
TW202409316A (zh) 釔質保護膜及其製造方法以及構件
Akiyama et al. Epitaxial Orientation of β-FeSi2 on 3C-SiC/Si (111)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780236

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512220

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780236

Country of ref document: EP

Effective date: 20221031