WO2021199261A1 - 部品モジュール - Google Patents

部品モジュール Download PDF

Info

Publication number
WO2021199261A1
WO2021199261A1 PCT/JP2020/014782 JP2020014782W WO2021199261A1 WO 2021199261 A1 WO2021199261 A1 WO 2021199261A1 JP 2020014782 W JP2020014782 W JP 2020014782W WO 2021199261 A1 WO2021199261 A1 WO 2021199261A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer member
metal layer
heat
core material
Prior art date
Application number
PCT/JP2020/014782
Other languages
English (en)
French (fr)
Inventor
河野満治
夏目真志
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to PCT/JP2020/014782 priority Critical patent/WO2021199261A1/ja
Publication of WO2021199261A1 publication Critical patent/WO2021199261A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections

Definitions

  • the present invention relates to a component module, for example, a component module having a coil component and a method for manufacturing the component module.
  • Coil parts are used in power conversion circuits such as DC-DC converters.
  • the coil components are mounted on the board.
  • a transformer is mounted and a heat radiating member is provided on a substrate (for example, Patent Document 1).
  • a heat radiating member connected to a coil component for example, Patent Document 2.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the heat dissipation of coil parts.
  • the present invention comprises a substrate, a metal layer provided on the substrate, a winding and a core material covering at least a part of the winding, and a terminal for electrically connecting the winding to the metal layer. It is a component module including a coil component mounted on the substrate and a heat radiating member connected to at least one of the terminal and the metal layer via a path other than the core material.
  • a joint portion bonded to at least one of the terminal and the metal layer, a heat radiating portion joined on a portion of the core material covering the winding, and the joint portion and the heat radiating portion are provided.
  • a heat transfer member having a connecting portion to be connected and having a thermal conductivity higher than that of the core material is provided, and the heat transfer member is joined on the heat radiation portion of the heat transfer member. can do.
  • the heat transfer member may be a metal member.
  • the joint portion of the heat transfer member may be joined to the terminal.
  • a recess may be provided on the surface of the core material, and at least a part of the connection portion and the heat dissipation portion of the heat transfer member may be embedded in the recess.
  • the terminal includes a first terminal and a second terminal connected to both ends of the winding, respectively, and the metal layer is a first metal connected to the first terminal and the second terminal, respectively.
  • the heat transfer member includes a layer and a second metal layer, and the heat transfer member includes a first heat transfer member joined to at least one of the first terminal and the first metal layer, and the second terminal and the second metal layer.
  • the heat transfer member includes at least one of the second heat transfer members, and the heat transfer member is joined on the heat radiation portion of the first heat transfer member and the heat radiation portion of the second heat transfer member. Can be done.
  • At least a part of the connecting portion can be provided on the surface of the core material.
  • connection portion can be configured to extend in the air.
  • the heat transfer member can be configured to be an integral metal plate.
  • the heat transfer member may be a plating layer formed on the surface of the core material.
  • the heat radiating member may be joined on the metal layer and may be joined to a portion of the core material that covers the side of the winding.
  • a switching element that is connected to the coil component via the metal layer and mounted on the substrate can be provided.
  • the heat dissipation of the coil parts can be improved.
  • FIG. 1 (a) to 1 (c) are a top view and a side view of the coil components used in the first embodiment, respectively.
  • 2 (a) and 2 (b) are perspective views of the coil component used in the first embodiment.
  • FIG. 3 is a circuit diagram of a power conversion circuit in which the first embodiment is used.
  • 4 (a) and 4 (b) are plan views of the component module according to the first embodiment.
  • FIG. 5 is a front schematic view of the component module according to the first embodiment.
  • 6 (a) to 6 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the first embodiment, respectively.
  • FIG. 7 is a front schematic view of the component module according to Comparative Example 1.
  • 8 (a) to 8 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the first modification of the first embodiment.
  • 9 (a) to 9 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the second modification of the first embodiment, respectively.
  • 10 (a) to 10 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the third modification of the first embodiment, respectively.
  • 11 (a) to 11 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the modified example 4 of the first embodiment, respectively.
  • 12 (a) to 12 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the modified example 5 of the first embodiment, respectively.
  • 13 (a) to 13 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the modified example 6 of the first embodiment, respectively.
  • FIG. 14 (a) to 14 (f) are schematic front views of the vicinity of the coil component showing the manufacturing method of the component module according to the modified example 7 of the first embodiment.
  • 15 (a) to 15 (e) are schematic front views of the vicinity of the coil component showing the manufacturing method of the component module according to the modified example 8 of the first embodiment.
  • 16 (a) to 16 (d) are schematic front views of the vicinity of the coil component showing the manufacturing method of the component module according to the modification 9 of the first embodiment.
  • FIG. 17 is a plan view of the component module according to the second embodiment.
  • FIG. 18 is a front schematic view of the vicinity of the coil component of the component module according to the second embodiment.
  • 1 (a) to 1 (c) are a top view and a side view of the coil components used in the first embodiment, respectively.
  • 2 (a) and 2 (b) are perspective views of the coil component used in the first embodiment.
  • the plane directions of the substrate on which the coil component 10 is mounted are the X direction and the Y direction.
  • the direction from the front to the back is the Y direction.
  • the direction from the left side surface to the right side surface is the X direction.
  • the coil component 10 mainly includes a winding 12, a core material 14, and a sealing resin 16. Both ends of the winding 12 are connected to terminals 13a and 13b, respectively.
  • the terminals 13a and 13b are led out from the winding 12 in the front direction ( ⁇ Y direction), are bent downward ( ⁇ Z direction) toward the tip, and are further bent in the front direction.
  • the portion bent in the front direction is the joint portion 13c joined to the metal layer on the substrate.
  • the portion that connects the winding 12 and the joint portion 13c is the connection portion 13d.
  • the winding 12 and the terminals 13a and 13b are metal members whose main material is, for example, copper, iron or aluminum.
  • the core material 14 covers at least a part of the winding 12.
  • the core material 14 includes a central portion 14a and an outer portion 14b.
  • the central portion 14a is substantially columnar.
  • the winding 12 is wound around the central portion 14a in the space between the central portion 14a and the outer portion 14b.
  • the outer 14b covers the upper part, the lower part, the right side part and the left side part of the winding 12.
  • the magnetic field lines generated by the winding 12 pass through the central portion 14a and the outer 14b.
  • the core material 14 is a high magnetic permeability magnetic material, and is made of, for example, a material in which iron oxide is the main material, metal compounds such as manganese, magnesium, nickel and zinc are mixed and sintered at a high temperature.
  • the sealing resin 16 seals the winding 12 in the space between the central portion 14a and the outer 14b.
  • the sealing resin 16 is an organic insulator such as an epoxy resin.
  • the sealing resin 16 may be a non-magnetic material or a high magnetic permeability magnetic material.
  • the core material 14 may cover all of the windings 12 except the terminal 13a. The sealing resin 16 may not be provided.
  • FIG. 3 is a circuit diagram of a power conversion circuit in which the first embodiment is used.
  • an input capacitor Cin is connected between the input terminal Tin and the ground terminal Tgnd.
  • An input capacitor Cin is connected between the input terminal Tin and the ground terminal Tgnd, and transistors Tr1 and Tr2 are connected in series in parallel with this capacitor Cin.
  • the source S, gate G and drain D of the transistor Tr1 are connected to the node SW, the drive circuit 31 and the input terminal Tin, respectively, and the source S, the gate G and the drain D of the transistor Tr2 are connected to the ground terminal Tgnd, the drive circuit 31 and the input terminal Tin, respectively. It is connected to the node SW.
  • a coil L is connected between the node SW and the output terminal Tout.
  • An output capacitor Cout is connected between the output terminal Tout and the ground terminal Tgnd.
  • a load Z is connected between the output terminal Tout and the ground terminal Tgnd, and the output capacitor Cout and the load Z are connected in parallel.
  • the drive circuit 31 controls the on and off of the transistors Tr1 and Tr2.
  • a DC input voltage Vin is applied between the input terminal Tin and the ground terminal Tgnd.
  • the drive circuit 31 turns the transistors Tr1 and Tr2 on and off, respectively.
  • a current flows from the input terminal Tin to the output terminal Tout, and an electric charge is accumulated in the output capacitor Cout. Further, magnetic field energy is stored in the coil L.
  • a DC output voltage Vout is output between the output terminal Tout and the ground terminal Tgnd.
  • the drive circuit 31 When the output voltage Vout becomes higher than the target voltage, the drive circuit 31 turns off and on the transistors Tr1 and Tr2, respectively. A commutation current flows through the transistor Tr2 due to the magnetic field energy of the coil L, and the output voltage Vout is maintained. When the output voltage Vout becomes lower than the desired voltage, the drive circuit 31 turns the transistors Tr1 and Tr2 on and off, respectively. As a result, the voltage of the output terminal Tout becomes a substantially constant output voltage Vout.
  • the power conversion circuit in which the component module of the first embodiment is used may be a step-up DC-DC converter, an AC (Alternating Current) -DC converter, or a DC-AC converter in addition to the step-down DC-DC converter.
  • a DC-DC converter is preferable from the viewpoint of using coil components.
  • FIG. 4 (a) and 4 (b) are plan views of the component module according to the first embodiment.
  • FIG. 4A is a plan view in which the heat radiation fins 22 and 38 are not provided
  • FIG. 4B is a plan view in which the heat radiation fins 22 and 38 are provided.
  • a metal layer 42 is provided on the substrate 40.
  • a coil component 10, a semiconductor component 30, and electronic components 30a and 30b connected to the metal layer 42 are mounted on the substrate 40.
  • the coil component 10 is the coil component 10 shown in FIGS. 1A to 2B, and corresponds to the coil L in FIG.
  • the semiconductor component 30 is, for example, a power transistor such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET (Field Effect Transistor).
  • a semiconductor material such as Si, GaN or SiC is used for the transistor.
  • the semiconductor component 30 is, for example, a bare chip or a package in which a bare chip is sealed and mounted.
  • the package on which the bare chip is mounted is a package such as WLP (Wafer Level Package) or SIP (Single Inline Package).
  • the semiconductor component 30 is a bare chip of a GaN FET which is a horizontal transistor.
  • the semiconductor component 30 includes the transistors Tr1 and Tr2 of FIG.
  • the electronic component 30a has, for example, an integrated circuit formed on a silicon substrate, and is, for example, a bare chip or a package in which a bare chip is sealed and mounted.
  • the electronic component 30a includes the drive circuit 31 of FIG.
  • the electronic component 30b is a discrete passive component such as a chip capacitor, a chip inductor or a chip resistor.
  • the electronic component 30b includes the input capacitor Cin and the output capacitor Cout of FIG.
  • the metal layer 42 is a terminal Tsw corresponding to an input terminal Tin, an output terminal Tout, a ground terminal Tgnd, and a node SW.
  • An electronic component 30b which is an input capacitor Cin, is connected between the input terminal Tin and the ground terminal Tgnd.
  • a semiconductor component 30 which is a transistor Tr1 is connected between the input terminal Tin and the terminal Tsw.
  • a coil component 10 is connected between the terminal Tsw and the output terminal Tout.
  • An electronic component 30b, which is an output capacitor Cout is connected between the output terminal Tout and the ground terminal Tgnd.
  • the electronic component 30a is connected to the ground terminal Tgnd. Wiring for connecting the electronic component 30a and the gates of the transistors Tr1 and Tr2 in the semiconductor component 30 is provided in the substrate 40.
  • the heat radiation fins 22 are provided on the coil component 10, and the heat radiation fins 38 are provided on the semiconductor component 30.
  • the heat radiation fin 22 has a plurality of fins 22a, and the heat radiation fin 38 has a plurality of fins 38a.
  • FIG. 5 is a front schematic view of the component module according to the first embodiment.
  • FIG. 5 shows the winding 12 in the coil component 10 in a simplified manner.
  • the stretching directions of the fins 22a and 38a of the heat radiation fins 22 and 38 are shown differently from the stretching directions of the fins 22a and 38a of the heat radiation fins 22 and 38 in FIG. 4 (b).
  • each member is hatched so that each member can be easily understood. The same applies to the schematic views of the following component modules and coil components.
  • a metal layer 42 is provided on the substrate 40.
  • the substrate 40 is, for example, a resin substrate such as a glass epoxy substrate or a ceramic substrate.
  • the metal layer 42 uses, for example, copper as a main material.
  • the coil component 10 and the semiconductor component 30 are mounted on the metal layer 42.
  • a heat transfer member 18 is provided on the coil component 10 from the metal layer 42.
  • the heat transfer member 18 includes a joint portion 18c, a connection portion 18d, and a heat dissipation portion 18e.
  • the joint portion 18c is joined on the metal layer 42.
  • the heat radiating portion 18e is provided on the coil component 10.
  • the connecting portion 18d connects the joining portion 18c and the heat radiating portion 18e.
  • the joint portion 13c at the tips of the terminals 13a and 13b and the metal layer 42 are joined by a joining member 44.
  • the terminals 13a and 13b connect the metal layer 42 and the winding 12.
  • the joint portion 18c of the heat transfer member 18 and the metal layer 42 are joined by the joint member 44.
  • the side surface of the joint portion 13c and the side surface of the joint portion 18c are joined by a joining member 44.
  • the joining member 44 is, for example, a brazing material such as solder or a sintered metal of a conductive paste.
  • An electrode 30c is provided on the lower surface of the semiconductor component 30.
  • the electrode 30c is, for example, a source electrode, a drain electrode and a gate electrode, and for example, copper, gold, aluminum or silver is used as a main material.
  • the metal layer 42 and the electrode 30c are joined by a joining member 46.
  • the joining member 46 is, for example, a brazing material such as solder or a sintered metal of a conductive paste.
  • a heat sink 34 is bonded onto the semiconductor component 30 via a bonding layer 32.
  • the heat radiating plate 34 is, for example, a DBC (Direct Bonded Cupper) or a DBA (Direct Bonded Aluminum), and has a structure in which the insulating layer 34b is sandwiched between the metal layers 34a and 34c.
  • the heat radiating plate 34 may be a metal plate such as a copper plate or an insulating plate such as an aluminum nitride plate or an aluminum oxide plate.
  • the heat radiating fins 38 are joined on the heat radiating plate 34 via the joining layer 36.
  • the bonding layers 20, 32 and 36 are, for example, a brazing material such as solder, a sintered metal of a conductive paste, or a heat transfer grease.
  • 6 (a) to 6 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the first embodiment, respectively.
  • the metal layer 42 is joined to the joint portion 13c at the tip of the terminal 13a and the joint portion 18c of the heat transfer member 18 by the joint member 44.
  • a support member for supporting the coil component 10 on the substrate 40 is provided on the lower surface of the coil component 10, but illustration and description thereof will be omitted.
  • the heat radiating portion 18e is provided on the core material 14 of the coil component 10.
  • the connecting portion 18d is provided along the front side surface of the core material 14.
  • the width of the heat radiating portion 18e in the front and back directions (Y direction) is larger than the width of the connecting portion 18d in the X direction.
  • the heat transfer member 18 is formed of a rigid metal layer such as a lead frame, and the heat radiating portion 18e and the connecting portion 18d of the heat transfer member 18 are joined to the core material 14 by a joining layer. The method of joining the heat transfer member 18 and the core material 14 will be described later.
  • FIG. 7 is a front schematic view of the component module according to Comparative Example 1. As shown in FIG. 7, the heat transfer member 18 and the heat radiation fin 22 are not provided. Other configurations are the same as those in FIG. 5 of the first embodiment, and the description thereof will be omitted.
  • the paths through which the heat generated in the semiconductor component 30 is conducted are the path 56 and the path 58.
  • the path 56 reaches the metal layer 42 from the semiconductor component 30 via the joining member 46.
  • the path 58 reaches the heat radiation fin 38 from the semiconductor component 30 via the joint layer 32, the heat sink 34, and the joint layer 36.
  • the heat dissipation fin 38 has better heat dissipation than the metal layer 42. Therefore, the heat generated in the semiconductor component 30 can be efficiently dissipated.
  • heat is mainly generated in the winding 12.
  • Heat reaches the metal layer 42 from the winding 12 via the terminals 13a and 13b and the joining member 44.
  • the heat dissipation of the metal layer 42 is not high, it is difficult to efficiently dissipate the heat generated in the coil component 10.
  • the thermal conductivity of the core material 14 is several W / m ⁇ K, which is about 1/100 of the thermal conductivity of 400 W / m ⁇ K of copper. Therefore, even if the heat radiating fins are joined to the upper part of the core material 14, efficient heat radiating cannot be performed as in the semiconductor component 30.
  • the temperature of the winding 12 rises, the DC resistance of the winding 12 increases, and the power conversion efficiency of the power conversion circuit decreases.
  • the joint portion 18c of the heat transfer member 18 is joined to at least one of the terminal 13a and the metal layer 42, and the heat radiating portion 18e is joined to the portion of the core material 14 that covers the winding 12.
  • the connecting portion 18d connects the joining portion 18c and the heat radiating portion 18e.
  • the heat transfer member 18 has a thermal conductivity higher than that of the core material 14.
  • the heat radiation fin 22 is connected to at least one of the terminal 13a and the metal layer 42 via a path 52 other than the core material 14.
  • the heat generated in the winding 12 is conducted to the heat radiating fins 22 via the terminals 13a and the heat transfer member 18. Therefore, it is possible to suppress an increase in the temperature of the winding 12, an increase in the DC resistance of the winding 12, and a decrease in the conversion efficiency of the power conversion circuit.
  • the heat transfer member 18 may be an insulating member, but is preferably a metal member as a member having high thermal conductivity.
  • a metal member as a member having high thermal conductivity.
  • aluminum or iron may be used as a main material in addition to copper.
  • the thermal conductivity of the heat transfer member 18 is preferably 10 times or more, preferably 100 times or more, the thermal conductivity of the core material 14.
  • the joint portion 18c of the heat transfer member 18 is joined to the terminal 13a.
  • the heat generated in the winding 12 is conducted from the terminal 13a to the heat transfer member 18. Therefore, the heat dissipation property via the heat transfer member 18 can be further improved.
  • [Modification 1 of Example 1] 8 (a) to 8 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the first modification of the first embodiment.
  • the connecting portion 18d of the heat transfer member 18 is provided along the right side surface of the core material 14.
  • Other configurations are the same as those in FIGS. 6 (a) to 6 (c) of the first embodiment, and the description thereof will be omitted.
  • [Modification 2 of Example 1] 9 (a) to 9 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the second modification of the first embodiment, respectively.
  • the joint portion 18c of the heat transfer member 18 is joined to the upper surface of the joint portion 13c of the terminal 13a via the joint member 45. ing.
  • the material of the joining member 45 is the same as that of the joining member 44.
  • the connecting portion 18d is connected to the heat radiating portion 18e from the upper part of the joint portion 18c without contacting the core material 14.
  • Other configurations are the same as those in FIGS. 6 (a) to 6 (c) of the first embodiment, and the description thereof will be omitted.
  • Example 1 of FIGS. 6 (a) to 6 (c) and 8 (a) to 8 (c) and a modification thereof 1 at least a part of the connecting portion 18d is on the surface of the core material 14. It may be provided and may be provided along the surface of the core material 14. As a result, the connecting portion 18d can be stably fixed.
  • Example 1 of FIGS. 6 (a) to 6 (c) has a shorter connection portion 18d than the modified example 1 of embodiment 1 of FIGS. 8 (a) to 8 (c), so that the thermal resistance can be lowered and heat dissipation can be reduced. Can be improved.
  • At least a part of the connecting portion 18d extends in the air without following the core material 14, and dissipates heat from the joint portion 18c. It may be connected to the part 18e. As a result, the heat of the winding 12 can be transferred to the heat radiating portion 18e without escaping the heat from the connecting portion 18d to the core material 14. Further, since the connection portion 18d can be shortened, the thermal resistance can be lowered and the heat dissipation can be improved.
  • [Modification 3 of Example 1] 10 (a) to 10 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the third modification of the first embodiment, respectively.
  • the heat transfer members 18a and 18b are provided in the modified example 3 of the first embodiment.
  • the joint portion 18c of the heat transfer member 18a is joined to the terminal 13a on the right side (+ X side) and the metal layer 42a on the right side.
  • the joint portion 18c of the heat transfer member 18b is joined to the terminal 13b on the left side ( ⁇ X side) and the metal layer 42b on the left side.
  • the connecting portions 18d of the heat transfer members 18a and 18b are provided along the front side surface of the core material 14.
  • the width of the heat radiating portions 18e of the heat transfer members 18a and 18b in the Y direction is substantially the same as the width of the connecting portions 18d in the X direction.
  • the upper surfaces of the heat radiating portions 18e of the heat transfer members 18a and 18b are respectively joined to the heat radiating fins 22 via the bonding layer 20.
  • Other configurations are the same as those in FIGS. 6 (a) to 6 (c) of the first embodiment, and the description thereof will be omitted.
  • [Modified Example 4 of Example 1] 11 (a) to 11 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the modified example 4 of the first embodiment, respectively.
  • the connecting portion 18d of the heat transfer member 18a is provided along the right side surface of the core material 14, and the heat transfer member is provided.
  • the connecting portion 18d of 18b is provided along the left side surface of the core material 14.
  • [Modification 5 of Example 1] 12 (a) to 12 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the modified example 5 of the first embodiment, respectively.
  • the joint portion 18c of the heat transfer member 18a is joined to the upper surface of the joint portion 13c of the terminal 13a on the right side (+ X side). It is joined via a member 45.
  • the joint portion 18c of the heat transfer member 18b is joined to the upper surface of the joint portion 13c of the terminal 13b on the left side ( ⁇ X side) via the joint member 45.
  • the material of the joining member 45 is the same as that of the joining member 44.
  • the connecting portion 18d is connected to the heat radiating portion 18e from the upper part of the joint portion 18c without contacting the core material 14.
  • Other configurations are the same as those in FIGS. 10 (a) to 10 (c) of the third modification of the first embodiment, and the description thereof will be omitted.
  • Terminals 13a (first terminal) and terminals 13b (second terminal) are connected to both ends of the winding 12, respectively, as in modifications 3 to 5 of the first embodiment of FIGS. 10 (a) to 12 (c).
  • the metal layer 42a (first metal layer) is connected to the terminal 13a
  • the metal layer 42b (second metal layer) is connected to the terminal 13b.
  • the heat transfer member 18a (first heat transfer member) is joined to at least one of the terminal 13a and the metal layer 42a
  • the heat transfer member 18b (second heat transfer member) is joined to at least one of the terminal 13b and the metal layer 42b.
  • the heat radiating fins 22 are joined on the heat radiating portions 18e of the heat transfer members 18a and 18b.
  • the heat transfer members 18a and 18b When the heat transfer members 18a and 18b are made of an insulating material, the heat transfer members 18a and 18b may be in contact with each other. When the heat transfer members 18a and 18b are made of a metal material, the heat transfer members 18a and 18b are electrically separated so as not to electrically short-circuit the terminals 13a and 13b.
  • [Modified Example 6 of Example 1] 13 (a) to 13 (c) are a schematic top view, a schematic front view, and a schematic right side view of the vicinity of the coil component in the component module according to the modified example 6 of the first embodiment, respectively.
  • the recess 15a is provided on the front side surface of the core material 14, and the recess 15b is provided on the upper surface of the core material 14. ing. A part of the connecting portion 18d of the heat transfer member 18 is fitted in the recess 15a, and the heat radiating portion 18e of the heat transfer member 18 is fitted in the recess 15b.
  • Other configurations are the same as those in FIGS. 6 (a) to 6 (c) of the first embodiment, and the description thereof will be omitted.
  • the recesses 15a and 15b are provided on the surface of the core material 14, and the connecting portion 18d and the heat radiating portion 18e of the heat transfer member 18 are provided. At least part of it is embedded in the recesses 15a and 15b.
  • the coil component 10 can be miniaturized, so that the component module can be miniaturized.
  • the heat radiating portion 18e of the heat transfer member 18 is embedded in the recess 15b, and the upper surface of the heat radiating portion 18e and the upper surface of the core material 14 are made substantially flat.
  • the heat radiation fins 22 can be stably fixed on the core material 14.
  • at least a part of the heat transfer member 18 may be embedded in the recess provided on the surface of the core material 14.
  • Modification 7 of Example 1] 14 (a) to 14 (f) are schematic front views of the vicinity of the coil component showing the manufacturing method of the component module according to the modified example 7 of the first embodiment.
  • Modification 7 of the first embodiment is an example in which a rigid metal member such as a lead frame is used as the heat transfer member 18.
  • the coil component 10 is prepared. Of the terminals 13a and 13b of the coil component 10, the joint portion 13c is exposed from the core material 14. The coil component 10 is not provided with a heat transfer member.
  • the adhesive 17 is applied to the region of the surface of the core material 14 of the coil component 10 to which the heat transfer member 18 is joined.
  • the adhesive 17 is a resin adhesive such as an epoxy resin.
  • the adhesive 17 may be another joining member.
  • the heat transfer member 18 is attached to the core material 14.
  • the heat transfer member 18 is a metal plate that has been bent in advance according to the surface shape of the core material 14. The heat treatment cures the adhesive 17 and adheres the heat transfer member 18 to the core material 14.
  • the joint portion 13c of the terminals 13a and 13b and the joint portion 18c of the heat transfer member 18 are arranged on the metal layer 42 via the joint member 44.
  • the joint portions 13c and 18c are joined onto the metal layer 42 via the joining member 44.
  • the joining member 44 is a brazing material or a conductive paste
  • heat treatment is performed at a temperature of 100 ° C. to 300 ° C.
  • the joining member 44 also enters between the joining portions 13c and 18c.
  • the bonding layer 20 is formed on the heat radiating portion 18e of the heat transfer member 18.
  • the bonding layer 20 is, for example, TIM (Thermal Interface Material), for example, a heat transfer grease in which high thermal conductive particles are contained in a silicone resin.
  • the heat radiation fins 22 are bonded onto the bonding layer 20.
  • the component module of the modified example 7 of the first embodiment is manufactured.
  • the component modules of the first embodiment and the modified examples 1 to 6 thereof can also be manufactured by the same method as the modified example 7 of the first embodiment.
  • the heat transfer member 18 is formed by bending an integral metal plate and joined to the core material 14 as shown in FIG. 14 (c). Thereby, the heat transfer member 18 can be easily formed.
  • Modification 8 of Example 1 15 (a) to 15 (e) are schematic front views of the vicinity of the coil component showing the manufacturing method of the component module according to the modified example 8 of the first embodiment.
  • Modification 8 of Example 1 is an example in which a plated metal is used as the heat transfer member 18.
  • a resist 60 having an opening 62 is formed on the surface of the coil component 10.
  • the core material 14 is exposed from the opening 62.
  • the opening 62 is provided in a region where the heat transfer member 18 is formed.
  • a heat transfer member 18 is formed in the opening 62 by a plating method.
  • the maximum thickness of the plating layer that can be formed by the plating method is about 100 ⁇ m, and is several tens of ⁇ m.
  • a seed layer may be formed before forming the plating layer, and a plating layer may be formed on the seed layer.
  • the resist 60 is removed.
  • the heat transfer member 18 in contact with the core material 14 is formed.
  • the heat transfer member 18 can also be formed by forming a metal layer on the entire surface of the coil component 10 by a plating method and removing the metal layer in a desired region by an etching method.
  • the thickness of the metal layer is as thin as about 100 ⁇ m or less, if the metal layer is formed on the entire surface of the coil component 10, the metal layer may crack or break. Therefore, as shown in FIG. 15A, it is preferable to form a resist 60 having an opening 62 on the surface of the coil component 10 and to form a metal layer to be a heat transfer member 18 in the opening 62.
  • the joint portion 13c of the terminals 13a and 13b and the joint portion 18c of the heat transfer member 18 are arranged on the metal layer 42 via the joint member 44.
  • the joint portions 13c and 18c are joined onto the metal layer 42 via the joining member 44.
  • the bonding layer 20 is formed on the heat radiating portion 18e of the heat transfer member 18.
  • the heat radiation fins 22 are bonded onto the bonding layer 20.
  • the component module of the modified example 8 of the first embodiment is manufactured.
  • the component modules of the first embodiment and the modified examples 1 to 6 thereof can also be manufactured by the same method as the modified example 8 of the first embodiment.
  • a plating layer is formed on the surface of the core material 14 as the heat transfer member 18. Thereby, the heat transfer member 18 can be easily formed.
  • [Modification 9 of Example 1] 16 (a) to 16 (d) are schematic front views of the vicinity of the coil component showing the component module manufacturing method according to the modification 9 of the first embodiment.
  • a modification 9 of the first embodiment is an example in which the coil component 10 and the heat transfer member 18 are resin-sealed.
  • the sealing resin 24 is an insulating and non-magnetic resin such as an epoxy resin, and the resin may contain an inorganic filler.
  • a transfer molding method, an injection method or a compression method is used for the formation of the sealing resin 24, for example, a transfer molding method, an injection method or a compression method is used.
  • the upper surface of the heat transfer member 18 is exposed by polishing the upper surface of the sealing resin 24. As a result, the upper surface of the sealing resin 24 and the upper surface of the heat transfer member 18 become substantially flat.
  • the sealing resin 24 is provided with an opening 25 that exposes the joint portion 18c.
  • the joint portion 13c of the terminals 13a and 13b and the joint portion 18c of the heat transfer member 18 are arranged on the metal layer 42 via the joint member 44.
  • the joint portions 13c and 18c are joined onto the metal layer 42 via the joining member 44.
  • the joining member 44 is, for example, solder
  • excess solder among the melted solder melts and spreads in the opening 25.
  • the bonding layer 20 is formed on the heat radiating portion 18e of the heat transfer member 18.
  • the heat radiation fins 22 are bonded onto the bonding layer 20. Since the upper surface of the sealing resin 24 and the upper surface of the heat radiating portion 18e are substantially flat, the stability of the heat radiating fins 22 is improved.
  • the component module of the modification 9 of the first embodiment is manufactured.
  • the component modules of the first embodiment and the modified examples 1 to 6 thereof can also be manufactured by the same method as the modified example 8 of the first embodiment.
  • FIG. 17 is a plan view of the component module according to the second embodiment.
  • FIG. 18 is a front schematic view of the vicinity of the coil component of the component module according to the second embodiment.
  • the coil component 10 is not provided with the heat transfer member 18 and the heat radiation fins 22, but the coil components 10 are provided with heat radiation fins 22 on the side ( ⁇ X side).
  • the heat radiating fins 22 are joined to the metal layer 42 via the joining layer 20.
  • the side surface of the heat radiating fin 22 and the side surface of the core material 14 are joined via the joining layer 21.
  • the bonding layers 20 and 21 are, for example, brazing material, sintered metal or heat transfer grease. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • the heat radiation fins 22 are joined on the metal layer 42 and are joined to the portion of the core material 14 that covers the side of the winding 12. As a result, the heat generated in the winding 12 reaches the heat radiation fins 22 via the terminals 13b, the metal layer 42, and the bonding layer 20 like the path 55.
  • the heat radiation fin 22 is joined to the core material 14, and the distance between the heat radiation fin 22 and the coil component 10 is very small.
  • the metal layer 42 is, for example, copper, and has a higher thermal conductivity than the core material 14. Therefore, the heat of the winding 12 is efficiently released by the path 55.
  • the heat transfer member 18 may be connected to at least one of the terminals 13a and 13b and the metal layer 42 via a path other than the core material 14.
  • the heat generated in the winding 12 is conducted from the terminals 13a and 13b or the metal layer 42 to the heat radiating member via a path other than the core material 14. Therefore, it is possible to suppress heat generation of the coil component 10 and improve the power conversion efficiency.
  • the coil component 10 and the semiconductor component 30 are connected via a metal layer 42. There is.
  • the heat radiation fins 22 to the coil component 10

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

基板40と、前記基板上に設けられた金属層42と、巻き線12と巻き線の少なくとも一部を覆うコア材14と、巻き線12を金属層42に電気的に接続する端子13a、13bと、を備え、基板40上に実装されたコイル部品10と、端子13a、13bおよび金属層42の少なくとも一方にコア材14以外の経路を介し接続された放熱部材と、を備える部品モジュール。

Description

部品モジュール
 本発明は、部品モジュールに関し、例えばコイル部品を有する部品モジュールおよびその製造方法に関する。
 DC-DCコンバータ等の電力変換回路にコイル部品が用いられる。電力変換回路を実装するモジュールでは、基板上にコイル部品が実装される。トランスを実装して基板上に放熱部材を設けることが知られている(例えば特許文献1)。コイル部品に接続する放熱部材を設けることが知られている(例えば特許文献2)。
特開平8-45748号公報 特開2015-2285号公報
 電力変換回路ではコイル部品の巻き線に大電流が流れるため、コイル部品が発熱する。巻き線の温度が上昇すると、巻き線の直流抵抗が高くなり、電力変換回路の電力変換効率が低下してしまう。コイル部品では、巻き線はコア材に覆われている。コア材の熱伝導率は低いため、コイル部品に放熱部材を接合しても放熱性は高くない。コイル部品を基板に実装したときに放熱性を向上させる手法は知られていない。
 本発明は、上記課題に鑑みなされたものであり、コイル部品の放熱性を向上させることを目的とする。
 本発明は、基板と、前記基板上に設けられた金属層と、巻き線と前記巻き線の少なくとも一部を覆うコア材と、前記巻き線を前記金属層に電気的に接続する端子と、を備え、前記基板上に実装されたコイル部品と、前記端子および前記金属層の少なくとも一方に前記コア材以外の経路を介し接続された放熱部材と、を備える部品モジュールである。
 上記構成において、前記端子および前記金属層の少なくとも一方に接合された接合部と、前記コア材のうち前記巻き線上を覆う部分上に接合された放熱部と、前記接合部と前記放熱部とを接続する接続部と、を有し、前記コア材の熱伝導率より高い熱伝導率を有する伝熱部材を備え、前記放熱部材は前記伝熱部材の前記放熱部上に接合されている構成とすることができる。
 上記構成において、前記伝熱部材は金属部材である構成とすることができる。
 上記構成において、前記伝熱部材の前記接合部は前記端子に接合されている構成とすることができる。
 上記構成において、前記コア材の表面に凹部が設けられ、前記伝熱部材の前記接続部および前記放熱部の少なくとも一部は前記凹部には埋め込まれている構成とすることができる。
 上記構成において、前記端子は、前記巻き線の両端にそれぞれ接続された第1端子および第2端子を含み、前記金属層は、前記第1端子および前記第2端子にそれぞれ接続された第1金属層および第2金属層を含み、前記伝熱部材は、前記第1端子および前記第1金属層の少なくとも一方と接合された第1伝熱部材と、前記第2端子および前記第2金属層の少なくとも一方と接合された第2伝熱部材と、を含み、前記放熱部材は、前記第1伝熱部材の放熱部および前記第2伝熱部材の放熱部上に接合されている構成とすることができる。
 上記構成において、前記接続部の少なくとも一部は前記コア材の表面に設けられている構成とすることができる。
 上記構成において、前記接続部の少なくとも一部は空気中を延伸する構成とすることができる。
 上記構成において、前記伝熱部材は、一体の金属板である構成とすることができる。
 上記構成において、前記伝熱部材は、前記コア材表面に形成されためっき層である構成とすることができる。
 上記構成において、前記放熱部材は前記金属層上に接合され、かつ前記コア材のうち前記巻き線の側方を覆う部分に接合されている構成とすることができる。
 上記構成において、前記コイル部品に前記金属層を介し接続され、前記基板上に実装されたスイッチング素子を備える構成とすることができる。
 本発明によれば、コイル部品の放熱性を向上させることができる。
図1(a)から図1(c)は、実施例1に用いられるコイル部品のそれぞれ上面図、および側面図である。 図2(a)および図2(b)は、実施例1に用いるコイル部品の斜視図である。 図3は、実施例1が用いられる電力変換回路の回路図である。 図4(a)および図4(b)は、実施例1に係る部品モジュールの平面図である。 図5は、実施例1に係る部品モジュールの正面模式図である。 図6(a)から図6(c)は、実施例1に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。 図7は、比較例1に係る部品モジュールの正面模式図である。 図8(a)から図8(c)は、実施例1の変形例1に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。 図9(a)から図9(c)は、実施例1の変形例2に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。 図10(a)から図10(c)は、実施例1の変形例3に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。 図11(a)から図11(c)は、実施例1の変形例4に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。 図12(a)から図12(c)は、実施例1の変形例5に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。 図13(a)から図13(c)は、実施例1の変形例6に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。 図14(a)から図14(f)は、実施例1の変形例7に係る部品モジュールの製造方法を示すコイル部品付近の正面模式図である。 図15(a)から図15(e)は、実施例1の変形例8に係る部品モジュールの製造方法を示すコイル部品付近の正面模式図である。 図16(a)から図16(d)は、実施例1の変形例9に係る部品モジュールの製造方法を示すコイル部品付近の正面模式図である。 図17は、実施例2に係る部品モジュールの平面図である。 図18は、実施例2に係る部品モジュールのコイル部品付近の正面模式図である。
 以下、図面を参照し本発明の実施例について説明する。
 図1(a)から図1(c)は、実施例1に用いられるコイル部品のそれぞれ上面図、および側面図である。図2(a)および図2(b)は、実施例1に用いるコイル部品の斜視図である。コイル部品10を実装する基板の平面方向をX方向およびY方向とする。正面から背面に至る方向がY方向である。左側面から右側面に至る方向がX方向である。
 図1(a)から図2(b)に示すように、コイル部品10は、巻き線12、コア材14および封止樹脂16を主に備えている。巻き線12の両端部はそれぞれ端子13aおよび13bに接続されている。端子13aおよび13bは、巻き線12から正面方向(-Y方向)に導出され、先端に行くに下方向(-Z方向)に屈曲しさらに正面方向に屈曲している。正面方向に屈曲した部分は基板上の金属層に接合される接合部13cである。端子13aおよび13bのうち巻き線12と接合部13cとを接続する部分は接続部13dである。巻き線12および端子13aおよび13bは例えば銅、鉄またはアルミニウムを主材料とする金属部材である。
 コア材14は巻き線12の少なくとも一部を覆っている。コア材14は中心部14aと外部14bを備えている。中心部14aは略円柱状である。巻き線12は、中心部14aと外部14bとの間の空間において、中心部14aに巻かれている。外部14bは、巻き線12の上部、下部、右側部および左側部を覆っている。巻き線12により生成された磁力線は中心部14aおよび外部14b内を通過する。コア材14は、高透磁率磁性材料であり、例えば酸化鉄を主材料とし、マンガン、マグネシウム、ニッケルおよび亜鉛等の金属化合物が混合され、高温にて焼結された材料からなる。
 封止樹脂16は、中心部14aと外部14bとの間の空間において、巻き線12を封止する。封止樹脂16は例えばエポキシ樹脂等の有機絶縁体である。封止樹脂16は、非磁性材料でもよいし、高透磁率磁性材料でもよい。コア材14は端子13aを除く巻き線12の全てを覆ってもよい。封止樹脂16は設けられてなくてもよい。
 実施例1に係る部品モジュールが用いられる電力変換回路として、降圧型DC(Direct Current)-DCコンバータを説明する。図3は、実施例1が用いられる電力変換回路の回路図である。図3に示すように、入力端子Tinとグランド端子Tgndとの間に入力コンデンサCinが接続されている。入力端子Tinとグランド端子Tgndとの間に入力コンデンサCinが接続され、このコンデンサCinと並列に、トランジスタTr1およびTr2が直列に接続されている。トランジスタTr1のソースS、ゲートGおよびドレインDは、それぞれノードSW、駆動回路31および入力端子Tinに接続され、トランジスタTr2のソースS、ゲートGおよびドレインDは、それぞれグランド端子Tgnd、駆動回路31およびノードSWに接続されている。ノードSWと出力端子Toutの間にコイルLが接続されている。出力端子Toutとグランド端子Tgndとの間に出力コンデンサCoutが接続されている。出力端子Toutとグランド端子Tgndとの間には負荷Zが接続され、出力コンデンサCoutと負荷Zは並列に接続されている。
 駆動回路31はトランジスタTr1およびTr2のオンおよびオフを制御する。入力端子Tinとグランド端子Tgndとの間に直流の入力電圧Vinが印加される。出力電圧Voutが所望の電圧より低くなると、駆動回路31はトランジスタTr1およびTr2をそれぞれオンおよびオフとする。入力端子Tinから出力端子Toutに電流が流れ、出力コンデンサCoutに電荷が蓄積される。また、コイルLに磁界エネルギーが蓄積される。出力端子Toutとグランド端子Tgndとの間に直流の出力電圧Voutが出力される。
 出力電圧Voutが目標の電圧より高くなると、駆動回路31はトランジスタTr1およびTr2をそれぞれオフおよびオンとする。コイルLの磁界エネルギーによりトランジスタTr2に転流電流が流れ、出力電圧Voutが維持される。出力電圧Voutが所望の電圧より低くなると、駆動回路31はトランジスタTr1およびTr2をそれぞれオンおよびオフとする。これにより、出力端子Toutの電圧はほぼ一定の出力電圧Voutとなる。
 実施例1の部品モジュールが用いられる電力変換回路としては、降圧型DC-DCコンバータ以外にも昇圧型DC-DCコンバータ、AC(Alternating Current)-DCコンバータまたはDC-ACコンバータでもよい。コイル部品を用いる観点から、DC-DCコンバータが好ましい。
 図4(a)および図4(b)は、実施例1に係る部品モジュールの平面図である。図4(a)は、放熱フィン22および38を設けていない平面図であり、図4(b)は、放熱フィン22および38を設けた平面図である。
 図4(a)に示すように、基板40上に金属層42が設けられている。基板40上に金属層42と接続されたコイル部品10、半導体部品30、電子部品30aおよび30bが実装されている。コイル部品10は、図1(a)から図2(b)に示したコイル部品10であり、図3のコイルLに相当する。
 半導体部品30は、例えばIGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタまたはFET(Field Effect Transistor)等のパワートランジスタである。トランジスタには、Si、GaNまたはSiC等の半導体材料が用いられる。半導体部品30は、例えばベアチップまたはベアチップが封止実装されたパッケージである。ベアチップが実装されたパッケージは、WLP(Wafer Level Package)またはSIP(Single Inline Package)等のパッケージである。実施例1では、半導体部品30は横型トランジスタであるGaNFETのベアチップである。半導体部品30は図3のトランジスタTr1およびTr2を含む。
 電子部品30aは、例えばシリコン基板に形成された集積回路を有し、例えばベアチップまたはベアチップが封止実装されたパッケージである。電子部品30aは図3の駆動回路31を含む。電子部品30bは、例えばチップコンデンサ、チップインダクタまたはチップ抵抗等のディスクリート受動部品である。電子部品30bは図3の入力コンデンサCinおよび出力コンデンサCoutを含む。
 金属層42は入力端子Tin、出力端子Tout、グランド端子TgndおよびノードSWに対応する端子Tswである。入力端子Tinとグランド端子Tgndとの間に入力コンデンサCinである電子部品30bが接続されている。入力端子Tinと端子Tswとの間にトランジスタTr1である半導体部品30が接続されている。端子Tswと出力端子Toutとの間にコイル部品10が接続されている。出力端子Toutとグランド端子Tgndとの間に出力コンデンサCoutである電子部品30bが接続されている。グランド端子Tgndに電子部品30aが接続されている。電子部品30aと半導体部品30内のトランジスタTr1およびTr2のゲートとを接続する配線は基板40内に設けられている。
 図4(b)に示すように、コイル部品10上に放熱フィン22が設けられ、半導体部品30の上に放熱フィン38が設けられている。放熱フィン22は複数のフィン22aを有し、放熱フィン38は複数のフィン38aを有する。
 図5は、実施例1に係る部品モジュールの正面模式図である。図5は、コイル部品10内の巻き線12を簡略化して図示している。放熱フィン22および38のフィン22aおよび38aの延伸方向を図4(b)における放熱フィン22および38のフィン22aおよび38aの延伸方向と異なって図示している。断面図ではないが各部材を理解しやすいように各部材にハッチングを付している。以下の部品モジュールおよびコイル部品の模式図も同様である。
 図5に示すように、基板40上に金属層42が設けられている。基板40は、例えばガラスエポキシ基板等の樹脂基板、またはセラミックス基板である。金属層42は例えば銅を主材料とする。金属層42上にコイル部品10および半導体部品30が実装されている。金属層42からコイル部品10上に伝熱部材18が設けられている。伝熱部材18は、接合部18c、接続部18dおよび放熱部18eを備えている。接合部18cは金属層42上に接合されている。放熱部18eはコイル部品10上に設けられている。接続部18dは、接合部18cと放熱部18eとを接続する。
 端子13aおよび13bの先端の接合部13cと金属層42とは接合部材44により接合されている。これにより、端子13aおよび13bは金属層42と巻き線12とを接続する。伝熱部材18の接合部18cと金属層42が接合部材44により接合されている。接合部13cの側面と接合部18cの側面は接合部材44により接合されている。接合部材44は例えば半田等のロウ材または導電性ペーストの焼結金属である。
 半導体部品30の下面に電極30cが設けられている。電極30cは例えばソース電極、ドレイン電極およびゲート電極であり、例えば銅、金、アルミニウムまたは銀を主材料とする。金属層42と電極30cとは接合部材46により接合されている。接合部材46は例えば半田等のロウ材または導電性ペーストの焼結金属である。半導体部品30上に放熱板34が接合層32を介し接合されている。放熱板34は、例えばDBC(Direct Bonded Cupper)またはDBA(Direct Bonded Aluminum)であり、絶縁層34bを金属層34aおよび34cで挟んだ構造である。放熱板34は、銅板等の金属板または窒化アルミニウム板もしくは酸化アルミニウム板等の絶縁板でもよい。放熱板34上に放熱フィン38が接合層36を介し接合されている。接合層20、32および36は、例えば半田等のロウ材、導電性ペーストの焼結金属または伝熱グリースである。
 図6(a)から図6(c)は、実施例1に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。
 図6(a)から図6(c)に示すように、金属層42は端子13aの先端の接合部13cおよび伝熱部材18の接合部18cに接合部材44により接合されている。コイル部品10の下面にはコイル部品10を基板40に支持する支持部材が設けられているが図示および説明を省略する。
 放熱部18eはコイル部品10のコア材14上に設けられている。接続部18dはコア材14の正面の側面に沿って設けられている。放熱部18eの正面と背面方向(Y方向)の幅は接続部18dのX方向の幅より大きい。伝熱部材18は例えばリードフレームのような剛体の金属層により形成され、伝熱部材18の放熱部18eおよび接続部18dは接合層によりコア材14に接合されている。伝熱部材18とコア材14との接合方法については後述する。
[比較例1]
 図7は、比較例1に係る部品モジュールの正面模式図である。図7に示すように、伝熱部材18および放熱フィン22が設けられていない。その他の構成は実施例1の図5と同じであり説明を省略する。
 図7に示すように、半導体部品30において発生した熱が伝導する経路は、経路56および経路58である。経路56は半導体部品30から接合部材46を介し金属層42に至る。経路58は半導体部品30から接合層32、放熱板34、接合層36を介し放熱フィン38に至る。金属層42より放熱フィン38の方が放熱性がよい。このため、半導体部品30において発生した熱を効率よく放熱できる。
 コイル部品10では主に巻き線12において熱が発生する。熱は巻き線12から端子13a、13bおよび接合部材44を介し金属層42に至る。しかし、金属層42の放熱性は高くないため、コイル部品10において発生した熱を効率よく放熱することが難しい。半導体部品30と同様に、コア材14上に放熱フィンを接合することが考えられる。しかし、コア材14の熱伝導率は数W/m・Kであり、銅の熱伝導率である400W/m・Kの1/100程度である。このため、コア材14の上部に放熱フィンを接合しても半導体部品30のように効率的な放熱はできない。巻き線12の温度が上昇すると、巻き線12の直流抵抗が高くなり、電力変換回路の電力変換効率が低下してしまう。
 実施例1によれば、伝熱部材18の接合部18cは端子13aおよび金属層42の少なくとも一方に接合され、放熱部18eはコア材14のうち巻き線12上を覆う部分上に接合され、接続部18dは接合部18cと放熱部18eとを接続する。伝熱部材18は、コア材14の熱伝導率より高い熱伝導率を有する。このように、放熱フィン22は、端子13aおよび金属層42の少なくとも一方にコア材14以外の経路52を介し接続されている。これにより、図5の経路52のように、巻き線12において発生した熱は端子13aおよび伝熱部材18を介し放熱フィン22に伝導する。よって、巻き線12の温度上昇を抑制でき、巻き線12の直流抵抗の上昇を抑制でき、電力変換回路の変換効率の低下を抑制できる。
 伝熱部材18は、絶縁部材でもよいが、高熱伝導率を有する部材として金属部材であることが好ましい。金属部材の材料としては銅以外にも例えばアルミニウムまたは鉄を主材料としてもよい。伝熱部材18の熱伝導率はコア材14の熱伝導率の10倍以上が好ましく、100倍以上が好ましい。
 伝熱部材18の接合部18cは端子13aに接合されていることが好ましい。端子13aに伝熱部材18を接合させることにより、巻き線12において発生した熱は端子13aから伝熱部材18に伝導する。よって、伝熱部材18を介した放熱性をより高めることができる。
[実施例1の変形例1]
 図8(a)から図8(c)は、実施例1の変形例1に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。
 図8(a)から図8(c)に示すように、実施例1の変形例1では、伝熱部材18の接続部18dは、コア材14の右側面に沿って設けられている。その他の構成は、実施例1の図6(a)から図6(c)と同じであり説明を省略する。
[実施例1の変形例2]
 図9(a)から図9(c)は、実施例1の変形例2に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。
 図9(a)から図9(c)に示すように、実施例1の変形例2では、伝熱部材18の接合部18cは端子13aの接合部13cの上面に接合部材45を介し接合されている。接合部材45の材料は接合部材44と同じである。接続部18dは、接合部18cの上部からコア材14に接触せずに放熱部18eに接続する。その他の構成は、実施例1の図6(a)から図6(c)と同じであり説明を省略する。
 図6(a)から図6(c)および図8(a)から図8(c)の実施例1およびその変形例1のように、接続部18dの少なくとも一部はコア材14の表面に設けられ、コア材14の表面に沿って設けられていてもよい。これにより、接続部18dを安定に固定することができる。図6(a)から図6(c)の実施例1は図8(a)から図8(c)の実施例1の変形例1より、接続部18dが短いため熱抵抗を低くでき放熱性を向上できる。
 図9(a)から図9(c)の実施例1の変形例2のように、接続部18dの少なくとも一部は、コア材14に沿わずに空気中を延伸し、接合部18cと放熱部18eとを接続してもよい。これにより、接続部18dからコア材14に熱が逃げることなく、巻き線12の熱を放熱部18eに伝えることができる。また、接続部18dを短くできるため熱抵抗を低くでき、放熱性を向上できる。
[実施例1の変形例3]
 図10(a)から図10(c)は、実施例1の変形例3に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。
 図10(a)から図10(c)に示すように、実施例1の変形例3では、伝熱部材18aおよび18bが設けられている。伝熱部材18aの接合部18cは右側(+X側)の端子13aおよび右側の金属層42aに接合されている。伝熱部材18bの接合部18cは左側(-X側)の端子13bおよび左側の金属層42bに接合されている。伝熱部材18aおよび18bの接続部18dはコア材14の正面の側面に沿って設けられている。伝熱部材18aおよび18bの放熱部18eのY方向の幅は接続部18dのX方向の幅とほぼ同じである。図10(c)の破線のように、伝熱部材18aおよび18bの放熱部18eの上面は各々接合層20を介し放熱フィン22に接合される。その他の構成は実施例1の図6(a)から図6(c)と同じであり説明を省略する。
[実施例1の変形例4]
 図11(a)から図11(c)は、実施例1の変形例4に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。
 図11(a)から図11(c)に示すように、実施例1の変形例4では、伝熱部材18aの接続部18dは、コア材14の右側面に沿って設けられ、伝熱部材18bの接続部18dは、コア材14の左側面に沿って設けられている。その他の構成は、実施例1の変形例3の図10(a)から図10(c)と同じであり説明を省略する。
[実施例1の変形例5]
 図12(a)から図12(c)は、実施例1の変形例5に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。
 図12(a)から図12(c)に示すように、実施例1の変形例5では、伝熱部材18aの接合部18cは右側(+X側)の端子13aの接合部13cの上面に接合部材45を介し接合されている。伝熱部材18bの接合部18cは左側(-X側)の端子13bの接合部13cの上面に接合部材45を介し接合されている。接合部材45の材料は接合部材44と同じである。接続部18dは、接合部18cの上部からコア材14に接触せずに放熱部18eに接続する。その他の構成は、実施例1の変形例3の図10(a)から図10(c)と同じであり説明を省略する。
 図10(a)から図12(c)の実施例1の変形例3から5のように、端子13a(第1端子)および端子13b(第2端子)は、巻き線12の両端にそれぞれ接続されている。金属層42a(第1金属層)は、端子13aに接続され、金属層42b(第2金属層)は、端子13bに接続されている。伝熱部材18a(第1伝熱部材)は、端子13aおよび金属層42aの少なくとも一方と接合され、伝熱部材18b(第2伝熱部材)は、端子13bおよび金属層42bの少なくとも一方と接合されている。放熱フィン22は、伝熱部材18aおよび18bの放熱部18e上に接合されている。これにより、複数の端子13aおよび13bから複数の伝熱部材18aおよび18bを介し放熱フィン22に放熱できる。よって、放熱性を向上できる。
 伝熱部材18aおよび18bが絶縁体材料の場合、伝熱部材18aおよび18bは接触していてもよい。伝熱部材18aおよび18bが金属材料の場合、端子13aと13bとを電気的に短絡させないように、伝熱部材18aおよび18bは電気的に分離されている。
[実施例1の変形例6]
 図13(a)から図13(c)は、実施例1の変形例6に係る部品モジュールにおけるコイル部品付近のそれぞれ上面模式図、正面模式図および右側面模式図である。
 図13(a)から図13(c)に示すように、実施例1の変形例6では、コア材14の正面の側面に凹部15aが設けられ、コア材14の上面に凹部15bが設けられている。伝熱部材18の接続部18dの一部は凹部15aにはめ込まれ、伝熱部材18の放熱部18eは凹部15bにはめ込まれている。その他の構成は、実施例1の図6(a)から図6(c)と同じであり説明を省略する。
 図13(a)から図13(c)の実施例1の変形例6のように、コア材14の表面に凹部15aおよび15bが設けられ、伝熱部材18の接続部18dおよび放熱部18eの少なくとも一部は凹部15aおよび15bに埋め込まれている。これにより、コイル部品10を小型化できるため、部品モジュールを小型化できる。伝熱部材18の放熱部18eを凹部15bに埋め込み、放熱部18eの上面とコア材14の上面とを略平坦とする。これにより、コア材14上に放熱フィン22を安定に固定できる。実施例1の変形例1から5においても伝熱部材18の少なくとも一部をコア材14の表面に設けられた凹部に埋め込んでもよい。
[実施例1の変形例7]
 図14(a)から図14(f)は、実施例1の変形例7に係る部品モジュールの製造方法を示すコイル部品付近の正面模式図である。実施例1の変形例7は、伝熱部材18としてリードフレームのような剛体金属部材を用いる例である。
 図14(a)に示すように、コイル部品10を準備する。コイル部品10の端子13aおよび13bのうち接合部13cはコア材14から露出している。コイル部品10には伝熱部材は設けられていない。
 図14(b)に示すように、コイル部品10のコア材14の表面のうち伝熱部材18を接合する領域に接着剤17を塗布する。接着剤17は例えばエポキシ樹脂等の樹脂接着剤である。接着剤17は他の接合部材でもよい。
 図14(c)に示すように、コア材14に伝熱部材18を貼り付ける。伝熱部材18は予めコア材14の表面形状に合わせ折り曲げられた金属板である。熱処理することで、接着剤17を硬化させ、伝熱部材18をコア材14に接着させる。
 図14(d)に示すように、端子13aおよび13bの接合部13cおよび伝熱部材18の接合部18cを接合部材44を介し金属層42上に配置する。熱処理することにより、接合部13cおよび18cは接合部材44を介し金属層42上に接合される。接合部材44がロウ材または導電性ペーストの場合、100℃から300℃の温度にて熱処理する。接合部材44は接合部13cと18cとの間にも入り込む。
 図14(e)に示すように、伝熱部材18の放熱部18e上に接合層20を形成する。接合層20は例えばTIM(Thermal Interface Material)であり、例えばシリコーン樹脂に高熱伝導粒子を含ませた伝熱グリースである。
 図14(f)に示すように、接合層20上に放熱フィン22を接合させる。以上により、実施例1の変形例7の部品モジュールが製造される。実施例1およびその変形例1から6の部品モジュールについても実施例1の変形例7と同様の方法を用い製造できる。
 伝熱部材18を一体の金属板を折り曲げて形成し、図14(c)のように、コア材14に接合する。これにより、伝熱部材18を容易に形成することができる。
[実施例1の変形例8]
 図15(a)から図15(e)は、実施例1の変形例8に係る部品モジュールの製造方法を示すコイル部品付近の正面模式図である。実施例1の変形例8は、伝熱部材18としてめっき金属を用いる例である。
 図15(a)に示すように、コイル部品10の表面に開口62を有するレジスト60を形成する。開口62からコア材14が露出する。開口62は、伝熱部材18が形成される領域に設けられている。
 図15(b)に示すように、開口62内にめっき法を用い伝熱部材18を形成する。めっき法により形成できるめっき層の厚さは、最大で100μm程度であり、数10μmである。めっき層を構成する前にシード層を形成し、シード層上にめっき層を形成してもよい。
 図15(c)に示すように、レジスト60を除去する。これにより、コア材14に接する伝熱部材18が形成される。伝熱部材18は、めっき法により金属層をコイル部品10の全面に形成し、エッチング法を用い所望領域の金属層を除去することにより形成することもできる。しかしながら、金属層の厚さは100μm程度以下と薄いため、金属層をコイル部品10の全面に形成すると、金属層が割れたりかけたりする可能性がある。そこで、図15(a)のように、コイル部品10の表面に開口62を有するレジスト60を形成し、開口62内に伝熱部材18となる金属層を形成することが好ましい。
 図15(d)に示すように、端子13aおよび13bの接合部13cおよび伝熱部材18の接合部18cを接合部材44を介し金属層42上に配置する。熱処理することにより、接合部13cおよび18cは接合部材44を介し金属層42上に接合される。
 図15(e)に示すように、伝熱部材18の放熱部18e上に接合層20を形成する。接合層20上に放熱フィン22を接合させる。以上により、実施例1の変形例8の部品モジュールが製造される。実施例1およびその変形例1から6の部品モジュールについても実施例1の変形例8と同様の方法を用い製造できる。
 図15(b)に示すように、伝熱部材18として、コア材14表面にめっき層を形成する。これにより、容易に伝熱部材18を形成できる。
[実施例1の変形例9]
 図16(a)から図16(d)は、実施例1の変形例9に係る部品モジュール製造方法を示すコイル部品付近の正面模式図である。実施例1の変形例9は、コイル部品10および伝熱部材18を樹脂封止する例である。
 図16(a)に示すように、図15(c)の後に、コイル部品10および伝熱部材18を封止樹脂24により封止する。封止樹脂24は例えばエポキシ樹脂等の絶縁性かつ非磁性樹脂であり、樹脂内に無機フィラーが含まれていてもよい。封止樹脂24の形成には、例えばトランスファモールド法、インジェクション法またはコンプレッション法を用いる。
 図16(b)に示すように、封止樹脂24の上面を研磨することにより、伝熱部材18の上面を露出させる。これにより、封止樹脂24の上面と伝熱部材18の上面は略平坦となる。封止樹脂24には接合部18cを露出する開口25を設ける。
 図16(d)に示すように、端子13aおよび13bの接合部13cおよび伝熱部材18の接合部18cを接合部材44を介し金属層42上に配置する。熱処理することにより、接合部13cおよび18cは接合部材44を介し金属層42上に接合される。接合部材44が例えば半田のとき、溶融した半田のうち余分な半田は開口25に溶け広がる。
 図16(d)に示すように、伝熱部材18の放熱部18e上に接合層20を形成する。接合層20上に放熱フィン22を接合させる。封止樹脂24の上面と放熱部18eの上面は略平坦なため、放熱フィン22の安定性が向上する。以上により、実施例1の変形例9の部品モジュールが製造される。実施例1およびその変形例1から6の部品モジュールについても実施例1の変形例8と同様の方法を用い製造できる。
 図17は、実施例2に係る部品モジュールの平面図である。図18は、実施例2に係る部品モジュールのコイル部品付近の正面模式図である。
 図17および図18に示すように、コイル部品10に伝熱部材18および放熱フィン22は設けられておらず、コイル部品10の側方(-X側)に放熱フィン22が設けられている。放熱フィン22は金属層42上に接合層20を介し接合されている。放熱フィン22の側面およびコア材14の側面は接合層21を介し接合されている。接合層20および21は、例えばロウ材、焼結金属または伝熱グリースである。その他の構成は実施例1と同じであり説明を省略する。
 実施例2によれば、放熱フィン22は金属層42上に接合され、かつコア材14のうち巻き線12の側方を覆う部分に接合されている。これにより、巻き線12において発生した、経路55のように熱は端子13b、金属層42および接合層20を介し放熱フィン22に至る。ここで、放熱フィン22はコア材14に接合されており、放熱フィン22とコイル部品10との距離は非常に小さい。また、金属層42は、例えば銅であり、コア材14より熱伝導率が大きい。よって、経路55により巻き線12の熱が効率よく放出される。
 実施例1およびその変形例並びに実施例2のように、伝熱部材18は端子13aおよび13bおよび金属層42の少なくとも一方にコア材14以外の経路を介し接続されていればよい。これにより、巻き線12において発生した熱は端子13a、13bまたは金属層42からコア材14以外の経路を介し放熱部材まで伝導する。よって、コイル部品10の発熱を抑制し、電力変換効率を向上できる。
 図4(a)、図4(b)および図17の実施例1および2のように、コイル部品10と半導体部品30(例えば電力変換回路のスイッチング素子)とは金属層42を介し接続されている。この様な構成において、コイル部品10に放熱フィン22を接続することで、巻き線12の熱が半導体部品30に至ることを抑制できる。よって、半導体部品30とコイル部品10との距離を小さくできるため、部品モジュールを小型化できる。
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 10 コイル部品
 12 巻き線
 13a、13b 端子
 13c、18c 接合部
 13d、18d 接続部
 14 コア材
 14a 中心部
 14b 外部
 16、24 封止樹脂
 18、18a、18b 伝熱部材
 18e 放熱部
 20、21、32、36 接合層
 22、38 放熱フィン
 30 半導体部品
 30a、30b 電子部品
 34 放熱板
 40 基板
 42、42a、42b 金属層
 44、45、46 接合部材
 

Claims (12)

  1.  基板と、
     前記基板上に設けられた金属層と、
     巻き線と前記巻き線の少なくとも一部を覆うコア材と、前記巻き線を前記金属層に電気的に接続する端子と、を備え、前記基板上に実装されたコイル部品と、
     前記端子および前記金属層の少なくとも一方に前記コア材以外の経路を介し接続された放熱部材と、
    を備える部品モジュール。
  2.  前記端子および前記金属層の少なくとも一方に接合された接合部と、前記コア材のうち前記巻き線上を覆う部分上に接合された放熱部と、前記接合部と前記放熱部とを接続する接続部と、を有し、前記コア材の熱伝導率より高い熱伝導率を有する伝熱部材を備え、
     前記放熱部材は前記伝熱部材の前記放熱部上に接合されている請求項1に記載の部品モジュール。
  3.  前記伝熱部材は金属部材である請求項2に記載の部品モジュール。
  4.  前記伝熱部材の前記接合部は前記端子に接合されている請求項2または3に記載の部品モジュール。
  5.  前記コア材の表面に凹部が設けられ、前記伝熱部材の前記接続部および前記放熱部の少なくとも一部は前記凹部には埋め込まれている請求項2から4のいずれか一項に記載の部品モジュール。
  6.  前記端子は、前記巻き線の両端にそれぞれ接続された第1端子および第2端子を含み、
     前記金属層は、前記第1端子および前記第2端子にそれぞれ接続された第1金属層および第2金属層を含み、
     前記伝熱部材は、前記第1端子および前記第1金属層の少なくとも一方と接合された第1伝熱部材と、前記第2端子および前記第2金属層の少なくとも一方と接合された第2伝熱部材と、を含み、
     前記放熱部材は、前記第1伝熱部材の放熱部および前記第2伝熱部材の放熱部上に接合されている請求項2から5のいずれか一項に記載の部品モジュール。
  7.  前記接続部の少なくとも一部は前記コア材の表面に設けられている請求項1から6のいずれか一項に記載の部品モジュール。
  8.  前記接続部の少なくとも一部は空気中を延伸する請求項1から6のいずれか一項に記載の部品モジュール。
  9.  前記伝熱部材は、一体の金属板である請求項2から8のいずれか一項に記載の部品モジュール。
  10.  前記伝熱部材は、前記コア材表面に形成されためっき層である請求項2から8のいずれか一項に記載の部品モジュール。
  11.  前記放熱部材は前記金属層上に接合され、かつ前記コア材のうち前記巻き線の側方を覆う部分に接合されている請求項1に記載の部品モジュール。
  12.  前記コイル部品に前記金属層を介し接続され、前記基板上に実装されたスイッチング素子を備える請求項1から11のいずれか一項に記載の部品モジュール。
     
PCT/JP2020/014782 2020-03-31 2020-03-31 部品モジュール WO2021199261A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014782 WO2021199261A1 (ja) 2020-03-31 2020-03-31 部品モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014782 WO2021199261A1 (ja) 2020-03-31 2020-03-31 部品モジュール

Publications (1)

Publication Number Publication Date
WO2021199261A1 true WO2021199261A1 (ja) 2021-10-07

Family

ID=77928193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014782 WO2021199261A1 (ja) 2020-03-31 2020-03-31 部品モジュール

Country Status (1)

Country Link
WO (1) WO2021199261A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134815U (ja) * 1991-06-04 1992-12-15 富士通株式会社 トランス実装構造
JPH10106847A (ja) * 1996-09-12 1998-04-24 Siemens Matsushita Components Gmbh & Co Kg 誘導デバイスの強磁性鉄心からの熱放出装置
WO2017038369A1 (ja) * 2015-09-01 2017-03-09 三菱電機株式会社 電力変換装置
WO2017126315A1 (ja) * 2016-01-21 2017-07-27 三菱電機株式会社 回路装置及び電力変換装置
WO2017208745A1 (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 回路装置及び電力変換装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134815U (ja) * 1991-06-04 1992-12-15 富士通株式会社 トランス実装構造
JPH10106847A (ja) * 1996-09-12 1998-04-24 Siemens Matsushita Components Gmbh & Co Kg 誘導デバイスの強磁性鉄心からの熱放出装置
WO2017038369A1 (ja) * 2015-09-01 2017-03-09 三菱電機株式会社 電力変換装置
WO2017126315A1 (ja) * 2016-01-21 2017-07-27 三菱電機株式会社 回路装置及び電力変換装置
WO2017208745A1 (ja) * 2016-05-30 2017-12-07 三菱電機株式会社 回路装置及び電力変換装置

Similar Documents

Publication Publication Date Title
JP6300978B2 (ja) 電力用半導体モジュール
US9871463B2 (en) Power module
US9673129B2 (en) Semiconductor device
JP5841500B2 (ja) スタック型ハーフブリッジ電力モジュール
JP6354845B2 (ja) 半導体モジュール
US10084389B2 (en) Power module
US9973104B2 (en) Power module
JP5678884B2 (ja) 電力変換装置
WO2013018343A1 (ja) 半導体モジュール及びそれを搭載したインバータ
JP5217884B2 (ja) 半導体装置
US10147703B2 (en) Semiconductor package for multiphase circuitry device
US9159715B2 (en) Miniaturized semiconductor device
JP7183594B2 (ja) 半導体装置
US9385107B2 (en) Multichip device including a substrate
JP4061551B2 (ja) 半導体装置
US11538725B2 (en) Semiconductor module arrangement
WO2021199261A1 (ja) 部品モジュール
JP2010251582A (ja) Dc−dcコンバータ
WO2021156958A1 (ja) 半導体モジュールおよび電源モジュール
US10373890B1 (en) Cooling techniques for semiconductor package
WO2021191946A1 (ja) パワーモジュール
WO2021192172A1 (ja) パワーモジュールおよびその製造方法
JP7294403B2 (ja) 半導体装置
WO2021106620A1 (ja) 放熱チップ
US11217512B2 (en) Semiconductor module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20928756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20928756

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP