WO2021197446A1 - 定位方法、装置、***和存储介质 - Google Patents

定位方法、装置、***和存储介质 Download PDF

Info

Publication number
WO2021197446A1
WO2021197446A1 PCT/CN2021/085010 CN2021085010W WO2021197446A1 WO 2021197446 A1 WO2021197446 A1 WO 2021197446A1 CN 2021085010 W CN2021085010 W CN 2021085010W WO 2021197446 A1 WO2021197446 A1 WO 2021197446A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
server
location information
differential data
information
Prior art date
Application number
PCT/CN2021/085010
Other languages
English (en)
French (fr)
Inventor
晏明扬
盛硕
Original Assignee
中移(上海)信息通信科技有限公司
***通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中移(上海)信息通信科技有限公司, ***通信集团有限公司 filed Critical 中移(上海)信息通信科技有限公司
Priority to EP21782057.0A priority Critical patent/EP4131886A4/en
Priority to US17/995,306 priority patent/US20230164733A1/en
Publication of WO2021197446A1 publication Critical patent/WO2021197446A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/52Network services specially adapted for the location of the user terminal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/009Transmission of differential positioning data to mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/45Network directories; Name-to-address mapping
    • H04L61/4505Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols
    • H04L61/4511Network directories; Name-to-address mapping using standardised directories; using standardised directory access protocols using domain name system [DNS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/083Network architectures or network communication protocols for network security for authentication of entities using passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0876Network architectures or network communication protocols for network security for authentication of entities based on the identity of the terminal or configuration, e.g. MAC address, hardware or software configuration or device fingerprint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1095Replication or mirroring of data, e.g. scheduling or transport for data synchronisation between network nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/143Termination or inactivation of sessions, e.g. event-controlled end of session
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/60Context-dependent security
    • H04W12/63Location-dependent; Proximity-dependent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/07Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections
    • G01S19/073Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing data for correcting measured positioning data, e.g. DGPS [differential GPS] or ionosphere corrections involving a network of fixed stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information

Definitions

  • This application belongs to the field of communication technology, and in particular relates to positioning methods, devices, systems, and storage media.
  • the high-precision positioning of the vehicle in the automatic driving process is the first element to ensure the safety of vehicle driving.
  • the "cloud + terminal” positioning mode includes a cloud server and a satellite positioning terminal.
  • the cloud server combines the differential data obtained by the ground reference station and the global satellite ephemeris. Furthermore, the differential positioning result of the satellite positioning terminal is determined and fed back to the satellite positioning terminal.
  • the embodiments of the present application provide a positioning method, device, system, and storage medium, which can greatly reduce network delay and quickly return terminal positioning results.
  • a positioning method which is applied to a first server, and the method includes:
  • the first location information includes the identity of the terminal
  • the first position information is calculated to obtain the second position information
  • a positioning method which is applied to a terminal, and the method includes:
  • the first location information includes the identity of the terminal
  • a positioning method which is applied to a second server, and the method includes:
  • the differential data request includes first location information; the first location information includes the identity of the terminal;
  • a positioning device applied to a first server, and the device includes:
  • the receiving module is configured to receive the first location information sent by the terminal; the first location information includes the identity of the terminal;
  • a sending module configured to send a differential data request to a second server, the differential data request includes first location information, and the differential data request is used by the second server to determine the differential data of the terminal;
  • the receiving module is further configured to receive the differential data sent by the second server;
  • the calculation module is configured to calculate the first position information according to the difference data to obtain the second position information
  • the sending module is also configured to send second location information to the terminal.
  • a positioning device which is applied to a terminal, and the device includes:
  • a sending module configured to send first location information to the first server; the first location information includes the identity of the terminal;
  • the receiving module is configured to receive the second location information sent by the first server.
  • a positioning device which is applied to a second server, and the device includes:
  • the receiving module is configured to receive a differential data request sent by the first server; the differential data request includes first location information; the first location information includes the identity of the terminal;
  • the determining module is configured to determine the differential data of the terminal according to the differential data request;
  • the sending module is configured to send differential data to the first server.
  • a positioning system in a seventh aspect, includes: a terminal, at least one first server, and a second server;
  • the terminal is configured to send first location information to the first server; the first location information includes the identity of the terminal;
  • the first server is configured to receive first location information and send a differential data request to the second server; the differential data request includes the first location information, and the differential data request is used by the second server to determine the differential data of the terminal;
  • the second server is configured to receive the differential data request, and determine the differential data of the terminal according to the differential data request; the differential data request includes the first location information; the first location information includes the identity of the terminal;
  • the first server is further configured to receive the differential data sent by the second server, and calculate the first location information according to the differential data to determine the second location information of the terminal;
  • the terminal is also used to receive the second location information sent by the first server.
  • a computer storage medium stores computer program instructions.
  • the method in the first aspect or any possible implementation manner of the first aspect is implemented, Or implement the method in the second aspect or any possible implementation manner of the second aspect, or implement the method in the third aspect or any possible implementation manner of the third aspect.
  • the first location information sent by the terminal is received through the first server; the first location information includes the identity of the terminal; the differential data request is sent to the second server, and the differential data request includes the first A location information, the differential data request is used by the second server to determine the differential data of the terminal; receive the differential data sent by the second server; calculate the first location information according to the differential data to obtain the second location information; send the first location information to the terminal Second, the location information, and then quickly return the terminal positioning result, so that the terminal can greatly reduce the network delay when determining the precise location.
  • FIG. 1 is a schematic structural diagram of a positioning system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a connection between a first server and a second server according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a first server provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an MEC module provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a UPF shunt module provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a second server provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another positioning method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another positioning method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of yet another positioning method provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another positioning device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another positioning device provided by an embodiment of the present application.
  • the "cloud + terminal” positioning mode includes a cloud server and a satellite positioning terminal.
  • the cloud server combines the differential data obtained by the ground reference station and the global satellite ephemeris, and then To determine the differential positioning result of the satellite positioning terminal, and feed it back to the satellite positioning terminal.
  • Multi-access Mobile Edge Computing is a key technology for converging services and networks in the 5G era.
  • Mobile edge computing extends the computing, storage and other resources and capability platforms of the cloud computing center to the edge of the operator's network, providing network capability opening and Internet Technology (IT) services, environments and clouds near mobile users. Calculate ability.
  • IT Internet Technology
  • the nearby service characteristics of mobile edge computing meet the needs of real-time data processing at the business level and the requirements for data security and reliability at the customer level.
  • Mobile edge computing provides cloud computing functions for application developers and content, as well as an IT service environment at the edge of the network. This environment is characterized by ultra-low latency and high bandwidth, as well as applications that can take advantage of real-time access to wireless network information.
  • the embodiments of the present application provide a positioning method, device, system, and storage medium, which can greatly reduce network delay and quickly return terminal positioning results.
  • Fig. 1 is a schematic structural diagram of a positioning system provided by an embodiment of the present application.
  • the positioning system provided by the embodiment of the present application includes a first server 101, a second server 102 and a terminal 103.
  • the second server 102 is connected to multiple first servers 101 to form a star network structure. All information flow synchronization and data interaction are performed through the second server 102, and the second server 102 maintains Highly available state. At the same time, all data is synchronized based on the data of the second server 102, ensuring the timeliness and unity of the data, and coordinating each first server 101 to jointly provide terminal differential calculation services.
  • the first server may be an edge server
  • the second server may be a central server.
  • the first server 101 is mainly used to perform a differential calculation on the first location information of the terminal using the differential data sent by the second server 102.
  • the first server 101 may include a terminal difference analysis module, an MEC module, and a user plane function (UPF) function offloading module, as shown in FIG. 3.
  • UPF user plane function
  • MEC module is used to perform differential calculations on differential data and manage the distribution services of the UPF distribution module.
  • MEC modules may include: UPF gateway (Gateway-UPF, GW-U) UPF, value-added services (Value-Added Services, VAS), third-party applications (3rd Application), application programming interface (Application Programming Interface, API) and MEC Network Functions Virtualization Infrastructure (NFVI), as shown in Figure 4.
  • GW-U UPF consists of control panel network elements that sink 5G core network to edge computing.
  • VAS is integrated on the MEP platform and consists of value-added services provided by operators to APP.
  • 3rd Apps are integrated on the Management Entity (ME) platform and are edge applications.
  • API is responsible for the opening of network capabilities and platform capabilities;
  • MEC NFVI is responsible for providing MEC hardware foundation and infrastructure as a service (Infrastructure as a Service, IaaS) equipment.
  • the UPF shunt module is used to shunt the corresponding identity, terminal type information, etc. when the terminal requests the second location information.
  • the UPF offload module includes Authentication Management Function (AMF) as access and mobility management, Session Management Function (SMF) as session management, and Wireless Access Network (RAN) as On the wireless side, the domain name (Domain Name, DN) is the domain name resolution service, and UPF is divided into uplink class filter and protocol data unit (Protocol Data Unit, PDU) session anchor (session anchor), as shown in Figure 5. Show.
  • the AMF is responsible for the access authentication between the terminal and the MEC node, which is based on the user name, password and security key uploaded by the terminal.
  • the AMF node After passing the authentication, the AMF node uploads the device information to the second server as a basis for re-accessing when switching the first server across regions.
  • SMF is responsible for session management, the automatic allocation and management of client addresses, and the selection and control of part of the data stream upload.
  • RAN is the wireless side, which is composed of a series of transmission entity locks between the switch and the relevant user network interface, and provides the required transmission bearing capacity and wireless implementation system for the transmission of service data streams.
  • DN domain name resolution service all domain name resolution services of UPF nodes are abstracted as a node, responsible for the conversion process from domain name to IP address, and bind a subdirectory with the domain name in the annotation of this IP address.
  • N1 Application data package and life cycle management data.
  • the life cycle is divided into 4 stages, activation, ready, running, and death.
  • a single data interaction process can be flexibly switched among the other three states before death;
  • N2 domain name system protocol (Domain Name System, DNS) is activated to wake up, and at the same time, part of the DNS-based request distribution can be realized;
  • DNS Domain Name System
  • N3 Open up the connection between the first server and the second server, interact with all MEC communication conditions and data stream transmission conditions;
  • N4 The data stream is transmitted upstream and downstream through the session, including service data, device information, newly defined differential data format, etc.;
  • the terminal difference analysis module is used to plan computing resources, which can reduce the power consumption of the terminal and avoid the problem of insufficient terminal power. And it can break the limitation of insufficient terminal computing power and improve the speed and accuracy of differential data calculation.
  • the terminal difference analysis module is also used to maintain the connection state of the first server 101 and the terminal 103, interact with the first location information of the terminal in real time, and return the second location information of the terminal.
  • the terminals within the connection range of the first server can authenticate the terminals by means of user names and passwords.
  • the terminal can connect to the first server.
  • the terminal can use the terminal difference resolution service through the terminal difference resolution calculation module.
  • the first server After establishing a connection with the terminal, the first server uploads the terminal's identity and terminal type information to the second server. The first server will also send connection information to the second server. The second server saves the terminal's identity, terminal type information and connection information, such as the time when the terminal establishes a connection with the first server, etc., and request information. If the terminal that has established a connection with the first server interrupts the connection or goes beyond the connection range, when a connection with another first server is established again, the first server device will query the second server whether there is connection information for the terminal. If so, it will directly establish a connection, provide a terminal difference analysis service, and the second server synchronizes the latest historical information of the terminal, such as the second coordinate information of the terminal within the historical time. If not, the terminal will be authenticated by the user name and password. When the authentication is passed, the terminal can connect to the first server. The first server provides the terminal difference resolution service to the terminal.
  • the second server 102 is mainly used to manage multiple first servers connected to the second server, integrate and synchronize data of multiple first servers, and process and distribute differential data in a designated area.
  • the second server includes an edge hybrid cloud management module, an edge computing network element orchestration module, a Beidou differential calculation module, an edge computing application container platform, a heterogeneous edge computing management module, etc.
  • the platform is built based on the container (Docker) and the container orchestration engine (Kubernetes) to facilitate containerized management of the first server, and dynamically adjust the network and server resources of the first server, as shown in Figure 6.
  • the Beidou difference analysis module is used to measure the positioning and navigation satellite signals, and determine the differential data of the terminal according to the measured positioning and navigation satellite signals. For each managed first server, a differential data model is established for calculation within the service range of the first server, and the differential data of each first server is calculated and stored and updated.
  • the positioning system provided in the embodiment of the present application further includes a Beidou reference station 104 and a base station 105.
  • the Beidou reference station is used to receive positioning and navigation satellite signals sent by satellites.
  • the Beidou base station sends positioning and navigation satellite signals to the second server.
  • the base station 105 is used to provide an interface for the first server to access the Internet.
  • the method for realizing positioning by the first server 101, the second server 102 and the terminal 103 in the positioning system will be described in detail below.
  • the manner of establishing a connection between the terminal 103 and the first server 101 includes establishing a connection for the first time and establishing a connection not for the first time.
  • establishing a connection between the terminal 103 and the first server 101 for the first time includes:
  • the terminal 103 sends a connection request to the first server 101.
  • the connection request includes the user name and password of the terminal;
  • the first server 101 After receiving the connection request sent by the terminal 103, the first server 101 authenticates the terminal according to the user name and password;
  • the first server 101 When the verification of the terminal is passed, the first server 101 establishes a connection with the terminal 103.
  • the connection request refers to a request for the terminal 103 to initiate a connection to the first server 101.
  • the connection request includes the user name and password of the terminal.
  • the first server 101 can verify whether the user name and password of the terminal 103 match. When the user name and password of the terminal do not match, the terminal 103 cannot connect to the first server 101; when the user name and password of the terminal match, the terminal 103 can communicate with the first server. 101 connections.
  • the connection request also includes the terminal's identity and terminal type information.
  • the first server 101 After the first server 101 receives the connection request, it will send the identification and terminal type information of the terminal in the connection request to the second server 102. After receiving the identity identifier and terminal type information of the terminal, the second server 102 saves the identity identifier and terminal type information of the terminal.
  • the establishment of a connection between the terminal 103 and the first server 101 for the first time includes:
  • the first server 101 sends a query request to the second server 102; the query request includes the identity of the terminal and the time stamp of the terminal.
  • the second server determines whether the terminal corresponding to the identity of the terminal is stored in the second server. When the terminal corresponding to the identity of the terminal is stored in the second server, and the timestamp of the terminal is not less than the preset timestamp, the second server sends The first server sends a connection instruction;
  • the first server receives the connection instruction, and establishes a communication connection with the terminal according to the connection instruction.
  • the time stamp of the terminal refers to the time stamp when the terminal disconnected from the first server 101 last time.
  • the second server 102 saved the identity of the terminal, and when the terminal was disconnected from the first server, the time stamp when the terminal was disconnected from the first server was saved in the first server.
  • the second server When the second server is connected to multiple first servers, the terminal corresponding to the identity of the terminal and the time stamp of the last disconnection of the terminal from the first server are stored in the second server, so that the terminal is connected to the multiple first server devices. To switch between.
  • the terminal may establish a connection with multiple first servers during the movement.
  • the first server will query the relevant information of the terminal in the second server. If the relevant information of the terminal, such as the terminal's identity, is saved, and the time for the terminal to disconnect from the first server has not exceeded
  • the preset time threshold can directly establish the connection and restore the service, and at the same time synchronize the differential settlement data of the mobile terminal within the preset time period to the first server where the terminal re-establishes the connection.
  • the second server is connected to the first server A and the second server B.
  • the terminal moves beyond the range of the first server A, it will automatically disconnect the network connection with the first server A and establish a connection with the first server B.
  • the connection process is as follows:
  • the terminal sends a connection request to the first server B.
  • the connection request may include the identity of the terminal and the time stamp of the terminal.
  • the connection request may also include terminal location information, terminal user name and password.
  • the first server B sends a query request to the second server, and the query request includes the identity of the terminal and the timestamp of the terminal;
  • the second server queries the database, and inquires whether the terminal corresponding to the identity is stored in the database according to the identity of the terminal in the stored connection history table. If the terminal exists, the connection permission instruction is returned. If there is no return verification instruction;
  • the first server B judges whether the communication connection can be directly established according to the instruction returned by the second server. If the instruction is a connection instruction, the first server B establishes a communication connection with the terminal, and can receive the first location information of the terminal. If the instruction is a verification instruction, the first server B verifies the user name and password of the terminal in the connection request. After the verification is passed, the first server B establishes a communication connection with the terminal.
  • the positioning system provided by the embodiment of the present application implements high-precision positioning through the following steps:
  • the terminal 103 sends first location information to the first server 101.
  • the first location information includes the identity of the terminal.
  • the first location information refers to information that can indicate the approximate location of the terminal.
  • the accuracy of the first location information cannot meet the requirements for terminals or devices that require high-precision positioning.
  • the data format in the Global Positioning System (Global Positioning System, GPS) protocol may be used to indicate the approximate location of the terminal.
  • the first location information may also include terminal type information and/or terminal location information.
  • the terminal type information includes mobile terminals, fixed terminals and delay resolution terminals.
  • a mobile terminal refers to a terminal that needs the first server 101 to be able to respond to the differential data requested by it in real time.
  • a fixed terminal refers to a terminal that requests second location information from the first server 101 according to a preset frequency, for example, requests second location information from the first server every half an hour.
  • the delay solution terminal refers to a terminal that is not sensitive to time. For example, when the delay solution terminal requests second location information from the first server 101, the first server 101 and the second server 102 can be in the first server 101 and the second server 101. When the server 102 is in an idle state or when the calculation pressure is low, it responds to the request of the delayed solution terminal.
  • the terminal location information may include sentence identification information, world time information, latitude information, latitude hemisphere information, longitude information, and longitude hemisphere information.
  • the sentence identification information is the identification information used to identify the message sequence.
  • Latitude information, latitude hemisphere information, longitude information and longitude hemisphere information can indicate the current location of the terminal.
  • the first server 101 receives the first location information sent by the terminal, and sends a differential data request to the second server 102; the differential data request includes the first location information.
  • the first server 101 After receiving the first location information, the first server 101 generates a differential data request according to the first location information.
  • the first server 101 sends the differential data request to the second server 102.
  • the first location information includes the identity of the terminal.
  • the second server can determine the terminal that obtains the second location information according to the identity of the terminal.
  • the first location information further includes terminal type information.
  • the first server 101 After receiving the first location information sent by the terminal, the first server 101 will mark the terminal according to the terminal type information.
  • the terminal type information is a mobile terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as an information flow of the emergency queue, and save the terminal identity and terminal type information to the mobile terminal device database.
  • the terminal type information is a fixed terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as an information flow of a regular queue, and save the terminal's identity and terminal type information to the fixed terminal device database.
  • the terminal type information is a delayed solution terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as the information flow of the suspended queue, and save the terminal's identity and terminal type information to the delayed solution terminal Device database.
  • the UPF shunt module enables the terminal to transmit messages in an independent queue based on the terminal type information, avoiding the congestion of all messages during the peak period of information transmission.
  • Corresponding terminals in different independent queues request location services at different frequencies.
  • the frequency at which the mobile terminal requests the location service may be once per second, and the second location information needs to be parsed in real time. Therefore, the mobile terminal needs to enter the emergency queue for information processing, prioritize scheduling with the local resources of the first server, and request resources from the second server when the local resources are insufficient. Dynamic allocation and management.
  • the frequency of a fixed terminal requesting location service is generally once every 30 minutes, once every 60 minutes, or a longer time interval.
  • the connection between the first server and the terminal does not need to be maintained for a long time, so the terminal can request a re-establishment of the connection with the first server every time a location service is requested, thereby saving memory resources and network resources of the first server.
  • the fixed terminal enters the regular queue, and the regular queue messages are sent to the second server to request differential data after the first server performs simple filtering processing according to the rules, thereby alleviating the calculation pressure of the first server.
  • the delay calculation terminal is generally used to analyze weather forecasts and other related locations. The analysis frequency is mostly once or twice a year. The amount of data is large. Therefore, the first server puts the request into the suspension queue, and forwards the request to the second server.
  • the server is responsible for caching all historical data and unified analysis. Reasonably allocate request queues, use the difference in computing power between the first server and the second server, improve the terminal position calculation capabilities of the entire system, and use computing resources and network resources reasonably to reduce network latency.
  • the second server 102 receives the differential data request sent by the first server, and determines the differential data of the terminal according to the differential data request.
  • the differential data request includes the first location information, the time stamp of the first server, and the identity of the first server.
  • the second server 102 can determine the differential data of the terminal according to the differential data request.
  • the second server may determine the service area information of the first server according to the identity of the first server; according to the first location information and the service area information of the first server, Determine the difference data.
  • the service area information of the first server is determined according to the identity of the first server.
  • the database of the second server 102 stores the information of the first server, such as the identity of the first server, and the service area information corresponding to the first server.
  • the service area information of the first server is essentially divided based on the location of the first server 101. For example, taking the location coordinates of the first server as the center of the circle, and the area with a radius of 10 km is the service area of the first server. For example, the service area information of the first server is centered at 39"26' north latitude and the radius is 10Km.
  • the second server determines the differential data, the area information corresponding to the differential data needs to correspond to the service area information of the first server .
  • the second server 102 needs to determine the sensitivity of the terminal to time according to the terminal type information.
  • the terminal type information is a mobile terminal
  • the terminal is highly sensitive to time, and the second server will issue the pre-calculated differential data to the first server, thereby reducing the time delay.
  • the terminal type information is a fixed terminal
  • the terminal has low sensitivity to time
  • the second server can calculate the differential data after receiving the differential data request.
  • the terminal type information is a delayed solution terminal, the terminal has a very low sensitivity to time, and the second server can determine the differential data when the second server is idle or when the computing resources of the second server are sufficient.
  • Combining terminal type information to determine differential data can improve the terminal position calculation capability of the entire positioning system, rationally use computing resources and network resources, and greatly reduce network delays.
  • the first server 101 receives the differential data sent by the second server 102.
  • the first server 101 calculates the first location information according to the difference data, and determines the second location information of the terminal.
  • the second location information refers to information that can indicate the precise location of the terminal.
  • the accuracy of the second position information is higher than the accuracy of the first position information.
  • the process of calculating the first location information by the first server may be to correct the terminal location information in the first location information of the terminal according to the difference data, so as to obtain the second location information with higher accuracy.
  • the terminal 103 receives the second location information sent by the first server 101.
  • the first server 101 After obtaining the second location information of the terminal 103, the first server 101 also backs up the second location information of the terminal 103 corresponding to the identity of the terminal, and sends the second location information of the terminal to the second server 102.
  • the second server 102 saves the second location information of the terminal 103 as the historical location information of the terminal.
  • the historical location information also includes the identity of the terminal, the location time of the second location information, and terminal type information.
  • the second server 102 saves the historical positioning information of the terminal, so that other first servers 101 connected to the second server 102 can query or synchronize the historical positioning information of the terminal.
  • the positioning system provided by the embodiment of the present application uses a high-precision positioning platform based on edge computing constructed by the "cloud + edge + end" model to reduce bandwidth pressure on the cloud side and disperse the computing pressure on the cloud side.
  • Using the first server to solve the difference data can greatly improve the computing power and the accuracy of the solution.
  • the shortened physical distance between the first server and the terminal and the type of the terminal are used to determine the differential data, which reduces the interaction delay caused by network communication.
  • the positioning method based on the first server side will be described in detail below.
  • FIG. 8 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • the positioning method provided by the embodiment of the present application, applied to the first server 101 includes:
  • S801 Receive the first location information sent by the terminal; the first location information includes the identity of the terminal.
  • the first location information refers to information that can indicate the approximate location of the terminal.
  • the accuracy of the first location information cannot meet the requirements for terminals or devices that require high-precision positioning.
  • the data format in the global positioning system protocol can be used to indicate the approximate location of the terminal.
  • the first location information may also include terminal type information and/or terminal location information.
  • the terminal type information includes mobile terminals, fixed terminals and delay resolution terminals.
  • a mobile terminal refers to a terminal that needs the first server 101 to be able to respond to the differential data requested by it in real time.
  • a fixed terminal refers to a terminal that requests second location information from the first server 101 according to a preset frequency, for example, requests second location information from the first server every half an hour.
  • the delay solution terminal refers to a terminal that is not sensitive to time. For example, when the delay solution terminal requests second location information from the first server 101, the first server 101 and the second server 102 can be in the first server 101 and the second server 101. When the server 102 is in an idle state or when the calculation pressure is low, it responds to the request of the delayed solution terminal.
  • the terminal location information may include sentence identification information, world time information, latitude information, latitude hemisphere information, longitude information, and longitude hemisphere information.
  • the sentence identification information is the identification information used to identify the message sequence.
  • Latitude information, latitude hemisphere information, longitude information and longitude hemisphere information can indicate the current location of the terminal.
  • a differential data request is generated according to the first location information.
  • the differential data request is sent to the second server 102.
  • the first location information includes the identity of the terminal.
  • the second server can determine the terminal that obtains the second location information according to the identity of the terminal.
  • the first location information further includes terminal type information.
  • the first server 101 After receiving the first location information sent by the terminal, the first server 101 will mark the terminal according to the terminal type information.
  • the terminal type information is a mobile terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as an information flow of the emergency queue, and save the terminal identity and terminal type information to the mobile terminal device database.
  • the terminal type information is a fixed terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as an information flow of a regular queue, and save the terminal's identity and terminal type information to the fixed terminal device database.
  • the terminal type information is a delayed solution terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as the information flow of the suspended queue, and save the terminal's identity and terminal type information to the delayed solution terminal Device database.
  • the UPF shunt module enables the terminal to transmit messages in an independent queue based on the terminal type information, avoiding the congestion of all messages during the peak period of information transmission.
  • Corresponding terminals in different independent queues request location services at different frequencies.
  • the frequency at which the mobile terminal requests the location service may be once per second, and the second location information needs to be parsed in real time. Therefore, the mobile terminal needs to enter the emergency queue for information processing, prioritize scheduling with the local resources of the first server, and request resources from the second server when the local resources are insufficient. Dynamic allocation and management.
  • the frequency of a fixed terminal requesting location service is generally once every 30 minutes, once every 60 minutes, or a longer time interval.
  • the connection between the first server and the terminal does not need to be maintained for a long time, so the terminal can request a re-establishment of the connection with the first server every time a location service is requested, thereby saving memory resources and network resources of the first server.
  • the fixed terminal enters the regular queue, and the regular queue messages are sent to the second server to request differential data after the first server performs simple filtering processing according to the rules, thereby alleviating the calculation pressure of the first server.
  • the delay calculation terminal is generally used to analyze weather forecasts and other related locations. The analysis frequency is mostly once or twice a year. The amount of data is large. Therefore, the first server puts the request into the suspension queue, and forwards the request to the second server.
  • the server is responsible for caching all historical data and unified analysis. Reasonably allocate request queues, use the difference in computing power between the first server and the second server, improve the terminal position calculation capabilities of the entire system, and use computing resources and network resources reasonably to reduce network latency.
  • S802 Send a differential data request to the second server, where the differential data request includes the first location information, and the differential data request is used by the second server to determine the differential data of the terminal.
  • the differential data request includes the terminal's identity, terminal type information, and location information of the first server. According to the terminal's identity and terminal type information, a differential data request is sent to the second server. After receiving the differential data request, the second server can determine the differential data of the terminal according to the identity information of the terminal, the terminal type information, and the location information of the first server in the differential data request.
  • S803 Receive differential data sent by the second server.
  • S804 Calculate the first location information according to the difference data, and determine the second location information of the terminal.
  • S805 Send the second location information to the terminal.
  • the first server 101 After obtaining the second location information of the terminal 103, the first server 101 also backs up the second location information of the terminal 103 corresponding to the identity of the terminal, and sends the second location information of the terminal to the second server 102.
  • the second server 102 saves the second location information of the terminal 103 as the historical location information of the terminal.
  • the historical location information also includes the identity of the terminal, the location time of the second location information, and terminal type information.
  • the second server 102 saves the historical positioning information of the terminal, so that other first servers connected to the second server can query or synchronize the historical positioning information of the terminal.
  • the terminal 103 needs to establish a connection with the first server 101 before communicating with the first server 101.
  • the manner of establishing a connection between the terminal 103 and the first server 101 includes establishing a connection for the first time and establishing a connection not for the first time.
  • the terminal 103 may send a connection request to the first server 101.
  • the connection request includes the user name and password of the terminal;
  • the first server 101 After receiving the connection request sent by the terminal 103, the first server 101 authenticates the terminal according to the user name and password;
  • the first server 101 When the verification of the terminal is passed, the first server 101 establishes a connection with the terminal 103.
  • the connection request refers to a request for the terminal 103 to initiate a connection to the first server 101.
  • the connection request includes the user name and password of the terminal.
  • the first server 101 can verify whether the user name and password of the terminal 103 match. When the user name and password of the terminal do not match, the terminal 103 cannot connect to the first server 101; when the user name and password of the terminal match, the terminal 103 can communicate with the first server. 101 connections.
  • the connection request also includes the terminal's identity and terminal type information.
  • the first server 101 After the first server 101 receives the connection request, it will send the identification and terminal type information of the terminal in the connection request to the second server 102. After receiving the identity identifier and terminal type information of the terminal, the second server 102 saves the identity identifier and terminal type information of the terminal.
  • the establishment of a connection between the terminal 103 and the first server 101 for the first time includes:
  • the first server 101 sends a query request to the second server 102; the query request includes the identity of the terminal and the timestamp of the terminal.
  • the second server determines whether the terminal corresponding to the identity of the terminal is stored in the second server. When the terminal corresponding to the identity of the terminal is stored in the second server, and the timestamp of the terminal is not less than the preset timestamp, the second server sends The first server sends a connection instruction;
  • the first server receives the connection instruction, and establishes a communication connection with the terminal according to the connection instruction.
  • the time stamp of the terminal refers to the time stamp when the terminal disconnected from the first server 101 last time.
  • the second server 102 saved the identity of the terminal, and when the terminal was disconnected from the first server, the time stamp when the terminal was disconnected from the first server was saved in the first server.
  • the second server When the second server is connected to multiple first servers, the terminal corresponding to the identity of the terminal and the time stamp of the last disconnection of the terminal from the first server are stored in the second server, so that the terminal is connected to the multiple first server devices. To switch between.
  • the terminal may establish a connection with multiple first servers during the movement.
  • the first server will query the relevant information of the terminal in the second server. If the relevant information of the terminal, such as the terminal's identity, is saved, and the time for the terminal to disconnect from the first server has not exceeded
  • the preset time threshold can directly establish the connection and restore the service, and at the same time synchronize the differential settlement data of the mobile terminal within the preset time period to the first server where the terminal re-establishes the connection.
  • the second server is connected to the first server A and the second server B.
  • the terminal moves beyond the range of the first server A, it will automatically disconnect the network connection with the first server A and establish a connection with the first server B.
  • the connection process is as follows:
  • the terminal sends a connection request to the first server B.
  • the connection request may include the identity of the terminal and the time stamp of the terminal.
  • the connection request may also include terminal location information, terminal user name and password.
  • the first server B sends a query request to the second server, and the query request includes the identity of the terminal and the timestamp of the terminal;
  • the second server queries the database, and inquires whether the terminal corresponding to the identity is stored in the database according to the identity of the terminal in the stored connection history table. If the terminal exists, the connection permission instruction is returned. If there is no return verification instruction;
  • the first server B judges whether the communication connection can be directly established according to the instruction returned by the second server. If the instruction is a connection instruction, the first server B establishes a communication connection with the terminal, and can receive the first location information of the terminal. If the instruction is a verification instruction, the first server B verifies the user name and password of the terminal in the connection request. After the verification is passed, the first server B establishes a communication connection with the terminal.
  • the first location information sent by the terminal is received through the first server; the first location information includes the identity of the terminal; the differential data request is sent to the second server, and the differential data request includes the first location information,
  • the differential data request is used by the second server to determine the differential data of the terminal; to receive the differential data sent by the second server; to calculate the first location information according to the differential data to obtain the second location information; to send the second location information to the terminal, and then Quickly return to the terminal positioning result, so that the network delay is greatly reduced when the terminal determines the precise location.
  • the following describes the positioning method based on the terminal side in detail.
  • FIG. 9 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • the positioning method provided by the embodiment of the present application, applied to the terminal 103 includes:
  • S901 Send first location information to the first server; the first location information includes the identity of the terminal.
  • S902 Receive the second location information sent by the first server.
  • the first location information refers to information that can indicate the approximate location of the terminal.
  • the accuracy of the first location information cannot meet the requirements for terminals or devices that require high-precision positioning.
  • the data format in the global positioning system protocol can be used to indicate the approximate location of the terminal.
  • the first location information may also include terminal type information and/or terminal location information.
  • the terminal type information includes mobile terminals, fixed terminals and delay resolution terminals.
  • a mobile terminal refers to a terminal that needs the first server 101 to be able to respond to the differential data requested by it in real time.
  • a fixed terminal refers to a terminal that requests second location information from the first server 101 according to a preset frequency, for example, requests second location information from the first server every half an hour.
  • the delay solution terminal refers to a terminal that is not sensitive to time. For example, when the delay solution terminal requests second location information from the first server 101, the first server 101 and the second server 102 can be in the first server 101 and the second server 101. When the server 102 is in an idle state or when the calculation pressure is low, it responds to the request of the delayed solution terminal.
  • the terminal location information may include sentence identification information, world time information, latitude information, latitude hemisphere information, longitude information, and longitude hemisphere information.
  • the sentence identification information is the identification information used to identify the message sequence.
  • Latitude information, latitude hemisphere information, longitude information and longitude hemisphere information can indicate the current location of the terminal.
  • the first server 101 After receiving the first location information, the first server 101 generates a differential data request according to the first location information.
  • the differential data request is sent to the second server 102.
  • the first location information includes the identity of the terminal.
  • the second server can determine the terminal that obtains the second location information according to the identity of the terminal.
  • the first location information further includes terminal type information.
  • the first server 101 After receiving the first location information sent by the terminal, the first server 101 will mark the terminal according to the terminal type information.
  • the terminal type information is a mobile terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as an information flow of the emergency queue, and save the terminal identity and terminal type information to the mobile terminal device database.
  • the terminal type information is a fixed terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as an information flow of a regular queue, and save the terminal's identity and terminal type information to the fixed terminal device database.
  • the terminal type information is a delayed solution terminal
  • the UPF shunt module in the first server 101 will mark the information flow of the terminal as the information flow of the suspended queue, and save the terminal's identity and terminal type information to the delayed solution terminal Device database.
  • the UPF shunt module enables the terminal to transmit messages in an independent queue based on the terminal type information, avoiding the congestion of all messages during the peak period of information transmission.
  • Corresponding terminals in different independent queues request location services at different frequencies.
  • the frequency at which the mobile terminal requests the location service may be once per second, and the second location information needs to be parsed in real time. Therefore, the mobile terminal needs to enter the emergency queue for information processing, prioritize scheduling with the local resources of the first server, and request resources from the second server when the local resources are insufficient. Dynamic allocation and management.
  • the frequency of a fixed terminal requesting location service is generally once every 30 minutes, once every 60 minutes, or a longer time interval.
  • the connection between the first server and the terminal does not need to be maintained for a long time, so the terminal can request a re-establishment of the connection with the first server every time a location service is requested, thereby saving memory resources and network resources of the first server.
  • the fixed terminal enters the regular queue, and the regular queue messages are sent to the second server to request differential data after the first server performs simple filtering processing according to the rules, thereby alleviating the calculation pressure of the first server.
  • the delay calculation terminal is generally used to analyze weather forecasts and other related locations. The analysis frequency is mostly once or twice a year. The amount of data is large. Therefore, the first server puts the request into the suspension queue, and forwards the request to the second server.
  • the server is responsible for caching all historical data and unified analysis. Reasonably allocate request queues, use the difference in computing power between the first server and the second server, improve the terminal position calculation capabilities of the entire system, and use computing resources and network resources reasonably to reduce network latency.
  • the first position information is sent to the first server, and the first position information includes the identity of the terminal; the second position information sent by the first server is received, and the positioning result of the terminal is quickly returned, so that the terminal
  • the network delay is greatly reduced when determining the precise location.
  • the first server sends a target message to the second server, and the target message includes the identity of the terminal, terminal type information, and second location information for the second server to save the target message.
  • the first server may send a target message to the second server, so that the second target server can save the target information;
  • the target information includes the identity of the terminal, terminal type information, and second location information.
  • the positioning method based on the second server side will be described in detail below.
  • FIG. 10 is a schematic flowchart of a positioning method provided by an embodiment of the present application.
  • the positioning method provided by the embodiment of the present application, applied to the second server 102 includes:
  • S1001 Receive a differential data request sent by the first server; the differential data request includes first location information; and the first location information includes the identity of the terminal.
  • the differential data request includes the first location information.
  • the differential data request may also include the timestamp of the first server and the identity of the first server.
  • S1002 Determine the differential data of the terminal according to the differential data request.
  • the second server may determine the differential data of the terminal according to the differential data request.
  • the second server may determine the service area information of the first server according to the identity of the first server; according to the first location information and the service area information of the first server, Determine the difference data.
  • the service area information of the first server is determined according to the identity of the first server.
  • the database of the second server 102 stores the information of the first server, such as the identity of the first server, and the service area information corresponding to the first server.
  • the service area information of the first server is essentially divided based on the location of the first server 101. For example, taking the location coordinates of the first server as the center of the circle, and the area with a radius of 10 km is the service area of the first server. For example, the service area information of the first server is centered at 39"26' north latitude and the radius is 10Km.
  • the second server determines the differential data, the area information corresponding to the differential data needs to correspond to the service area information of the first server .
  • the second server 102 needs to determine the sensitivity of the terminal to time according to the terminal type information.
  • the terminal type information is a mobile terminal
  • the terminal is highly sensitive to time, and the second server will issue the pre-calculated differential data to the first server, thereby reducing the time delay.
  • the terminal type information is a fixed terminal
  • the terminal has low sensitivity to time
  • the second server can calculate the differential data after receiving the differential data request.
  • the terminal type information is a delayed solution terminal, the terminal has a very low sensitivity to time, and the second server can determine the differential data when the second server is idle or when the computing resources of the second server are sufficient.
  • Combining terminal type information to determine differential data can improve the terminal position calculation capability of the entire positioning system, rationally use computing resources and network resources, and greatly reduce network delays.
  • S1003 Send differential data to the first server.
  • the positioning method provided by the embodiment of the present application receives a differential data request sent by a first server; the differential data request includes first location information; the first location information includes the identity of the terminal; and the differential data of the terminal is determined according to the differential data request; Send differential data to the first server for the first server to calculate the first location information of the terminal according to the differential data to determine the second location information of the terminal; the first location information of the terminal is sent by the terminal to the first server And send the second position information to the terminal for the terminal to locate according to the second position information, which can quickly return the terminal positioning result, so that the terminal can greatly reduce the network delay when determining the precise position.
  • FIG. 11 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • the positioning device provided by the embodiment of the present application, applied to the first server, may include: a receiving module 1101, a sending module 1102, and a solving module 1103.
  • the receiving module 1101 is configured to receive first location information sent by a terminal; the first location information includes the identity of the terminal;
  • the sending module 1102 is configured to send a differential data request to a second server, where the differential data request includes the first location information, and the differential data request is used by the second server to determine differential data of the terminal;
  • the receiving module 1101 is further configured to receive differential data sent by the second server;
  • the calculating module 1103 is configured to calculate the first position information according to the difference data to obtain the second position information;
  • the sending module 1102 is also configured to send the second location information to the terminal.
  • the first location information further includes terminal type information and/or terminal location information
  • the terminal location information includes: sentence identification information, world time information, latitude information, latitude hemisphere information, longitude information, and longitude hemisphere information.
  • the differential data request includes the timestamp of the first server and the identity of the first server.
  • the terminal type information includes mobile terminals, fixed terminals, and delay resolution terminals.
  • the sending module 1102 is further configured to:
  • the device further includes: a verification module and a first connection module;
  • the receiving module 1101 is further configured to receive a connection request sent by the terminal; the connection request includes the user name and password of the terminal;
  • the verification module is configured to verify the terminal according to the user name and the password
  • the first connection module is configured to establish a communication connection between the first server and the terminal when the verification of the terminal is passed.
  • the sending module 1102 is further configured to send a query request to the second server;
  • the query request includes the identity of the terminal and the time stamp of the terminal;
  • the query The request is used by the second server to determine whether the terminal corresponding to the terminal's identity is stored, so that when the second server stores the terminal corresponding to the terminal's identity, and the time of the terminal
  • the second server sends a connection instruction to the first server;
  • the receiving module 1101 is further configured to receive the connection instruction
  • the first connection module is further configured to establish a communication connection with the terminal according to the connection instruction.
  • the first connection module is further configured to:
  • the first server When the disconnection time between the first server and the terminal is not greater than a preset time threshold, the first server establishes a communication connection with the terminal.
  • the sending module 1102 is further configured to:
  • Target message includes the identity of the terminal, the terminal type information, and the second location information, so that the second server saves the target message.
  • the first server is an edge server
  • the second server is a central server
  • the positioning device configured to receive the first location information sent by the terminal through the receiving module; the first location information includes the identity of the terminal; the sending module is configured to send to the second server Differential data request, the differential data request includes the first location information, the differential data request is used by the second server to determine the differential data of the terminal; the receiving module is further configured to receive the first The differential data sent by the second server; a solution module configured to perform calculation on the first location information to obtain second location information according to the differential data; the sending module is also configured to send The terminal sending the second location information can quickly return the terminal positioning result, so that the network delay is greatly reduced when the terminal determines the precise location.
  • the positioning device executeds the steps in the method shown in FIG. 8 and can quickly return to the terminal positioning result, so that the technical effect of greatly reducing the network delay when the terminal determines the precise position. For concise description, I won't go into details here again.
  • FIG. 12 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • the positioning device may include: a sending module 1201 and a receiving module 1202.
  • the sending module 1201 is configured to send first location information to a first server; the first location information includes the identity of the terminal;
  • the receiving module 1202 is configured to receive the second location information sent by the first server.
  • the device further includes a second connection module
  • the sending module 1201 is configured to send a connection request to the first server; the connection request includes the user name and password of the terminal, for the first server to check the user name and password according to the user name and the password. Said terminal for verification;
  • the second connection module is configured to establish a communication connection between the terminal and the first server when the terminal passes verification.
  • the terminal type information includes mobile terminals, fixed terminals, and delay resolution terminals.
  • the positioning device configured to send the first location information to the first server through the sending module; the first location information includes the identity of the terminal; and the receiving module is configured to receive the second location information sent by the first server.
  • the location information can quickly return to the terminal positioning result, so that the network delay is greatly reduced when the terminal determines the precise location.
  • the positioning device executeds the steps in the method shown in FIG. 9 and can quickly return the terminal positioning result, so that the technical effect of greatly reducing the network delay when the terminal determines the precise position is described briefly. I won't go into details here again.
  • FIG. 13 is a schematic structural diagram of a positioning device provided by an embodiment of the present application.
  • the positioning device provided by the embodiment of the present application, applied to the second server, may include: a receiving module 1301, a determining module 1302, and a sending module 1303.
  • the receiving module 1301 is configured to receive a differential data request sent by a first server; the differential data request includes first location information; the first location information includes the identity of the terminal;
  • the determining module 1302 is configured to determine the differential data of the terminal according to the differential data request;
  • the sending module 1303 is configured to send differential data to the first server.
  • the first location information further includes terminal type information and/or terminal location information;
  • the differential data request further includes the timestamp of the first server, and the identity of the first server;
  • the determining module 1302 is also configured to:
  • the differential data is determined according to the first location information and the service area information of the first server.
  • the terminal type information includes mobile terminals, fixed terminals, and delay resolution terminals.
  • the positioning device configured to receive a differential data request sent by a first server through a receiving module; the differential data request includes first location information; the first location information includes the identity of the terminal; the determining module is configured In order to determine the differential data of the terminal according to the differential data request; the sending module is configured to send the differential data to the first server for the first server to calculate the first location information of the terminal according to the differential data to determine the terminal’s Second location information; and send the second location information to the terminal for the terminal to perform positioning based on the second location information, which can quickly return the terminal positioning result, so that the terminal can greatly reduce network delay when determining the precise location.
  • the positioning device executeds the steps in the method shown in FIG. 10, and can quickly return to the terminal positioning result, so that the technical effect of greatly reducing the network delay when the terminal determines the precise position is described briefly. I won't go into details here again.
  • the embodiment of the present application may provide a computer storage medium for implementation.
  • the computer storage medium stores computer program instructions; when the computer program instructions are executed by the processor, any one of the positioning methods in the foregoing embodiments is implemented.
  • the functional blocks shown in the above-mentioned structural block diagram can be implemented as hardware, software, firmware, or a combination thereof.
  • it can be, for example, an electronic circuit, an application specific integrated circuit (ASIC), appropriate firmware, a plug-in, a function card, and so on.
  • ASIC application specific integrated circuit
  • the elements of this application are programs or code segments used to perform required tasks.
  • the program or code segment may be stored in a machine-readable medium, or transmitted on a transmission medium or a communication link through a data signal carried in a carrier wave.
  • "Machine-readable medium" may include any medium that can store or transmit information.
  • machine-readable media examples include electronic circuits, semiconductor memory devices, ROM, flash memory, erasable ROM (EROM), floppy disks, CD-ROMs, optical disks, hard disks, fiber optic media, radio frequency (RF) links, and so on.
  • the code segment can be downloaded via a computer network such as the Internet, an intranet, and so on.
  • the first location information sent by the terminal is received through the first server; the first location information includes the identity of the terminal; the differential data request is sent to the second server, the differential data request includes the first location information, and the differential data request Used by the second server to determine the differential data of the terminal; receive the differential data sent by the second server; calculate the first location information according to the differential data to obtain the second location information; send the second location information to the terminal, and then quickly return
  • the terminal positioning result greatly reduces the network delay when the terminal determines the precise location.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • General Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Computer Hardware Design (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了定位方法、装置、***和存储介质。该方法包括:接收终端发送的第一位置信息;第一位置信息包括终端的身份标识;向第二服务器发送差分数据请求,差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据;接收第二服务器发送的差分数据;根据差分数据,对第一位置信息进行解算,得到第二位置信息;向终端发送第二位置信息,能够快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。

Description

定位方法、装置、***和存储介质
相关申请的交叉引用
本申请基于申请号为202010260719.4、申请日为2020年4月3日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于通信技术领域,尤其涉及定位方法、装置、***和存储介质。
背景技术
在自动驾驶过程中车辆的高精度定位是保证车辆驾驶安全的第一要素。
目前,高精度的定位技术主要以“云+端”定位模式,“云+端”定位模式中包括云端服务器和卫星定位终端,通过云端服务器结合地面基准站得到的差分数据和全球卫星星历,进而去确定卫星定位终端的差分定位结果,反馈至卫星定位终端。
但是,“云+端”定位模式中的云端服务器和卫星定位终端之间通信会导致网络时延较大。
发明内容
本申请实施例提供定位方法、装置、***和存储介质,能够大幅度降低网络时延,快速返回终端定位结果。
第一方面,提供了一种定位方法,应用于第一服务器,该方法包括:
接收终端发送的第一位置信息;第一位置信息包括终端的身份标识;
向第二服务器发送差分数据请求,差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据;
接收第二服务器发送的差分数据;
根据差分数据,对第一位置信息进行解算,得到第二位置信息;
向终端发送第二位置信息。
第二方面,提供了一种定位方法,应用于终端,该方法包括:
向第一服务器发送第一位置信息;第一位置信息包括终端的身份标识;
接收第一服务器发送的第二位置信息。
第三方面,提供了一种定位方法,应用于第二服务器,该方法包括:
接收第一服务器发送的差分数据请求;差分数据请求包括第一位置信息;第一位置信息包括终端的身份标识;
根据差分数据请求,确定终端的差分数据;
向第一服务器发送差分数据。
第四方面,提供了一种定位装置,应用于第一服务器,该装置包括:
接收模块,被配置为接收终端发送的第一位置信息;第一位置信息包括终端的身份标识;
发送模块,被配置为向第二服务器发送差分数据请求,差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据;
接收模块,还被配置为接收第二服务器发送的差分数据;
解算模块,被配置为根据差分数据,对第一位置信息进行解算,得到第二位置信息;
发送模块,还被配置为向终端发送第二位置信息。
第五方面,提供了一种定位装置,应用于终端,装置包括:
发送模块,被配置为向第一服务器发送第一位置信息;第一位置信息包括终端的身份标识;
接收模块,被配置为接收第一服务器发送的第二位置信息。
第六方面,提供了一种定位装置,应用于第二服务器,装置包括:
接收模块,被配置为接收第一服务器发送的差分数据请求;差分数据请求包括第一位置信息;第一位置信息包括终端的身份标识;
确定模块,被配置为根据差分数据请求,确定终端的差分数据;
发送模块,被配置为向第一服务器发送差分数据。
第七方面,提供了一种定位***,***包括:终端、至少一个第一服务器、第二服务器;
终端,用于向第一服务器发送第一位置信息;第一位置信息包括终端的身份标识;
第一服务器,用于接收第一位置信息,并向第二服务器发送差分数据请求;差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据;
第二服务器,用于接收差分数据请求,根据差分数据请求,确定终端的差分数据;差分数据请求包括第一位置信息;第一位置信息包括终端的身份标识;
第一服务器,还用于接收第二服务器发送的差分数据,根据差分数据,对第一位置信息进行解算,确定终端的第二位置信息;
终端,还用于接收第一服务器发送的第二位置信息。
第八方面,提供了一种计算机存储介质,该计算机存储介质上存储有计算机程序指令,计算机程序指令被处理器执行时实现如第一方面或者第一方面的任一可能实现方式中的方法,或实现如第二方面或者第二方面的任一可能实现方式中的方法,或实现如第三方面或者第三方面的任一可能实现方式中的方法。
基于提供的定位方法、装置、设备及存储介质,通过第一服务器接收终端发送的第一位置信息;第一位置信息包括终端的身份标识;向第二服务器发送差分数据请求,差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据;接收第二服务器发送的差分数据;根据差分数据,对第一位置信息进行解算,得到第二位置信息;向终端发送第二位置信息,进而快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单的介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种定位***的结构示意图;
图2是本申请实施例提供的一种第一服务器与第二服务器连接的结构示意图;
图3是本申请实施例提供的一种第一服务器的结构示意图;
图4是本申请实施例提供的一种MEC模块的结构示意图;
图5是本申请实施例提供的一种UPF分流模块的结构示意图;
图6是本申请实施例提供的一种第二服务器的结构示意图;
图7是本申请实施例提供的一种定位方法的流程示意图;
图8是本申请实施例提供的另一种定位方法的流程示意图;
图9是本申请实施例提供的又一种定位方法的流程示意图;
图10是本申请实施例提供的再一种定位方法的流程示意图;
图11是本申请实施例提供的一种定位装置的结构示意图;
图12是本申请实施例提供的另一种定位装置的结构示意图;
图13是本申请实施例提供的又一种定位装置的结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
目前,高精度定位技术主要以“云+端”定位模式,“云+端”定位模式中包括云端服务器和卫星定位终端,通过云端服务器结合地面基准站得到的差分数据和全球卫星星历,进而去确定卫星定位终端的差分定位结果,反馈至卫星定位终端。
但是,“云+端”定位模式中的云端服务器和卫星定位终端之间通信会导致网络时延较大,无法支持自动驾驶领域的应用。
随着云计算的深入应用,第五代移动通信技术(5th generation mobile networks,5G)、物联网、人工智能技术的快速发展,高带宽、低时延、海量连接的新型应用不断涌现,传统的“云+端”业务服务、管理和部署模式,正逐步走向“云+边+端”业务服务、管理和部署模式,在网络侧边缘的云和网的关联性越来越紧密。
多接入移动边缘计算(Mobile Edge Computing,MEC)是5G时代融合业务和网络的关键技术。移动边缘计算通过将云计算中心的计算、存储等资源和能力平台延伸到运营商网络侧边缘,在靠近移动用户的位置上提供网络能力开放以及互联网技术(Internet Technology,IT)服务、环境和云计算能力。移动边缘计算的就近服务特点满足了业务层面实时数据处理的需求以及客户层面数据安全可靠的要求。移动边缘计算为应用程序开发人员和内容提供了云计算功能,以及在网络边缘的IT服务环境。这种环境的特点是超低延迟和高带宽以及应用程序可以利用无线网络信息的实时访问。
在物联网时代,许多物联网设备均需要提供定位服务,尤其是对于移动物体,定位需求更为明显,定位技术的精度越高越好。例如,在自动驾驶领域,由于车辆的高速移动,需要超低时延的高精度定位作为导航基础。但是,超低时延的高精度定位会占用大量的实时带宽。那么,结合边缘计算模块,可以做到快速的数据上报、信息的实时处理和同步。
但是,目前利用MEC节点部署差分定位***的方法中,主要依赖于多个连续运行参考站(Continuously Operating Reference Stations,CORS)***与多个MEC节点,并且每个CORS***相对独立,无法进行终端设备的数据漫游和差分数据同步,对于严格低时延要求的服务无法达到切换区域时快速响应的目的。
因此,本申请实施例提供了定位方法、装置、***和存储介质,能够大幅度降低网络 时延,快速返回终端定位结果。
为了方便理解本申请实施例,首先对本申请实施例提供的定位***进行详细阐述。
图1是本申请实施例提供的一种定位***的结构示意图。
如图1所示,本申请实施例提供的定位***包括第一服务器101,第二服务器102和终端103。
需要注意的是,如图2所示,第二服务器102与多个第一服务器101连接组成星形网络结构,所有的信息流同步和数据交互都通过第二服务器102进行,第二服务器102保持高可用状态。同时所有数据都以第二服务器102数据为基准进行同步,保障了数据的时效性和统一性,协调各个第一服务器101共同提供终端差分解算服务。在这里,第一服务器可以是边缘服务器,第二服务器可以是中心服务器。
其中,第一服务器101主要用于使用第二服务器102发送的差分数据对终端的第一位置信息进行差分解算。第一服务器101可以包括终端差分解算模块、MEC模块和用户面功能(User plane Function,UPF)功能分流模块,如图3所示。
其中,MEC模块用于对差分数据进行差分解算以及管理UPF分流模块的分流服务。MEC模块可以包括:UPF网关(Gateway-UPF,GW-U)UPF、增值服务(Value-Added Services,VAS)、第三方应用程序(3rd Application)、应用程序接口(Application Programming Interface,API)和MEC网络功能虚拟化挤出设备(Network Functions Virtualization Infrastructure,NFVI),如图4所示。GW-U UPF由5G核心网下沉到边缘计算的控制面板网元组成。VAS集成在MEP平台上,由运营商对APP提供的增值业务组成。3rd Apps集成在管理实体(Management Entity,ME)平台上,是边缘应用。API负责网络能力开放和平台能力开放;MEC NFVI负责提供MEC硬件基础和基础设施即服务(Infrastructure as a Service,IaaS)设备。
UPF分流模块,用于对终端请求第二位置信息时对应身份标识、终端类型信息等进行分流。UPF分流模块包括认证管理功能实体(Authentication Management Function,AMF)作为接入和移动性管理,会话管理功能实体(SMF,Session Management Function)作为会话管理,无线接入网(Wireless Access Network,RAN)为无线侧,域名(Domain Name,DN)为域名解析服务,同时UPF分为上行分类器(uplink class filter)和协议数据单元(Protocol Data Unit,PDU)会话锚定(session anchor),如图5所示。AMF负责终端与MEC节点的接入鉴权,鉴权基于终端上传的用户名、密码和安全秘钥。AMF节点在鉴权通过后会上传设备信息到第二服务器,作为跨区域切换第一服务器时重新接入的依据。SMF负责会话管理,用户端地址的自动分配和管理,同时负责一部分数据流上传的选择和控制。RAN为无线侧,由交换机和相关用户网络接口之间的系列传送实体锁组成,为传送业务数据流提供所需传送承载能力和无线实施***。DN域名解析服务,UPF节点的所有域名解析服务抽象为一个节点,负责解析域名到IP地址的转换过程,在此IP地址的注解上将一个子目录与域名绑定。
如图5所示,UPF分流模块的数据流交互如下:
N1:应用数据包和生命周期管理数据,生命周期分为4个阶段,激活、就绪、运行、死亡,单个数据交互流程在死亡前可以在其他三个状态中灵活切换;
N2:域名***协议(Domain Name System,DNS)激活唤醒,同时可以实现一部分基于DNS的请求分流;
N3:打通第一服务器和第二服务器的连接,中间交互所有的MEC通信情况和数据流传输情况;
N4:数据流通过会话进行上下行传输,包含业务数据、设备信息、新定义的差分数据格式等;
N9:通过UPF上行分类器节点上行分类后,针对不同队列的任务进入不同UPF节点, 实现上行数据串行分类,同时分类后任务可以并行执行,提高效率。
终端差分解算模块用于规划计算资源,能够降低终端功耗,避免终端电量不足的问题。并且能够打破终端算力不足的局限性,提高差分数据的解算速度和精度。
终端差分解算模块,还用于维持第一服务器101与终端103的连接状态,实时交互终端的第一位置信息,返回终端第二位置信息。同时,在第一服务器连接范围内的终端,可以通过用户名与密码的方式对终端进行验证。当验证通过时,终端能够连接第一服务器。在建立连接的时间内,终端通过终端差分解算模块可以使用终端差分解算服务。
第一服务器在与终端建立连接后会上传终端的身份标识、终端类型信息到第二服务器。第一服务器还会向第二服务器发送连接信息。第二服务器保存终端的身份标识、终端类型信息连接信息,如终端与第一服务器建立连接的时间等、请求信息。与第一服务器建立连接的终端如果中断连接或者超出连接范围,再次与其他第一服务器建立连接时,第一服务器设备会像第二服务器查询是否已经有该终端的连接信息。如果有,会直接建立连接,提供终端差分解算服务,并第二服务器同步终端最近的历史信息,如历史时间内终端的第二坐标信息等。如果没有,会通过用户名与密码的方式对终端进行验证,当验证通过时,终端能够连接第一服务器。第一服务器向终端提供终端差分解算服务。
第二服务器102主要用于对与第二服务器连接的多个第一服务器的管理,整合与同步多个第一服务器的数据,对指定区域的差分数据的处理和分发。第二服务器包括边缘混合云管理模块、边缘计算网元编排模块、北斗差分解算模块、边缘计算应用容器平台、异构边缘计算管理模块等。基于容器(Docker)和容器编排引擎(Kubernetes)构建平台,方便容器化管理第一服务器,动态调整第一服务器的网络和服务器资源,如图6所示。
北斗差分解算模块用于测量定位导航卫星信号,根据测量的定位导航卫星信号确定终端的差分数据。对于每个管理的第一服务器,针对第一服务器的服务范围内计算建立差分数据模型,计算每个第一服务器的差分数据并存储更新。
本申请实施例提供的定位***还包括北斗基准站104和基站105。其中,北斗基准站用于接收卫星发送的定位导航卫星信号。北斗基准站向第二服务器发送定位导航卫星信号。基站105用于为第一服务器接入互联网提供接口。
基于图1所示的定位***,下面对定位***中第一服务器101,第二服务器102和终端103实现定位的方法进行详细阐述。
终端103与第一服务器101进行通信之前,需要先与第一服务器101建立连接。终端103与第一服务器101之间建立连接的方式包括首次建立连接和非首次建立连接。
在本申请的一些实施例中,终端103与第一服务器101首次建立连接,包括:
终端103向第一服务器101发送连接请求。连接请求包括终端的用户名和密码;
第一服务器101接收终端103发送的连接请求后,根据用户名和密码对终端进行验证;
当对终端验证通过时,第一服务器101与终端103建立连接。
连接请求是指终端103向第一服务器101发起连接的请求。连接请求中包括终端的用户名和密码。第一服务器101可以验证终端103的用户名和密码是否匹配,当终端的用户名和密码不匹配时,终端103无法连接第一服务器101;当终端的用户名和密码匹配时,终端103能够与第一服务器101连接。
在一些实施例中,连接请求中还包括终端的身份标识和终端类型信息。第一服务器101接收到连接请求后,会将连接请求中终端的身份标识和终端类型信息发送给第二服务器102。第二服务器102接收到终端的身份标识和终端类型信息后,将终端的身份标识和终端类型信息保存。
在本申请的一些实施例中,终端103与第一服务器101非首次建立连接,包括:
第一服务器101向第二服务器102发送查询请求;查询请求包括终端的身份标识和终端 的时间戳。
第二服务器确定第二服务器中是否保存终端的身份标识对应的终端,当第二服务器中保存有终端的身份标识对应的终端,且终端的时间戳未小于预设时间戳时,第二服务器向第一服务器发送连接指令;
第一服务器接收连接指令,并根据连接指令,与终端建立通信连接。
终端的时间戳是指终端上一次与第一服务器101断开连接的时间戳。在上一次终端与第一服务器建立通信连接后,第二服务器102中保存了终端的身份标识,且在终端与第一服务器断开时,将终端与第一服务器断开的时间戳保存在第二服务器中。当第二服务器与多个第一服务器连接时,第二服务器中保存有终端的身份标识对应的终端和终端上一次与第一服务器断开连接的时间戳,使得终端在多个第一服务器设备之间进行切换。
例如,移动终端在移动过程中位置是不断变化的,而不同的位置对应的第一服务器是不同的,因此,终端在移动的过程中,可能会与多个第一服务器建立连接,每次与第一服务器建立连接时,第一服务器都会查询第二服务器中的终端的相关信息,如果保存有终端的相关信息,如终端的身份标识等,且终端与第一服务器断开连接的时间未超过预设时间阈值,可以直接建立连接并恢复服务,同时将预设时间段内的移动终端的差分结算数据同步到终端再次建立连接的第一服务器。
作为一个示例,第二服务器与第一服务器A和第二服务器B连接。在终端移动超出第一服务器A的范围时,会自动与第一服务器A断开网络连接,与第一服务器B建立连接,连接过程如下:
终端发送连接请求到第一服务器B,连接请求可以包括终端的身份标识和终端的时间戳。另外,连接请求还可以包括终端位置信息、终端的用户名和密码。
第一服务器B向第二服务器发送查询请求,查询请求包含终端的身份标识和终端的时间戳;
第二服务器查询数据库,在存储的连接历史表中根据终端的身份标识查询数据库中第否保存有身份标识对应的终端。如果存在该终端,则返回允连接指令。如果不存在返回验证指令;
第一服务器B根据第二服务器返回的指令判断是否可以直接建立通信连接。如果指令是连接指令,第一服务器B与终端建立通信连接,可以接收终端第一位置信息。如果指令是验证指令,第一服务器B对连接请求中终端的用户名和密码进行验证,验证通过后,第一服务器B与终端建立通信连接。
终端103与第一服务器101建立通信连接后,对终端进行高精度定位。
如图7所示,本申请实施例提供的定位***通过下述步骤实现高精度定位:
S701:终端103向第一服务器101发送第一位置信息。第一位置信息包括终端的身份标识。
第一位置信息是指能够表示终端的概略位置的信息。第一位置信息的精度无法满足对于有高精度定位需求的终端或设备。可以采用全球定位***(Global Positioning System,GPS)协议中的数据格式表示终端的概略位置。
在一些实施例中,第一位置信息还可以包括终端类型信息和/或终端位置信息。
终端类型信息包括移动终端,固定终端和延迟解算终端。移动终端是指需要第一服务器101能够对其请求的差分数据实时响应的终端。固定终端是指按照预设频率向第一服务器101请求第二位置信息的终端,例如,每隔半个小时向第一服务器请求第二位置信息。延迟解算终端是指对时间敏感性差的终端,例如,当延迟解算终端向第一服务器101请求第二位置信息时,第一服务器101和第二服务器102可以在第一服务器101和第二服务器102处于空闲状态或者计算压力小的时候,对延迟解算终端的请求进行响应。
终端位置信息可以包括语句标识信息,世界时间信息,纬度信息,纬度半球信息,经度信息,经度半球信息。语句标识信息是用于标识消息序列的标识信息。纬度信息,纬度半球信息,经度信息和经度半球信息能够表示终端当前所在的位置。
S702:第一服务器101接收终端发送的第一位置信息,并向第二服务器102发送差分数据请求;差分数据请求包括第一位置信息。
第一服务器101接收到第一位置信息后,会根据第一位置信息生成差分数据请求。第一服务器101将差分数据请求发送给第二服务器102。在这里,第一位置信息是包括终端的身份标识的。第二服务器根据终端的身份标识能够确定获取第二位置信息的终端。
在一些实施例中,第一位置信息还包括终端类型信息。第一服务器101接收到终端发送的第一位置信息后,会根据终端类型信息对终端进行标注。当终端类型信息为移动终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为紧急队列的信息流,将终端的身份标识和终端类型信息保存至移动端设备数据库。当终端类型信息为固定终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为常规队列的信息流,将终端的身份标识和终端类型信息保存至固定端设备数据库。当终端类型信息为延迟解算终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为暂缓队列的信息流,将终端的身份标识和终端类型信息保存至延迟解算端设备数据库。
UPF分流模块基于终端类型信息使得终端可以在独立队列中进行消息传输,避免了所有消息在信息传输的高峰期拥堵。
不同的独立队列中对应的终端请求定位服务的频率也不相同。例如,移动终端请求定位服务的频率可以是每秒1次,同时需要实时解析得到第二位置信息。因此,移动终端需要进入紧急队列进行信息处理,以第一服务器本地资源优先调度,本地资源不足时向第二服务器请求资源,由第二服务器扩展相关计算资源到该第一服务器,实现计算资源的动态分配和管理。固定终端请求定位服务的频率一般为每30分钟一次、每60分钟一次或者时间间隔更长。第一服务器与终端的连接不需要长久保持,所以终端可以每次请求定位服务时均与第一服务器请求重新建立连接,进而节约第一服务器的内存资源和网络资源。固定终端进入常规队列,常规队列消息按照规则,在第一服务器进行简单过滤处理后发送到第二服务器请求差分数据,进而缓解第一服务器计算压力。延迟解算终端一般多为天气预报等相关位置的解析,解析频率多为每年一次或两次,其数据量大,所以由第一服务器放入暂缓队列,转发请求到第二服务器,由第二服务器负责缓存所有历史数据和统一解析。合理分配请求队列,利用第一服务器和第二服务器计算能力的差异化,提升整个***的终端位置解算能力,合理利用计算资源和网络资源,降低网络延迟。
S703:第二服务器102接收第一服务器发送的差分数据请求,根据差分数据请求,确定终端的差分数据。
差分数据请求中包括第一位置信息、第一服务器的时间戳和第一服务器的身份标识。第二服务器102接收到差分数据请求后,能够根据差分数据请求,确定终端的差分数据。
在本申请实施例中,第二服务器可以根据所述第一服务器的身份标识,确定所述第一服务器的服务区域信息;根据所述第一位置信息和所述第一服务器的服务区域信息,确定所述差分数据。
第一服务器的服务区域信息是根据第一服务器的身份标识确定的。第二服务器102的数据库中保存有第一服务器的信息,如第一服务器的身份标识,以及第一服务器对应的服务区域信息。
其中,第一服务器的服务区域信息实质上是以第一服务器101的位置来划分的。例如,以第一服务器的位置坐标为圆心,半径为10Km的区域为第一服务器的服务区域。例如,第一服务器的服务区域信息是以北纬39”26’为圆心,半径为10Km。当第二服务器在确 定差分数据时,差分数据所对应的区域信息需要与第一服务器的服务区域信息对应。
不同的终端对时间的敏感性不同,终端对时间敏感性越强,则确定差分数据的时延越低。第二服务器102在确定差分数据时,需要根据终端类型信息确定终端对时间的敏感性。当终端类型信息为移动终端时,终端对时间的敏感性高,第二服务器会将预先计算的差分数据下发给第一服务器,进而减少时延。当终端类型信息为固定终端时,终端对时间的敏感性低,第二服务器可以在接收到差分数据请求后在计算差分数据。当终端类型信息为延迟解算终端时,终端对时间的敏感性非常低,第二服务器可以在第二服务器空闲或者第二服务器的计算资源充足的时候,确定差分数据。
结合终端类型信息确定差分数据,能够提升整个定位***的终端位置解算能力,合理利用计算资源和网络资源,大大降低网络延迟。
S704:第一服务器101接收第二服务器102发送的差分数据。
S705:第一服务器101根据差分数据,对第一位置信息进行解算,确定终端的第二位置信息。
第二位置信息是指能够表示终端精确位置的信息。第二位置信息的精度比第一位置信息的精度高。
第一服务器对第一位置信息进行解算的过程可以是根据差分数据对终端第一位置信息中终端位置信息进行校正,进而得到精确度更高的第二位置信息。
S706:终端103接收第一服务器101发送的第二位置信息。
得到终端103的第二位置信息后,第一服务器101还会对应终端的身份标识将终端103的第二位置信息进行备份,并将终端的第二位置信息发送给第二服务器102。第二服务器102保存终端103的第二位置信息作为终端的历史定位信息。其中,历史定位信息还包括终端的身份标识、第二位置信息的定位时间、终端类型信息。第二服务器102保存终端的历史定位信息,以便于与第二服务器102连接的其他第一服务器101查询或同步终端的历史定位信息。
本申请实施例提供的定位***,利用“云+边+端”模式构建的基于边缘计算的高精度定位平台,减少云侧的带宽压力,分散云侧的计算压力。利用第一服务器进行差分数据的解算,可以大幅度提高算力和解算精度。利用第一服务器与终端的物理距离缩短以及终端的类型来确定差分数据,减少网络通信产生的交互时延。
基于定位***中的第一服务器,下面对基于第一服务器侧的定位方法进行详细阐述。
图8是本申请实施例提供的一种定位方法的流程示意图。
如图8所示,本申请实施例提供的定位方法,应用于第一服务器101,包括:
S801:接收终端发送的第一位置信息;第一位置信息包括终端的身份标识。
第一位置信息是指能够表示终端的概略位置的信息。第一位置信息的精度无法满足对于有高精度定位需求的终端或设备。可以采用全球定位***协议中的数据格式表示终端的概略位置。
在一些实施例中,第一位置信息还可以包括终端类型信息和/或终端位置信息。
终端类型信息包括移动终端,固定终端和延迟解算终端。移动终端是指需要第一服务器101能够对其请求的差分数据实时响应的终端。固定终端是指按照预设频率向第一服务器101请求第二位置信息的终端,例如,每隔半个小时向第一服务器请求第二位置信息。延迟解算终端是指对时间敏感性差的终端,例如,当延迟解算终端向第一服务器101请求第二位置信息时,第一服务器101和第二服务器102可以在第一服务器101和第二服务器102处于空闲状态或者计算压力小的时候,对延迟解算终端的请求进行响应。
终端位置信息可以包括语句标识信息,世界时间信息,纬度信息,纬度半球信息,经度信息,经度半球信息。语句标识信息是用于标识消息序列的标识信息。纬度信息,纬度 半球信息,经度信息和经度半球信息能够表示终端当前所在的位置。
接收到第一位置信息后,会根据第一位置信息生成差分数据请求。将差分数据请求发送给第二服务器102。在这里,第一位置信息是包括终端的身份标识的。第二服务器根据终端的身份标识能够确定获取第二位置信息的终端。
在一些实施例中,第一位置信息还包括终端类型信息。第一服务器101接收到终端发送的第一位置信息后,会根据终端类型信息对终端进行标注。当终端类型信息为移动终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为紧急队列的信息流,将终端的身份标识和终端类型信息保存至移动端设备数据库。当终端类型信息为固定终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为常规队列的信息流,将终端的身份标识和终端类型信息保存至固定端设备数据库。当终端类型信息为延迟解算终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为暂缓队列的信息流,将终端的身份标识和终端类型信息保存至延迟解算端设备数据库。
UPF分流模块基于终端类型信息使得终端可以在独立队列中进行消息传输,避免了所有消息在信息传输的高峰期拥堵。
不同的独立队列中对应的终端请求定位服务的频率也不相同。例如,移动终端请求定位服务的频率可以是每秒1次,同时需要实时解析得到第二位置信息。因此,移动终端需要进入紧急队列进行信息处理,以第一服务器本地资源优先调度,本地资源不足时向第二服务器请求资源,由第二服务器扩展相关计算资源到该第一服务器,实现计算资源的动态分配和管理。固定终端请求定位服务的频率一般为每30分钟一次、每60分钟一次或者时间间隔更长。第一服务器与终端的连接不需要长久保持,所以终端可以每次请求定位服务时均与第一服务器请求重新建立连接,进而节约第一服务器的内存资源和网络资源。固定终端进入常规队列,常规队列消息按照规则,在第一服务器进行简单过滤处理后发送到第二服务器请求差分数据,进而缓解第一服务器计算压力。延迟解算终端一般多为天气预报等相关位置的解析,解析频率多为每年一次或两次,其数据量大,所以由第一服务器放入暂缓队列,转发请求到第二服务器,由第二服务器负责缓存所有历史数据和统一解析。合理分配请求队列,利用第一服务器和第二服务器计算能力的差异化,提升整个***的终端位置解算能力,合理利用计算资源和网络资源,降低网络延迟。
S802:向第二服务器发送差分数据请求,差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据。
差分数据请求中包括终端的身份标识、终端类型信息和第一服务器的位置信息。根据终端的身份标识和终端类型信息,向第二服务器发送差分数据请求。第二服务器接收到差分数据请求后,能够根据差分数据请求中的终端的身份信息、终端类型信息和第一服务器的位置信息,确定终端的差分数据。
S803:接收第二服务器发送的差分数据。
S804:根据差分数据,对第一位置信息进行解算,确定终端的第二位置信息。
S805:向终端发送第二位置信息。
得到终端103的第二位置信息后,第一服务器101还会对应终端的身份标识将终端103的第二位置信息进行备份,并将终端的第二位置信息发送给第二服务器102。第二服务器102保存终端103的第二位置信息作为终端的历史定位信息。其中,历史定位信息还包括终端的身份标识、第二位置信息的定位时间、终端类型信息。第二服务器102保存终端的历史定位信息,以便于与第二服务器连接的其他第一服务器查询或同步终端的历史定位信息。
在一些实施例中,终端103与第一服务器101进行通信之前,需要与第一服务器101建立连接。终端103与第一服务器101之间建立连接的方式包括首次建立连接和非首次建立连接。
在本申请的一些实施例中,终端103可以向第一服务器101发送连接请求。连接请求包括终端的用户名和密码;
第一服务器101接收终端103发送的连接请求后,根据用户名和密码对终端进行验证;
当对终端验证通过时,第一服务器101与终端103建立连接。
连接请求是指终端103向第一服务器101发起连接的请求。连接请求中包括终端的用户名和密码。第一服务器101可以验证终端103的用户名和密码是否匹配,当终端的用户名和密码不匹配时,终端103无法连接第一服务器101;当终端的用户名和密码匹配时,终端103能够与第一服务器101连接。
在一些实施例中,连接请求中还包括终端的身份标识和终端类型信息。第一服务器101接收到连接请求后,会将连接请求中终端的身份标识和终端类型信息发送给第二服务器102。第二服务器102接收到终端的身份标识和终端类型信息后,将终端的身份标识和终端类型信息保存。
在本申请的一些实施例中,终端103与第一服务器101非首次建立连接,包括:
第一服务器101向第二服务器102发送查询请求;查询请求包括终端的身份标识和终端的时间戳。
第二服务器确定第二服务器中是否保存终端的身份标识对应的终端,当第二服务器中保存有终端的身份标识对应的终端,且终端的时间戳未小于预设时间戳时,第二服务器向第一服务器发送连接指令;
第一服务器接收连接指令,并根据连接指令,与终端建立通信连接。
终端的时间戳是指终端上一次与第一服务器101断开连接的时间戳。在上一次终端与第一服务器建立通信连接后,第二服务器102中保存了终端的身份标识,且在终端与第一服务器断开时,将终端与第一服务器断开的时间戳保存在第二服务器中。当第二服务器与多个第一服务器连接时,第二服务器中保存有终端的身份标识对应的终端和终端上一次与第一服务器断开连接的时间戳,使得终端在多个第一服务器设备之间进行切换。
例如,移动终端在移动过程中位置是不断变化的,而不同的位置对应的第一服务器是不同的,因此,终端在移动的过程中,可能会与多个第一服务器建立连接,每次与第一服务器建立连接时,第一服务器都会查询第二服务器中的终端的相关信息,如果保存有终端的相关信息,如终端的身份标识等,且终端与第一服务器断开连接的时间未超过预设的时间阈值,可以直接建立连接并恢复服务,同时将预设时间段内的移动终端的差分结算数据同步到终端再次建立连接的第一服务器。
作为一个示例,第二服务器与第一服务器A和第二服务器B连接。在终端移动超出第一服务器A的范围时,会自动与第一服务器A断开网络连接,与第一服务器B建立连接,连接过程如下:
终端发送连接请求到第一服务器B,连接请求可以包括终端的身份标识和终端的时间戳。另外,连接请求还可以包括终端位置信息、终端的用户名和密码。
第一服务器B向第二服务器发送查询请求,查询请求包含终端的身份标识和终端的时间戳;
第二服务器查询数据库,在存储的连接历史表中根据终端的身份标识查询数据库中第否保存有身份标识对应的终端。如果存在该终端,则返回允连接指令。如果不存在返回验证指令;
第一服务器B根据第二服务器返回的指令判断是否可以直接建立通信连接。如果指令是连接指令,第一服务器B与终端建立通信连接,可以接收终端第一位置信息。如果指令是验证指令,第一服务器B对连接请求中终端的用户名和密码进行验证,验证通过后,第一服务器B与终端建立通信连接。
终端103与第一服务器101建立通信连接后,对终端进行高精度定位。
本申请实施例提供的定位方法,通过第一服务器接收终端发送的第一位置信息;第一位置信息包括终端的身份标识;向第二服务器发送差分数据请求,差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据;接收第二服务器发送的差分数据;根据差分数据,对第一位置信息进行解算得到第二位置信息;向终端发送第二位置信息,进而快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。
基于定位***中的终端,下面对基于终端侧的定位方法进行详细阐述。
图9是本申请实施例提供的一种定位方法的流程示意图。
如图9所示,本申请实施例提供的定位方法,应用于终端103,包括:
S901:向第一服务器发送第一位置信息;第一位置信息包括终端的身份标识。
S902:接收第一服务器发送的第二位置信息。
第一位置信息是指能够表示终端的概略位置的信息。第一位置信息的精度无法满足对于有高精度定位需求的终端或设备。可以采用全球定位***协议中的数据格式表示终端的概略位置。
在一些实施例中,第一位置信息还可以包括终端类型信息和/或终端位置信息。
终端类型信息包括移动终端,固定终端和延迟解算终端。移动终端是指需要第一服务器101能够对其请求的差分数据实时响应的终端。固定终端是指按照预设频率向第一服务器101请求第二位置信息的终端,例如,每隔半个小时向第一服务器请求第二位置信息。延迟解算终端是指对时间敏感性差的终端,例如,当延迟解算终端向第一服务器101请求第二位置信息时,第一服务器101和第二服务器102可以在第一服务器101和第二服务器102处于空闲状态或者计算压力小的时候,对延迟解算终端的请求进行响应。
终端位置信息可以包括语句标识信息,世界时间信息,纬度信息,纬度半球信息,经度信息,经度半球信息。语句标识信息是用于标识消息序列的标识信息。纬度信息,纬度半球信息,经度信息和经度半球信息能够表示终端当前所在的位置。
第一服务器101接收到第一位置信息后,会根据第一位置信息生成差分数据请求。将差分数据请求发送给第二服务器102。在这里,第一位置信息是包括终端的身份标识的。第二服务器根据终端的身份标识能够确定获取第二位置信息的终端。
在一些实施例中,第一位置信息还包括终端类型信息。第一服务器101接收到终端发送的第一位置信息后,会根据终端类型信息对终端进行标注。当终端类型信息为移动终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为紧急队列的信息流,将终端的身份标识和终端类型信息保存至移动端设备数据库。当终端类型信息为固定终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为常规队列的信息流,将终端的身份标识和终端类型信息保存至固定端设备数据库。当终端类型信息为延迟解算终端时,第一服务器101中的UPF分流模块会将该终端的信息流标注为暂缓队列的信息流,将终端的身份标识和终端类型信息保存至延迟解算端设备数据库。
UPF分流模块基于终端类型信息使得终端可以在独立队列中进行消息传输,避免了所有消息在信息传输的高峰期拥堵。
不同的独立队列中对应的终端请求定位服务的频率也不相同。例如,移动终端请求定位服务的频率可以是每秒1次,同时需要实时解析得到第二位置信息。因此,移动终端需要进入紧急队列进行信息处理,以第一服务器本地资源优先调度,本地资源不足时向第二服务器请求资源,由第二服务器扩展相关计算资源到该第一服务器,实现计算资源的动态分配和管理。固定终端请求定位服务的频率一般为每30分钟一次、每60分钟一次或者时间间隔更长。第一服务器与终端的连接不需要长久保持,所以终端可以每次请求定位服务时均与第一服务器请求重新建立连接,进而节约第一服务器的内存资源和网络资源。固定终 端进入常规队列,常规队列消息按照规则,在第一服务器进行简单过滤处理后发送到第二服务器请求差分数据,进而缓解第一服务器计算压力。延迟解算终端一般多为天气预报等相关位置的解析,解析频率多为每年一次或两次,其数据量大,所以由第一服务器放入暂缓队列,转发请求到第二服务器,由第二服务器负责缓存所有历史数据和统一解析。合理分配请求队列,利用第一服务器和第二服务器计算能力的差异化,提升整个***的终端位置解算能力,合理利用计算资源和网络资源,降低网络延迟。
本申请实施例提供的定位方法,通过向第一服务器发送第一位置信息,第一位置信息包括终端的身份标识;接收第一服务器发送的第二位置信息,进而快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。
在本申请的一些实施例中,第一服务器向第二服务器发送目标消息,目标消息包括终端的身份标识,终端类型信息和第二位置信息,以用于第二服务器保存目标消息。
在本申请实施例中,第一服务器可以向所述第二服务器发送目标消息,使第二目标服务器能够保存目标信息;这里,目标信息包括终端的身份标识,终端类型信息和第二位置信息。
基于定位***中的第二服务器,下面对基于第二服务器侧的定位方法进行详细阐述。
图10是本申请实施例提供的一种定位方法的流程示意图。
如图10所示,本申请实施例提供的定位方法,应用于第二服务器102,包括:
S1001:接收第一服务器发送的差分数据请求;差分数据请求包括第一位置信息;第一位置信息包括终端的身份标识。
差分数据请求中包括第一位置信息。差分数据请求中还可以包括第一服务器的时间戳和第一服务器的身份标识。
S1002:根据差分数据请求,确定终端的差分数据。
在本申请实施例中,第二服务器接收到差分数据请求后,可以根据差分数据请求,确定终端的差分数据。
在本申请实施例中,第二服务器可以根据所述第一服务器的身份标识,确定所述第一服务器的服务区域信息;根据所述第一位置信息和所述第一服务器的服务区域信息,确定所述差分数据。
第一服务器的服务区域信息是根据第一服务器的身份标识确定的。第二服务器102的数据库中保存有第一服务器的信息,如第一服务器的身份标识,以及第一服务器对应的服务区域信息。
其中,第一服务器的服务区域信息实质上是以第一服务器101的位置来划分的。例如,以第一服务器的位置坐标为圆心,半径为10Km的区域为第一服务器的服务区域。例如,第一服务器的服务区域信息是以北纬39”26’为圆心,半径为10Km。当第二服务器在确定差分数据时,差分数据所对应的区域信息需要与第一服务器的服务区域信息对应。
不同的终端对时间的敏感性不同,终端对时间敏感性越强,则确定差分数据的时延越低。第二服务器102在确定差分数据时,需要根据终端类型信息确定终端对时间的敏感性。当终端类型信息为移动终端时,终端对时间的敏感性高,第二服务器会将预先计算的差分数据下发给第一服务器,进而减少时延。当终端类型信息为固定终端时,终端对时间的敏感性低,第二服务器可以在接收到差分数据请求后在计算差分数据。当终端类型信息为延迟解算终端时,终端对时间的敏感性非常低,第二服务器可以在第二服务器空闲或者第二服务器的计算资源充足的时候,确定差分数据。
结合终端类型信息确定差分数据,能够提升整个定位***的终端位置解算能力,合理利用计算资源和网络资源,大大降低网络延迟。
S1003:向第一服务器发送差分数据。
本申请实施例提供的定位方法,通过接收第一服务器发送的差分数据请求;差分数据请求包括第一位置信息;第一位置信息包括终端的身份标识;根据差分数据请求,确定终端的差分数据;向第一服务器发送差分数据,以用于第一服务器根据差分数据,对终端的第一位置信息进行解算,确定终端的第二位置信息;终端的第一位置信息为终端发送给第一服务器的第一位置信息,并向终端发送第二位置信息,以用于终端根据第二位置信息进行定位,能够快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。
图11是本申请实施例提供的一种定位装置的结构示意图。
如图11所示,本申请实施例提供的定位装置,应用于第一服务器,可以包括:接收模块1101、发送模块1102、解算模块1103。
接收模块1101,被配置为接收终端发送的第一位置信息;所述第一位置信息包括所述终端的身份标识;
发送模块1102,被配置为向第二服务器发送差分数据请求,所述差分数据请求包括所述第一位置信息,所述差分数据请求用于所述第二服务器确定所述终端的差分数据;
所述接收模块1101,还被配置为接收第二服务器发送的差分数据;
解算模块1103,被配置为根据所述差分数据,对第一位置信息进行解算,得到第二位置信息;
所述发送模块1102,还被配置为向所述终端发送所述第二位置信息。
在本申请一些实施例中,所述第一位置信息还包括终端类型信息和/或终端位置信息;
所述终端位置信息包括:语句标识信息,世界时间信息,纬度信息,纬度半球信息,经度信息,经度半球信息。
在本申请一些实施例中,差分数据请求包括所述第一服务器的时间戳,第一服务器的身份标识。
在本申请一些实施例中,终端类型信息包括移动终端,固定终端和延迟解算终端。
在本申请一些实施例中,所述发送模块1102,还被配置为:
当所述终端类型信息为所述移动终端时,根据第一频率向所述第二服务器发送所述差分数据请求;或者,
当所述终端类型信息为所述固定终端时,根据第二频率向所述第二服务器发送所述差分数据请求;或者,
当所述终端类型信息为所述延迟解算终端时,根据第三频率向所述第二服务器发送所述差分数据请求。
在本申请一些实施例中,该装置还包括:验证模块和第一连接模块;
所述接收模块1101,还被配置为接收所述终端发送的连接请求;所述连接请求包括所述终端的用户名和密码;
所述验证模块,被配置为根据所述用户名和所述密码对所述终端进行验证;
所述第一连接模块,被配置为当对所述终端验证通过时,所述第一服务器与所述终端建立通信连接。
在本申请一些实施例中,所述发送模块1102,还被配置为向所述第二服务器发送查询请求;所述查询请求包括所述终端的身份标识和所述终端的时间戳;所述查询请求用于所述第二服务器确定是否保存有所述终端的身份标识对应的终端,以用于当所述第二服务器中保存有所述终端的身份标识对应的终端,且所述终端的时间戳未小于预设时间戳时,所述第二服务器向所述第一服务器发送连接指令;
所述接收模块1101,还被配置为接收所述连接指令;
所述第一连接模块,还被配置为根据所述连接指令,与所述终端建立通信连接。
在本申请一些实施例中,所述第一连接模块,还被配置为:
当所述第一服务器与所述终端的断开时间不大于预设时间阈值时,所述第一服务器与所述终端建立通信连接。
在本申请一些实施例中,所述发送模块1102,还被配置为:
向所述第二服务器发送目标消息,所述目标消息包括所述终端的身份标识,所述终端类型信息和所述第二位置信息,以用于所述第二服务器保存所述目标消息。
在本申请一些实施例中,第一服务器是边缘服务器,所述第二服务器是中心服务器。
本申请实施例提供的定位装置,通过接收模块,被配置为接收终端发送的第一位置信息;所述第一位置信息包括所述终端的身份标识;发送模块,被配置为向第二服务器发送差分数据请求,所述差分数据请求包括所述第一位置信息,所述差分数据请求用于所述第二服务器确定所述终端的差分数据;所述接收模块,还被配置为接收所述第二服务器发送的所述差分数据;解算模块,被配置为根据所述差分数据,对所述第一位置信息进行解算得到第二位置信息;所述发送模块,还被配置为向所述终端发送所述第二位置信息,能够快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。
本申请实施例提供的定位装置执行图8所示的方法中的各个步骤,并能够达到快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延的技术效果,为简洁描述,再此不在详细赘述。
图12是本申请实施例提供的一种定位装置的结构示意图。
如图12所示,本申请实施例提供的定位装置,应用于终端,可以包括:发送模块1201和接收模块1202。
发送模块1201,被配置为向第一服务器发送第一位置信息;所述第一位置信息包括所述终端的身份标识;
接收模块1202,被配置为接收所述第一服务器发送的第二位置信息。
在本申请一些实施例中,所述装置还包括第二连接模块;
所述发送模块1201,被配置为向所述第一服务器发送连接请求;所述连接请求包括所述终端的用户名和密码,以用于所述第一服务器根据所述用户名和所述密码对所述终端进行验证;
所述第二连接模块,被配置为当终端验证通过时,终端与第一服务器建立通信连接。
在本申请一些实施例中,终端类型信息包括移动终端,固定终端和延迟解算终端。
本申请实施例提供的定位装置,通过发送模块,被配置为向第一服务器发送第一位置信息;第一位置信息包括终端的身份标识;接收模块,被配置为接收第一服务器发送的第二位置信息,能够快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。
本申请实施例提供的定位装置执行图9所示的方法中的各个步骤,并能够达到快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延的技术效果,为简洁描述,再此不在详细赘述。
图13是本申请实施例提供的一种定位装置的结构示意图。
如图13所示,本申请实施例提供的定位装置,应用于第二服务器,可以包括:接收模块1301,确定模块1302和发送模块1303。
接收模块1301,被配置为接收第一服务器发送的差分数据请求;差分数据请求包括第一位置信息;第一位置信息包括终端的身份标识;
确定模块1302,被配置为根据差分数据请求,确定终端的差分数据;
发送模块1303,被配置为向第一服务器发送差分数据。
在本申请一些实施例中,所述第一位置信息还包括终端类型信息和/或终端位置信息;所述差分数据请求还包括所述第一服务器的时间戳,第一服务器的身份标识;
所述确定模块1302,还被配置为:
根据所述第一服务器的身份标识,确定所述第一服务器的服务区域信息;
根据所述第一位置信息和所述第一服务器的服务区域信息,确定所述差分数据。
在本申请一些实施例中,终端类型信息包括移动终端,固定终端和延迟解算终端。
本申请实施例提供的定位装置,通过接收模块,被配置为接收第一服务器发送的差分数据请求;差分数据请求包括第一位置信息;第一位置信息包括终端的身份标识;确定模块,被配置为根据差分数据请求,确定终端的差分数据;发送模块,被配置为向第一服务器发送差分数据,以用于第一服务器根据差分数据,对终端的第一位置信息进行解算,确定终端的第二位置信息;并向终端发送第二位置信息,以用于终端根据第二位置信息进行定位,能够快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。
本申请实施例提供的定位装置执行图10所示的方法中的各个步骤,并能够达到快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延的技术效果,为简洁描述,再此不在详细赘述。
另外,结合上述实施例中的定位方法,本申请实施例可提供一种计算机存储介质来实现。该计算机存储介质上存储有计算机程序指令;该计算机程序指令被处理器执行时实现上述实施例中的任意一种定位方法。
需要明确的是,本申请并不局限于上文所描述并在图中示出的特定配置和处理。为了简明起见,这里省略了对已知方法的详细描述。在上述实施例中,描述和示出了若干具体的步骤作为示例。但是,本申请的方法过程并不限于所描述和示出的具体步骤,本领域的技术人员可以在领会本申请的精神后,作出各种改变、修改和添加,或者改变步骤之间的顺序。
以上所述的结构框图中所示的功能块可以实现为硬件、软件、固件或者它们的组合。当以硬件方式实现时,其可以例如是电子电路、专用集成电路(ASIC)、适当的固件、插件、功能卡等等。当以软件方式实现时,本申请的元素是被用于执行所需任务的程序或者代码段。程序或者代码段可以存储在机器可读介质中,或者通过载波中携带的数据信号在传输介质或者通信链路上传送。“机器可读介质”可以包括能够存储或传输信息的任何介质。机器可读介质的例子包括电子电路、半导体存储器设备、ROM、闪存、可擦除ROM(EROM)、软盘、CD-ROM、光盘、硬盘、光纤介质、射频(RF)链路,等等。代码段可以经由诸如因特网、内联网等的计算机网络被下载。
还需要说明的是,本申请中提及的示例性实施例,基于一系列的步骤或者装置描述一些方法或***。但是,本申请不局限于上述步骤的顺序,也就是说,可以按照实施例中提及的顺序执行步骤,也可以不同于实施例中的顺序,或者若干步骤同时执行。
以上所述,仅为本申请的具体实施方式,所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的***、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。应理解,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。
工业实用性
本申请实施例中,通过第一服务器接收终端发送的第一位置信息;第一位置信息包括终端的身份标识;向第二服务器发送差分数据请求,差分数据请求包括第一位置信息,差分数据请求用于第二服务器确定终端的差分数据;接收第二服务器发送的差分数据;根据差分数据,对第一位置信息进行解算,得到第二位置信息;向终端发送第二位置信息,进而快速返回终端定位结果,使得终端确定精确位置时大幅度降低了网络时延。

Claims (21)

  1. 一种定位方法,应用于第一服务器,所述方法包括:
    接收终端发送的第一位置信息;所述第一位置信息包括所述终端的身份标识;
    向第二服务器发送差分数据请求,所述差分数据请求包括所述第一位置信息,所述差分数据请求用于所述第二服务器确定所述终端的差分数据;
    接收所述第二服务器发送的所述差分数据;
    根据所述差分数据,对所述第一位置信息进行解算,得到第二位置信息;
    向所述终端发送所述第二位置信息。
  2. 根据权利要求1所述的方法,其中,所述第一位置信息还包括终端类型信息和/或终端位置信息;
    所述终端位置信息包括:语句标识信息,世界时间信息,纬度信息,纬度半球信息,经度信息,经度半球信息。
  3. 根据权利要求2所述的方法,其中,所述差分数据请求还包括所述第一服务器的时间戳和所述第一服务器的身份标识。
  4. 根据权利要求2所述的方法,其中,所述终端类型信息包括移动终端,固定终端和延迟解算终端。
  5. 根据权利要求4所述的方法,其中,所述向第二服务器发送差分数据请求,包括:
    当所述终端类型信息为所述移动终端时,根据第一频率向所述第二服务器发送所述差分数据请求;或者,
    当所述终端类型信息为所述固定终端时,根据第二频率向所述第二服务器发送所述差分数据请求;或者,
    当所述终端类型信息为所述延迟解算终端时,根据第三频率向所述第二服务器发送所述差分数据请求。
  6. 根据权利要求1所述的方法,其中,在接收终端发送的第一位置信息之前,所述方法还包括:
    接收所述终端发送的连接请求;所述连接请求包括所述终端的用户名和密码;
    根据所述用户名和所述密码对所述终端进行验证;
    当对所述终端验证通过时,所述第一服务器与所述终端建立通信连接。
  7. 根据权利要求6所述的方法,其中,在接收终端发送的第一位置信息之前,所述方法还包括:
    向所述第二服务器发送查询请求;所述查询请求包括所述终端的身份标识和所述终端的时间戳;所述查询请求用于所述第二服务器确定是否保存有所述终端的身份标识对应的终端,以用于当所述第二服务器中保存有所述终端的身份标识对应的终端,且所述终端的时间戳未小于预设时间戳时,所述第二服务器向所述第一服务器发送连接指令;
    接收所述连接指令;
    根据所述连接指令,与所述终端建立通信连接。
  8. 根据权利要求1所述的方法,其中,在接收终端发送的第一位置信息之前,所述方法还包括:
    当所述第一服务器与所述终端的断开时间不大于预设时间阈值时,所述第一服务器与所述终端建立通信连接。
  9. 根据权利要求1所述的方法,其中,所述方法还包括:
    向所述第二服务器发送目标消息,所述目标消息包括所述终端的身份标识,所述终端 类型信息和所述第二位置信息,以用于所述第二服务器保存所述目标消息。
  10. 根据权利要求1-9任一项所述的方法,其中,所述第一服务器是边缘服务器,所述第二服务器是中心服务器。
  11. 一种定位方法,应用于终端,所述方法包括:
    向第一服务器发送第一位置信息;所述第一位置信息包括所述终端的身份标识;
    接收所述第一服务器发送的第二位置信息。
  12. 根据权利要求11所述的方法,其中,在向第一服务器发送第一位置信息之前,所述方法还包括:
    向所述第一服务器发送连接请求;所述连接请求包括所述终端的用户名和密码,以用于所述第一服务器根据所述用户名和所述密码对所述终端进行验证;
    当所述终端验证通过时,所述终端与所述第一服务器建立通信连接。
  13. 根据权利要求11或12所述的方法,其中,所述第一位置信息还包括终端类型信息和/或终端位置信息;
    所述终端类型信息包括移动终端,固定终端和延迟解算终端。
  14. 一种定位方法,应用于第二服务器,所述方法包括:
    接收第一服务器发送的差分数据请求;所述差分数据请求包括第一位置信息;所述第一位置信息包括终端的身份标识;
    根据所述差分数据请求,确定所述终端的差分数据;
    向所述第一服务器发送所述差分数据。
  15. 根据权利要求14所述的方法,其中,所述第一位置信息还包括终端类型信息和/或终端位置信息;所述差分数据请求还包括所述第一服务器的时间戳和所述第一服务器的身份标识
    所述根据所述差分数据请求,确定所述终端的差分数据包括:
    根据所述第一服务器的身份标识,确定所述第一服务器的服务区域信息;
    根据所述第一位置信息和所述第一服务器的服务区域信息,确定所述差分数据。
  16. 根据权利要求15所述的方法,其中,所述终端类型信息包括移动终端,固定终端和延迟解算终端。
  17. 一种定位装置,应用于第一服务器,所述装置包括:
    接收模块,用于接收终端发送的第一位置信息;所述第一位置信息包括所述终端的身份标识;
    发送模块,用于向第二服务器发送差分数据请求,所述差分数据请求包括所述第一位置信息,所述差分数据请求用于所述第二服务器确定所述终端的差分数据;
    所述接收模块,还用于接收所述第二服务器发送的所述差分数据;
    解算模块,用于根据所述差分数据,对所述第一位置信息进行解算,得到第二位置信息;
    所述发送模块,还用于向所述终端发送所述第二位置信息。
  18. 一种定位装置,应用于终端,所述装置包括:
    发送模块,用于向第一服务器发送第一位置信息;所述第一位置信息包括所述终端的身份标识;
    接收模块,用于接收所述第一服务器发送的第二位置信息。
  19. 一种定位装置,应用于第二服务器,所述装置包括:
    接收模块,用于接收第一服务器发送的差分数据请求;所述差分数据请求包括第一位置信息;所述第一位置信息包括终端的身份标识;
    确定模块,用于根据所述差分数据请求,确定所述终端的差分数据;
    发送模块,用于向所述第一服务器发送所述差分数据。
  20. 一种定位***,所述***包括:终端、至少一个第一服务器、第二服务器;
    所述终端,用于向第一服务器发送第一位置信息;所述第一位置信息包括所述终端的身份标识;
    所述第一服务器,用于接收所述第一位置信息,并向所述第二服务器发送差分数据请求;所述差分数据请求包括所述第一位置信息,所述差分数据请求用于所述第二服务器确定所述终端的差分数据;
    所述第二服务器,用于接收所述差分数据请求,根据所述差分数据请求,确定所述终端的差分数据;所述差分数据请求包括第一位置信息;所述第一位置信息包括终端的身份标识;
    所述第一服务器,还用于接收所述第二服务器发送的所述差分数据,根据所述差分数据,对所述第一位置信息进行解算,确定所述终端的第二位置信息;
    所述终端,还用于接收所述第一服务器发送的所述第二位置信息。
  21. 一种计算机存储介质,所述计算机存储介质上存储有计算机程序指令,所述计算机程序指令被处理器执行时实现如权利要求1-10任意一项所述的定位方法,或实现如权利要求11-13任意一项所述的定位方法,或实现如权利要求14-16任意一项所述的定位方法。
PCT/CN2021/085010 2020-04-03 2021-04-01 定位方法、装置、***和存储介质 WO2021197446A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21782057.0A EP4131886A4 (en) 2020-04-03 2021-04-01 POSITIONING METHOD, DEVICE AND SYSTEM AND STORAGE MEDIUM
US17/995,306 US20230164733A1 (en) 2020-04-03 2021-04-01 Positioning method, device, and system, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010260719.4A CN113079191B (zh) 2020-04-03 2020-04-03 定位方法、装置、***和存储介质
CN202010260719.4 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021197446A1 true WO2021197446A1 (zh) 2021-10-07

Family

ID=76609000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085010 WO2021197446A1 (zh) 2020-04-03 2021-04-01 定位方法、装置、***和存储介质

Country Status (4)

Country Link
US (1) US20230164733A1 (zh)
EP (1) EP4131886A4 (zh)
CN (1) CN113079191B (zh)
WO (1) WO2021197446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173285A (zh) * 2022-02-11 2022-03-11 荣耀终端有限公司 一种蓝牙回连方法、***、电子设备、服务器及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104977596A (zh) * 2015-06-08 2015-10-14 深圳北斗应用技术研究院有限公司 基于云计算的高精度位置修正定位***
WO2017070910A1 (zh) * 2015-10-29 2017-05-04 华为技术有限公司 移动网络中的定位方法、服务器、基站、移动终端和***
US20170171701A1 (en) * 2014-06-12 2017-06-15 Zte Corporation Positioning method, device, positioning center, terminal and computer storage medium
CN109541655A (zh) * 2018-11-20 2019-03-29 腾讯科技(深圳)有限公司 一种差分定位***、方法
CN109597109A (zh) * 2018-11-20 2019-04-09 腾讯科技(深圳)有限公司 一种定位方法、定位装置及定位***
CN111090111A (zh) * 2018-10-23 2020-05-01 千寻位置网络有限公司 基于边缘计算的动态差分定位方法及***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1802991B1 (en) * 2004-10-21 2012-03-28 Nokia Corporation Satellite based positioning
CN106982463B (zh) * 2016-07-31 2021-01-29 曾华明 基于多信息的定位方法、定位装置、定位终端和服务端
US11019487B2 (en) * 2017-12-11 2021-05-25 Qualcomm Incorporated Systems and methods for uplink high efficiency location in a wireless network
US10506543B1 (en) * 2018-06-25 2019-12-10 Qualcomm Incorporated Low power periodic and triggered location of a mobile device using early data transmission
CN109862519A (zh) * 2019-01-18 2019-06-07 深圳高新兴物联科技有限公司 定位方法、定位信息计算方法、***、终端和存储介质
CN109814137B (zh) * 2019-02-26 2023-07-14 腾讯科技(深圳)有限公司 定位方法、装置和计算设备
CN110895343A (zh) * 2019-08-19 2020-03-20 腾讯科技(深圳)有限公司 一种数据处理方法、***以及相关设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170171701A1 (en) * 2014-06-12 2017-06-15 Zte Corporation Positioning method, device, positioning center, terminal and computer storage medium
CN104977596A (zh) * 2015-06-08 2015-10-14 深圳北斗应用技术研究院有限公司 基于云计算的高精度位置修正定位***
WO2017070910A1 (zh) * 2015-10-29 2017-05-04 华为技术有限公司 移动网络中的定位方法、服务器、基站、移动终端和***
CN111090111A (zh) * 2018-10-23 2020-05-01 千寻位置网络有限公司 基于边缘计算的动态差分定位方法及***
CN109541655A (zh) * 2018-11-20 2019-03-29 腾讯科技(深圳)有限公司 一种差分定位***、方法
CN109597109A (zh) * 2018-11-20 2019-04-09 腾讯科技(深圳)有限公司 一种定位方法、定位装置及定位***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173285A (zh) * 2022-02-11 2022-03-11 荣耀终端有限公司 一种蓝牙回连方法、***、电子设备、服务器及存储介质

Also Published As

Publication number Publication date
EP4131886A1 (en) 2023-02-08
EP4131886A4 (en) 2023-09-06
CN113079191B (zh) 2022-04-05
US20230164733A1 (en) 2023-05-25
CN113079191A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
US10972463B2 (en) Blockchain-based NB-IoT devices
EP4191959B1 (en) Method and system for ensuring service level agreement of an application
WO2019165876A1 (zh) 网络连接的建立方法及装置
Nguyen et al. Decentralized and revised content-centric networking-based service deployment and discovery platform in mobile edge computing for IoT devices
US20230171618A1 (en) Communication method and apparatus
Abrougui et al. Design and evaluation of context-aware and location-based service discovery protocols for vehicular networks
CN108064062B (zh) 一种跨基站的信息处理的方法及装置
CN112188533A (zh) 一种网络性能的上报方法及装置
US20220174585A1 (en) Information Obtaining Method And Apparatus
CN115039391A (zh) 用于提供边缘计算服务的方法和装置
US20220408272A1 (en) Application instance deployment method and apparatus, and readable storage medium
US20220191650A1 (en) Method and apparatus for obtaining and managing location information of mobile terminal in edge computing system
US20220214461A1 (en) Positioning processing method and related apparatus
CN105338466B (zh) 位置信息获取方法及设备
CA2796852C (en) Region access platform, mobile positioning method and system
WO2021197446A1 (zh) 定位方法、装置、***和存储介质
RU2015113119A (ru) Способ и архитектура для мобильности приложений в распределенном облачном окружении
CN114125958A (zh) 下行定位测量方法、装置及***
Dang et al. Integrated service discovery and placement in information-centric vehicular network slices
CN113791899B (zh) 一种面向移动Web增强现实的边缘服务器管理***
EP3422674A1 (en) A method of resolving a domain name by a dns server to a plurality of ip addresses based on location information of the user equipment
CN113783963A (zh) 数据传输方法、服务器节点、网关设备、网络***
KR20230040115A (ko) 모바일 IoT 환경에서 블록체인 기반 데이터 통신 시스템 및 그 방법
CN115695561A (zh) 报文转发方法、装置及***、计算机可读存储介质
CN113132251A (zh) 业务调度方法、装置以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21782057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021782057

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE