WO2021199343A1 - Driving control device and vehicle - Google Patents

Driving control device and vehicle Download PDF

Info

Publication number
WO2021199343A1
WO2021199343A1 PCT/JP2020/014933 JP2020014933W WO2021199343A1 WO 2021199343 A1 WO2021199343 A1 WO 2021199343A1 JP 2020014933 W JP2020014933 W JP 2020014933W WO 2021199343 A1 WO2021199343 A1 WO 2021199343A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
control unit
speed
mode
prime mover
Prior art date
Application number
PCT/JP2020/014933
Other languages
French (fr)
Japanese (ja)
Inventor
功祐 綱島
康平 松浦
寿光 中嶋
直輝 沖本
裕康 吉澤
洸一 古里
浩孝 小島
圭淳 根建
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2020/014933 priority Critical patent/WO2021199343A1/en
Publication of WO2021199343A1 publication Critical patent/WO2021199343A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor

Definitions

  • the present invention relates to a drive control device and a vehicle.
  • Patent Document 1 describes an actuator for a continuously variable transmission including a drive pulley provided on the crankshaft side, a driven pulley provided on the rear wheel side, and a transmission belt hung between the drive pulley and the driven pulley.
  • the configuration is disclosed in which the gear ratios of the continuously variable transmission are changed by driving the actuator. With this configuration, it is possible to virtually perform a stepped shifting operation that gives a feeling of shifting like a stepped transmission. In this stepped speed change operation, the engine speed is increased according to the vehicle speed, the engine speed is decreased when the predetermined vehicle speed is reached, and then the engine speed is increased again according to the vehicle speed increase.
  • the present invention has been made in view of the above circumstances, and is a drive control device and a vehicle capable of performing a stepped speed change operation virtually performed in a continuously variable transmission more quickly and realizing a good shift feeling.
  • the purpose is to provide.
  • the first aspect of the present invention is a stepless transmission (M) that continuously shifts the rotational power generated by the prime mover (E) and transmits it to the driven unit (4) side.
  • a stepped speed change mode in which the stepless transmission (M) is made to execute a virtual stepped speed change operation by the actuator (55), and the control unit (100) has the stepped speed change mode (Ms).
  • a drive control device U that increases the power generation load of the motor (90) as compared with the normal operation of the motor (E) when performing the speed-up shift operation (Sa) when the shift mode (Ms) is selected. do.
  • a second aspect of the present invention is a stepless transmission (M) that continuously shifts the rotational power generated by the prime mover (E) and transmits it to the driven unit (4) side, and the stepless transmission (the stepless transmission).
  • An actuator (55) that changes the gear ratio of the M
  • an electric motor (90) connected to the motor (E)
  • a control unit (100) that controls the operation of the actuator (55) and the electric motor (90).
  • the drive control device (U) including The control unit (100) has at least one of them, and the control unit (100) has a stepped speed change mode (Ms) in which the stepless transmission (M) is made to execute a virtual stepped speed change operation by the actuator (55).
  • the control unit (100) reduces the power generation load of the motor (90) as compared with the normal operation of the prime mover (E).
  • a drive control device (U) that applies a driving force to the prime mover (E) from the electric motor (90) is provided.
  • the control unit (100) when the control unit (100) performs the speed-increasing shift operation (Sa) when the stepped speed change mode (Ms) is selected, the motor (E) ), The power generation load of the motor (90) is increased as compared with the normal operation.
  • a fourth aspect of the present invention is that in any one of the first to third aspects, the control unit (100) is the power generation load of the motor (90) during normal operation of the prime mover (E).
  • the control unit (100) has a load increasing mode in which the accelerator opening is reduced when at least one of the stepped speed change mode (Ms) or the load increasing mode is selected.
  • the power generation load of the motor (90) is increased as compared with the normal operation of E), or the power generation load is increased as compared with the load increase mode when the load increase mode is selected.
  • a fifth aspect of the present invention provides a vehicle (1) including the drive control device (U) according to any one of the first to fourth aspects.
  • the power generation load of the motor connected to the drive shaft of the prime mover is increased. This makes it possible to lower (decrease) the rotation speed of the drive shaft. Since the motor is operated with good response, the speed-up shift operation can be performed quickly. Therefore, the stepped speed change operation virtually performed in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized. Since the rotation speed of the drive shaft is reduced due to the increase in the power generation load of the motor (generator), it is not necessary to add dedicated equipment. Therefore, the operation of the continuously variable transmission in the stepped speed change mode can be performed more efficiently.
  • the power generation load of the motor connected to the drive shaft of the prime mover is reduced, or auxiliary power is generated in the motor.
  • This makes it possible to increase (increase) the rotation speed of the drive shaft. Since the motor is operated with good response, the deceleration shift operation can be performed quickly. Therefore, the stepped speed change operation virtually performed in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized. Since the rotation speed of the drive shaft is increased by reducing the power generation load of the motor (generator) and generating auxiliary power at least, it is not necessary to add dedicated equipment. Therefore, the operation of the continuously variable transmission in the stepped speed change mode can be performed more efficiently.
  • the power generation load of the motor connected to the drive shaft of the prime mover is increased. This makes it possible to lower (decrease) the rotation speed of the drive shaft. Since the motor is operated with good response, the speed-up shift operation can be performed quickly. Therefore, the stepped speed change operation virtually performed in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized.
  • the power generation load of the motor is increased and the rotation speed of the prime mover is lowered (decreased).
  • the accelerator is closed in the load increase mode, the power generation load is increased more than in this load increase mode. As a result, it is possible to produce a state in which the engine brake works well even in the load increase mode.
  • the stepped speed change operation in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized.
  • FIG. 3 It is a left side view of the motorcycle in embodiment of this invention. It is explanatory drawing which shows the structure of the drive control device of the motorcycle. It is a graph which shows the correlation between the vehicle speed and the engine speed at the time of performing a stepless shift mode and a stepped shift mode by the drive control device. It is an enlarged view which shows the main part of FIG. 3, and is explanatory drawing which shows the shift time required for the shift when the speed-increasing shift operation is performed in the stepped shift mode. It is a flowchart which shows the process of the control part at the time of performing the speed-increasing shift operation in the stepped shift mode.
  • FIG. 1 shows a unit swing type motorcycle (vehicle) 1 as an example of the saddle-riding vehicle of the present embodiment.
  • the motorcycle 1 includes a front wheel 3 which is a steering wheel and a rear wheel (driven portion) 4 which is a driving wheel.
  • the front wheels 3 are supported by a pair of left and right front forks 6 and can be steered by the bar handles 2.
  • the rear wheel 4 is supported by the power unit P and can be driven by the engine (motor) E.
  • the arrow FR indicates the front of the vehicle
  • the arrow UP indicates the upper part of the vehicle.
  • the power unit P is configured as a swing unit that supports the rear wheels 4, which are the driving wheels, so as to be able to swing up and down.
  • the power unit P integrally includes an engine (internal combustion engine) E as a drive source and, for example, a V-belt type continuously variable transmission M.
  • E internal combustion engine
  • a rear wheel 4 is supported on the output shaft at the rear of the continuously variable transmission M.
  • the rear portion of the continuously variable transmission M is supported by the vehicle body frame 11 via the rear cushion 7.
  • Steering system parts including the bar handle 2, left and right front forks 6 and front wheels 3 are steerably supported by the head pipe 12 at the front end of the vehicle body frame 11.
  • the power unit P and the rear wheels 4 are supported by a pivot portion (not shown) at the lower part of the vehicle body frame 11 so as to be swingable up and down via a suspension link or the like.
  • the front part of the vehicle body is covered with the front cover 8, and the rear part of the vehicle body is covered with the rear cover 9.
  • a low floor portion 10 is provided between the front cover 8 and the rear cover 9.
  • a step floor 10a on which the driver rests his / her feet is provided on the upper surface of the low floor portion 10.
  • a seat 5 on which an occupant including a driver is seated is supported above the rear cover 9, a seat 5 on which an occupant including a driver is seated is supported.
  • the vehicle body frame 11 includes a head pipe 12 located at the front end, a down frame 13 extending downward from the head pipe 12, a pair of left and right lower frames 14 extending rearward from the lower end of the down frame 13, and a lower frame.
  • a pair of left and right rear frames 15 extending from the rear end portion of 14 by appropriately bending upward and rearward are provided.
  • the pivot portion that supports the front end portion of the power unit P is provided in the vicinity of the rear end portion of the left and right lower frames 14.
  • FIG. 2 shows a schematic configuration of the drive control device U of the motorcycle 1.
  • the drive control device U has an engine E as a prime mover, a stepless transmission M capable of steplessly shifting the rotational power generated by the engine E and transmitting the rotational power to the rear wheel 4 side, and a stepless transmission M.
  • It includes an electric actuator 55 that changes the ratio, an electric motor 90 that is connected to a drive shaft (crank shaft 41) of the engine E, and a control unit 100 that controls the operation of the actuator 55 and the electric motor 90.
  • the continuously variable transmission M can carry out a stepped speed change mode in which a virtual stepped speed change is performed by driving the actuator 55.
  • a shift switch (not shown) for manually performing a virtual stepped shift is provided on the bar handle 2 and the step floor 10a.
  • the engine E generates power by burning fuel in a combustion chamber (not shown).
  • the engine E rotates and drives a crankshaft 41 extending in the left-right direction around its rotation center axis.
  • the engine E transmits the rotational power of the crankshaft 41 to the rear wheels 4 via the continuously variable transmission M.
  • the engine E increases or decreases the engine speed, that is, the rotation speed of the crankshaft 41, according to the opening degree of the accelerator grip (not shown) provided on the bar handle 2.
  • the continuously variable transmission M shifts the power generated by the engine E and transmits it to the rear wheels 4.
  • the continuously variable transmission M includes a drive pulley 54 provided on the crankshaft 41 side of the engine E, a driven pulley 56 provided separately behind the drive pulley 54 (rear wheel 4 side), a drive pulley 54, and a driven pulley. It is provided with an endless and trapezoidal transmission belt (so-called V-belt) 53 that is wound around 56.
  • the drive pulley 54 includes a fixed side pulley half body 54a and a movable side pulley half body 54b provided so as to face each other in the left-right direction.
  • the fixed side pulley half body 54a and the movable side pulley half body 54b are coaxially and integrally rotatably supported at one end of the drive shaft 51.
  • the drive shaft 51 of the embodiment is a crankshaft 41, but for example, a drive shaft 51 parallel to the crankshaft 41 and a different shaft may be used. Further, a clutch may be provided between the drive shaft 51 and the drive pulley 54.
  • the fixed side pulley half body 54a is immovably supported in the axial direction of the drive shaft 51.
  • the movable side pulley half body 54b is movably supported in the axial direction of the drive shaft 51.
  • the movable side pulley half body 54b can be separated from the fixed side pulley half body 54a.
  • An actuator 55 is connected to the movable pulley semifield 54b.
  • the fixed side pulley half body 54a and the movable side pulley half body 54b each have a cup shape, and are arranged so that the small diameter side (bottom side) faces each other.
  • a V-shaped gap (V groove 54c) having a wide outer peripheral side in the circumferential cross section is formed between the fixed side pulley half body 54a and the movable side pulley half body 54b.
  • a V-belt 53 is wound around the V-groove 54c with a predetermined tension. Both sides of the V-belt 53 are aligned with the pulley inclined surfaces formed by each of the fixed side pulley half body 54a and the movable side pulley half body 54b.
  • the movable side pulley half body 54b is moved away from the fixed side pulley half body 54a in the axial direction by driving the actuator 55.
  • the axial movement of the movable pulley half body 54b increases or decreases the axial width of the V groove 54c between the movable pulley half body 54b and the fixed pulley half body 54a.
  • the driven pulley 56 includes a fixed side pulley half body 56a and a movable side pulley half body 56b provided so as to face each other in the left-right direction.
  • the fixed side pulley half body 56a and the movable side pulley half body 56b are coaxially and integrally rotatably supported at one end of the driven shaft 52.
  • the driven shaft 52 of the embodiment is a driven shaft 52 that is parallel to the crankshaft 41 and the rear wheel axle 4a and is a separate shaft (see FIG. 1).
  • a reduction gear mechanism G is provided between the driven shaft 52 and the rear wheel axle 4a.
  • a centrifugal clutch (not shown) is provided between the driven shaft 52 and the reduction gear mechanism G.
  • the fixed side pulley half body 56a is immovably supported in the axial direction of the driven shaft 52.
  • the movable side pulley half body 56b is movably supported in the axial direction of the driven shaft 52.
  • the movable side pulley half body 56b can be separated from the fixed side pulley half body 56a.
  • the elastic member 57 is connected to the movable side pulley semifield 56b.
  • the fixed side pulley half body 56a and the movable side pulley half body 56b each have a cup shape, and are arranged so that the small diameter side (bottom side) faces each other.
  • a V-shaped gap (V groove 56c) having a wide outer peripheral side in the circumferential cross section is formed between the fixed side pulley half body 56a and the movable side pulley half body 56b.
  • a V-belt 53 is wound around the V-groove 56c with a predetermined tension. Both sides of the V-belt 53 are aligned with the pulley inclined surfaces formed by each of the fixed side pulley half body 56a and the movable side pulley half body 56b.
  • the movable side pulley half body 56b is urged toward the fixed side pulley half body 56a side in the axial direction by the elastic force (urging force) of the elastic member 57.
  • the elastic force (urging force) of the elastic member 57 narrows the axial width of the V groove 56c between the fixed side pulley half body 56a and the movable side pulley half body 56b.
  • the tension of the transmission belt 53 is increased, the movable side pulley half body 56b is moved to the opposite side to the fixed side pulley half body 56a against the elastic force (urging force) of the elastic member 57.
  • the movable side pulley half body 56b is separated from the fixed side pulley half body 56a to widen the axial width of the V groove 56c.
  • the movable side pulley half body 54b of the drive pulley 54 is arranged apart from the fixed side pulley half body 54a when the engine is stopped and when the rotation speed is low.
  • the axial width of the V-groove 54c of the drive pulley 54 is widened, and the V-belt 53 winds around the inner peripheral side of the V-groove 54c.
  • the driven pulley 56 the V-belt 53 winds around the outer peripheral side of the V-groove 56c.
  • the continuously variable transmission M is set to a reduction ratio closer to the low speed.
  • the movable side pulley half body 54b of the drive pulley 54 moves to the fixed side pulley half body 54b side by the operation of the actuator 55.
  • the axial width of the V groove 54c of the drive pulley 54 is narrowed, and the V belt 53 moves to the outer peripheral side along the pulley inclined surface.
  • the winding position of the V-belt 53 on the drive pulley 54 changes to the outer peripheral side.
  • the V-belt 53 is pulled toward the drive pulley 54, so that the axial width of the V-groove 56c is widened. That is, the movable side pulley half body 56b moves to the opposite side to the fixed side pulley half body 56a against the elastic force (urging force) of the elastic member 57. As a result, the axial width of the V-groove 56c of the driven pulley 56 is widened, and the V-belt 53 moves to the inner peripheral side along the inclined surface of the pulley. As a result, the reduction ratio of the continuously variable transmission M changes toward high speed.
  • the movable side pulley half body 54b of the drive pulley 54 is separated from the fixed side pulley half body 54b by the operation of the actuator 55.
  • the axial width of the V groove 54c of the drive pulley 54 is widened, and the V belt 53 moves to the inner peripheral side along the inclined surface of the pulley.
  • the winding position of the V-belt 53 on the drive pulley 54 returns to the inner peripheral side.
  • the tension of the V-belt 53 is reduced, so that the axial width of the V-groove 56c is narrowed. That is, the movable side pulley half body 56b moves to the fixed side pulley half body 56a side by the elastic force (urging force) of the elastic member 57. As a result, the axial width of the V-groove 56c of the driven pulley 56 is narrowed, and the V-belt 53 moves to the outer peripheral side along the inclined surface of the pulley. As a result, the winding position of the V-belt 53 on the driven pulley 56 returns to the outer peripheral side. As a result, the reduction ratio of the continuously variable transmission M returns to the low speed side.
  • the continuously variable transmission M steplessly changes the reduction ratio between the drive pulley 54 and the driven pulley 56 by driving the actuator 55.
  • the continuously variable transmission M can switch between the continuously variable transmission mode Ma and the continuously variable transmission mode Ms shown in FIG. 3 by the drive control of the actuator 55.
  • the continuously variable transmission mode Ma performs a continuous and smooth continuously variable transmission operation according to the engine speed.
  • the stepped speed change mode Ms performs a virtual stepped speed change operation by driving the actuator 55.
  • the continuously variable transmission mode Ma and the continuously variable transmission mode Ms can be switched by a specified selection operation by the user.
  • the stepped speed change mode Ms can further switch between the automatic mode and the manual mode by a specified selection operation by the user.
  • the shift operation is automatically performed by the control by the control unit 100 described later.
  • the manual mode the shift operation is manually performed by the specified shift operation by the user.
  • the motorcycle 1 may be provided with a vehicle body acceleration sensor (for example, an IMU (Inertial Measurement Unit)) that detects vehicle body behavior.
  • a vehicle body acceleration sensor for example, an IMU (Inertial Measurement Unit)
  • IMU Inertial Measurement Unit
  • the continuously variable transmission M may be prohibited from shifting.
  • the motorcycle 1 includes an electric motor 90.
  • the electric motor 90 is, for example, an alternating current generator (ACG).
  • ACG alternating current generator
  • the electric motor 90 is coaxially arranged, for example, at one end of the crankshaft 41 of the engine E.
  • the electric motor 90 is connected to the crankshaft 41 of the engine E.
  • the electric motor 90 is housed in a cover 93 attached to one side of the engine E.
  • the electric motor 90 as a generator is driven by the rotation of the crankshaft 41 after the engine is started to generate electricity.
  • the electric motor 90 also functions as a starter motor for starting the engine E.
  • the electric motor 90 may function as an assist motor that assists driving the engine E.
  • the operation of the electric motor 90 is controlled by the control unit 100, which will be described later.
  • the electric motor 90 includes a rotor 91 that is integrally rotatably attached to the crankshaft 41 and a stator 92 that is fixedly held by the cover 93.
  • the electric motor 90 shown in the figure is an inner rotor type in which the rotor 91 is arranged on the inner peripheral side of the stator 92, but the present invention is not limited to this.
  • the electric motor 90 may be an outer rotor type in which the rotor 91 is arranged on the outer peripheral side of the stator 92.
  • Control unit The operation of the electric motor 90 and the operation of the actuator 55 that shifts the continuously variable transmission M are controlled by the control unit 100.
  • the control unit 100 is configured as, for example, an integral or a plurality of electronic control units (ECUs).
  • the control unit 100 may be realized at least in part by the collaboration of software and hardware.
  • the vehicle speed sensor 111, the shift sensor 112, the accelerator opening sensor 113, and the engine speed (rotation speed) sensor 114 provided in the motorcycle 1 are input to the control unit 100.
  • the control unit 100 executes a predetermined process by a preset operation program based on the detection signals from each sensor. As a result, the control unit 100 controls the shifting operation of the continuously variable transmission M.
  • the control unit 100 functionally includes a shift control unit 101 and a motor control unit 102.
  • the shift control unit 101 changes the gear ratio of the continuously variable transmission M by controlling the operation of the actuator 55 (in other words, executes the shift operation).
  • the shift control unit 101 changes the gear ratio of the continuously variable transmission M based on a shift map stored in the control unit 100 in advance, a running state of the vehicle, and the like. As a result, the rotation speed of the crankshaft 41 of the engine E is changed with respect to the vehicle speed of the motorcycle 1.
  • the input information required for shifting includes, for example, vehicle speed, accelerator opening, vehicle body bank angle, and the like.
  • the shift execution determination is made based on, for example, the relationship between the vehicle speed and the accelerator opening.
  • the shift control unit 101 has a continuously variable transmission mode Ma and a continuously variable transmission mode Ms.
  • either the stepless shift mode Ma or the stepped shift mode Ms can be implemented according to the selection of the occupant. Switching between the stepped speed change mode Ms and the stepless speed change mode Ma is performed, for example, by the occupant operating a speed change switch, a shift mode change switch, or the like provided on the motorcycle 1.
  • the shift control unit 101 switches the shift mode.
  • the gear ratio of the continuously variable transmission M is set so as to follow the correlation line Ma1 shown in FIG.
  • the correlation line Ma1 shows the correlation between the vehicle speed and the engine speed in the continuously variable transmission mode Ma.
  • the gear ratio is set so that the vehicle speed and the engine speed increase or decrease in a substantially constant proportional relationship.
  • the gear ratio is set so as to keep the engine speed higher than the above-mentioned proportional relationship.
  • a virtual stepped speed change operation is performed so as to produce the operation of the stepped transmission having a plurality of speed change gear groups.
  • the inclined lines s1 to s7 are inclined lines having an inclination corresponding to the gear ratio of the speed change gear (virtual) for the 7th speed.
  • the setting is equivalent to the 1st speed gear at low vehicle speeds such as when the motorcycle 1 starts.
  • the gear ratio of the continuously variable transmission M is set so as to follow the correlation line Ms1 shown in FIG.
  • the correlation line Ms1 has a steeper inclination (rate of increase in engine speed with respect to vehicle speed) than the correlation line Ma1 in the continuously variable transmission mode Ma. That is, the correlation line Ms1 is set to a gear ratio closer to the lower speed.
  • the actuator 55 When the motorcycle 1 is accelerating and the rising engine speed reaches the upper speed change speed Nu, the actuator 55 is operated and the gear ratio is sequentially changed so as to be a setting equivalent to the next stage gear.
  • the engine speed reaches the upper speed change speed Nu (for example, point P1 in FIG. 3)
  • the engine speed drops once.
  • the correlation line between the engine speed and the vehicle speed reaches the slope line corresponding to the gear ratio of the next gear (for example, point P2 in FIG. 3)
  • the engine speed and the vehicle speed are increased again along this slope line. , Set the gear ratio of the continuously variable transmission M.
  • the actuator 55 is operated to sequentially change the gear ratio so as to be set to correspond to the next gear on the low speed side.
  • the engine speed reaches the lower speed change speed Nd (for example, point P3 in FIG. 3)
  • the engine speed rises once.
  • the correlation line between the engine speed and the vehicle speed reaches a slope line corresponding to the gear ratio of the next gear on the low speed side (for example, point P4 in FIG. 3)
  • the engine speed and vehicle speed are lowered again along this slope line.
  • the gear ratio of the continuously variable transmission M is set so as to be caused.
  • the upper speed change speed Nu and the lower speed change speed Nd have different values depending on the throttle opening degree.
  • the motor control unit 102 interlocks with the shift control unit 101 to control the operation of the motor 90 in the stepped shift mode Ms.
  • the motor control unit 102 controls the amount of power generation (power generation load) in the motor 90 by the motor drive circuit 120.
  • the motor control unit 102 increases or decreases the amount of power generated by the motor 90 when the shift control unit 101 is instructed to perform the speed-up shift operation Sa or the deceleration shift operation Sb.
  • the speed-up shift operation Sa and the deceleration shift operation Sb are performed automatically or manually.
  • the speed-up shift operation Sa and the deceleration shift operation Sb are automatically performed based on a map showing the correlation between the vehicle speed and the engine speed (automatic mode).
  • the speed-up shift operation Sa and the deceleration shift operation Sb are manually performed by the occupant's shift operation (manual mode). Shifting down when the engine speed is too high and shifting up when the engine speed is too low are prohibited.
  • the shift control unit 101 operates the actuator 55 when performing the speed-up shift operation Sa in the stepped shift mode Ms.
  • the motor control unit 102 further controls the operation of the motor 90.
  • the motor control unit 102 operates the motor 90 so that the amount of power generation (power generation load) increases. As a result, the engine speed (the speed of the crankshaft 41) drops sharply.
  • the normal operation of the engine E is, for example, an operation other than the shift operation (acceleration shift operation Sa and deceleration shift operation Sb).
  • FIG. 4 middle dotted line Lt shows the inclination when the engine speed is lowered by the retard angle of the ignition of the engine, the cut of the fuel injection, etc. without performing the above control of the motor 90.
  • the shift time t1'at this time is longer than the shift time t1 when the above control of the motor 90 is performed.
  • the shift control unit 101 operates the actuator 55 when performing the deceleration shift operation Sb in the stepped shift mode Ms.
  • the motor control unit 102 further controls the operation of the motor 90.
  • the motor control unit 102 operates the motor 90 so that the amount of power generation (power generation load) is reduced. As a result, the increase in engine speed becomes steep.
  • the motor control unit 102 performs the following control in the stepped speed change mode Ms or a specific mode. That is, when the accelerator opening degree of the accelerator grip detected by the accelerator opening degree sensor 113 decreases, the electric motor 90 is operated so that the amount of power generation increases. When the electric motor 90 is operated so as to increase the amount of power generation, the amount of the rotational energy of the crankshaft 41 converted into electric energy increases. As a result, the rotational energy of the crankshaft 41 decreases, and the rotational speed of the crankshaft 41 decreases.
  • the control for operating the motor 90 so that the amount of power generation increases when the accelerator opening degree decreases may be executed in a specific mode other than the stepped speed change mode Ms.
  • a specific mode includes the following load increasing modes including, for example, a sports mode and an overdrive mode. That is, the control unit 100 has a load increase mode in which the power generation load of the motor 90 during normal operation of the engine E is increased.
  • the load increase mode is automatically or manually selected according to, for example, the remaining capacity of the vehicle-mounted power supply.
  • the load increase mode may be selected in combination with either the continuously variable transmission mode Ma or the continuously variable transmission mode Ms.
  • the motor control unit 102 determines whether or not the shift control unit 101 has instructed the start of the speed-up shift operation Sa in the stepped shift mode Ms (step S11). If the start of the speed-up shift operation Sa is not instructed in step S11 (NO in step S11), the motor control unit 102 generates power in the predetermined normal power generation mode S12. The amount of power generated by the motor 90 in the normal power generation mode S12 may include zero (0). Further, when the start of the speed-up shift operation Sa is instructed in step S11 (YES in step S11), the motor control unit 102 is subsequently instructed by the shift control unit 101 to end the speed-up shift operation Sa. It is determined whether or not the device is used (step S13).
  • step S13 If the end of the speed-up shift operation Sa is not instructed in step S13 (NO in step S13), the motor control unit 102 generates power in the predetermined strong power generation mode S14.
  • the amount of power generated by the motor 90 in the strong power generation mode S14 is larger than the amount of power generated by the motor 90 in the normal power generation mode S12.
  • the motor control unit 102 generates power in the normal power generation mode S12.
  • step S21 the motor control unit 102 determines whether or not the shift control unit 101 has instructed the start of the deceleration shift operation Sb in the stepped shift mode Ms (step S21). If the start of the deceleration shift operation Sb is not instructed in step S21 (NO in step S21), the motor control unit 102 generates power in the predetermined normal power generation mode S22. Further, when the start of the deceleration shift operation Sb is instructed in step S21 (YES in step S21), is the motor control unit 102 subsequently instructed by the shift control unit 101 to end the deceleration shift operation Sb? It is determined whether or not (step S23).
  • step S23 If the end of the deceleration shift operation Sb is not instructed in step S23 (NO in step S23), the motor control unit 102 generates power in the predetermined low power generation mode S24.
  • the amount of power generated by the motor 90 in the low power generation mode S24 is smaller than the amount of power generated by the motor 90 in the normal power generation mode S12.
  • the motor control unit 102 generates power in the normal power generation mode S22.
  • the electric motor 90 connected to the crankshaft 41 of the engine E The operation lowers the rotation speed of the crankshaft 41. Since the motor 90 is operated with good response, the speed-up shift operation Sa can be performed quickly.
  • the deceleration shift operation Sb when the deceleration shift operation Sb is performed in the stepped shift mode Ms, the rotation speed of the crankshaft 41 is increased by the operation of the electric motor 90 connected to the crankshaft 41 of the engine E. As a result, the deceleration shift operation Sb can be performed quickly. In this way, the stepped speed change operation virtually performed by the continuously variable transmission M can be performed more quickly, and a good shift feeling can be realized.
  • the operation in the stepped speed change mode Ms of the continuously variable transmission M can be performed more efficiently without separately providing a dedicated device.
  • control is performed to reduce the power generation load of the motor 90 (generator) when the deceleration shift operation Sb is performed.
  • the motor 90 is controlled to generate auxiliary power.
  • the motor 90 electric power supplied from a battery (not shown) is supplied to the stator 92 via the motor drive circuit 120. As a result, the electric motor 90 generates a rotational driving force in the rotor 91, and applies this rotational driving force to the crankshaft 41.
  • the motor control unit 102 controls the operation of the motor 90 when the speed shift operation Sb is performed in the stepped speed change mode Ms. At this time, the motor control unit 102 operates the motor 90 so as to generate auxiliary power. As a result, the increase in engine speed becomes steep.
  • the motor control unit 102 determines whether or not the shift control unit 101 has instructed the start of the deceleration shift operation Sb in the stepped shift mode Ms (step S31). When the start of the deceleration shift operation Sb is not instructed in step S31 (NO in step S31), the motor control unit 102 stops the generation of the auxiliary power of the motor 90 (step S32). Further, when the start of the deceleration shift operation Sb is instructed in step S31 (YES in step S31), is the motor control unit 102 subsequently instructed by the shift control unit 101 to end the deceleration shift operation Sb? It is determined whether or not (step S33).
  • step S33 If the end of the deceleration shift operation Sb is not instructed in step S33 (NO in step S33), the motor control unit 102 operates the motor 90 to generate auxiliary power (step S34). As a result, the engine speed increases. Further, if the end of the deceleration shift operation Sb is instructed in step S33 (YES in step S33), the motor control unit 102 stops the generation of the auxiliary power of the motor 90.
  • the electric motor 90 is coaxially connected to the crankshaft 41 of the engine E, but the present invention is not limited to this.
  • the electric motor 90 may be arranged on a shaft different from the crankshaft 41, for example, as long as it is directly or indirectly connected to the crankshaft 41.
  • the electric motor 90 may be connected to the crankshaft 41 via an intermediate shaft, an intermediate gear, or the like.
  • the actuator 55 and the control unit 100 can also be regarded as the configuration of the continuously variable transmission M.
  • vehicles include not only motorcycles (including motorized bicycles and scooter type vehicles), but also three-wheeled vehicles (including front two-wheeled and rear one-wheeled vehicles in addition to front one-wheeled and rear two-wheeled vehicles) or four-wheeled vehicles.
  • Vehicles that are included and that include an electric motor as a prime mover are also included.
  • the configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)

Abstract

In this driving control device (U) and this vehicle (1), a control unit (100) of a continuously variable transmission (M) has a stepped transmission mode (Ms). When executing an acceleration shift action (Sa) at the time of selecting the stepped transmission mode (Ms), the control unit (100) increases power generation load of an electric motor (90) as compared to the time of normal operation of a prime mover (E). When executing a deceleration shift action (Sb) at the time of selecting the stepped transmission mode (Ms), the control unit (100) decreases power generation load of the electric motor (90) as compared to the time of normal operation of the prime mover (E), or applies driving force to the prime mover (E) from the electric motor (90).

Description

駆動制御装置、車両Drive controller, vehicle
 本発明は、駆動制御装置、車両に関する。 The present invention relates to a drive control device and a vehicle.
 特許文献1には、クランクシャフト側に設けられるドライブプーリと、後輪側に設けられるドリブンプーリと、これらドライブプーリおよびドリブンプーリの間に掛け渡される伝動ベルトと、を備える無段変速機にアクチュエータを連結し、このアクチュエータの駆動によって無段変速機の変速比を変化させる構成が開示されている。この構成では、有段変速機のような変速感が得られる有段変速動作を仮想的に行うことが可能となっている。この有段変速動作では、車速に応じてエンジン回転数を上昇させ、所定の車速に到達したらエンジン回転数を低下させ、その後に再び車速の上昇に応じてエンジン回転数上昇させている。 Patent Document 1 describes an actuator for a continuously variable transmission including a drive pulley provided on the crankshaft side, a driven pulley provided on the rear wheel side, and a transmission belt hung between the drive pulley and the driven pulley. The configuration is disclosed in which the gear ratios of the continuously variable transmission are changed by driving the actuator. With this configuration, it is possible to virtually perform a stepped shifting operation that gives a feeling of shifting like a stepped transmission. In this stepped speed change operation, the engine speed is increased according to the vehicle speed, the engine speed is decreased when the predetermined vehicle speed is reached, and then the engine speed is increased again according to the vehicle speed increase.
特開2004-278725号公報Japanese Unexamined Patent Publication No. 2004-278725
 上記従来の技術において、無段変速機において仮想的に有段変速動作を行う場合、所定の車速に到達したときにエンジン回転数を低下させるには、例えばエンジンの点火の遅角や燃料噴射のカット等を行っている。
 しかし、点火の遅角や燃料噴射のカット等でエンジン回転数を低下させる場合、エンジン回転数が低下するまでに時間がかかる。このため、有段変速動作に要する時間を長く感じやすく、レスポンスの良いダイレクトな変速感を得にくいという課題がある。
In the above-mentioned conventional technology, when a continuously variable transmission is virtually subjected to a stepped speed change operation, in order to reduce the engine speed when a predetermined vehicle speed is reached, for example, the retard angle of engine ignition or fuel injection is used. We are cutting etc.
However, when the engine speed is lowered due to the retardation angle of ignition, the cut of fuel injection, etc., it takes time for the engine speed to be lowered. For this reason, there is a problem that it is easy to feel the time required for the stepped speed change operation for a long time, and it is difficult to obtain a direct shift feeling with good response.
 本発明は上記実情に鑑みてなされたものであり、無段変速機において仮想的に行う有段変速動作を、より迅速に行い、良好な変速感を実現することのできる駆動制御装置、および車両を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a drive control device and a vehicle capable of performing a stepped speed change operation virtually performed in a continuously variable transmission more quickly and realizing a good shift feeling. The purpose is to provide.
 上記課題の解決手段として、本発明の第一の態様は、原動機(E)が発生させた回転動力を無段階に変速して被駆動部(4)側へ伝える無段変速機(M)と、前記無段変速機(M)の変速比を変化させるアクチュエータ(55)と、前記原動機(E)に連結される電動機(90)と、前記アクチュエータ(55)及び前記電動機(90)の作動を制御する制御部(100)と、を備える駆動制御装置(U)であって、前記電動機(90)は、前記原動機(E)の回転動力から電力を発生させる機能を持ち、前記制御部(100)は、前記アクチュエータ(55)で前記無段変速機(M)に仮想的な有段変速動作を実行させる有段変速モード(Ms)を有し、前記制御部(100)は、前記有段変速モード(Ms)の選択時に増速シフト動作(Sa)を行う際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を増加させる、駆動制御装置(U)を提供する。 As a means for solving the above problems, the first aspect of the present invention is a stepless transmission (M) that continuously shifts the rotational power generated by the prime mover (E) and transmits it to the driven unit (4) side. , The actuator (55) for changing the gear ratio of the stepless transmission (M), the electric motor (90) connected to the prime mover (E), and the operation of the actuator (55) and the electric motor (90). A drive control device (U) including a control unit (100) for controlling, the electric motor (90) having a function of generating electric power from the rotational power of the prime mover (E), and the control unit (100). ) Has a stepped speed change mode (Ms) in which the stepless transmission (M) is made to execute a virtual stepped speed change operation by the actuator (55), and the control unit (100) has the stepped speed change mode (Ms). Provided is a drive control device (U) that increases the power generation load of the motor (90) as compared with the normal operation of the motor (E) when performing the speed-up shift operation (Sa) when the shift mode (Ms) is selected. do.
 本発明の第二の態様は、原動機(E)が発生させた回転動力を無段階に変速して被駆動部(4)側へ伝える無段変速機(M)と、前記無段変速機(M)の変速比を変化させるアクチュエータ(55)と、前記原動機(E)に連結される電動機(90)と、前記アクチュエータ(55)及び前記電動機(90)の作動を制御する制御部(100)と、を備える駆動制御装置(U)であって、前記電動機(90)は、前記原動機(E)の回転動力から電力を発生させる機能、および前記原動機(E)に駆動力を付与する機能の少なくとも一方を持ち、前記制御部(100)は、前記アクチュエータ(55)で前記無段変速機(M)に仮想的な有段変速動作を実行させる有段変速モード(Ms)を有し、前記制御部(100)は、前記有段変速モード(Ms)の選択時に減速シフト動作(Sb)を行う際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を減少させるか、前記原動機(E)に前記電動機(90)から駆動力を付与する、駆動制御装置(U)を提供する。 A second aspect of the present invention is a stepless transmission (M) that continuously shifts the rotational power generated by the prime mover (E) and transmits it to the driven unit (4) side, and the stepless transmission (the stepless transmission). An actuator (55) that changes the gear ratio of the M), an electric motor (90) connected to the motor (E), and a control unit (100) that controls the operation of the actuator (55) and the electric motor (90). The drive control device (U) including The control unit (100) has at least one of them, and the control unit (100) has a stepped speed change mode (Ms) in which the stepless transmission (M) is made to execute a virtual stepped speed change operation by the actuator (55). When the deceleration shift operation (Sb) is performed when the stepped speed change mode (Ms) is selected, the control unit (100) reduces the power generation load of the motor (90) as compared with the normal operation of the prime mover (E). Alternatively, a drive control device (U) that applies a driving force to the prime mover (E) from the electric motor (90) is provided.
 本発明の第三の態様は、上記第二の態様において、前記制御部(100)は、前記有段変速モード(Ms)の選択時に増速シフト動作(Sa)を行う際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を増加させる。 In the third aspect of the present invention, in the second aspect, when the control unit (100) performs the speed-increasing shift operation (Sa) when the stepped speed change mode (Ms) is selected, the motor (E) ), The power generation load of the motor (90) is increased as compared with the normal operation.
 本発明の第四の態様は、上記第一から第三の態様の何れか一つにおいて、前記制御部(100)は、前記原動機(E)の通常運転時における前記電動機(90)の発電負荷を増加させた負荷増加モードを有し、前記制御部(100)は、前記有段変速モード(Ms)又は前記負荷増加モードの少なくとも一つの選択時にアクセル開度が減少された際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を増加させるか、前記負荷増加モードが選択されている場合は前記負荷増加モードよりも発電負荷を増加させる。 A fourth aspect of the present invention is that in any one of the first to third aspects, the control unit (100) is the power generation load of the motor (90) during normal operation of the prime mover (E). The control unit (100) has a load increasing mode in which the accelerator opening is reduced when at least one of the stepped speed change mode (Ms) or the load increasing mode is selected. The power generation load of the motor (90) is increased as compared with the normal operation of E), or the power generation load is increased as compared with the load increase mode when the load increase mode is selected.
 本発明の第五の態様は、上記第一から第四の態様の何れか一つに記載の駆動制御装置(U)を備える車両(1)を提供する。 A fifth aspect of the present invention provides a vehicle (1) including the drive control device (U) according to any one of the first to fourth aspects.
 上記第一の態様によれば、有段変速モードにおいて増速シフト動作を行う際、原動機の駆動軸に連結された電動機の発電負荷を増加させる。これにより、前記駆動軸の回転数を下降(低下)させることが可能となる。電動機の作動はレスポンス良く行われるため、増速シフト動作を迅速に行うことができる。したがって、無段変速機において仮想的に行う有段変速動作を、より迅速に行い、良好な変速感を実現することができる。電動機(発電機)の発電負荷の増加により駆動軸の回転数を低下させるので、専用機器の増設を不要とする。このため、無段変速機における有段変速モードにおける動作を、より効率良く行うことができる。 According to the first aspect, when the speed-up shift operation is performed in the stepped speed change mode, the power generation load of the motor connected to the drive shaft of the prime mover is increased. This makes it possible to lower (decrease) the rotation speed of the drive shaft. Since the motor is operated with good response, the speed-up shift operation can be performed quickly. Therefore, the stepped speed change operation virtually performed in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized. Since the rotation speed of the drive shaft is reduced due to the increase in the power generation load of the motor (generator), it is not necessary to add dedicated equipment. Therefore, the operation of the continuously variable transmission in the stepped speed change mode can be performed more efficiently.
 上記第二の態様によれば、有段変速モードにおいて減速シフト動作を行う際、原動機の駆動軸に連結された電動機の発電負荷を減少させるか、電動機に補助動力を発生させる。これにより、前記駆動軸の回転数を上昇(増加)させることが可能となる。電動機の作動はレスポンス良く行われるため、減速シフト動作を迅速に行うことができる。したがって、無段変速機において仮想的に行う有段変速動作を、より迅速に行い、良好な変速感を実現することができる。電動機(発電機)の発電負荷の減少および補助動力の発生の少なくとも一方により駆動軸の回転数を上昇させるので、専用機器の増設を不要とする。このため、無段変速機における有段変速モードにおける動作を、より効率良く行うことができる。 According to the second aspect described above, when the deceleration shift operation is performed in the stepped speed change mode, the power generation load of the motor connected to the drive shaft of the prime mover is reduced, or auxiliary power is generated in the motor. This makes it possible to increase (increase) the rotation speed of the drive shaft. Since the motor is operated with good response, the deceleration shift operation can be performed quickly. Therefore, the stepped speed change operation virtually performed in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized. Since the rotation speed of the drive shaft is increased by reducing the power generation load of the motor (generator) and generating auxiliary power at least, it is not necessary to add dedicated equipment. Therefore, the operation of the continuously variable transmission in the stepped speed change mode can be performed more efficiently.
 上記第三の態様によれば、上記減速シフト動作に加えて、有段変速モードにおいて増速シフト動作を行う際、原動機の駆動軸に連結された電動機の発電負荷を増加させる。これにより、前記駆動軸の回転数を下降(低下)させることが可能となる。電動機の作動はレスポンス良く行われるため、増速シフト動作を迅速に行うことができる。したがって、無段変速機において仮想的に行う有段変速動作を、より迅速に行い、良好な変速感を実現することができる。 According to the third aspect, in addition to the deceleration shift operation, when the speed increase shift operation is performed in the stepped shift mode, the power generation load of the motor connected to the drive shaft of the prime mover is increased. This makes it possible to lower (decrease) the rotation speed of the drive shaft. Since the motor is operated with good response, the speed-up shift operation can be performed quickly. Therefore, the stepped speed change operation virtually performed in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized.
 上記第四の態様によれば、有段変速モードにおいてアクセルが閉じられた際、電動機の発電負荷を増加させ、原動機の回転数を下降(低下)させる。これにより、エンジンブレーキが良く利いた状態を演出することが可能となる。したがって、無段変速機の有段変速モードにおいて、マニュアル変速機に似たダイレクトな操作感を高めることができる。負荷増加モードにおいてアクセルが閉じられた際には、この負荷増加モードよりも発電負荷を増加させる。これにより、負荷増加モードにおいてもエンジンブレーキが良く利いた状態を演出することができる。 According to the fourth aspect, when the accelerator is closed in the stepped speed change mode, the power generation load of the motor is increased and the rotation speed of the prime mover is lowered (decreased). This makes it possible to produce a state in which the engine brake works well. Therefore, in the stepped speed change mode of the continuously variable transmission, it is possible to enhance the direct operation feeling similar to that of the manual transmission. When the accelerator is closed in the load increase mode, the power generation load is increased more than in this load increase mode. As a result, it is possible to produce a state in which the engine brake works well even in the load increase mode.
 上記第五の態様によれば,上記したような駆動制御装置を備えることにより、無段変速機における有段変速動作を、より迅速に行い、良好な変速感を実現することができる。 According to the fifth aspect, by providing the drive control device as described above, the stepped speed change operation in the continuously variable transmission can be performed more quickly, and a good shift feeling can be realized.
本発明の実施形態における自動二輪車の左側面図である。It is a left side view of the motorcycle in embodiment of this invention. 上記自動二輪車の駆動制御装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the drive control device of the motorcycle. 上記駆動制御装置で無段変速モードおよび有段変速モードを行う際の車速とエンジン回転数との相関を示すグラフである。It is a graph which shows the correlation between the vehicle speed and the engine speed at the time of performing a stepless shift mode and a stepped shift mode by the drive control device. 図3の要部を示す拡大図であり、上記有段変速モードで増速シフト動作を行う際の変速に要する変速時間を示す説明図である。It is an enlarged view which shows the main part of FIG. 3, and is explanatory drawing which shows the shift time required for the shift when the speed-increasing shift operation is performed in the stepped shift mode. 上記有段変速モードで増速シフト動作を行う際の制御部の処理を示すフローチャートである。It is a flowchart which shows the process of the control part at the time of performing the speed-increasing shift operation in the stepped shift mode. 上記有段変速モードで減速シフト動作を行う際の制御部の処理を示すフローチャートである。It is a flowchart which shows the process of the control part at the time of performing the deceleration shift operation in the stepped shift mode. 実施形態の変形例において、上記有段変速モードで減速シフト動作を行う際の制御部の処理を示すフローチャートである。It is a flowchart which shows the process of the control part at the time of performing the deceleration shift operation in the stepped shift mode in the modification of the embodiment.
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Unless otherwise specified, the directions such as front, rear, left, and right in the following description are the same as the directions in the vehicle described below.
<車両全体>
 図1には、本実施形態の鞍乗り型車両の一例として、ユニットスイング式の自動二輪車(車両)1が示されている。自動二輪車1は、操向輪である前輪3と、駆動輪である後輪(被駆動部)4と、を備えている。前輪3は、左右一対のフロントフォーク6に支持され、バーハンドル2によって操向可能である。後輪4は、パワーユニットPに支持され、エンジン(原動機)Eによって駆動可能である。図中矢印FRは車両前方、矢印UPは車両上方をそれぞれ示す。
<Whole vehicle>
FIG. 1 shows a unit swing type motorcycle (vehicle) 1 as an example of the saddle-riding vehicle of the present embodiment. The motorcycle 1 includes a front wheel 3 which is a steering wheel and a rear wheel (driven portion) 4 which is a driving wheel. The front wheels 3 are supported by a pair of left and right front forks 6 and can be steered by the bar handles 2. The rear wheel 4 is supported by the power unit P and can be driven by the engine (motor) E. In the figure, the arrow FR indicates the front of the vehicle, and the arrow UP indicates the upper part of the vehicle.
 パワーユニットPは、駆動輪である後輪4を上下揺動可能に支持するスイングユニットとして構成されている。パワーユニットPは、駆動源であるエンジン(内燃機関)Eと、例えばVベルト式の無段変速機Mと、を一体に備えている。無段変速機Mの後部の出力軸には、後輪4が支持されている。無段変速機Mの後部は、リヤクッション7を介して車体フレーム11に支持されている。 The power unit P is configured as a swing unit that supports the rear wheels 4, which are the driving wheels, so as to be able to swing up and down. The power unit P integrally includes an engine (internal combustion engine) E as a drive source and, for example, a V-belt type continuously variable transmission M. A rear wheel 4 is supported on the output shaft at the rear of the continuously variable transmission M. The rear portion of the continuously variable transmission M is supported by the vehicle body frame 11 via the rear cushion 7.
 バーハンドル2、左右フロントフォーク6及び前輪3を含むステアリング系部品は、車体フレーム11の前端部のヘッドパイプ12に操向可能に支持されている。パワーユニットPおよび後輪4は、車体フレーム11の下部のピボット部(不図示)に懸架リンク等を介して上下揺動可能に支持されている。 Steering system parts including the bar handle 2, left and right front forks 6 and front wheels 3 are steerably supported by the head pipe 12 at the front end of the vehicle body frame 11. The power unit P and the rear wheels 4 are supported by a pivot portion (not shown) at the lower part of the vehicle body frame 11 so as to be swingable up and down via a suspension link or the like.
 車体前部はフロントカバー8により覆われ、車体後部はリヤカバー9により覆われている。フロントカバー8およびリヤカバー9の間は低床部10とされている。低床部10の上面部には、運転者が足を載せるステップフロア10aが設けられている。リヤカバー9の上方には、運転者を含む乗員が着座するシート5が支持されている。 The front part of the vehicle body is covered with the front cover 8, and the rear part of the vehicle body is covered with the rear cover 9. A low floor portion 10 is provided between the front cover 8 and the rear cover 9. A step floor 10a on which the driver rests his / her feet is provided on the upper surface of the low floor portion 10. Above the rear cover 9, a seat 5 on which an occupant including a driver is seated is supported.
 車体フレーム11は、前端部に位置するヘッドパイプ12と、ヘッドパイプ12から下方へ延びるダウンフレーム13と、ダウンフレーム13の下端部から後方へ湾曲して延びる左右一対のロアフレーム14と、ロアフレーム14の後端部から上後方に適宜屈曲して延びる左右一対のリヤフレーム15と、を備えている。左右ロアフレーム14の後端部近傍には、パワーユニットPの前端部を支持する前記ピボット部が設けられている。 The vehicle body frame 11 includes a head pipe 12 located at the front end, a down frame 13 extending downward from the head pipe 12, a pair of left and right lower frames 14 extending rearward from the lower end of the down frame 13, and a lower frame. A pair of left and right rear frames 15 extending from the rear end portion of 14 by appropriately bending upward and rearward are provided. The pivot portion that supports the front end portion of the power unit P is provided in the vicinity of the rear end portion of the left and right lower frames 14.
 図2は、自動二輪車1の駆動制御装置Uの概略構成を示している。駆動制御装置Uは、原動機であるエンジンEと、エンジンEが発生させた回転動力を無段階に変速して後輪4側へ伝達可能な無段変速機Mと、無段変速機Mの変速比を変化させる電動アクチュエータ55と、エンジンEの駆動軸(クランクシャフト41)に連結される電動機90と、アクチュエータ55及び電動機90の作動を制御する制御部100と、を備えている。
 無段変速機Mは、アクチュエータ55の駆動によって仮想的な有段変速を行う有段変速モードを実施可能である。仮想的な有段変速を手動で行う際の変速スイッチ(不図示)は、バーハンドル2やステップフロア10aに設けられている。
FIG. 2 shows a schematic configuration of the drive control device U of the motorcycle 1. The drive control device U has an engine E as a prime mover, a stepless transmission M capable of steplessly shifting the rotational power generated by the engine E and transmitting the rotational power to the rear wheel 4 side, and a stepless transmission M. It includes an electric actuator 55 that changes the ratio, an electric motor 90 that is connected to a drive shaft (crank shaft 41) of the engine E, and a control unit 100 that controls the operation of the actuator 55 and the electric motor 90.
The continuously variable transmission M can carry out a stepped speed change mode in which a virtual stepped speed change is performed by driving the actuator 55. A shift switch (not shown) for manually performing a virtual stepped shift is provided on the bar handle 2 and the step floor 10a.
<エンジン>
 エンジンEは、不図示の燃焼室内で燃料を燃焼させて動力を発生させる。エンジンEは、左右方向に延びるクランクシャフト41を、その回転中心軸回りに回転駆動させる。エンジンEは、クランクシャフト41の回転動力を、無段変速機Mを介して後輪4に伝達する。エンジンEは、バーハンドル2に設けられたアクセルグリップ(図示無し)の開度に応じて、エンジン回転数すなわちクランクシャフト41の回転数を増減させる。
<Engine>
The engine E generates power by burning fuel in a combustion chamber (not shown). The engine E rotates and drives a crankshaft 41 extending in the left-right direction around its rotation center axis. The engine E transmits the rotational power of the crankshaft 41 to the rear wheels 4 via the continuously variable transmission M. The engine E increases or decreases the engine speed, that is, the rotation speed of the crankshaft 41, according to the opening degree of the accelerator grip (not shown) provided on the bar handle 2.
<無段変速機>
 無段変速機Mは、エンジンEが発生させた動力を変速して後輪4側に伝達する。無段変速機Mは、エンジンEのクランクシャフト41側に設けられる駆動プーリ54と、駆動プーリ54の後方(後輪4側)に離間して設けられる従動プーリ56と、駆動プーリ54および従動プーリ56に巻き掛けられる無端状かつ断面台形状の伝動ベルト(いわゆるVベルト)53と、を備えている。
<Continuous variable transmission>
The continuously variable transmission M shifts the power generated by the engine E and transmits it to the rear wheels 4. The continuously variable transmission M includes a drive pulley 54 provided on the crankshaft 41 side of the engine E, a driven pulley 56 provided separately behind the drive pulley 54 (rear wheel 4 side), a drive pulley 54, and a driven pulley. It is provided with an endless and trapezoidal transmission belt (so-called V-belt) 53 that is wound around 56.
 駆動プーリ54は、左右方向で対向して設けられた固定側プーリ半体54aおよび可動側プーリ半体54bを備えている。固定側プーリ半体54aおよび可動側プーリ半体54bは、駆動軸51の一端部に同軸かつ一体回転可能に支持されている。実施形態の駆動軸51はクランクシャフト41であるが、例えばクランクシャフト41と平行かつ別軸の駆動軸51であってもよい。また、駆動軸51と駆動プーリ54との間にクラッチを備えてもよい。 The drive pulley 54 includes a fixed side pulley half body 54a and a movable side pulley half body 54b provided so as to face each other in the left-right direction. The fixed side pulley half body 54a and the movable side pulley half body 54b are coaxially and integrally rotatably supported at one end of the drive shaft 51. The drive shaft 51 of the embodiment is a crankshaft 41, but for example, a drive shaft 51 parallel to the crankshaft 41 and a different shaft may be used. Further, a clutch may be provided between the drive shaft 51 and the drive pulley 54.
 固定側プーリ半体54aは、駆動軸51の軸方向で移動不能に支持されている。可動側プーリ半体54bは、駆動軸51の軸方向で移動可能に支持されている。可動側プーリ半体54bは、固定側プーリ半体54aに対して近接離反可能である。可動側プーリ半体54bには、アクチュエータ55が連結されている。 The fixed side pulley half body 54a is immovably supported in the axial direction of the drive shaft 51. The movable side pulley half body 54b is movably supported in the axial direction of the drive shaft 51. The movable side pulley half body 54b can be separated from the fixed side pulley half body 54a. An actuator 55 is connected to the movable pulley semifield 54b.
 固定側プーリ半体54aおよび可動側プーリ半体54bは、それぞれ杯状をなし、互いに小径側(底部側)を向かい合わせて配置されている。固定側プーリ半体54aおよび可動側プーリ半体54bの間には、周方向断面で外周側が広いV字状の間隙(V溝54c)が形成されている。V溝54cには、Vベルト53が所定の張力をもって巻き掛けられている。Vベルト53は、固定側プーリ半体54aおよび可動側プーリ半体54bの各々が形成するプーリ傾斜面に両側面を整合させている。 The fixed side pulley half body 54a and the movable side pulley half body 54b each have a cup shape, and are arranged so that the small diameter side (bottom side) faces each other. A V-shaped gap (V groove 54c) having a wide outer peripheral side in the circumferential cross section is formed between the fixed side pulley half body 54a and the movable side pulley half body 54b. A V-belt 53 is wound around the V-groove 54c with a predetermined tension. Both sides of the V-belt 53 are aligned with the pulley inclined surfaces formed by each of the fixed side pulley half body 54a and the movable side pulley half body 54b.
 可動側プーリ半体54bは、アクチュエータ55の駆動により、固定側プーリ半体54aに対して軸方向で近接離反される。可動側プーリ半体54bの軸方向移動により、可動側プーリ半体54bおよび固定側プーリ半体54a間のV溝54cの軸方向幅が増減される。 The movable side pulley half body 54b is moved away from the fixed side pulley half body 54a in the axial direction by driving the actuator 55. The axial movement of the movable pulley half body 54b increases or decreases the axial width of the V groove 54c between the movable pulley half body 54b and the fixed pulley half body 54a.
 従動プーリ56は、左右方向で対向して設けられた固定側プーリ半体56aおよび可動側プーリ半体56bを備えている。固定側プーリ半体56aおよび可動側プーリ半体56bは、被動軸52の一端部に同軸かつ一体回転可能に支持されている。実施形態の被動軸52は、クランクシャフト41および後輪車軸4aと平行かつ別軸の被動軸52である(図1参照)。被動軸52と後輪車軸4aとの間には、減速ギヤ機構Gが設けられている。被動軸52と減速ギヤ機構Gとの間には、不図示の遠心クラッチが設けられている。 The driven pulley 56 includes a fixed side pulley half body 56a and a movable side pulley half body 56b provided so as to face each other in the left-right direction. The fixed side pulley half body 56a and the movable side pulley half body 56b are coaxially and integrally rotatably supported at one end of the driven shaft 52. The driven shaft 52 of the embodiment is a driven shaft 52 that is parallel to the crankshaft 41 and the rear wheel axle 4a and is a separate shaft (see FIG. 1). A reduction gear mechanism G is provided between the driven shaft 52 and the rear wheel axle 4a. A centrifugal clutch (not shown) is provided between the driven shaft 52 and the reduction gear mechanism G.
 固定側プーリ半体56aは、被動軸52の軸方向で移動不能に支持されている。可動側プーリ半体56bは、被動軸52の軸方向で移動可能に支持されている。可動側プーリ半体56bは、固定側プーリ半体56aに対して近接離反可能である。可動側プーリ半体56bには、弾発部材57が連結されている。 The fixed side pulley half body 56a is immovably supported in the axial direction of the driven shaft 52. The movable side pulley half body 56b is movably supported in the axial direction of the driven shaft 52. The movable side pulley half body 56b can be separated from the fixed side pulley half body 56a. The elastic member 57 is connected to the movable side pulley semifield 56b.
 固定側プーリ半体56aおよび可動側プーリ半体56bは、それぞれ杯状をなし、互いに小径側(底部側)を向かい合わせて配置されている。固定側プーリ半体56aおよび可動側プーリ半体56bの間には、周方向断面で外周側が広いV字状の間隙(V溝56c)が形成されている。V溝56cには、Vベルト53が所定の張力をもって巻き掛けられている。Vベルト53は、固定側プーリ半体56aおよび可動側プーリ半体56bの各々が形成するプーリ傾斜面に両側面を整合させている。 The fixed side pulley half body 56a and the movable side pulley half body 56b each have a cup shape, and are arranged so that the small diameter side (bottom side) faces each other. A V-shaped gap (V groove 56c) having a wide outer peripheral side in the circumferential cross section is formed between the fixed side pulley half body 56a and the movable side pulley half body 56b. A V-belt 53 is wound around the V-groove 56c with a predetermined tension. Both sides of the V-belt 53 are aligned with the pulley inclined surfaces formed by each of the fixed side pulley half body 56a and the movable side pulley half body 56b.
 可動側プーリ半体56bは、弾発部材57の弾発力(付勢力)により、軸方向で固定側プーリ半体56a側へ付勢されている。弾発部材57の弾発力(付勢力)により、固定側プーリ半体56aおよび可動側プーリ半体56b間のV溝56cの軸方向幅が狭められる。伝動ベルト53の張力が増すと、弾発部材57の弾発力(付勢力)に抗して可動側プーリ半体56bが固定側プーリ半体56aと反対側へ移動される。これにより、可動側プーリ半体56bが固定側プーリ半体56aから離間してV溝56cの軸方向幅を広げる。 The movable side pulley half body 56b is urged toward the fixed side pulley half body 56a side in the axial direction by the elastic force (urging force) of the elastic member 57. The elastic force (urging force) of the elastic member 57 narrows the axial width of the V groove 56c between the fixed side pulley half body 56a and the movable side pulley half body 56b. When the tension of the transmission belt 53 is increased, the movable side pulley half body 56b is moved to the opposite side to the fixed side pulley half body 56a against the elastic force (urging force) of the elastic member 57. As a result, the movable side pulley half body 56b is separated from the fixed side pulley half body 56a to widen the axial width of the V groove 56c.
 係る構成において、エンジン停止時および低回転時には、駆動プーリ54の可動側プーリ半体54bが固定側プーリ半体54aから離間して配置される。これにより、駆動プーリ54のV溝54cの軸方向幅が広がり、Vベルト53がV溝54cの内周側を巻回する。このとき、従動プーリ56では、Vベルト53がV溝56cの外周側を巻回する。その結果、無段変速機Mが低速寄りの減速比に設定される。 In such a configuration, the movable side pulley half body 54b of the drive pulley 54 is arranged apart from the fixed side pulley half body 54a when the engine is stopped and when the rotation speed is low. As a result, the axial width of the V-groove 54c of the drive pulley 54 is widened, and the V-belt 53 winds around the inner peripheral side of the V-groove 54c. At this time, in the driven pulley 56, the V-belt 53 winds around the outer peripheral side of the V-groove 56c. As a result, the continuously variable transmission M is set to a reduction ratio closer to the low speed.
 エンジン回転数が上昇すると、アクチュエータ55の作動により駆動プーリ54の可動側プーリ半体54bが固定側プーリ半体54b側へ移動する。これにより、駆動プーリ54のV溝54cの軸方向幅が狭まり、Vベルト53がプーリ傾斜面に沿って外周側へ移動する。これにより、駆動プーリ54におけるVベルト53の巻回位置が外周側へ変化する。 When the engine speed increases, the movable side pulley half body 54b of the drive pulley 54 moves to the fixed side pulley half body 54b side by the operation of the actuator 55. As a result, the axial width of the V groove 54c of the drive pulley 54 is narrowed, and the V belt 53 moves to the outer peripheral side along the pulley inclined surface. As a result, the winding position of the V-belt 53 on the drive pulley 54 changes to the outer peripheral side.
 このとき、従動プーリ56では、駆動プーリ54側にVベルト53が引かれることで、V溝56cの軸方向幅が広げられる。すなわち、弾発部材57の弾発力(付勢力)に抗して、可動側プーリ半体56bが固定側プーリ半体56aと反対側へ移動する。これにより、従動プーリ56のV溝56cの軸方向幅が広がり、Vベルト53がプーリ傾斜面に沿って内周側へ移動する。その結果、無段変速機Mの減速比が高速寄りに変化する。 At this time, in the driven pulley 56, the V-belt 53 is pulled toward the drive pulley 54, so that the axial width of the V-groove 56c is widened. That is, the movable side pulley half body 56b moves to the opposite side to the fixed side pulley half body 56a against the elastic force (urging force) of the elastic member 57. As a result, the axial width of the V-groove 56c of the driven pulley 56 is widened, and the V-belt 53 moves to the inner peripheral side along the inclined surface of the pulley. As a result, the reduction ratio of the continuously variable transmission M changes toward high speed.
 その後、エンジン回転数が下降すると、アクチュエータ55の作動により駆動プーリ54の可動側プーリ半体54bが固定側プーリ半体54bから離間する。これにより、駆動プーリ54のV溝54cの軸方向幅が広がり、Vベルト53がプーリ傾斜面に沿って内周側へ移動する。これにより、駆動プーリ54におけるVベルト53の巻回位置が内周側へ戻る。 After that, when the engine speed decreases, the movable side pulley half body 54b of the drive pulley 54 is separated from the fixed side pulley half body 54b by the operation of the actuator 55. As a result, the axial width of the V groove 54c of the drive pulley 54 is widened, and the V belt 53 moves to the inner peripheral side along the inclined surface of the pulley. As a result, the winding position of the V-belt 53 on the drive pulley 54 returns to the inner peripheral side.
 このとき、従動プーリ56では、Vベルト53の張力が低下することで、V溝56cの軸方向幅が狭まる。すなわち、弾発部材57の弾発力(付勢力)によって可動側プーリ半体56bが固定側プーリ半体56a側に移動する。これにより、従動プーリ56のV溝56cの軸方向幅が狭まり、Vベルト53がプーリ傾斜面に沿って外周側へ移動する。これにより、従動プーリ56におけるVベルト53の巻回位置が外周側へ戻る。その結果、無段変速機Mの減速比が低速寄りに戻る。 At this time, in the driven pulley 56, the tension of the V-belt 53 is reduced, so that the axial width of the V-groove 56c is narrowed. That is, the movable side pulley half body 56b moves to the fixed side pulley half body 56a side by the elastic force (urging force) of the elastic member 57. As a result, the axial width of the V-groove 56c of the driven pulley 56 is narrowed, and the V-belt 53 moves to the outer peripheral side along the inclined surface of the pulley. As a result, the winding position of the V-belt 53 on the driven pulley 56 returns to the outer peripheral side. As a result, the reduction ratio of the continuously variable transmission M returns to the low speed side.
 このように、無段変速機Mは、アクチュエータ55の駆動により、駆動プーリ54と従動プーリ56との間の減速比を無段階に変化させる。
 ここで、無段変速機Mは、アクチュエータ55の駆動制御によって、図3に示す無段変速モードMaと有段変速モードMsとを切り替え可能である。
In this way, the continuously variable transmission M steplessly changes the reduction ratio between the drive pulley 54 and the driven pulley 56 by driving the actuator 55.
Here, the continuously variable transmission M can switch between the continuously variable transmission mode Ma and the continuously variable transmission mode Ms shown in FIG. 3 by the drive control of the actuator 55.
 無段変速モードMaは、エンジン回転数に応じて連続的かつ滑らかな無段階変速動作を行う。
 有段変速モードMsは、アクチュエータ55の駆動によって仮想的な有段変速動作を行う。
The continuously variable transmission mode Ma performs a continuous and smooth continuously variable transmission operation according to the engine speed.
The stepped speed change mode Ms performs a virtual stepped speed change operation by driving the actuator 55.
 無段変速モードMaと有段変速モードMsとは、使用者による規定の選択操作によって切り替え可能である。有段変速モードMsはさらに、使用者による規定の選択操作によって、オートマチックモードとマニュアルモードとを切り替え可能である。オートマチックモードは、後述する制御部100による制御によって自動でシフト動作を行う。マニュアルモードは、使用者による規定のシフト操作によって手動でシフト動作を行う。 The continuously variable transmission mode Ma and the continuously variable transmission mode Ms can be switched by a specified selection operation by the user. The stepped speed change mode Ms can further switch between the automatic mode and the manual mode by a specified selection operation by the user. In the automatic mode, the shift operation is automatically performed by the control by the control unit 100 described later. In the manual mode, the shift operation is manually performed by the specified shift operation by the user.
 なお、自動二輪車1は、車体挙動を検知する車体加速度センサー(例えばIMU(Inertial Measurement Unit:慣性計測装置))を備えてもよい。この場合、例えば自動二輪車1がコーナーリング時であることを検知した場合に、無段変速機Mの変速動作を禁止してもよい。 The motorcycle 1 may be provided with a vehicle body acceleration sensor (for example, an IMU (Inertial Measurement Unit)) that detects vehicle body behavior. In this case, for example, when it is detected that the motorcycle 1 is in cornering, the continuously variable transmission M may be prohibited from shifting.
<電動機>
 自動二輪車1は、電動機90を備えている。電動機90は、例えば交流発電機(ACG)である。電動機90は、例えばエンジンEのクランクシャフト41の一端部に同軸配置されている。電動機90は、エンジンEのクランクシャフト41に連結されている。電動機90は、エンジンEの一側部に取り付けられたカバー93内に収容されている。
<Motor>
The motorcycle 1 includes an electric motor 90. The electric motor 90 is, for example, an alternating current generator (ACG). The electric motor 90 is coaxially arranged, for example, at one end of the crankshaft 41 of the engine E. The electric motor 90 is connected to the crankshaft 41 of the engine E. The electric motor 90 is housed in a cover 93 attached to one side of the engine E.
 発電機としての電動機90は、エンジン始動後にクランクシャフト41の回転により駆動されて発電する。電動機90は、エンジンEを始動するスタータモータとしても機能する。電動機90は、エンジンEを駆動補助するアシストモータとして機能してもよい。電動機90の作動は、後述する制御部100によって制御される。 The electric motor 90 as a generator is driven by the rotation of the crankshaft 41 after the engine is started to generate electricity. The electric motor 90 also functions as a starter motor for starting the engine E. The electric motor 90 may function as an assist motor that assists driving the engine E. The operation of the electric motor 90 is controlled by the control unit 100, which will be described later.
 電動機90は、クランクシャフト41に一体回転可能に取り付けられるロータ91と、カバー93に固定的に保持されるステータ92と、を備えている。
 なお、図に示す電動機90は、ロータ91をステータ92の内周側に配置したインナーロータ式であるが、これに限らない。電動機90は、ロータ91をステータ92の外周側に配置したアウターロータ式であってもよい。
The electric motor 90 includes a rotor 91 that is integrally rotatably attached to the crankshaft 41 and a stator 92 that is fixedly held by the cover 93.
The electric motor 90 shown in the figure is an inner rotor type in which the rotor 91 is arranged on the inner peripheral side of the stator 92, but the present invention is not limited to this. The electric motor 90 may be an outer rotor type in which the rotor 91 is arranged on the outer peripheral side of the stator 92.
<制御部>
 電動機90の作動、および無段変速機Mを変速するアクチュエータ55の作動は、制御部100によって制御される。制御部100は、例えば一体または複数体の電子制御装置(ECU:Electronic Control Unit)として構成されている。制御部100は、少なくとも一部がソフトウェアとハードウェアの協働によって実現されてもよい。
<Control unit>
The operation of the electric motor 90 and the operation of the actuator 55 that shifts the continuously variable transmission M are controlled by the control unit 100. The control unit 100 is configured as, for example, an integral or a plurality of electronic control units (ECUs). The control unit 100 may be realized at least in part by the collaboration of software and hardware.
 制御部100には、自動二輪車1に設けられた車速センサ111、シフトセンサ112、アクセル開度センサ113およびエンジンスピード(回転数)センサ114が入力される。制御部100は、各センサからの検出信号に基づき、予め設定された作動プログラムによる所定の処理を実行する。これにより、制御部100は、無段変速機Mの変速動作を制御する。制御部100は、変速制御部101と、電動機制御部102と、を機能的に備えている。 The vehicle speed sensor 111, the shift sensor 112, the accelerator opening sensor 113, and the engine speed (rotation speed) sensor 114 provided in the motorcycle 1 are input to the control unit 100. The control unit 100 executes a predetermined process by a preset operation program based on the detection signals from each sensor. As a result, the control unit 100 controls the shifting operation of the continuously variable transmission M. The control unit 100 functionally includes a shift control unit 101 and a motor control unit 102.
 変速制御部101は、アクチュエータ55の作動を制御することによって、無段変速機Mの変速比を変化させる(換言すれば、変速動作を実行させる)。変速制御部101は、予め制御部100に記憶された変速マップや車両の走行状態等に基づき、無段変速機Mの変速比を変化させる。これにより、自動二輪車1の車速に対するエンジンEのクランクシャフト41の回転数を変化させる。変速に要する入力情報としては、例えば車速、アクセル開度、車体バンク角等がある。変速実行判定は、例えば車速とアクセル開度との関係に基づきなされる。 The shift control unit 101 changes the gear ratio of the continuously variable transmission M by controlling the operation of the actuator 55 (in other words, executes the shift operation). The shift control unit 101 changes the gear ratio of the continuously variable transmission M based on a shift map stored in the control unit 100 in advance, a running state of the vehicle, and the like. As a result, the rotation speed of the crankshaft 41 of the engine E is changed with respect to the vehicle speed of the motorcycle 1. The input information required for shifting includes, for example, vehicle speed, accelerator opening, vehicle body bank angle, and the like. The shift execution determination is made based on, for example, the relationship between the vehicle speed and the accelerator opening.
 例えば、図3に示すように、変速制御部101は、無段変速モードMaと、有段変速モードMsと、を有している。変速制御部101では、無段変速モードMaおよび有段変速モードMsの何れかを、乗員の選択に応じて実施可能である。有段変速モードMsと無段変速モードMaとの切り替えは、例えば乗員が自動二輪車1に設けられた変速スイッチやシフトモード変更スイッチ等を操作することでなされる。この操作をシフトセンサ112が検出した場合に、変速制御部101が変速モードの切り替えを行う。 For example, as shown in FIG. 3, the shift control unit 101 has a continuously variable transmission mode Ma and a continuously variable transmission mode Ms. In the shift control unit 101, either the stepless shift mode Ma or the stepped shift mode Ms can be implemented according to the selection of the occupant. Switching between the stepped speed change mode Ms and the stepless speed change mode Ma is performed, for example, by the occupant operating a speed change switch, a shift mode change switch, or the like provided on the motorcycle 1. When the shift sensor 112 detects this operation, the shift control unit 101 switches the shift mode.
 無段変速モードMaでは、図3に示す相関線Ma1に沿うように、無段変速機Mの変速比を設定する。相関線Ma1は、無段変速モードMaにおける車速とエンジン回転数との相関を示す。無段変速モードMaでは、車速とエンジン回転数とが概ね一定の比例関係で増減するように変速比を設定する。無段変速モードMaにおいて、自動二輪車1の低速時(車速が図中v1未満のとき)には、前述の比例関係よりもエンジン回転数を高く保つように変速比を設定する。 In the continuously variable transmission mode Ma, the gear ratio of the continuously variable transmission M is set so as to follow the correlation line Ma1 shown in FIG. The correlation line Ma1 shows the correlation between the vehicle speed and the engine speed in the continuously variable transmission mode Ma. In the continuously variable transmission mode Ma, the gear ratio is set so that the vehicle speed and the engine speed increase or decrease in a substantially constant proportional relationship. In the continuously variable transmission mode Ma, when the motorcycle 1 is at low speed (when the vehicle speed is less than v1 in the figure), the gear ratio is set so as to keep the engine speed higher than the above-mentioned proportional relationship.
 有段変速モードMsでは、複数段の変速ギヤ群を有する有段変速機の動作を演出するように、仮想的な有段変速動作を実施する。図中傾斜線s1~s7は、7速分の変速ギヤ(仮想)の変速比に相当する傾きの傾斜線である。 In the stepped speed change mode Ms, a virtual stepped speed change operation is performed so as to produce the operation of the stepped transmission having a plurality of speed change gear groups. In the figure, the inclined lines s1 to s7 are inclined lines having an inclination corresponding to the gear ratio of the speed change gear (virtual) for the 7th speed.
 有段変速モードMsでは、自動二輪車1の発進時等の低車速時には、1速ギヤ相当の設定とする。このとき、図3に示す相関線Ms1に沿うように、無段変速機Mの変速比を設定する。相関線Ms1は、無段変速モードMaの相関線Ma1よりも傾き(車速に対するエンジン回転数の増加割合)が急峻である。すなわち、相関線Ms1は、より低速寄りのギヤ比に設定されている。 In the stepped speed change mode Ms, the setting is equivalent to the 1st speed gear at low vehicle speeds such as when the motorcycle 1 starts. At this time, the gear ratio of the continuously variable transmission M is set so as to follow the correlation line Ms1 shown in FIG. The correlation line Ms1 has a steeper inclination (rate of increase in engine speed with respect to vehicle speed) than the correlation line Ma1 in the continuously variable transmission mode Ma. That is, the correlation line Ms1 is set to a gear ratio closer to the lower speed.
 自動二輪車1の加速時、上昇するエンジン回転数が上段変速回転数Nuに達すると、アクチュエータ55を作動させ、次段ギヤ相当の設定となるよう順次変速比を変化させる。エンジン回転数が上段変速回転数Nuに達したとき(例えば、図3において点P1)、エンジン回転数は一旦下降する。エンジン回転数と車速との相関線が次段ギヤの変速比相当の傾斜線に達すると(例えば、図3において点P2)、この傾斜線に沿って再びエンジン回転数および車速を上昇させるように、無段変速機Mの変速比を設定する。 When the motorcycle 1 is accelerating and the rising engine speed reaches the upper speed change speed Nu, the actuator 55 is operated and the gear ratio is sequentially changed so as to be a setting equivalent to the next stage gear. When the engine speed reaches the upper speed change speed Nu (for example, point P1 in FIG. 3), the engine speed drops once. When the correlation line between the engine speed and the vehicle speed reaches the slope line corresponding to the gear ratio of the next gear (for example, point P2 in FIG. 3), the engine speed and the vehicle speed are increased again along this slope line. , Set the gear ratio of the continuously variable transmission M.
 このように、自動二輪車1の加速時にエンジン回転数を一旦下降させる動作は、有段変速機を備える自動二輪車の変速動作を演出する。すなわち、有段変速機を上段側の変速段に変速させた際にエンジン回転数が下降する動作を演出する。以下、このような動作を、「増速シフト動作Sa」と称する。 In this way, the operation of temporarily lowering the engine speed when accelerating the motorcycle 1 produces a shifting operation of the motorcycle equipped with the stepped transmission. That is, when the stepped transmission is shifted to the upper shift stage, the engine speed is reduced. Hereinafter, such an operation is referred to as "acceleration shift operation Sa".
 また、自動二輪車1の減速時には、車速が減少するにつれてエンジンEの回転数が下降する。有段変速モードMsでは、下降するエンジン回転数が下段変速回転数Ndに達すると、アクチュエータ55を作動させ、低速側の次段ギヤ相当の設定となるよう順次変速比を変化させる。エンジン回転数が下段変速回転数Ndに達したとき(例えば、図3において点P3)、エンジン回転数は一旦上昇する。エンジン回転数と車速との相関線が低速側の次段ギヤの変速比相当の傾斜線に達すると(例えば、図3において点P4)、この傾斜線に沿って再びエンジン回転数および車速を下降させるように、無段変速機Mの変速比を設定する。上段変速回転数Nuと下段変速回転数Ndとは、スロットル開度によって異なる値となる。 Also, when the motorcycle 1 is decelerating, the rotation speed of the engine E decreases as the vehicle speed decreases. In the stepped speed change mode Ms, when the descending engine speed reaches the lower speed change speed Nd, the actuator 55 is operated to sequentially change the gear ratio so as to be set to correspond to the next gear on the low speed side. When the engine speed reaches the lower speed change speed Nd (for example, point P3 in FIG. 3), the engine speed rises once. When the correlation line between the engine speed and the vehicle speed reaches a slope line corresponding to the gear ratio of the next gear on the low speed side (for example, point P4 in FIG. 3), the engine speed and vehicle speed are lowered again along this slope line. The gear ratio of the continuously variable transmission M is set so as to be caused. The upper speed change speed Nu and the lower speed change speed Nd have different values depending on the throttle opening degree.
 このように、自動二輪車1の減速時にエンジン回転数を一旦上昇させる動作は、有段変速機を備える自動二輪車の変速動作を演出する。すなわち、有段変速機を下段側の変速段に変速させた際にエンジン回転数が上昇する動作を演出する。以下、このような動作を、「減速シフト動作Sb」と称する。 In this way, the operation of temporarily increasing the engine speed when the motorcycle 1 is decelerated produces the speed change operation of the motorcycle equipped with the stepped transmission. That is, when the stepped transmission is shifted to the lower shift stage, the engine speed increases. Hereinafter, such an operation is referred to as a “deceleration shift operation Sb”.
 電動機制御部102は、変速制御部101と連動し、有段変速モードMsにおいて、電動機90の作動を制御する。電動機制御部102は、電動機駆動回路120により、電動機90における発電量(発電負荷)を制御する。 The motor control unit 102 interlocks with the shift control unit 101 to control the operation of the motor 90 in the stepped shift mode Ms. The motor control unit 102 controls the amount of power generation (power generation load) in the motor 90 by the motor drive circuit 120.
 電動機制御部102は、変速制御部101において、増速シフト動作Saまたは減速シフト動作Sbを行うことを示す指示がなされた場合、電動機90における発電量を増減させる。増速シフト動作Saおよび減速シフト動作Sbは、自動又は手動で行われる。例えば、増速シフト動作Saおよび減速シフト動作Sbは、車速とエンジン回転数との相関を示すマップに基づき自動で行われる(オートマチックモード)。例えば、増速シフト動作Saおよび減速シフト動作Sbは、乗員のシフト操作によって手動で行われる(マニュアルモード)。エンジン回転数が高すぎる場合のシフトダウン、およびエンジン回転数が低すぎる場合のシフトアップは、それぞれ禁止される。 The motor control unit 102 increases or decreases the amount of power generated by the motor 90 when the shift control unit 101 is instructed to perform the speed-up shift operation Sa or the deceleration shift operation Sb. The speed-up shift operation Sa and the deceleration shift operation Sb are performed automatically or manually. For example, the speed-up shift operation Sa and the deceleration shift operation Sb are automatically performed based on a map showing the correlation between the vehicle speed and the engine speed (automatic mode). For example, the speed-up shift operation Sa and the deceleration shift operation Sb are manually performed by the occupant's shift operation (manual mode). Shifting down when the engine speed is too high and shifting up when the engine speed is too low are prohibited.
 変速制御部101は、有段変速モードMsにおいて、増速シフト動作Saを行う場合、アクチュエータ55を作動させる。実施形態では、増速シフト動作Saを行う場合、さらに電動機制御部102が電動機90の作動を制御する。このとき、電動機制御部102は、発電量(発電負荷)が増加するように電動機90を作動させる。これにより、エンジン回転数(クランクシャフト41の回転数)の下降が急峻になる。 The shift control unit 101 operates the actuator 55 when performing the speed-up shift operation Sa in the stepped shift mode Ms. In the embodiment, when the speed-up shift operation Sa is performed, the motor control unit 102 further controls the operation of the motor 90. At this time, the motor control unit 102 operates the motor 90 so that the amount of power generation (power generation load) increases. As a result, the engine speed (the speed of the crankshaft 41) drops sharply.
 すなわち、電動機90で発電する際には、クランクシャフト41の回転エネルギー(運動エネルギー)が、電動機90において電気エネルギーに変換される。これにより、電動機90で発電量を増加させると、クランクシャフト41の回転エネルギーが電気エネルギーに変換される量が増加する。これにより、クランクシャフト41の回転エネルギーが減少し、クランクシャフト41の回転数が下降する。 That is, when the motor 90 generates electricity, the rotational energy (kinetic energy) of the crankshaft 41 is converted into electrical energy in the motor 90. As a result, when the amount of power generated by the electric motor 90 is increased, the amount of rotational energy of the crankshaft 41 converted into electric energy increases. As a result, the rotational energy of the crankshaft 41 decreases, and the rotational speed of the crankshaft 41 decreases.
 図4に示すように、電動機90の発電量を、エンジンEの通常運転時に比べて増加させることで、エンジン回転数の下降の傾きが急になる。これにより、変速に要する時間(変速時間)t1が短縮化される。エンジンEの通常運転時とは、例えば変速動作時(増速シフト動作Sa時および減速シフト動作Sb時)以外の運転時である。 As shown in FIG. 4, by increasing the amount of power generated by the electric motor 90 as compared with the normal operation of the engine E, the slope of the decrease in the engine speed becomes steep. As a result, the time required for shifting (shifting time) t1 is shortened. The normal operation of the engine E is, for example, an operation other than the shift operation (acceleration shift operation Sa and deceleration shift operation Sb).
 図4中点線Ltは、電動機90の上記制御を行わず、エンジンの点火の遅角や燃料噴射のカット等によってエンジン回転数を下降させるときの傾きを示す。このときの変速時間t1’は、電動機90の上記制御を行った場合の変速時間t1に比べて長くなる。 FIG. 4 middle dotted line Lt shows the inclination when the engine speed is lowered by the retard angle of the ignition of the engine, the cut of the fuel injection, etc. without performing the above control of the motor 90. The shift time t1'at this time is longer than the shift time t1 when the above control of the motor 90 is performed.
 変速制御部101は、有段変速モードMsにおいて、減速シフト動作Sbを行う場合、アクチュエータ55を作動させる。実施形態では、減速シフト動作Sbを行う場合、さらに電動機制御部102が電動機90の作動を制御する。このとき、電動機制御部102は、発電量(発電負荷)が減少するように電動機90を作動させる。これにより、エンジン回転数の増加が急峻になる。 The shift control unit 101 operates the actuator 55 when performing the deceleration shift operation Sb in the stepped shift mode Ms. In the embodiment, when the deceleration shift operation Sb is performed, the motor control unit 102 further controls the operation of the motor 90. At this time, the motor control unit 102 operates the motor 90 so that the amount of power generation (power generation load) is reduced. As a result, the increase in engine speed becomes steep.
 すなわち、電動機90で発電量を減少させると、クランクシャフト41の回転エネルギーが電気エネルギーに変換される量が減少する。これにより、クランクシャフト41の回転エネルギーが増加し、クランクシャフト41の回転数が上昇する。 That is, when the amount of power generation is reduced by the motor 90, the amount of rotational energy of the crankshaft 41 converted into electric energy is reduced. As a result, the rotational energy of the crankshaft 41 increases, and the rotational speed of the crankshaft 41 increases.
 電動機制御部102は、有段変速モードMs、または特定のモードにおいて、以下の制御を行う。すなわち、アクセル開度センサ113で検出されるアクセルグリップのアクセル開度が減少した際、発電量が増加するように電動機90を作動させる。発電量が増加するように電動機90を作動させると、クランクシャフト41の回転エネルギーが電気エネルギーに変換される量が増加する。これにより、クランクシャフト41の回転エネルギーが減少し、クランクシャフト41の回転数が下降する。 The motor control unit 102 performs the following control in the stepped speed change mode Ms or a specific mode. That is, when the accelerator opening degree of the accelerator grip detected by the accelerator opening degree sensor 113 decreases, the electric motor 90 is operated so that the amount of power generation increases. When the electric motor 90 is operated so as to increase the amount of power generation, the amount of the rotational energy of the crankshaft 41 converted into electric energy increases. As a result, the rotational energy of the crankshaft 41 decreases, and the rotational speed of the crankshaft 41 decreases.
 これにより、有段変速モードMsで走行中に、乗員がアクセルグリップを閉じる方向に操作してアクセル開度が減少すると、エンジンE(クランクシャフト41)の回転数が下降して車速が低減する。これにより、エンジンブレーキがよく利いた状態となる。 As a result, when the occupant operates in the direction of closing the accelerator grip to reduce the accelerator opening while traveling in the stepped speed change mode Ms, the rotation speed of the engine E (crankshaft 41) decreases and the vehicle speed decreases. As a result, the engine brake is in a good state.
 アクセル開度が減少した場合、発電量が増加するように電動機90を作動させる制御は、有段変速モードMs以外の特定のモードにおいて実行してもよい。このような特定のモードとしては、例えばスポーツモードやオーバードライブモード等を含む以下の負荷増加モードがある。
 すなわち、制御部100は、エンジンEの通常運転時における電動機90の発電負荷を増加させた負荷増加モードを有している。負荷増加モードは、例えば車載電源の残容量等に応じて自動又は手動で選択される。負荷増加モードは、無段変速モードMaおよび有段変速モードMsの何れと併せて選択してもよい。
The control for operating the motor 90 so that the amount of power generation increases when the accelerator opening degree decreases may be executed in a specific mode other than the stepped speed change mode Ms. Such a specific mode includes the following load increasing modes including, for example, a sports mode and an overdrive mode.
That is, the control unit 100 has a load increase mode in which the power generation load of the motor 90 during normal operation of the engine E is increased. The load increase mode is automatically or manually selected according to, for example, the remaining capacity of the vehicle-mounted power supply. The load increase mode may be selected in combination with either the continuously variable transmission mode Ma or the continuously variable transmission mode Ms.
<制御部の処理>
 次に、上記したような無段変速機Mで有段変速モードMsを行う際に制御部100で行う処理について、図5、図6のフローチャートを参照して説明する。この処理は、有段変速モードMsの選択中に予め定めた微小時間毎に繰り返し実行される。
<Processing of control unit>
Next, the process performed by the control unit 100 when the stepped speed change mode Ms is performed by the continuously variable transmission M as described above will be described with reference to the flowcharts of FIGS. 5 and 6. This process is repeatedly executed at predetermined minute time intervals during the selection of the stepped speed change mode Ms.
(増速シフト動作)
 図5に示すように、電動機制御部102では、有段変速モードMsにおいて、変速制御部101から増速シフト動作Saの開始が指示されているか否かを判定する(ステップS11)。ステップS11において、増速シフト動作Saの開始が指示されていない場合(ステップS11でNO)、電動機制御部102では、予め定めた通常発電モードS12で発電を行う。通常発電モードS12における電動機90での発電量は、ゼロ(0)を含んでもよい。
 また、ステップS11において、増速シフト動作Saの開始が指示されている場合(ステップS11でYES)、電動機制御部102では、続いて、変速制御部101から増速シフト動作Saの終了が指示されているか否かを判定する(ステップS13)。
(Speed-up shift operation)
As shown in FIG. 5, the motor control unit 102 determines whether or not the shift control unit 101 has instructed the start of the speed-up shift operation Sa in the stepped shift mode Ms (step S11). If the start of the speed-up shift operation Sa is not instructed in step S11 (NO in step S11), the motor control unit 102 generates power in the predetermined normal power generation mode S12. The amount of power generated by the motor 90 in the normal power generation mode S12 may include zero (0).
Further, when the start of the speed-up shift operation Sa is instructed in step S11 (YES in step S11), the motor control unit 102 is subsequently instructed by the shift control unit 101 to end the speed-up shift operation Sa. It is determined whether or not the device is used (step S13).
 ステップS13において、増速シフト動作Saの終了が指示されていなければ(ステップS13でNO)、電動機制御部102では、予め定めた強発電モードS14で発電を行う。強発電モードS14における電動機90での発電量は、通常発電モードS12における電動機90での発電量よりも多い。これにより、増速シフト動作Sa中に、電動機90での発電量が増加され、エンジンE(クランクシャフト41)の回転数が低下する。
 また、ステップS13において、増速シフト動作Saの終了が指示されていれば(ステップS13でYES)、電動機制御部102では、通常発電モードS12で発電を行う。
If the end of the speed-up shift operation Sa is not instructed in step S13 (NO in step S13), the motor control unit 102 generates power in the predetermined strong power generation mode S14. The amount of power generated by the motor 90 in the strong power generation mode S14 is larger than the amount of power generated by the motor 90 in the normal power generation mode S12. As a result, the amount of power generated by the electric motor 90 is increased during the speed-increasing shift operation Sa, and the rotation speed of the engine E (crankshaft 41) is reduced.
Further, if the end of the speed-up shift operation Sa is instructed in step S13 (YES in step S13), the motor control unit 102 generates power in the normal power generation mode S12.
(減速シフト動作)
 図6に示すように、電動機制御部102では、有段変速モードMsにおいて、変速制御部101から減速シフト動作Sbの開始が指示されているか否かを判定する(ステップS21)。ステップS21において、減速シフト動作Sbの開始が指示されていない場合(ステップS21でNO)、電動機制御部102では、予め定めた通常発電モードS22で発電を行う。
 また、ステップS21において、減速シフト動作Sbの開始が指示されている場合(ステップS21でYES)、電動機制御部102では、続いて、変速制御部101から減速シフト動作Sbの終了が指示されているか否かを判定する(ステップS23)。
(Deceleration shift operation)
As shown in FIG. 6, the motor control unit 102 determines whether or not the shift control unit 101 has instructed the start of the deceleration shift operation Sb in the stepped shift mode Ms (step S21). If the start of the deceleration shift operation Sb is not instructed in step S21 (NO in step S21), the motor control unit 102 generates power in the predetermined normal power generation mode S22.
Further, when the start of the deceleration shift operation Sb is instructed in step S21 (YES in step S21), is the motor control unit 102 subsequently instructed by the shift control unit 101 to end the deceleration shift operation Sb? It is determined whether or not (step S23).
 ステップS23において、減速シフト動作Sbの終了が指示されていなければ(ステップS23でNO)、電動機制御部102では、予め定めた低発電モードS24で発電を行う。低発電モードS24における電動機90での発電量は、通常発電モードS12における電動機90での発電量よりも少ない。これにより、減速シフト動作Sb中に、電動機90での発電量が減少され、エンジンE(クランクシャフト41)の回転数が上昇する。
 また、ステップS23において、減速シフト動作Sbの終了が指示されていれば(ステップS23でYES)、電動機制御部102では、通常発電モードS22で発電を行う。
If the end of the deceleration shift operation Sb is not instructed in step S23 (NO in step S23), the motor control unit 102 generates power in the predetermined low power generation mode S24. The amount of power generated by the motor 90 in the low power generation mode S24 is smaller than the amount of power generated by the motor 90 in the normal power generation mode S12. As a result, the amount of power generated by the electric motor 90 is reduced during the deceleration shift operation Sb, and the rotation speed of the engine E (crankshaft 41) is increased.
Further, if the end of the deceleration shift operation Sb is instructed in step S23 (YES in step S23), the motor control unit 102 generates power in the normal power generation mode S22.
 以上説明したように、実施形態の駆動制御装置Uおよび自動二輪車1によれば、有段変速モードMsにおいて、増速シフト動作Saを行う場合、エンジンEのクランクシャフト41に連結された電動機90の作動により、クランクシャフト41の回転数を下降させる。電動機90の作動はレスポンス良く行われるため、増速シフト動作Saを迅速に行うことができる。 As described above, according to the drive control device U and the motorcycle 1 of the embodiment, when the speed-up shift operation Sa is performed in the stepped speed change mode Ms, the electric motor 90 connected to the crankshaft 41 of the engine E The operation lowers the rotation speed of the crankshaft 41. Since the motor 90 is operated with good response, the speed-up shift operation Sa can be performed quickly.
 また、有段変速モードMsにおいて、減速シフト動作Sbを行う場合、エンジンEのクランクシャフト41に連結された電動機90の作動により、クランクシャフト41の回転数を上昇させる。これにより、減速シフト動作Sbを迅速に行うことができる。
 このように、無段変速機Mにおいて仮想的に行う有段変速動作を、より迅速に行い、良好な変速感を実現することができる。
Further, when the deceleration shift operation Sb is performed in the stepped shift mode Ms, the rotation speed of the crankshaft 41 is increased by the operation of the electric motor 90 connected to the crankshaft 41 of the engine E. As a result, the deceleration shift operation Sb can be performed quickly.
In this way, the stepped speed change operation virtually performed by the continuously variable transmission M can be performed more quickly, and a good shift feeling can be realized.
 また、アクセル開度が減少された場合、電動機90の作動によりクランクシャフト41の回転数を下降させることにより、自動二輪車1の車速を迅速に低下させる。これにより、エンジンブレーキが良く利いた状態を演出する。これにより、無段変速機Mを備えたパワーユニットPでありながら、マニュアル変速機に似たダイレクトな操作感を乗員に与えることができる。 Further, when the accelerator opening is reduced, the rotation speed of the crankshaft 41 is lowered by the operation of the electric motor 90, so that the vehicle speed of the motorcycle 1 is quickly lowered. This creates a state in which the engine brake works well. As a result, although the power unit P is equipped with the continuously variable transmission M, it is possible to give the occupant a direct operation feeling similar to that of a manual transmission.
 また、電動機90として発電機を用いることで、専用の機器を別途設けることなく、無段変速機Mにおける有段変速モードMsにおける動作を、より効率良く行うことができる。 Further, by using a generator as the motor 90, the operation in the stepped speed change mode Ms of the continuously variable transmission M can be performed more efficiently without separately providing a dedicated device.
(実施形態の変形例)
 次に、実施形態の変形例について説明する。実施形態では、減速シフト動作Sbを行う際に、電動機90(発電機)の発電負荷を減少させる制御を行った。変形例では、減速シフト動作Sbを行う際に、電動機90に補助動力を発生させる制御を行う。
(Modified example of the embodiment)
Next, a modified example of the embodiment will be described. In the embodiment, control is performed to reduce the power generation load of the motor 90 (generator) when the deceleration shift operation Sb is performed. In the modified example, when the deceleration shift operation Sb is performed, the motor 90 is controlled to generate auxiliary power.
 電動機90は、図示しないバッテリから供給される電力が、電動機駆動回路120を介してステータ92に供給される。これにより、電動機90は、ロータ91に回転駆動力を発生させ、この回転駆動力をクランクシャフト41に付与する。 In the motor 90, electric power supplied from a battery (not shown) is supplied to the stator 92 via the motor drive circuit 120. As a result, the electric motor 90 generates a rotational driving force in the rotor 91, and applies this rotational driving force to the crankshaft 41.
 電動機制御部102は、有段変速モードMsにおいて、速シフト動作Sbを行う場合、電動機90の作動を制御する。このとき、電動機制御部102は、補助動力を発生するように電動機90を作動させる。これにより、エンジン回転数の増加が急峻になる。 The motor control unit 102 controls the operation of the motor 90 when the speed shift operation Sb is performed in the stepped speed change mode Ms. At this time, the motor control unit 102 operates the motor 90 so as to generate auxiliary power. As a result, the increase in engine speed becomes steep.
 このときの電動機90の制御について図7を参照して説明する。
 電動機制御部102では、有段変速モードMsにおいて、変速制御部101から減速シフト動作Sbの開始が指示されているか否かを判定する(ステップS31)。ステップS31において、減速シフト動作Sbの開始が指示されていない場合(ステップS31でNO)、電動機制御部102では、電動機90の補助動力の発生を停止させておく(ステップS32)。
 また、ステップS31において、減速シフト動作Sbの開始が指示されている場合(ステップS31でYES)、電動機制御部102では、続いて、変速制御部101から減速シフト動作Sbの終了が指示されているか否かを判定する(ステップS33)。
The control of the electric motor 90 at this time will be described with reference to FIG.
The motor control unit 102 determines whether or not the shift control unit 101 has instructed the start of the deceleration shift operation Sb in the stepped shift mode Ms (step S31). When the start of the deceleration shift operation Sb is not instructed in step S31 (NO in step S31), the motor control unit 102 stops the generation of the auxiliary power of the motor 90 (step S32).
Further, when the start of the deceleration shift operation Sb is instructed in step S31 (YES in step S31), is the motor control unit 102 subsequently instructed by the shift control unit 101 to end the deceleration shift operation Sb? It is determined whether or not (step S33).
 ステップS33において、減速シフト動作Sbの終了が指示されていなければ(ステップS33でNO)、電動機制御部102では、電動機90を作動させて補助動力を発生させる(ステップS34)。これにより、エンジン回転数が上昇する。
 また、ステップS33において、減速シフト動作Sbの終了が指示されていれば(ステップS33でYES)、電動機制御部102では、電動機90の補助動力の発生を停止させる。
If the end of the deceleration shift operation Sb is not instructed in step S33 (NO in step S33), the motor control unit 102 operates the motor 90 to generate auxiliary power (step S34). As a result, the engine speed increases.
Further, if the end of the deceleration shift operation Sb is instructed in step S33 (YES in step S33), the motor control unit 102 stops the generation of the auxiliary power of the motor 90.
 この変形例においても、有段変速モードMsにおいて、減速シフト動作Sbを行う場合、エンジンEのクランクシャフト41に連結された電動機90の作動により、クランクシャフト41の回転数を上昇させる。これにより、減速シフト動作Sbを迅速に行うことができる。これによって、無段変速機Mにおいて仮想的に行う有段変速動作を、より迅速に行い、良好な変速感を実現することができる。
 また、電動機90としてスタータモータを用いることで、専用の機器を別途設けることなく、無段変速機Mにおける有段変速モードMsにおける動作を、より効率良く行うことができる。
Also in this modification, when the deceleration shift operation Sb is performed in the stepped speed change mode Ms, the rotation speed of the crankshaft 41 is increased by the operation of the electric motor 90 connected to the crankshaft 41 of the engine E. As a result, the deceleration shift operation Sb can be performed quickly. As a result, the stepped speed change operation virtually performed by the continuously variable transmission M can be performed more quickly, and a good shift feeling can be realized.
Further, by using the starter motor as the electric motor 90, the operation in the stepped speed change mode Ms of the continuously variable transmission M can be performed more efficiently without separately providing a dedicated device.
 なお、本発明は、図面を参照して説明した上述の実施形態に限定されるものではなく、その技術的範囲において様々な変形例が考えられる。
 例えば、上記実施形態では、電動機90をエンジンEのクランクシャフト41と同軸に連結するようにしたが、これに限らない。電動機90は、クランクシャフト41に直接又は間接的に連結されていれば、例えば、クランクシャフト41と別軸に配置されてもよい。電動機90は、クランクシャフト41に中間軸や中間ギヤ等を介して連結されてもよい。アクチュエータ55および制御部100は、無段変速機Mの構成として捉えることもできる。
 また、車両には、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪の車両も含まれ、かつ電気モータを原動機に含む車両も含まれる。
 そして、上記実施形態における構成は本発明の一例であり、当該発明の要旨を逸脱しない範囲で種々の変更が可能である。
The present invention is not limited to the above-described embodiment described with reference to the drawings, and various modifications can be considered within the technical scope thereof.
For example, in the above embodiment, the electric motor 90 is coaxially connected to the crankshaft 41 of the engine E, but the present invention is not limited to this. The electric motor 90 may be arranged on a shaft different from the crankshaft 41, for example, as long as it is directly or indirectly connected to the crankshaft 41. The electric motor 90 may be connected to the crankshaft 41 via an intermediate shaft, an intermediate gear, or the like. The actuator 55 and the control unit 100 can also be regarded as the configuration of the continuously variable transmission M.
In addition, vehicles include not only motorcycles (including motorized bicycles and scooter type vehicles), but also three-wheeled vehicles (including front two-wheeled and rear one-wheeled vehicles in addition to front one-wheeled and rear two-wheeled vehicles) or four-wheeled vehicles. Vehicles that are included and that include an electric motor as a prime mover are also included.
The configuration in the above embodiment is an example of the present invention, and various modifications can be made without departing from the gist of the present invention.
 1 自動二輪車(車両)
 4 後輪(被駆動部)
 55 アクチュエータ
 90 電動機
 100 制御部
 P パワーユニット
 U 駆動制御装置
 E エンジン(原動機)
 M 無段変速機
 Ms 有段変速モード
 Sa 増速シフト動作
 Sb 減速シフト動作
1 Motorcycle (vehicle)
4 Rear wheel (driven part)
55 Actuator 90 Motor 100 Control unit P Power unit U Drive control device E Engine (motor)
M continuously variable transmission Ms stepped speed change mode Sa speed-up shift operation Sb deceleration shift operation

Claims (5)

  1.  原動機(E)が発生させた回転動力を無段階に変速して被駆動部(4)側へ伝える無段変速機(M)と、
     前記無段変速機(M)の変速比を変化させるアクチュエータ(55)と、
     前記原動機(E)に連結される電動機(90)と、
     前記アクチュエータ(55)及び前記電動機(90)の作動を制御する制御部(100)と、を備える駆動制御装置(U)であって、
     前記電動機(90)は、前記原動機(E)の回転動力から電力を発生させる機能を持ち、
     前記制御部(100)は、前記アクチュエータ(55)で前記無段変速機(M)に仮想的な有段変速動作を実行させる有段変速モード(Ms)を有し、
     前記制御部(100)は、前記有段変速モード(Ms)の選択時に増速シフト動作(Sa)を行う際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を増加させる、駆動制御装置(U)。
    A continuously variable transmission (M) that continuously shifts the rotational power generated by the prime mover (E) and transmits it to the driven unit (4) side.
    An actuator (55) that changes the gear ratio of the continuously variable transmission (M) and
    The motor (90) connected to the prime mover (E) and
    A drive control device (U) including a control unit (100) that controls the operation of the actuator (55) and the electric motor (90).
    The electric motor (90) has a function of generating electric power from the rotational power of the prime mover (E).
    The control unit (100) has a stepped speed change mode (Ms) in which the actuator (55) causes the continuously variable transmission (M) to execute a virtual stepped speed change operation.
    When the speed-increasing shift operation (Sa) is performed when the stepped speed change mode (Ms) is selected, the control unit (100) causes the power generation load of the motor (90) to be higher than that during the normal operation of the prime mover (E). Drive control device (U) to increase.
  2.  原動機(E)が発生させた回転動力を無段階に変速して被駆動部(4)側へ伝える無段変速機(M)と、
     前記無段変速機(M)の変速比を変化させるアクチュエータ(55)と、
     前記原動機(E)に連結される電動機(90)と、
     前記アクチュエータ(55)及び前記電動機(90)の作動を制御する制御部(100)と、を備える駆動制御装置(U)であって、
     前記電動機(90)は、前記原動機(E)の回転動力から電力を発生させる機能、および前記原動機(E)に駆動力を付与する機能の少なくとも一方を持ち、
     前記制御部(100)は、前記アクチュエータ(55)で前記無段変速機(M)に仮想的な有段変速動作を実行させる有段変速モード(Ms)を有し、
     前記制御部(100)は、前記有段変速モード(Ms)の選択時に減速シフト動作(Sb)を行う際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を減少させるか、前記原動機(E)に前記電動機(90)から駆動力を付与する、駆動制御装置(U)。
    A continuously variable transmission (M) that continuously shifts the rotational power generated by the prime mover (E) and transmits it to the driven unit (4) side.
    An actuator (55) that changes the gear ratio of the continuously variable transmission (M) and
    The motor (90) connected to the prime mover (E) and
    A drive control device (U) including a control unit (100) that controls the operation of the actuator (55) and the electric motor (90).
    The electric motor (90) has at least one of a function of generating electric power from the rotational power of the prime mover (E) and a function of applying a driving force to the prime mover (E).
    The control unit (100) has a stepped speed change mode (Ms) in which the actuator (55) causes the continuously variable transmission (M) to execute a virtual stepped speed change operation.
    When the control unit (100) performs the deceleration shift operation (Sb) when the stepped speed change mode (Ms) is selected, the power generation load of the motor (90) is reduced as compared with the normal operation of the prime mover (E). A drive control device (U) that causes or applies a driving force to the prime mover (E) from the electric motor (90).
  3.  前記制御部(100)は、前記有段変速モード(Ms)の選択時に増速シフト動作(Sa)を行う際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を増加させる、請求項2に記載の駆動制御装置(U)。 When the speed-increasing shift operation (Sa) is performed when the stepped speed change mode (Ms) is selected, the control unit (100) causes the power generation load of the motor (90) to be higher than that during the normal operation of the prime mover (E). The drive control device (U) according to claim 2, wherein the drive control device (U) is increased.
  4.  前記制御部(100)は、前記原動機(E)の通常運転時における前記電動機(90)の発電負荷を増加させた負荷増加モードを有し、
     前記制御部(100)は、前記有段変速モード(Ms)又は前記負荷増加モードの少なくとも一つの選択時にアクセル開度が減少された際、前記原動機(E)の通常運転時よりも前記電動機(90)の発電負荷を増加させるか、前記負荷増加モードが選択されている場合は前記負荷増加モードよりも発電負荷を増加させる、請求項1から3の何れか一項に記載の駆動制御装置(U)。
    The control unit (100) has a load increase mode in which the power generation load of the motor (90) during normal operation of the prime mover (E) is increased.
    When the accelerator opening is reduced when at least one of the stepped speed change mode (Ms) or the load increase mode is selected, the control unit (100) has the electric motor (E) as compared with the normal operation of the motor (E). The drive control device according to any one of claims 1 to 3, wherein the power generation load of 90) is increased, or when the load increase mode is selected, the power generation load is increased as compared with the load increase mode. U).
  5.  請求項1から4の何れか一項に記載の駆動制御装置(U)を備える車両(1)。 A vehicle (1) including the drive control device (U) according to any one of claims 1 to 4.
PCT/JP2020/014933 2020-03-31 2020-03-31 Driving control device and vehicle WO2021199343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014933 WO2021199343A1 (en) 2020-03-31 2020-03-31 Driving control device and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014933 WO2021199343A1 (en) 2020-03-31 2020-03-31 Driving control device and vehicle

Publications (1)

Publication Number Publication Date
WO2021199343A1 true WO2021199343A1 (en) 2021-10-07

Family

ID=77927864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014933 WO2021199343A1 (en) 2020-03-31 2020-03-31 Driving control device and vehicle

Country Status (1)

Country Link
WO (1) WO2021199343A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113946A (en) * 2003-10-03 2005-04-28 Honda Motor Co Ltd Control device for continuously variable transmission
JP2006176098A (en) * 2004-12-23 2006-07-06 Ind Technol Res Inst Method for controlling gear shift of gearshift transmission of hybrid car
JP2014221561A (en) * 2013-05-13 2014-11-27 株式会社デンソー Drive control device for hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005113946A (en) * 2003-10-03 2005-04-28 Honda Motor Co Ltd Control device for continuously variable transmission
JP2006176098A (en) * 2004-12-23 2006-07-06 Ind Technol Res Inst Method for controlling gear shift of gearshift transmission of hybrid car
JP2014221561A (en) * 2013-05-13 2014-11-27 株式会社デンソー Drive control device for hybrid vehicle

Similar Documents

Publication Publication Date Title
JP4369589B2 (en) Electric bicycle
JP6014159B2 (en) Regenerative brake control system for electric vehicles
JP4154396B2 (en) Control device for hybrid vehicle
WO2014064728A1 (en) Regenerative brake control system for electric vehicle
JP2006046633A (en) Vehicle
JP2014196096A (en) Antiskid device, vehicle, and two-wheeled motor vehicle
JP6550188B2 (en) Hybrid saddle-ride type vehicle
US11554658B2 (en) Hybrid vehicle
JP4360492B2 (en) Shift control device for continuously variable transmission in hybrid vehicle
JP4582813B2 (en) Belt-type continuously variable transmission, control method for belt-type continuously variable transmission, and straddle-type vehicle
JP2002081534A (en) Speed change control device for vehicle
KR101473183B1 (en) Electric vehicle
JP4182068B2 (en) Torque assist control device
JP2007022148A (en) Shift controller for hybrid vehicle
WO2021199343A1 (en) Driving control device and vehicle
WO2019171496A1 (en) Leisure vehicle
JP2006051853A (en) Electromotive two-wheeled vehicle
JP2024029797A (en) Electric power unit and saddle-riding type vehicle including the same
JP3184843B2 (en) V-belt automatic transmission
JP5749541B2 (en) Vehicle shift control device
JP2004116440A (en) Engine control system of irregular ground travel vehicle
JP4250600B2 (en) Power switching control device
TWI359916B (en) Straddle-type vehicle, power unit and continuously
WO2019146774A1 (en) Leaning vehicle
JP7359421B2 (en) hybrid vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP