WO2021200425A1 - Method and facility for manufacturing reformed coal - Google Patents

Method and facility for manufacturing reformed coal Download PDF

Info

Publication number
WO2021200425A1
WO2021200425A1 PCT/JP2021/012113 JP2021012113W WO2021200425A1 WO 2021200425 A1 WO2021200425 A1 WO 2021200425A1 JP 2021012113 W JP2021012113 W JP 2021012113W WO 2021200425 A1 WO2021200425 A1 WO 2021200425A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
inner cylinder
heating chamber
temperature
stirring member
Prior art date
Application number
PCT/JP2021/012113
Other languages
French (fr)
Japanese (ja)
Inventor
小水流 広行
亘 谷奥
兼井 玲
小菅 克志
淳志 小林
白水 渡
Original Assignee
日鉄エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄エンジニアリング株式会社 filed Critical 日鉄エンジニアリング株式会社
Priority to CN202180025266.XA priority Critical patent/CN115349007B/en
Priority to AU2021247761A priority patent/AU2021247761B2/en
Publication of WO2021200425A1 publication Critical patent/WO2021200425A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/28Other processes
    • C10B47/30Other processes in rotary ovens or retorts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/04Heating fuel prior to delivery to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the present invention relates to a method for producing reformed coal and a production facility.
  • Patent Document 1 Conventionally, as a method for producing reformed coal by carbonizing coal to produce reformed coal, the method described in Patent Document 1 below is known.
  • the thermal efficiency is improved by using the carbonization gas as a heat source for carbonization.
  • the dry distillation gas contains tar as a high boiling point component, for example, this tar adheres to the pipe to block the pipe, and the dry distillation equipment is used. The operating rate may decrease. Therefore, in the production method described in Patent Document 1 below, adhesion of tar to piping or the like is suppressed by mixing low-temperature heating gas and waste heat gas with dry distillation gas.
  • the conventional method for producing reformed coal has a problem that the configuration of a carbonization device for carbonizing coal becomes complicated and the operation becomes complicated.
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to simplify the device configuration of a carbonization device in a reformed coal manufacturing facility and facilitate operation.
  • An inner cylinder that rotates around the axis, a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder, and a plurality of inner cylinders are arranged in the axial direction and penetrate the inner cylinder in the radial direction.
  • a dry distillation device having an exhaust pipe that opens into a heating chamber is provided, and coal is supplied from an end located on the upstream side along the axial direction in the inner cylinder, and coal is supplied from an end located on the downstream side along the axial direction.
  • a temperature control unit that supplies oxygen-containing gas to the heating chamber to control the temperature in the heating chamber, and a flue that discharges the gas in the heating chamber.
  • the temperature control unit controls the temperature for each control zone formed by dividing the heating chamber into a plurality of control zones in the axial direction, and the flue is connected to the most upstream control zone among the plurality of control zones.
  • the stirring member arranged in the thermal decomposition zone on the downstream side inside the inner cylinder has a larger inclination angle with respect to the axis than the stirring member arranged in the water evaporation zone on the upstream side, according to [4].
  • Modified coal manufacturing equipment. [6] The modified coal manufacturing facility according to [5], wherein the inclination angle of the stirring member arranged in the water evaporation zone with respect to the axis is 0.
  • An inner cylinder that rotates around the axis, a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder, and a plurality of inner cylinders are arranged in the axial direction and penetrate the inner cylinder in the radial direction.
  • a carbonization device having an exhaust pipe that opens into the heating chamber, coal is supplied from the end located on the upstream side along the axial direction in the inner cylinder, and the end located on the downstream side along the axial direction.
  • a method for producing reformed coal which comprises, and in the gas discharge process, discharges gas only from the end located on the upstream side in the heating chamber.
  • the temperature is controlled for each control zone formed by dividing the heating chamber into a plurality of parts in the axial direction.
  • FIG. 3 is a cross-sectional view taken along the line AA of the inner cylinder shown in FIG. 3 in an unexpanded state.
  • FIG. 3 is a cross-sectional view taken along line BB of the inner cylinder shown in FIG. 3 in an unexpanded state.
  • It is a front view of the stirring plate in the example shown in FIG. It is a side view of the stirring plate in the example shown in FIG.
  • the reformed coal production facility 10 includes a drying device 11, a carbonization device 12, a cooling device 13, and an exhaust gas system 14.
  • This production facility 10 can be suitably used for reforming low-grade coal having a high water content, such as lignite and subbituminous coal.
  • the drying device 11 dries coal.
  • the drying device 11 dries the coal until, for example, the water content of the coal is 15% by weight or less, preferably 10% by weight or less.
  • the carbonization device 12 dry-distills the dried coal.
  • the carbonization apparatus 12 dry-distills the coal until, for example, the temperature of the coal reaches 500 ° C. or higher, specifically 550 ° C. to 800 ° C., to obtain reformed coal.
  • the cooling device 13 cools the reformed coal that has been carbonized.
  • the cooling device 13 cools the coal until, for example, the temperature of the coal is 70 ° C. or lower, preferably 60 ° C. or lower.
  • the exhaust gas system 14 releases the dry distillation gas discharged from the dry distillation apparatus 12, the dry distillation gas primarily burned by partial combustion (oxidation), and the pulverized coal accompanying a small amount of the gas to the atmosphere as exhaust gas after complete combustion.
  • the exhaust gas system 14 includes a secondary combustion device 15, a steam generator 16, a dust removing device 17, a suction fan 18, and an exhaust gas treatment device 19.
  • the secondary combustion device 15 secondarily burns the primary burned carbonization gas to completely burn it. If NO x is generated until it exceeds the environmental standard at the stage of complete combustion, it is preferable to install a NO x removal device in the subsequent stage.
  • the steam generator 16 generates steam by recovering waste heat from steam and dry distillation gas that has been completely burned. The steam generator 16 supplies a part or all of the recovered steam to the drying device 11 as a heat source for drying coal.
  • the dust remover 17 removes fine ash and the like accompanying the gas that has passed through the steam generator 16.
  • the suction fan 18 sucks the gas from the dust removing device 17 so that the pressure in the heating chamber of the carbonization device 12 becomes constant, and sends it to the exhaust gas treatment device 19.
  • the exhaust gas treatment device 19 purifies the exhaust gas by removing SO x and the like from the gas, and releases the exhaust gas to the atmosphere.
  • the carbonization device 12 is a so-called external heat type rotary kiln. As shown in FIG. 2, the carbonization device 12 includes an inner cylinder 21, a heating chamber 22, and a temperature control unit 23.
  • coal passes through the inside of the inner cylinder 21 in the axis O direction of the inner cylinder 21.
  • coal is supplied in a fixed amount from an end located on the upstream side D1 along the axis O direction, and reformed coal is discharged from an end located on the downstream side D2.
  • the end of the upstream side D1 of the inner cylinder 21 is connected to the drying device 11, and the end of the downstream side D2 of the inner cylinder 21 is connected to the cooling device 13.
  • the axis O of the inner cylinder 21 is inclined and extends in the horizontal direction. Specifically, the axis O of the inner cylinder 21 is provided with a gentle downward slope from the upstream side D1 to the downstream side D2 along the axis O direction.
  • the inner cylinder 21 is formed so as to be rotatable around the axis O.
  • the coal supplied from the end of the upstream side D1 of the inner cylinder 21 is transmitted along the inner peripheral surface of the inner cylinder 21 by the inner cylinder 21 being inclined toward the downstream side and rotating around the axis O. It gradually moves toward the downstream side D2 over a predetermined residence time.
  • the heating chamber 22 covers the inner cylinder 21 from the outside in the radial direction (hereinafter, referred to as “diameter direction”) of the inner cylinder 21.
  • An inner cylinder 21 is inserted into the heating chamber 22 in the axis O direction, and both ends of the inner cylinder 21 in the axis O direction project from the heating chamber 22 in the axis O direction.
  • the inner cylinder 21 is provided with an exhaust pipe 24, and a so-called cornered kiln is adopted as the carbonization device 12.
  • a plurality of exhaust pipes 24 are arranged in the inner cylinder 21 in the axis O direction.
  • the exhaust pipe 24 penetrates the inner cylinder 21 in the radial direction and opens into the heating chamber 22.
  • the exhaust pipe 24 is provided in the heating chamber portion 21a, which is a portion of the inner cylinder 21 located in the heating chamber 22.
  • the exhaust pipe 24 is provided over the entire length of the heating chamber portion 21a in the axis O direction.
  • a plurality of exhaust pipes 24 are arranged at equal intervals in the axis O direction.
  • the exhaust pipe 24 discharges the dry distillation gas containing water vapor, which is a gas generated from coal inside the inner cylinder 21, and tar, which is a high boiling point component, into the heating chamber 22.
  • the temperature control unit 23 supplies air into the heating chamber 22 to control the temperature inside the heating chamber 22.
  • the temperature control unit 23 heats the inside of the heating chamber 22 by partially burning (oxidizing) the dry distillation gas containing tar, which is a high boiling point component, discharged from the exhaust pipe 24 into the heating chamber 22 by air.
  • the oxygen-containing gas means a gas that contains oxygen and can burn (oxidize) the carbonization gas.
  • oxygen-containing gas in addition to air, for example, oxygen-containing exhaust gas, oxygen-enriched air, and the like can be used.
  • the temperature control unit 23 is formed so that the inside of the heating chamber 22 can be heated by a heat source outside the heating chamber 22, that is, fuel gas. Further, as the fuel gas, natural gas, LPG gas, or the like can be used, and it is also used for preheating the system at the time of start-up.
  • the temperature control unit 23 controls the temperature for each of the control zones Z1 to Z3.
  • the control zones Z1 to Z3 are divided into a plurality of control zones Z1 to Z3 in the axis O direction in the heating chamber 22.
  • the control zones Z1 to Z3 are divided into three, and the first control zone Z1, the second control zone Z2, and the third control zone Z3 are in this order from the upstream side D1 to the downstream side D2. It is partitioned.
  • the temperature control unit 23 is provided with a plurality of control systems 25 corresponding to the plurality of control zones Z1 to Z3, respectively.
  • Each control system 25 includes at least an air supply unit 26, a heating unit 27, a temperature detection unit 29, and a control main body unit 30.
  • the air supply unit 26 can be rephrased as an oxygen-containing gas supply unit, including the case where an oxygen-containing gas other than air is supplied.
  • the air supply unit 26 supplies air into the heating chamber 22.
  • the air supply unit 26 includes a driving air fan 31 that supplies air to the heating chamber 22, a first pipe 32 that connects the driving air fan 31 into the heating chamber 22, and a first control interposed in the first pipe 32. It is provided with a valve 33.
  • the first pipe 32 is connected to the upper wall and the lower wall portion of the heating chamber 22 so that the pipes on the upper wall side and the lower wall side face each other and after the pipes on the upper wall and the lower wall are branched into a plurality of pipes. Has been done.
  • a supply air amount control method in which the motor of the driving air fan 31 is changed in rotation speed by using an inverter can also be applied.
  • the heating unit 27 heats the inside of the heating chamber 22 with the fuel gas (heat source) outside the heating chamber 22.
  • the heating unit 27 is interposed in a burner 34 that heats the heating chamber 22, a burner fan 36 that supplies air to the burner 34, a second pipe 37 that connects the burner fan 36 to the burner 34, and a second pipe 37.
  • a second control valve 38, a third pipe 39 for supplying fuel gas to the burner 34, and a third control valve 40 interposed in the third pipe 39 are provided.
  • the burner 34 mixes the air supplied from the supply unit with the fuel gas and burns the fuel gas.
  • the burner 34 is provided on the lower wall portion of the heating chamber 22, and is provided in the same direction as the lower wall portion installation pipe of the first pipe 32.
  • the steam supply unit 28 supplies steam into the heating chamber 22 to cool the inside of the heating chamber 22.
  • the steam supply unit 28 supplies steam of, for example, about 150 ° C. into the heating chamber 22.
  • the steam supply unit 28 includes a fourth pipe 41 that supplies steam into the heating chamber 22, and a fourth control valve 42 interposed in the fourth pipe 41.
  • the fourth pipe 41 is connected to the lower wall of the heating chamber 22 in the same direction as the lower wall portion installation pipe of the first pipe 32.
  • the temperature detection unit 29 detects the temperature inside the heating chamber 22.
  • the temperature detection unit 29 can be configured by, for example, a temperature sensor.
  • the control main body 30 controls the air supply unit 26, the heating unit 27, and the steam supply unit 28 based on the detection result of the temperature detection unit 29. In the illustrated example, the control main body 30 controls the air supply unit 26, the heating unit 27, and the steam supply unit 28 by controlling the first to fourth control valves 33, 38, 40, and 42.
  • the control main body 30 may be configured by a control device such as a PLC (Programmable Logic Controller) and may be implemented as a distributed control system (DCS).
  • PLC Programmable Logic Controller
  • the heating chamber 22 is provided with a flue 43 for discharging gas from the heating chamber 22.
  • the flue 43 is connected to the heating chamber 22 and connects the inside of the heating chamber 22 to the secondary combustion device 15. At this time, the flue 43 is connected only to the end portion of the heating chamber 22 located on the upstream side D1. As a result, the gas in the heating chamber 22 is discharged only from the end located on the upstream side D1 in the heating chamber 22.
  • the flue 43 is connected to a first control zone Z1 located on the most upstream side D1 among the plurality of control zones Z1 to Z3.
  • the method for producing reformed coal using the reformed coal production facility 10 includes a drying step for drying the coal, a carbonization step for carbonizing the dried coal, and a cooling step for cooling the carbonized coal. ..
  • the drying step is carried out by the drying device 11, the dry distillation step is carried out by the dry distillation device 12, and the cooling step is carried out by the cooling device 13.
  • a preheating step of preheating the heating chamber 22 is carried out.
  • the inside of the heating chamber 22 is heated by the heating unit 27 of the temperature control unit 23.
  • coal is supplied from the end of D1 on the upstream side of the inner cylinder 21, and reformed coal is discharged from the end of D2 on the downstream side.
  • the dry distillation gas containing tar having a high boiling point component is generated from the coal passing through the inside of the inner cylinder 21, the dry distillation gas is discharged from the inside of the inner cylinder 21 into the heating chamber 22 through the exhaust pipe 24.
  • temperature control is performed by supplying air into the heating chamber 22 to control the temperature inside the heating chamber 22 (temperature control step).
  • the dry distillation gas is partially burned (oxidized) in the heating chamber 22 by air to raise the temperature in the heating chamber 22 and heat the coal passing through the inside of the inner cylinder 21 through the inner cylinder 21. be able to.
  • the temperature inside the heating chamber 22 can be raised to such an extent that tar does not adhere to the wall surface of the heating chamber 22 or the wall surface of the flue 43.
  • the temperature control unit 23 controls all the temperatures of the plurality of control zones Z1 to Z3 to 600 ° C. or higher.
  • the temperature control unit 23 controls the temperature inside the heating chamber 22 within the range in which the carbonization device 12 can operate without excessively increasing the temperature inside the heating chamber 22.
  • the temperature control unit 23 can control the temperature of the heating chamber 22 by controlling only the amount of air supplied from the air supply unit 26. Further, the temperature control unit 23 can control the temperature of the heating chamber 22 by controlling not only the air supply unit 26 but also the heating unit 27 and the steam supply unit 28. Further, the temperature control unit 23 may perform temperature control so that the temperature in the flue 43 is maintained at 600 ° C. or higher.
  • the temperature in the heating chamber 22 can be appropriately changed depending on, for example, the use of the reformed coal to be produced.
  • the temperature in the heating chamber 22 can be set based on, for example, the target temperature of the reformed coal, which is the target temperature of the reformed coal discharged from the inner cylinder 21.
  • the temperature in the heating chamber 22 can be set in a range of 100 ° C. to 150 ° C. higher than the target temperature of the reformed coal. It should be noted that the range of 100 ° C. to 150 ° C. higher than the target temperature of reformed coal is not an essential condition, and can be applied as long as the temperature is equal to or higher than the target temperature of reformed coal.
  • the volatile content (VM) of coal is set to 5 to 15% by mass, and the reformed coal is anthracite equivalent coal or semi-anthracite equivalent coal. Can be done. Further, for example, by setting the target temperature of the reformed coal to 550 ° C to 750 ° C, the volatile content (VM) of the coal can be set to 10 to 30% by mass, and the reformed coal can be suitably used as steam coal equivalent coal. ..
  • the water content in the coal evaporates at the stage where the coal supplied from the end of the upstream side D1 to the inner cylinder 21 is heated to about 150 ° C.
  • the amount of heat required for heating coal increases in the portion located on the upstream side D1 because the amount of heat required for evaporation of water is added, and the amount of heat required for heating coal increases in the portion located on the downstream side D2.
  • the amount of heat required to heat the coal is reduced because the amount of heat required for heating the coal is reduced. Therefore, inside the inner cylinder 21, the temperature of coal and the atmosphere is unlikely to rise in the portion located on the upstream side D1.
  • the amount of carbonization gas discharged from the exhaust pipe 24 into the heating chamber 22 is less on the upstream side D1 than on the downstream side D2. Therefore, even in the heating chamber 22, the temperature of the portion located on the upstream side D1 is difficult to rise because the calorie of the atmospheric gas is low.
  • the gas is discharged so that the gas is discharged only from the end located on the upstream side D1 in the heating chamber 22 (gas discharge step). That is, the gas in the heating chamber 22 is discharged only from the flue 43 installed at the end located on the upstream side D1.
  • a large amount of carbonization gas generated in the portion located on the downstream side D2 in the heating chamber 22 passes through the portion located on the upstream side D1 in the heating chamber 22 in the process of being discharged from the heating chamber 22.
  • the temperature of the portion located on the upstream side D1 in the heating chamber 22 can be surely raised.
  • the carbonization gas is partially burned (oxidized) in the heating chamber 22.
  • the temperature inside the heating chamber 22 can be raised. Therefore, by raising the temperature in the heating chamber 22 to such an extent that tar does not adhere to the wall surface of the heating chamber 22 and the wall surface of the flue 43, the operating rate of the carbonization device 12 in the reformed coal production facility 10 is secured. , The apparatus configuration of the carbonization apparatus 12 in the reformed coal production facility 10 can be simplified and the operation can be facilitated.
  • the temperature control unit 23 controls the temperature inside the flue 43 to be 600 ° C. or higher and the temperature inside the heating chamber 22 to be 600 ° C. or higher, the wall surface of the heating chamber 22 or the flue 43 It is possible to reliably prevent tar from adhering to the wall surface. As a result, the operating rate of the carbonization device 12 in the reformed coal manufacturing facility 10 can be reliably secured.
  • the temperature control unit 23 controls the temperature for each of the control zones Z1 to Z3, the temperature inside the heating chamber 22 is surely raised to the extent that tar does not adhere to the wall surface of the heating chamber 22 or the wall surface of the flue 43. Can be done.
  • the dry distillation gas is suppressed from being excessively partially burned (oxidized), and the unburned gas is transferred to the upstream side.
  • the dry distillation gas containing the unburned gas from the downstream side can be positively partially burned (oxidized).
  • the operating rate of the carbonization device 12 in the reformed coal manufacturing facility 10 can be reliably secured.
  • the steam recovered by the steam generator 16 is supplied to the drying device 11 as a heat source, but the heat source may be supplied to the drying device 11 from a device different from the steam generator 16.
  • the temperature control unit 23 controls the temperature for each of the control zones Z1 to Z3, but the temperature control unit 23 may integrally control the temperature in the heating chamber 22.
  • air is supplied into the heating chamber 22, but like air, an oxygen-containing gas different from air may be supplied into the heating chamber 22.
  • the oxygen-containing gas means a gas that contains oxygen and can burn (oxidize) the carbonization gas.
  • oxygen-containing gas in addition to air, for example, oxygen-containing exhaust gas, oxygen-enriched air, and the like can be used.
  • oxygen-containing exhaust gas oxygen-containing exhaust gas, oxygen-enriched air, and the like
  • the first verification test In the first verification test, the temperature inside the heating chamber 22 based on the difference in the position of the flue 43 in the axis O direction was verified.
  • two types of carbonization devices 12 were used as Test Example A1 and Test Example B1.
  • the diameter of the inner cylinder 21 is 500 mm
  • the size of the heating chamber portion 21a of the inner cylinder 21 in the axis O direction is 3000 mm
  • the angle was 1.0 degree
  • the rotation speed of the inner cylinder 21 was 3.1 rpm.
  • the water content of the coal supplied to the inner cylinder 21 was set to 11.8% by weight, and the supply speed of the coal supplied to the inner cylinder 21 was set to 280 kg / h to 290 kg / h. Further, based on the temperature of the second control zone Z2, the supply rate of the amount of air supplied from each control system 25 to each of the control zones Z1 to Z3 was set. At this time, the supply speed of the amount of air supplied to each control zone Z1 to Z3 was set to be the same, and the supply speed of the total amount of air in the three zones was set to 280 Nm 3 / h to 285 Nm 3 / h.
  • the positions of the flue 43 in the axis O direction were different between Test Example A1 and Test Example B1.
  • the flue 43 was connected only to the control zone Z1 at the end of the upstream side D1 of the heating chamber 22, as in the above embodiment.
  • Test Example B1 the flue 43 was connected only to the control zone Z3 at the end of D2 on the downstream side of the heating chamber 22.
  • the temperature of each of the first to third control zones Z3 and the discharged coal temperature which is the temperature of the coal discharged from the inner cylinder 21, were measured. The results are shown in Table 1 below.
  • the water content of the coal supplied to the inner cylinder 21 was set to 12.3% by weight, and the supply speed of the coal supplied to the inner cylinder 21 was set to 275 kg / h to 280 kg / h. Further, the flue 43 was connected only to the control zone Z1 at the end of the upstream side D1 of the heating chamber 22.
  • the target temperature of the second control zone Z2 was made different in order to compare the influence of tar adhesion on the operating temperature of the heating chamber 22.
  • the temperature of the second control zone Z2 was set to about 630 ° C
  • the temperature of the second control zone Z2 was set to about 550 ° C.
  • the supply speed of the amount of air supplied from each control system 25 to each of the control zones Z1 to Z3 was set based on the target temperature of each of the second control zones Z2. At this time, in each of Test Example A2 and Test Example B2, the supply speed of the amount of air supplied to each of the control zones Z1 to Z3 was set to be the same.
  • the total supply rate of air in each of the control zones Z1 to Z3 is 215 Nm 3 / h
  • the total supply rate of air in each of the control zones Z1 to Z3 is 163 Nm. It was set to 3 / h.
  • the temperature and the discharged coal temperature of each of the first to third control zones Z3 in this case are shown in Table 2 below.
  • each of Test Example A2 and Test Example B2 was operated continuously for 5 days, and the pressure loss between the inner cylinder 21 and the secondary combustion device 15 on the first day and the pressure loss on the fifth day The pressure loss between the inner cylinder 21 and the secondary combustion device 15 was measured.
  • the pressure loss between the inner cylinder 21 and the secondary combustion device 15 is measured by the pressure difference of the gas between the end of the downstream side D2 of the inner cylinder 21 and the end of the secondary combustion device 15 side. do.
  • the third verification test In the third verification test, the difference in the volatile content of coal by controlling the temperature in each of the control zones Z1 to Z3 was verified.
  • two types of carbonization devices 12 were used as Test Example A3 and Test Example B3.
  • the diameter of the inner cylinder 21 is 500 mm
  • the size of the heating chamber portion 21a of the inner cylinder 21 in the axis O direction is 3000 mm
  • the angle was 1.0 degree
  • the rotation speed of the inner cylinder 21 was 3.1 rpm.
  • the water content of the coal supplied to the inner cylinder 21 was set to 12.1% by weight, and the supply speed of the coal supplied to the inner cylinder 21 was set to 220 kg / h to 225 kg / h.
  • the flue 43 was connected only to the control zone Z1 at the end of the upstream side D1 of the heating chamber 22. Then, based on the emission reformed coal temperature, the supply speed of the air supplied from each control system 25 to each of the control zones Z1 to Z3 was set. At this time, each control system 25 was controlled so that the discharged coal temperature was around 655 ° C.
  • the temperature distribution in the heating chamber 22 was different between Test Example A3 and Test Example B3. That is, in Test Example A3, the temperature control unit 23 controlled the temperature of the heating chamber 22 so that the temperatures of the control zones Z1 to Z3 were substantially the same (see Table 3). At this time, in Test Example A3, the supply speed of the amount of air from each control system 25 is changed to supply air to the first control zone Z1 at 120 Nm 3 / h and to the second control zone Z2 at 70 Nm 3 /. Air was supplied at h, and air was supplied to the third control zone Z3 at 35 Nm 3 / h.
  • Test Example B3 the air supply speed from each control system 25 was made equal, and air was supplied to each of the control zones Z1 to Z3 at a supply speed of 75 Nm 3 / h.
  • the temperatures of the control zones Z1 to Z3 varied as shown in Table 3.
  • FIG. 3 is a developed view of the inner peripheral surface of the inner cylinder in the carbonization device according to the second embodiment of the present invention.
  • the inside of the inner cylinder 21 is further divided into a feed region 211 and a heating region 212 from the upstream side to the downstream side, and the heating region 212 is further divided into a water evaporation zone 212A and a thermal decomposition zone 212B.
  • the downstream side of the thermal decomposition zone 212B is the outlet region 213.
  • the stirring plates 51 and 52 for stirring coal project from the inner peripheral surface 21c of the inner cylinder 21 toward the axis O (see FIG. 2) in the water evaporation zone 212A and the thermal decomposition zone 212B, respectively.
  • the feed region 211 is provided with a feed lifter 211L for feeding coal to the heating region 212, and the outlet region 213 is not provided with a stirring plate and a lifter.
  • the stirring plates 51 and 52 are separated from the exhaust pipes 24 arranged by changing the direction of the inner cylinder 21 at 90 ° intervals, and at predetermined intervals (45 ° intervals in the illustrated example) in the circumferential direction of the inner cylinder 21. ).
  • each of the plurality of stirring plates 51 arranged in the circumferential direction extends parallel to the axis O. That is, the inclination angle of the stirring plate 51 of the water evaporation zone 212A with respect to the axis O is 0.
  • FIG. 4A is a cross-sectional view taken along the line AA of FIG.
  • each stirring plate 51 is an inner peripheral surface 21c of the inner cylinder 21.
  • An example is shown in which the inner cylinder 21 protrudes from the axis O toward the axis O and is arranged at equal intervals in the circumferential direction of the inner cylinder 21.
  • the stirring plate 51 is attached to the inner peripheral surface 21c via the bracket 53 at the end opposite to the axis O.
  • the stirring plates 51 adjacent to each other in the direction of the axis O are arranged so as to be offset from each other by 1/2 (22.5 ° in the illustrated example) of the circumferential direction of the inner cylinder 21.
  • the stirring plates 51 of the water evaporation zone 212A are arranged in, for example, four rows in the direction of the axis O.
  • each of the plurality of stirring plates 52 arranged in the circumferential direction has an inclination angle ⁇ (see FIG. 3) with respect to the axis O.
  • the magnitude of the inclination angle ⁇ is, for example, about 4.3 ° to 4.5 °.
  • FIG. 4B is a cross-sectional view taken along the line BB of FIG.
  • each stirring plate 52 is an inner peripheral surface 21c of the inner cylinder 21.
  • An example is shown in which not only the end face but also the plate surface is visible because the inner cylinder 21 is arranged at equal intervals in the circumferential direction of the inner cylinder 21 and has an inclination angle ⁇ with respect to the axis O.
  • the stirring plates 52 of the thermal decomposition zone 212B are arranged in, for example, eight rows in the direction of the axis O.
  • the stirring plate 52 in the thermal decomposition zone 212B is attached to the inner peripheral surface 21c via the bracket 53 as shown in FIGS. 5A and 5B, and is between the stirring plate 52 and the inner peripheral surface 21c of the inner cylinder 21.
  • a gap 54 is formed in the.
  • the stirring plates 51 and 52 as described above are arranged in the entire heating region 212 including the water evaporation zone 212A and the thermal decomposition zone 212B in the direction of the axis O.
  • the inner cylinder 21 is rotated around the axis O by driving a drive unit (not shown), and the inside of the heating chamber 22 is heated by the heating unit 27. Then, when the inside of the inner cylinder 21 reaches a predetermined high temperature, coal is put into the inside of the inner cylinder 21 and carbonized by the high heat in the heating chamber 22.
  • the coal When coal is put into the rotating inner cylinder 21, the coal is conveyed to the water evaporation zone 212A of the heating region 212 by the feed lifter 211L of the feed region 211, and the water contained in the coal is evaporated.
  • the stirring plate 51 Since the stirring plate 51 is arranged parallel to the axis O of the inner cylinder 21, coal particles are conveyed along the inner peripheral surface 21c of the inner cylinder 21 while being stirred by the stirring plate 51. It is transported to the thermal decomposition zone 212B.
  • the stirring plate 52 is rotated by the rotation of the inner cylinder 21, and coal is stirred and mixed by the stirring plate 52 inside the inner cylinder 21. At that time, some coal is lifted by the stirring plate 52, and some other coal is not lifted by the stirring plate 52 but falls from the gap 54 and flows on the inner peripheral surface 21c. Since the entire coal on the stirring plate 52 does not fall to the axis O side, the amount of scattering due to stirring can be suppressed.
  • the stirring plate 52 arranged in the thermal decomposition zone 212B has a height ha of the stirring plate 52 (dimension in the radial direction of the inner cylinder 21 with reference to the inner peripheral surface 21c). It is preferably designed to be 60% to 90% with respect to the filling height hm of coal. If the filling height hm of the coal is too small with respect to the height ha of the stirring plate 52, the stirring effect is small, and conversely, if it is too large, the scattering of coal increases. The amount of coal charged into the inner cylinder 21 may be adjusted so that the height ha of the stirring plate 52 is within the above range with respect to the filling height hm of coal. Further, as shown in FIG.
  • the height ha is defined as the height ha
  • the height of the gap 54 that is, the distance from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 to the end of the stirring plate 52 on the inner peripheral surface 21c side is defined as the height hb. If so, the height hb of the gap 54 is preferably in the range of 10% to 25%, more preferably 10% to 20% of the height ha of the stirring plate 52.
  • the coal when the coal is carbonized in the thermal decomposition zone 212B of the inner cylinder 21, the coal can be prevented from being fused or agglomerated by stirring with the stirring plate 52. As a result, the temperature deviation of the coal deposited inside the inner cylinder 21 is reduced, and the heat from the heating chamber 22 is efficiently transferred. Further, by providing the gap 54, it is possible to suppress the scattering of coal during stirring and to prevent the particles of carbide, which is a non-volatile component, from being discharged from the exhaust pipe 24.
  • the coal charged into the inner cylinder 21 is the pyrolysis zone 212B.
  • the time to stay in the water is, for example, about 50 minutes.
  • the stirring plate 52 having the inclination angle ⁇ is provided in the pyrolysis zone 212B as in the present embodiment, the time for coal to stay in the pyrolysis zone 212B is extended by about 20% to 60. This will increase the heat receiving area of coal by about 8%. That is, in the above example, the heat transfer efficiency to coal in the carbonization apparatus is improved by about 8% because the stirring plate 52 has the inclination angle ⁇ .
  • the stirring plate 51 of the water evaporation zone 212A is installed parallel to the axis O, but the stirring plate 51 in the water evaporation zone 212A may also be arranged with an inclination angle with respect to the axis O.
  • the inclination angle of the stirring plate 51 with respect to the axis O is preferably set smaller than the inclination angle ⁇ of the stirring plate 52.
  • the installation intervals of the stirring plates 52 arranged in the circumferential direction of the inner cylinder 21 are preferably equal intervals, but may be unequal intervals.
  • the stirring plate 52 can be installed in the range of 4 to 12, more preferably 6 to 10, depending on the inner diameter of the inner cylinder 21.
  • the number of stirring plates 52 installed in the circumferential direction of the inner peripheral surface 21c can be appropriately set within a range in which the mixing and stirring effect of coal can be improved. It is not preferable because it is divided into small pieces and the mixing ratio is lowered.
  • the stirring plate 52 is formed with a bent portion 52b that is inclined with respect to the radial direction of the inner cylinder 21.
  • the stirring plate 52 is formed with a bent portion 52b that is inclined with respect to the radial direction of the inner cylinder 21.
  • the distance to the end is defined as the height ha, and the height of the gap 54, that is, the distance from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 to the end of the stirring plate 52 on the inner peripheral surface 21c side is increased.
  • the height hc is defined as the distance from the inner peripheral surface 21c of the boundary between the bent portion 52b formed on the axis O side of the stirring plate 52 and the other portion
  • the height hc is the height ha. It is preferably in the range of 30% to 70%. That is, the bent portion 52b is preferably formed in a range of 30% or more to 70% or less of the height of the stirring plate 52 with respect to the inner peripheral surface 21c of the inner cylinder 21 on the axis O side of the stirring plate 52. .. Further, the inclination angle ⁇ of the bent portion 52b with respect to the radial direction of the inner cylinder 21 is preferably 10 ° or more and 45 ° or less.
  • the coal on the bent portion 52b falls in advance, so that, for example, the coal is removed from the end of the agitated plate 52 in which the bent portion is not formed (inner cylinder). It is possible to suppress the scattering of coal as compared with the case where the stirring plate 52 is dropped all at once (when the angle of the stirring plate 52 exceeds the horizontal due to the rotation of 21).
  • Test Example A4 and Test Example A5 a thermal decomposition test was carried out using lignite having a volatile content of about 50 wt% crushed to 5 mm or less and dried as a coking coal.
  • the relationship between the heating temperature of the coking coal and the VM value (volatile matter) of the produced reformed coal is shown in the graph of FIG.
  • the rate of temperature rise of coal was set to 7 ° C./min, and in Test Example A5, the rate of temperature rise was 25 ° C./min.
  • Test Example A9 a stirring plate having no inclination angle was installed up to a range of 600 mm from the upstream end of the inner cylinder in the heating region, and after that, a stirring plate having an inclination angle of 6 ° was installed.
  • the coal input amount was 280 kg / h
  • the rotation speed of the inner cylinder was 3.1 rpm
  • the height of the stirring plate was 90 mm
  • the target temperature of the charcoal at the downstream end of the inner cylinder was 640 ° C.
  • Test Example B5 For Test Examples A8 and A9, the measured residence time (min), the overall heat transfer coefficient (kcal / m 2 h ° C.), and the coal volatilization content (%) after carbonization were measured. The results are shown in Table 5.
  • the measured values of the total heat transfer coefficient inside the inner cylinder were tested.
  • the amount of coal input is 190 kg / h to 280 kg / h
  • the rotation speed of the inner cylinder is 2.2 rpm to 3.0 rpm
  • the combustion temperature of the heating chamber is 790 ° C to 840 ° C
  • the filling height hm of coal inside the inner cylinder is 100 mm. It was set in the range of ⁇ 140 mm.
  • Test Example B6 no stirring plate is provided, in Test Example A10, two stirring plates are arranged in the circumferential direction (180 ° interval), and in Test Example A11, four stirring plates are arranged in the circumferential direction (90 ° interval). Then, in Test Example A12, eight stirring plates (45 ° intervals) were arranged in the circumferential direction. The height ha of the stirring plate was 75 mm in each case. For each test example, the arrangement length of the stirring plates was changed, and carbonization was performed while changing the value K obtained by dividing the number of stirring plates in the circumferential direction ⁇ the total length of the stirring plates by the heating length L, and carbonizing the entire inner cylinder. The overall heat transfer coefficient U (kcal / m 2 h ° C.) based on the area of the inner peripheral surface was measured.
  • FIG. 9 is a graph showing the measurement results of the overall heat transfer coefficient according to the seventh verification test. As shown in the graph, it was confirmed that the total heat transfer coefficient increased by installing the stirring plate and as the number of stirring plates in the circumferential direction and the total area increased. This result shows that the stirring and mixing of coal inside the inner cylinder is promoted by installing the stirring plate and increasing the number of sheets and the total area in the circumferential direction.
  • the stirring plate of Test Example B7 has a flat plate shape extending in the radial direction of the inner cylinder, and the stirring plate of Test Example A13 has a shape having a bent portion at the upper part of the stirring plate as shown in FIG.
  • no gap is formed between the stirring plate and the inner peripheral surface of the inner cylinder.
  • the amount of coal particles agitated by the stirring plate while the inner cylinder rotates three times is calculated as a function of the distance from the central axis of the inner cylinder to the inner peripheral surface. bottom. The results are shown in Table 6.
  • the water content of the coal charged into the inner cylinder was set to 12.50%, and the rotation speed of the inner cylinder was set to 3.1 rpm.
  • predicted values of reformed coal emissions after carbonization were calculated using a known yield function from the coal input and the temperature after heating. The difference between this predicted value and the measured value of the amount of reformed coal discharged from the inner cylinder is regarded as the amount of coal particles scattered inside the inner cylinder and discharged from the exhaust pipe, and the scattering rate was calculated. The results are shown in Table 7.
  • FIG. 10 is a graph showing the relationship between the size of the gap between the inner peripheral surface of the inner cylinder and the stirring plate, the scattering rate of coal, and the overall heat transfer coefficient for the results of the ninth and tenth verification tests. Is. As shown in the graph, the scattering rate of coal particles decreases as the gap becomes larger, while the heat transfer coefficient becomes maximum when the gap is a predetermined value (15 mm in this example), and when the gap becomes too large. descend. For example, assuming that the range in which the total heat transfer coefficient exceeds 10 kcal / m 2 h ° C in the graph is an appropriate range, the size of the gap is 9 mm to 23 mm, that is, the range of 10% to 25% of the height ha of the stirring plate. Is preferable, and it can be said that a range of 10% to 20% of the height ha is more preferable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)

Abstract

Provided is a facility for manufacturing reformed coal, comprising an inner cylinder that rotates about an axis, a heating chamber that covers the inner cylinder from the radial outside of the inner cylinder, and a plurality of exhaust pipes arranged in the axial direction that penetrate through the inner cylinder in the radial direction and open into the heating chamber, coal being supplied from the end part that is positioned on the upstream side along the axial direction in the inner cylinder, and modified coal being discharged from the end part that is positioned on the downstream side along the axial direction in the inner cylinder, wherein the facility for manufacturing modified coal further comprises a temperature control unit for supplying an oxygen-containing gas to the heating chamber and controlling the temperature in the heating chamber, and a flue for discharging gas from the heating chamber, the flue being connected only to the end part that is positioned on the upstream side in the heating chamber.

Description

改質石炭の製造方法および製造設備Reformed coal manufacturing method and manufacturing equipment
 本発明は、改質石炭の製造方法および製造設備に関する。 The present invention relates to a method for producing reformed coal and a production facility.
 従来から、石炭を乾留して改質石炭を製造する改質石炭の製造方法として、下記特許文献1に記載の方法が知られている。この製造方法では、乾留ガスを乾留の熱源として使用することで、熱効率を高めている。
 ところで、この種の改質石炭の製造方法において、乾留ガスには高沸点成分のタールが含まれていることから、例えば、このタールが配管に付着して配管を閉塞する等し、乾留設備の稼働率が低下するおそれがある。
 そこで、下記特許文献1に記載の製造方法では、低温加熱ガスおよび廃熱ガスを乾留ガスに混合することで、タールの配管などへの付着を抑制している。
Conventionally, as a method for producing reformed coal by carbonizing coal to produce reformed coal, the method described in Patent Document 1 below is known. In this production method, the thermal efficiency is improved by using the carbonization gas as a heat source for carbonization.
By the way, in the method for producing this kind of reformed coal, since the dry distillation gas contains tar as a high boiling point component, for example, this tar adheres to the pipe to block the pipe, and the dry distillation equipment is used. The operating rate may decrease.
Therefore, in the production method described in Patent Document 1 below, adhesion of tar to piping or the like is suppressed by mixing low-temperature heating gas and waste heat gas with dry distillation gas.
特開2013-173831号公報Japanese Unexamined Patent Publication No. 2013-173831
 しかしながら、前記従来の改質石炭の製造方法では、石炭を乾留させる乾留装置の装置構成が複雑となり、運転が煩雑となるといった課題がある。 However, the conventional method for producing reformed coal has a problem that the configuration of a carbonization device for carbonizing coal becomes complicated and the operation becomes complicated.
 本発明は、前述した事情に鑑みてなされたものであって、改質石炭の製造設備における乾留装置の装置構成を簡素化し、運転も容易にすることを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to simplify the device configuration of a carbonization device in a reformed coal manufacturing facility and facilitate operation.
 前記課題を解決するために、本発明は以下の手段を提案している。
[1]軸線の回りに回転する内筒と、内筒を、内筒の径方向の外側から覆う加熱室と、内筒に、軸線方向に複数配置され、内筒を径方向に貫通して加熱室内に開口する排気管と、を有する乾留装置を備え、内筒において、軸線方向に沿った上流側に位置する端部から石炭が供給され、軸線方向に沿った下流側に位置する端部から改質石炭が排出される改質石炭の製造設備であって、加熱室内に酸素含有ガスを供給して加熱室内の温度を制御する温度制御部と、加熱室内のガスを排出する煙道と、を更に備え、煙道は、加熱室において上流側に位置する端部にのみ接続されている、改質石炭の製造設備。
[2]温度制御部は、煙道内の温度が600℃以上を維持し、かつ加熱室内の温度を600℃以上となるように制御する、[1]に記載の改質石炭の製造設備。
[3]温度制御部は、加熱室内を軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、煙道は、複数の制御ゾーンのうち、最も上流側の制御ゾーンに接続されている、[1]または[2]に記載の改質石炭の製造設備。
[4]内筒の内周面から軸線に向かって突出し、石炭を撹拌する撹拌部材をさらに備える、[1]から[3]のいずれか1項に記載の改質石炭の製造設備。
[5]内筒の内部で下流側の熱分解ゾーンに配置される撹拌部材は、上流側の水分蒸発ゾーンに配置される撹拌部材よりも、軸線に対する傾斜角が大きい、[4]に記載の改質石炭の製造設備。
[6]水分蒸発ゾーンに配置される撹拌部材の軸線に対する傾斜角が0である、[5]に記載の改質石炭の製造設備。
[7]撹拌部材は、軸線方向について、水分蒸発ゾーンおよび熱分解ゾーンからなる加熱領域の90%を超える範囲に配置される、[5]または[6]に記載の改質石炭の製造設備。
[8]撹拌部材と内筒の内周面との間に隙間が形成されている、[4]から[7]のいずれか1項に記載の改質石炭の製造設備。
[9]隙間の大きさは、内筒の径方向における撹拌部材の寸法の10%~25%である、[8]に記載の改質石炭の製造設備。
[10]撹拌部材は、内筒の径方向に対して傾斜する折り曲げ部を有する、[4]から[8]のいずれか1項に記載の改質石炭の製造設備。
[11]折り曲げ部は、撹拌部材の軸線側で内筒の内周面を基準にした撹拌部材の高さの30%以上~70%以下の範囲に形成され、
 折り曲げ部の内筒の径方向に対する傾斜角は10°以上45°以下である、[10]に記載の改質石炭の製造設備。
[12]軸線の回りに回転する内筒と、内筒を、内筒の径方向の外側から覆う加熱室と、内筒に、軸線方向に複数配置され、内筒を径方向に貫通して加熱室内に開口する排気管と、を有する乾留装置を用いて、内筒において軸線方向に沿った上流側に位置する端部から石炭を供給し、軸線方向に沿った下流側に位置する端部から改質石炭を排出する改質石炭の製造方法であって、加熱室内に酸素含有ガスを供給して加熱室内の温度を制御する温度制御工程と、加熱室内のガスを排出するガス排出工程と、を含み、ガス排出工程では、加熱室において上流側に位置する端部からのみガスを排出する、改質石炭の製造方法。
[13]温度制御工程は、加熱室内の温度を600℃以上となるように制御する、[12]に記載の改質石炭の製造方法。
[14]温度制御工程は、加熱室内を軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、
 ガス排出工程は、複数の制御ゾーンのうち、最も上流側の制御ゾーンからガスを排出する、[12]または[13]に記載の改質石炭の製造方法。
[15]内筒の内周面から軸線に向かって突出する撹拌部材を用いて石炭を撹拌する、[12]から[14]のいずれか1項に記載の改質石炭の製造方法。
[16]少なくとも内筒の内部で下流側の熱分解ゾーンに配置される撹拌部材が軸線に対する傾斜角を有し、石炭を上流側に押し戻すように撹拌する、[15]に記載の改質石炭の製造方法。
[17]撹拌部材と内筒の内周面との間に隙間が形成され、撹拌部材によって撹拌された石炭を隙間から落下させる、[15]または[16]に記載の改質石炭の製造方法。
[18]撹拌部材は内筒の径方向に対して傾斜する折り曲げ部を有し、撹拌部材によって撹拌された石炭を折り曲げ部から落下させる、[15]から[17]のいずれか1項に記載の改質石炭の製造方法。
In order to solve the above problems, the present invention proposes the following means.
[1] An inner cylinder that rotates around the axis, a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder, and a plurality of inner cylinders are arranged in the axial direction and penetrate the inner cylinder in the radial direction. A dry distillation device having an exhaust pipe that opens into a heating chamber is provided, and coal is supplied from an end located on the upstream side along the axial direction in the inner cylinder, and coal is supplied from an end located on the downstream side along the axial direction. A temperature control unit that supplies oxygen-containing gas to the heating chamber to control the temperature in the heating chamber, and a flue that discharges the gas in the heating chamber. A modified coal production facility in which the flue is connected only to the upstream end of the heating chamber.
[2] The modified coal manufacturing equipment according to [1], wherein the temperature control unit controls the temperature in the flue to be 600 ° C. or higher and the temperature in the heating chamber to be 600 ° C. or higher.
[3] The temperature control unit controls the temperature for each control zone formed by dividing the heating chamber into a plurality of control zones in the axial direction, and the flue is connected to the most upstream control zone among the plurality of control zones. The modified coal production facility according to [1] or [2].
[4] The equipment for producing reformed coal according to any one of [1] to [3], further comprising a stirring member that protrudes from the inner peripheral surface of the inner cylinder toward the axis and stirs the coal.
[5] The stirring member arranged in the thermal decomposition zone on the downstream side inside the inner cylinder has a larger inclination angle with respect to the axis than the stirring member arranged in the water evaporation zone on the upstream side, according to [4]. Modified coal manufacturing equipment.
[6] The modified coal manufacturing facility according to [5], wherein the inclination angle of the stirring member arranged in the water evaporation zone with respect to the axis is 0.
[7] The equipment for producing reformed coal according to [5] or [6], wherein the stirring member is arranged in a range exceeding 90% of a heating region including a water evaporation zone and a thermal decomposition zone in the axial direction.
[8] The equipment for producing reformed coal according to any one of [4] to [7], wherein a gap is formed between the stirring member and the inner peripheral surface of the inner cylinder.
[9] The modified coal manufacturing equipment according to [8], wherein the size of the gap is 10% to 25% of the size of the stirring member in the radial direction of the inner cylinder.
[10] The equipment for producing modified coal according to any one of [4] to [8], wherein the stirring member has a bent portion inclined in the radial direction of the inner cylinder.
[11] The bent portion is formed on the axis side of the stirring member in a range of 30% or more to 70% or less of the height of the stirring member with respect to the inner peripheral surface of the inner cylinder.
The modified coal manufacturing equipment according to [10], wherein the inclination angle of the inner cylinder of the bent portion with respect to the radial direction is 10 ° or more and 45 ° or less.
[12] An inner cylinder that rotates around the axis, a heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder, and a plurality of inner cylinders are arranged in the axial direction and penetrate the inner cylinder in the radial direction. Using a carbonization device having an exhaust pipe that opens into the heating chamber, coal is supplied from the end located on the upstream side along the axial direction in the inner cylinder, and the end located on the downstream side along the axial direction. A method for producing reformed coal that discharges reformed coal from a coal, a temperature control step that supplies oxygen-containing gas to the heating chamber to control the temperature in the heating chamber, and a gas discharge step that discharges the gas in the heating chamber. A method for producing reformed coal, which comprises, and in the gas discharge process, discharges gas only from the end located on the upstream side in the heating chamber.
[13] The method for producing reformed coal according to [12], wherein the temperature control step controls the temperature in the heating chamber to be 600 ° C. or higher.
[14] In the temperature control step, the temperature is controlled for each control zone formed by dividing the heating chamber into a plurality of parts in the axial direction.
The method for producing reformed coal according to [12] or [13], wherein the gas discharge step discharges gas from the most upstream control zone among the plurality of control zones.
[15] The method for producing modified coal according to any one of [12] to [14], wherein the coal is agitated using a stirring member protruding from the inner peripheral surface of the inner cylinder toward the axis.
[16] The modified coal according to [15], wherein the stirring member arranged in the thermal decomposition zone on the downstream side at least inside the inner cylinder has an inclination angle with respect to the axis and stirs the coal so as to push it back to the upstream side. Manufacturing method.
[17] The method for producing modified coal according to [15] or [16], wherein a gap is formed between the stirring member and the inner peripheral surface of the inner cylinder, and the coal stirred by the stirring member is dropped from the gap. ..
[18] The item according to any one of [15] to [17], wherein the stirring member has a bent portion that is inclined with respect to the radial direction of the inner cylinder, and coal that has been stirred by the stirring member is dropped from the bent portion. How to make reformed coal.
 上記の構成によれば、改質石炭の製造設備における乾留装置の稼働率を確保しつつ、改質石炭の製造設備における乾留装置の装置構成を簡素化し、運転も容易にすることができる。 According to the above configuration, it is possible to simplify the equipment configuration of the carbonization device in the reformed coal manufacturing facility and facilitate the operation while ensuring the operating rate of the carbonization device in the reformed coal manufacturing facility.
本発明の第1の実施形態に係る改質石炭の製造設備のブロック図である。It is a block diagram of the production facility of reformed coal which concerns on 1st Embodiment of this invention. 図1に示す改質石炭の製造設備を構成する乾留装置の模式図である。It is a schematic diagram of the carbonization apparatus which constitutes the manufacturing facility of the reformed coal shown in FIG. 本発明の第2の実施形態に係る乾留装置の内筒の展開内面図である。It is a developed inner view of the inner cylinder of the carbonization apparatus which concerns on 2nd Embodiment of this invention. 図3に示す内筒の非展開状態のA-A線に沿った断面図である。FIG. 3 is a cross-sectional view taken along the line AA of the inner cylinder shown in FIG. 3 in an unexpanded state. 図3に示す内筒の非展開状態のB-B線に沿った断面図である。FIG. 3 is a cross-sectional view taken along line BB of the inner cylinder shown in FIG. 3 in an unexpanded state. 図3に示す例における撹拌板の正面図である。It is a front view of the stirring plate in the example shown in FIG. 図3に示す例における撹拌板の側面図である。It is a side view of the stirring plate in the example shown in FIG. 本発明の第2の実施形態の変形例に係る乾留装置の内筒の断面図である。It is sectional drawing of the inner cylinder of the dry distillation apparatus which concerns on the modification of the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例による撹拌板の正面図である。It is a front view of the stirring plate by the modification of the 2nd Embodiment of this invention. 本発明の第2の実施形態の変形例による撹拌板の側面図である。It is a side view of the stirring plate by the modification of the 2nd Embodiment of this invention. 検証試験における石炭の昇温速度と温度と揮発分との関係を示すグラフである。It is a graph which shows the relationship between the temperature rise rate of coal, the temperature, and the volatile matter in the verification test. 検証試験における総括伝熱係数の測定結果を示すグラフである。It is a graph which shows the measurement result of the total heat transfer coefficient in a verification test. 検証試験における隙間の大きさと飛散率および総括伝熱係数との関係を示すグラフである。It is a graph which shows the relationship between the size of a gap in a verification test, a scattering rate, and a total heat transfer coefficient.
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 A preferred embodiment of the present invention will be described in detail below with reference to the accompanying drawings. In the present specification and the drawings, components having substantially the same functional configuration are designated by the same reference numerals, so that duplicate description will be omitted.
 (第1の実施形態)
 以下、図面を参照し、本発明の第1の実施形態に係る改質石炭の製造設備を説明する。
 図1に示すように、改質石炭の製造設備10は、乾燥装置11と、乾留装置12と、冷却装置13と、排ガスシステム14と、を備えている。この製造設備10は、例えば、褐炭や亜瀝青炭のような水分含有量の多い低品位炭を改質するのに好適に用いることができる。
(First Embodiment)
Hereinafter, the modified coal manufacturing equipment according to the first embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the reformed coal production facility 10 includes a drying device 11, a carbonization device 12, a cooling device 13, and an exhaust gas system 14. This production facility 10 can be suitably used for reforming low-grade coal having a high water content, such as lignite and subbituminous coal.
 乾燥装置11は、石炭を乾燥する。乾燥装置11は、例えば石炭の水分含有量が15重量%以下、好ましくは、10重量%以下になるまで、石炭を乾燥させる。乾留装置12は、乾燥された石炭を乾留する。乾留装置12は、例えば石炭の温度が500℃以上、具体的には550℃~800℃になるまで、石炭を乾留し、改質石炭にする。冷却装置13は、乾留された改質石炭を冷却する。冷却装置13は、例えば石炭の温度が70℃以下、好ましくは60℃以下になるまで、石炭を冷却させる。 The drying device 11 dries coal. The drying device 11 dries the coal until, for example, the water content of the coal is 15% by weight or less, preferably 10% by weight or less. The carbonization device 12 dry-distills the dried coal. The carbonization apparatus 12 dry-distills the coal until, for example, the temperature of the coal reaches 500 ° C. or higher, specifically 550 ° C. to 800 ° C., to obtain reformed coal. The cooling device 13 cools the reformed coal that has been carbonized. The cooling device 13 cools the coal until, for example, the temperature of the coal is 70 ° C. or lower, preferably 60 ° C. or lower.
 排ガスシステム14は、乾留装置12から排出される水蒸気および部分燃焼(酸化)により一次燃焼された乾留ガスおよび同ガスに少量同伴される微粉炭を完全燃焼後に排ガスとして大気に放出する。排ガスシステム14は、二次燃焼装置15と、蒸気発生装置16と、除塵装置17と、吸引ファン18と、排ガス処理装置19と、を備えている。 The exhaust gas system 14 releases the dry distillation gas discharged from the dry distillation apparatus 12, the dry distillation gas primarily burned by partial combustion (oxidation), and the pulverized coal accompanying a small amount of the gas to the atmosphere as exhaust gas after complete combustion. The exhaust gas system 14 includes a secondary combustion device 15, a steam generator 16, a dust removing device 17, a suction fan 18, and an exhaust gas treatment device 19.
 二次燃焼装置15は、一次燃焼された乾留ガスを二次燃焼させて完全燃焼させる。完全燃焼の段階でNOが環境基準を上回るまで発生する場合には、後段に脱NO装置を設置することが好ましい。
 蒸気発生装置16は、水蒸気および完全燃焼された乾留ガスからの廃熱回収により蒸気を発生させる。蒸気発生装置16は、回収した蒸気の一部もしくは全部を乾燥装置11に石炭の乾燥用熱源として供給する。除塵装置17は、蒸気発生装置16を通過したガスに同伴する微粉灰などを除去する。吸引ファン18は、除塵装置17からのガスを乾留装置12の加熱室内の圧力が一定となるように吸引し、排ガス処理装置19に送出する。排ガス処理装置19は、ガスからSO等を除去することで排ガスを精製し、この排ガスを大気に放出する。
The secondary combustion device 15 secondarily burns the primary burned carbonization gas to completely burn it. If NO x is generated until it exceeds the environmental standard at the stage of complete combustion, it is preferable to install a NO x removal device in the subsequent stage.
The steam generator 16 generates steam by recovering waste heat from steam and dry distillation gas that has been completely burned. The steam generator 16 supplies a part or all of the recovered steam to the drying device 11 as a heat source for drying coal. The dust remover 17 removes fine ash and the like accompanying the gas that has passed through the steam generator 16. The suction fan 18 sucks the gas from the dust removing device 17 so that the pressure in the heating chamber of the carbonization device 12 becomes constant, and sends it to the exhaust gas treatment device 19. The exhaust gas treatment device 19 purifies the exhaust gas by removing SO x and the like from the gas, and releases the exhaust gas to the atmosphere.
 ところで乾留装置12は、いわゆる外熱式ロータリーキルンである。図2に示すように、乾留装置12は、内筒21と、加熱室22と、温度制御部23と、を備えている。 By the way, the carbonization device 12 is a so-called external heat type rotary kiln. As shown in FIG. 2, the carbonization device 12 includes an inner cylinder 21, a heating chamber 22, and a temperature control unit 23.
 乾留装置12において、石炭は、内筒21の内部を、内筒21の軸線O方向に通過する。内筒21において、軸線O方向に沿った上流側D1に位置する端部から石炭が定量で供給され、下流側D2に位置する端部から改質石炭が排出される。内筒21の上流側D1の端部は、乾燥装置11に接続され、内筒21の下流側D2の端部は、冷却装置13に接続されている。 In the carbonization device 12, coal passes through the inside of the inner cylinder 21 in the axis O direction of the inner cylinder 21. In the inner cylinder 21, coal is supplied in a fixed amount from an end located on the upstream side D1 along the axis O direction, and reformed coal is discharged from an end located on the downstream side D2. The end of the upstream side D1 of the inner cylinder 21 is connected to the drying device 11, and the end of the downstream side D2 of the inner cylinder 21 is connected to the cooling device 13.
 内筒21の軸線Oは、水平方向に傾斜して延びている。具体的には、内筒21の軸線Oには、軸線O方向に沿った上流側D1から下流側D2に向かう下り緩勾配がつけられている。内筒21は、軸線O回りに回転可能に形成されている。内筒21の上流側D1の端部から供給された石炭は、内筒21が下流に向けて傾斜していること、軸線O回りに回転することで、内筒21の内周面を伝って所定の滞留時間をかけて徐々に下流側D2に向けて移動する。 The axis O of the inner cylinder 21 is inclined and extends in the horizontal direction. Specifically, the axis O of the inner cylinder 21 is provided with a gentle downward slope from the upstream side D1 to the downstream side D2 along the axis O direction. The inner cylinder 21 is formed so as to be rotatable around the axis O. The coal supplied from the end of the upstream side D1 of the inner cylinder 21 is transmitted along the inner peripheral surface of the inner cylinder 21 by the inner cylinder 21 being inclined toward the downstream side and rotating around the axis O. It gradually moves toward the downstream side D2 over a predetermined residence time.
 加熱室22は、内筒21を、内筒21の径方向(以下、「径方向」という)の外側から覆っている。加熱室22には、内筒21が、軸線O方向に挿通されていて、内筒21の軸線O方向の両端部は、加熱室22から軸線O方向に突出している。 The heating chamber 22 covers the inner cylinder 21 from the outside in the radial direction (hereinafter, referred to as “diameter direction”) of the inner cylinder 21. An inner cylinder 21 is inserted into the heating chamber 22 in the axis O direction, and both ends of the inner cylinder 21 in the axis O direction project from the heating chamber 22 in the axis O direction.
 ここで内筒21には、排気管24が設けられていて、乾留装置12として、いわゆる角(つの)付きキルンが採用されている。
 排気管24は、内筒21に、軸線O方向に複数配置されている。排気管24は、内筒21を径方向に貫通して加熱室22内に開口している。排気管24は、内筒21において、加熱室22内に位置する部分である加熱室内部分の21aに設けられている。図示された例において、排気管24は、加熱室内部分21aにおける軸線O方向の全長にわたって設けられている。排気管24は、軸線O方向に同等の間隔をあけて複数配置されている。排気管24は、内筒21の内部で石炭から発生したガスである水蒸気や高沸点成分のタールを含む乾留ガスを、加熱室22内に排出する。
Here, the inner cylinder 21 is provided with an exhaust pipe 24, and a so-called cornered kiln is adopted as the carbonization device 12.
A plurality of exhaust pipes 24 are arranged in the inner cylinder 21 in the axis O direction. The exhaust pipe 24 penetrates the inner cylinder 21 in the radial direction and opens into the heating chamber 22. The exhaust pipe 24 is provided in the heating chamber portion 21a, which is a portion of the inner cylinder 21 located in the heating chamber 22. In the illustrated example, the exhaust pipe 24 is provided over the entire length of the heating chamber portion 21a in the axis O direction. A plurality of exhaust pipes 24 are arranged at equal intervals in the axis O direction. The exhaust pipe 24 discharges the dry distillation gas containing water vapor, which is a gas generated from coal inside the inner cylinder 21, and tar, which is a high boiling point component, into the heating chamber 22.
 温度制御部23は、加熱室22内に空気を供給して加熱室22内の温度を制御する。温度制御部23は、排気管24から加熱室22内に排出された高沸点成分のタールを含む乾留ガスを、空気により部分燃焼(酸化)させることで、加熱室22内を加熱する。なお空気と同様に、空気とは異なる酸素含有ガスを加熱室22内に供給することも可能である。ここで酸素含有ガスとは、酸素を含有し、乾留ガスを燃焼(酸化)させることができるガスを意味する。酸素含有ガスとしては、空気の他に、例えば酸素を含有する排ガス、酸素富化空気などが使用できる。さらに本実施形態では、温度制御部23は、加熱室22内を、加熱室22外の熱源すなわち燃料ガスにより加熱可能に形成されている。また、燃料ガスは、天然ガスやLPGガス等を使用することができ、立ち上げ時の系の予熱にも使用される。 The temperature control unit 23 supplies air into the heating chamber 22 to control the temperature inside the heating chamber 22. The temperature control unit 23 heats the inside of the heating chamber 22 by partially burning (oxidizing) the dry distillation gas containing tar, which is a high boiling point component, discharged from the exhaust pipe 24 into the heating chamber 22 by air. As with air, it is also possible to supply an oxygen-containing gas different from air into the heating chamber 22. Here, the oxygen-containing gas means a gas that contains oxygen and can burn (oxidize) the carbonization gas. As the oxygen-containing gas, in addition to air, for example, oxygen-containing exhaust gas, oxygen-enriched air, and the like can be used. Further, in the present embodiment, the temperature control unit 23 is formed so that the inside of the heating chamber 22 can be heated by a heat source outside the heating chamber 22, that is, fuel gas. Further, as the fuel gas, natural gas, LPG gas, or the like can be used, and it is also used for preheating the system at the time of start-up.
 温度制御部23は、制御ゾーンZ1~Z3ごとに温度を制御する。制御ゾーンZ1~Z3は、加熱室22内が軸線O方向に複数に区画されてなる。図示の例では、制御ゾーンZ1~Z3は、3つに区画されており、上流側D1から下流側D2に向けて、第1制御ゾーンZ1、第2制御ゾーンZ2、第3制御ゾーンZ3の順に区画されている。 The temperature control unit 23 controls the temperature for each of the control zones Z1 to Z3. The control zones Z1 to Z3 are divided into a plurality of control zones Z1 to Z3 in the axis O direction in the heating chamber 22. In the illustrated example, the control zones Z1 to Z3 are divided into three, and the first control zone Z1, the second control zone Z2, and the third control zone Z3 are in this order from the upstream side D1 to the downstream side D2. It is partitioned.
 温度制御部23には、複数の制御ゾーンZ1~Z3にそれぞれに対応する複数の制御系25が備えられている。各制御系25は、空気供給部26と、加熱部27と、温度検出部29と、制御本体部30と、を少なくとも備えている。図示の例では、上記に加え、制御ゾーンZ1~Z3に蒸気供給部28も備えた例を示す。なお空気供給部26は、空気以外の酸素含有ガスを供給する場合も含めると、酸素含有ガス供給部と言い換えることができる。 The temperature control unit 23 is provided with a plurality of control systems 25 corresponding to the plurality of control zones Z1 to Z3, respectively. Each control system 25 includes at least an air supply unit 26, a heating unit 27, a temperature detection unit 29, and a control main body unit 30. In the illustrated example, in addition to the above, an example in which the steam supply unit 28 is also provided in the control zones Z1 to Z3 is shown. The air supply unit 26 can be rephrased as an oxygen-containing gas supply unit, including the case where an oxygen-containing gas other than air is supplied.
 空気供給部26は、加熱室22内に空気を供給する。空気供給部26は、加熱室22に空気を供給する打ち込み空気ファン31と、打ち込み空気ファン31を加熱室22内に接続する第1配管32と、第1配管32に介装された第1制御弁33と、を備えている。第1配管32は、加熱室22の上壁および下壁部分に、上壁側および下壁側の配管が対向方向となるように、かつ上壁と下壁の配管を複数に分岐した後に接続されている。なお第1制御弁33に代わり、打ち込み空気ファン31のモーターをインバーターを用いて回転数変更する供給空気量制御方式も適用可能である。 The air supply unit 26 supplies air into the heating chamber 22. The air supply unit 26 includes a driving air fan 31 that supplies air to the heating chamber 22, a first pipe 32 that connects the driving air fan 31 into the heating chamber 22, and a first control interposed in the first pipe 32. It is provided with a valve 33. The first pipe 32 is connected to the upper wall and the lower wall portion of the heating chamber 22 so that the pipes on the upper wall side and the lower wall side face each other and after the pipes on the upper wall and the lower wall are branched into a plurality of pipes. Has been done. Instead of the first control valve 33, a supply air amount control method in which the motor of the driving air fan 31 is changed in rotation speed by using an inverter can also be applied.
 加熱部27は、加熱室22内を、加熱室22外の燃料ガス(熱源)により加熱する。加熱部27は、加熱室22を加熱するバーナー34と、バーナー34に空気を供給するバーナーファン36と、バーナーファン36をバーナー34に接続する第2配管37と、第2配管37に介装された第2制御弁38と、バーナー34に燃料ガスを供給する第3配管39と、第3配管39に介装された第3制御弁40と、を備えている。バーナー34は、供給部から供給された空気と燃料ガスとを混合して燃料ガスを燃焼させる。バーナー34は、加熱室22の下壁部分に設けられ、第1配管32の下壁部分設置配管と同じ方向に設けられている。 The heating unit 27 heats the inside of the heating chamber 22 with the fuel gas (heat source) outside the heating chamber 22. The heating unit 27 is interposed in a burner 34 that heats the heating chamber 22, a burner fan 36 that supplies air to the burner 34, a second pipe 37 that connects the burner fan 36 to the burner 34, and a second pipe 37. A second control valve 38, a third pipe 39 for supplying fuel gas to the burner 34, and a third control valve 40 interposed in the third pipe 39 are provided. The burner 34 mixes the air supplied from the supply unit with the fuel gas and burns the fuel gas. The burner 34 is provided on the lower wall portion of the heating chamber 22, and is provided in the same direction as the lower wall portion installation pipe of the first pipe 32.
 蒸気供給部28は、加熱室22内に蒸気を供給し、加熱室22内を冷却する。蒸気供給部28は、例えば150℃程度の蒸気を加熱室22内に供給する。蒸気供給部28は、加熱室22内に蒸気を供給する第4配管41と、第4配管41に介装された第4制御弁42と、を備えている。第4配管41は、加熱室22の下壁に第1配管32の下壁部分設置配管と同じ方向に接続されている。 The steam supply unit 28 supplies steam into the heating chamber 22 to cool the inside of the heating chamber 22. The steam supply unit 28 supplies steam of, for example, about 150 ° C. into the heating chamber 22. The steam supply unit 28 includes a fourth pipe 41 that supplies steam into the heating chamber 22, and a fourth control valve 42 interposed in the fourth pipe 41. The fourth pipe 41 is connected to the lower wall of the heating chamber 22 in the same direction as the lower wall portion installation pipe of the first pipe 32.
 温度検出部29は、加熱室22内の温度を検出する。温度検出部29は、例えば温度センサにより構成することができる。
 制御本体部30は、温度検出部29の検出結果に基づいて、空気供給部26、加熱部27および蒸気供給部28を制御する。図示の例では、制御本体部30は、第1~第4制御弁33、38、40、42を制御することで、空気供給部26、加熱部27および蒸気供給部28を制御する。制御本体部30は、例えばPLC(Programmable Logic Controller)などの制御装置により構成され、分散制御システム(DCS:Distributed Control System)として実装されてもよい。
The temperature detection unit 29 detects the temperature inside the heating chamber 22. The temperature detection unit 29 can be configured by, for example, a temperature sensor.
The control main body 30 controls the air supply unit 26, the heating unit 27, and the steam supply unit 28 based on the detection result of the temperature detection unit 29. In the illustrated example, the control main body 30 controls the air supply unit 26, the heating unit 27, and the steam supply unit 28 by controlling the first to fourth control valves 33, 38, 40, and 42. The control main body 30 may be configured by a control device such as a PLC (Programmable Logic Controller) and may be implemented as a distributed control system (DCS).
 ここで加熱室22には、加熱室22からガスを排出する煙道43が設けられている。煙道43は、加熱室22に接続され、加熱室22内と二次燃焼装置15とを接続する。このとき、煙道43は、加熱室22における上流側D1に位置する端部にのみ接続されている。これにより、加熱室22内のガスは、加熱室22において上流側D1に位置する端部からのみ排出される。煙道43は、複数の制御ゾーンZ1~Z3のうち、最も上流側D1に位置する第1制御ゾーンZ1に接続されている。 Here, the heating chamber 22 is provided with a flue 43 for discharging gas from the heating chamber 22. The flue 43 is connected to the heating chamber 22 and connects the inside of the heating chamber 22 to the secondary combustion device 15. At this time, the flue 43 is connected only to the end portion of the heating chamber 22 located on the upstream side D1. As a result, the gas in the heating chamber 22 is discharged only from the end located on the upstream side D1 in the heating chamber 22. The flue 43 is connected to a first control zone Z1 located on the most upstream side D1 among the plurality of control zones Z1 to Z3.
 次に、改質石炭の製造設備10および乾留装置12の作用について説明する。
 改質石炭の製造設備10を用いた改質石炭の製造方法は、石炭を乾燥する乾燥工程と、乾燥した石炭を乾留する乾留工程と、乾留した石炭を冷却する冷却工程と、を備えている。乾燥工程は乾燥装置11により実施され、乾留工程は乾留装置12により実施され、冷却工程は冷却装置13により実施される。
Next, the operations of the reformed coal production facility 10 and the carbonization device 12 will be described.
The method for producing reformed coal using the reformed coal production facility 10 includes a drying step for drying the coal, a carbonization step for carbonizing the dried coal, and a cooling step for cooling the carbonized coal. .. The drying step is carried out by the drying device 11, the dry distillation step is carried out by the dry distillation device 12, and the cooling step is carried out by the cooling device 13.
 ここで乾留工程では、まず、加熱室22を予熱する予熱工程を実施する。このとき、温度制御部23の加熱部27により、加熱室22内を加熱する。
 また、内筒21の上流側D1の端部から石炭を供給し、下流側D2の端部から改質石炭を排出する。このとき、内筒21の内部を通過する石炭から高沸点成分のタールを含む乾留ガスが発生すると、この乾留ガスが、内筒21の内部から排気管24を通して加熱室22内に排出される。
Here, in the carbonization step, first, a preheating step of preheating the heating chamber 22 is carried out. At this time, the inside of the heating chamber 22 is heated by the heating unit 27 of the temperature control unit 23.
Further, coal is supplied from the end of D1 on the upstream side of the inner cylinder 21, and reformed coal is discharged from the end of D2 on the downstream side. At this time, when the dry distillation gas containing tar having a high boiling point component is generated from the coal passing through the inside of the inner cylinder 21, the dry distillation gas is discharged from the inside of the inner cylinder 21 into the heating chamber 22 through the exhaust pipe 24.
 そこで、加熱室22内に空気を供給して加熱室22内の温度を制御する温度制御を実施する(温度制御工程)。このとき、空気により乾留ガスを加熱室22内で部分燃焼(酸化)させることで、加熱室22内の温度を高め、内筒21の内部を通過する石炭を、内筒21を介して加熱することができる。また加熱室22内の温度を、加熱室22の壁面や煙道43の壁面にタールが付着しない程度に高めることができる。 Therefore, temperature control is performed by supplying air into the heating chamber 22 to control the temperature inside the heating chamber 22 (temperature control step). At this time, the dry distillation gas is partially burned (oxidized) in the heating chamber 22 by air to raise the temperature in the heating chamber 22 and heat the coal passing through the inside of the inner cylinder 21 through the inner cylinder 21. be able to. Further, the temperature inside the heating chamber 22 can be raised to such an extent that tar does not adhere to the wall surface of the heating chamber 22 or the wall surface of the flue 43.
 本実施形態では、加熱室22の温度制御の際には、加熱室22内の全体の温度を600℃以上に制御する。このとき温度制御部23は、複数の制御ゾーンZ1~Z3のいずれの温度も600℃以上に制御する。温度制御部23は、加熱室22内の温度を過度に高めることなく、乾留装置12が操業可能な範囲で加熱室22内の温度を制御する。なお温度制御部23は、空気供給部26からの空気の供給量のみを制御することで、加熱室22の温度を制御することができる。また温度制御部23は、空気供給部26のみならず、加熱部27や蒸気供給部28を制御することで、加熱室22の温度を制御することも可能である。さらに、温度制御部23は、煙道43内の温度が600℃以上を維持するように温度制御を実施してもよい。 In the present embodiment, when controlling the temperature of the heating chamber 22, the overall temperature inside the heating chamber 22 is controlled to 600 ° C. or higher. At this time, the temperature control unit 23 controls all the temperatures of the plurality of control zones Z1 to Z3 to 600 ° C. or higher. The temperature control unit 23 controls the temperature inside the heating chamber 22 within the range in which the carbonization device 12 can operate without excessively increasing the temperature inside the heating chamber 22. The temperature control unit 23 can control the temperature of the heating chamber 22 by controlling only the amount of air supplied from the air supply unit 26. Further, the temperature control unit 23 can control the temperature of the heating chamber 22 by controlling not only the air supply unit 26 but also the heating unit 27 and the steam supply unit 28. Further, the temperature control unit 23 may perform temperature control so that the temperature in the flue 43 is maintained at 600 ° C. or higher.
 ここで、加熱室22内の温度は、例えば製造される改質石炭の用途などに応じて適宜変更することができる。加熱室22内の温度は、例えば、内筒21から排出される改質石炭の目標温度である改質石炭目標温度に基づいて設定することができる。具体的には、加熱室22内の温度を、改質石炭目標温度に対して100℃~150℃高い範囲で設定することが可能である。なお、改質石炭目標温度に対して、100℃~150℃高い範囲であることは、必須条件ではなく、改質石炭目標温度以上の温度であれば適用可能である。 Here, the temperature in the heating chamber 22 can be appropriately changed depending on, for example, the use of the reformed coal to be produced. The temperature in the heating chamber 22 can be set based on, for example, the target temperature of the reformed coal, which is the target temperature of the reformed coal discharged from the inner cylinder 21. Specifically, the temperature in the heating chamber 22 can be set in a range of 100 ° C. to 150 ° C. higher than the target temperature of the reformed coal. It should be noted that the range of 100 ° C. to 150 ° C. higher than the target temperature of reformed coal is not an essential condition, and can be applied as long as the temperature is equal to or higher than the target temperature of reformed coal.
 なお、例えば改質石炭目標温度を650℃~850℃とすることで、石炭の揮発分(VM)を5~15質量%にして、改質石炭を無煙炭相当炭または半無煙炭相当炭とすることができる。さらに例えば、改質石炭目標温度を550℃~750℃とすることで、石炭の揮発分(VM)を10~30質量%にして、改質石炭を一般炭相当炭として好適に用いることができる。 For example, by setting the target temperature of reformed coal to 650 ° C to 850 ° C, the volatile content (VM) of coal is set to 5 to 15% by mass, and the reformed coal is anthracite equivalent coal or semi-anthracite equivalent coal. Can be done. Further, for example, by setting the target temperature of the reformed coal to 550 ° C to 750 ° C, the volatile content (VM) of the coal can be set to 10 to 30% by mass, and the reformed coal can be suitably used as steam coal equivalent coal. ..
 ところで、加熱室22の温度制御の際、内筒21に上流側D1の端部から供給される石炭が150℃程度まで加熱される段階で石炭中の水分が蒸発する。その結果、内筒21において、上流側D1に位置する部分では、水分の蒸発に必要な熱量が加わるために石炭の加熱に必要な熱量が大きくなり、下流側D2に位置する部分では水分の蒸発がなくなるので石炭の加熱に必要な熱量が小さくなる。したがって、内筒21の内部では、上流側D1に位置する部分では石炭および雰囲気の温度が上昇し難い。また、内筒21の上流側D1に位置する部分では石炭中の水分の蒸発により水蒸気が多く発生し、下流側D2に向かうに連れて、乾留ガスの発生量が多くなる。その結果、排気管24から加熱室22内に排出される乾留ガスは、上流側D1において下流側D2より少なくなる。従って、加熱室22内についても、上流側D1に位置する部分では雰囲気ガスのカロリーが低いために温度が上昇し難い。 By the way, when the temperature of the heating chamber 22 is controlled, the water content in the coal evaporates at the stage where the coal supplied from the end of the upstream side D1 to the inner cylinder 21 is heated to about 150 ° C. As a result, in the inner cylinder 21, the amount of heat required for heating coal increases in the portion located on the upstream side D1 because the amount of heat required for evaporation of water is added, and the amount of heat required for heating coal increases in the portion located on the downstream side D2. The amount of heat required to heat the coal is reduced because the amount of heat required for heating the coal is reduced. Therefore, inside the inner cylinder 21, the temperature of coal and the atmosphere is unlikely to rise in the portion located on the upstream side D1. Further, in the portion of the inner cylinder 21 located on the upstream side D1, a large amount of water vapor is generated due to the evaporation of water in the coal, and the amount of carbonization gas generated increases toward the downstream side D2. As a result, the amount of carbonization gas discharged from the exhaust pipe 24 into the heating chamber 22 is less on the upstream side D1 than on the downstream side D2. Therefore, even in the heating chamber 22, the temperature of the portion located on the upstream side D1 is difficult to rise because the calorie of the atmospheric gas is low.
 そこで、本実施形態では、加熱室22において上流側D1に位置する端部からのみガスを排出するようにガス排出を実施する(ガス排出工程)。つまり、加熱室22内のガスを上流側D1に位置する端部に設置した煙道43からのみ排出する。これにより、加熱室22内の下流側D2に位置する部分において多量に発生する乾留ガスが、加熱室22から排出される過程で、加熱室22内において上流側D1に位置する部分を通過する。このとき、乾留ガスに空気を供給して乾留ガスを部分燃焼(酸化)させることで、加熱室22内において上流側D1に位置する部分の温度を確実に上昇させることができる。 Therefore, in the present embodiment, the gas is discharged so that the gas is discharged only from the end located on the upstream side D1 in the heating chamber 22 (gas discharge step). That is, the gas in the heating chamber 22 is discharged only from the flue 43 installed at the end located on the upstream side D1. As a result, a large amount of carbonization gas generated in the portion located on the downstream side D2 in the heating chamber 22 passes through the portion located on the upstream side D1 in the heating chamber 22 in the process of being discharged from the heating chamber 22. At this time, by supplying air to the carbonization gas to partially burn (oxidize) the carbonization gas, the temperature of the portion located on the upstream side D1 in the heating chamber 22 can be surely raised.
 以上説明したように、本実施形態に係る改質石炭の製造設備10、乾留装置12、改質石炭の製造方法および乾留方法によれば、乾留ガスを加熱室22内で部分燃焼(酸化)させることで、加熱室22内の温度を高めることができる。したがって、加熱室22内の温度を、加熱室22の壁面や煙道43の壁面にタールが付着しない程度に高めることで、改質石炭の製造設備10における乾留装置12の稼働率を確保しつつ、改質石炭の製造設備10における乾留装置12の装置構成を簡素化し、運転も容易にすることができる。 As described above, according to the reformed coal production facility 10, the carbonization device 12, the carbonization method, and the carbonization method according to the present embodiment, the carbonization gas is partially burned (oxidized) in the heating chamber 22. As a result, the temperature inside the heating chamber 22 can be raised. Therefore, by raising the temperature in the heating chamber 22 to such an extent that tar does not adhere to the wall surface of the heating chamber 22 and the wall surface of the flue 43, the operating rate of the carbonization device 12 in the reformed coal production facility 10 is secured. , The apparatus configuration of the carbonization apparatus 12 in the reformed coal production facility 10 can be simplified and the operation can be facilitated.
 また温度制御部23が、煙道43内の温度が600℃以上を維持し、かつ加熱室22内の温度を600℃以上になるように制御するので、加熱室22の壁面や煙道43の壁面にタールが付着するのを確実に抑えることができる。これにより、改質石炭の製造設備10における乾留装置12の稼働率を確実に確保することができる。 Further, since the temperature control unit 23 controls the temperature inside the flue 43 to be 600 ° C. or higher and the temperature inside the heating chamber 22 to be 600 ° C. or higher, the wall surface of the heating chamber 22 or the flue 43 It is possible to reliably prevent tar from adhering to the wall surface. As a result, the operating rate of the carbonization device 12 in the reformed coal manufacturing facility 10 can be reliably secured.
 さらに温度制御部23が、制御ゾーンZ1~Z3ごとに温度を制御するので、加熱室22内の温度を、加熱室22の壁面や煙道43の壁面にタールが付着しない程度に確実に高めることができる。例えば、複数の制御ゾーンZ1~Z3のうち、温度が上昇し易い下流側D2の第3制御ゾーンZ3において、乾留ガスが過剰に部分燃焼(酸化)するのを抑えて、未燃ガスを上流側へと移動させ、温度が上昇し難い上流側D1の第1制御ゾーンZ1において、下流側からの未燃ガスを含んだ乾留ガスを積極的に部分燃焼(酸化)させることができる。これにより、改質石炭の製造設備10における乾留装置12の稼働率を確実に確保することができる。 Further, since the temperature control unit 23 controls the temperature for each of the control zones Z1 to Z3, the temperature inside the heating chamber 22 is surely raised to the extent that tar does not adhere to the wall surface of the heating chamber 22 or the wall surface of the flue 43. Can be done. For example, among the plurality of control zones Z1 to Z3, in the third control zone Z3 of the downstream side D2 where the temperature tends to rise, the dry distillation gas is suppressed from being excessively partially burned (oxidized), and the unburned gas is transferred to the upstream side. In the first control zone Z1 of the upstream side D1 where the temperature does not easily rise, the dry distillation gas containing the unburned gas from the downstream side can be positively partially burned (oxidized). As a result, the operating rate of the carbonization device 12 in the reformed coal manufacturing facility 10 can be reliably secured.
 なお、本実施形態については、以下に例示するように種々の変更を加えることが可能である。 It should be noted that various changes can be made to this embodiment as illustrated below.
 例えば、上述した例では蒸気発生装置16が回収した蒸気を乾燥装置11に熱源として供給するが、蒸気発生装置16とは異なる装置から乾燥装置11に熱源が供給されてもよい。また、例えば、上述した例では温度制御部23が制御ゾーンZ1~Z3ごとに温度を制御しているが、温度制御部23が加熱室22内の温度を一体に制御してもよい。さらに、例えば、上述した例では加熱室22内に空気を供給するが、空気と同様に、空気とは異なる酸素含有ガスを加熱室22内に供給してもよい。ここで酸素含有ガスとは、酸素を含有し、乾留ガスを燃焼(酸化)させることができるガスを意味する。酸素含有ガスとしては、空気の他に、例えば酸素を含有する排ガス、酸素富化空気などが使用できる。その他、本発明の趣旨に逸脱しない範囲で、上述した例における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、変形例を適宜組み合わせてもよい。 For example, in the above example, the steam recovered by the steam generator 16 is supplied to the drying device 11 as a heat source, but the heat source may be supplied to the drying device 11 from a device different from the steam generator 16. Further, for example, in the above-described example, the temperature control unit 23 controls the temperature for each of the control zones Z1 to Z3, but the temperature control unit 23 may integrally control the temperature in the heating chamber 22. Further, for example, in the above-described example, air is supplied into the heating chamber 22, but like air, an oxygen-containing gas different from air may be supplied into the heating chamber 22. Here, the oxygen-containing gas means a gas that contains oxygen and can burn (oxidize) the carbonization gas. As the oxygen-containing gas, in addition to air, for example, oxygen-containing exhaust gas, oxygen-enriched air, and the like can be used. In addition, it is possible to replace the constituent elements in the above-mentioned examples with well-known constituent elements as appropriate without departing from the spirit of the present invention, and modified examples may be appropriately combined.
 次に、上記の第1の実施形態の作用効果を検証する第1~第3の検証試験を実施した。なお以下の第1~第3の検証試験では、加熱室22内に、酸素含有ガスとしての空気を供給した。 Next, the first to third verification tests for verifying the action and effect of the above first embodiment were carried out. In the following first to third verification tests, air as an oxygen-containing gas was supplied into the heating chamber 22.
 (第1の検証試験)
 第1の検証試験では、煙道43の軸線O方向の位置の違いに基づく加熱室22内の温度について検証した。第1の検証試験では、試験例A1および試験例B1として2種類の乾留装置12を用いた。これらの2つの乾留装置12はいずれも、内筒21の直径は500mmとし、内筒21の加熱室内部分21aの軸線O方向の大きさは3000mmとし、内筒21の軸線Oの水平方向に対する傾斜角度は1.0度とし、内筒21の回転速度は3.1rpmとした。また、内筒21に供給される石炭の水分を11.8重量%とし、内筒21に供給される石炭の供給速度を、280kg/h~290kg/hとした。さらに、第2制御ゾーンZ2の温度に基づいて、各制御系25から制御ゾーンZ1~Z3それぞれに供給される空気量の供給速度を設定した。このとき、各制御ゾーンZ1~Z3に供給する空気量の供給速度を同等とし、3ゾーン合計の空気量の供給速度は280Nm/h~285Nm/hとした。
(First verification test)
In the first verification test, the temperature inside the heating chamber 22 based on the difference in the position of the flue 43 in the axis O direction was verified. In the first verification test, two types of carbonization devices 12 were used as Test Example A1 and Test Example B1. In both of these two carbonization devices 12, the diameter of the inner cylinder 21 is 500 mm, the size of the heating chamber portion 21a of the inner cylinder 21 in the axis O direction is 3000 mm, and the inclination of the axis O of the inner cylinder 21 with respect to the horizontal direction. The angle was 1.0 degree, and the rotation speed of the inner cylinder 21 was 3.1 rpm. Further, the water content of the coal supplied to the inner cylinder 21 was set to 11.8% by weight, and the supply speed of the coal supplied to the inner cylinder 21 was set to 280 kg / h to 290 kg / h. Further, based on the temperature of the second control zone Z2, the supply rate of the amount of air supplied from each control system 25 to each of the control zones Z1 to Z3 was set. At this time, the supply speed of the amount of air supplied to each control zone Z1 to Z3 was set to be the same, and the supply speed of the total amount of air in the three zones was set to 280 Nm 3 / h to 285 Nm 3 / h.
 ここで、試験例A1と試験例B1とでは、煙道43の軸線O方向の位置を異ならせた。
試験例A1では、上記の実施形態と同様に、煙道43を、加熱室22の上流側D1の端部の制御ゾーンZ1のみに接続した。試験例B1では、煙道43を、加熱室22の下流側D2の端部の制御ゾーンZ3のみに接続した。
 この第1の検証試験では、第1~第3制御ゾーンZ3それぞれの温度と、内筒21から排出される石炭の温度である排出石炭温度と、を測定した。結果を以下表1に示す。
Here, the positions of the flue 43 in the axis O direction were different between Test Example A1 and Test Example B1.
In Test Example A1, the flue 43 was connected only to the control zone Z1 at the end of the upstream side D1 of the heating chamber 22, as in the above embodiment. In Test Example B1, the flue 43 was connected only to the control zone Z3 at the end of D2 on the downstream side of the heating chamber 22.
In this first verification test, the temperature of each of the first to third control zones Z3 and the discharged coal temperature, which is the temperature of the coal discharged from the inner cylinder 21, were measured. The results are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 この結果から、試験例A1では、試験例B1よりも加熱室22内の温度にばらつきが生じ難くなっていて、排出石炭温度も高められていることが確認された。 From this result, it was confirmed that in Test Example A1, the temperature in the heating chamber 22 was less likely to vary than in Test Example B1, and the discharged coal temperature was also raised.
 (第2の検証試験)
 第2の検証試験では、加熱室22内の温度の違いに基づくタールの付着について検証した。第2の検証試験では、試験例A2および試験例B2として2種類の乾留装置12を用いた。これらの2つの乾留装置12はいずれも、内筒21の直径は500mmとし、内筒21の加熱室内部分21aの軸線O方向の大きさは3000mmとし、内筒21の軸線Oの水平方向に対する傾斜角度は1.0度とし、内筒21の回転速度は3.1rpmとした。また、内筒21に供給される石炭の水分を12.3重量%とし、内筒21に供給される石炭の供給速度を、275kg/h~280kg/hとした。さらに、煙道43を、加熱室22の上流側D1の端部の制御ゾーンZ1のみに接続した。
(Second verification test)
In the second verification test, the adhesion of tar based on the difference in temperature in the heating chamber 22 was verified. In the second verification test, two types of carbonization devices 12 were used as Test Example A2 and Test Example B2. In both of these two carbonization devices 12, the diameter of the inner cylinder 21 is 500 mm, the size of the heating chamber portion 21a of the inner cylinder 21 in the axis O direction is 3000 mm, and the inclination of the axis O of the inner cylinder 21 with respect to the horizontal direction. The angle was 1.0 degree, and the rotation speed of the inner cylinder 21 was 3.1 rpm. Further, the water content of the coal supplied to the inner cylinder 21 was set to 12.3% by weight, and the supply speed of the coal supplied to the inner cylinder 21 was set to 275 kg / h to 280 kg / h. Further, the flue 43 was connected only to the control zone Z1 at the end of the upstream side D1 of the heating chamber 22.
 試験例A2と試験例B2とでは、加熱室22の運転温度によるタール付着の影響を比較するために、第2制御ゾーンZ2の目標温度を異ならせた。試験例A2では第2制御ゾーンZ2の温度が630℃程度とし、試験例B2では第2制御ゾーンZ2の温度が550℃程度とした。試験例A2および試験例B2では、それぞれの第2制御ゾーンZ2の目標温度に基づいて、各制御系25から制御ゾーンZ1~Z3それぞれに供給される空気量の供給速度を設定した。このとき、試験例A2および試験例B2それぞれにおいて、各制御ゾーンZ1~Z3に供給する空気量の供給速度を同等とした。具体的には、試験例A2では各制御ゾーンZ1~Z3の空気量の供給速度の合計を215Nm/hとし、試験例B2では各制御ゾーンZ1~Z3の空気量の供給速度の合計を163Nm/hとした。なお、この場合における第1~第3制御ゾーンZ3それぞれの温度および排出石炭温度を、以下表2に示す。 In Test Example A2 and Test Example B2, the target temperature of the second control zone Z2 was made different in order to compare the influence of tar adhesion on the operating temperature of the heating chamber 22. In Test Example A2, the temperature of the second control zone Z2 was set to about 630 ° C, and in Test Example B2, the temperature of the second control zone Z2 was set to about 550 ° C. In Test Example A2 and Test Example B2, the supply speed of the amount of air supplied from each control system 25 to each of the control zones Z1 to Z3 was set based on the target temperature of each of the second control zones Z2. At this time, in each of Test Example A2 and Test Example B2, the supply speed of the amount of air supplied to each of the control zones Z1 to Z3 was set to be the same. Specifically, in Test Example A2, the total supply rate of air in each of the control zones Z1 to Z3 is 215 Nm 3 / h, and in Test Example B2, the total supply rate of air in each of the control zones Z1 to Z3 is 163 Nm. It was set to 3 / h. The temperature and the discharged coal temperature of each of the first to third control zones Z3 in this case are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 この第2の検証試験では、試験例A2および試験例B2それぞれについて、5日間連続して操業し、1日目における内筒21から二次燃焼装置15までの間の圧力損失と、5日目における内筒21から二次燃焼装置15までの間の圧力損失とを測定した。ここで、内筒21から二次燃焼装置15までの間の圧力損失は、内筒21の下流側D2の端部と二次燃焼装置15側の端部との間のガスの圧力差によって測定する。 In this second verification test, each of Test Example A2 and Test Example B2 was operated continuously for 5 days, and the pressure loss between the inner cylinder 21 and the secondary combustion device 15 on the first day and the pressure loss on the fifth day The pressure loss between the inner cylinder 21 and the secondary combustion device 15 was measured. Here, the pressure loss between the inner cylinder 21 and the secondary combustion device 15 is measured by the pressure difference of the gas between the end of the downstream side D2 of the inner cylinder 21 and the end of the secondary combustion device 15 side. do.
 試験例A2および試験例B2とも、1日目の運転開始直後における煙道43の圧力損失は、0.02kPaであった。試験例A2では、5日目における煙道43の圧力損失は、0.03kPaであるのに対して、試験例B2では、5日目における煙道43の圧力損失は、1.45kPaであった。
 この結果から、試験例A2では、試験例B1よりも煙道43の圧力損失が小さく、タールの付着が抑えられていることが確認された。
In both Test Example A2 and Test Example B2, the pressure loss of the flue 43 immediately after the start of operation on the first day was 0.02 kPa. In Test Example A2, the pressure loss of the flue 43 on the 5th day was 0.03 kPa, whereas in Test Example B2, the pressure loss of the flue 43 on the 5th day was 1.45 kPa. ..
From this result, it was confirmed that in Test Example A2, the pressure loss of the flue 43 was smaller than that of Test Example B1, and the adhesion of tar was suppressed.
 (第3の検証試験)
 第3の検証試験では、制御ゾーンZ1~Z3ごとに温度を制御することによる石炭の揮発分の違いについて検証した。第3の検証試験では、試験例A3および試験例B3として2種類の乾留装置12を用いた。これらの2つの乾留装置12はいずれも、内筒21の直径は500mmとし、内筒21の加熱室内部分21aの軸線O方向の大きさは3000mmとし、内筒21の軸線Oの水平方向に対する傾斜角度は1.0度とし、内筒21の回転速度は3.1rpmとした。また、内筒21に供給される石炭の水分を12.1重量%とし、内筒21に供給される石炭の供給速度を、220kg/h~225kg/hとした。さらに、煙道43を、加熱室22の上流側D1の端部の制御ゾーンZ1のみに接続した。そして、排出改質石炭温度に基づいて、各制御系25から制御ゾーンZ1~Z3それぞれに供給される空気の供給速度を設定した。このとき、排出石炭温度が655℃前後となるように、各制御系25を制御した。
(Third verification test)
In the third verification test, the difference in the volatile content of coal by controlling the temperature in each of the control zones Z1 to Z3 was verified. In the third verification test, two types of carbonization devices 12 were used as Test Example A3 and Test Example B3. In both of these two carbonization devices 12, the diameter of the inner cylinder 21 is 500 mm, the size of the heating chamber portion 21a of the inner cylinder 21 in the axis O direction is 3000 mm, and the inclination of the axis O of the inner cylinder 21 with respect to the horizontal direction. The angle was 1.0 degree, and the rotation speed of the inner cylinder 21 was 3.1 rpm. Further, the water content of the coal supplied to the inner cylinder 21 was set to 12.1% by weight, and the supply speed of the coal supplied to the inner cylinder 21 was set to 220 kg / h to 225 kg / h. Further, the flue 43 was connected only to the control zone Z1 at the end of the upstream side D1 of the heating chamber 22. Then, based on the emission reformed coal temperature, the supply speed of the air supplied from each control system 25 to each of the control zones Z1 to Z3 was set. At this time, each control system 25 was controlled so that the discharged coal temperature was around 655 ° C.
 試験例A3と試験例B3とでは、加熱室22内における温度の分布を異ならせた。
 すなわち、試験例A3では、温度制御部23により、各制御ゾーンZ1~Z3の温度がほぼ同等になるように、加熱室22の温度を制御した(表3参照)。このとき試験例A3では、各制御系25からの空気量の供給速度を異ならせて、第1制御ゾーンZ1には120Nm/hで空気を供給し、第2制御ゾーンZ2には70Nm/hで空気を供給し、第3制御ゾーンZ3には35Nm/hで空気を供給した。
 一方、試験例B3では、各制御系25からの空気の供給速度を同等にして、各制御ゾーンZ1~Z3に各々75Nm/hで空気量の供給速度で空気を供給した。その結果、各制御ゾーンZ1~Z3の温度は、表3に示すように各ゾーンの温度がばらついた。
The temperature distribution in the heating chamber 22 was different between Test Example A3 and Test Example B3.
That is, in Test Example A3, the temperature control unit 23 controlled the temperature of the heating chamber 22 so that the temperatures of the control zones Z1 to Z3 were substantially the same (see Table 3). At this time, in Test Example A3, the supply speed of the amount of air from each control system 25 is changed to supply air to the first control zone Z1 at 120 Nm 3 / h and to the second control zone Z2 at 70 Nm 3 /. Air was supplied at h, and air was supplied to the third control zone Z3 at 35 Nm 3 / h.
On the other hand, in Test Example B3, the air supply speed from each control system 25 was made equal, and air was supplied to each of the control zones Z1 to Z3 at a supply speed of 75 Nm 3 / h. As a result, the temperatures of the control zones Z1 to Z3 varied as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この第3の検証試験では、試験例A3および試験例B3それぞれについて、内筒21から排出される改質石炭の揮発分を測定した。試験例A3では揮発分が6.2重量%であるのに対し、試験例B3では揮発分が9.2重量%であった。
 この結果から、試験例A3では、排出石炭温度が試験例B3と同等であるにも関わらず試験例B3よりも揮発度が小さく、効果的に乾留されていることが確認された。
In this third verification test, the volatile content of the reformed coal discharged from the inner cylinder 21 was measured for each of Test Example A3 and Test Example B3. In Test Example A3, the volatile content was 6.2% by weight, whereas in Test Example B3, the volatile content was 9.2% by weight.
From this result, it was confirmed that in Test Example A3, although the discharged coal temperature was the same as that of Test Example B3, the volatility was smaller than that of Test Example B3 and carbonization was effectively performed.
 (第2の実施形態)
 次に、本発明の第2の実施形態について説明する。本実施形態でも上記の第1の実施形態と同様の外熱式ロータリーキルンの乾留装置を含む製造設備を用いて改質石炭が製造される。本実施形態では、以下で説明するように乾留装置の内筒の中で石炭を撹拌するための撹拌部材が設けられる。なお、それ以外の点については上記の第1の実施形態の例に限らず一般的な外熱式ロータリーキルンの構成を採用することが可能であり、例えば加熱室において煙道は必ずしも上流側の端部にのみ接続されなくてもよい。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In this embodiment as well, reformed coal is produced using a production facility including a carbonization device for an externally heated rotary kiln similar to that in the first embodiment. In the present embodiment, as described below, a stirring member for stirring coal in the inner cylinder of the carbonization device is provided. Regarding other points, it is possible to adopt a general external heat type rotary kiln configuration, not limited to the example of the first embodiment described above. For example, in a heating chamber, the flue is not necessarily the upstream end. It does not have to be connected only to the unit.
 図3は、本発明の第2の実施形態に係る乾留装置における内筒の内周面の展開図である。図示された例において、内筒21の内部は上流側から下流側に向けて送り領域211と加熱領域212に区分され、加熱領域212は水分蒸発ゾーン212Aおよび熱分解ゾーン212Bにさらに区分される。また、熱分解ゾーン212Bの下流側は出口領域213である。本実施形態では、石炭を撹拌するための撹拌板51,52が、それぞれ水分蒸発ゾーン212Aおよび熱分解ゾーン212Bで内筒21の内周面21cから軸線O(図2参照)に向かって突出して設けられる。送り領域211には石炭を加熱領域212に送り込むための送りリフター211Lが設けられ、出口領域213には撹拌板およびリフターは設けられない。 FIG. 3 is a developed view of the inner peripheral surface of the inner cylinder in the carbonization device according to the second embodiment of the present invention. In the illustrated example, the inside of the inner cylinder 21 is further divided into a feed region 211 and a heating region 212 from the upstream side to the downstream side, and the heating region 212 is further divided into a water evaporation zone 212A and a thermal decomposition zone 212B. Further, the downstream side of the thermal decomposition zone 212B is the outlet region 213. In the present embodiment, the stirring plates 51 and 52 for stirring coal project from the inner peripheral surface 21c of the inner cylinder 21 toward the axis O (see FIG. 2) in the water evaporation zone 212A and the thermal decomposition zone 212B, respectively. Provided. The feed region 211 is provided with a feed lifter 211L for feeding coal to the heating region 212, and the outlet region 213 is not provided with a stirring plate and a lifter.
 撹拌板51,52は、内筒21の周方向について90°間隔で方向を変えて配列された排気管24とは別に、内筒21の周方向について所定間隔(図示された例では45°間隔)で配列される。水分蒸発ゾーン212Aでは、周方向に配列される複数の撹拌板51のそれぞれが軸線Oに対して平行に延びている。つまり、水分蒸発ゾーン212Aの撹拌板51の軸線Oに対する傾斜角は0である。図4Aは図3のA-A線に沿った断面図、すなわち展開されていない状態の内筒21の水分蒸発ゾーン212Aにおける断面図であり、各撹拌板51が内筒21の内周面21cから軸線Oに向かって突出し、かつ内筒21の周方向に等間隔に配列される例が示されている。撹拌板51は、軸線Oとは反対側の端部でブラケット53を介して内周面21cに取り付けられている。軸線Oの方向で隣接する撹拌板51は内筒21の周方向について間隔の1/2(図示された例では22.5°)だけ互いにずれて配列されている。本実施形態において、水分蒸発ゾーン212Aの撹拌板51は軸線Oの方向に例えば4列配列されている。 The stirring plates 51 and 52 are separated from the exhaust pipes 24 arranged by changing the direction of the inner cylinder 21 at 90 ° intervals, and at predetermined intervals (45 ° intervals in the illustrated example) in the circumferential direction of the inner cylinder 21. ). In the water evaporation zone 212A, each of the plurality of stirring plates 51 arranged in the circumferential direction extends parallel to the axis O. That is, the inclination angle of the stirring plate 51 of the water evaporation zone 212A with respect to the axis O is 0. FIG. 4A is a cross-sectional view taken along the line AA of FIG. 3, that is, a cross-sectional view of the inner cylinder 21 in an undeveloped state in the water evaporation zone 212A, and each stirring plate 51 is an inner peripheral surface 21c of the inner cylinder 21. An example is shown in which the inner cylinder 21 protrudes from the axis O toward the axis O and is arranged at equal intervals in the circumferential direction of the inner cylinder 21. The stirring plate 51 is attached to the inner peripheral surface 21c via the bracket 53 at the end opposite to the axis O. The stirring plates 51 adjacent to each other in the direction of the axis O are arranged so as to be offset from each other by 1/2 (22.5 ° in the illustrated example) of the circumferential direction of the inner cylinder 21. In the present embodiment, the stirring plates 51 of the water evaporation zone 212A are arranged in, for example, four rows in the direction of the axis O.
 一方、熱分解ゾーン212Bでは、水分蒸発ゾーン212Aにおける撹拌板51の配列と同様な周方向の間隔(図では45°間隔)および長さ方向の間隔で、複数の撹拌板52が配列されている。熱分解ゾーン212Bでは、周方向に配列される複数の撹拌板52のそれぞれが軸線Oに対して傾斜角β(図3参照)を有する。傾斜角βの大きさは、例えば4.3°~4.5°程度である。熱分解ゾーン212Bでは、撹拌板52が傾斜角βを有することによって、内筒21を所定の向きに回転させた場合に通過する石炭を上流側に押し戻すように撹拌することができる。その一方で、水分蒸発ゾーン212Aでは傾斜角を有さない撹拌板51によって石炭が熱分解ゾーン212B側に送り出されるため、熱分解ゾーン212B内での石炭の充填率がより均一になり、滞留時間を長く設定することができる。図4Bは図3のB-B線に沿った断面図、すなわち展開されていない状態の内筒21の熱分解ゾーン212Bにおける断面図であり、各撹拌板52が内筒21の内周面21cから軸線Oに向かって突出し、かつ内筒21の周方向に等間隔に配列され、かつ軸線Oに対して傾斜角βを有するために端面だけではなく板面が見えている例が示されている。本実施形態において、熱分解ゾーン212Bの撹拌板52は軸線Oの方向に例えば8列配列されている。 On the other hand, in the thermal decomposition zone 212B, a plurality of stirring plates 52 are arranged at intervals in the circumferential direction (45 ° intervals in the figure) and intervals in the length direction similar to the arrangement of the stirring plates 51 in the water evaporation zone 212A. .. In the thermal decomposition zone 212B, each of the plurality of stirring plates 52 arranged in the circumferential direction has an inclination angle β (see FIG. 3) with respect to the axis O. The magnitude of the inclination angle β is, for example, about 4.3 ° to 4.5 °. In the thermal decomposition zone 212B, since the stirring plate 52 has an inclination angle β, the coal passing through when the inner cylinder 21 is rotated in a predetermined direction can be stirred so as to be pushed back to the upstream side. On the other hand, in the moisture evaporation zone 212A, the coal is sent out to the pyrolysis zone 212B side by the stirring plate 51 having no inclination angle, so that the filling rate of the coal in the pyrolysis zone 212B becomes more uniform and the residence time becomes more uniform. Can be set longer. FIG. 4B is a cross-sectional view taken along the line BB of FIG. 3, that is, a cross-sectional view of the inner cylinder 21 in an undeveloped state in the thermal decomposition zone 212B, and each stirring plate 52 is an inner peripheral surface 21c of the inner cylinder 21. An example is shown in which not only the end face but also the plate surface is visible because the inner cylinder 21 is arranged at equal intervals in the circumferential direction of the inner cylinder 21 and has an inclination angle β with respect to the axis O. There is. In the present embodiment, the stirring plates 52 of the thermal decomposition zone 212B are arranged in, for example, eight rows in the direction of the axis O.
 加えて、熱分解ゾーン212Bにおける撹拌板52は、図5Aおよび図5Bに示すようにブラケット53を介して内周面21cに取り付けられ、撹拌板52と内筒21の内周面21cとの間には隙間54が形成されている。このような隙間54が形成されることで、内筒21の回転時に撹拌板52によって撹拌された石炭の一部を隙間54から内周面21cに沿って落下させることができ、石炭の粒子が軸線O側に飛散して排気管24に吸い込まれるのを防止しつつ、内筒21の内部での石炭の混合を促進させることができる。 In addition, the stirring plate 52 in the thermal decomposition zone 212B is attached to the inner peripheral surface 21c via the bracket 53 as shown in FIGS. 5A and 5B, and is between the stirring plate 52 and the inner peripheral surface 21c of the inner cylinder 21. A gap 54 is formed in the. By forming such a gap 54, a part of the coal stirred by the stirring plate 52 when the inner cylinder 21 is rotated can be dropped from the gap 54 along the inner peripheral surface 21c, and the coal particles can be formed. It is possible to promote the mixing of coal inside the inner cylinder 21 while preventing the coal from being scattered toward the axis O side and being sucked into the exhaust pipe 24.
 本実施形態において、上記のような撹拌板51,52は、軸線Oの方向について、水分蒸発ゾーン212Aおよび熱分解ゾーン212Bからなる加熱領域212の全体に配置されている。石炭の飛散を防止しながら均一に撹拌混合するためには、撹拌板51,52を加熱領域212の90%を超える範囲に設置することが好ましい。 In the present embodiment, the stirring plates 51 and 52 as described above are arranged in the entire heating region 212 including the water evaporation zone 212A and the thermal decomposition zone 212B in the direction of the axis O. In order to uniformly stir and mix while preventing coal from scattering, it is preferable to install the stir plates 51 and 52 in a range exceeding 90% of the heating region 212.
 次に、上記の第1の実施形態で説明した図1もあわせて参照して、本実施形態における乾留装置を用いた改質石炭の製造方法について説明する。まず、図示しない駆動部を駆動させることで内筒21を軸線O回りに回転させるとともに、加熱部27によって加熱室22内を加熱する。そして、内筒21の内部が所定の高温になると石炭を内筒21の内部に投入し、加熱室22内の高熱によって乾留させる。 Next, a method for producing reformed coal using the carbonization apparatus in the present embodiment will be described with reference to FIG. 1 described in the first embodiment above. First, the inner cylinder 21 is rotated around the axis O by driving a drive unit (not shown), and the inside of the heating chamber 22 is heated by the heating unit 27. Then, when the inside of the inner cylinder 21 reaches a predetermined high temperature, coal is put into the inside of the inner cylinder 21 and carbonized by the high heat in the heating chamber 22.
 回転する内筒21の内部に石炭を投入すると、送り領域211の送りリフター211Lによって加熱領域212の水分蒸発ゾーン212Aに搬送され、石炭に含まれる水分が蒸発させられる。水分蒸発ゾーン212Aにおいて、撹拌板51は内筒21の軸線Oと平行に配列されているため、石炭の粒子は撹拌板51によって撹拌されながら内筒21の内周面21cに沿って搬送され、熱分解ゾーン212Bに搬送される。 When coal is put into the rotating inner cylinder 21, the coal is conveyed to the water evaporation zone 212A of the heating region 212 by the feed lifter 211L of the feed region 211, and the water contained in the coal is evaporated. In the water evaporation zone 212A, since the stirring plate 51 is arranged parallel to the axis O of the inner cylinder 21, coal particles are conveyed along the inner peripheral surface 21c of the inner cylinder 21 while being stirred by the stirring plate 51. It is transported to the thermal decomposition zone 212B.
 熱分解ゾーン212Bでは、内筒21の回転によって撹拌板52が回転させられ、内筒21の内部で石炭が撹拌板52によって撹拌混合される。その際、一部の石炭は撹拌板52によって持ち上げられ、他の一部の石炭は撹拌板52で持ち上げられずに隙間54から落下して内周面21c上を流動する。撹拌板52上の石炭の全体が軸線O側に落下するのではないことによって、撹拌に伴う飛散量を抑制できる。 In the thermal decomposition zone 212B, the stirring plate 52 is rotated by the rotation of the inner cylinder 21, and coal is stirred and mixed by the stirring plate 52 inside the inner cylinder 21. At that time, some coal is lifted by the stirring plate 52, and some other coal is not lifted by the stirring plate 52 but falls from the gap 54 and flows on the inner peripheral surface 21c. Since the entire coal on the stirring plate 52 does not fall to the axis O side, the amount of scattering due to stirring can be suppressed.
 ここで、図4Bに示すように、熱分解ゾーン212Bに配置される撹拌板52は、撹拌板52の高さha(内周面21cを基準にした、内筒21の径方向における寸法)が石炭の充填高さhmに対して60%~90%となるように設計されることが好ましい。石炭の充填高さhmが撹拌板52の高さhaに対して小さすぎると撹拌効果が小さく、逆に大きすぎると石炭の飛散が増大する。内筒21への石炭の投入量を、撹拌板52の高さhaが石炭の充填高さhmに対して上記の範囲になるように調節してもよい。また、図5Aに示されるように、内周面21cと撹拌板52の延長面との交点(ブラケット53が内周面21cに接合される位置)から撹拌板52の軸線O側の端部までの距離を高さhaとし、隙間54の高さ、すなわち内周面21cと撹拌板52の延長面との交点から撹拌板52の内周面21c側の端部までの距離を高さhbとした場合、隙間54の高さhbは撹拌板52の高さhaの10%~25%の範囲、より好ましくは10%~20%の範囲にあることが好ましい。 Here, as shown in FIG. 4B, the stirring plate 52 arranged in the thermal decomposition zone 212B has a height ha of the stirring plate 52 (dimension in the radial direction of the inner cylinder 21 with reference to the inner peripheral surface 21c). It is preferably designed to be 60% to 90% with respect to the filling height hm of coal. If the filling height hm of the coal is too small with respect to the height ha of the stirring plate 52, the stirring effect is small, and conversely, if it is too large, the scattering of coal increases. The amount of coal charged into the inner cylinder 21 may be adjusted so that the height ha of the stirring plate 52 is within the above range with respect to the filling height hm of coal. Further, as shown in FIG. 5A, from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 (the position where the bracket 53 is joined to the inner peripheral surface 21c) to the end of the stirring plate 52 on the axis O side. The height ha is defined as the height ha, and the height of the gap 54, that is, the distance from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 to the end of the stirring plate 52 on the inner peripheral surface 21c side is defined as the height hb. If so, the height hb of the gap 54 is preferably in the range of 10% to 25%, more preferably 10% to 20% of the height ha of the stirring plate 52.
 このように、本実施形態では、内筒21の熱分解ゾーン212Bで石炭を乾留するにあたり、撹拌板52による撹拌によって、石炭の融着や塊状化を防止できる。これによって、内筒21の内部に堆積した石炭の温度偏差が小さくなり、加熱室22からの熱が効率的に伝達される。また、隙間54を設けることによって撹拌時における石炭の飛散を抑え、不揮発成分である炭化物の粒子が排気管24から排出されるのを抑制できる。 As described above, in the present embodiment, when the coal is carbonized in the thermal decomposition zone 212B of the inner cylinder 21, the coal can be prevented from being fused or agglomerated by stirring with the stirring plate 52. As a result, the temperature deviation of the coal deposited inside the inner cylinder 21 is reduced, and the heat from the heating chamber 22 is efficiently transferred. Further, by providing the gap 54, it is possible to suppress the scattering of coal during stirring and to prevent the particles of carbide, which is a non-volatile component, from being discharged from the exhaust pipe 24.
 また、上述のように内筒21の軸線Oには下り緩勾配がつけられているため、内筒21の全体を通じて石炭は下流側に向かって移動するが、熱分解ゾーン212Bの撹拌板52が傾斜角βを有することによって、撹拌板52で撹拌された石炭の下流側への移動はある程度妨げられ、一部が上流側に押し戻される。その一方で、水分蒸発ゾーン212Aでは石炭が傾斜角を有さない撹拌板51によって下流側に送り出されるため、熱分解ゾーン212B内の石炭の充填率がより均一になり、滞留時間が長くなる。例えば、熱分解ゾーン212Bにおける温度を650℃とし、本実施形態とは異なり熱分解ゾーン212Bでも傾斜角を有さない撹拌板を設けた場合、内筒21に投入された石炭が熱分解ゾーン212Bに滞留する時間は例えば50分間程度である。他の条件は同様にして、本実施形態のように熱分解ゾーン212Bに傾斜角βを有する撹拌板52を設けた場合、石炭が熱分解ゾーン212Bに滞留する時間は約20%延長されて60分程度になり、これによって石炭の受熱面積が約8%向上する。つまり、上記の例では、撹拌板52が傾斜角βを有することによって乾留装置における石炭への伝熱効率が約8%向上する。 Further, as described above, since the axis O of the inner cylinder 21 has a gentle downward slope, coal moves toward the downstream side throughout the inner cylinder 21, but the stirring plate 52 of the thermal decomposition zone 212B By having the inclination angle β, the movement of the coal stirred by the stirring plate 52 to the downstream side is hindered to some extent, and a part of the coal is pushed back to the upstream side. On the other hand, in the water evaporation zone 212A, the coal is sent to the downstream side by the stirring plate 51 having no inclination angle, so that the filling rate of the coal in the pyrolysis zone 212B becomes more uniform and the residence time becomes longer. For example, when the temperature in the pyrolysis zone 212B is set to 650 ° C. and a stirring plate having no inclination angle is provided in the pyrolysis zone 212B unlike the present embodiment, the coal charged into the inner cylinder 21 is the pyrolysis zone 212B. The time to stay in the water is, for example, about 50 minutes. Under other conditions, when the stirring plate 52 having the inclination angle β is provided in the pyrolysis zone 212B as in the present embodiment, the time for coal to stay in the pyrolysis zone 212B is extended by about 20% to 60. This will increase the heat receiving area of coal by about 8%. That is, in the above example, the heat transfer efficiency to coal in the carbonization apparatus is improved by about 8% because the stirring plate 52 has the inclination angle β.
 なお、本実施形態については、上記の第1の実施形態との組み合わせが可能である他、以下に例示するように種々の変更を加えることが可能である。また、上記で説明した撹拌板52が傾斜角βをもって配置される構成と、撹拌板52と内筒21の内周面21cとの間に隙間54を設ける構成とは、それぞれ別個に効果を奏するため、いずれか一方のみが採用されてもよい。 It should be noted that this embodiment can be combined with the above-mentioned first embodiment, and various changes can be made as illustrated below. Further, the configuration in which the stirring plate 52 described above is arranged with an inclination angle β and the configuration in which the gap 54 is provided between the stirring plate 52 and the inner peripheral surface 21c of the inner cylinder 21 are effective separately. Therefore, only one of them may be adopted.
 例えば、上述した例では、水分蒸発ゾーン212Aの撹拌板51を軸線Oに対して平行に設置したが、水分蒸発ゾーン212Aにおける撹拌板51も軸線Oに対して傾斜角をもって配置してもよい。この場合、軸線Oに対する撹拌板51の傾斜角は、撹拌板52の傾斜角βより小さく設定することが好ましい。 For example, in the above example, the stirring plate 51 of the water evaporation zone 212A is installed parallel to the axis O, but the stirring plate 51 in the water evaporation zone 212A may also be arranged with an inclination angle with respect to the axis O. In this case, the inclination angle of the stirring plate 51 with respect to the axis O is preferably set smaller than the inclination angle β of the stirring plate 52.
 また、内筒21の周方向に配列される撹拌板52の設置間隔は、等間隔であることが好ましいが、不等間隔であってもよい。撹拌板52は、内筒21の内径に応じて4枚~12枚、より好ましくは6枚~10枚の範囲で設置できる。内周面21cの周方向に設置する撹拌板52の数は、石炭の混合撹拌効果を向上できる範囲で適宜設定できるが、撹拌板52の設置数を増やし過ぎると石炭の粒子が撹拌板52間で細かく区画されてしまい、混合割合が低下するので好ましくない。 Further, the installation intervals of the stirring plates 52 arranged in the circumferential direction of the inner cylinder 21 are preferably equal intervals, but may be unequal intervals. The stirring plate 52 can be installed in the range of 4 to 12, more preferably 6 to 10, depending on the inner diameter of the inner cylinder 21. The number of stirring plates 52 installed in the circumferential direction of the inner peripheral surface 21c can be appropriately set within a range in which the mixing and stirring effect of coal can be improved. It is not preferable because it is divided into small pieces and the mixing ratio is lowered.
 次に、図6、図7Aおよび図7Bを参照して、本発明の第2の実施形態の変形例について説明する。本変形例では、撹拌板52に、内筒21の径方向に対して傾斜する折り曲げ部52bが形成される。具体的には、図7Aに示されるように、内周面21cと撹拌板52の延長面との交点(ブラケット53が内周面21cに接合される位置)から撹拌板52の軸線O側の端部までの距離を高さhaとし、隙間54の高さ、すなわち内周面21cと撹拌板52の延長面との交点から撹拌板52の内周面21c側の端部までの距離を高さhbとし、撹拌板52の軸線O側に形成される折り曲げ部52bとそれ以外の部分との境界の内周面21cからの距離を高さhcとした場合、高さhcは高さhaの30%~70%の範囲であることが好ましい。つまり、折り曲げ部52bは、撹拌板52の軸線O側で内筒21の内周面21cを基準にした撹拌板52の高さの30%以上~70%以下の範囲に形成されることが好ましい。また、折り曲げ部52bの内筒21の径方向に対する傾斜角γは10°以上45°以下であることが好ましい。上記の例では、撹拌板52によって撹拌された石炭のうち、折り曲げ部52b上にあるものが先行して落下することで、例えば折り曲げ部が形成されない撹拌板52の端部から石炭が(内筒21の回転によって撹拌板52の角度が水平を超えた時点で)一度に落下する場合に比べて石炭の飛散を抑制できる。 Next, a modified example of the second embodiment of the present invention will be described with reference to FIGS. 6, 7A and 7B. In this modification, the stirring plate 52 is formed with a bent portion 52b that is inclined with respect to the radial direction of the inner cylinder 21. Specifically, as shown in FIG. 7A, from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 (the position where the bracket 53 is joined to the inner peripheral surface 21c) on the axis O side of the stirring plate 52. The distance to the end is defined as the height ha, and the height of the gap 54, that is, the distance from the intersection of the inner peripheral surface 21c and the extension surface of the stirring plate 52 to the end of the stirring plate 52 on the inner peripheral surface 21c side is increased. When the height hc is defined as the distance from the inner peripheral surface 21c of the boundary between the bent portion 52b formed on the axis O side of the stirring plate 52 and the other portion, the height hc is the height ha. It is preferably in the range of 30% to 70%. That is, the bent portion 52b is preferably formed in a range of 30% or more to 70% or less of the height of the stirring plate 52 with respect to the inner peripheral surface 21c of the inner cylinder 21 on the axis O side of the stirring plate 52. .. Further, the inclination angle γ of the bent portion 52b with respect to the radial direction of the inner cylinder 21 is preferably 10 ° or more and 45 ° or less. In the above example, among the coal agitated by the agitating plate 52, the coal on the bent portion 52b falls in advance, so that, for example, the coal is removed from the end of the agitated plate 52 in which the bent portion is not formed (inner cylinder). It is possible to suppress the scattering of coal as compared with the case where the stirring plate 52 is dropped all at once (when the angle of the stirring plate 52 exceeds the horizontal due to the rotation of 21).
 (第4の検証試験)
 次に、本発明の第2の実施形態に係る検証試験の結果について説明する。第4の検証試験では、試験例A4および試験例A5として、揮発分が50wt%程度の褐炭を5mm以下に粉砕して乾燥させたものを原料炭として用いて熱分解試験を実施した。原料炭の加熱温度と生成された改質石炭のVM値(揮発分)との関係を図8のグラフに示す。試験例A4では石炭の昇温速度を7℃/分とし、試験例A5では25℃/分とした、それぞれ1分間保持した。試験例A4,A5のそれぞれで石炭温度が550℃、650℃、750℃の時にVM値を測定すると、昇温速度が低い試験例A4の場合の方が試験例A5と比較してVM値が低いという結果が得られた。この結果から、石炭の最終到達温度が同じであっても、昇温速度を比較的低く設定して熱分解ゾーンでの加熱(滞留)時間を長く維持することによって石炭のVM値を低減し、乾留炭の揮発を促進できることがわかる。
(Fourth verification test)
Next, the result of the verification test according to the second embodiment of the present invention will be described. In the fourth verification test, as Test Example A4 and Test Example A5, a thermal decomposition test was carried out using lignite having a volatile content of about 50 wt% crushed to 5 mm or less and dried as a coking coal. The relationship between the heating temperature of the coking coal and the VM value (volatile matter) of the produced reformed coal is shown in the graph of FIG. In Test Example A4, the rate of temperature rise of coal was set to 7 ° C./min, and in Test Example A5, the rate of temperature rise was 25 ° C./min. When the VM value was measured when the coal temperatures were 550 ° C, 650 ° C, and 750 ° C in each of Test Examples A4 and A5, the VM value in Test Example A4, which had a lower heating rate, was higher than that in Test Example A5. The result was low. From this result, even if the final temperature of coal is the same, the VM value of coal is reduced by setting the heating rate relatively low and maintaining the heating (retention) time in the pyrolysis zone for a long time. It can be seen that the volatilization of dry distillation coal can be promoted.
 (第5の検証試験)
 第5の検証試験では、内筒の内径φ500mm×加熱長L=3000mm(水分蒸発ゾーンおよび熱分解ゾーンを合わせた加熱領域の長さ)の外熱式ロータリーキルンを用いて石炭の乾留を行った。加熱領域の全長にわたって内筒の内周面周方向について4枚の撹拌板を配置し、撹拌板の傾斜角が0.0°(試験例B4)、4.0°(試験例A6)、6.0°(試験例A7)の3通りについて実験を行った。実験では、石炭投入量280kg/h、内筒の回転数を3.1rpm、内筒の下り勾配角度1.0°、撹拌板の高さha=90mmとし、試験例B4および試験例A6,A7について、実測滞留時間(min)および総括伝熱係数(kcal/mh℃)とを測定した。結果を表4に示す。
(Fifth verification test)
In the fifth verification test, coal was carbonized using an externally heated rotary kiln having an inner cylinder inner diameter of φ500 mm × heating length L = 3000 mm (the length of the heating region including the water evaporation zone and the pyrolysis zone). Four stirring plates are arranged in the circumferential direction of the inner peripheral surface of the inner cylinder over the entire length of the heating region, and the inclination angles of the stirring plates are 0.0 ° (Test Example B4), 4.0 ° (Test Example A6), 6 Experiments were carried out in three ways of 0.0 ° (Test Example A7). In the experiment, the amount of coal input was 280 kg / h, the rotation speed of the inner cylinder was 3.1 rpm, the downward gradient angle of the inner cylinder was 1.0 °, and the height of the stirring plate was ha = 90 mm. The measured residence time (min) and the overall heat transfer coefficient (kcal / m 2 h ° C.) were measured. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示す試験結果から、内筒の加熱領域に配置される撹拌板に傾斜角をもたせた試験例A6,A7において、傾斜角がない試験例B4と比較して実測滞留時間が長くなり、総括伝熱係数が大きくなることを確認できた。 From the test results shown in Table 4, in Test Examples A6 and A7 in which the stirring plate arranged in the heating region of the inner cylinder was provided with an inclination angle, the measured residence time was longer than that in Test Example B4 having no inclination angle. It was confirmed that the overall heat transfer coefficient increased.
 (第6の検証試験)
 第6の検証試験では、内筒の内径φ500mm、加熱長L=3000mm、内筒の下り勾配角度1.0°の外熱式ロータリーキルンを用いて石炭の乾留を行った。試験例B5では加熱領域の全長に渡って軸線に対して傾斜角をもたない撹拌板を設置し、試験例A8では加熱領域のうち内筒の上流側の端部から600mmの範囲までは傾斜角のない撹拌板を設置し、それ以降は傾斜角4°の撹拌板を設置した。試験例A9では加熱領域のうち内筒の上流側の端部から600mmの範囲までは傾斜角のない撹拌板を設置し、それ以降は傾斜角6°の撹拌板を設置した。実験では、石炭投入量280kg/h、内筒の回転数を3.1rpm、撹拌板の高さha=90mm、内筒の下流側の端部における炭化物の目標温度を640℃とし、試験例B5および試験例A8,A9について、実測滞留時間(min)、総括伝熱係数(kcal/mh℃)および乾留後の石炭揮発分(%)を測定した。結果を表5に示す。
(6th verification test)
In the sixth verification test, coal was carbonized using an externally heated rotary kiln having an inner cylinder having an inner diameter of φ500 mm, a heating length of L = 3000 mm, and an inner cylinder having a downward gradient angle of 1.0 °. In Test Example B5, a stirring plate having no inclination angle with respect to the axis is installed over the entire length of the heating region, and in Test Example A8, the heating region is inclined up to a range of 600 mm from the upstream end of the inner cylinder. A stirring plate without an angle was installed, and thereafter, a stirring plate with an inclination angle of 4 ° was installed. In Test Example A9, a stirring plate having no inclination angle was installed up to a range of 600 mm from the upstream end of the inner cylinder in the heating region, and after that, a stirring plate having an inclination angle of 6 ° was installed. In the experiment, the coal input amount was 280 kg / h, the rotation speed of the inner cylinder was 3.1 rpm, the height of the stirring plate was 90 mm, the target temperature of the charcoal at the downstream end of the inner cylinder was 640 ° C., and Test Example B5 For Test Examples A8 and A9, the measured residence time (min), the overall heat transfer coefficient (kcal / m 2 h ° C.), and the coal volatilization content (%) after carbonization were measured. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示す試験結果から、水分蒸発ゾーンには傾斜角のない撹拌板を、熱分解ゾーンには傾斜角をもった撹拌板をそれぞれ設置した試験例A8,A9では、加熱領域の全長に傾斜角をもった撹拌板を設置した上記の試験例A6,A7に比べて主に水分蒸発ゾーンで実測滞留時間が若干短くなる。ただし、水分蒸発ゾーンでは石炭に含まれる水分が蒸発しきっていないために内筒の内外での温度差が大きく、滞留時間が長くなっても総括伝熱係数の増加にはつながらない。従って、熱分解ゾーンでの滞留時間が同程度である試験例A6,A7と試験例A8,A9の間で総括伝熱係数はほとんど変わらなかった。また、内筒の下流側の端部における炭化物の目標温度が同じである場合、実測滞留時間の長い試験例A6,A7の方がより揮発分の低い改質石炭が得られた。 From the test results shown in Table 5, in Test Examples A8 and A9 in which a stirring plate having no inclination angle was installed in the moisture evaporation zone and a stirring plate having an inclination angle was installed in the thermal decomposition zone, the stirring plate was inclined to the entire length of the heating region. Compared with the above-mentioned Test Examples A6 and A7 in which the stirring plate having corners is installed, the measured residence time is slightly shorter mainly in the water evaporation zone. However, in the water evaporation zone, since the water contained in the coal has not completely evaporated, the temperature difference between the inside and outside of the inner cylinder is large, and even if the residence time is long, the total heat transfer coefficient does not increase. Therefore, the overall heat transfer coefficient was almost the same between Test Examples A6 and A7 and Test Examples A8 and A9, which had similar residence times in the pyrolysis zone. Further, when the target temperature of the carbide at the downstream end of the inner cylinder was the same, the modified coal having a lower volatile content was obtained in Test Examples A6 and A7 having a longer actual measurement residence time.
 (第7の検証試験)
 第7の検証試験では、内筒の内径φ500mm、加熱長L=3000mm、内筒の下り勾配角度1.0°の外熱式ロータリーキルンを用いて石炭の乾留を行い、撹拌板の有無と設置数の違いによる内筒の内部の総括伝熱係数の測定値について試験した。石炭投入量190kg/h~280kg/h、内筒の回転数を2.2rpm~3.0rpm、加熱室の燃焼温度を790℃~840℃、内筒の内部における石炭の充填高さhmを100mm~140mmの範囲に設定した。試験例B6では撹拌板を設けず、試験例A10では撹拌板を周方向に2枚(180°間隔)で配置し、試験例A11では撹拌板を周方向に4枚(90°間隔)で配置し、試験例A12では撹拌板を周方向に8枚(45°間隔)で配置した。撹拌板の高さhaはいずれも75mmとした。各試験例について、撹拌板の配置長さを変更し、撹拌板の周方向の枚数×撹拌板の全長を加熱長Lで除した値Kを変化させながら石炭の乾留を行い、内筒の全内周面の面積を基準とする総括伝熱係数U(kcal/mh℃)を測定した。
(7th verification test)
In the seventh verification test, coal was carbonized using an externally heated rotary kiln with an inner cylinder inner diameter of φ500 mm, a heating length of L = 3000 mm, and an inner cylinder with a downward gradient angle of 1.0 °. The measured values of the total heat transfer coefficient inside the inner cylinder were tested. The amount of coal input is 190 kg / h to 280 kg / h, the rotation speed of the inner cylinder is 2.2 rpm to 3.0 rpm, the combustion temperature of the heating chamber is 790 ° C to 840 ° C, and the filling height hm of coal inside the inner cylinder is 100 mm. It was set in the range of ~ 140 mm. In Test Example B6, no stirring plate is provided, in Test Example A10, two stirring plates are arranged in the circumferential direction (180 ° interval), and in Test Example A11, four stirring plates are arranged in the circumferential direction (90 ° interval). Then, in Test Example A12, eight stirring plates (45 ° intervals) were arranged in the circumferential direction. The height ha of the stirring plate was 75 mm in each case. For each test example, the arrangement length of the stirring plates was changed, and carbonization was performed while changing the value K obtained by dividing the number of stirring plates in the circumferential direction × the total length of the stirring plates by the heating length L, and carbonizing the entire inner cylinder. The overall heat transfer coefficient U (kcal / m 2 h ° C.) based on the area of the inner peripheral surface was measured.
 図9は、第7の検証試験に係る総括伝熱係数の測定結果を示すグラフである。グラフに示されるように、撹拌板を設置することによって、また撹拌板の周方向の枚数および総面積が増大するに従って総括伝熱係数が大きくなることを確認できた。この結果は、撹拌板を設置し、周方向の枚数および総面積を増大させることで、内筒の内部における石炭の撹拌混合が促進されることを示している。 FIG. 9 is a graph showing the measurement results of the overall heat transfer coefficient according to the seventh verification test. As shown in the graph, it was confirmed that the total heat transfer coefficient increased by installing the stirring plate and as the number of stirring plates in the circumferential direction and the total area increased. This result shows that the stirring and mixing of coal inside the inner cylinder is promoted by installing the stirring plate and increasing the number of sheets and the total area in the circumferential direction.
 (第8の検証試験)
 第8の検証試験では、内筒の内径φ2700mm、加熱長L=3000mmの外熱式ロータリーキルンにおける撹拌板の折り曲げ部の有無による石炭の飛散位置の違いをDEM(Discrete Element Method)による計算で求めた。内筒の回転数は2.7rpm、内筒の内部における石炭模擬粒子の充填高さhmは690mmとした。撹拌板は試験例B7、試験例A13ともに周方向に60°間隔で6枚配置した。試験例B7の撹拌板は内筒の径方向に延びる平板形状であり、試験例A13の撹拌板は図6に示すように撹拌板の上部に折り曲げ部を有する形状である。試験例B7、試験例A13とも、撹拌板と内筒の内周面との間には隙間が形成されない。試験例B7、試験例A13のそれぞれで、内筒が3回転する間に撹拌板によって撹拌された石炭の粒子が飛散する量を、内筒の中心軸線から内周面までの距離の関数として演算した。その結果を表6に示す。
(8th verification test)
In the eighth verification test, the difference in the scattering position of coal depending on the presence or absence of a bent portion of the stirring plate in an externally heated rotary kiln having an inner cylinder inner diameter of φ2700 mm and a heating length of L = 3000 mm was calculated by DEM (Discrete Element Method). .. The rotation speed of the inner cylinder was 2.7 rpm, and the filling height hm of the coal simulated particles inside the inner cylinder was 690 mm. Six stirring plates were arranged at intervals of 60 ° in the circumferential direction in both Test Example B7 and Test Example A13. The stirring plate of Test Example B7 has a flat plate shape extending in the radial direction of the inner cylinder, and the stirring plate of Test Example A13 has a shape having a bent portion at the upper part of the stirring plate as shown in FIG. In both Test Example B7 and Test Example A13, no gap is formed between the stirring plate and the inner peripheral surface of the inner cylinder. In each of Test Example B7 and Test Example A13, the amount of coal particles agitated by the stirring plate while the inner cylinder rotates three times is calculated as a function of the distance from the central axis of the inner cylinder to the inner peripheral surface. bottom. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果から、試験例B7に比べて試験例A13では、石炭の粒子が飛散する範囲が軸線付近から内周面付近に移動していることがわかる。この結果は、撹拌板に折り曲げ部を設けることによって、内筒の軸線付近に飛散して排気管から排出される石炭の粒子を減少させられることを示している。 From the results shown in Table 6, it can be seen that in Test Example A13, the range in which coal particles are scattered has moved from the vicinity of the axis to the vicinity of the inner peripheral surface as compared with Test Example B7. This result shows that by providing the bending portion in the stirring plate, the coal particles scattered near the axis of the inner cylinder and discharged from the exhaust pipe can be reduced.
 (第9の検証試験)
 第9の検証試験では、内筒の内径φ500mm、加熱長L=3000mmの外熱式ロータリーキルンを用いて石炭の乾留を行い、撹拌板と内筒の内周面との間の隙間の有無による石炭の飛散状況を試験した。それぞれの例において撹拌板は内筒の内周面から上端までの高さhaが90mmであり、上部に折り曲げ部を有する形状である。撹拌板と内周面との間の隙間の大きさは、試験例B8では0(隙間なし)、試験例A14では15mm、試験例B9では高さ35mmとした。内筒に投入される石炭の含有水分を12.50%とし、内筒の回転数を3.1rpmとした。試験では、石炭の投入量および加熱後の温度から既知の収率関数を用いて、乾留後の改質石炭の排出量の予測値を計算した。この予測値と、内筒から排出された改質石炭の排出量の実測値との差分を、内筒の内部で飛散して排気管から排出された石炭粒子の量であるとみなして飛散率を算出した。結果を表7に示す。
(9th verification test)
In the ninth verification test, coal was carbonized using an externally heated rotary kiln having an inner cylinder inner diameter of φ500 mm and a heating length of L = 3000 mm, and coal was carbonized by the presence or absence of a gap between the stirring plate and the inner peripheral surface of the inner cylinder. The scattering situation was tested. In each example, the stirring plate has a height ha from the inner peripheral surface to the upper end of the inner cylinder of 90 mm, and has a shape having a bent portion at the upper portion. The size of the gap between the stirring plate and the inner peripheral surface was 0 (no gap) in Test Example B8, 15 mm in Test Example A14, and 35 mm in height in Test Example B9. The water content of the coal charged into the inner cylinder was set to 12.50%, and the rotation speed of the inner cylinder was set to 3.1 rpm. In the test, predicted values of reformed coal emissions after carbonization were calculated using a known yield function from the coal input and the temperature after heating. The difference between this predicted value and the measured value of the amount of reformed coal discharged from the inner cylinder is regarded as the amount of coal particles scattered inside the inner cylinder and discharged from the exhaust pipe, and the scattering rate Was calculated. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果から、撹拌板と内筒の内周面との間の隙間を大きくすることによって石炭の飛散量を低下させられることがわかる。ただし、以下の検証試験で示すように、隙間が大きすぎると石炭への伝熱係数が減少する場合があるため、隙間の大きさは適切な範囲で設定することが望ましい。 From the results shown in Table 7, it can be seen that the amount of coal scattered can be reduced by increasing the gap between the stirring plate and the inner peripheral surface of the inner cylinder. However, as shown in the verification test below, if the gap is too large, the heat transfer coefficient to coal may decrease, so it is desirable to set the size of the gap within an appropriate range.
 (第10の検証試験)
 第10の検証試験では、内筒の内径φ500mm、加熱長L=3000mmの外熱式ロータリーキルンを用いて石炭の乾留を行い、撹拌板と内筒の内周面との間に隙間がある場合とない場合とにおける総括伝熱係数を実測した。それぞれの例において撹拌板は内筒の内周面から上端までの高さhaが90mmであり、撹拌板と内周面との間の隙間の大きさは、試験例B10では0(隙間なし)、試験例A15では15mm、試験例B11では35mmである。内筒の回転数は2.7rpm、石炭投入量は280kg/h、内筒の内部における石炭の充填高さhmは150mmとした。それぞれの例における総括伝熱係数の算出結果を表8に示す。
(10th verification test)
In the tenth verification test, coal was carbonized using an externally heated rotary kiln with an inner cylinder inner diameter of φ500 mm and a heating length of L = 3000 mm, and there was a gap between the stirring plate and the inner peripheral surface of the inner cylinder. The overall heat transfer coefficient was measured with and without it. In each example, the height ha of the stirring plate from the inner peripheral surface to the upper end of the inner cylinder is 90 mm, and the size of the gap between the stirring plate and the inner peripheral surface is 0 (no gap) in Test Example B10. , 15 mm in Test Example A15 and 35 mm in Test Example B11. The rotation speed of the inner cylinder was 2.7 rpm, the coal input amount was 280 kg / h, and the coal filling height hm inside the inner cylinder was 150 mm. Table 8 shows the calculation results of the overall heat transfer coefficient in each example.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表8に示す結果から、隙間の大きさを15mmとした試験例A15では隙間のない試験例B10に比べて総括伝熱係数が上昇するものの、隙間の大きさを35mmとした試験例B11ではかえって隙間のない試験例B10よりも総括伝熱係数が低下した。この結果から、撹拌板と内筒の内周面との間に適切な大きさの隙間を設けることによって石炭の撹拌の効率が向上するが、隙間が大きすぎると撹拌の効率が低下することがわかる。 From the results shown in Table 8, in Test Example A15 with a gap size of 15 mm, the overall heat transfer coefficient was higher than in Test Example B10 with no gap, but in Test Example B11 with a gap size of 35 mm, instead. The overall heat transfer coefficient was lower than that of Test Example B10 having no gap. From this result, the efficiency of stirring coal can be improved by providing a gap of an appropriate size between the stirring plate and the inner peripheral surface of the inner cylinder, but if the gap is too large, the efficiency of stirring may decrease. Recognize.
 図10は、上記の第9および第10の検証試験の結果について、内筒の内周面と撹拌板との間の隙間の大きさと石炭の飛散率および総括伝熱係数との関係を示すグラフである。グラフに示されるように、石炭粒子の飛散率は隙間が大きいほど少なくなる一方で、伝熱係数は隙間が所定の値(この例では15mm)の場合に最大になり、隙間が大きくなりすぎると低下する。例えば、グラフにおいて総括伝熱係数が10kcal/mh℃を上回る範囲を適切な範囲とすると、隙間の大きさについては9mm~23mm、すなわち撹拌板の高さhaの10%~25%の範囲が好ましく、高さhaの10%~20%の範囲がより好ましいといえる。 FIG. 10 is a graph showing the relationship between the size of the gap between the inner peripheral surface of the inner cylinder and the stirring plate, the scattering rate of coal, and the overall heat transfer coefficient for the results of the ninth and tenth verification tests. Is. As shown in the graph, the scattering rate of coal particles decreases as the gap becomes larger, while the heat transfer coefficient becomes maximum when the gap is a predetermined value (15 mm in this example), and when the gap becomes too large. descend. For example, assuming that the range in which the total heat transfer coefficient exceeds 10 kcal / m 2 h ° C in the graph is an appropriate range, the size of the gap is 9 mm to 23 mm, that is, the range of 10% to 25% of the height ha of the stirring plate. Is preferable, and it can be said that a range of 10% to 20% of the height ha is more preferable.
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited to such examples. It is clear that a person having ordinary knowledge in the field of technology to which the present invention belongs can come up with various modifications or modifications within the scope of the technical ideas described in the claims. , These are also naturally understood to belong to the technical scope of the present invention.
 10…製造設備、11…乾燥装置、12…乾留装置、13…冷却装置、14…排ガスシステム、15…二次燃焼装置、16…蒸気発生装置、17…除塵装置、18…吸引ファン、19…排ガス処理装置、21…内筒、21a…加熱室内部分、21c…内周面、211…送り領域、211L…送りリフター、212…加熱領域、212A…水分蒸発ゾーン、212B…熱分解ゾーン、213…出口領域、22…加熱室、23…温度制御部、24…排気管、25…制御系、26…空気供給部、27…加熱部、28…蒸気供給部、29…温度検出部、30…制御本体部、31…打ち込み空気ファン、32…第1配管、33…第1制御弁、34…バーナー、36…バーナーファン、37…第2配管、38…第2制御弁、39…第3配管、40…第3制御弁、41…第4配管、42…第4制御弁、43…煙道、51…撹拌板、52…撹拌板、52b…折り曲げ部、53…ブラケット、54…隙間、D1…上流側、D2…下流側、O…軸線、Z1…第1制御ゾーン、Z2…第2制御ゾーン、Z3…第3制御ゾーン。 10 ... Manufacturing equipment, 11 ... Drying device, 12 ... Drying device, 13 ... Cooling device, 14 ... Exhaust system, 15 ... Secondary combustion device, 16 ... Steam generator, 17 ... Dust removal device, 18 ... Suction fan, 19 ... Exhaust gas treatment device, 21 ... Inner cylinder, 21a ... Heating chamber part, 21c ... Inner peripheral surface, 211 ... Feed area, 211L ... Feed lifter, 212 ... Heating area, 212A ... Moisture evaporation zone, 212B ... Thermal decomposition zone, 213 ... Outlet area, 22 ... heating chamber, 23 ... temperature control unit, 24 ... exhaust pipe, 25 ... control system, 26 ... air supply unit, 27 ... heating unit, 28 ... steam supply unit, 29 ... temperature detection unit, 30 ... control Main body, 31 ... Driven air fan, 32 ... 1st pipe, 33 ... 1st control valve, 34 ... Burner, 36 ... Burner fan, 37 ... 2nd pipe, 38 ... 2nd control valve, 39 ... 3rd pipe, 40 ... 3rd control valve, 41 ... 4th pipe, 42 ... 4th control valve, 43 ... flue, 51 ... stirring plate, 52 ... stirring plate, 52b ... bent part, 53 ... bracket, 54 ... gap, D1 ... Upstream side, D2 ... downstream side, O ... axis, Z1 ... first control zone, Z2 ... second control zone, Z3 ... third control zone.

Claims (18)

  1.  軸線の回りに回転する内筒と、
     前記内筒を、前記内筒の径方向の外側から覆う加熱室と、
     前記内筒に、前記軸線方向に複数配置され、前記内筒を前記径方向に貫通して前記加熱室内に開口する排気管と、を有する乾留装置を備え、
     前記内筒において、前記軸線方向に沿った上流側に位置する端部から石炭が供給され、前記軸線方向に沿った下流側に位置する端部から改質石炭が排出される改質石炭の製造設備であって、
     前記加熱室内に酸素含有ガスを供給して前記加熱室内の温度を制御する温度制御部と、
     前記加熱室内のガスを排出する煙道と、を更に備え、
     前記煙道は、前記加熱室において前記上流側に位置する端部にのみ接続されている、改質石炭の製造設備。
    An inner cylinder that rotates around the axis and
    A heating chamber that covers the inner cylinder from the outside in the radial direction of the inner cylinder, and
    The inner cylinder is provided with a carbonization device having a plurality of exhaust pipes arranged in the axial direction and having an exhaust pipe that penetrates the inner cylinder in the radial direction and opens into the heating chamber.
    Production of reformed coal in which coal is supplied from an end located on the upstream side along the axial direction of the inner cylinder and reformed coal is discharged from an end located on the downstream side along the axial direction. It ’s a facility,
    A temperature control unit that supplies oxygen-containing gas to the heating chamber to control the temperature in the heating chamber,
    Further provided with a flue for discharging gas in the heating chamber.
    A facility for producing reformed coal, wherein the flue is connected only to an end located on the upstream side in the heating chamber.
  2.  前記温度制御部は、前記煙道内の温度が600℃以上を維持し、かつ前記加熱室内の温度を600℃以上となるように制御する、請求項1に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to claim 1, wherein the temperature control unit controls the temperature in the flue to be 600 ° C. or higher and the temperature in the heating chamber to be 600 ° C. or higher.
  3.  前記温度制御部は、前記加熱室内を前記軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、
     前記煙道は、複数の前記制御ゾーンのうち、最も前記上流側の制御ゾーンに接続されている、請求項1または請求項2に記載の改質石炭の製造設備。
    The temperature control unit controls the temperature for each control zone formed by dividing the heating chamber into a plurality of sections in the axial direction.
    The modified coal manufacturing facility according to claim 1 or 2, wherein the flue is connected to the most upstream control zone among the plurality of control zones.
  4.  前記内筒の内周面から前記軸線に向かって突出し、前記石炭を撹拌する撹拌部材をさらに備える、請求項1から請求項3のいずれか1項に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to any one of claims 1 to 3, further comprising a stirring member that protrudes from the inner peripheral surface of the inner cylinder toward the axis and stirs the coal.
  5.  前記内筒の内部で前記下流側の熱分解ゾーンに配置される前記撹拌部材は、前記上流側の水分蒸発ゾーンに配置される前記撹拌部材よりも、前記軸線に対する傾斜角が大きい、請求項4に記載の改質石炭の製造設備。 4. The stirring member arranged in the thermal decomposition zone on the downstream side inside the inner cylinder has a larger inclination angle with respect to the axis than the stirring member arranged in the water evaporation zone on the upstream side. The modified coal manufacturing equipment described in.
  6.  前記水分蒸発ゾーンに配置される前記撹拌部材の前記軸線に対する傾斜角が0である、請求項5に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to claim 5, wherein the inclination angle of the stirring member arranged in the water evaporation zone with respect to the axis is 0.
  7.  前記撹拌部材は、前記軸線方向について、前記水分蒸発ゾーンおよび前記熱分解ゾーンからなる加熱領域の90%を超える範囲に配置される、請求項5または請求項6に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to claim 5 or 6, wherein the stirring member is arranged in a range exceeding 90% of a heating region including the water evaporation zone and the thermal decomposition zone in the axial direction. ..
  8.  前記撹拌部材と前記内筒の内周面との間に隙間が形成されている、請求項4から請求項7のいずれか1項に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to any one of claims 4 to 7, wherein a gap is formed between the stirring member and the inner peripheral surface of the inner cylinder.
  9.  前記隙間の大きさは、前記内筒の径方向における前記撹拌部材の寸法の10%~25%である、請求項8に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to claim 8, wherein the size of the gap is 10% to 25% of the dimension of the stirring member in the radial direction of the inner cylinder.
  10.  前記撹拌部材は、前記内筒の径方向に対して傾斜する折り曲げ部を有する、請求項4から請求項8のいずれか1項に記載の改質石炭の製造設備。 The modified coal manufacturing equipment according to any one of claims 4 to 8, wherein the stirring member has a bent portion that is inclined with respect to the radial direction of the inner cylinder.
  11.  前記折り曲げ部は、前記撹拌部材の前記軸線側で前記内筒の内周面を基準にした前記撹拌部材の高さの30%以上~70%以下の範囲に形成され、
     前記折り曲げ部の前記内筒の径方向に対する傾斜角は10°以上45°以下である、請求項10に記載の改質石炭の製造設備。
    The bent portion is formed on the axis side of the stirring member in a range of 30% or more to 70% or less of the height of the stirring member with respect to the inner peripheral surface of the inner cylinder.
    The modified coal manufacturing equipment according to claim 10, wherein the inclination angle of the bent portion with respect to the radial direction of the inner cylinder is 10 ° or more and 45 ° or less.
  12.  軸線の回りに回転する内筒と、前記内筒を、前記内筒の径方向の外側から覆う加熱室と、前記内筒に、前記軸線方向に複数配置され、前記内筒を前記径方向に貫通して前記加熱室内に開口する排気管と、を有する乾留装置を用いて、前記内筒において前記軸線方向に沿った上流側に位置する端部から石炭を供給し、前記軸線方向に沿った下流側に位置する端部から改質石炭を排出する改質石炭の製造方法であって、
     前記加熱室内に酸素含有ガスを供給して前記加熱室内の温度を制御する温度制御工程と、
     前記加熱室内のガスを排出するガス排出工程と、を含み、
     前記ガス排出工程では、前記加熱室において前記上流側に位置する端部からのみガスを排出する、改質石炭の製造方法。
    A plurality of inner cylinders that rotate around an axis, a heating chamber that covers the inner cylinders from the outside in the radial direction of the inner cylinders, and a plurality of the inner cylinders are arranged in the inner cylinders in the axial direction, and the inner cylinders are arranged in the radial direction. Using a carbonization device having an exhaust pipe that penetrates and opens into the heating chamber, coal is supplied from an end located on the upstream side of the inner cylinder along the axial direction, and coal is supplied along the axial direction. It is a method for producing reformed coal that discharges reformed coal from the end located on the downstream side.
    A temperature control step of supplying an oxygen-containing gas to the heating chamber to control the temperature in the heating chamber, and
    Including a gas discharge step of discharging gas in the heating chamber.
    In the gas discharge step, a method for producing reformed coal, in which gas is discharged only from an end located on the upstream side in the heating chamber.
  13.  前記温度制御工程は、前記加熱室内の温度を600℃以上となるように制御する、請求項12に記載の改質石炭の製造方法。 The method for producing reformed coal according to claim 12, wherein the temperature control step controls the temperature in the heating chamber to be 600 ° C. or higher.
  14.  前記温度制御工程は、前記加熱室内を前記軸線方向に複数に区画してなる制御ゾーンごとに温度を制御し、
     前記ガス排出工程は、複数の前記制御ゾーンのうち、最も前記上流側の制御ゾーンからガスを排出する、請求項12または請求項13に記載の改質石炭の製造方法。
    In the temperature control step, the temperature is controlled for each control zone formed by dividing the heating chamber into a plurality of parts in the axial direction.
    The method for producing reformed coal according to claim 12 or 13, wherein the gas discharge step discharges gas from the most upstream control zone among the plurality of control zones.
  15.  前記内筒の内周面から前記軸線に向かって突出する撹拌部材を用いて前記石炭を撹拌する、請求項12から請求項14のいずれか1項に記載の改質石炭の製造方法。 The method for producing modified coal according to any one of claims 12 to 14, wherein the coal is agitated using a stirring member protruding from the inner peripheral surface of the inner cylinder toward the axis.
  16.  少なくとも前記内筒の内部で前記下流側の熱分解ゾーンに配置される前記撹拌部材が前記軸線に対する傾斜角を有し、前記石炭を前記上流側に押し戻すように撹拌する、前記請求項15に記載の改質石炭の製造方法。 13. How to make reformed coal.
  17.  前記撹拌部材と前記内筒の内周面との間に隙間が形成され、前記撹拌部材によって撹拌された石炭を前記隙間から落下させる、請求項15または請求項16に記載の改質石炭の製造方法。 The production of the modified coal according to claim 15 or 16, wherein a gap is formed between the stirring member and the inner peripheral surface of the inner cylinder, and the coal stirred by the stirring member is dropped from the gap. Method.
  18.  前記撹拌部材は前記内筒の径方向に対して傾斜する折り曲げ部を有し、前記撹拌部材によって撹拌された石炭を前記折り曲げ部から落下させる、請求項15から請求項17のいずれか1項に記載の改質石炭の製造方法。 The stirring member has a bent portion inclined in the radial direction of the inner cylinder, and the coal stirred by the stirring member is dropped from the bent portion, according to any one of claims 15 to 17. The method for producing reformed coal according to the description.
PCT/JP2021/012113 2020-03-30 2021-03-24 Method and facility for manufacturing reformed coal WO2021200425A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180025266.XA CN115349007B (en) 2020-03-30 2021-03-24 Method and apparatus for producing modified coal
AU2021247761A AU2021247761B2 (en) 2020-03-30 2021-03-24 Method and facility for manufacturing reformed coal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020060976A JP7416654B2 (en) 2020-03-30 2020-03-30 Modified coal manufacturing method and manufacturing equipment
JP2020-060976 2020-03-30

Publications (1)

Publication Number Publication Date
WO2021200425A1 true WO2021200425A1 (en) 2021-10-07

Family

ID=77928661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012113 WO2021200425A1 (en) 2020-03-30 2021-03-24 Method and facility for manufacturing reformed coal

Country Status (4)

Country Link
JP (1) JP7416654B2 (en)
CN (1) CN115349007B (en)
AU (1) AU2021247761B2 (en)
WO (1) WO2021200425A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272294A (en) * 1989-04-12 1990-11-07 Takasago Ind Co Ltd Rotary kiln
JPH05209180A (en) * 1991-12-11 1993-08-20 Kawasaki Heavy Ind Ltd Drying machine
JPH1077479A (en) * 1996-08-30 1998-03-24 Nkk Corp Thermal decomposition reactor, reactor for partial oxidation and dry distillation, and apparatus for producing solid fuel and gaseous fuel
JPH11310785A (en) * 1998-04-30 1999-11-09 Mitsubishi Heavy Ind Ltd Method and apparatus for coal improvement
JP2002071275A (en) * 2000-08-30 2002-03-08 Takasago Ind Co Ltd Control method of external heat type rotary kiln
JP2005298586A (en) * 2004-04-08 2005-10-27 Japan Sewage Works Agency Method for carbonizing organic material-containing sludge
JP2011521191A (en) * 2008-04-03 2011-07-21 ノース・キャロライナ・ステイト・ユニヴァーシティ Self-heating movable roaster
US20140166465A1 (en) * 2011-07-07 2014-06-19 Torrefuels Incorporated System and process for conversion of organic matter into torrefied product
JP2016023280A (en) * 2014-07-23 2016-02-08 新日鉄住金エンジニアリング株式会社 Method for producing modified coal and modified coal production device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119524A (en) * 2005-10-25 2007-05-17 Kyokuto Kaihatsu Kogyo Co Ltd Carbonizing furnace
CN102358840B (en) * 2011-09-13 2013-05-01 山东天力干燥股份有限公司 Single-stage fine coal multi-pipe rotary low-temperature destructive distillation technology and system
JP5506841B2 (en) * 2012-03-12 2014-05-28 三菱重工業株式会社 Coal carbonization equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02272294A (en) * 1989-04-12 1990-11-07 Takasago Ind Co Ltd Rotary kiln
JPH05209180A (en) * 1991-12-11 1993-08-20 Kawasaki Heavy Ind Ltd Drying machine
JPH1077479A (en) * 1996-08-30 1998-03-24 Nkk Corp Thermal decomposition reactor, reactor for partial oxidation and dry distillation, and apparatus for producing solid fuel and gaseous fuel
JPH11310785A (en) * 1998-04-30 1999-11-09 Mitsubishi Heavy Ind Ltd Method and apparatus for coal improvement
JP2002071275A (en) * 2000-08-30 2002-03-08 Takasago Ind Co Ltd Control method of external heat type rotary kiln
JP2005298586A (en) * 2004-04-08 2005-10-27 Japan Sewage Works Agency Method for carbonizing organic material-containing sludge
JP2011521191A (en) * 2008-04-03 2011-07-21 ノース・キャロライナ・ステイト・ユニヴァーシティ Self-heating movable roaster
US20140166465A1 (en) * 2011-07-07 2014-06-19 Torrefuels Incorporated System and process for conversion of organic matter into torrefied product
JP2016023280A (en) * 2014-07-23 2016-02-08 新日鉄住金エンジニアリング株式会社 Method for producing modified coal and modified coal production device

Also Published As

Publication number Publication date
CN115349007A (en) 2022-11-15
AU2021247761A1 (en) 2022-10-13
JP7416654B2 (en) 2024-01-17
AU2021247761B2 (en) 2023-11-23
CN115349007B (en) 2024-06-07
JP2021161144A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP3616762B2 (en) Waste carbonization furnace
JP3602504B2 (en) Heat treatment equipment using superheated steam
US5101740A (en) Methods, apparatuses and rotary furnaces for continuously manufacturing caerbon-rich charcoal
JP2008238129A (en) Carbonization treatment equipment of sludge
WO2021200425A1 (en) Method and facility for manufacturing reformed coal
US4169767A (en) Process for calcining coke
JP2005054059A (en) Carbonizing apparatus, carbonizing system and carbonizing method
EP2071080A2 (en) Method for upgrading and recovering energy from bituminous aggregates
US1598967A (en) Process of revivifying spent filtering materials
EP0159903B1 (en) Process and apparatus for the production of high quality calcined coke
US2147151A (en) Drying and incineration of moist materials
JP3681521B2 (en) Temperature control method for carbonization equipment
US4400154A (en) Refuse burning apparatus
JP4470520B2 (en) Carbonization equipment for sludge containing organic matter
JP2002539415A (en) Method and apparatus for reducing feedstock in a rotary hearth furnace
JP4687873B2 (en) Carbonization equipment
US1966362A (en) Method of calcining diatomaceous earth
JP2004263193A (en) Thermal treatment equipment using superheated steam
CN109504405A (en) The system and method for handling corn stover
JP7402730B2 (en) Coal ash reforming method and reforming device
JP4393977B2 (en) Burner structure for burning flame retardant carbon powder and its combustion method
JP3735595B2 (en) Performance test method of sludge incinerator
US2116059A (en) Drying and burning of moist material
CN207990634U (en) A kind of efficient rotary incinerator
US20160177183A1 (en) Coal pyrolysis device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780932

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021247761

Country of ref document: AU

Date of ref document: 20210324

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780932

Country of ref document: EP

Kind code of ref document: A1