WO2021199932A1 - Casting resin and closed insulating device - Google Patents

Casting resin and closed insulating device Download PDF

Info

Publication number
WO2021199932A1
WO2021199932A1 PCT/JP2021/008951 JP2021008951W WO2021199932A1 WO 2021199932 A1 WO2021199932 A1 WO 2021199932A1 JP 2021008951 W JP2021008951 W JP 2021008951W WO 2021199932 A1 WO2021199932 A1 WO 2021199932A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
resin
mass
parts
resin according
Prior art date
Application number
PCT/JP2021/008951
Other languages
French (fr)
Japanese (ja)
Inventor
栄仁 松崎
孝倫 安岡
森彦 田崎
元晴 椎木
Original Assignee
株式会社 東芝
東芝エネルギーシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝エネルギーシステムズ株式会社 filed Critical 株式会社 東芝
Publication of WO2021199932A1 publication Critical patent/WO2021199932A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the embodiment of the present invention relates to a casting resin and a closed type insulating device.
  • gas-insulated switchgear and aerial pipeline power transmission device have been widely used as switchgear and power transmission device for high-voltage circuits constituting substations.
  • an insulating spacer is used to insulate and support a high-voltage conductor in the grounded metal container.
  • the following techniques have been proposed. That is, in the insulating spacer, the high voltage conductor is supported by the insulating spacer body made of synthetic resin such as epoxy resin, and the flange portion of the insulating spacer is formed with a metal flange portion for fixing the insulating spacer to the grounding metal container. Has been done.
  • the SF 6 gas sealed in the grounding metal container tends to deteriorate its insulation performance if the electric field is non-uniform. Therefore, as a countermeasure, a grounding shield is integrally embedded around the high-voltage conductor. , The electric potential is secured by the metal flange portion.
  • an epoxy resin using an acid anhydride as a curing agent is generally used as a base material because of its chemical stability and mechanical strength. ing.
  • an insulating spacer for a gas-insulated switching device using SF 6 gas or the like as an insulating medium (1) the material cost is reduced, (2) the elastic modulus is increased to increase the rigidity of the product, and (3) the machine. It is common practice to fill the above-mentioned epoxy resin with silica or alumina for the purpose of improving the target strength, (4) lowering the linear expansion coefficient to improve the moldability, and the like.
  • the permissible value of temperature rise required for the conductor current-carrying part is increasing for the purpose of reducing the size of the equipment, and improvement of the heat resistance (high temperature creep characteristic) of the insulating spacer resin is required.
  • a method of increasing the glass transition temperature of the resin is generally used to improve heat resistance (high temperature creep characteristics), but the brittleness of the resin increases as the glass transition temperature increases, and the epoxy resin and the embedded metal are further increased. Since the thermal stress based on the difference in linear expansion coefficient from the member increases, the crack resistance is significantly reduced.
  • the resin should be highly filled with an inorganic filler such as silica or alumina.
  • the conventional casting resin has the following problems.
  • the cast resin that has been proposed in the past has two problems. That is, there are problems that (1) the electric resistance (volume resistivity) of the casting resin is too high, and (2) the temperature dependence of the electric resistance (volume resistivity) of the casting resin is too large.
  • the electrical resistance (volume resistivity) of a general insulating material decreases as the temperature rises. That is, electricity becomes easier to flow as the temperature rises.
  • conductivity is a volume resistivity of about 10 -6 to 10 -3 ⁇ ⁇ cm
  • semiconductivity is a volume resistivity of about 10 -3 to 10 5 ⁇ ⁇ cm
  • insulation is 10 5 It refers to the volume resistivity of about 10 20 ⁇ ⁇ cm, respectively.
  • it deals with materials of the insulating (10 5 ⁇ 10 20 ⁇ ⁇ cm order volume resistivity).
  • the temperature dependence of the insulating material is an inherent characteristic of the insulating material, and it has been difficult to suppress this.
  • the electrical resistance (volume resistivity) is appropriately reduced, that is, the value of the electrical resistance (volume resistivity) is set to a value that is one or three orders of magnitude lower than the conventional value without being lowered too much.
  • the temperature dependence of electrical resistance (volume resistivity) can be reduced, that is, the difference between the two values in the standard, that is, the values at room temperature and 80 ° C. can be reduced more than before.
  • a new casting resin capable of controlling electrical resistance (volume resistivity) was required.
  • an embodiment of the present invention aims to appropriately reduce the electrical resistance (volume resistivity) of the casting resin and reduce the temperature dependence of the electrical resistance (volume resistivity) of the casting resin. ..
  • the cast resin according to the present embodiment has a function of being dispersed and contained in a matrix resin containing a resin and a curing agent and the matrix resin to improve the mechanical properties of the resin. It is characterized by comprising a first filler and a second filler which is dispersed and contained in the matrix resin and has a function of controlling the electric resistance of the resin.
  • Embodiments of the present invention relate to a composition of a casting resin suitable as an insulating material or a structural material for electrical equipment and parts, and in particular, a gas-insulated switchgear, a pipeline aerial power transmission device, or the like.
  • the present invention relates to a casting resin composition (hereinafter, casting resin) most suitable for use in an insulating spacer used in an electric device, and an insulating spacer made by using the casting resin composition.
  • a suitable casting resin appropriately reduces the electric resistance (volume resistivity), that is, the value of the electric resistance (volume resistivity) is not lowered too much and is one digit or more than the conventional one.
  • the value to about 3 orders of magnitude lower, and reduce the temperature dependence of electrical resistance (volume resistivity), that is, reduce the difference between the two values in the standard, that is, the values at room temperature and 80 ° C.
  • the ratio ( ⁇ V1 / ⁇ V2) to the volume resistivity [rho V2 of the volume resistivity [rho V1 and temperature-dependent coefficient alpha is 10.4.
  • the casting resin according to the present embodiment has a value in the range of 1/10 to 1/10 3 of the electrical resistance (volume resistivity) of the conventional casting resin, and the temperature dependence coefficient ⁇ is significantly higher than the conventional value.
  • a decrease a decrease of 30% or more of the conventional value, that is, ⁇ is set to 7.3 or less.
  • FIG. 1 is a diagram schematically showing how the first filler 10 and the second filler 20 of the casting resin 1 according to the present embodiment are dispersed in the matrix resin 30. be.
  • the casting resin 1 of the present embodiment includes an epoxy resin and a matrix resin 30 composed of a curing agent that cures the epoxy resin. Then, the first filler 10 such as silica, alumina or a mixture thereof dispersed and blended in the matrix resin 30, and the second filler which is a filler for controlling the electric resistance of the casting resin 1. Contains 20. Although the casting resin 1 contains a curing agent, when it is used as the casting resin 1, it maintains a viscous liquid state that has not been cured.
  • Epoxy resin consists of an epoxy compound having two or more epoxy groups per molecule.
  • an epoxy compound any compound having two or more three-membered rings consisting of two carbon atoms and one oxygen atom in one molecule and curable can be appropriately used. It is not particularly limited.
  • the epoxy resin include bisphenol A type epoxy resin, brominated bisphenol A type poxi resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, and biphenyl type epoxy resin.
  • Glycidyl such as naphthalene type epoxy resin, fluorene type epoxy resin, novolac type epoxy resin, phenol-novolac type epoxy resin, orthocresol-novolac type epoxy resin, tris (hydroxyphenyl) methane type epoxy resin, tetraphenylol ethane type epoxy resin, etc.
  • Ether-type epoxy resins glycidyl ester-type epoxy resins obtained by condensing epichlorohydrin and galbon acid, heterocyclic epoxy resins such as triglycidyl isocyanate and hydridein-type epoxy resins obtained by the reaction of epichlorohydrin with hydranthins, etc.
  • the bisphenol A type epoxy resin may be used alone, or two or more kinds may be mixed and used.
  • the epoxy resin for example, Epomic R140P (trade name manufactured by Mitsui Chemicals, Inc.) can be used.
  • an alicyclic epoxy resin can be blended in an appropriate amount.
  • the alicyclic epoxy resin for example, CY179 (trade name manufactured by Huntsman Co., Ltd.), E171 (trade name manufactured by Japan Epoxy Resin Co., Ltd.), cellokiside 2021P (trade name manufactured by Daicel Co., Ltd.) and the like can be used.
  • the curing agent that cures the epoxy resin is one that chemically reacts with the epoxy resin to cure the epoxy resin.
  • This curing agent can be appropriately used as long as it cures the epoxy resin, and the type thereof is not particularly limited.
  • a curing agent for example, an amine-based curing agent, an acid anhydride-based curing agent, or the like can be used.
  • the amine-based curing agent for example, ethylenediamine, polyamide amine and the like can be used.
  • acid anhydride-based curing agent for example, phthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, tetrabromophthalic anhydride and the like are used. be able to.
  • a defoaming agent may be added to the matrix resin 30 in order to prevent bubbles from being generated in the matrix resin 30 or to eliminate the generated bubbles.
  • the defoaming agent is not particularly limited, but for example, a dimethyl silicone-based defoaming agent (for example, TSA720 (trade name manufactured by Momentive Performance Materials Japan GK), KP330 (Shin-Etsu Chemical Co., Ltd.) (Product name), etc.) can be used.
  • silica, alumina, or the like can be used as the filler for improving the strength of the casting resin.
  • the silica fused silica such as RF25 (average particle size 17.5 ⁇ m), F115 (average particle size 14.0 ⁇ m) manufactured by FUMITEC, and FB48 (average particle size 13.3 ⁇ m) manufactured by DENKA can be used.
  • the particle size range is preferably 10 ⁇ m to 20 ⁇ m.
  • the amount of silica added is preferably 100 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • the particle size range is preferably 10 ⁇ m to 30 ⁇ m.
  • the amount of alumina added is preferably 100 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin.
  • silane coupling treatment can improve the wettability with the epoxy resin.
  • silane coupling agent used in the silane coupling treatment for example, epoxysilane, aminosilane, vinylsilane, methacrylsilane, mercaptosilane, methoxysilane, ethoxysilane and the like can be used. These silane coupling surface modification treatments can obtain the same effect even if they are added afterwards.
  • the surface of the first filler can be treated with a titanate coupling to improve the wettability with the epoxy resin.
  • titanate coupling agent used in the titanate coupling treatment include isopropyltriisostearoyltite, isopropyltridodecylbenzenesulfonyl titanate, isopropyl-tris (dioctylpyrophosphate) titanate, tetraisopropyl-bis (dioctylphosphate) titanate, and tetraoctyl.
  • titanate coupling surface modification treatments can obtain the same effect even if they are added afterwards.
  • alumina When alumina is used as the first filler, it is preferable that the surface thereof is subjected to surface treatment such as silane coupling treatment and titanate coupling treatment.
  • Fe 3 O 4 , ZrC, an electron scavenger, metal-plated acrylic particles, and crystalline silica are used as the filler for controlling the electric resistance of the casting resin 1.
  • Fe 3 O 4 is a black powder (specific gravity: about 5.2 g / cm 3 ).
  • the particle size is preferably 0.01 ⁇ m to 0.1 ⁇ m in order to ensure workability such as painting while exhibiting insulation resistance characteristics with the second filler alone. Even within this range, a particle size of 0.05 ⁇ m to 0.08 ⁇ m, which has good insulation resistance characteristics, is more preferable.
  • the particle size is measured by observing the cured resin product with an SEM (scanning electron microscope) (hereinafter, the same applies).
  • the content of Fe 3 O 4 is 0.010 to 0.50 parts by mass with respect to 100 parts by mass of the epoxy resin in order to ensure workability such as formation of a conductive path and coating in the insulating resistance material. Is preferable.
  • ZrC is a black powder (specific gravity: about 6.7 g / cm 3 ).
  • ZrC for example, one manufactured by Daiichi Rare Element Chemical Industry Co., Ltd. can be used.
  • the particle size is preferably 1 ⁇ m to 5 ⁇ m in order to ensure workability such as painting while exhibiting insulation resistance characteristics with the second filler alone. Even within this range, a particle size of 2 ⁇ m to 3 ⁇ m, which improves the insulation resistance characteristics, is more preferable.
  • the content of ZrC is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the epoxy resin in order to exhibit insulation resistance characteristics.
  • the electron scavenger As the electron scavenger, 2,4,7-trinitro-9-fluorenone (usually abbreviated as TNF) can be used after dehydration. As the TNF, one manufactured by Tokyo Chemical Industry Co., Ltd. can be used. The electron scavenger is preferably contained in an amount of 0.0030 to 0.05 parts by mass with respect to 100 parts by mass of the epoxy resin in order to exhibit insulation resistance characteristics.
  • TNF electron scavenger using TNF is hereinafter referred to as TNF (electron scavenger).
  • the metal-plated acrylic particles will be described below.
  • the metal-plated acrylic particles include silver-plated acrylic particles and nickel-plated acrylic particles.
  • Nickel-plated acrylic particles are gray powder (specific gravity: about 2.2 g / cm 3 ).
  • the particle size is preferably 5 ⁇ m to 15 ⁇ m in order for the second filler 20 to exhibit insulation resistance characteristics. Even within this range, a particle size of 6 ⁇ m to 10 ⁇ m, which has good insulation resistance characteristics, is more preferable.
  • the silver-plated acrylic particles are dark brown powder (specific gravity: about 1.25 g / cm 3 ).
  • the particle size is preferably 5 ⁇ m to 15 ⁇ m in order for the second filler 20 to exhibit insulation resistance characteristics. Even within this range, a particle size of 6 ⁇ m to 10 ⁇ m, which has good insulation resistance characteristics, is more preferable.
  • the content of the silver-plated acrylic particles and the nickel-plated acrylic particles is 0.040 to 0.30 mass with respect to 100 parts by mass of the epoxy resin in order to ensure workability such as formation of a conductive path and coating in the insulating resistance material. It is preferably contained in a part.
  • Crystalline silica is known to have a lower resistivity than ordinary silica (compared to molten silica). Crystalline silica is preferably contained in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin in order to exhibit insulation resistance characteristics.
  • the casting resin 1 to which a dispersant is added may be used.
  • a dispersant for example, a surfactant such as a polymer surfactant, a polycarboxylic acid type polymer surfactant, an alkylimidazoline-based surfactant, or a nonionic surfactant can be used.
  • the polymer surfactant include Homogenol L-100 (manufactured by Kao), and examples of the polycarboxylic acid type polymer surfactant include Homogenol L-18 and Homogenol L-1820 (manufactured by Kao).
  • an imidazoline-based surfactant for example, Homogenol L-95 (manufactured by Kao Co., Ltd.), and as a nonionic surfactant, for example, Pittscol K-30, Pittscol K-30L, Pittscol K-90. , Pittscol K-90L, Discol N-509, Discol N-518, Discol 202, Discol 206 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and the like.
  • the dispersant is preferably added in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the matrix resin in order to obtain a sufficient dispersion effect.
  • FIG. 2 is a partial cross-sectional view showing an electric device having a cast resin cured product 2 using the cast resin of the present embodiment.
  • FIG. 2 shows a sealed insulation device 50.
  • the closed type insulating device 50 is provided between a cylindrical metal container 51 that can be divided into a plurality of pieces in the axial direction, a high voltage conductor 52 arranged in the center in the axial direction, and the metal container 51. It is provided with an insulating spacer 53 made of a cast resin cured product 2 sandwiched between the flange portions 51a of the metal container 51 and supported by the metal container 51.
  • the insulating spacer 53 is arranged so as to divide the inside of the metal container 51 in a direction perpendicular to the central axis of the cylinder, and supports the high voltage conductor 52.
  • An insulating gas 54 such as SF 6 gas is sealed in the metal container 51.
  • the sealed insulation device 50 has been described here as an example of an electric device
  • the cast resin cured product 2 of the embodiment may be, for example, various electric devices, electronic devices, industrial devices, heavy electric devices, or the like. Can be applied to. And, even when it is applied to these, the same effect can be obtained.
  • the casting resin cured product 2 is obtained by uniformly dispersing the first filler 10 and the second filler 20 in the matrix resin 30.
  • the electrical resistance characteristics can be improved.
  • the epoxy resin to be blended (in addition to this, an alicyclic epoxy resin if necessary), a part of the first filler 10, and a part of the second filler 20 are mixed by a rotation / revolution mixer or the like. Stir to prepare solution A.
  • the curing agent for epoxy resin, the balance of the first filler 10, and the balance of the second filler 20 are stirred by a rotation / revolution mixer or the like to prepare a liquid B.
  • these solutions A and B are mixed, stirred with a rotating / revolving mixer or the like, and then degassed and defoamed using a vacuum chamber or the like. After that, it is cast into a mold to obtain a cured resin product.
  • a mold for manufacturing flat plates is used.
  • the stirring method is a stirring method for a large amount of resin such as a vacuum stirrer or a three-roll, and then a dedicated stirring method is used. Pour into a mold.
  • the casting resin 1 has excellent electrical characteristics.
  • the electrical characteristics were measured using a flat plate test piece.
  • the electrical characteristics the volume resistivity was measured. The details are as follows.
  • test standard complied with ASTM 0257 B method.
  • an ultra-high resistance insulation meter R8340A manufactured by ADC
  • TR43C manufactured by Advantest
  • FIG. 3 is a diagram showing a cross section of a test piece 60 for evaluating the material composition of the casting resin according to the present embodiment and the electrical characteristics (volume resistivity).
  • the test piece 60 is a disc-shaped member 61 which is a cured casting resin using the casting resin to be tested, and a main electrode concentrically attached to the first surface 61a of the disc-shaped member 61.
  • the disk-shaped member 61 has a diameter of about 55 mm and a thickness of 3 mm.
  • the first electrode 62 which is the main electrode, has an outer diameter of 25.4 mm, and the second electrode 64 has an outer diameter of 50 mm.
  • a conductive paste silver paste
  • the applied voltage was a 1-minute value of 500V.
  • As the pretreatment of the sample it was kept constant at room temperature for 90 hours (humidity: 60%).
  • the test temperatures were room temperature (22 ° C.) and 80 ° C.
  • the sample was wiped with a solvent (ethanol) to make a clean surface, and then the main electrode was formed on the smoother surface side.
  • the test method is as follows.
  • a main electrode, an annular electrode, and a counter electrode are prepared on the sample surface using a conductive paste, and after wiring with a measuring device, the sample is charged at a specified voltage for 60 seconds to measure the volume resistance. From the obtained volume resistivity value, the volume resistivity ⁇ V is calculated using the following equation (1).
  • ⁇ V [( ⁇ d 2 / (4t)] ⁇ R V ⁇ ⁇ ⁇ (1)
  • ⁇ V volume resistivity ( ⁇ ⁇ cm)
  • d main electrode diameter (cm)
  • t test piece thickness (cm)
  • R V volume resistivity ( ⁇ )
  • pi
  • the sample thickness was measured with a Mitutoyo micrometer before making the electrode. At that time, the arithmetic mean value of the thicknesses at five points in the sample to be measured was taken as the sample thickness.
  • the sample thickness may change depending on the temperature, but the details are unknown, so all calculations were made using the measured values at room temperature.
  • FIGS. 4A and 4B are tables showing the material composition of the casting resin 1 according to the present embodiment and the measurement results of the electrical characteristics (volume resistivity) for each test member.
  • the first column in the table of FIGS. 4A and 4B represents the samples by number.
  • the second row is the type of the first filler 10
  • the third row is the content of the first filler 10
  • the fourth row is the type of the second filler 20
  • the fifth row is the second filler.
  • the sixth row is the volume resistance ⁇ V1 ( ⁇ ⁇ cm) of the cast resin cured product 2 at room temperature
  • the seventh row is the volume resistance ⁇ V2 of the cast resin cured product 2 at 80 ° C. ( ⁇ ⁇ cm).
  • the content of the first filler (parts by mass) and the content of the first filler (parts by mass) in the table are values when the matrix resin is 100 parts by mass.
  • the sample 34 has a composition of only the matrix resin, and in the sample 33, only the first filler having a function of improving the mechanical properties of the resin is added to the matrix resin to control the electric resistance of the resin.
  • a second filler having a function of forming a plastic is not added, and is shown as a comparative example.
  • the volume resistivity ⁇ V1 and the volume resistance were compared with the case of the sample 34 to which neither the first filler nor the second filler was added.
  • the decrease in rate ⁇ V2 is less than 10%.
  • the temperature dependence coefficient ⁇ for the sample 33 and the sample 34 is about 10.4.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ⁇ V has been shown.
  • the temperature dependence coefficient ⁇ was 13.5 in sample 1, but was significantly reduced to 1.1 to 2.2 in samples 2 to 5, indicating the effect of suppressing temperature dependence. There is.
  • the volume resistivity is ⁇ V. Good temperature characteristics with low reduction effect and low temperature dependence can be obtained.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ⁇ V has been shown.
  • the temperature-dependent coefficient ⁇ is 13.6 to 15.3 for samples 6 and 7, but is significantly reduced to 1.6 to 2.1 for samples 8 to 10, and is temperature-dependent. The inhibitory effect has been shown.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ⁇ V has been shown.
  • the temperature dependence coefficient ⁇ was 10 in sample 11, but was significantly reduced to 1.6 to 2.4 in samples 12 to 15, indicating the effect of suppressing temperature dependence.
  • the samples are 16 to 20.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples.
  • the decrease is 8 digits or more, and the sample 20 is not suitable for use as an insulating material.
  • the samples 16 to 19 a significant reduction effect of the volume resistivity ⁇ V is shown.
  • the temperature dependence coefficient ⁇ was 10.4 in the sample 16, but was significantly reduced to 1.2 to 3.4 in the samples 17 to 19, indicating the effect of suppressing the temperature dependence. There is.
  • the samples are 21 to 26.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples. However, in the sample 26, it is lowered by 8 digits or more, and it is not suitable for use as an insulating material. For the samples 21 to 25, a significant reduction effect of the volume resistivity ⁇ V is shown.
  • the temperature dependence coefficient ⁇ is 10.4 and 12.4 for samples 21 and 22, respectively, but is significantly reduced to 1.2 to 2.8 for samples 23 to 25, and is temperature dependent.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ⁇ V has been shown.
  • the temperature dependence coefficient ⁇ was 10.4 in the sample 27, but was significantly reduced to 3.2 to 5.9 in the samples 28 to 30, indicating the effect of suppressing the temperature dependence. There is.
  • the volume resistivity is ⁇ V. Good temperature characteristics with low reduction effect and low temperature dependence can be obtained.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity ⁇ V A significant reduction effect has been shown.
  • the temperature dependence coefficient ⁇ has decreased significantly to 1.5, indicating the effect of suppressing temperature dependence.
  • the volume resistivity ⁇ V1 at room temperature and the volume resistivity ⁇ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity ⁇ V A significant reduction effect has been shown.
  • the electric resistance (volume resistivity) of the casting resin is slightly reduced, and the temperature dependence of the electric resistance (volume resistivity) of the casting resin is increased.
  • a castable resin that can be suppressed can be realized. That is, the resistivity can be reduced by 1 to 3 orders of magnitude and the temperature dependence of the resistivity is small (as compared with the materials not containing the second filler (Sample 33 and Sample 34 in Table 1). (The resistivity measured at room temperature and 80 ° C. are values of the same order as each other) can be obtained. That is, it is possible to obtain a casting resin 1 whose electrical resistance (volume resistivity) can be controlled.
  • the electric resistance (volume resistivity) of the casting resin can be appropriately reduced, and the temperature dependence of the electric resistance (volume resistivity) of the casting resin can be reduced. ..

Abstract

The electrical resistance (volume resistivity) of a casting resin is reduced appropriately, and the temperature dependence of the electrical resistance (volume resistivity) of the casting resin is reduced. According to an embodiment, the casting resin (1) is furnished with: a matrix resin (30) that includes a resin and a curing agent; a first filler (10) having a function for improving the mechanical characteristics of the resin, the first filler (10) being incorporated by dispersion in the matrix resin (30); and a second filler (20) having a function for controlling the electrical resistance of the resin, the second filler (20) being incorporated by dispersion in the matrix resin (30).

Description

注型樹脂、および密閉型絶縁装置Casting resin and sealed insulation device
 本発明の実施形態は、注型樹脂、および密閉型絶縁装置に関する。 The embodiment of the present invention relates to a casting resin and a closed type insulating device.
 近年、変電所を構成する高電圧回路の開閉装置及び送電装置として、ガス絶縁開閉装置及び管路気中送電装置が多く使用されている。これらのガス絶縁開閉装置及び管路気中送電装置においては、その接地金属容器内に高電圧導体を絶縁支持するために絶縁スペーサが使用されている。 In recent years, gas-insulated switchgear and aerial pipeline power transmission device have been widely used as switchgear and power transmission device for high-voltage circuits constituting substations. In these gas-insulated switchgear and pipeline aerial power transmission device, an insulating spacer is used to insulate and support a high-voltage conductor in the grounded metal container.
 このような絶縁スペーサとしては、例えば、次のような技術が提案されている。すなわち、絶縁スペーサにおいて、エポキシ樹脂などの合成樹脂からなる絶縁スペーサ本体によって、高電圧導体が支持され、この絶縁スペーサのフランジ部には接地金属容器に絶縁スペーサを固定するための金属フランジ部が形成されている。また、接地金属容器内に封入されるSFガスは、電界が不均一であると、その絶縁性能が低下する傾向にあるので、その対策として、高電圧導体の周りに接地シールドを一体に埋め込み、前記金属フランジ部によってその電位を確保している。 As such an insulating spacer, for example, the following techniques have been proposed. That is, in the insulating spacer, the high voltage conductor is supported by the insulating spacer body made of synthetic resin such as epoxy resin, and the flange portion of the insulating spacer is formed with a metal flange portion for fixing the insulating spacer to the grounding metal container. Has been done. In addition, the SF 6 gas sealed in the grounding metal container tends to deteriorate its insulation performance if the electric field is non-uniform. Therefore, as a countermeasure, a grounding shield is integrally embedded around the high-voltage conductor. , The electric potential is secured by the metal flange portion.
 以上のような構成を有する絶縁スペーサの本体部の絶縁注型材料としては、化学的安定性、機械的強度などから、一般に、酸無水物を硬化剤として用いたエポキシ樹脂がベース材料として使用されている。そして、特に、SFガスなどを絶縁媒体とするガス絶縁開閉装置用の絶縁スペーサとしては、(1)材料コストを下げる、(2)弾性率を上げて製品の剛性を増す、(3)機械的強度を改善する、(4)線膨脹係数を下げて成形性を改善する、などの目的のために、前述のエポキシ樹脂にシリカやアルミナを充填することが、一般的に行われている。 As the insulating casting material for the main body of the insulating spacer having the above structure, an epoxy resin using an acid anhydride as a curing agent is generally used as a base material because of its chemical stability and mechanical strength. ing. In particular, as an insulating spacer for a gas-insulated switching device using SF 6 gas or the like as an insulating medium, (1) the material cost is reduced, (2) the elastic modulus is increased to increase the rigidity of the product, and (3) the machine. It is common practice to fill the above-mentioned epoxy resin with silica or alumina for the purpose of improving the target strength, (4) lowering the linear expansion coefficient to improve the moldability, and the like.
 一方、機器の縮小化の目的から導体通電部に要求される温度上昇の許容値は上昇しており、絶縁スペーサ用樹脂の耐熱性(高温クリープ特性)の改善が要求されている。耐熱性(高温クリープ特性)の改善には、樹脂のガラス転移温度を上昇させる方法が一般的に用いられるが、ガラス転移温度の上昇に伴って樹脂の脆性が増し、さらに、エポキシ樹脂と埋め込み金属部材との線膨脹係数の差に基づく熱応力が増大するため、耐クラック性が著しく低下する。 On the other hand, the permissible value of temperature rise required for the conductor current-carrying part is increasing for the purpose of reducing the size of the equipment, and improvement of the heat resistance (high temperature creep characteristic) of the insulating spacer resin is required. A method of increasing the glass transition temperature of the resin is generally used to improve heat resistance (high temperature creep characteristics), but the brittleness of the resin increases as the glass transition temperature increases, and the epoxy resin and the embedded metal are further increased. Since the thermal stress based on the difference in linear expansion coefficient from the member increases, the crack resistance is significantly reduced.
 これに対し、樹脂自体の耐衝撃性を向上させる方法としては、変性低分子量ポリオレフィンやポリブタジエン、シリコンゴムなどの耐衝撃性付与成分を、エポキシ樹脂に変性させること、または配合することなどの方法が存在している。しかしながら、これらの従来方法においては、絶縁スペーサなどの大型高電圧部品の構造材料用としては十分な検討がなされていないため、特に、高電圧用の注型用エポキシ樹脂においては、樹脂組成面で開発の余地が残されている。 On the other hand, as a method for improving the impact resistance of the resin itself, a method of modifying or blending an impact resistance-imparting component such as a modified low molecular weight polyolefin, polybutadiene, or silicone rubber into an epoxy resin is used. Existing. However, in these conventional methods, sufficient studies have not been made for structural materials of large high-voltage parts such as insulating spacers. Therefore, particularly in the case of high-voltage casting epoxy resins, the resin composition is improved. There is room for development.
 このため、SFガスなどを絶縁媒体とするガス絶縁開閉装置や管路気中送電装置などに使用される絶縁スペーサにおいては、シリカやアルミナなどの無機充填剤を樹脂に対して高充填することにより、線膨脹係数を埋め込み金属部材の線膨脹係数に近づけて熱応力を低減し、樹脂のガラス転移温度を維持し、耐熱性(高温クリープ特性)を維持したまま耐クラック性を改善する方法が一般的に用いられている。 For this reason, in insulating spacers used in gas-insulated switching devices and pipeline aerial power transmission devices that use SF 6 gas as an insulating medium, the resin should be highly filled with an inorganic filler such as silica or alumina. By making the linear expansion coefficient close to the linear expansion coefficient of the embedded metal member, the thermal stress is reduced, the glass transition temperature of the resin is maintained, and the crack resistance is improved while maintaining the heat resistance (high temperature creep characteristics). It is commonly used.
特公昭54-44106号公報Special Publication No. 54-44106 特公昭58-57047号公報Special Publication No. 58-57047 特許第2888666号公報Japanese Patent No. 288866
 しかしながら、以上のように、ガス絶縁開閉装置や管路気中送電装置などに使用される絶縁スペーサにおいて、アルミナなどの無機充填剤を樹脂に対して高充填した場合には、次のような欠点が生じていた。すなわち、たとえばアルミナを配合した系では、アルミナの誘電率が高いため、アルミナの高充填は、樹脂の誘電率を上昇させ、絶縁設計上不利であった。また、アルミナの高充填は、樹脂の弾性率を増加させるため、機械的特性面では小さな歪みで破壊することになり、製品段階での破壊値が低下してしまうという欠点があった。さらに、アルミナの高充填は、注型時の樹脂粘度を増大させるため、硬化するまでの充填操作可能なポットライフが短くなり、作業性が低下するという問題もあった。加えて、従来の樹脂は、埋め込み金属部材との接着力があまり大きくないことから、十分な接着力を確保するために、一般的に、金属部材のプライマー処理を行うことが必要であり、このことも、作業性を低下させていた。 However, as described above, in the insulating spacers used in gas-insulated switchgear and aerial power transmission equipment for pipelines, when an inorganic filler such as alumina is highly filled in the resin, the following drawbacks occur. Was occurring. That is, for example, in a system containing alumina, the dielectric constant of alumina is high, so that high filling of alumina increases the dielectric constant of the resin, which is disadvantageous in terms of insulation design. Further, since the high packing of alumina increases the elastic modulus of the resin, it is broken with a small strain in terms of mechanical properties, and there is a drawback that the breaking value at the product stage is lowered. Further, since the high filling of alumina increases the resin viscosity at the time of casting, there is also a problem that the pot life in which the filling operation can be performed until curing is shortened and the workability is lowered. In addition, since the conventional resin does not have a very large adhesive force with the embedded metal member, it is generally necessary to perform primer treatment on the metal member in order to secure sufficient adhesive force. This also reduced workability.
 このように、従来の絶縁スペーサにおいては、たとえばアルミナを樹脂中に高充填することにより、耐熱性(高温クリープ特性)と耐クラック性の高いレベルでの両立を図っていたが、その反面、このような従来技術には、誘電率の上昇、製品段階での機械的強度の低下、作業性の低下などの問題点が存在していた。 As described above, in the conventional insulating spacer, for example, by highly filling the resin with alumina, both heat resistance (high temperature creep characteristics) and crack resistance are achieved at a high level, but on the other hand, this Such conventional techniques have problems such as an increase in dielectric constant, a decrease in mechanical strength at the product stage, and a decrease in workability.
 なお、以上のような各種の問題点は、ガス絶縁開閉装置や管路気中送電装置などに使用される絶縁スペーサに限らず、同様の樹脂組成物を使用してなる各種の大型注型物や半導体封止材料などの他の電気機器や部品の絶縁材料あるいは構造材料においても、同様に存在していた。 The various problems described above are not limited to the insulating spacers used in gas-insulated switchgear and aerial power transmission equipment for pipelines, and various large-scale cast products using the same resin composition. It was also present in the insulating material or structural material of other electric devices and parts such as the semiconductor encapsulating material.
 さらに、従来の注型樹脂では、以下のような課題を有している。 Furthermore, the conventional casting resin has the following problems.
 現在、DC-GIS(直流-ガス絶縁開閉装置)のIEC(国際電気標準会議)規格化案として、(温度勾配+帯電飽和)条件での形式電気試験が欧州勢から提案され、今後正式に規格化される見込みである。現行のエポキシ樹脂硬化物では、電気抵抗の値が大きいことにより時定数が長いため、同試験には半年間オーダーの連続電圧印加が必要となり、製品部および高電圧試験場での電気試験における設備的・時間的な負担が大きいという課題がある。 Currently, as a proposal for IEC (International Electrotechnical Commission) standardization of DC-GIS (Direct Current-Gas Insulated Switchgear), a formal electrical test under (temperature gradient + charge saturation) conditions has been proposed by Europeans and will be officially standardized in the future. It is expected to be converted. In the current epoxy resin cured product, the time constant is long due to the large value of electrical resistance, so continuous voltage application on the order of half a year is required for the test, and it is a facility for electrical testing in the product department and high voltage test site.・ There is a problem that the time burden is large.
 従来提案されている注型樹脂では、2つの課題がある。すなわち、(1)注型樹脂の電気抵抗(体積抵抗率)が高すぎるという点と、(2)注型樹脂の電気抵抗(体積抵抗率)の温度依存性が大きすぎるという課題である。 The cast resin that has been proposed in the past has two problems. That is, there are problems that (1) the electric resistance (volume resistivity) of the casting resin is too high, and (2) the temperature dependence of the electric resistance (volume resistivity) of the casting resin is too large.
 まず上記(1)の課題については、単純に抵抗率を低減するだけであれば、抵抗率の低い充填剤(フィラー)を充填すればよいということになる。しかしこの場合、抵抗率は下がるが、耐電圧性能も低減させることになってしまう。また抵抗率の低い充填剤は、主に金属系であるために、充填剤が容易に沈殿してしまうというという問題が生じる。 First, regarding the problem (1) above, if the resistivity is simply reduced, a filler having a low resistivity should be filled. However, in this case, although the resistivity is lowered, the withstand voltage performance is also reduced. Further, since the filler having a low resistivity is mainly metal-based, there arises a problem that the filler is easily precipitated.
 次に(2)の課題については、一般的な絶縁材料(絶縁性を有する材料)は、温度上昇とともに電気抵抗(体積抵抗率)が低下する。すなわち、温度上昇とともに電気が流れやすくなる。一般に、導電性とは10-6~10-3Ω・cm程度の体積抵抗率を、半導電性とは10-3~10Ω・cm程度の体積抵抗率を、絶縁性とは10~1020Ω・cm程度の体積抵抗率を、それぞれ指す。ここでは、絶縁性(10~1020Ω・cm程度の体積抵抗率)の材料を取り扱っている。上記のように、絶縁材料が有する温度依存性は、絶縁材料の本来有する特性であり、これを抑制することは困難であった。 Next, regarding the problem (2), the electrical resistance (volume resistivity) of a general insulating material (material having an insulating property) decreases as the temperature rises. That is, electricity becomes easier to flow as the temperature rises. Generally, conductivity is a volume resistivity of about 10 -6 to 10 -3 Ω · cm, semiconductivity is a volume resistivity of about 10 -3 to 10 5 Ω · cm, and insulation is 10 5 It refers to the volume resistivity of about 10 20 Ω · cm, respectively. Here, it deals with materials of the insulating (10 5 ~ 10 20 Ω · cm order volume resistivity). As described above, the temperature dependence of the insulating material is an inherent characteristic of the insulating material, and it has been difficult to suppress this.
 以上のように、電気抵抗(体積抵抗率)を適切に低減、すなわち、電気抵抗(体積抵抗率)の値を、従来よりも下げすぎることなくかつ従来よりも1桁ないし3桁程度低い値とし、かつ、電気抵抗(体積抵抗率)の温度依存性の低減、すなわち規格上の2点の温度すなわち室温と80℃におけるそれぞれの値の間の違いを従来よりも低減させることができるような、電気抵抗(体積抵抗率)を制御可能な新たな注型樹脂が必要であった。 As described above, the electrical resistance (volume resistivity) is appropriately reduced, that is, the value of the electrical resistance (volume resistivity) is set to a value that is one or three orders of magnitude lower than the conventional value without being lowered too much. Moreover, the temperature dependence of electrical resistance (volume resistivity) can be reduced, that is, the difference between the two values in the standard, that is, the values at room temperature and 80 ° C. can be reduced more than before. A new casting resin capable of controlling electrical resistance (volume resistivity) was required.
 そこで、本発明の実施形態は、注型樹脂の電気抵抗(体積抵抗率)を適切に低減し、かつ注型樹脂の電気抵抗(体積抵抗率)の温度依存性を低減することを目的とする。 Therefore, an embodiment of the present invention aims to appropriately reduce the electrical resistance (volume resistivity) of the casting resin and reduce the temperature dependence of the electrical resistance (volume resistivity) of the casting resin. ..
 上述の目的を達成するため、本実施形態に係る注型樹脂は、樹脂および硬化剤を含むマトリックス樹脂と、前記マトリックス樹脂に分散して含有され、前記樹脂の機械的特性を向上させる機能を有する第1の充填剤と、前記マトリックス樹脂に分散して含有され、前記樹脂の電気抵抗を制御する機能を有する第2の充填剤と、を具備することを特徴とする。 In order to achieve the above-mentioned object, the cast resin according to the present embodiment has a function of being dispersed and contained in a matrix resin containing a resin and a curing agent and the matrix resin to improve the mechanical properties of the resin. It is characterized by comprising a first filler and a second filler which is dispersed and contained in the matrix resin and has a function of controlling the electric resistance of the resin.
本実施形態に係る注型樹脂の、第1の充填剤と、第2の充填剤とが、マトリックス樹脂中に分散を形成している様子を模式的に示した図である。It is a figure which showed typically the appearance that the 1st filler and the 2nd filler of the casting resin which concerns on this embodiment form a dispersion in a matrix resin. 本実施形態に係る注型樹脂を用いた注型樹脂硬化物を有する電気機器を示す一部断面図である。It is a partial cross-sectional view which shows the electric apparatus which has the cast resin cured product using the cast resin which concerns on this embodiment. 本実施形態に係る注型樹脂の材料組成と、電気特性(体積抵抗率)の評価を行う試験片の断面を示す図である。It is a figure which shows the material composition of the casting resin which concerns on this embodiment, and the cross section of the test piece which evaluates the electric property (volume resistivity). 本実施形態に係る注型樹脂の材料組成と、電気特性(体積抵抗率)の測定結果を、試験部材ごとに示した表である。It is a table which showed the material composition of the casting resin which concerns on this embodiment, and the measurement result of the electric property (volume resistivity) for each test member. 本実施形態に係る注型樹脂の材料組成と、電気特性(体積抵抗率)の測定結果を、試験部材ごとに示した表である。It is a table which showed the material composition of the casting resin which concerns on this embodiment, and the measurement result of the electric property (volume resistivity) for each test member.
 以下、図面を参照して、本発明の実施形態に係る注型樹脂、注型樹脂の製造方法、および密閉型絶縁装置について説明する。ここで、互いに同一または類似の部分には、共通の符号を付して、重畳する説明は省略する。 Hereinafter, the casting resin, the method for producing the casting resin, and the sealed insulation device according to the embodiment of the present invention will be described with reference to the drawings. Here, the parts that are the same as or similar to each other are designated by a common reference numeral, and the description of superimposition will be omitted.
 [第1の実施形態]
(構成)
 本発明の実施形態は、電気機器や部品の絶縁材料あるいは構造材料として好適な注型用樹脂の組成物に関するものであり、また、特に、ガス絶縁開閉装置、管路気中送電装置、またはその他の電気機器に使用される絶縁スペーサへの使用に最適な注型用樹脂組成物(以下、注型樹脂)および、それを使用してなる絶縁スペーサに関する。
[First Embodiment]
(composition)
Embodiments of the present invention relate to a composition of a casting resin suitable as an insulating material or a structural material for electrical equipment and parts, and in particular, a gas-insulated switchgear, a pipeline aerial power transmission device, or the like. The present invention relates to a casting resin composition (hereinafter, casting resin) most suitable for use in an insulating spacer used in an electric device, and an insulating spacer made by using the casting resin composition.
 ここで、好適な注型用樹脂は、電気抵抗(体積抵抗率)を適切に低減、すなわち、電気抵抗(体積抵抗率)の値を、従来よりも下げすぎることなくかつ従来よりも1桁ないし3桁程度低い値とし、かつ、電気抵抗(体積抵抗率)の温度依存性の低減、すなわち規格上の2点の温度すなわち室温と80℃におけるそれぞれの値の間の違いを従来よりも低減させることができるような、電気抵抗(体積抵抗率)を制御可能な新たな注型樹脂が必要であった。 Here, a suitable casting resin appropriately reduces the electric resistance (volume resistivity), that is, the value of the electric resistance (volume resistivity) is not lowered too much and is one digit or more than the conventional one. Set the value to about 3 orders of magnitude lower, and reduce the temperature dependence of electrical resistance (volume resistivity), that is, reduce the difference between the two values in the standard, that is, the values at room temperature and 80 ° C. There was a need for a new casting resin that could control the electrical resistance (volume resistivity).
 体積抵抗率ρの温度依存性を示す指標として、体積抵抗率ρV1の体積抵抗率ρV2に対する比(ρV1/ρV2)を温度依存係数αとする。従来のエポキシ樹脂を使用した注型樹脂の場合、室温における体積抵抗率ρV1および80℃における体積抵抗率ρV2は、それぞれ、たとえば、2.6E+17(Ω・cm)および2.5E+16(Ω・cm)程度である。したがって、この場合、温度依存係数αは、10.4となる。 As an index showing the temperature dependence of the volume resistivity [rho V, the ratio (ρ V1 / ρ V2) to the volume resistivity [rho V2 of the volume resistivity [rho V1 and temperature-dependent coefficient alpha. In the case of a casting resin using a conventional epoxy resin, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are, for example, 2.6E + 17 (Ω · cm) and 2.5E + 16 (Ω · ·, respectively. cm). Therefore, in this case, the temperature dependence coefficient α is 10.4.
 本実施形態による注型樹脂は、従来の注型樹脂の電気抵抗(体積抵抗率)の1/10ないし1/10の範囲の値とし、かつ、温度依存係数αを従来の値から有意に低下させるものとして、従来の値の30%以上の減少、すなわち、αを7.3以下とするものである。 The casting resin according to the present embodiment has a value in the range of 1/10 to 1/10 3 of the electrical resistance (volume resistivity) of the conventional casting resin, and the temperature dependence coefficient α is significantly higher than the conventional value. As a decrease, a decrease of 30% or more of the conventional value, that is, α is set to 7.3 or less.
 以下、本発明の実施の形態について図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本実施形態に係る注型樹脂1の、第1の充填剤10と、第2の充填剤20とが、マトリックス樹脂30中に分散している様子を模式的に示した図である。 FIG. 1 is a diagram schematically showing how the first filler 10 and the second filler 20 of the casting resin 1 according to the present embodiment are dispersed in the matrix resin 30. be.
 本実施形態の注型樹脂1は、エポキシ樹脂およびこのエポキシ樹脂を硬化させる硬化剤からなるマトリックス樹脂30を備える。そして、このマトリックス樹脂30に分散して配合されるシリカ、アルミナあるいはこれらの混合物などの第1の充填剤10、および、注型樹脂1の電気抵抗を制御する充填剤である第2の充填剤20を含有している。なお、この注型樹脂1は、硬化剤を含有しているが、注型樹脂1として使用される際には、硬化していない粘性液状の状態を維持している。 The casting resin 1 of the present embodiment includes an epoxy resin and a matrix resin 30 composed of a curing agent that cures the epoxy resin. Then, the first filler 10 such as silica, alumina or a mixture thereof dispersed and blended in the matrix resin 30, and the second filler which is a filler for controlling the electric resistance of the casting resin 1. Contains 20. Although the casting resin 1 contains a curing agent, when it is used as the casting resin 1, it maintains a viscous liquid state that has not been cured.
 エポキシ樹脂は、1分子当たり2個以上のエポキシ基を有するエポキシ化合物からなるものである。このようなエポキシ化合物としては、炭素原子2個と酸素原子1個とからなる三員環を1分子中に2個以上持ち、硬化可能な化合物であれば適宜に使用可能であり、その種類は特に限定されるものではない。エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型ポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノール-ノボラック型エポキシ樹脂、オルソクレゾール-ノボラック型エポキシ樹脂、トリス(ヒドロキシフェニル)メタン型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、エピクロルヒドリンとガルボン酸との縮合によって得られるグリジジルエステル型エポキシ樹脂、トリグリシジルイソシアネートやエピクロルヒドリンとヒダントイン類との反応によって得られるヒダントイン型エポキシ樹脂のような複素環式エポキシ樹脂等が挙げられる。また、ビスフェノールA型のエポキシ樹脂を単独で使用してもよいし、2種以上混合して使用してもよい。エポキシ樹脂としては、たとえば、エポミックR140P(三井化学株式会社製商品名)を使用することができる。 Epoxy resin consists of an epoxy compound having two or more epoxy groups per molecule. As such an epoxy compound, any compound having two or more three-membered rings consisting of two carbon atoms and one oxygen atom in one molecule and curable can be appropriately used. It is not particularly limited. Examples of the epoxy resin include bisphenol A type epoxy resin, brominated bisphenol A type poxi resin, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, and biphenyl type epoxy resin. Glycidyl such as naphthalene type epoxy resin, fluorene type epoxy resin, novolac type epoxy resin, phenol-novolac type epoxy resin, orthocresol-novolac type epoxy resin, tris (hydroxyphenyl) methane type epoxy resin, tetraphenylol ethane type epoxy resin, etc. Ether-type epoxy resins, glycidyl ester-type epoxy resins obtained by condensing epichlorohydrin and galbon acid, heterocyclic epoxy resins such as triglycidyl isocyanate and hydridein-type epoxy resins obtained by the reaction of epichlorohydrin with hydranthins, etc. Can be mentioned. Further, the bisphenol A type epoxy resin may be used alone, or two or more kinds may be mixed and used. As the epoxy resin, for example, Epomic R140P (trade name manufactured by Mitsui Chemicals, Inc.) can be used.
 また、樹脂の耐熱性を向上させるために、脂環式のエポキシ樹脂を適量配合することもできる。脂環式のエポキシ樹脂としては、たとえば、CY179(ハンツマン株式会社製商品名)、E171(ジャパンエポキシレジン株式会社製商品名)、セロキサイド2021P(株式会社ダイセル製商品名)などを用いることができる。 Further, in order to improve the heat resistance of the resin, an alicyclic epoxy resin can be blended in an appropriate amount. As the alicyclic epoxy resin, for example, CY179 (trade name manufactured by Huntsman Co., Ltd.), E171 (trade name manufactured by Japan Epoxy Resin Co., Ltd.), cellokiside 2021P (trade name manufactured by Daicel Co., Ltd.) and the like can be used.
 エポキシ樹脂を硬化させる硬化剤は、エポキシ樹脂と化学反応してエポキシ樹脂を硬化させるものである。この硬化剤は、エポキシ樹脂を硬化させるものであれば適宜に使用可能であり、その種類は特に限定されるものではない。このような硬化剤としては、例えば、アミン系硬化剤、酸無水物系硬化剤などを使用することができる。アミン系硬化剤としては、例えば、エチレンジアミン、ポリアミドアミンなどを使用することができる。酸無水物系硬化剤としては、例えば、無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸、テトラブロモ無水フタル酸などを使用することができる。 The curing agent that cures the epoxy resin is one that chemically reacts with the epoxy resin to cure the epoxy resin. This curing agent can be appropriately used as long as it cures the epoxy resin, and the type thereof is not particularly limited. As such a curing agent, for example, an amine-based curing agent, an acid anhydride-based curing agent, or the like can be used. As the amine-based curing agent, for example, ethylenediamine, polyamide amine and the like can be used. As the acid anhydride-based curing agent, for example, phthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, 4-methyltetrahydrophthalic anhydride, tetrabromophthalic anhydride and the like are used. be able to.
 なお、マトリックス樹脂30中に、泡が発生するのを防ぐため、あるいは発生した泡を消すために、マトリックス樹脂30に消泡剤を添加してもよい。消泡剤は、特に限定されるものではないが、例えば、ジメチルシリコーン系の消泡剤(例えば、TSA720(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製商品名)、KP330(信越化学工業株式会社製商品名)など)を使用することができる。 A defoaming agent may be added to the matrix resin 30 in order to prevent bubbles from being generated in the matrix resin 30 or to eliminate the generated bubbles. The defoaming agent is not particularly limited, but for example, a dimethyl silicone-based defoaming agent (for example, TSA720 (trade name manufactured by Momentive Performance Materials Japan GK), KP330 (Shin-Etsu Chemical Co., Ltd.) (Product name), etc.) can be used.
 第1の充填剤10としては、注型樹脂の強度を向上させる充填剤として、シリカ、アルミナなどを用いることができる。 As the first filler 10, silica, alumina, or the like can be used as the filler for improving the strength of the casting resin.
 シリカとしては、FUMITEC社製RF25(平均粒径17.5μm)、F115(平均粒径14.0μm)、DENKA製FB48(平均粒径13.3μm)などの溶融シリカを用いることができる。注型樹脂の強度向上のための充填剤としての効果を確保するために、粒径範囲は、10μm~20μmであることが好ましい。 As the silica, fused silica such as RF25 (average particle size 17.5 μm), F115 (average particle size 14.0 μm) manufactured by FUMITEC, and FB48 (average particle size 13.3 μm) manufactured by DENKA can be used. In order to ensure the effect as a filler for improving the strength of the casting resin, the particle size range is preferably 10 μm to 20 μm.
 シリカの添加量は、エポキシ樹脂100質量部に対して100~200質量部含有されることが好ましい。 The amount of silica added is preferably 100 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin.
 アルミナとしては、太平洋ランダム社製LA1200(平均粒径20.0μm)などを用いることができる。注型樹脂の強度向上のための充填剤としての効果を確保するために、粒径範囲は、10μm~30μmであることが好ましい。 As alumina, LA1200 (average particle size 20.0 μm) manufactured by Pacific Random Co., Ltd. can be used. In order to ensure the effect as a filler for improving the strength of the casting resin, the particle size range is preferably 10 μm to 30 μm.
 アルミナの添加量は、エポキシ樹脂100質量部に対して100~200質量部含有されることが好ましい。 The amount of alumina added is preferably 100 to 200 parts by mass with respect to 100 parts by mass of the epoxy resin.
 第1の充填剤として溶融シリカを用いる場合、その表面は、シランカップリング処理などの表面処理が施されていることが好ましい。シランカップリング処理することで、エポキシ樹脂とのぬれ性を向上させることができる。シランカップリング処理に使用するシランカップリング剤としては、例えば、エポキシシラン、アミノシラン、ビニルシラン、メタクリルシラン、メルカプトシラン、メトキシシラン、エトキシシランなどを使用することができる。これらのシランカップリング表面改質処理は、後添加しても同様の効果を得ることができる。 When fused silica is used as the first filler, it is preferable that the surface thereof is subjected to surface treatment such as silane coupling treatment. The silane coupling treatment can improve the wettability with the epoxy resin. As the silane coupling agent used in the silane coupling treatment, for example, epoxysilane, aminosilane, vinylsilane, methacrylsilane, mercaptosilane, methoxysilane, ethoxysilane and the like can be used. These silane coupling surface modification treatments can obtain the same effect even if they are added afterwards.
 また第1の充填剤の表面は、チタネートカップリング処理することで、エポキシ樹脂とのぬれ性を向上させることもできる。チタネートカップリング処理に使用するチタネートカップリング剤としては、イソプロピルトリイソステアロイルタイト、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピル-トリス(ジオクチルピロホスフェート)チタネート、テトライソプロピル-ビス(ジオクチルホスファイト)チタネート、テトラオクチル-ビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリロキシメチル-1-ブチル)-ビス(ジトリデシル)ホスファイトチタネート、ビス(ジオクチルピロホスフェート)オキシアセテートチタネートなどが挙げられる。これらのチタネートカップリング表面改質処理は、後添加しても同様の効果を得ることができる。 Further, the surface of the first filler can be treated with a titanate coupling to improve the wettability with the epoxy resin. Examples of the titanate coupling agent used in the titanate coupling treatment include isopropyltriisostearoyltite, isopropyltridodecylbenzenesulfonyl titanate, isopropyl-tris (dioctylpyrophosphate) titanate, tetraisopropyl-bis (dioctylphosphate) titanate, and tetraoctyl. -Bis (ditridecyl phosphite) titanate, tetra (2,2-dialyloxymethyl-1-butyl) -bis (ditridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate and the like can be mentioned. These titanate coupling surface modification treatments can obtain the same effect even if they are added afterwards.
 第1の充填剤としてアルミナを用いる場合、その表面は、シランカップリング処理およびチタネートカップリング処理などの表面処理が施されていることが好ましい。 When alumina is used as the first filler, it is preferable that the surface thereof is subjected to surface treatment such as silane coupling treatment and titanate coupling treatment.
 第2の充填剤20としては、注型樹脂1の電気抵抗を制御する充填剤として、Fe、ZrC、電子捕捉剤、金属メッキアクリル粒子、および結晶シリカを使用する。 As the second filler 20, Fe 3 O 4 , ZrC, an electron scavenger, metal-plated acrylic particles, and crystalline silica are used as the filler for controlling the electric resistance of the casting resin 1.
 第2の充填剤20のうち、Feについて以下に説明する。Feは黒色の粉体である(比重:約5.2g/cm)。粒径は、第2の充填剤単体で絶縁抵抗特性を発現させつつ、塗装などの作業性を確保するために、0.01μm~0.1μmであることが好ましい。この範囲のうちでも、絶縁抵抗特性が良好となる、0.05μm~0.08μmの粒径がさらに好ましい。なお、粒径は、SEM(走査型電子顕微鏡)による樹脂硬化物の観察などによって測定される(以下、同様)。Feの含有量は、絶縁抵抗材料における導電パスの形成および塗装などの作業性を確保するために、エポキシ樹脂100質量部に対して0.010~0.50質量部含有されることが好ましい。 Of the second filler 20, Fe 3 O 4 will be described below. Fe 3 O 4 is a black powder (specific gravity: about 5.2 g / cm 3 ). The particle size is preferably 0.01 μm to 0.1 μm in order to ensure workability such as painting while exhibiting insulation resistance characteristics with the second filler alone. Even within this range, a particle size of 0.05 μm to 0.08 μm, which has good insulation resistance characteristics, is more preferable. The particle size is measured by observing the cured resin product with an SEM (scanning electron microscope) (hereinafter, the same applies). The content of Fe 3 O 4 is 0.010 to 0.50 parts by mass with respect to 100 parts by mass of the epoxy resin in order to ensure workability such as formation of a conductive path and coating in the insulating resistance material. Is preferable.
 第2の充填剤20のうち、ZrCについて以下に説明する。ZrCは黒色の粉体である(比重:約6.7g/cm)。ZrCは、たとえば第一稀元素化学工業(株)製のものなどを用いることができる。粒径は、第2の充填剤単体で絶縁抵抗特性を発現させつつ、塗装などの作業性を確保するために、1μm~5μmであることが好ましい。この範囲のうちでも、絶縁抵抗特性が良好となる、2μm~3μmの粒径がさらに好ましい。ZrCの含有量は、絶縁抵抗特性を発現させるため、エポキシ樹脂100質量部に対して0.5~5.0質量部含有されることが好ましい。 Of the second filler 20, ZrC will be described below. ZrC is a black powder (specific gravity: about 6.7 g / cm 3 ). As ZrC, for example, one manufactured by Daiichi Rare Element Chemical Industry Co., Ltd. can be used. The particle size is preferably 1 μm to 5 μm in order to ensure workability such as painting while exhibiting insulation resistance characteristics with the second filler alone. Even within this range, a particle size of 2 μm to 3 μm, which improves the insulation resistance characteristics, is more preferable. The content of ZrC is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the epoxy resin in order to exhibit insulation resistance characteristics.
 第2の充填剤20のうち、電子捕捉剤について説明する。電子捕捉剤としては、2,4,7-トリニトロ-9―フルオレノン(通常、TNFと略称)を、脱水したのちに用いることができる。TNFには、東京化成工業(株)製のものを用いることができる。電子捕捉剤は、絶縁抵抗特性を発現させるため、エポキシ樹脂100質量部に対して0.0030~0.05質量部含有されることが好ましい。TNFを用いた電子捕捉剤を、以下、TNF(電子捕捉剤)と呼ぶ。 Among the second filler 20, the electron scavenger will be described. As the electron scavenger, 2,4,7-trinitro-9-fluorenone (usually abbreviated as TNF) can be used after dehydration. As the TNF, one manufactured by Tokyo Chemical Industry Co., Ltd. can be used. The electron scavenger is preferably contained in an amount of 0.0030 to 0.05 parts by mass with respect to 100 parts by mass of the epoxy resin in order to exhibit insulation resistance characteristics. An electron scavenger using TNF is hereinafter referred to as TNF (electron scavenger).
 第2の充填剤20のうち、金属メッキアクリル粒子について以下に説明する。金属メッキアクリル粒子としては、銀メッキアクリル粒子およびニッケルメッキアクリル粒子が挙げられる。 Of the second filler 20, the metal-plated acrylic particles will be described below. Examples of the metal-plated acrylic particles include silver-plated acrylic particles and nickel-plated acrylic particles.
 ニッケルメッキアクリル粒子は灰色の粉体である(比重:約2.2g/cm)。粒径は、第2の充填剤20により絶縁抵抗特性を発現させるために、5μm~15μmであることが好ましい。この範囲のうちでも、絶縁抵抗特性が良好となる、6μm~10μmの粒径がさらに好ましい。 Nickel-plated acrylic particles are gray powder (specific gravity: about 2.2 g / cm 3 ). The particle size is preferably 5 μm to 15 μm in order for the second filler 20 to exhibit insulation resistance characteristics. Even within this range, a particle size of 6 μm to 10 μm, which has good insulation resistance characteristics, is more preferable.
 銀メッキアクリル粒子は暗褐色の粉体である(比重:約1.25g/cm)。粒径は、第2の充填剤20により絶縁抵抗特性を発現させるために、5μm~15μmであることが好ましい。この範囲のうちでも、絶縁抵抗特性が良好となる、6μm~10μmの粒径がさらに好ましい。 The silver-plated acrylic particles are dark brown powder (specific gravity: about 1.25 g / cm 3 ). The particle size is preferably 5 μm to 15 μm in order for the second filler 20 to exhibit insulation resistance characteristics. Even within this range, a particle size of 6 μm to 10 μm, which has good insulation resistance characteristics, is more preferable.
 銀メッキアクリル粒子およびニッケルメッキアクリル粒子の含有量は、絶縁抵抗材料における導電パスの形成および塗装などの作業性を確保するために、エポキシ樹脂100質量部に対して0.040~0.30質量部含有されることが好ましい。 The content of the silver-plated acrylic particles and the nickel-plated acrylic particles is 0.040 to 0.30 mass with respect to 100 parts by mass of the epoxy resin in order to ensure workability such as formation of a conductive path and coating in the insulating resistance material. It is preferably contained in a part.
 第2の充填剤20のうち、結晶シリカについて説明する。結晶シリカとしては、(株)龍森製のCB13(平均粒径5.2μm)、5X(平均粒径1.4μm)などを用いることができる。結晶シリカは、通常のシリカ(溶融シリカと比較して)、抵抗率が低いことが知られている。結晶シリカは、絶縁抵抗特性を発現させるため、エポキシ樹脂100質量部に対して0.5~10質量部含有されることが好ましい。 Of the second filler 20, crystalline silica will be described. As the crystalline silica, CB13 (average particle size 5.2 μm), 5X (average particle size 1.4 μm) manufactured by Ryumori Co., Ltd. can be used. Crystalline silica is known to have a lower resistivity than ordinary silica (compared to molten silica). Crystalline silica is preferably contained in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the epoxy resin in order to exhibit insulation resistance characteristics.
 なお、第1の充填剤10および第2の充填剤20の分散性をさらに高めるために、分散剤を添加した注型樹脂1としてもよい。分散剤としては、例えば、高分子界面活性剤、ポリカルボン酸型高分子界面活性剤、アルキルイミダゾリン系界面活性剤、非イオン性界面活性剤などの界面活性剤を使用することができる。高分子界面活性剤としては、例えば、ホモゲノールL-100(花王社製)など、ポリカルボン酸型高分子界面活性剤としては、例えば、ホモゲノールL-18、ホモゲノールL-1820(花王社製)など、イミダゾリン系界面活性剤としては、例えば、ホモゲノールL-95(花王社製)など、非イオン性界面活性剤としては、例えば、ピッツコールK-30、ピッツコールK-30L、ピッツコールK-90、ピッツコールK-90L、ディスコールN-509、ディスコールN-518、ディスコール202、ディスコール206(第一工業製薬社製)などが挙げられる。これらの中でも、分散効果に優れるホモゲノールL-18、L-1820を使用することが好ましい。
 分散剤は、十分な分散効果を得るために、マトリックス樹脂100質量部に対して0.5~5質量部添加されることが好ましい。
In addition, in order to further enhance the dispersibility of the first filler 10 and the second filler 20, the casting resin 1 to which a dispersant is added may be used. As the dispersant, for example, a surfactant such as a polymer surfactant, a polycarboxylic acid type polymer surfactant, an alkylimidazoline-based surfactant, or a nonionic surfactant can be used. Examples of the polymer surfactant include Homogenol L-100 (manufactured by Kao), and examples of the polycarboxylic acid type polymer surfactant include Homogenol L-18 and Homogenol L-1820 (manufactured by Kao). As an imidazoline-based surfactant, for example, Homogenol L-95 (manufactured by Kao Co., Ltd.), and as a nonionic surfactant, for example, Pittscol K-30, Pittscol K-30L, Pittscol K-90. , Pittscol K-90L, Discol N-509, Discol N-518, Discol 202, Discol 206 (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and the like. Among these, it is preferable to use homogenols L-18 and L-1820, which are excellent in dispersion effect.
The dispersant is preferably added in an amount of 0.5 to 5 parts by mass with respect to 100 parts by mass of the matrix resin in order to obtain a sufficient dispersion effect.
 図2は、本実施形態の注型樹脂を用いた注型樹脂硬化物2を有する電気機器を示す一部断面図である。電気機器の一例として、図2には密閉型絶縁装置50を示している。 FIG. 2 is a partial cross-sectional view showing an electric device having a cast resin cured product 2 using the cast resin of the present embodiment. As an example of an electric device, FIG. 2 shows a sealed insulation device 50.
 図2に示すように、密閉型絶縁装置50は、軸方向に複数に分割可能な円筒状の金属容器51と、中央に軸方向に配置された高電圧導体52と、金属容器51間に設けられ、金属容器51のフランジ部51aに挟まれて金属容器51に支持された注型樹脂硬化物2からなる絶縁スペーサ53とを備えている。 As shown in FIG. 2, the closed type insulating device 50 is provided between a cylindrical metal container 51 that can be divided into a plurality of pieces in the axial direction, a high voltage conductor 52 arranged in the center in the axial direction, and the metal container 51. It is provided with an insulating spacer 53 made of a cast resin cured product 2 sandwiched between the flange portions 51a of the metal container 51 and supported by the metal container 51.
 絶縁スペーサ53は、金属容器51の内部を円筒の中心軸に垂直な方向に分割するように配置され、高電圧導体52を支持している。金属容器51内には、例えばSFガスなどの絶縁ガス54が封入されている。 The insulating spacer 53 is arranged so as to divide the inside of the metal container 51 in a direction perpendicular to the central axis of the cylinder, and supports the high voltage conductor 52. An insulating gas 54 such as SF 6 gas is sealed in the metal container 51.
 なお、ここでは、電気機器の一例として密閉型絶縁装置50を示して説明したが、実施の形態の注型樹脂硬化物2は、例えば種々の電気機器、電子機器、産業機器、重電機器などに適用することができる。そして、これらに適用した場合においても同様の作用効果を得ることができる。 Although the sealed insulation device 50 has been described here as an example of an electric device, the cast resin cured product 2 of the embodiment may be, for example, various electric devices, electronic devices, industrial devices, heavy electric devices, or the like. Can be applied to. And, even when it is applied to these, the same effect can be obtained.
 上述のように、実施の形態の注型樹脂1によれば、マトリックス樹脂30中に第1の充填剤10および第2の充填剤20を均一に分散させることで、注型樹脂硬化物2の電気抵抗特性の改善を図ることができる。
(方法)
 以下に、実施の形態の注型樹脂1の製造方法について説明する。
As described above, according to the casting resin 1 of the embodiment, the casting resin cured product 2 is obtained by uniformly dispersing the first filler 10 and the second filler 20 in the matrix resin 30. The electrical resistance characteristics can be improved.
(Method)
The method for producing the casting resin 1 of the embodiment will be described below.
 まず、配合するエポキシ樹脂(これに加え、必要に応じて脂環式エポキシ樹脂)、第1の充填剤10の一部、および第2の充填剤20の一部を、自転公転式ミキサーなどによって攪拌し、A液を作製する。 First, the epoxy resin to be blended (in addition to this, an alicyclic epoxy resin if necessary), a part of the first filler 10, and a part of the second filler 20 are mixed by a rotation / revolution mixer or the like. Stir to prepare solution A.
 続いて、エポキシ樹脂用硬化剤、第1の充填剤10の残部、および第2の充填剤20の残部を、自転公転ミキサーなどによって攪拌し、B液を作製する。 Subsequently, the curing agent for epoxy resin, the balance of the first filler 10, and the balance of the second filler 20 are stirred by a rotation / revolution mixer or the like to prepare a liquid B.
 続いて、これらA液とB液を配合し、自転公転式ミキサーなどによって撹拌した後、真空チャンバー等を用いて脱気・脱泡する。その後に、金型に注型し、樹脂硬化物とする。電気特性を測定する場合には平板用作製用の金型を用いる。 Subsequently, these solutions A and B are mixed, stirred with a rotating / revolving mixer or the like, and then degassed and defoamed using a vacuum chamber or the like. After that, it is cast into a mold to obtain a cured resin product. When measuring the electrical characteristics, a mold for manufacturing flat plates is used.
 一方、実器向けの絶縁スペーサを製造する際には、上記の手法を参照しつつ、撹拌方法に真空撹拌機や三本ロールといった多量の樹脂向けの撹拌方法を用いて撹拌の上、専用の金型に注型する。 On the other hand, when manufacturing an insulating spacer for an actual device, while referring to the above method, the stirring method is a stirring method for a large amount of resin such as a vacuum stirrer or a three-roll, and then a dedicated stirring method is used. Pour into a mold.
 また、消泡剤を含有する場合には、A液およびB液を作製する際に、所定量の消泡剤を添加して攪拌する。
(注型樹脂の評価)
 次に、実施の形態による注型樹脂1が優れた電気特性を有することについて説明する。電気特性の評価するために、平板の試験片を用いて、電気特性を測定した。電気特性としては、体積抵抗率の測定を行った。詳細は下記の通りである。
When the antifoaming agent is contained, a predetermined amount of the antifoaming agent is added and stirred when preparing the liquid A and the liquid B.
(Evaluation of casting resin)
Next, it will be described that the casting resin 1 according to the embodiment has excellent electrical characteristics. In order to evaluate the electrical characteristics, the electrical characteristics were measured using a flat plate test piece. As for the electrical characteristics, the volume resistivity was measured. The details are as follows.
 試験規格はASTM 0257 B法に準拠した。測定装置は、超高抵抗絶縁計R8340A(エーディーシー製)を使用し、測定試料の測定時の温度を一定に保つチャンバーにはTR43C(アドバンテスト製)を用いた。 The test standard complied with ASTM 0257 B method. As the measuring device, an ultra-high resistance insulation meter R8340A (manufactured by ADC) was used, and TR43C (manufactured by Advantest) was used for the chamber for keeping the temperature of the measurement sample constant at the time of measurement.
 図3は、本実施形態に係る注型樹脂の材料組成と、電気特性(体積抵抗率)の評価を行う試験片60の断面を示す図である。 FIG. 3 is a diagram showing a cross section of a test piece 60 for evaluating the material composition of the casting resin according to the present embodiment and the electrical characteristics (volume resistivity).
 試験片60は、試験対象の注型樹脂を用いた注型樹脂硬化物である円板状部材61と、その第1の表面61aに円板状部材61と同心に取り付けられた主電極である第1電極62、および第1電極62の外側に配された環状の環状電極63と、第1表面61aの裏側の第2表面61bに円板状部材61と同心に取り付けられた対電極である第2電極64を有する。 The test piece 60 is a disc-shaped member 61 which is a cured casting resin using the casting resin to be tested, and a main electrode concentrically attached to the first surface 61a of the disc-shaped member 61. The first electrode 62, the annular electrode 63 arranged outside the first electrode 62, and the counter electrode concentrically attached to the second surface 61b on the back side of the first surface 61a with the disk-shaped member 61. It has a second electrode 64.
 円板状部材61は、直径が約55mm、厚みが3mmである。主電極である第1電極62は、外径が25.4mm、第2電極64は、外径が50mmである。各電極の材料としては、導電性ペースト(銀ペースト)を使用した。 The disk-shaped member 61 has a diameter of about 55 mm and a thickness of 3 mm. The first electrode 62, which is the main electrode, has an outer diameter of 25.4 mm, and the second electrode 64 has an outer diameter of 50 mm. As a material for each electrode, a conductive paste (silver paste) was used.
 印加電圧は500Vの1分値を採用した。試料の前処理としては、室温で90h(湿度:60%)にて一定とした。試験温度は、室温(22℃)および80℃とした。なお、導電性ペーストによる電極作製前に、試料を溶剤(エタノール)拭きし、きれいな面とした上で、より平滑な面側に主電極を形成した。 The applied voltage was a 1-minute value of 500V. As the pretreatment of the sample, it was kept constant at room temperature for 90 hours (humidity: 60%). The test temperatures were room temperature (22 ° C.) and 80 ° C. Before preparing the electrode with the conductive paste, the sample was wiped with a solvent (ethanol) to make a clean surface, and then the main electrode was formed on the smoother surface side.
 試験方法は、下記の通りである。 The test method is as follows.
 試料表面に導電性ペーストを用いて主電極、環状電極および対電極を作製し、測定機器と配線後、規定電圧で60秒間充電して体積抵抗を測定する。得られた体積抵抗値から次の式(1)を用いて体積抵抗率ρを算出する。 A main electrode, an annular electrode, and a counter electrode are prepared on the sample surface using a conductive paste, and after wiring with a measuring device, the sample is charged at a specified voltage for 60 seconds to measure the volume resistance. From the obtained volume resistivity value, the volume resistivity ρ V is calculated using the following equation (1).
 ρ=[(πd/(4t)]×R      ・・・(1)
  ただし、ρ:体積抵抗率(Ω・cm)、d:主電極の直径(cm)、t:試験片の厚さ(cm)、R:体積抵抗(Ω)、π:円周率、である。
ρ V = [(πd 2 / (4t)] × R V・ ・ ・ (1)
However, ρ V : volume resistivity (Ω · cm), d: main electrode diameter (cm), t: test piece thickness (cm), R V : volume resistivity (Ω), π: pi, Is.
 試料厚さはミツトヨ製マイクロメータにより電極作製前に測定した。その際、被測定試料内5ヶ所の厚さの相加平均値を試料厚さとした。なお、試料厚さは温度により変化することが考えられるがその詳細は不明なため、すべて室温での測定値を用いて計算した。 The sample thickness was measured with a Mitutoyo micrometer before making the electrode. At that time, the arithmetic mean value of the thicknesses at five points in the sample to be measured was taken as the sample thickness. The sample thickness may change depending on the temperature, but the details are unknown, so all calculations were made using the measured values at room temperature.
 図4Aおよび図4Bは、本実施形態に係る注型樹脂1の材料組成と、電気特性(体積抵抗率)の測定結果を、試験部材ごとに示した表である。 FIGS. 4A and 4B are tables showing the material composition of the casting resin 1 according to the present embodiment and the measurement results of the electrical characteristics (volume resistivity) for each test member.
 図4Aおよび図4Bの表における第1列は、試料を番号で表示している。第2列は、第1の充填剤10の種類、第3列は第1の充填剤10の含有量、第4列は第2の充填剤20の種類、第5列は第2の充填剤20の含有量、第6列は注型樹脂硬化物2の室温での体積抵抗率ρV1(Ω・cm)、第7列は注型樹脂硬化物2の80℃での体積抵抗率ρV2(Ω・cm)である。表中の第1の充填剤の含有量(質量部)および第1の充填剤の含有量(質量部)は、マトリックス樹脂を100質量部としたときの値である。 The first column in the table of FIGS. 4A and 4B represents the samples by number. The second row is the type of the first filler 10, the third row is the content of the first filler 10, the fourth row is the type of the second filler 20, and the fifth row is the second filler. The content of 20, the sixth row is the volume resistance ρ V1 (Ω · cm) of the cast resin cured product 2 at room temperature, and the seventh row is the volume resistance ρ V2 of the cast resin cured product 2 at 80 ° C. (Ω · cm). The content of the first filler (parts by mass) and the content of the first filler (parts by mass) in the table are values when the matrix resin is 100 parts by mass.
 ここで、試料34は、マトリックス樹脂のみの組成の場合、また、試料33は、マトリックス樹脂に樹脂の機械的特性を向上させる機能を有する第1の充填剤のみを加え、樹脂の電気抵抗を制御する機能を有する第2の充填剤を加えていない場合であり、比較例として示している。 Here, when the sample 34 has a composition of only the matrix resin, and in the sample 33, only the first filler having a function of improving the mechanical properties of the resin is added to the matrix resin to control the electric resistance of the resin. This is a case where a second filler having a function of forming a plastic is not added, and is shown as a comparative example.
 なお、第1の充填剤のみを添加した試料33の場合、第1の充填剤および第2の充填剤のいずれも添加していない試料34の場合に比べて、体積抵抗率ρV1および体積抵抗率ρV2の低下は10%未満である。 In the case of the sample 33 to which only the first filler was added, the volume resistivity ρ V1 and the volume resistance were compared with the case of the sample 34 to which neither the first filler nor the second filler was added. The decrease in rate ρ V2 is less than 10%.
 また、試料33および試料34についての温度依存係数αは、いずれも約10.4である。 Further, the temperature dependence coefficient α for the sample 33 and the sample 34 is about 10.4.
 以下に、第1の充填剤および第2の充填剤の各構成ケースについて、その効果を説明する。 The effects of each of the first filler and the second filler constituent cases will be described below.
 (第1の充填剤10としてシリカ、第2の充填剤20としてFeを使用した場合)
 この場合の試料を、試料1から試料5で示す。
(When silica is used as the first filler 10 and Fe 3 O 4 is used as the second filler 20)
The samples in this case are shown in Samples 1 to 5.
 いずれの場合においても、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっており、体積抵抗率ρの有意な低減効果が示されている。 In either case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ρ V has been shown.
 また、温度依存係数αについては、試料1では13.5であるが、試料2~5では、1.1~2.2と大幅に減少しており、温度依存性の抑制効果が示されている。 The temperature dependence coefficient α was 13.5 in sample 1, but was significantly reduced to 1.1 to 2.2 in samples 2 to 5, indicating the effect of suppressing temperature dependence. There is.
 したがって、第1の充填剤10としてシリカを1.9質量部、第2の充填剤20としてFeを0.010~0.50質量部を添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 1.9 parts by mass of silica is added as the first filler 10 and 0.010 to 0.50 parts by mass of Fe 3 O 4 is added as the second filler 20, the volume resistivity is ρ V. Good temperature characteristics with low reduction effect and low temperature dependence can be obtained.
 (第1の充填剤20としてシリカを、第2の充填剤20としてZrCを使用した場合)
 この場合の試料を、試料6から試料10で示す。
(When silica is used as the first filler 20 and ZrC is used as the second filler 20)
The samples in this case are shown in Samples 6 to 10.
 いずれの場合においても、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっており、体積抵抗率ρの有意な低減効果が示されている。 In either case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ρ V has been shown.
 また、温度依存係数αについては、試料6、7では13.6~15.3であるが、試料8~10では、1.6~2.1と大幅に減少しており、温度依存性の抑制効果が示されている。 The temperature-dependent coefficient α is 13.6 to 15.3 for samples 6 and 7, but is significantly reduced to 1.6 to 2.1 for samples 8 to 10, and is temperature-dependent. The inhibitory effect has been shown.
 したがって、第1の充填剤10としてシリカを1.9質量部、第2の充填剤20としてZrCを0.50~5.0質量部を添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 1.9 parts by mass of silica is added as the first filler 10 and 0.50 to 5.0 parts by mass of ZrC is added as the second filler 20, the effect of reducing the volume resistivity ρ V and the effect of reducing the volume resistivity ρ V and Good temperature characteristics with low temperature dependence can be obtained.
 (第1の充填剤20としてシリカを、第2の充填剤20としてTNF(電子捕捉剤)を、それぞれ使用した場合)
 この場合の試料を、試料11から試料15で示す。
(When silica is used as the first filler 20 and TNF (electron scavenger) is used as the second filler 20)
The samples in this case are shown in Samples 11 to 15.
 いずれの場合においても、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっており、体積抵抗率ρの有意な低減効果が示されている。 In either case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ρ V has been shown.
 また、温度依存係数αについては、試料11では10であるが、試料12~15では、1.6~2.4と大幅に減少しており、温度依存性の抑制効果が示されている。 The temperature dependence coefficient α was 10 in sample 11, but was significantly reduced to 1.6 to 2.4 in samples 12 to 15, indicating the effect of suppressing temperature dependence.
 したがって、第1の充填剤10としてシリカを1.9質量部、第2の充填剤20としてTNF(電子捕捉剤)を0.0030~0.05質量部を添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 1.9 parts by mass of silica is added as the first filler 10 and 0.0030 to 0.05 parts by mass of TNF (electron scavenger) is added as the second filler 20, the volume resistivity ρ Good V reduction effect and good temperature characteristics with low temperature dependence can be obtained.
 (第1の充填剤20としてシリカを、第2の充填剤20として金属メッキアクリル粒子を、それぞれ使用した場合)
 この場合の試料を、試料16から試料26で示す。
(When silica is used as the first filler 20 and metal-plated acrylic particles are used as the second filler 20)
The samples in this case are shown in Samples 16 to 26.
 まず、金属メッキアクリル粒子として、Agアクリル粒子を用いた場合が、試料16~20である。 First, when Ag acrylic particles are used as the metal-plated acrylic particles, the samples are 16 to 20.
 いずれの場合においても、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっている。ただし、試料20では、8桁以上低下しており、絶縁材としては使用に適さない。試料16~19については、体積抵抗率ρの有意な低減効果が示されている。 In each case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples. However, in the sample 20, the decrease is 8 digits or more, and the sample 20 is not suitable for use as an insulating material. For the samples 16 to 19, a significant reduction effect of the volume resistivity ρ V is shown.
 また、温度依存係数αについては、試料16では10.4であるが、試料17~19では、1.2~3.4と大幅に減少しており、温度依存性の抑制効果が示されている。 Further, the temperature dependence coefficient α was 10.4 in the sample 16, but was significantly reduced to 1.2 to 3.4 in the samples 17 to 19, indicating the effect of suppressing the temperature dependence. There is.
 したがって、第1の充填剤10としてシリカを1.9質量部、第2の充填剤20としてAgアクリル粒子を0.0040~0.30質量部を添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 1.9 parts by mass of silica is added as the first filler 10 and 0.0040 to 0.30 parts by mass of Ag acrylic particles are added as the second filler 20, the volume resistivity ρ V is reduced. Good temperature characteristics with low effectiveness and temperature dependence are obtained.
 次に、金属メッキアクリル粒子として、Niアクリル粒子を用いた場合が、試料21~26である。 Next, when Ni acrylic particles are used as the metal-plated acrylic particles, the samples are 21 to 26.
 いずれの場合においても、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっている。ただし、試料26では、8桁以上低下しており、絶縁材としては使用に適さない。試料21~25については、体積抵抗率ρの有意な低減効果が示されている。 In each case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples. However, in the sample 26, it is lowered by 8 digits or more, and it is not suitable for use as an insulating material. For the samples 21 to 25, a significant reduction effect of the volume resistivity ρ V is shown.
 また、温度依存係数αについては、試料21、22ではそれぞれ10.4、12.4であるが、試料23~25では、1.2~2.8と大幅に減少しており、温度依存性の抑制効果が示されている。 The temperature dependence coefficient α is 10.4 and 12.4 for samples 21 and 22, respectively, but is significantly reduced to 1.2 to 2.8 for samples 23 to 25, and is temperature dependent. The inhibitory effect of
 したがって、第1の充填剤10としてシリカを1.9質量部、第2の充填剤20としてNiアクリル粒子を0.0040~0.30質量部を添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 1.9 parts by mass of silica is added as the first filler 10 and 0.0040 to 0.30 parts by mass of Ni acrylic particles are added as the second filler 20, the volume resistivity ρ V is reduced. Good temperature characteristics with low effectiveness and temperature dependence are obtained.
 以上のように、第1の充填剤20としてシリカを1.9質量部、第2の充填剤20として金属メッキアクリル粒子を0.0040~0.30質量部を添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 As described above, when 1.9 parts by mass of silica is added as the first filler 20 and 0.0040 to 0.30 parts by mass of metal-plated acrylic particles are added as the second filler 20, the volume resistivity Good temperature characteristics with low ρ V reduction effect and low temperature dependence can be obtained.
 (第1の充填剤10としてシリカを、第2の充填剤20として結晶シリカを、それぞれ使用した場合)
 この場合の試料を、試料27から試料30で示す。
(When silica is used as the first filler 10 and crystalline silica is used as the second filler 20)
The samples in this case are shown in Samples 27 to 30.
 いずれの場合においても、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっており、体積抵抗率ρの有意な低減効果が示されている。 In either case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity. A significant reduction effect of ρ V has been shown.
 また、温度依存係数αについては、試料27では10.4であるが、試料28~30では、3.2~5.9と大幅に減少しており、温度依存性の抑制効果が示されている。 Further, the temperature dependence coefficient α was 10.4 in the sample 27, but was significantly reduced to 3.2 to 5.9 in the samples 28 to 30, indicating the effect of suppressing the temperature dependence. There is.
 したがって、第1の充填剤10としてシリカを0.47~0.93質量部、第2の充填剤20として結晶シリカを0.50~10質量部を添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 0.47 to 0.93 parts by mass of silica is added as the first filler 10 and 0.50 to 10 parts by mass of crystalline silica is added as the second filler 20, the volume resistivity is ρ V. Good temperature characteristics with low reduction effect and low temperature dependence can be obtained.
 (第1の充填剤10としてアルミナを、第2の充填剤20としてFeを使用した場合)
 この場合の試料を、試料31で示す。
(When alumina is used as the first filler 10 and Fe 3 O 4 is used as the second filler 20)
The sample in this case is shown in Sample 31.
 この場合、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっており、体積抵抗率ρの有意な低減効果が示されている。 In this case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity ρ V A significant reduction effect has been shown.
 また、温度依存係数αについては、1.5と大幅に減少しており、温度依存性の抑制効果が示されている。 In addition, the temperature dependence coefficient α has decreased significantly to 1.5, indicating the effect of suppressing temperature dependence.
 したがって、第1の充填剤10としてアルミナを1.9質量部、第2の充填剤20としてFeを0.5質量部、添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 1.9 parts by mass of alumina is added as the first filler 10 and 0.5 parts by mass of Fe 3 O 4 is added as the second filler 20, the effect of reducing the volume resistivity ρ V and the temperature. Good temperature characteristics with low dependence can be obtained.
 (第1の充填剤10としてアルミナを、第2の充填剤20としてTNF(電子捕捉剤)を使用した場合)
 この場合の試料を、試料32で示す。
(When alumina is used as the first filler 10 and TNF (electron scavenger) is used as the second filler 20)
The sample in this case is shown in Sample 32.
 この場合、室温での体積抵抗率ρV1および80℃における体積抵抗率ρV2は、比較例である試料33、34の場合に対して、一桁以上低くなっており、体積抵抗率ρの有意な低減効果が示されている。 In this case, the volume resistivity ρ V1 at room temperature and the volume resistivity ρ V2 at 80 ° C. are one digit or more lower than those of the samples 33 and 34, which are comparative examples, and the volume resistivity ρ V A significant reduction effect has been shown.
 また、温度依存係数αについては、2.0と大幅に減少しており、温度依存性の抑制効果が示されている。 In addition, the temperature dependence coefficient α has decreased significantly to 2.0, indicating the effect of suppressing temperature dependence.
 したがって、第1の充填剤10としてアルミナを1.9質量部、第2の充填剤20としてTNF(電子捕捉剤)を0.0030質量部、添加する場合に、体積抵抗率ρの低減効果および温度依存性の低い良好な温度特性が得られる。 Therefore, when 1.9 parts by mass of alumina is added as the first filler 10 and 0.0030 parts by mass of TNF (electron scavenger) is added as the second filler 20, the effect of reducing the volume resistivity ρ V is obtained. And good temperature characteristics with low temperature dependence can be obtained.
 以上のように、本実施形態に係る注型樹脂1について、注型樹脂の電気抵抗(体積抵抗率)をわずかに低減し、かつ注型樹脂の電気抵抗(体積抵抗率)の温度依存性を抑制可能な注型樹脂が実現できる。すなわち、第2の充填剤を配合していない材料(表1における試料33および試料34)と比較して、抵抗率を1~3桁下げることができ、かつ抵抗率の温度依存性が小さい(室温および80℃で測定した抵抗率が互いに同じオーダーの値である)材料を得ることができる。すなわち、電気抵抗(体積抵抗率)を制御可能な注型樹脂1を得ることができる。 As described above, with respect to the casting resin 1 according to the present embodiment, the electric resistance (volume resistivity) of the casting resin is slightly reduced, and the temperature dependence of the electric resistance (volume resistivity) of the casting resin is increased. A castable resin that can be suppressed can be realized. That is, the resistivity can be reduced by 1 to 3 orders of magnitude and the temperature dependence of the resistivity is small (as compared with the materials not containing the second filler (Sample 33 and Sample 34 in Table 1). (The resistivity measured at room temperature and 80 ° C. are values of the same order as each other) can be obtained. That is, it is possible to obtain a casting resin 1 whose electrical resistance (volume resistivity) can be controlled.
 以上のように、実施形態によれば、注型樹脂の電気抵抗(体積抵抗率)を適切に低減し、かつ注型樹脂の電気抵抗(体積抵抗率)の温度依存性を低減することができる。 As described above, according to the embodiment, the electric resistance (volume resistivity) of the casting resin can be appropriately reduced, and the temperature dependence of the electric resistance (volume resistivity) of the casting resin can be reduced. ..
 [その他の実施形態]
 以上、本発明の実施形態を説明したが、実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。
[Other Embodiments]
Although the embodiments of the present invention have been described above, the embodiments are presented as examples and are not intended to limit the scope of the invention.
 また、各実施形態の特徴を組み合わせてもよい。また、実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。 Further, the features of each embodiment may be combined. In addition, the embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention.
 実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 The embodiment and its modifications are included in the scope and gist of the invention, as well as in the scope of the invention described in the claims and the equivalent scope thereof.
 1…注型樹脂、2…注型樹脂硬化物、10…第1の充填剤、20…第2の充填剤、30…マトリックス樹脂、50…密閉型絶縁装置、51…金属容器、51a…フランジ部、52…高電圧導体、53…絶縁スペーサ、54…絶縁ガス、60…試験片、61…円板状部材、61a…第1表面、61b…第2表面、62…第1電極、63…環状電極、64…第2電極 1 ... Casting resin, 2 ... Casting resin cured product, 10 ... First filler, 20 ... Second filler, 30 ... Matrix resin, 50 ... Sealed insulation device, 51 ... Metal container, 51a ... Flange Part, 52 ... High voltage conductor, 53 ... Insulating spacer, 54 ... Insulating gas, 60 ... Test piece, 61 ... Disc-shaped member, 61a ... First surface, 61b ... Second surface, 62 ... First electrode, 63 ... Circular electrode, 64 ... 2nd electrode

Claims (20)

  1.  樹脂および硬化剤を含むマトリックス樹脂と、
     前記マトリックス樹脂に分散して含有され、前記樹脂の機械的特性を向上させる機能を有する第1の充填剤と、
     前記マトリックス樹脂に分散して含有され、前記樹脂の電気抵抗を制御する機能を有する第2の充填剤と、
     を具備することを特徴とする注型樹脂。
    Matrix resin containing resin and hardener,
    A first filler which is dispersed and contained in the matrix resin and has a function of improving the mechanical properties of the resin, and
    A second filler which is dispersed and contained in the matrix resin and has a function of controlling the electric resistance of the resin, and
    A casting resin characterized by comprising.
  2.  前記第1の充填剤を構成する個々の粒子が、シリカであることを特徴とする請求項1に記載の注型樹脂。 The casting resin according to claim 1, wherein the individual particles constituting the first filler are silica.
  3.  前記第1の充填剤を構成する個々の粒子が、アルミナであることを特徴とする請求項1に記載の注型樹脂。 The casting resin according to claim 1, wherein the individual particles constituting the first filler are alumina.
  4.  前記第2の充填剤を構成する個々の粒子が、Feからなる粒子であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の注型樹脂。 The casting resin according to any one of claims 1 to 3, wherein the individual particles constituting the second filler are particles made of Fe 3 O 4.
  5.  前記第2の充填剤を構成する個々の粒子が、Feからなる粒子であり、
     前記Feからなる粒子が、前記マトリックス樹脂100質量部に対して0.010~0.50質量部配合されている、
     ことを特徴とする請求項2に記載の注型樹脂。
    The individual particles constituting the second filler are particles made of Fe 3 O 4 .
    The particles composed of Fe 3 O 4 are blended in an amount of 0.010 to 0.50 parts by mass with respect to 100 parts by mass of the matrix resin.
    The cast resin according to claim 2.
  6.  前記第2の充填剤を構成する個々の粒子が、ZrCからなる粒子であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の注型樹脂。 The casting resin according to any one of claims 1 to 3, wherein the individual particles constituting the second filler are particles made of ZrC.
  7.  前記第2の充填剤を構成する個々の粒子が、ZrCからなる粒子であり、
     前記ZrCからなる粒子が、前記マトリックス樹脂100質量部に対して0.5~5.0質量部配合されている、
     ことを特徴とする請求項2に記載の注型樹脂。
    The individual particles constituting the second filler are particles made of ZrC.
    The particles made of ZrC are blended in an amount of 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the matrix resin.
    The cast resin according to claim 2.
  8.  前記第2の充填剤を構成する個々の粒子が電子捕捉剤からなる粒子であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の注型樹脂。 The casting resin according to any one of claims 1 to 3, wherein the individual particles constituting the second filler are particles made of an electron scavenger.
  9.  前記電子捕捉剤が2,4,7-トリニトロ-9―フルオレノン(TNF)であることを特徴とする請求項8に記載の注型樹脂。 The casting resin according to claim 8, wherein the electron scavenger is 2,4,7-trinitro-9-fluorenone (TNF).
  10.  前記第2の充填剤を構成する個々の粒子が電子捕捉剤からなる粒子であり、
     前記電子捕捉剤が2,4,7-トリニトロ-9―フルオレノン(TNF)であり、
     前記電子捕捉剤が、前記マトリックス樹脂100質量部に対して0.0030~0.05質量部配合されている、
     ことを特徴とする請求項2に記載の注型樹脂。
    The individual particles constituting the second filler are particles made of an electron scavenger.
    The electron scavenger is 2,4,7-trinitro-9-fluorenone (TNF).
    The electron scavenger is blended in an amount of 0.0030 to 0.05 parts by mass with respect to 100 parts by mass of the matrix resin.
    The cast resin according to claim 2.
  11.  前記第2の充填剤を構成する個々の粒子が、金属メッキアクリル粒子からなる粒子であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の注型樹脂。 The casting resin according to any one of claims 1 to 3, wherein the individual particles constituting the second filler are particles made of metal-plated acrylic particles.
  12.  前記金属メッキアクリル粒子が、銀メッキを施したアクリルからなる粒子であることを特徴とする請求項11に記載の注型樹脂。 The casting resin according to claim 11, wherein the metal-plated acrylic particles are particles made of silver-plated acrylic.
  13.  前記金属メッキアクリル粒子が、ニッケルメッキを施したアクリルからなる粒子であることを特徴とする請求項11に記載の注型樹脂。 The casting resin according to claim 11, wherein the metal-plated acrylic particles are particles made of nickel-plated acrylic.
  14.  前記第2の充填剤を構成する個々の粒子が、金属メッキアクリル粒子からなる粒子であり、
     前記金属メッキアクリル粒子が、前記マトリックス樹脂100質量部に対して0.040~0.30質量部配合されていることを特徴とする請求項2に記載の注型樹脂。
    The individual particles constituting the second filler are particles made of metal-plated acrylic particles.
    The cast resin according to claim 2, wherein the metal-plated acrylic particles are blended in an amount of 0.040 to 0.30 parts by mass with respect to 100 parts by mass of the matrix resin.
  15.  前記第2の充填剤を構成する個々の粒子が結晶シリカからなる粒子であることを特徴とする請求項1ないし請求項3のいずれか一項に記載の注型樹脂。 The casting resin according to any one of claims 1 to 3, wherein the individual particles constituting the second filler are particles made of crystalline silica.
  16.  前記第2の充填剤を構成する個々の粒子が結晶シリカからなる粒子であり、
     前記結晶シリカからなる粒子が、前記マトリックス樹脂100質量部に対して0.5~10質量部配合されている、
     ことを特徴とする請求項2に記載の注型樹脂。
    The individual particles constituting the second filler are particles made of crystalline silica.
    The particles made of crystalline silica are blended in an amount of 0.5 to 10 parts by mass with respect to 100 parts by mass of the matrix resin.
    The cast resin according to claim 2.
  17.  前記樹脂は、エポキシ樹脂およびアクリル樹脂を含むことを特徴とする請求項1ないし請求項16のいずれか一項に記載の注型樹脂。 The cast resin according to any one of claims 1 to 16, wherein the resin contains an epoxy resin and an acrylic resin.
  18.  前記マトリックス樹脂に、消泡剤を配合したことを特徴とする請求項1ないし請求項17のいずれか一項に記載の注型樹脂。 The casting resin according to any one of claims 1 to 17, wherein a defoaming agent is blended with the matrix resin.
  19.  前記マトリックス樹脂に、分散剤を配合したことを特徴とする請求項1ないし請求項18のいずれか一項に記載の注型樹脂。 The cast resin according to any one of claims 1 to 18, wherein a dispersant is blended with the matrix resin.
  20.  軸方向に延びた高電圧導体と、
     前記高電圧導体との間に半径方向の空隙を保ちながら前記高電圧導体を覆って、この空隙に絶縁ガスが充填される金属容器と、
     この内部に設置され請求項1ないし請求項19のいずれか一項に記載の注型樹脂を用いた注型樹脂硬化物からなる絶縁スペーサと、
     を有することを特徴とする密閉型絶縁装置。
    A high-voltage conductor extending in the axial direction and
    A metal container that covers the high-voltage conductor while maintaining a radial gap between the high-voltage conductor and the gap is filled with an insulating gas.
    An insulating spacer which is installed inside and is made of a cured cast resin using the cast resin according to any one of claims 1 to 19.
    A sealed insulation device characterized by having.
PCT/JP2021/008951 2020-04-01 2021-03-08 Casting resin and closed insulating device WO2021199932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-065740 2020-04-01
JP2020065740A JP2021161310A (en) 2020-04-01 2020-04-01 Casting resin and closed insulating device

Publications (1)

Publication Number Publication Date
WO2021199932A1 true WO2021199932A1 (en) 2021-10-07

Family

ID=77929062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008951 WO2021199932A1 (en) 2020-04-01 2021-03-08 Casting resin and closed insulating device

Country Status (2)

Country Link
JP (1) JP2021161310A (en)
WO (1) WO2021199932A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510497A (en) * 1994-07-01 2000-08-15 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Epoxy resin casting composition
JP2001279062A (en) * 2000-03-30 2001-10-10 Toshiba Corp Casting resin composition
JP2009073933A (en) * 2007-09-20 2009-04-09 Toto Kasei Co Ltd Epoxy resin composition having thermal degradation resistance
JP2011057734A (en) * 2009-09-07 2011-03-24 Hitachi Electric Systems Ltd Highly tough and highly thermally conductive curable resin composition, cured product thereof, and mold electrical apparatus
US20130169277A1 (en) * 2010-06-02 2013-07-04 Jürgen Huber Potting compound suitable for potting an electronic component, in particular a large-volume coil such as a gradient coil
JP2014204488A (en) * 2013-04-02 2014-10-27 株式会社東芝 Coating material for electric apparatus, manufacturing method of the same, and sealed isolator
JP2017128621A (en) * 2016-01-18 2017-07-27 株式会社日立産機システム Mold resin material for high voltage equipment and method for manufacturing high voltage equipment
JP2019081838A (en) * 2017-10-30 2019-05-30 日立化成株式会社 Resin composition, film capacitor and its production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000510497A (en) * 1994-07-01 2000-08-15 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Epoxy resin casting composition
JP2001279062A (en) * 2000-03-30 2001-10-10 Toshiba Corp Casting resin composition
JP2009073933A (en) * 2007-09-20 2009-04-09 Toto Kasei Co Ltd Epoxy resin composition having thermal degradation resistance
JP2011057734A (en) * 2009-09-07 2011-03-24 Hitachi Electric Systems Ltd Highly tough and highly thermally conductive curable resin composition, cured product thereof, and mold electrical apparatus
US20130169277A1 (en) * 2010-06-02 2013-07-04 Jürgen Huber Potting compound suitable for potting an electronic component, in particular a large-volume coil such as a gradient coil
JP2014204488A (en) * 2013-04-02 2014-10-27 株式会社東芝 Coating material for electric apparatus, manufacturing method of the same, and sealed isolator
JP2017128621A (en) * 2016-01-18 2017-07-27 株式会社日立産機システム Mold resin material for high voltage equipment and method for manufacturing high voltage equipment
JP2019081838A (en) * 2017-10-30 2019-05-30 日立化成株式会社 Resin composition, film capacitor and its production method

Also Published As

Publication number Publication date
JP2021161310A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP6202857B2 (en) Coating material for electrical equipment
JP5269064B2 (en) Non-linear resistance material
JP6009839B2 (en) Non-linear resistance material
Wang et al. Influence of addition of hydroxyl-terminated liquid nitrile rubber on dielectric properties and relaxation behavior of epoxy resin
CA1103383A (en) Silica-alumina trihydrate filled epoxy castings resistant to arced sf.sub.6
JP6101122B2 (en) Epoxy resin composition for mold transformer, mold transformer, and method for producing mold transformer
WO2022123924A1 (en) Insulating resin composition, insulating member formed of cured product of same, and electrical device
JP4918301B2 (en) Manufacturing method of power switchgear
WO2021199932A1 (en) Casting resin and closed insulating device
JP6152321B2 (en) Epoxy resin composition for casting ignition coil, ignition coil and method for producing the same
US11095179B2 (en) Thermosetting resin composition, stator coil obtained using same, and rotating electric machine
WO2019111298A1 (en) Insulating spacer
JP2023010288A (en) Resin composition for power apparatus
CN109563238B (en) Epoxy resin composition and conductive adhesive containing same
JP2001135144A (en) Cast molding for sf6 gas insulated equipment and its production
JP6215570B2 (en) Epoxy resin composition for casting power device, power device and method for producing power device
JP2021163693A (en) Nonlinear resistive material and gas-insulated switchgear and power generator coil
JP2020050828A (en) Epoxy resin composition for cast, and ignition coil
JP4924558B2 (en) Vacuum equipment and manufacturing method thereof
EP4130126A1 (en) Epoxy resin composition and ignition coil
JP2016060898A (en) Two-pack casting epoxy resin composition, and coil component
Liu et al. Volume Resistance of Epoxy Molding Compound
JPH09251815A (en) Insulating spacer
Chenoweth et al. Silica-alumina trihydrate filled epoxy castings resistant to arced SF6
JPH0845351A (en) Casting resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21782267

Country of ref document: EP

Kind code of ref document: A1