WO2021200690A1 - Particulate removal apparatus - Google Patents

Particulate removal apparatus Download PDF

Info

Publication number
WO2021200690A1
WO2021200690A1 PCT/JP2021/012968 JP2021012968W WO2021200690A1 WO 2021200690 A1 WO2021200690 A1 WO 2021200690A1 JP 2021012968 W JP2021012968 W JP 2021012968W WO 2021200690 A1 WO2021200690 A1 WO 2021200690A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particle
fiber
tubular body
membrane
functional group
Prior art date
Application number
PCT/JP2021/012968
Other languages
French (fr)
Japanese (ja)
Inventor
田中 洋一
侑 藤村
秀章 飯野
孝博 川勝
斎藤 恭一
須郷 高信
Original Assignee
栗田工業株式会社
株式会社 環境浄化研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社, 株式会社 環境浄化研究所 filed Critical 栗田工業株式会社
Publication of WO2021200690A1 publication Critical patent/WO2021200690A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/06Tubular membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes

Definitions

  • the present invention relates to a fine particle removing device for removing fine particles in a liquid in a pure water or ultrapure water manufacturing process, an electronic component manufacturing process, a semiconductor cleaning process, or the like.
  • the present invention particularly relates to a subsystem and water supply system before a point of use in an ultrapure water production / supply system, and a system such as an electronic component manufacturing process and a semiconductor cleaning process, in which a particle size in a liquid is 50 nm or less, particularly 10 nm or less. It is useful as a technique for highly removing extremely fine particles.
  • a positively charged membrane specifically a polyketone membrane
  • a polyketone membrane has a primary amino group or a secondary amino.
  • a polyketone porous membrane having one or more functional groups selected from the group consisting of a base, a tertiary amino group, and a quaternary ammonium salt has been proposed (Patent Document 1).
  • a polyketone film has a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, and phosphorus.
  • a film having one or more functional groups selected from the group consisting of an acid ester group and a hydroxyl group has been proposed (Patent Document 2).
  • the problem with the particulate removal film using a cationic film is that the removal performance of positively charged fine particles is reduced, and that of anionic films is reduced for negatively charged fine particles. ..
  • An object of the present invention is to provide a fine particle removing device and a fine particle removing method having excellent fine particle removing performance.
  • the gist of the present invention is as follows.
  • a fine particle removing device for removing fine particles in a liquid characterized by having an integrated positively charged fine particle capturing unit and a negatively charged fine particle capturing unit.
  • One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and the outer peripheral and inner peripheral circumferences of the tubular body are covered with the same.
  • One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and the outer peripheral and inner peripheral circumferences of the tubular body are covered with the same.
  • the fine particle removing device according to [1] which is filled with fibers.
  • One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and the fiber is wound around the outer periphery of the tubular body.
  • One of the positively charged fine particle capturing portion and the negatively charged fine particle capturing portion is a tubular body, and the other is a hollow fiber, and the hollow fiber is arranged in the tubular body.
  • the fine particle removing device according to [1].
  • the present invention it is possible to highly remove extremely fine particles having a particle size of 50 nm or less, particularly 10 nm or less in a liquid.
  • extremely fine fine particles are highly removed from various liquids in water systems in general, especially in pure water and ultrapure water production processes, or in electronic component production and semiconductor cleaning processes, to efficiently purify the products. Can be planned.
  • Mechanism> the mechanism by which a high fine particle removing ability can be obtained by using a film or fiber modified with a cationic or anionic functional group is considered as follows.
  • the fine particles in the negatively charged liquid are attracted and removed by the positive charge of the cationic functional group introduced into the membrane or fiber as shown in FIG. 1 (a). Further, the fine particles in the positively charged liquid are attracted and removed by the negative charge of the anionic functional group introduced into the membrane or the fiber as shown in FIG. 1 (b).
  • the liquid to be treated for removing fine particles is not particularly limited, and for example, pure water, alcohol such as isopropyl alcohol, aqueous sulfuric acid solution, aqueous inorganic acid solution such as aqueous hydrochloric acid solution, aqueous alkaline solution such as aqueous ammonia, thinner, carbon dioxide, etc.
  • examples include water, aqueous hydrogen solution, and hydrogen fluoride solution.
  • the present invention is effective for removing ultrafine particles having a particle size of 50 nm or less, particularly 10 nm or less, in these liquids.
  • the concentration of fine particles in the liquid to be treated is not particularly limited, but is usually 100 ⁇ g / L or less, or 1 to 10 10 particles / mL.
  • the pH of the liquid to be treated is not particularly limited. However, it is more desirable that the zeta potential of the fine particles is not reversed during water flow (the region that does not straddle the isoelectric point). It is desirable that the particles always have a pH of 3 or less or a pH of 3 or more.
  • the material of the base material of the fine particle removing film or fiber of the present invention is not particularly limited, and may be a polymer film or fiber, an inorganic film or fiber, or a metal film or fiber. ..
  • polystyrene film examples include polyolefins such as polyethylene and polypropylene, polyethers such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE, PFA and polyvinylidene fluoride (PVDF), halogenated polyolefins such as polyvinyl chloride, and nylon.
  • polyolefins such as polyethylene and polypropylene
  • polyethers such as polyethylene oxide and polypropylene oxide
  • fluororesins such as PTFE, CTFE, PFA and polyvinylidene fluoride (PVDF)
  • PVDF polyvinylidene fluoride
  • halogenated polyolefins such as polyvinyl chloride
  • Polyamide such as -6, nylon-66, urea resin, phenol resin, melamine resin, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketone, polyetherketoneketone, polyetheretherketone, polysulfone, polyethersulfone, polyimide , Polyetherimide, Polyamideimide, Polybenzoimidazole, Polycarbonate, Polyethylene terephthalate, Polybutylene terephthalate, Polyphenylene sulfide, Polyacrylic nitrile, Polyether nitrile, Polypoly alcohol and copolymers thereof, but not limited to this. is not it.
  • the material is not particularly limited to one type, and various materials can be selected as needed.
  • Other polymers such as polyolefins and polyethers may be mixed with the charged or conductive polymer.
  • the pore size of the porous membrane is the fine particles to be removed.
  • the fine particle removal efficiency is poor, and conversely, if it is excessively small, the pressure during membrane filtration becomes high, which is not preferable. Therefore, in the case of an MF membrane, a pore diameter of about 0.05 to 0.2 ⁇ m is preferable, and in the case of an UF membrane, a membrane having a molecular weight cut-off of about 40 to 1,000,000 is preferable.
  • Examples of the inorganic film include metal oxide films such as alumina and zirconia.
  • the form of the membrane is also not particularly limited, and an appropriate membrane such as a hollow fiber membrane or a flat membrane may be used depending on the intended use.
  • a hollow fiber membrane is usually used as a terminal membrane module for removing fine particles in a unit of an ultrapure water apparatus.
  • the filter attached to the process washer often uses a pleated flat film.
  • the fine particle removing device of the present invention may use a composite film in which a film having an anionic functional group and a film having a cationic functional group are directly superposed, and as shown in FIG. 2, the porous film 2 may be used.
  • a composite membrane 1 in which the membrane 3 having an anionic functional group is arranged on one surface and the membrane 4 having a cationic functional group is arranged on the other surface may be used.
  • a unit in which a flat film having a cationic functional group or an anionic functional group is wound around the outer periphery of a porous tubular body and a flat film having an anionic functional group or a cationic functional group is wound around the outer periphery thereof may be used.
  • a fiber having an anionic functional group is first wound around the outer peripheral surface of the porous tubular body to form a first layer, and the outer peripheral side of the first layer has a cationic functional group.
  • a unit in which fibers are wound to form a second layer may be used.
  • the fiber having a cationic functional group may be used as the first layer, and the fiber having an anionic functional group may be used as the second layer.
  • a flat membrane or fiber having a cationic functional group or an anionic functional group may be combined with a flat membrane or fiber having an anionic functional group or a cationic functional group.
  • a filtration unit 10 in which a fiber 12 having an anionic functional group is wound around an outer circumference of a tubular body 11 having a tubular film having a cationic functional group may be used.
  • the tubular body 11 may have an anionic functional group and the fiber 12 may have a cationic functional group.
  • the tubular body 11 may have a pleated film in the form of a cylinder.
  • the tubular body may be cylindrical, or a pleated flat membrane may be formed into a tubular shape. The same applies to the following embodiments.
  • the unit is a tubular body 11 having a tubular body having a film having a cationic functional group or an anionic functional group (as described above, the unit may be cylindrical and has pleats). It may be a filtration unit 10A in which a winding body of a fiber 12 having an anionic functional group or a cationic functional group is arranged along the inner circumference of the shape.
  • the unit may be a filtration unit 10B in which a fiber 13 having a functional group having a polarity opposite to that of the fiber 12 is wound around the outer circumference of the fiber 12 in FIG.
  • the unit is a filtration unit 10C in which, in FIG. 3, a winding body of fibers 12 having a functional group having a polarity opposite to that of the tubular body 11 is further arranged along the inner circumference of the tubular body 11. It may be.
  • the unit may be a filtration unit 10D in which the tubular body 11 is filled with fibers 14 having a functional group having the opposite polarity to that of the tubular body 11.
  • the unit may be a filtration unit 10E in which the tubular body 11 is filled with fibers 14 having a functional group having the opposite polarity to that of the tubular body 11, as shown in FIG.
  • the unit is a filtration unit 10F configured in FIG. 3 in which a plurality of hollow fiber membranes 15 are arranged in a tubular body 11 and permeated water is taken out from the inside of the hollow fiber membranes 15. May be good.
  • the lower end of the hollow fiber membrane 15 is sealed.
  • the inside of the hollow fiber membrane 15 communicates with the inside of the permeated water extraction chamber 16.
  • the unit is a filtration unit 10G in which a flat membrane cylinder 18 having a functional group having the opposite polarity to the pleated flat membrane cylinder 11 is externally fitted. May be good.
  • the unit has a tubular body 11 arranged in a container-shaped housing 30, and has a functional group having a polarity opposite to that of the tubular body 11 between the tubular body 11 and the housing 30. It may be a filtration unit 10H filled with fibers 14.
  • the unit may be the filtration unit 10I in which the tubular body 11 is further filled with the fiber 14 in FIG.
  • the unit may be a filtration unit 10J in which a wound body of fibers 12 having a functional group having a polarity opposite to that of the tubular body 11 is arranged in the tubular body 11 in FIG. ..
  • the hollow fiber membrane 15 of FIG. 10 may be provided in the embodiment of FIGS. 6, 11 and 12.
  • one or both of the inside of the cylindrical body 11 and the outside of the tubular body 18 may be filled with fibers.
  • the winding body of the fiber 12 may be arranged in the tubular body 11, or the fiber may be wound around the outer circumference of the tubular body 18.
  • the water flows from the outer peripheral side of the cylindrical body toward the inside of the tubular body, but the water flow direction is reversed except for the embodiment shown in FIG. You may.
  • the method for introducing the functional group is not particularly limited, and various methods can be adopted.
  • a sulfonic acid group can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and heat-crosslinking.
  • a functional group can be introduced by allowing a trialkoxysilane group, a trichlorosilane group, an epoxy group, or the like to act on the hydroxyl group. If the functional group cannot be directly introduced depending on the material, first, a highly reactive monomer such as styrene (called a reactive monomer) is introduced, and then the functional group is introduced.
  • the desired functional group may be introduced.
  • these reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethylstyrene, acrolein, vinylpyridine, and acrylonitrile.
  • the method for introducing a cationic functional group into the film or fiber is not particularly limited, and examples thereof include a method by a chemical reaction, a method by coating, and a method in which these are combined.
  • Examples of the method by chemical modification (chemical reaction) include dehydration condensation reaction. Further, plasma treatment, corona treatment and the like can be mentioned.
  • Examples of the coating method include a method of impregnating an aqueous solution containing a polymer.
  • Examples of the method for introducing a cationic functional group by chemical modification include a chemical reaction with a primary amine as a method for imparting a weakly cationic amino group to a polyketone film.
  • Many polyfunctional amines such as diamines containing primary amines, triamines, tetraamines, polyethyleneimines, etc., such as -acetylethylenediamine, isophoronediamine, N, N-dimethylamino-1,3-propanediamine, etc. It is preferable because an active point can be imparted.
  • the substituting method includes, for example, irradiation with an electron beam, ⁇ -ray, plasma or the like.
  • a method of polymerizing a monomer having a reactive side chain such as glycidyl methacrylate by graft polymerization and adding a reactive monomer having a cationic functional group to the polymer can be mentioned.
  • Examples of the reactive monomer include primary amine, secondary amine, tertiary amine, acrylate containing quaternary ammonium salt, methacrylic acid, derivative of vinyl sulfonic acid, allylamine, p-vinylbenzyltrimethylammonium chloride and the like. Be done. More specific examples include 3- (dimethylamino) propyl acrylate, 3- (dimethylamino) propyl methacrylate, N- [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino)).
  • Examples thereof include propyl] methacrylamide, (3-acrylamide propyl) trimethylammonium chloride, and trimethyl [3- (methacrylamino) propyl] ammonium chloride.
  • the above addition treatment may be performed before molding into the porous film or after molding into the porous film, but from the viewpoint of moldability, it is preferably performed after molding into the porous film.
  • Polymers that impart a positive zeta potential include PSQ (polystyrene quaternary ammonium salt), polyethyleneimine, polydiallyldimethylammonium chloride, amino group-containing cationic poly (meth) acrylic acid ester, and amino group-containing cationic poly (meth).
  • PSQ polystyrene quaternary ammonium salt
  • polyethyleneimine polyethyleneimine
  • polydiallyldimethylammonium chloride amino group-containing cationic poly (meth) acrylic acid ester
  • Acrylamide polyamineamide-epichlorohydrin
  • polyallylamine polydicyandiamide
  • chitosan cationized chitosan
  • amino group-containing cationized starch amino group-containing cationized cellulose
  • amino group-containing cationized polyvinyl alcohol amino group-containing cationized polyvinyl alcohol
  • the anionic functional group consists of a group consisting of a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, and a hydroxyl group.
  • a sulfonic acid group a sulfonic acid ester group
  • carboxylic acid group a carboxylic acid ester group
  • a phosphoric acid group a phosphoric acid ester group
  • a phosphoric acid ester group a hydroxyl group.
  • One or more functional groups of choice may be mentioned.
  • Examples of forms having a functional group include a chemically bonded state and a physically bonded state.
  • the chemical bond may be something like a covalent bond.
  • the substance to be chemically bonded may be a polymer or a monomer having a small molecular weight.
  • physically bonded states include states such as adsorption and adhesion that are bonded without chemical bonds by intermolecular forces such as hydrogen bonds, van der Waals forces, electrostatic attraction, and hydrophobic interactions. Be done.
  • Polymers for imparting a negative zeta potential include polystyrene sulfonic acid, sodium polystyrene sulfonate, polyvinyl sulfonic acid, sodium polyvinyl sulfonate, poly (meth) acrylic acid, poly (meth) sodium acrylate, and anionic polyacrylamide. , Poly (2-acrylamide-2-methyl group propanesulfonic acid), poly (2-acrylamide-2-methyl group sodium propanesulfonic acid), carboxymethyl cellulose, anionized polyvinyl alcohol, polyvinylphosphonic acid.
  • a polymer having a negative zeta potential or the like may be attached or coated on the porous membrane or fiber.
  • Polymers with a negative zeta potential include polystyrene sulfonic acid, sodium polystyrene sulfonate, polyvinyl sulfonic acid, sodium polyvinyl sulfonate, poly (meth) acrylic acid, sodium poly (meth) acrylate, anionic polyacrylamide, and poly (poly).
  • 2-acrylamide-2-methyl group propanesulfonic acid poly (2-acrylamide-2-methyl group sodium propanesulfonic acid), carboxymethyl cellulose, anionic polyvinyl alcohol, polyvinylphosphonic acid and the like can be mentioned.
  • the polymer or the acid salt of the polymer may be a copolymer with another polymer.
  • the substitution method includes, for example, electron beam, ⁇ ray, plasma. After generating a radical by irradiation such as, a method of adding a reactive monomer having a functional group expressing a desired function can be mentioned.
  • Examples of the reactive monomer include a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, an acrylic acid containing a hydroxyl group, a methacrylate, a vinyl sulfonic acid derivative, and the like.
  • More specific examples include acrylic acid, methacrylic acid, vinyl sulfonic acid, styrene sulfonic acid, and sodium salts thereof, 2-acrylamide-2-methylpropanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid. , 2-acrylamide-2-methylpropanecarboxylic acid, 2-methacrylamide-2-methylpropanecarboxylic acid and the like.
  • Both films or fibers may be arranged in series, and the order of water flow may be any of anionic film or fiber ⁇ cationic film or fiber, cationic film or fiber ⁇ anionic film or fiber.
  • the fine particle removing device of the present invention having the fine particle removing film of the present invention is a subsystem for producing ultrapure water from a primary pure water system in an ultrapure water production / supply system, particularly a fine particle removing device at the final stage of the subsystem. It is preferably used as. It may also be provided in a water supply system that supplies ultrapure water from a subsystem to a use point. Furthermore, it can also be used as a final fine particle removing device at a point of use.
  • Cationic fiber Environmental Purification Research Institute Graft polymerized fiber (introduced tertiary amino group)
  • Anion membrane tubular body Paul's Ultipleats (a cylinder with an inner diameter of 30 mm, an outer diameter of 80 mm, and a length of 220 mm formed by using an anion membrane with a thickness of 150 ⁇ m as pleats)
  • Cationic membrane Asahi Kasei Medical Qyu speed D (thickness 70 ⁇ m)
  • Anion membrane Paul ABD1UPWE3EH1 (thickness 150 ⁇ m)
  • Silica fine particle test water Ultrapure water or carbonated water with a pH of 4.8 added with silica fine particles (manufactured by Sigma Aldrich) having a particle size of 22 nm to a concentration of 1 ⁇ 10 5 pieces / mL
  • Alumina fine particle test water Ultrapure water
  • alumina fine particles manufactured by Sigma Aldrich having a particle size of 22 nm are added to carbonated water having a pH of 4.8 at a concentration of 1 ⁇ 10 5 pieces / mL.
  • An online fine particle monitor UDI20 (manufactured by PMS) was provided at the inlet and outlet of the membrane module 22, respectively, and the fine particle removal rate was calculated from the number of fine particles in the inlet water and the outlet water.
  • Example 1 A 100 m-wound cation fiber was prepared around the outer circumference of an anionic membrane tubular body (ultipleats), and silica-containing water (ultrapure water or carbonated water) was passed in the direction from the outer circumference to the inside.
  • silica-containing water ultrapure water or carbonated water
  • Example 2 In Example 1, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
  • the anion film has a tubular cartridge shape (outer diameter 80 mm, length 220 mm), and the cation fiber is wound 100 m around the outer circumference thereof to prepare silica-containing water (ultra pure water or carbonated water) in the direction from the outer circumference to the inside. Water) was passed.
  • silica-containing water ultra pure water or carbonated water
  • Example 4 In Example 3, alumina-containing water (ultra-pure water or carbonated water) was passed instead of the silica-containing water.
  • Comparative Example 2 In Comparative Example 1, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
  • Comparative Example 4 In Comparative Example 3, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
  • Comparative Example 6 In Comparative Example 5, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
  • Example 7 a cationic fiber wound body from which the tubular body (ultipleats) had been removed was prepared, and silica-containing water (ultrapure water or carbonated water) was passed therethrough.
  • silica-containing water ultrapure water or carbonated water
  • Comparative Example 8 In Comparative Example 7, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
  • Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 8.
  • Ultipleats has a removal performance of 22 nm silica particles having a negative zeta potential in ultrapure water and a weakly acidic region as compared with a particle removal performance of 22 nm alumina particles having a positive charge.
  • the removal performance was 99.999% or more with respect to the 22 nm silica particles and the 22 nm alumina particles, and the removal performance was improved.
  • Example 1 The performance of Example 1 was superior to the performance of each Comparative Example used as a single item.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A particulate removal apparatus for removing particulates in a liquid, the apparatus being characterized by comprising an integrated positively-charged particulate capturing part and negatively-charged particulate capturing part. Preferably, one of the positively-charged particulate capturing part and the negatively-charged particulate capturing part is a cylindrical body, with the other being a fiber wrapped around the outer periphery of the cylindrical body. It is possible to highly satisfactorily remove ultrafine particulates having a particle size of 50 nm or less, particularly 10 nm or less, in a liquid.

Description

微粒子除去装置Fine particle removal device
 本発明は、純水や超純水製造プロセス、あるいは電子部品製造および半導体洗浄プロセス等における液中の微粒子を除去する微粒子除去装置に関する。本発明は、特に、超純水製造・供給システムにおけるユースポイント前のサブシステムや給水系路、および電子部品製造プロセスおよび半導体洗浄プロセス等のシステムにおいて、液体中の粒子径50nm以下特に10nm以下の極微小の微粒子を高度に除去する技術として有用である。 The present invention relates to a fine particle removing device for removing fine particles in a liquid in a pure water or ultrapure water manufacturing process, an electronic component manufacturing process, a semiconductor cleaning process, or the like. The present invention particularly relates to a subsystem and water supply system before a point of use in an ultrapure water production / supply system, and a system such as an electronic component manufacturing process and a semiconductor cleaning process, in which a particle size in a liquid is 50 nm or less, particularly 10 nm or less. It is useful as a technique for highly removing extremely fine particles.
 従来、半導体・電子部品製造用等の濾過フィルターおよび半導体・電子部品製造プロセスの工程に使用する濾過フィルターとして、正荷電を帯びた膜、具体的にはポリケトン膜に1級アミノ基、2級アミノ基、3級アミノ基、及び4級アンモニウム塩からなる群から選ばれる1つ以上の官能基を有するポリケトン多孔膜が提案されている(特許文献1)。 Conventionally, as a filtration filter for manufacturing semiconductors / electronic parts and a filtration filter used in the process of manufacturing semiconductors / electronic parts, a positively charged membrane, specifically a polyketone membrane, has a primary amino group or a secondary amino. A polyketone porous membrane having one or more functional groups selected from the group consisting of a base, a tertiary amino group, and a quaternary ammonium salt has been proposed (Patent Document 1).
 また、アニオン性粒子の分画用の濾過用フィルターに用いられる負電荷を帯びた膜として、ポリケトン膜にスルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、及び水酸基からなる群から選ばれる1つ以上の官能基を有する膜が提案されている(特許文献2)。 Further, as a negatively charged film used for a filter for filtering anionic particles, a polyketone film has a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, and phosphorus. A film having one or more functional groups selected from the group consisting of an acid ester group and a hydroxyl group has been proposed (Patent Document 2).
特開2014-173013号公報Japanese Unexamined Patent Publication No. 2014-173013 特開2014-171979号公報Japanese Unexamined Patent Publication No. 2014-171979
 カチオン性の膜を用いた微粒子除去膜は、正荷電を帯びる微粒子に対して除去性能が低下し、アニオン性の膜では負電荷を帯びる微粒子に対して除去性能が低下することが問題であった。 The problem with the particulate removal film using a cationic film is that the removal performance of positively charged fine particles is reduced, and that of anionic films is reduced for negatively charged fine particles. ..
 本発明は、微粒子除去性能に優れた微粒子除去装置及び微粒子除去方法を提供することを目的とする。 An object of the present invention is to provide a fine particle removing device and a fine particle removing method having excellent fine particle removing performance.
 本発明者は、上記課題を解決すべく鋭意検討を重ねた結果、カチオン膜とアニオン膜を直列に配置することにより、正荷電も負荷電の微粒子も網羅的に除去できることを見出し、本発明を完成させた。 As a result of diligent studies to solve the above problems, the present inventor has found that by arranging a cation film and an anion film in series, both positively charged and charged fine particles can be comprehensively removed. Completed.
 即ち、本発明は以下を要旨とする。 That is, the gist of the present invention is as follows.
[1] 液体中の微粒子を除去する微粒子除去装置において、一体化された正荷電微粒子捕捉部と、負電荷微粒子捕捉部とを有することを特徴とする微粒子除去装置。 [1] A fine particle removing device for removing fine particles in a liquid, characterized by having an integrated positively charged fine particle capturing unit and a negatively charged fine particle capturing unit.
[2] さらに多孔体が前記正荷電微粒子捕捉部及び負電荷微粒子捕捉部と一体化されている[1]に記載の微粒子除去装置。 [2] The fine particle removing device according to [1], wherein the porous body is further integrated with the positively charged fine particle capturing portion and the negatively charged fine particle capturing portion.
[3] 前記多孔体が膜よりなり、膜の一方の面に正荷電微粒子捕捉部が設けられ、他方の面に負電荷微粒子捕捉部が設けられている[2]に記載の微粒子除去装置。 [3] The fine particle removing device according to [2], wherein the porous body is made of a film, a positively charged fine particle capturing portion is provided on one surface of the membrane, and a negatively charged fine particle capturing portion is provided on the other surface.
[4] 前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が繊維となっており、該筒状体の外周及び内周の少なくとも一方に該繊維が巻回されている[1]に記載の微粒子除去装置。 [4] One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and the outer peripheral and inner peripheral circumferences of the tubular body are covered with the same. The fine particle removing device according to [1], wherein the fibers are wound.
[5] 前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が繊維となっており、該筒状体の外周及び内周の少なくとも一方に該繊維が充填されている[1]に記載の微粒子除去装置。 [5] One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and the outer peripheral and inner peripheral circumferences of the tubular body are covered with the same. The fine particle removing device according to [1], which is filled with fibers.
[6] 前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が繊維となっており、該筒状体の外周に該繊維が巻回されており、該筒状体内に該繊維が充填されている[1]に記載の微粒子除去装置。 [6] One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and the fiber is wound around the outer periphery of the tubular body. The fine particle removing device according to [1], wherein the tubular body is filled with the fibers.
[7] 前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が中空糸となっており、該筒状体内に該中空糸が配置されている[1]に記載の微粒子除去装置。 [7] One of the positively charged fine particle capturing portion and the negatively charged fine particle capturing portion is a tubular body, and the other is a hollow fiber, and the hollow fiber is arranged in the tubular body. The fine particle removing device according to [1].
 本発明によれば、液体中の粒径50nm以下特に10nm以下の極微小の微粒子を高度に除去することができる。 According to the present invention, it is possible to highly remove extremely fine particles having a particle size of 50 nm or less, particularly 10 nm or less in a liquid.
 本発明によれば、水系全般、特に純水や超純水製造プロセス、あるいは電子部品製造および半導体洗浄プロセスにおける各種の液体から、極微小の微粒子を高度に除去して効率的に高純度化を図ることができる。 According to the present invention, extremely fine fine particles are highly removed from various liquids in water systems in general, especially in pure water and ultrapure water production processes, or in electronic component production and semiconductor cleaning processes, to efficiently purify the products. Can be planned.
微粒子除去膜のカチオン性又はアニオン性官能基による微粒子捕捉機構を説明する模式図である。It is a schematic diagram explaining the fine particle trapping mechanism by a cationic or anionic functional group of a fine particle removal film. 微粒子除去膜の断面図である。It is sectional drawing of the fine particle removal film. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 実施例で用いた試験装置を示す系統図である。It is a system diagram which shows the test apparatus used in an Example. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit. 微粒子除去ユニットの断面図である。It is sectional drawing of the fine particle removal unit.
 以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
<メカニズム>
 本発明において、カチオン性又はアニオン性官能基で修飾した膜又は繊維を用いることで、高い微粒子除去能を得ることができるメカニズムについては、次のように考えられる。
<Mechanism>
In the present invention, the mechanism by which a high fine particle removing ability can be obtained by using a film or fiber modified with a cationic or anionic functional group is considered as follows.
 即ち、マイナスに荷電した液体中の微粒子は、図1(a)のように膜又は繊維に導入されたカチオン性官能基のプラス荷電により引き寄せられて捕捉除去される。また、プラスに荷電した液体中の微粒子は、図1(b)のように、膜又は繊維に導入されたアニオン性官能基のマイナス荷電により引き寄せられて捕捉除去される。 That is, the fine particles in the negatively charged liquid are attracted and removed by the positive charge of the cationic functional group introduced into the membrane or fiber as shown in FIG. 1 (a). Further, the fine particles in the positively charged liquid are attracted and removed by the negative charge of the anionic functional group introduced into the membrane or the fiber as shown in FIG. 1 (b).
<被処理液体>
 本発明において、微粒子を除去する被処理液体としては特に制限はなく、例えば、純水、イソプロピルアルコール等のアルコール、硫酸水溶液、塩酸水溶液等の無機酸水溶液、アンモニア水溶液等のアルカリ水溶液、シンナー、炭酸水、過酸化水素水、フッ化水素溶液などが挙げられる。
<Liquid to be treated>
In the present invention, the liquid to be treated for removing fine particles is not particularly limited, and for example, pure water, alcohol such as isopropyl alcohol, aqueous sulfuric acid solution, aqueous inorganic acid solution such as aqueous hydrochloric acid solution, aqueous alkaline solution such as aqueous ammonia, thinner, carbon dioxide, etc. Examples include water, aqueous hydrogen solution, and hydrogen fluoride solution.
 本発明は、これらの液体中の粒径50nm以下、特に10nm以下の極微小粒子の除去に有効である。 The present invention is effective for removing ultrafine particles having a particle size of 50 nm or less, particularly 10 nm or less, in these liquids.
 なお、上記被処理液体中の微粒子濃度については特に制限はないが、通常100μg/L以下、或いは1~1010個/mLである。被処理液体のpHには特に制限がない。ただし、通水中に微粒子のゼータ電位が反転しない領域(等電点をまたがない領域)がより望ましく、例えば正電荷を帯びるアルミナ粒子は常にpH8以下もしくは常にpH8以上の領域、負電荷を帯びるシリカ粒子は常にpH3以下もしくはpH3以上の領域が望ましい。 The concentration of fine particles in the liquid to be treated is not particularly limited, but is usually 100 μg / L or less, or 1 to 10 10 particles / mL. The pH of the liquid to be treated is not particularly limited. However, it is more desirable that the zeta potential of the fine particles is not reversed during water flow (the region that does not straddle the isoelectric point). It is desirable that the particles always have a pH of 3 or less or a pH of 3 or more.
<膜又は繊維の材質>
 本発明の微粒子除去膜又は繊維の基材の材質としては特に制限はなく、高分子膜又は繊維であってもよく、無機膜又は繊維であってもよく、金属膜又は繊維であってもよい。
<Material of membrane or fiber>
The material of the base material of the fine particle removing film or fiber of the present invention is not particularly limited, and may be a polymer film or fiber, an inorganic film or fiber, or a metal film or fiber. ..
 高分子膜としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエチレンオキサイド、ポリプロピレンオキサイドなどのポリエーテル、PTFE、CTFE、PFA、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂、ポリ塩化ビニルなどのハロゲン化ポリオレフィン、ナイロン-6、ナイロン-66などのポリアミド、ユリア樹脂、フェノール樹脂、メラミン樹脂、ポリスチレン、セルロース、酢酸セルロース、硝酸セルロース、ポリエーテルケトン、ポリエーテルケトンケトン、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミドイミド、ポリベンゾイミダゾール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンサルファイド、ポリアクリルニトリル、ポリエーテルニトリル、ポリビニルアルコールおよびこれらの共重合体などの素材が使用できるが、この限りではない。特に1種類の素材に限定されることはなく、必要に応じて種々の素材を選択できる。荷電性や導電性のポリマーにポリオレフィン、ポリエーテル等の他のポリマーを混合してもよい。 Examples of the polymer film include polyolefins such as polyethylene and polypropylene, polyethers such as polyethylene oxide and polypropylene oxide, fluororesins such as PTFE, CTFE, PFA and polyvinylidene fluoride (PVDF), halogenated polyolefins such as polyvinyl chloride, and nylon. Polyamide such as -6, nylon-66, urea resin, phenol resin, melamine resin, polystyrene, cellulose, cellulose acetate, cellulose nitrate, polyetherketone, polyetherketoneketone, polyetheretherketone, polysulfone, polyethersulfone, polyimide , Polyetherimide, Polyamideimide, Polybenzoimidazole, Polycarbonate, Polyethylene terephthalate, Polybutylene terephthalate, Polyphenylene sulfide, Polyacrylic nitrile, Polyether nitrile, Polypoly alcohol and copolymers thereof, but not limited to this. is not it. The material is not particularly limited to one type, and various materials can be selected as needed. Other polymers such as polyolefins and polyethers may be mixed with the charged or conductive polymer.
 本発明で用いる微粒子除去膜は、膜に導入されたカチオン性又はアニオン性官能基による電気的な吸着能で水中の微粒子を捕捉除去するものであるため、多孔質膜の孔径は、除去対象微粒子よりも大きくてもよいものであるが、過度に大きいと、微粒子除去効率が悪く、逆に過度に小さくても膜濾過時の圧力が高くなり好ましくない。従って、MF膜であれば孔径0.05~0.2μm程度のものが好ましく、UF膜であれば分画分子量が4000~100万程度のものが好ましい。 Since the fine particle removing membrane used in the present invention captures and removes fine particles in water by the electrical adsorption ability of the cationic or anionic functional group introduced into the membrane, the pore size of the porous membrane is the fine particles to be removed. However, if it is excessively large, the fine particle removal efficiency is poor, and conversely, if it is excessively small, the pressure during membrane filtration becomes high, which is not preferable. Therefore, in the case of an MF membrane, a pore diameter of about 0.05 to 0.2 μm is preferable, and in the case of an UF membrane, a membrane having a molecular weight cut-off of about 40 to 1,000,000 is preferable.
 無機膜としては、アルミナ、ジルコニアなどの金属酸化膜が挙げられる。 Examples of the inorganic film include metal oxide films such as alumina and zirconia.
<膜の形態>
 膜の形態についても特に制限はなく、中空糸膜、平膜など、用途に応じて適当なものを用いればよい。例えば、超純水装置のユニットで微粒子を除去するための末端膜モジュールとしては、通常、中空糸膜が用いられている。一方、プロセス洗浄機に装着するフィルタはプリーツ状の平膜を用いることが多い。
<Membrane morphology>
The form of the membrane is also not particularly limited, and an appropriate membrane such as a hollow fiber membrane or a flat membrane may be used depending on the intended use. For example, a hollow fiber membrane is usually used as a terminal membrane module for removing fine particles in a unit of an ultrapure water apparatus. On the other hand, the filter attached to the process washer often uses a pleated flat film.
 本発明の微粒子除去装置は、アニオン性官能基を有する膜と、カチオン性官能基を有する膜とを直接的に重ね合わせた複合膜を用いてもよく、図2のように多孔質膜2の一方の面にアニオン性官能基を有する膜3を配置し、他方の面にカチオン性官能基を有する膜4を配置した複合膜1を用いてもよい。 The fine particle removing device of the present invention may use a composite film in which a film having an anionic functional group and a film having a cationic functional group are directly superposed, and as shown in FIG. 2, the porous film 2 may be used. A composite membrane 1 in which the membrane 3 having an anionic functional group is arranged on one surface and the membrane 4 having a cationic functional group is arranged on the other surface may be used.
 カチオン性官能基又はアニオン性官能基を有する平膜を多孔質筒状体の外周に巻き、その外周にアニオン性官能基又はカチオン性官能基を有する平膜を巻いたユニットを用いてもよい。 A unit in which a flat film having a cationic functional group or an anionic functional group is wound around the outer periphery of a porous tubular body and a flat film having an anionic functional group or a cationic functional group is wound around the outer periphery thereof may be used.
 図示は省略するが、多孔質の筒状体の外周面に、まずアニオン性官能基を有する繊維を巻き付けて第1層を形成し、該第1層の外周側に、カチオン性官能基を有する繊維を巻き付けて第2層を形成したユニットを用いてもよい。カチオン性官能基を有する繊維を第1層とし、アニオン性官能基を有する繊維を第2層としてもよい。 Although not shown, a fiber having an anionic functional group is first wound around the outer peripheral surface of the porous tubular body to form a first layer, and the outer peripheral side of the first layer has a cationic functional group. A unit in which fibers are wound to form a second layer may be used. The fiber having a cationic functional group may be used as the first layer, and the fiber having an anionic functional group may be used as the second layer.
 また、カチオン性官能基又はアニオン性官能基を有する平膜又は繊維とアニオン性官能基又はカチオン性官能基を有する平膜又は繊維とを組み合わせてもよい。 Further, a flat membrane or fiber having a cationic functional group or an anionic functional group may be combined with a flat membrane or fiber having an anionic functional group or a cationic functional group.
 例えば、図3のように、カチオン性官能基を有する膜を筒状とした筒状体11の外周に、アニオン性官能基を有する繊維12を巻き付けた濾過ユニット10を用いてもよい。逆に、筒状体11がアニオン性官能基を有し、繊維12がカチオン性官能基を有してもよい。筒状体11がプリーツ状の膜を筒状としたものであってもよい。筒状体は円筒状であってもよく、平膜をプリーツ状に賦形したものを筒状としたものであってもよい。以下の実施の形態でも同様である。 For example, as shown in FIG. 3, a filtration unit 10 in which a fiber 12 having an anionic functional group is wound around an outer circumference of a tubular body 11 having a tubular film having a cationic functional group may be used. Conversely, the tubular body 11 may have an anionic functional group and the fiber 12 may have a cationic functional group. The tubular body 11 may have a pleated film in the form of a cylinder. The tubular body may be cylindrical, or a pleated flat membrane may be formed into a tubular shape. The same applies to the following embodiments.
 また、ユニットは、図5のように、カチオン性官能基又はアニオン性官能基を有する膜を筒状とした筒状体11(上述の通り、円筒状であってもよく、プリーツを有した筒状体であってもよい。)の内周に沿ってアニオン性官能基又はカチオン性官能基を有する繊維12の巻回体を配置した濾過ユニット10Aであってもよい。 Further, as shown in FIG. 5, the unit is a tubular body 11 having a tubular body having a film having a cationic functional group or an anionic functional group (as described above, the unit may be cylindrical and has pleats). It may be a filtration unit 10A in which a winding body of a fiber 12 having an anionic functional group or a cationic functional group is arranged along the inner circumference of the shape.
 ユニットは、図6のように、図3において、繊維12の外周に、繊維12とは逆極性の官能基を有した繊維13を巻回した濾過ユニット10Bであってもよい。 As shown in FIG. 6, the unit may be a filtration unit 10B in which a fiber 13 having a functional group having a polarity opposite to that of the fiber 12 is wound around the outer circumference of the fiber 12 in FIG.
 ユニットは、図7のように、図3において、さらに筒状体11の内周に沿って筒状体11とは逆極性の官能基を有した繊維12の巻回体を配置した濾過ユニット10Cであってもよい。 As shown in FIG. 7, the unit is a filtration unit 10C in which, in FIG. 3, a winding body of fibers 12 having a functional group having a polarity opposite to that of the tubular body 11 is further arranged along the inner circumference of the tubular body 11. It may be.
 ユニットは、図8のように、筒状体11内に筒状体11とは逆極性の官能基を有した繊維14を充填した濾過ユニット10Dであってもよい。 As shown in FIG. 8, the unit may be a filtration unit 10D in which the tubular body 11 is filled with fibers 14 having a functional group having the opposite polarity to that of the tubular body 11.
 ユニットは、図9のように、図3において、筒状体11内に筒状体11とは逆極性の官能基を有した繊維14を充填した濾過ユニット10Eであってもよい。 As shown in FIG. 9, the unit may be a filtration unit 10E in which the tubular body 11 is filled with fibers 14 having a functional group having the opposite polarity to that of the tubular body 11, as shown in FIG.
 ユニットは、図10のように、図3において、筒状体11内に複数の中空糸膜15を配置し、中空糸膜15の内部から透過水を取り出すように構成した濾過ユニット10Fであってもよい。中空糸膜15は、下端が封じられている。中空糸膜15内は透過水取出室16内に連通している。 As shown in FIG. 10, the unit is a filtration unit 10F configured in FIG. 3 in which a plurality of hollow fiber membranes 15 are arranged in a tubular body 11 and permeated water is taken out from the inside of the hollow fiber membranes 15. May be good. The lower end of the hollow fiber membrane 15 is sealed. The inside of the hollow fiber membrane 15 communicates with the inside of the permeated water extraction chamber 16.
 ユニットは、図11のように、プリーツ状の平膜の筒状体11に対し、それとは逆極性の官能基を有した平膜の筒状体18を外嵌させた濾過ユニット10Gであってもよい。 As shown in FIG. 11, the unit is a filtration unit 10G in which a flat membrane cylinder 18 having a functional group having the opposite polarity to the pleated flat membrane cylinder 11 is externally fitted. May be good.
 ユニットは、図12のように、筒状体11を容器形状のハウジング30内に配置し、筒状体11とハウジング30との間に、筒状体11とは逆極性の官能基を有した繊維14を充填した濾過ユニット10Hであってもよい。 As shown in FIG. 12, the unit has a tubular body 11 arranged in a container-shaped housing 30, and has a functional group having a polarity opposite to that of the tubular body 11 between the tubular body 11 and the housing 30. It may be a filtration unit 10H filled with fibers 14.
 ユニットは、図13のように、図12において、さらに筒状体11内にも繊維14を充填した濾過ユニット10Iであってもよい。 As shown in FIG. 13, the unit may be the filtration unit 10I in which the tubular body 11 is further filled with the fiber 14 in FIG.
 ユニットは、図14のように、図12において、筒状体11内に筒状体11とは逆極性の官能基を有した繊維12の巻回体を配置した濾過ユニット10Jであってもよい。 As shown in FIG. 14, the unit may be a filtration unit 10J in which a wound body of fibers 12 having a functional group having a polarity opposite to that of the tubular body 11 is arranged in the tubular body 11 in FIG. ..
 図示は省略するが、図10の中空糸膜15は、図6,11,12の実施の形態に設けられてもよい。 Although not shown, the hollow fiber membrane 15 of FIG. 10 may be provided in the embodiment of FIGS. 6, 11 and 12.
 図示は省略するが、図11において、筒状体11内及び筒状体18外の一方又は双方に繊維が充填されてもよい。図11において、筒状体11内に繊維12の巻回体が配置されてもよく、筒状体18の外周に繊維が巻回されてもよい。 Although not shown, in FIG. 11, one or both of the inside of the cylindrical body 11 and the outside of the tubular body 18 may be filled with fibers. In FIG. 11, the winding body of the fiber 12 may be arranged in the tubular body 11, or the fiber may be wound around the outer circumference of the tubular body 18.
 なお、上記実施の形態では、筒状体の外周側から筒状体の内側に向って水が流れるように図示されているが、図10の実施の形態以外では、通水方向は逆とされてもよい。 In the above embodiment, the water flows from the outer peripheral side of the cylindrical body toward the inside of the tubular body, but the water flow direction is reversed except for the embodiment shown in FIG. You may.
<官能基導入方法>
 官能基の導入方法は、特に限定されるものではなく、各種の方法を採用することができる。例えば、ポリスチレンの場合、硫酸溶液中にパラホルムアルデヒドを適量添加し、加熱架橋することで、スルホン酸基の導入が可能である。ポリビニルアルコールの場合は、水酸基に、トリアルコキシシラン基やトリクロロシラン基、あるいはエポキシ基などを作用させることなどにより、官能基を導入することができる。材質によって直接官能基を導入できない場合は、まず、スチレンなどの反応性の高いモノマー(反応性モノマーと呼ぶ)を導入した上で、官能基を導入するといったような、2段階以上の導入操作を経て、目的とする官能基を導入してもよい。これらの反応性モノマーとしては、グリシジルメタクリレート、スチレン、クロロメチルスチレン、アクロレイン、ビニルピリジン、アクリロニトリルなどがあるが、この限りではない。
<Method of introducing functional groups>
The method for introducing the functional group is not particularly limited, and various methods can be adopted. For example, in the case of polystyrene, a sulfonic acid group can be introduced by adding an appropriate amount of paraformaldehyde to a sulfuric acid solution and heat-crosslinking. In the case of polyvinyl alcohol, a functional group can be introduced by allowing a trialkoxysilane group, a trichlorosilane group, an epoxy group, or the like to act on the hydroxyl group. If the functional group cannot be directly introduced depending on the material, first, a highly reactive monomer such as styrene (called a reactive monomer) is introduced, and then the functional group is introduced. After that, the desired functional group may be introduced. Examples of these reactive monomers include, but are not limited to, glycidyl methacrylate, styrene, chloromethylstyrene, acrolein, vinylpyridine, and acrylonitrile.
<カチオン性官能基及びその導入方法>
 膜又は繊維にカチオン性官能基を導入する方法については特に制限はないが、化学反応による方法、コーティングによる方法、さらにこれらを組み合わせた方法などが挙げられる。化学修飾(化学反応)による方法は、脱水縮合反応などが挙げられる。また、プラズマ処理やコロナ処理などが挙げられる。コーティングによる方法はポリマーを含む水溶液などに含浸させる方法が挙げられる。
<Cationic functional group and its introduction method>
The method for introducing a cationic functional group into the film or fiber is not particularly limited, and examples thereof include a method by a chemical reaction, a method by coating, and a method in which these are combined. Examples of the method by chemical modification (chemical reaction) include dehydration condensation reaction. Further, plasma treatment, corona treatment and the like can be mentioned. Examples of the coating method include a method of impregnating an aqueous solution containing a polymer.
 化学修飾によりカチオン性官能基を導入する方法としては、例えば、ポリケトン膜に弱カチオン性アミノ基を付与する化学修飾方法として、1級アミンとの化学反応などが挙げられる。エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,2-シクロヘキサンジアミン、N-メチルエチレンジアミン、N-メチルプロパンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルプロパンジアミン、N-アセチルエチレンジアミン、イソホロンジアミン、N,N-ジメチルアミノ-1,3-プロパンジアミンなどのように、1級アミンを含むジアミン、トリアミン、テトラアミン、ポリエチレンイミンなどの多官能化アミンであれば、多くの活性点を付与することができるので好ましい。 Examples of the method for introducing a cationic functional group by chemical modification include a chemical reaction with a primary amine as a method for imparting a weakly cationic amino group to a polyketone film. Ethylenediamine, 1,3-propanediamine, 1,4-butanediamine, 1,2-cyclohexanediamine, N-methylethylenediamine, N-methylpropanediamine, N, N-dimethylethylenediamine, N, N-dimethylpropanediamine, N Many polyfunctional amines such as diamines containing primary amines, triamines, tetraamines, polyethyleneimines, etc., such as -acetylethylenediamine, isophoronediamine, N, N-dimethylamino-1,3-propanediamine, etc. It is preferable because an active point can be imparted.
 正のゼータ電位を付与するという観点で、基材膜又は繊維を構成する少なくとも1つの水素原子を他の基に置換する場合、置換方法としては、例えば、電子線、γ線、プラズマ等の照射によってラジカルを発生させた後、グラフト重合により、グリシジルメタクリレートなどの反応性の側鎖を有するモノマーを重合し、ここへカチオン性官能基を有する反応性モノマーを付加させる方法が挙げられる。反応性モノマーの例としては、1級アミン、2級アミン、3級アミン、4級アンモニウム塩を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体、アリルアミン、p-ビニルベンジルトリメチルアンモニウムクロライド等が挙げられる。より具体的な例としては、アクリル酸3-(ジメチルアミノ)プロピル、メタクリル酸3-(ジメチルアミノ)プロピル、N-[3-(ジメチルアミノ)プロピル]アクリルアミド、N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、(3-アクリルアミドプロピル)トリメチルアンモニウムクロリド、トリメチル[3-(メタクリロイルアミノ)プロピル]アンモニウムクロリドなどが挙げられる。上記の付加処理は、多孔膜に成形する前に行ってもよいし、多孔膜に成形した後に行ってもよいが、成形性の観点から、多孔膜に成形した後に行う方が好ましい。 When substituting at least one hydrogen atom constituting the substrate film or fiber with another group from the viewpoint of imparting a positive zeta potential, the substituting method includes, for example, irradiation with an electron beam, γ-ray, plasma or the like. After generating radicals with the above, a method of polymerizing a monomer having a reactive side chain such as glycidyl methacrylate by graft polymerization and adding a reactive monomer having a cationic functional group to the polymer can be mentioned. Examples of the reactive monomer include primary amine, secondary amine, tertiary amine, acrylate containing quaternary ammonium salt, methacrylic acid, derivative of vinyl sulfonic acid, allylamine, p-vinylbenzyltrimethylammonium chloride and the like. Be done. More specific examples include 3- (dimethylamino) propyl acrylate, 3- (dimethylamino) propyl methacrylate, N- [3- (dimethylamino) propyl] acrylamide, N- [3- (dimethylamino)). Examples thereof include propyl] methacrylamide, (3-acrylamide propyl) trimethylammonium chloride, and trimethyl [3- (methacrylamino) propyl] ammonium chloride. The above addition treatment may be performed before molding into the porous film or after molding into the porous film, but from the viewpoint of moldability, it is preferably performed after molding into the porous film.
 正のゼータ電位を付与するポリマーとしては、PSQ(ポリスチレン4級アンモニウム塩)、ポリエチレンイミン、ポリジアリルジメチルアンモニウムクロリド、アミノ基含有カチオン性ポリ(メタ)アクリル酸エステル、アミノ基含有カチオン性ポリ(メタ)アクリルアミド、ポリアミンアミド-エピクロロヒドリン、ポリアリルアミン、ポリジシアンジアミド、キトサン、カチオン化キトサン、アミノ基含有カチオン化デンプン、アミノ基含有カチオン化セルロース、アミノ基含有カチオン化ポリビニルアルコール及び上記ポリマーの酸塩が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。 Polymers that impart a positive zeta potential include PSQ (polystyrene quaternary ammonium salt), polyethyleneimine, polydiallyldimethylammonium chloride, amino group-containing cationic poly (meth) acrylic acid ester, and amino group-containing cationic poly (meth). ) Acrylamide, polyamineamide-epichlorohydrin, polyallylamine, polydicyandiamide, chitosan, cationized chitosan, amino group-containing cationized starch, amino group-containing cationized cellulose, amino group-containing cationized polyvinyl alcohol, and acid salts of the above polymers. Can be mentioned. Further, the polymer or the acid salt of the polymer may be a copolymer with another polymer.
<アニオン性官能基及びその導入方法>
 負のゼータ電位を付与するという観点から、アニオン性官能基としては、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、水酸基からなる群から選ばれる一つ以上の官能基が挙げられる。
<Anionic functional group and its introduction method>
From the viewpoint of imparting a negative zeta potential, the anionic functional group consists of a group consisting of a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, and a hydroxyl group. One or more functional groups of choice may be mentioned.
 官能基を有する形態の例としては、化学結合や物理的に結合した状態が挙げられる。化学結合としては、共有結合のようなものであってもよい。共有結合としては、C-C結合、C=N結合、ピロール環を介する結合などが挙げられる。化学結合する物質としては、ポリマーであってもよいし、分子量の小さいモノマーのようなものであってもよい。一方、物理的に結合した状態としては、水素結合、ファンデルワールス力、静電引力、疎水相互作用のような分子間力によって化学結合を介さずに結合した吸着や付着のような状態が挙げられる。 Examples of forms having a functional group include a chemically bonded state and a physically bonded state. The chemical bond may be something like a covalent bond. Examples of the covalent bond include a CC bond, a C = N bond, and a bond via a pyrrole ring. The substance to be chemically bonded may be a polymer or a monomer having a small molecular weight. On the other hand, physically bonded states include states such as adsorption and adhesion that are bonded without chemical bonds by intermolecular forces such as hydrogen bonds, van der Waals forces, electrostatic attraction, and hydrophobic interactions. Be done.
 負のゼータ電位を付与するためのポリマーとしては、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム、ポリビニルスルホン酸、ポリビニルスルホン酸ナトリウム、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、アニオン性ポリアクリルアミド、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸)、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸ナトリウム)、カルボキシメチルセルロース、アニオン化ポリビニルアルコール、ポリビニルホスホン酸が挙げられる。 Polymers for imparting a negative zeta potential include polystyrene sulfonic acid, sodium polystyrene sulfonate, polyvinyl sulfonic acid, sodium polyvinyl sulfonate, poly (meth) acrylic acid, poly (meth) sodium acrylate, and anionic polyacrylamide. , Poly (2-acrylamide-2-methyl group propanesulfonic acid), poly (2-acrylamide-2-methyl group sodium propanesulfonic acid), carboxymethyl cellulose, anionized polyvinyl alcohol, polyvinylphosphonic acid.
 負のゼータ電位を付与するという観点で、多孔膜又は繊維に負のゼータ電位を有するポリマーなどを付着又はコーティングさせてもよい。負のゼータ電位を有するポリマーとしては、ポリスチレンスルホン酸、ポリスチレンスルホン酸ナトリウム、ポリビニルスルホン酸、ポリビニルスルホン酸ナトリウム、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸ナトリウム、アニオン性ポリアクリルアミド、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸)、ポリ(2-アクリルアミド-2-メチル基プロパンスルホン酸ナトリウム)、カルボキシメチルセルロース、アニオン化ポリビニルアルコール、ポリビニルホスホン酸等が挙げられる。また、上記ポリマーあるいはポリマーの酸塩は、他のポリマーとの共重合体であってもよい。 From the viewpoint of imparting a negative zeta potential, a polymer having a negative zeta potential or the like may be attached or coated on the porous membrane or fiber. Polymers with a negative zeta potential include polystyrene sulfonic acid, sodium polystyrene sulfonate, polyvinyl sulfonic acid, sodium polyvinyl sulfonate, poly (meth) acrylic acid, sodium poly (meth) acrylate, anionic polyacrylamide, and poly (poly). 2-acrylamide-2-methyl group propanesulfonic acid), poly (2-acrylamide-2-methyl group sodium propanesulfonic acid), carboxymethyl cellulose, anionic polyvinyl alcohol, polyvinylphosphonic acid and the like can be mentioned. Further, the polymer or the acid salt of the polymer may be a copolymer with another polymer.
 多孔膜に負のゼータ電位を付与するという観点で、多孔膜又は繊維を構成するポリマーの少なくとも1つの水素原子を他の基に置換する場合、置換方法としては、例えば電子線、γ線、プラズマ等の照射によってラジカルを発生させた後、望みの機能を発現する官能基を有する反応性モノマーを付加させる方法が挙げられる。反応性モノマーの例としては、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、水酸基を含むアクリル酸、メタクリル酸、ビニルスルホン酸の誘導体等が挙げられる。より具体的な例としては、アクリル酸、メタクリル酸、ビニルスルホン酸、スチレンスルホン酸、及びそれらのナトリウム塩、2-アクリルアミド-2-メチルプロパンスルホン酸、2-メタクリルアミド-2-メチルプロパンスルホン酸、2-アクリルアミド-2-メチルプロパンカルボン酸、2-メタクリルアミド-2-メチルプロパンカルボン酸などが挙げられる。 When substituting at least one hydrogen atom of the polymer constituting the porous film or fiber with another group from the viewpoint of imparting a negative zeta potential to the porous film, the substitution method includes, for example, electron beam, γ ray, plasma. After generating a radical by irradiation such as, a method of adding a reactive monomer having a functional group expressing a desired function can be mentioned. Examples of the reactive monomer include a sulfonic acid group, a sulfonic acid ester group, a carboxylic acid group, a carboxylic acid ester group, a phosphoric acid group, a phosphoric acid ester group, an acrylic acid containing a hydroxyl group, a methacrylate, a vinyl sulfonic acid derivative, and the like. Can be mentioned. More specific examples include acrylic acid, methacrylic acid, vinyl sulfonic acid, styrene sulfonic acid, and sodium salts thereof, 2-acrylamide-2-methylpropanesulfonic acid, 2-methacrylamide-2-methylpropanesulfonic acid. , 2-acrylamide-2-methylpropanecarboxylic acid, 2-methacrylamide-2-methylpropanecarboxylic acid and the like.
<アニオン膜又は繊維とカチオン膜又は繊維の通水順序>
 両膜又は繊維は直列に配置されていればよく、通水順序はアニオン膜又は繊維→カチオン膜又は繊維、カチオン膜又は繊維→アニオン膜又は繊維のいずれでもよい。
<Order of water flow between anionic membrane or fiber and cationic membrane or fiber>
Both films or fibers may be arranged in series, and the order of water flow may be any of anionic film or fiber → cationic film or fiber, cationic film or fiber → anionic film or fiber.
<好適な適用領域>
 本発明の微粒子除去膜を有する本発明の微粒子除去装置は、超純水製造・供給システムにおいて、一次純水システムから超純水を製造するサブシステム、特にそのサブシステムの最後段の微粒子除去装置として好適に用いられる。また、サブシステムからユースポイントに超純水を送給する給水系路に設けられてもよい。更に、ユースポイントにおける最終微粒子除去装置として用いることもできる。
<Suitable application area>
The fine particle removing device of the present invention having the fine particle removing film of the present invention is a subsystem for producing ultrapure water from a primary pure water system in an ultrapure water production / supply system, particularly a fine particle removing device at the final stage of the subsystem. It is preferably used as. It may also be provided in a water supply system that supplies ultrapure water from a subsystem to a use point. Furthermore, it can also be used as a final fine particle removing device at a point of use.
 以下に実施例を挙げて本発明をより具体的に説明する。 The present invention will be described in more detail with reference to examples below.
 なお、以下の実施例1~4、比較例1~6において、繊維及び膜としては以下のものを用いた。 In the following Examples 1 to 4 and Comparative Examples 1 to 6, the following fibers and films were used.
 カチオン繊維:環境浄化研究所 グラフト重合繊維(3級アミノ基導入)
 アニオン膜筒状体:ポール社 ウルチプリーツ(厚さ150μmのアニオン膜をプリーツとし、内径30mm、外径80mm、長さ220mmの円筒形に形成したもの)
 カチオン膜:旭化成メディカル Qyu speed D(厚さ70μm)
 アニオン膜:ポール社 ABD1UPWE3EH1(厚さ150μm)
Cationic fiber: Environmental Purification Research Institute Graft polymerized fiber (introduced tertiary amino group)
Anion membrane tubular body: Paul's Ultipleats (a cylinder with an inner diameter of 30 mm, an outer diameter of 80 mm, and a length of 220 mm formed by using an anion membrane with a thickness of 150 μm as pleats)
Cationic membrane: Asahi Kasei Medical Qyu speed D (thickness 70 μm)
Anion membrane: Paul ABD1UPWE3EH1 (thickness 150 μm)
 また、試験水としては、以下のものを用いた。 In addition, the following was used as the test water.
 シリカ微粒子試験水:超純水又はpH4.8の炭酸水に粒径22nmのシリカ微粒子(シグマアルドリッチ社製)を1×10個/mLの濃度に添加したもの
 アルミナ微粒子試験水:超純水又はpH4.8の炭酸水に粒径22nmのアルミナ微粒子(シグマアルドリッチ社製)を1×10個/mLの濃度に添加したもの
Silica fine particle test water: Ultrapure water or carbonated water with a pH of 4.8 added with silica fine particles (manufactured by Sigma Aldrich) having a particle size of 22 nm to a concentration of 1 × 10 5 pieces / mL Alumina fine particle test water: Ultrapure water Alternatively, alumina fine particles (manufactured by Sigma Aldrich) having a particle size of 22 nm are added to carbonated water having a pH of 4.8 at a concentration of 1 × 10 5 pieces / mL.
[シリカ又はアルミナ微粒子の除去率の評価]
 図4に示す試験装置を用い、シリカ又はアルミナ微粒子タンク21から超純水又はpH4.8の炭酸水に微粒子を注入して微粒子試験水を調製し、試験膜を装着した膜モジュール22に10m/dの条件で通水した。
[Evaluation of removal rate of silica or alumina fine particles]
Using the test device shown in FIG. 4, fine particles were injected into ultrapure water or carbonated water having a pH of 4.8 from a silica or alumina fine particle tank 21 to prepare fine particle test water, and 10 m / m / in a membrane module 22 equipped with a test membrane. Water was passed under the condition of d.
 膜モジュール22の入口と出口にそれぞれオンライン微粒子モニターUDI20(PMS社製)を設け、入口水と出口水の微粒子数から、微粒子除去率を算出した。 An online fine particle monitor UDI20 (manufactured by PMS) was provided at the inlet and outlet of the membrane module 22, respectively, and the fine particle removal rate was calculated from the number of fine particles in the inlet water and the outlet water.
[実施例1]
 アニオン膜筒状体(ウルチプリーツ)の外周に上記カチオン繊維を100m巻回したものを作成し、外周→内部の方向にシリカ含有水(超純水又は炭酸水)を通水した。
[Example 1]
A 100 m-wound cation fiber was prepared around the outer circumference of an anionic membrane tubular body (ultipleats), and silica-containing water (ultrapure water or carbonated water) was passed in the direction from the outer circumference to the inside.
[実施例2]
 実施例1において、シリカ含有水の代りにアルミナ含有水(超純水又は炭酸水)を通水した。
[Example 2]
In Example 1, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
[実施例3]
 上記アニオン膜を筒形カートリッジ形状(外径80mm、長さ220mm)とし、その外周に上記カチオン繊維を100m巻回したものを作成し、外周→内部の方向にシリカ含有水(超純水又は炭酸水)を通水した。
[Example 3]
The anion film has a tubular cartridge shape (outer diameter 80 mm, length 220 mm), and the cation fiber is wound 100 m around the outer circumference thereof to prepare silica-containing water (ultra pure water or carbonated water) in the direction from the outer circumference to the inside. Water) was passed.
[実施例4]
 実施例3において、シリカ含有水の代りにアルミナ含有水(超純水又は炭酸水)を通水した。
[Example 4]
In Example 3, alumina-containing water (ultra-pure water or carbonated water) was passed instead of the silica-containing water.
[比較例1]
 上記ウルチプリーツのみにシリカ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 1]
Silica-containing water (ultrapure water or carbonated water) was passed only through the ultipleats.
[比較例2]
 比較例1において、シリカ含有水の代りにアルミナ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 2]
In Comparative Example 1, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
[比較例3]
 上記カチオン膜(Qyu speed D)のみにシリカ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 3]
Silica-containing water (ultrapure water or carbonated water) was passed only through the above cation membrane (Qyu speed D).
[比較例4]
 比較例3において、シリカ含有水の代りにアルミナ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 4]
In Comparative Example 3, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
[比較例5]
 上記アニオン膜(ABD1UPWE3EH1)にシリカ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 5]
Silica-containing water (ultrapure water or carbonated water) was passed through the anion membrane (ABD1UPWE3EH1).
[比較例6]
 比較例5において、シリカ含有水の代りにアルミナ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 6]
In Comparative Example 5, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
[比較例7]
 実施例1において、筒状体(ウルチプリーツ)を除去したカチオン繊維巻回体を作成し、シリカ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 7]
In Example 1, a cationic fiber wound body from which the tubular body (ultipleats) had been removed was prepared, and silica-containing water (ultrapure water or carbonated water) was passed therethrough.
[比較例8]
 比較例7において、シリカ含有水の代りにアルミナ含有水(超純水又は炭酸水)を通水した。
[Comparative Example 8]
In Comparative Example 7, alumina-containing water (ultra-pure water or carbonated water) was passed instead of silica-containing water.
 実施例1~4、比較例1~8の結果を表1に示す。 Table 1 shows the results of Examples 1 to 4 and Comparative Examples 1 to 8.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[考察]
 表1の通り、超純水中および弱酸性領域でゼータ電位が負電荷を帯びる22nmシリカは、実施例1~4では99.999%以上の除去性能を有した。また、両領域で正電荷を帯びる22nmアルミナ粒子に対しても、99.999%以上の除去性能を有した。この除去性能は単品で使用した他の比較例の性能に対しても優位な性能を有した。
[Discussion]
As shown in Table 1, 22 nm silica having a negative zeta potential in ultrapure water and in a weakly acidic region had a removal performance of 99.999% or more in Examples 1 to 4. In addition, it had a removal performance of 99.999% or more even for 22 nm alumina particles having a positive charge in both regions. This removal performance was superior to the performance of other comparative examples used as a single product.
 比較例1,2の通り、ウルチプリーツは、超純水および弱酸性領域でゼータ電位が負電荷を帯びる22nmシリカ粒子の微粒子除去性能は正電荷を帯びる22nmアルミナ粒子の微粒子除去性能比べ、除去性能は劣っていた。(除去性能:シリカ粒子:99.9%、アルミナ粒子:99.99%)。実施例1,2の通り、カチオン繊維をカートリッジ膜上に巻くことで、22nmシリカ粒子、22nmアルミナ粒子に対して、99.999%以上の除去性能を有し、除去性能が向上した。比較例7,8でシリカ粒子はカチオン繊維に対して良好な除去性能を有している(99.9%)ことからもカチオン繊維に荷電的に吸着することで除去されたと考えられる。比較例8の通り、カチオン繊維と同電荷のアルミナ粒子も、本カチオン繊維で除去性能が若干確保されているが(99%)、本カチオン繊維はグラフト重合でヒゲ上の長い官能基を導入していることから、絡めとりの効果も付与されたと考えられる。 As shown in Comparative Examples 1 and 2, Ultipleats has a removal performance of 22 nm silica particles having a negative zeta potential in ultrapure water and a weakly acidic region as compared with a particle removal performance of 22 nm alumina particles having a positive charge. Was inferior. (Removal performance: silica particles: 99.9%, alumina particles: 99.99%). As in Examples 1 and 2, by winding the cationic fiber on the cartridge membrane, the removal performance was 99.999% or more with respect to the 22 nm silica particles and the 22 nm alumina particles, and the removal performance was improved. Since the silica particles in Comparative Examples 7 and 8 had good removal performance with respect to the cationic fibers (99.9%), it is considered that the silica particles were removed by being chargedly adsorbed on the cationic fibers. As shown in Comparative Example 8, the alumina particles having the same charge as the cationic fiber also have some removal performance secured by the cationic fiber (99%), but the cationic fiber introduces a long functional group on the beard by graft polymerization. Therefore, it is considered that the effect of entanglement was also given.
 実施例1の性能は単品で使用した各比較例の性能に対して優位な性能を有していた。 The performance of Example 1 was superior to the performance of each Comparative Example used as a single item.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2020年3月30日付で出願された日本特許出願2020-060751に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the intent and scope of the invention.
This application is based on Japanese Patent Application No. 2020-060751 filed on March 30, 2020, which is incorporated by reference in its entirety.
 1 複合膜
 2 多孔質膜
 3 アニオン性官能基を有する膜
 4 カチオン性官能基を有する膜
 10,10A~10J 濾過ユニット
 11 筒状体
 12,13,14 繊維
 15 平膜
 21 微粒子タンク
 22 膜モジュール
 30 ハウジング
1 Composite membrane 2 Porous membrane 3 Membrane with anionic functional group 4 Membrane with cationic functional group 10,10A-10J Filtration unit 11 Cylindrical body 12,13,14 Fiber 15 Flat membrane 21 Fine particle tank 22 Membrane module 30 housing

Claims (7)

  1.  液体中の微粒子を除去する微粒子除去装置において、一体化された正荷電微粒子捕捉部と、負電荷微粒子捕捉部とを有することを特徴とする微粒子除去装置。 A fine particle removing device for removing fine particles in a liquid, characterized by having an integrated positively charged fine particle capturing unit and a negatively charged fine particle capturing unit.
  2.  さらに多孔体が前記正荷電微粒子捕捉部及び負電荷微粒子捕捉部と一体化されている請求項1に記載の微粒子除去装置。 The fine particle removing device according to claim 1, wherein the porous body is further integrated with the positively charged fine particle capturing portion and the negatively charged fine particle capturing portion.
  3.  前記多孔体が膜よりなり、膜の一方の面に正荷電微粒子捕捉部が設けられ、他方の面に負電荷微粒子捕捉部が設けられている請求項2に記載の微粒子除去装置。 The fine particle removing device according to claim 2, wherein the porous body is made of a film, a positively charged fine particle capturing portion is provided on one surface of the membrane, and a negatively charged fine particle capturing portion is provided on the other surface.
  4.  前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が繊維となっており、該筒状体の外周及び内周の少なくとも一方に該繊維が巻回されている請求項1に記載の微粒子除去装置。 One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and the fiber is wound around at least one of the outer and inner circumferences of the tubular body. The fine particle removing device according to claim 1, which is being turned.
  5.  前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が繊維となっており、該筒状体の外周及び内周の少なくとも一方に該繊維が充填されている請求項1に記載の微粒子除去装置。 One of the positively charged fine particle trapping portion and the negatively charged fine particle trapping portion is a tubular body, and the other is a fiber, and at least one of the outer and inner circumferences of the tubular body is filled with the fiber. The fine particle removing device according to claim 1.
  6.  前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が繊維となっており、該筒状体の外周に該繊維が巻回されており、該筒状体内に該繊維が充填されている請求項1に記載の微粒子除去装置。 One of the positively charged fine particle capturing portion and the negatively charged fine particle capturing portion is a tubular body, and the other is a fiber, and the fiber is wound around the outer periphery of the tubular body. The fine particle removing device according to claim 1, wherein the fiber is filled in a tubular body.
  7.  前記正荷電微粒子捕捉部と、負電荷微粒子捕捉部との一方が筒状体となっており、他方が中空糸となっており、該筒状体内に該中空糸が配置されている請求項1に記載の微粒子除去装置。 Claim 1 in which one of the positively charged fine particle capturing portion and the negatively charged fine particle capturing portion is a tubular body and the other is a hollow fiber, and the hollow fiber is arranged in the tubular body. The fine particle removing device according to.
PCT/JP2021/012968 2020-03-30 2021-03-26 Particulate removal apparatus WO2021200690A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060751A JP2021159785A (en) 2020-03-30 2020-03-30 Fine particle removal device
JP2020-060751 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200690A1 true WO2021200690A1 (en) 2021-10-07

Family

ID=77928856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012968 WO2021200690A1 (en) 2020-03-30 2021-03-26 Particulate removal apparatus

Country Status (3)

Country Link
JP (1) JP2021159785A (en)
TW (1) TW202138306A (en)
WO (1) WO2021200690A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889954A (en) * 1994-09-21 1996-04-09 Asahi Chem Ind Co Ltd Point-of-use module system
JP2008188513A (en) * 2007-02-02 2008-08-21 Hitachi Chem Co Ltd Method and device for manufacturing base material with interlaminated film
JP2014144448A (en) * 2013-01-30 2014-08-14 Kobe Univ Method for producing separation membrane
JP2019177329A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Fine particle removal membrane, fine particle removal device and fine particle removal method
WO2020203142A1 (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Particle removal device and particle removal method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889954A (en) * 1994-09-21 1996-04-09 Asahi Chem Ind Co Ltd Point-of-use module system
JP2008188513A (en) * 2007-02-02 2008-08-21 Hitachi Chem Co Ltd Method and device for manufacturing base material with interlaminated film
JP2014144448A (en) * 2013-01-30 2014-08-14 Kobe Univ Method for producing separation membrane
JP2019177329A (en) * 2018-03-30 2019-10-17 栗田工業株式会社 Fine particle removal membrane, fine particle removal device and fine particle removal method
WO2020203142A1 (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Particle removal device and particle removal method

Also Published As

Publication number Publication date
JP2021159785A (en) 2021-10-11
TW202138306A (en) 2021-10-16

Similar Documents

Publication Publication Date Title
US20090039019A1 (en) Porous membranes containing exchange resins
JP5568835B2 (en) Reverse osmosis membrane, reverse osmosis membrane device, and method of hydrophilizing reverse osmosis membrane
KR101185701B1 (en) Composite semipermeable membrane
WO2019187580A1 (en) Fine particle removing membrane, fine particle removing device, and fine particle removing method
WO2020203142A1 (en) Particle removal device and particle removal method
JP2014521494A (en) High permeation flow reverse osmosis membrane containing surface-treated zeolite and method for producing the same
CN111545075B (en) Ligand-modified filter materials, composite membranes, and methods for reducing metals from liquid compositions
JP2006187731A (en) Separation membrane and water treatment apparatus
JP2016535674A5 (en)
TW201801789A (en) Ultrapure water manufacturing system
CN112316752B (en) Sulfonamide micromolecule surface modified polyamide composite membrane and preparation method thereof
CN111249930B (en) Hydrophilic filter membrane with side chain hydrophilic group and preparation and use methods thereof
TW201703847A (en) Removal device of fine particles in water and ultrapure water production/supply system
WO2021200690A1 (en) Particulate removal apparatus
US20050218068A1 (en) Filter cartridge
JP2015203048A (en) polyketone porous membrane
CN109041579B (en) Wet cleaning device and wet cleaning method
WO2022176696A1 (en) Fine particle removal device and fine particle removal method
JP2022126354A (en) Fine particle removal apparatus and fine particle removal method
Yurekli Principles of Membrane Surface Modification for Water Applications
KR101645485B1 (en) Formation and immobilization of small particles by using polyelectrolyte multilayers
CN110801737A (en) Preparation method of high-dispersion titanium dioxide doped polyamide reverse osmosis membrane
JP2023544600A (en) Membrane for removing metal species from amines
JP2023545110A (en) Filtration membranes, systems, and methods for producing purified water
WO2021173704A1 (en) Ligand-modified filter and methods for reducing metals from liquid compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21779851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21779851

Country of ref document: EP

Kind code of ref document: A1