WO2021197424A1 - 信息配置及确定方法、网络设备和终端设备 - Google Patents

信息配置及确定方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2021197424A1
WO2021197424A1 PCT/CN2021/084921 CN2021084921W WO2021197424A1 WO 2021197424 A1 WO2021197424 A1 WO 2021197424A1 CN 2021084921 W CN2021084921 W CN 2021084921W WO 2021197424 A1 WO2021197424 A1 WO 2021197424A1
Authority
WO
WIPO (PCT)
Prior art keywords
qcl
target
signaling
switching
resource
Prior art date
Application number
PCT/CN2021/084921
Other languages
English (en)
French (fr)
Inventor
郑凯立
孙鹏
刘昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010275976.5A external-priority patent/CN113498089B/zh
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2021197424A1 publication Critical patent/WO2021197424A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present invention claims the priority of a Chinese patent application filed with the Chinese Patent Office, the application number is 202010260696.7, and the invention title is "information configuration and determination method, network equipment and terminal equipment” on April 3, 2020, and in April 2020
  • the priority of the Chinese patent application filed with the Chinese Patent Office on the 09th with the application number 202010275976.5 and the invention title is "information configuration and determination method, network equipment and terminal equipment", the entire content of the above application is incorporated into the present invention by reference.
  • the present invention relates to the field of communications, in particular to an information configuration and determination method, network equipment and terminal equipment.
  • the Long Term Evolution (LTE) system and new In the New Radio (NR) system the Single Frequency Network (SFN) transmission method can be used for network deployment, that is, simultaneous transmission in multiple cells on the same frequency at the same time to save frequency resources and increase spectrum Utilization rate.
  • UE User Equipment
  • NR New Radio
  • the NR system introduces a more flexible tracking reference signal (Tracking Reference Signal, TRS) and a series of related quasi co-location (QCL) relationships.
  • TRS Tracking Reference Signal
  • QCL quasi co-location
  • DMRS Demodulation Reference Signal
  • the terminal device needs to perform spatial relationship information switching, transmission configuration instruction switching, and crystal frequency switching, etc., and the length of time for the aforementioned related switching depends on the terminal device's own capabilities.
  • a time protection mechanism that adapts to the relevant handover is also needed.
  • the technical problem solved by the embodiment of the present invention is at least one of the following: how to enable the DMRS to refer to the correct QCL source when performing channel estimation and data demodulation; how to enable the terminal device to have sufficient time margin when performing related handover.
  • an embodiment of the present invention provides an information configuration method, which is applied to a network device, and the method includes:
  • the target configuration information includes at least one of target standard co-location reference information and a time margin n; wherein, the target QCL reference information corresponds to a demodulation reference signal resource, and the target QCL reference information uses For the terminal device to perform channel estimation and data demodulation; the time margin n is used for the terminal device to perform target switching, where the target switching includes crystal frequency switching, spatial relation information (SpatialRelationInfo) switching, and TCI state At least one of handover and TRP handover.
  • the target configuration information includes at least one of target standard co-location reference information and a time margin n
  • the target QCL reference information corresponds to a demodulation reference signal resource
  • the target QCL reference information uses
  • the time margin n is used for the terminal device to perform target switching, where the target switching includes crystal frequency switching, spatial relation information (SpatialRelationInfo) switching, and TCI state At least one of handover and TRP handover.
  • SpatialRelationInfo spatial relation information
  • an embodiment of the present invention provides a network device, including:
  • the configuration module is configured to configure target configuration information, where the target configuration information includes at least one of target standard co-location reference information and a time margin n; wherein, the target QCL reference information corresponds to a demodulation reference signal resource, and The target QCL reference information is used for the terminal device to perform channel estimation and data demodulation; the time margin n is used for the terminal device to perform target switching, where the target switching includes crystal oscillator frequency switching, spatial relationship information switching, At least one of transmission configuration indicator state (Transmission Configuration Indicator state, TCI state) switching and transmission reception point (Transmission Reception Point, TRP) switching.
  • TCI state Transmission Configuration Indicator state
  • TRP Transmission Reception Point
  • an embodiment of the present invention provides a network device, including: a memory, a processor, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor When realizing the steps of the method as described in the first aspect.
  • an embodiment of the present invention provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the method described in the first aspect are implemented .
  • an embodiment of the present invention provides an information determination method, which is applied to a terminal device, and the method includes:
  • Target configuration information configured by a network device, where the target configuration information includes at least one of target standard co-location reference information and a time margin n, wherein the target QCL reference information corresponds to a demodulation reference signal resource; Target QCL reference information for channel estimation and data demodulation; target switching is performed according to the time margin n, where the target switching includes crystal frequency switching, spatial relationship information switching, transmission configuration indication state switching, and transmission receiving point switching. At least one of them.
  • an embodiment of the present invention provides a terminal device, including:
  • the receiving module is configured to receive target configuration information configured by a network device, where the target configuration information includes at least one of target standard co-location reference information and a time margin n, wherein the target QCL reference information and demodulation reference signal resource Corresponding; a first processing module for channel estimation and data demodulation according to the target QCL reference information; a second processing module for target switching according to the time margin n, wherein the target switching It includes at least one of crystal frequency switching, spatial relationship information switching, transmission configuration indication state switching, and transmission receiving point switching.
  • an embodiment of the present invention provides a terminal device, including: a memory, a processor, and a computer program stored on the memory and running on the processor, the computer program being executed by the processor When realizing the steps of the method as described in the fifth aspect.
  • an embodiment of the present invention provides a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the method described in the fifth aspect are implemented .
  • target configuration information may be configured, and the target configuration information includes at least one of target standard co-location reference information and time margin n.
  • the terminal device can refer to the correct QCL information when performing channel estimation and data demodulation based on the DMRS resource.
  • the terminal device can perform target switching based on the time margin n, that is, provide a sufficient amount of time margin for the terminal device to perform target switching, so as to ensure the data solution of the terminal device.
  • Adjustment capability wherein the target switching includes at least one of crystal frequency switching, spatial relationship information switching, transmission configuration indication state switching, and transmission receiving point switching. In this way, the communication efficiency of the system can be improved.
  • Figure 1 is a schematic diagram of network deployment based on SFN transmission in an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of an information configuration method in an embodiment of the present invention.
  • Figure 3 is a schematic diagram of a frequency offset pre-compensation process in an embodiment of the present invention.
  • Figure 4 is a schematic diagram of another frequency offset pre-compensation process in an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of another frequency offset pre-compensation process in an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a method for determining information in an embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of a network device in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal device in an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a second type of network device in an embodiment of the present invention.
  • Fig. 10 is a schematic structural diagram of a second type of terminal device in an embodiment of the present invention.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • GSM Wideband Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE-A Long Term Evolution/Enhanced Long Term Evolution
  • NR NR
  • User-side UE can also be called terminal equipment (Mobile Terminal), mobile user equipment, etc., and can communicate with one or more core networks via a radio access network (RAN), and user equipment can be terminal equipment.
  • RAN radio access network
  • user equipment can be terminal equipment.
  • they can be portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile devices, which exchange languages and/or wireless access networks. Or data.
  • Network equipment also called a base station
  • BTS Base Transceiver Station
  • NodeB base station
  • evolutional Node B evolutional Node B
  • LTE Long Term Evolution
  • ENB e-NodeB
  • gNB 5G base station
  • multiple remote radio heads when the SFN transmission mode is used for network deployment, multiple remote radio heads (RRH) will be connected to the same baseband processing unit (Building Baseband Unit, BBU), so that the UE In the process of high-speed movement, there is no need to switch network equipment frequently.
  • BBU Building Baseband Unit
  • multiple RRHs, RRH1 and RRH2 can send the same physical downlink shared channel (PDSCH) data to the UE, and the UE can move between RRH1 and RRH2.
  • PDSCH physical downlink shared channel
  • an embodiment of the present invention provides an information configuration method, which is executed by a network device, and the method includes the following process steps:
  • Step 101 Configure target configuration information, where the target configuration information includes at least one of target QCL reference information and time margin n.
  • the above-mentioned target QCL reference information corresponds to the DMRS resource
  • the target QCL reference information is used for terminal equipment to perform channel estimation and data demodulation
  • the time margin n is used for terminal equipment target switching, where target switching includes crystal oscillator frequency switching, At least one of spatial relationship information switching, transmission configuration indication state switching, and transmission receiving point switching.
  • target configuration information may be configured, and the target configuration information includes at least one of target standard co-location reference information and time margin n.
  • the terminal device can refer to the correct QCL information when performing channel estimation and data demodulation based on the DMRS resource.
  • the terminal device can perform target switching based on the time margin n, that is, provide a sufficient amount of time margin for the terminal device to perform target switching, so as to ensure the data solution of the terminal device.
  • Adjustment capability wherein the target switching includes at least one of crystal frequency switching, spatial relationship information switching, transmission configuration indication state switching, and transmission receiving point switching. In this way, the communication efficiency of the system can be improved.
  • the above-mentioned target configuration information may be used by the terminal device in the first process, where the first process is that the terminal device moves from one of the first RRH and the second RRH in a network deployed in SFN transmission mode.
  • the process to another. For example, the process of moving from one of RRH1 and RRH2 to the other in FIG. 1.
  • the target QCL reference information when the target configuration information includes target standard co-location reference information, includes the target QCL reference source and the target QCL corresponding to the target QCL reference source. parameter. That is to say, through the target QCL reference information, the DMRS resource can refer to the correct QCL source and its corresponding target QCL parameters when performing channel estimation and data demodulation.
  • the foregoing target QCL reference information satisfies at least one of the following conditions:
  • the foregoing target QCL reference source is different from the first QCL reference source, and the first QCL reference source includes a first TRS resource and a second TRS resource.
  • the first TRS resource may be sent by the first RRH
  • the second TRS resource may be sent by the second RRH.
  • the foregoing target QCL parameters are different from the first QCL parameters, and the first QCL parameters are all QCL parameters in the QCL type corresponding to the first TRS resource and all QCL parameters in the QCL type corresponding to the second TRS resource.
  • the target QCL reference source of the DMRS is configured as a QCL source different from the first TRS resource and the second TRS resource in the related technology, and/or the target QCL parameter configuration corresponding to the target QCL reference source is the same as the DMRS in the related technology
  • the QCL parameters of the QCL source referenced by the resource are different, the situation of Doppler frequency offset value mismatch can be avoided.
  • the specific content contained in the target QCL reference information including the target QCL reference source and its corresponding target QCL parameters can be configured into a variety of different solutions, including but It is not limited to the situation described in the following specific embodiments:
  • the above-mentioned target QCL reference information is indicated to the terminal device based on code points in the first Downlink Control Information (DCI) signaling, and the code points include the first TCI state and the second TCI. state.
  • DCI Downlink Control Information
  • the QCL reference source in the first TCI state is the first TRS resource, and the QCL type in the first TCI state is QCL TypeA; the QCL reference source in the second TCI state is the second TRS resource, and the second TCI state
  • the QCL type in is QCL TypeA or the first QCL type; wherein, the QCL parameter in the first QCL type is the delay extension.
  • the target QCL reference information of the DMRS port can be indicated by the DCI as two TCI states included in the code points in the TCI domain, that is, the target QCL reference source of the DMRS port is configured as the first TRS resource And the second TRS resource.
  • the target QCL parameter corresponding to the target QCL reference source may jointly refer to the QCL parameter in the QCL TypeA of the first TRS resource and the QCL parameter in the QCL TypeA of the second TRS resource.
  • the QCL parameter corresponding to the target QCL type may jointly refer to the QCL parameter in the QCL TypeA of the first TRS resource and the QCL parameter in the newly defined first QCL type for immediate extension.
  • the above-mentioned QCL TypeA represents the QCL type, and the QCL parameters in QCL TypeA are Doppler frequency offset, Doppler spread, average delay, and delay spread.
  • the target QCL reference source includes: the main QCL reference source And non-primary QCL reference sources.
  • the main QCL reference source is one of the first TRS resource and the second TRS resource
  • the non-primary QCL reference source is the other of the first TRS resource and the second TRS resource
  • the target QCL parameters include the main QCL reference source All QCL parameters in the corresponding QCL Type A and some QCL parameters in the QCL Type A corresponding to the non-primary QCL reference source, among which some QCL parameters are delay extensions.
  • the target QCL reference source distinguishes between the first TRS resource and the second TRS resource, and the target QCL parameter corresponding to the target QCL reference source is different from the first QCL parameter.
  • the UE will jointly refer to the first TRS.
  • the delay spread of both the resource and the second TRS resource performs channel estimation and data demodulation.
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, which is explicitly indicated to the terminal device by the network device through the first signaling; wherein, the first signaling Including radio resource control signaling, Medium Access Control Control Element (MAC CE) signaling or DCI signaling.
  • the first signaling Including radio resource control signaling, Medium Access Control Control Element (MAC CE) signaling or DCI signaling.
  • MAC CE Medium Access Control Element
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, and the network device implicitly indicates to the terminal device through the first sequence, and the first sequence is the first sequence.
  • the sequence of the TCI state and the second TCI state in the code point, and the main QCL reference source is the TRS resource in the TCI state that is arranged before the code point.
  • the crystal oscillator frequency of the network device is fc
  • the crystal oscillator frequency of the UE is fc+fo.
  • it can include the following:
  • Step 201 Frequency offset estimation based on synchronization signal block (Synchronization Signal and PBCH block, SSB) resources.
  • synchronization signal block Synchronization Signal and PBCH block, SSB
  • the network equipment configures two resource sets SSB1 and SSB2, which are sent to the UE from RRH1 and RRH2, respectively.
  • the UE estimates the Doppler frequency offset as ⁇ f1-fo and ⁇ f2-fo according to the received SSB1 and SSB2, respectively. Further, the UE may decide to adjust the crystal oscillator frequency according to the frequency offset estimation result corresponding to SSB1 or SSB2 according to the signaling instructions sent in advance by the network device.
  • the network device instructs to adjust the crystal frequency according to the frequency offset estimation result ⁇ f1 corresponding to SSB1, then adjust the crystal frequency to fc+ ⁇ f1; and if the network device instructs to adjust the crystal frequency according to the frequency offset estimation result ⁇ f2 corresponding to SSB2, then the crystal oscillator frequency is adjusted The frequency is adjusted to fc+ ⁇ f2.
  • a specific example is described by taking the network device instructing to adjust the frequency of the crystal oscillator according to the frequency offset estimation result ⁇ f1 corresponding to SSB1 as an example.
  • Step 203 Frequency offset estimation based on TRS resources.
  • the network equipment configures two TRS resource sets TRS1 and TRS2, which are sent to the UE from RRH1 and RRH2, respectively.
  • the UE estimates the Doppler frequency offset as 0 and ⁇ f2- ⁇ f1 according to the received TRS1 and TRS2, respectively. Further, the UE may decide to adjust the crystal oscillator frequency according to the frequency offset result corresponding to TRS1 or TRS2 according to the signaling instructions sent in advance by the network device.
  • the network device instructs to adjust the crystal frequency according to the frequency offset estimation result 0 corresponding to TRS1, adjust the crystal frequency to fc+ ⁇ f1; and if the network device instructs to adjust the crystal frequency according to the frequency offset estimation result ⁇ f2- ⁇ f1 corresponding to TRS2 , Then adjust the crystal frequency to fc+ ⁇ f2.
  • the description is specifically made by taking the network device instructing to adjust the crystal frequency according to the frequency offset estimation result 0 corresponding to TRS1 as an example.
  • Step 205 Estimating the frequency offset of the uplink network equipment.
  • the UE sends an uplink sounding reference signal (Sounding Reference Signal, SRS) with the crystal frequency fc+ ⁇ f1, and the network equipment estimates the Doppler frequency offsets ⁇ f1 and ⁇ f2 on RRH1 and RRH2 according to the SRS.
  • SRS Sounding Reference Signal
  • Step 207 After the network device performs frequency offset pre-compensation, the same PDSCH is sent from RRH1 and RRH2.
  • the DMRS When the UE receives the PDSCH, the DMRS performs channel estimation according to the TCI state pre-indicated by the RRC, MAC CE, and DCI fields.
  • the specific instructions are as follows:
  • the RRC configures M TCI states, from which MACCE activates N TCI states (N ⁇ 8), and DCI indicates one of the N TCI states.
  • the QCL reference information of the two TCI states represented by the code points in the DCI field at this time is: the QCL reference source of the DMRS in the first TCI state is TRS1, and the QCL type is QCL TypeA; the second TCI state is the DMRS reference information.
  • the QCL reference source is TRS2, and the QCL type is QCL TypeA.
  • signaling indicates that the primary QCL reference source is TRS1 in the first TCI state. Or according to the order of the TCI state in the code points ⁇ TCI state1, TCI state2 ⁇ , implicitly indicating that the TCI state1 in the code point is the main QCL reference source. Since the UE can learn that it is in the high-speed rail SFN network according to high-level signaling, it defaults to refer to the delay extension of the non-primary QCL reference source TRS2 at this time. That is, the DMRS refers to the average delay, delay spread, Doppler frequency offset, and Doppler spread of TRS1, but only refers to the delay spread of TRS2 (part of QCL parameters in QCL Type A). When UE performs DMRS channel estimation, it needs to combine the time delay information of TRS1 and TRS2.
  • the target QCL reference source when the QCL type in the first TCI state is QCL TypeA, and the QCL type in the second TCI state is the first QCL type, the target QCL reference source includes the first QCL type.
  • a TRS resource and a second TRS resource; the aforementioned target QCL parameters include: all QCL parameters in the QCL TypeA corresponding to the first TRS resource, and all QCL parameters in the first QCL type corresponding to the second TRS resource.
  • the target QCL parameter corresponding to the target QCL reference source is different from the first QCL parameter.
  • the UE will jointly refer to the delay spread of both the first TRS resource and the second TRS resource for channel estimation and data demodulation.
  • steps 301, 303, and 305 are basically the same as those of step 201, step 203, and step 205 shown in FIG. 3. I won't repeat them here. The difference lies in the following:
  • Step 307 After the network device performs frequency offset pre-compensation, the same PDSCH is sent from RRH1 and RRH2.
  • the DMRS When the UE receives the PDSCH, the DMRS performs channel estimation according to the TCI state pre-indicated by the RRC, MAC CE, and DCI fields.
  • the specific instructions are as follows:
  • the RRC configures M TCI states, from which MAC-CE activates N TCI states (N ⁇ 8), and DCI indicates one of the N TCI states.
  • the QCL reference information corresponding to the two TCI states represented by the code points in the DCI domain at this time is: the QCL reference source of the DMRS in the first TCI state is TRS1, and the QCL type is QCL TypeA ⁇ Doppler frequency offset, Doppler extension, average delay, delay extension ⁇ ; the QCL reference source of the DMRS in the second TCI state is TRS2, and the QCL type is QCL TypeE ⁇ delay extension ⁇ (that is, the first QCL type).
  • the DMRS refers to the average delay, delay spread, Doppler frequency offset and Doppler spread of TRS1, and refers to the delay spread of TRS2.
  • UE performs DMRS channel estimation, it needs to combine the time delay information of TRS1 and TRS2.
  • the above-mentioned target QCL reference resource is the third TRS resource
  • the third TRS resource is sent after frequency offset precompensation
  • the QCL reference source of the third TRS resource is the first TRS resource or the second TRS Resources
  • the QCL type referenced by the third TRS resource is QCL TypeC or the second QCL type
  • the first TRS resource, the second TRS resource, and the third TRS resource are all periodic TRS resources.
  • the second QCL type is any QCL type except QCL TypeA, QCL TypeB, QCL TypeC, and QCL TypeD; the foregoing target QCL parameters are all QCL parameters in the foregoing QCL TypeA.
  • the above-mentioned QCL TypeB, QCL TypeC, and QCL TypeD all indicate the QCL type
  • the QCL parameters in QCL TypeB are Doppler frequency offset and Doppler spread
  • the QCL parameters in QCL TypeC are Doppler frequency offset and average delay.
  • QCL parameters in QCL TypeD are spatial receiving parameters.
  • the target QCL reference source is different from the first QCL reference source.
  • the periodic TRS resource that is sent between the frequency offset precompensation and the transmission of the same PDSCH that is, the third TRS resource
  • the third TRS resource refers to another periodic TRS resource (that is, the first TRS resource or the second TRS resource) by QCL TypeC.
  • the third TRS resource may be sent after the frequency offset precompensation is performed by the first RRH and the second RRH, and before the same physical downlink shared channel PDSCH is sent through the first RRH and the second RRH.
  • step 401, step 403, and step 405 included are basically the same as the contents of step 201, step 203, and step 205 shown in FIG. 3. I won't repeat them here. The difference lies in the following:
  • Step 407 After the network device performs frequency offset pre-compensation, the same TRS3 is sent from RRH1 and RRH2.
  • the UE receives TRS3, according to the TCI state pre-indicated by the RRC, MAC CE, and DCI fields, it uses TRS1 as the QCL reference, and the QCL type is QCL TypeC to adjust the timing and frequency offset, and estimate the new timing and time. Extension spread, Doppler frequency deviation and Doppler spread.
  • Step 409 After performing frequency offset pre-compensation, the network device sends the same PDSCH from RRH1 and RRH2.
  • the DMRS When the UE receives the PDSCH, the DMRS performs channel estimation according to the TCI state pre-indicated by the RRC, MAC CE, and DCI fields.
  • the TCI state specifically indicated by the DCI is: the QCL reference source of the DMRS is TRS3, and the QCL type is QCL TypeA.
  • the target QCL reference source of the DMRS is configured as a specific DMRS resource, and the target QCL parameters are all QCL parameters in QCL TypeA.
  • the indication information of the specific DMRS resource is configured through second signaling, where the second signaling includes RRC signaling, MAC CE signaling, or DCI signaling.
  • the target QCL reference source is different from the first QCL reference source, and may be a specific DMRS resource designated in advance.
  • the target QCL reference source is a specific DMRS resource.
  • the target QCL reference source is different from the first QCL reference source.
  • the QCL reference source configured for the DMRS resource is itself, that is, they are all pre-designated specific DMRS resources.
  • the QCL reference source configured for the DMRS resource is a pre-indication Specific DMRS resources.
  • the target QCL reference source is the specific DMRS resource sent last time before sending the DMRS resource.
  • the QCL reference source configured for the DMRS resource is a pre-indication Specific DMRS resources.
  • the above-mentioned target switching can be indicated to the terminal device in different ways, including but not limited to the following specific embodiments:
  • the above-mentioned time margin n is used for the terminal device to perform target switching within the switching period after receiving the target signaling.
  • the switching period is the period corresponding to time T to time (T+n), and time T is used for the terminal device to send a positive confirmation ACK message corresponding to the target signaling.
  • the target switching is agreed by the protocol to be completed after the time (T+n), and no signal transmission is performed within the time margin n; where the target signaling includes MAC CE signaling or physical layer control signaling.
  • time margin n, time T, and time (T+n) is milliseconds.
  • target switching is explicitly indicated to the terminal device by the network device through target signaling.
  • an additional time margin of n milliseconds is provided to ensure that the UE has sufficient time margin to complete the corresponding target switching, thereby ensuring the data demodulation capability of the terminal device.
  • the target switch is the aforementioned SpatialRelationInfo switch.
  • the unit of time (T+3+n1) is milliseconds.
  • time margin n may be based on the time margin of 3 milliseconds provided in the related art, and further provide an additional time margin of n1 milliseconds.
  • the above-mentioned first SpatialRelationInfo switching signaling is used to instruct the reference signal set associated with the SpatialRelationInfo to switch from the first set to the second set.
  • the first set and the second set are two reference signal sets associated with SpatialRelationInfo.
  • the first set and the second set are two different reference signal sets, and the first set and the second set are pre-configured by the network device or agreed by a protocol.
  • the target switch is the aforementioned TCI state switch.
  • time margin n may be based on the time margin of 3 milliseconds provided in the related art, and further provide an additional time margin of n1 milliseconds.
  • the above-mentioned first TCI state switching signaling is used to instruct the reference signal set associated with the TCI state to switch from the third set to the fourth set.
  • the third set and the fourth set are two reference signal sets associated with the TCI state.
  • the third set and the fourth set are two different reference signal sets, and the third set and the fourth set are pre-configured by the network device or agreed upon by the protocol.
  • the above-mentioned first TCI state switching signaling is used to instruct specific control resource set (Control Resource Set, CORESET) TCI state switching, and the specific CORESET TCI state switching includes CORESET0TCI state switching .
  • the specific CORESET TCI state switch may also include a certain specified CORESET TCI state switch other than the CORESET 0TCI state switch.
  • the above-mentioned first TCI state switching signaling may also be used to indicate the PDSCH active TCI state switching.
  • the PDSCH active TCI state is the TCI state used to receive the PDSCH.
  • the target signaling in the foregoing target signaling is DCI signaling (ie, physical layer control signaling), and the foregoing target signaling is the second TCI state switching signaling and the second SpatialRelationInfo switching signaling
  • the target switching may correspond to at least one of TCI state switching and SpatialRelationInfo switching.
  • the above-mentioned second TCI state switching signaling is used to switch the CORESET TCI state or the PDSCH TCI state.
  • the above-mentioned target signaling is specifically agreed signaling; wherein, the specifically agreed signaling is newly defined signaling in the high-speed rail mode and includes one of the following: TRP handover signaling, RRH Handover signaling, TRS handover signaling, SSB handover signaling, third TCI state handover signaling, and third SpatialRelationInfo handover signaling.
  • the target switching can also be instructed through specially agreed signaling.
  • the above-mentioned target switching is implicitly indicated by the network device to the terminal device; wherein, no signal transmission is performed within the above-mentioned time margin n.
  • n time margin
  • signaling overhead can be saved.
  • an additional time margin of n milliseconds is provided to ensure that the UE has a sufficient time margin to complete the corresponding target switching, thereby ensuring the data demodulation capability of the terminal device.
  • the manner for determining the time margin n includes one of the following:
  • the time margin n is configured by the network equipment. In other words, the time margin n is directly configured by the network device.
  • the time margin n is reported by the terminal device. That is, the network device may configure a time margin reported by the terminal device based on its own capabilities as the time margin n, so as to meet the time requirement of the terminal device for target switching.
  • the network device configures the time margin n based on the time margin n3 reported by the terminal device.
  • the network device can directly configure the time margin n3 as the final time margin n, or reconfigure a new time margin n4, and configure the time margin n4 as the final time margin n, where the time margin n4 may be greater than the time margin n to meet the time requirement of the terminal device for target switching.
  • the time margin n may be equal to the time margin n3 or not equal to the time margin n3.
  • the network device configures the time margin n based on the time margin threshold value reported by the terminal device.
  • the network device receives the time margin threshold value reported by the terminal device based on its own capabilities, it can select an appropriate time margin as the final time margin n based on the time margin threshold value. Meet the time requirements of terminal equipment for target switching.
  • the time margin n may be equal to or different from the time margin threshold.
  • the information configuration method of the embodiment of the present invention can provide a new QCL reference relationship and type, as well as related signaling indications, to solve the frequency offset pre-compensation scheme for the network side frequency offset pre-compensation scheme of the high-speed rail scene.
  • the QCL reference information mismatch problem ensures the data demodulation performance of the terminal equipment.
  • an additional time margin of n milliseconds is introduced, which is to introduce sufficient time margin for the crystal oscillator adjustment of the terminal device to ensure that the terminal device is before sending and receiving signals. Complete the adjustment of the crystal oscillator frequency to ensure the data demodulation performance of the terminal equipment.
  • an embodiment of the present invention provides a method for determining information, which is executed by a terminal device, and the method includes the following process steps:
  • Step 501 Receive target configuration information configured by a network device, where the target configuration information includes at least one of target QCL reference information and a time margin n, where the target QCL reference information corresponds to a DMRS resource.
  • Step 503 Perform channel estimation and data demodulation according to the target QCL reference information.
  • Step 505 Perform target switching according to the time margin n, where the target switching includes at least one of crystal frequency switching, SpatialRelationInfo switching, TCI state switching, and TRP switching.
  • At least one of the target QCL reference information and the time margin n can be acquired according to the target configuration information configured by the network device.
  • the correct QCL information can be referred to when performing channel estimation and data demodulation based on the target QCL reference information and the DMRS resource.
  • the target switching can be performed based on the sufficient time margin additionally configured by the network device, thereby ensuring the data demodulation capability of the terminal device.
  • the target switching includes the crystal oscillator frequency. At least one of switching, SpatialRelationInfo switching, TCI state switching, and TRP switching. In this way, the communication efficiency of the system can be improved.
  • the above-mentioned target configuration information may be used in the first process, where the first process is that when the terminal device is located in a network deployed by SFN transmission, it moves from one of the first RRH and the second RRH to the other.
  • a process For example, the process of moving from one of RRH1 and RRH2 to the other in FIG. 1.
  • the target QCL reference information includes the target QCL reference source and target QCL parameters corresponding to the target QCL reference source. That is to say, through the target QCL reference information, the DMRS resource can refer to the correct QCL source and its corresponding target QCL parameters when performing channel estimation and data demodulation.
  • the foregoing target QCL reference information satisfies at least one of the following conditions:
  • the foregoing target QCL reference source is different from the first QCL reference source, and the first QCL reference source includes a first TRS resource and a second TRS resource.
  • the first TRS resource may be sent by the network device via the first RRH
  • the second TRS resource may be sent by the network device via the second RRH.
  • the foregoing target QCL parameters are different from the first QCL parameters, and the first QCL parameters are all QCL parameters in the QCL type corresponding to the first TRS resource and all QCL parameters in the QCL type corresponding to the second TRS resource.
  • the target QCL reference source of the DMRS is different from the QCL source that refers to the first TRS resource and the second TRS resource in the related technology, and/or the target QCL parameter corresponding to the target QCL reference source is referenced by the DMRS resource in the related technology
  • the QCL parameters corresponding to the QCL source are different, the mismatch of the Doppler frequency offset value can be avoided.
  • the specific content contained in the target QCL reference information including the target QCL reference source and its corresponding target QCL parameters may be a variety of different solutions, including but not limited to The situation described in the following specific embodiments:
  • the above-mentioned target QCL reference information is indicated by the network device based on the code point in the first DCI signaling, and the code point includes the first TCI state and the second TCI state.
  • the QCL reference source in the first TCI state is the first TRS resource, and the QCL type in the first TCI state is QCL TypeA; the QCL reference source in the second TCI state is the second TRS resource, and the second TCI state
  • the QCL type in is QCL TypeA or the first QCL type; wherein, the QCL parameter in the first QCL type is the delay extension.
  • the target QCL reference information of the DMRS port can be indicated by the DCI as two TCI states included in the code points in the TCI domain, that is, the target QCL reference source of the DMRS port is configured as the first TRS resource And the second TRS resource.
  • the target QCL parameter corresponding to the target QCL reference source may jointly refer to the QCL parameter in the QCL TypeA of the first TRS resource and the QCL parameter in the QCL TypeA of the second TRS resource.
  • the QCL parameter corresponding to the target QCL type may jointly refer to the QCL parameter in the QCL TypeA of the first TRS resource and the QCL parameter in the newly defined first QCL type for immediate extension.
  • the above-mentioned QCL TypeA represents the QCL type, and the QCL parameters in QCL TypeA are Doppler frequency offset, Doppler spread, average delay, and delay spread.
  • the target QCL reference source includes: the main QCL reference source And non-primary QCL reference sources.
  • the main QCL reference source is one of the first TRS resource and the second TRS resource
  • the non-primary QCL reference source is the other of the first TRS resource and the second TRS resource
  • the target QCL parameters include the main QCL reference source All QCL parameters in the corresponding QCL Type A and some QCL parameters in the QCL Type A corresponding to the non-primary QCL reference source, among which some QCL parameters are delay extensions.
  • the target QCL reference source distinguishes between the first TRS resource and the second TRS resource, and the target QCL parameter corresponding to the target QCL reference source is different from the first QCL parameter.
  • the UE will jointly refer to the first TRS.
  • the delay spread of both the resource and the second TRS resource performs channel estimation and data demodulation.
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, and the network device makes an explicit indication through the first signaling; wherein, the first signaling includes RRC Signaling, MAC CE signaling or DCI signaling.
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, and the network device performs an implicit indication through a first sequence, and the first sequence is the first TCI
  • the order of state and second TCI state in the code point, the main QCL reference source is the TRS resource in the TCI state that is arranged before the code point.
  • the target QCL reference source when the QCL type in the first TCI state is QCL TypeA, and the QCL type in the second TCI state is the first QCL type, the target QCL reference source includes the first QCL type.
  • TRS resources and second TRS resources; the aforementioned target QCL parameters include: all QCL parameters in the QCL TypeA corresponding to the first TRS resource, and all QCL parameters in the first QCL type corresponding to the second TRS resource.
  • the target QCL parameter corresponding to the target QCL reference source is different from the first QCL parameter.
  • the UE will jointly refer to the delay spread of both the first TRS resource and the second TRS resource for channel estimation and data demodulation.
  • the above-mentioned target QCL reference resource is the third TRS resource
  • the third TRS resource is sent by the network device after frequency offset precompensation
  • the QCL reference source of the third TRS resource is the first TRS resource or
  • the QCL type referenced by the third TRS resource is QCL TypeC or the second QCL type
  • the first TRS resource, the second TRS resource, and the third TRS resource are all periodic TRS resources.
  • the second QCL type is any QCL type except QCL TypeA, QCL TypeB, QCL TypeC, and QCL TypeD; the foregoing target QCL parameters are all QCL parameters in the foregoing QCL TypeA.
  • the above-mentioned QCL TypeB, QCL TypeC, and QCL TypeD all indicate the QCL type
  • the QCL parameters in QCL TypeB are Doppler frequency offset and Doppler spread
  • the QCL parameters in QCL TypeC are Doppler frequency offset and average delay.
  • QCL parameters in QCL TypeD are spatial receiving parameters.
  • the target QCL reference source is different from the first QCL reference source.
  • the periodic TRS resource that is sent between the frequency offset precompensation and the transmission of the same PDSCH that is, the third TRS resource
  • the third TRS resource refers to another periodic TRS resource (that is, the first TRS resource or the second TRS resource) by QCL TypeC.
  • the third TRS resource may be sent by the network device via the first RRH and the second RRH after the frequency offset pre-compensation, and before the same physical downlink shared channel PDSCH is sent via the first RRH and the second RRH. .
  • the target QCL reference source of the DMRS is configured as a specific DMRS resource, and the target QCL parameters are all QCL parameters in QCL TypeA.
  • the indication information of the specific DMRS resource is configured by the network device through second signaling, where the second signaling includes RRC signaling, MAC CE signaling, or DCI signaling.
  • the target QCL reference source is different from the first QCL reference source, and specifically may be a specific DMRS resource designated in advance.
  • the target QCL reference source is a specific DMRS resource.
  • the target QCL reference source is different from the first QCL reference source.
  • the QCL reference source configured for the DMRS resource is itself, that is, they are all pre-designated specific DMRS resources.
  • the network device may be a specific DMRS resource in the case that the DMRS resource transmitted via the first RRH and the second RRH in one time slot or two consecutive time slots is a specific DMRS resource, and the QCL reference source configured for the DMRS resource is Specific DMRS resource indicated in advance.
  • the target QCL reference source is the specific DMRS resource sent last time before the DMRS resource is sent. DMRS resources.
  • the network device may also be configured to configure the QCL reference source for the DMRS resource in the case that the DMRS resource transmitted in the time slot or two consecutive time slots via the first RRH and the second RRH is not a specific DMRS resource Specific DMRS resource indicated in advance.
  • the above-mentioned target switching may be instructed by the network device in different ways, including but not limited to the following specific embodiments:
  • step 507 may be specifically executed as the following content:
  • the target signaling includes MAC CE signaling or physical layer control signaling.
  • time margin n, time T, and time (T+n) is milliseconds.
  • target switching is explicitly indicated by the network device through target signaling.
  • an additional time margin of n milliseconds is provided to ensure that the UE has sufficient time margin to complete the corresponding target switching, thereby ensuring the data demodulation capability of the terminal device.
  • the target signaling is MAC CE signaling or physical layer control signaling
  • the target signaling is the first SpatialRelationInfo handover signaling
  • the target switch is SpatialRelationInfo switch.
  • the unit of time (T+3+n1) is milliseconds.
  • time margin n may be based on the time margin of 3 milliseconds provided in the related art, and further provide an additional time margin of n1 milliseconds.
  • the above-mentioned first SpatialRelationInfo switching signaling is used to instruct the reference signal set associated with the SpatialRelationInfo to switch from the first set to the second set.
  • the first set and the second set are two reference signal sets associated with SpatialRelationInfo.
  • the first set and the second set are two different reference signal sets, and the first set and the second set are pre-configured by the network device or agreed by a protocol.
  • the target switching may be TCI state switching.
  • time margin n may be based on the time margin of 3 milliseconds provided in the related art, and further provide an additional time margin of n1 milliseconds.
  • the above-mentioned first TCI state switching signaling is used to instruct the reference signal set associated with the TCI state to switch from the third set to the fourth set.
  • the third set and the fourth set are two reference signal sets associated with the TCI state.
  • the third set and the fourth set are two different reference signal sets, and the third set and the fourth set are pre-configured by the network device or agreed upon by the protocol.
  • the above-mentioned first TCI state switching signaling is used to instruct a specific CORESETTCI state switching
  • the specific CORESETTCI state switching includes CORESET0TCI state switching.
  • the specific CORESETTCI state switch may also include some other specified CORESETTCI state switch except the CORESETTCI state switch.
  • the above-mentioned first TCI state switching signaling is used to instruct the PDSCH active TCI state switching.
  • the PDSCH active TCI state is the TCI state used to receive the PDSCH.
  • the foregoing target signaling is DCI signaling (ie, physical layer control signaling), and the foregoing target signaling is the second TCI state switching signaling and the second SpatialRelationInfo switching signaling
  • the target switching may correspond to at least one of TCI state switching and SpatialRelationInfo switching.
  • the above-mentioned second TCI state switching signaling is used to switch the CORESET TCI state or the PDSCH TCI state.
  • the above-mentioned target signaling is specifically agreed signaling; wherein, the specifically agreed signaling is newly defined signaling in high-speed rail mode and includes one of the following: TRP handover signaling, radio frequency The remote head RRH switching signaling, TRS switching signaling, SSB switching signaling, the third TCI state switching signaling, and the third SpatialRelationInfo switching signaling.
  • the target switching can also be instructed through specially agreed signaling.
  • the above-mentioned target switching is indicated by the network device in an implicit manner; wherein, no signal transmission is performed within the time margin n. In this way, signaling overhead can be saved.
  • an additional time margin of n milliseconds is provided to ensure that the UE has a sufficient time margin to complete the corresponding target switching, thereby ensuring the data demodulation capability of the terminal device.
  • the manner for determining the time margin n includes one of the following:
  • the time margin n is configured by the network equipment. In other words, the time margin n is directly configured by the network device.
  • the time margin n is reported by the terminal device. That is, the network device may configure a time margin reported by the terminal device based on its own capabilities as the time margin n, so as to meet the time requirement of the terminal device for target switching.
  • the network device configures the time margin n based on the time margin n3 reported by the terminal device.
  • the network device can directly configure the time margin n3 as the final time margin n, or reconfigure a new time margin n4, and configure the time margin n4 as the final time margin n, where the time margin n4 may be greater than the time margin n to meet the time requirement of the terminal device for target switching.
  • the time margin n may be equal to the time margin n3 or not equal to the time margin n3.
  • the network device configures the time margin n based on the time margin threshold value reported by the terminal device.
  • the network device receives the time margin threshold value reported by the terminal device based on its own capabilities, it can select an appropriate time margin as the final time margin n based on the time margin threshold value. Meet the time requirements of terminal equipment for target switching.
  • the time margin n may be equal to or different from the time margin threshold.
  • the information determination method of the embodiment of the present invention it is possible to provide a new QCL reference relationship and type, and related signaling instructions for the network-side frequency offset pre-compensation scheme of the high-speed rail scenario, so as to solve the problem of frequency offset pre-compensation.
  • the QCL reference information mismatch problem ensures the data demodulation performance of the terminal equipment.
  • an additional time margin of n milliseconds is introduced, which is to introduce sufficient time margin for the crystal oscillator adjustment of the terminal device to ensure that the terminal device is before sending and receiving signals. Complete the adjustment of the crystal oscillator frequency to ensure the data demodulation performance of the terminal equipment.
  • an embodiment of the present invention provides a network device 600, and the network device 600 includes:
  • the configuration module 601 is configured to configure target configuration information.
  • the target configuration information includes at least one of target QCL reference information and time margin n; wherein the target QCL reference information corresponds to the DMRS resource, and the target QCL reference information is used for terminal equipment to perform Channel estimation and data demodulation; time margin n is used for terminal equipment to perform target switching, where target switching includes at least one of crystal frequency switching, SpatialRelationInfo switching, TCI state switching, and TRP switching.
  • the foregoing target QCL reference information includes the target QCL reference source and target QCL parameters corresponding to the target QCL reference source, and the target QCL reference information satisfies at least one of the following conditions:
  • the foregoing target QCL reference source is different from the first QCL reference source.
  • the first QCL reference source includes a first TRS resource and a second TRS resource; the foregoing target QCL parameter is different from the first QCL parameter, and the first QCL parameter corresponds to the first TRS resource. All QCL parameters in the QCL type and all QCL parameters in the QCL type corresponding to the second TRS resource.
  • the target QCL reference information is indicated to the terminal device based on the code point in the first DCI signaling, and the code point includes the first TCI state and the second TCI state;
  • the QCL reference source in the first TCI state is the first TRS resource, and the QCL type in the first TCI state is QCL TypeA;
  • the QCL reference source in the second TCI state is the second TRS resource, and in the second TCI state
  • the QCL type is QCL TypeA or the first QCL type; wherein, the QCL parameter in the first QCL type is the delay extension.
  • the target QCL reference source includes: main QCL Reference source and non-primary QCL reference source; wherein, the primary QCL reference source is one of the first TRS resource and the second TRS resource, and the non-primary QCL reference source is the other of the first TRS resource and the second TRS resource; the target The QCL parameters include all QCL parameters in the QCL TypeA corresponding to the primary QCL reference source and some QCL parameters in the QCL TypeA corresponding to the non-primary QCL reference source. Some of the QCL parameters are delay extensions.
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, which is explicitly indicated to the terminal device by the network device through the first signaling; where ,
  • the first signaling includes RRC signaling, MAC CE signaling, or DCI signaling.
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, and the network device implicitly indicates to the terminal device through the first sequence.
  • the sequence is the sequence of the first TCI state and the second TCI state in the code point
  • the main QCL reference source is the TRS resource in the TCI state that is arranged before the code point.
  • the target QCL reference source Including the first TRS resource and the second TRS resource;
  • the aforementioned target QCL parameters include: all QCL parameters in the QCL TypeA corresponding to the first TRS resource, and all QCL parameters in the first QCL type corresponding to the second TRS resource.
  • the target QCL reference resource is the third TRS resource
  • the third TRS resource is sent after frequency offset precompensation
  • the QCL reference source of the third TRS resource is the third TRS resource.
  • a TRS resource or a second TRS resource, the QCL type referenced by the third TRS resource is QCL TypeC or the second QCL type, and the first TRS resource, the second TRS resource, and the third TRS resource are all periodic TRS resources;
  • the second QCL type is any QCL type except QCL TypeA, QCL TypeB, QCL TypeC, and QCL TypeD; the target QCL parameters are all QCL parameters in QCL TypeA.
  • the target QCL reference source is the specific DMRS resource.
  • the target QCL reference source is the last time before the DMRS resource is sent The specific DMRS resource sent.
  • the indication information of the specific DMRS resource is configured through second signaling, where the second signaling includes RRC signaling, MAC CE signaling, or DCI signaling;
  • the second signaling includes RRC signaling, MAC CE signaling, or DCI signaling;
  • the above target QCL parameters are all QCL parameters in QCL TypeA.
  • the above-mentioned time margin n is used for the terminal device to perform target switching within the switching period after receiving the target signaling, and the switching period is from time T to time (T+ n)
  • time T is used for terminal equipment to send a positive confirmation ACK message corresponding to the target signaling.
  • the target switching is agreed by the protocol to be completed after time (T+n), and no signal transmission is performed within the time margin n ;
  • the target signaling includes MAC CE signaling or physical layer control signaling.
  • the target signaling is MAC CE signaling or physical layer control signaling
  • the target signaling is the first SpatialRelationInfo handover signaling
  • the above-mentioned first SpatialRelationInfo switching signaling is used to instruct the reference signal set associated with SpatialRelationInfo to switch from the first set to the second set; wherein, the first set and the second set The sets are two different reference signal sets, the first set and the second set are pre-configured by the network device or agreed upon by the protocol.
  • the target signaling is MAC CE signaling
  • the target signaling is the first TCI state switching signaling
  • the above-mentioned first TCI state switching signaling is used to instruct the reference signal set associated with the TCI state to switch from the third set to the fourth set; wherein, the third set and The fourth set is two different reference signal sets, and the third set and the fourth set are pre-configured by the network device or agreed upon by the protocol.
  • the above-mentioned first TCI state switching signaling is used to instruct the specific CORESET TCI state switching, and the specific CORESET TCI state switching includes the CORESET 0TCI state switching.
  • the above-mentioned first TCI state switching signaling is used to instruct the PDSCH active TCI state switching.
  • the foregoing target signaling is DCI signaling
  • the foregoing target signaling is at least one of the second TCI state switching signaling and the second SpatialRelationInfo switching signaling.
  • the above-mentioned second TCI state switching signaling is used to switch the CORESET TCI state or the PDSCH TCI state.
  • the above-mentioned target signaling is specifically agreed signaling; wherein, the specifically agreed signaling is newly defined signaling in the high-speed rail mode and includes one of the following: TRP handover Signaling, remote radio head RRH switching signaling, TRS switching signaling, SSB switching signaling, third TCI state switching signaling, and third SpatialRelationInfo switching signaling.
  • the above-mentioned target switching is implicitly indicated by the network device to the terminal device; wherein, no signal transmission is performed within the time margin n.
  • the manner for determining the time margin n includes one of the following:
  • the time margin n is agreed by the agreement; the time margin n is configured by the network device; the time margin n is reported by the terminal device; the time margin n is configured by the network device based on the time margin n3 reported by the terminal device; the network device is based on the terminal The time margin threshold value reported by the device, and the time margin n is configured.
  • the network device 600 provided by the embodiment of the present invention can implement the foregoing information configuration method performed by the network device 600, and the relevant descriptions about the information configuration method are all applicable to the network device 600, and will not be repeated here.
  • target configuration information may be configured, and the target configuration information includes at least one of target QCL reference information and time margin n.
  • the terminal device can refer to the correct QCL information when performing channel estimation and data demodulation based on the DMRS resource.
  • the terminal device can perform target switching based on the time margin n, that is, provide a sufficient amount of time margin for the terminal device to perform target switching, so as to ensure the data solution of the terminal device.
  • Adjustment capability where the target switching includes at least one of crystal frequency switching, SpatialRelationInfo switching, TCI state switching, and TRP switching. In this way, the communication efficiency of the system can be improved.
  • an embodiment of the present invention provides a terminal device 700.
  • the terminal device 700 includes a receiving module 701, a first processing module 703, and a second processing module 705.
  • the receiving module 701 is configured to receive target configuration information configured by the network device, and the target configuration information includes at least one of target QCL reference information and time margin n; the first processing module 703 is configured to perform channel processing according to the target QCL reference information Estimation and data demodulation; the second processing module 705 is configured to perform target switching according to the time margin n, where the target switching includes at least one of crystal frequency switching, SpatialRelationInfo switching, TCI state switching, and TRP switching.
  • the foregoing target QCL reference information includes the target QCL reference source and target QCL parameters corresponding to the target QCL reference source, and the target QCL reference information satisfies at least one of the following conditions:
  • the target QCL reference source is different from the first QCL reference source.
  • the first QCL reference source includes the first TRS resource and the second TRS resource; the target QCL parameter is different from the first QCL parameter, and the first QCL parameter is the QCL corresponding to the first TRS resource All QCL parameters in the type and all QCL parameters in the QCL type corresponding to the second TRS resource.
  • the aforementioned target QCL reference information is indicated by the network device based on the code point in the first DCI signaling, and the code point includes the first TCI state and the second TCI state;
  • the QCL reference source in the first TCI state is the first TRS resource
  • the QCL type in the first TCI state is QCL TypeA
  • the QCL reference source in the second TCI state is the second TRS resource
  • the second TCI state The QCL type in is QCL TypeA or the first QCL type; wherein, the QCL parameter in the first QCL type is the delay extension.
  • the target QCL reference source includes: main QCL Reference source and non-primary QCL reference source; wherein, the primary QCL reference source is one of the first TRS resource and the second TRS resource, and the non-primary QCL reference source is the other of the first TRS resource and the second TRS resource; the target The QCL parameters include all QCL parameters in the QCL TypeA corresponding to the primary QCL reference source and some QCL parameters in the QCL TypeA corresponding to the non-primary QCL reference source. Some of the QCL parameters are delay extensions.
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, and is explicitly indicated by the network device through the first signaling;
  • One signaling includes RRC signaling, MAC CE signaling, or DCI signaling.
  • the above-mentioned first TRS resource or the second TRS resource is configured as the main QCL reference source, and the network device performs an implicit indication through the first sequence, and the first sequence is The sequence of the first TCI state and the second TCI state in the code point, and the main QCL reference source is the TRS resource in the TCI state that is arranged before the code point.
  • the target QCL reference source Including the first TRS resource and the second TRS resource;
  • the aforementioned target QCL parameters include: all QCL parameters in the QCL TypeA corresponding to the first TRS resource, and all QCL parameters in the first QCL type corresponding to the second TRS resource.
  • the above-mentioned target QCL reference resource is a third TRS resource
  • the third TRS resource is sent by the network device after frequency offset precompensation
  • the QCL reference of the third TRS resource The source is the first TRS resource or the second TRS resource
  • the QCL type referenced by the third TRS resource is QCL TypeC or the second QCL type
  • the first TRS resource, the second TRS resource, and the third TRS resource are all periodic TRS resources ;
  • the second QCL type is any QCL type except QCL TypeA, QCL TypeB, QCL TypeC, and QCL TypeD
  • the target QCL parameters are all QCL parameters in QCL TypeA.
  • the target QCL reference source is the specific DMRS resource.
  • the target QCL reference source is the last time before sending the DMRS resource The specific DMRS resource sent.
  • the indication information of the specific DMRS resource is configured by the network device through second signaling, where the second signaling includes RRC signaling, MAC CE signaling, or DCI Signaling; target QCL parameters are all QCL parameters in QCL TypeA.
  • the above-mentioned second processing module may be specifically used for:
  • the target signaling includes MAC CE signaling or physical layer control signaling.
  • the above-mentioned first SpatialRelationInfo switching signaling is used to instruct the reference signal set associated with SpatialRelationInfo to switch from the first set to the second set; wherein, the first set and the second set The sets are two different reference signal sets, the first set and the second set are pre-configured by the network device or agreed upon by the protocol.
  • the target signaling is MAC CE signaling
  • the target signaling is the first TCI state switching signaling
  • the above-mentioned first TCI state switching signaling is used to instruct the reference signal set associated with the TCI state to switch from the third set to the fourth set; wherein, the third set and The fourth set is two different reference signal sets, and the third set and the fourth set are pre-configured by the network device or agreed upon by the protocol.
  • the above-mentioned first TCI state switching signal is used to instruct the specific CORESET TCI state switching, and the specific CORESET TCI state switching includes the CORESET 0TCI state switching.
  • the above-mentioned first TCI state switching signaling is used to instruct the PDSCH active TCI state switching.
  • the target signaling is DCI signaling
  • the target signaling is at least one of the second TCI state switching signaling and the second SpatialRelationInfo switching signaling.
  • the above-mentioned second TCI state switching signaling is used to switch the CORESET TCI state or the PDSCH TCI state.
  • the above-mentioned target signaling is specifically agreed signaling; wherein, the specifically agreed signaling is newly defined signaling in the high-speed rail mode and includes one of the following: TRP handover Signaling, RRH switching signaling, TRS switching signaling, SSB switching signaling, third TCI state switching signaling, and third SpatialRelationInfo switching signaling.
  • the above-mentioned target switching is indicated by the network device in an implicit manner; wherein, no signal transmission is performed within the time margin n.
  • the manner for determining the time margin n includes one of the following:
  • the time margin n is agreed by the agreement; the time margin n is configured by the network device; the time margin n is reported by the terminal device; the time margin n is configured by the network device based on the time margin n3 reported by the terminal device; the network device is based on the terminal The time margin threshold value reported by the device, and the time margin n is configured.
  • the terminal device 700 provided in the embodiment of the present invention can implement the foregoing information determination method performed by the terminal device 700, and the relevant descriptions about the information determination method are all applicable to the terminal device 700, and will not be repeated here.
  • At least one of the target QCL reference information and the time margin n can be acquired according to the target configuration information configured by the network device.
  • the correct QCL information can be referred to when performing channel estimation and data demodulation based on the target QCL reference information and the DMRS resource.
  • the target switching can be performed based on the sufficient time margin additionally configured by the network device, thereby ensuring the data demodulation capability of the terminal device.
  • the target switching includes the crystal oscillator frequency. At least one of switching, SpatialRelationInfo switching, TCI state switching, and TRP switching. In this way, the communication efficiency of the system can be improved.
  • FIG. 9 is a structural diagram of a network device applied in an embodiment of the present invention, which can implement the details of the foregoing information configuration method and achieve the same effect.
  • the network device 800 includes: a processor 801, a transceiver 802, a memory 803, a user interface 804, and a bus interface 805, where:
  • the network device 800 further includes: a computer program stored in the memory 803 and capable of running on the processor 801, and the computer program is executed by the processor 801 to implement the following steps:
  • the target configuration information includes at least one of target QCL reference information and time margin n; wherein the target QCL reference information corresponds to the DMRS resource, and the target QCL reference information is used for the terminal device to perform channel estimation and data demodulation ;
  • the time margin n is used for the terminal device to perform target switching, where the target switching includes at least one of crystal frequency switching, SpatialRelationInfo switching, TCI state switching, and TRP switching.
  • target configuration information may be configured, and the target configuration information includes at least one of target QCL reference information and time margin n.
  • the terminal device can refer to the correct QCL information when performing channel estimation and data demodulation based on the DMRS resource.
  • the terminal device can perform target switching based on the time margin n, that is, provide a sufficient amount of time margin for the terminal device to perform target switching, so as to ensure the data solution of the terminal device.
  • Adjustment capability where the target switching includes at least one of crystal frequency switching, SpatialRelationInfo switching, TCI state switching, and TRP switching. In this way, the communication efficiency of the system can be improved.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 801 and various circuits of the memory represented by the memory 803 are linked together. The bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, will not be further described herein.
  • the bus interface 805 provides an interface.
  • the transceiver 802 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on a transmission medium.
  • the user interface 804 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 801 is responsible for managing the bus architecture and general processing, and the memory 803 can store data used by the processor 801 when performing operations.
  • Fig. 10 is a block diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device 900 shown in FIG. 10 includes: at least one processor 901, a memory 902, at least one network interface 904, and a user interface 903.
  • the various components in the terminal device 900 are coupled together through the bus system 905.
  • the bus system 905 is used to implement connection and communication between these components.
  • the bus system 905 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 905 in FIG. 10.
  • the user interface 903 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.).
  • a pointing device for example, a mouse, a trackball (trackball), a touch panel, or a touch screen, etc.
  • the memory 902 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Synchronous DRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • SLDRAM Direct Rambus RAM
  • the memory 902 of the system and method described in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the memory 902 stores the following elements, executable modules or data structures, or a subset of them, or an extended set of them: an operating system 9021 and an application 9022.
  • the operating system 9021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 9022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present invention may be included in the application 9022.
  • the terminal device 900 further includes: a computer program that is stored in the memory 902 and can be run on the processor 901. When the computer program is executed by the processor 901, the following steps are implemented:
  • Receive target configuration information configured by the network device, the target configuration information includes at least one of target QCL reference information and time margin n, where the target QCL reference information corresponds to the DMRS resource; channel estimation and data demodulation are performed according to the target QCL reference information ; Target switching is performed according to the time margin n, where the target switching includes at least one of crystal frequency switching, SpatialRelationInfo switching, TCI state switching, and point TRP switching.
  • At least one of the target QCL reference information and the time margin n can be acquired according to the target configuration information configured by the network device.
  • the correct QCL information can be referred to when performing channel estimation and data demodulation based on the target QCL reference information and DMRS resource.
  • the target switching can be performed based on the sufficient time margin additionally configured by the network device, thereby ensuring the data demodulation capability of the terminal device.
  • the target switching includes the crystal oscillator frequency. At least one of switching, SpatialRelationInfo switching, TCI state switching, and TRP switching. In this way, the communication efficiency of the system can be improved.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 901 or implemented by the processor 901.
  • the processor 901 may be an integrated circuit chip with signal processing capabilities. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 901 or instructions in the form of software.
  • the aforementioned processor 901 may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 902, and the processor 901 reads information in the memory 902, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 901, each step of the above-mentioned information determination method embodiment is implemented.
  • the embodiments described in the embodiments of the present invention may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in the present invention Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present invention can be implemented by modules (for example, procedures, functions, etc.) that execute the functions described in the embodiments of the present invention.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 900 can implement various processes implemented by the terminal device in the foregoing embodiments, and to avoid repetition, details are not described herein again.
  • the embodiment of the present invention further provides a network device, including a processor, a memory, and a computer program stored in the memory and running on the processor.
  • the computer program is executed by the processor to implement the above information configuration method.
  • Each process of the embodiment can achieve the same technical effect, and in order to avoid repetition, it will not be repeated here.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the foregoing embodiment of the information configuration method applied to a network device is realized, and To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the embodiment of the present invention also provides a terminal device, including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to implement the above-mentioned information determination method
  • a terminal device including a processor, a memory, and a computer program stored in the memory and running on the processor, and the computer program is executed by the processor to implement the above-mentioned information determination method
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, each process of the foregoing embodiment of the method for determining information applied to a terminal device is implemented, and To achieve the same technical effect, in order to avoid repetition, I will not repeat them here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes a number of instructions to enable a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the method described in each embodiment of the present invention.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信息配置及确定方法、网络设备和终端设备,其中,所述信息配置方法包括:配置目标配置信息,目标配置信息包括目标QCL参考信息和时间余量n中的至少一个;其中,目标QCL参考信息与解调参考信号DMRS资源对应,目标QCL参考信息用于供终端设备进行信道估计和数据解调;时间余量n用于供终端设备进行目标切换,其中,目标切换包括晶振频率切换、空间关系信息SpatialRelationInfo切换、传输配置指示状态TCIstate切换和传输接收点TRP切换中的至少一个。

Description

信息配置及确定方法、网络设备和终端设备
交叉引用
本发明要求在2020年04月03日提交中国专利局、申请号为202010260696.7、发明名称为“信息配置及确定方法、网络设备和终端设备”的中国专利申请的优先权,以及在2020年04月09日提交中国专利局、申请号为202010275976.5,发明名称为“信息配置及确定方法、网络设备和终端设备”的中国专利申请的优先权,上述申请的全部内容通过引用结合在本发明中。
技术领域
本发明涉及通信领域,尤其涉及一种信息配置及确定方法、网络设备和终端设备。
背景技术
目前,在高铁网络部署中,为了解决用户设备(User Equipment,UE,也可称为终端设备)在高速移动情况下需要频繁切换网络设备的问题,长期演进(Long Term Evolution,LTE)***和新空口(New Radio,NR)***中均可以采用单频网络(Single Frequency Network,SFN)传输方式进行网络部署,即在同一时间以相同频率在多个小区进行同步传输,以节约频率资源,提高频谱利用率。
但是,当采用SFN传输方式进行网络部署时,会导致UE受到多个方向相反的多普勒频偏影响,因此需要网络设备进行频偏预补偿来消除多普勒频偏的影响。另外,NR***引入了更为灵活的跟踪参考信号(Tracking Reference Signal,TRS)以及一系列与之相关的准共址(Quasi co-location,QCL)关系。
因此,需要提供一种QCL配置方案,使得解调参考信号(Demodulation Reference Signal,DMRS)在进行信道估计和数据解调时能够参考正确的QCL源。
另外,在频偏预补偿方案中,终端设备需要进行空间关系信息切换、传输配置指示切换以及晶振频率切换等,而进行前述相关切换的时间长短取决于终端设备自身的能力。为了协同QCL配置方案,还需要了一种适应相关切换的时间保护机制。
发明内容
本发明实施例解决的技术问题为以下至少一个:如何使DMRS在进行信道估计和数据解调能够参考正确的QCL源;如何使终端设备在进行相关切换时具有足够的时间余量。
第一方面,本发明实施例提供一种信息配置方法,应用于网络设备,所述方法包括:
配置目标配置信息,所述目标配置信息包括目标准共址参考信息和时间余量n中的至少一个;其中,所述目标QCL参考信息与解调参考信号资源对应,所述目标QCL参考信息用于供终端设备进行信道估计和数据解调;所述时间余量n用于供所述终端设备进行目标切换,其中,所述目标切换包括晶振频率切换、空间关系信息(SpatialRelationInfo)切换、TCI state切换和TRP切换中的至少一个。
第二方面,本发明实施例提供一种网络设备,包括:
配置模块,用于配置目标配置信息,所述目标配置信息包括目标准共址参考信息和时间余量n中的至少一个;其中,所述目标QCL参考信息与解调参考信号资源对应,所述目标QCL参考信息用于供终端设备进行信道估计和数据解调;所述时间余量n用于供所述终端设备进行目标切换,其中,所述目标切换包括晶振频率切换、空间关系信息切换、传输配置指示状态 (Transmission Configuration Indicatorstate,TCI state)切换和传输接收点(Transmission Reception Point,TRP)切换中的至少一个。
第三方面,本发明实施例提供一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,本发明实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的方法的步骤。
第五方面,本发明实施例提供一种信息确定方法,应用于终端设备,所述方法包括:
接收网络设备配置的目标配置信息,所述目标配置信息包括目标准共址参考信息和时间余量n中的至少一个,其中,所述目标QCL参考信息与解调参考信号资源对应;根据所述目标QCL参考信息进行信道估计和数据解调;根据所述时间余量n进行目标切换,其中,所述目标切换包括晶振频率切换、空间关系信息切换、传输配置指示状态切换和传输接收点切换中的至少一个。
第六方面,本发明实施例提供一种终端设备,包括:
接收模块,用于接收网络设备配置的目标配置信息,所述目标配置信息包括目标准共址参考信息和时间余量n中的至少一个,其中,所述目标QCL参考信息与解调参考信号资源对应;第一处理模块,用于用于根据所述目标QCL参考信息进行信道估计和数据解调;第二处理模块,用于根据所述时间余量n进行目标切换,其中,所述目标切换包括晶振频率切换、空间关系信息切换、传输配置指示状态切换和传输接收点切换中的至少一个。
第七方面,本发明实施例提供一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第五方面所述的方法的步骤。
第八方面,本发明实施例提供一种计算机可读存储介质,所述计算机可 读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第五方面所述的方法的步骤。
在本发明实施例中,可以配置目标配置信息,该目标配置信息包括目标准共址参考信息和时间余量n中的至少一个。其中,当为DMRS资源配置了上述目标准共址参考信息时,可供终端设备在基于DMRS资源在进行信道估计和数据解调时,能够参考正确的QCL信息。当配置了额外的时间余量n时,可供终端设备基于该时间余量n进行目标切换,也就是说,为终端设备进行目标切换提供足量的时间余量,从而保证终端设备的数据解调能力,其中,该目标切换包括晶振频率切换、空间关系信息切换、传输配置指示状态切换和传输接收点切换中的至少一个。如此,可以提高***通信效率。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是本发明实施例中一种基于SFN传输方式的网络部署示意图;
图2是本发明实施例中一种信息配置方法的流程示意图;
图3是本发明实施例中一种频偏预补偿的过程示意图;
图4是本发明实施例中另一种频偏预补偿的过程示意图;
图5是本发明实施例中又一种频偏预补偿的过程示意图;
图6是本发明实施例中一种信息确定方法的流程示意图;
图7是本发明实施例中一种网络设备的结构示意图;
图8是本发明实施例中一种终端设备的结构示意图;
图9是本发明实施例中第二种网络设备的结构示意图;
图10是本发明实施例中第二种终端设备的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的技术方案,可以应用于各种通信***,例如:全球移动通讯***(Global System of Mobile communication,GSM),码分多址(Code Division Multiple Access,CDMA)***,宽带码分多址(Wideband Code Division Multiple Access,WCDMA),通用分组无线业务(General Packet Radio Service,GPRS),长期演进/增强长期演进(Long Term EvolutionAdvanced,LTE-A),NR等。
用户端UE也可称之为终端设备(Mobile Terminal)、移动用户设备等,可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备可以是终端设备,如移动电话(或称为“蜂窝”电话)和具有终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
网络设备,也可称之为基站,可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB)。
在本发明的技术方案中,当采用SFN传输方式进行网络部署时,多个射频拉远头(Remote Radio Head,RRH)会连接在同一个基带处理单元(Building Base band Unit,BBU),这样UE在高速移动的过程中就不需要频繁切换网络设备。如图1所示,多个RRH即RRH1和RRH2可以发送相同的物理下行共享信道(Physical downlink shared channel,PDSCH)数据给UE,UE可以在RRH1和RRH2之间移动。
以下结合附图,详细说明本发明各实施例提供的技术方案。
参见图2所示,本发明实施例提供一种信息配置方法,由网络设备执行,方法包括以下流程步骤:
步骤101:配置目标配置信息,目标配置信息包括目标QCL参考信息和时间余量n中的至少一个。
其中,上述目标QCL参考信息与DMRS资源对应,目标QCL参考信息用于供终端设备进行信道估计和数据解调;时间余量n用于供终端设备目标切换,其中,目标切换包括晶振频率切换、空间关系信息切换、传输配置指示状态切换和传输接收点切换中的至少一个。
在本发明实施例中,可以配置目标配置信息,该目标配置信息包括目标准共址参考信息和时间余量n中的至少一个。其中,当为解调参考信号资源配置了上述目标准共址参考信息时,可供终端设备在基于DMRS资源在进行信道估计和数据解调时,能够参考正确的QCL信息。当配置了额外的时间余量n时,可供终端设备基于该时间余量n进行目标切换,也就是说,为终端设备进行目标切换提供足量的时间余量,从而保证终端设备的数据解调能力,其中,该目标切换包括晶振频率切换、空间关系信息切换、传输配置指示状态切换和传输接收点切换中的至少一个。如此,可以提高***通信效率。
可选的,上述目标配置信息可以供终端设备在第一过程中进行使用,其中,该第一过程为采用SFN传输方式部署的网络中,终端设备从第一RRH和第二RRH中的一个移动至另一个的过程。比如,从图1中的RRH1和RRH2中的一个移动至另一个的过程。
可选的,在本发明实施例的信息配置方法中,在上述目标配置信息包括目标准共址参考信息的情况下,上述目标QCL参考信息包括目标QCL参考源和目标QCL参考源对应的目标QCL参数。也就是说,通过该目标QCL参考信息可以使得DMRS资源在进行信道估计和数据解调时能够参考正确的QCL源及其对应的目标QCL参数。
进一步可选的,上述目标QCL参考信息满足以下条件中的至少一个:
(1)上述目标QCL参考源与第一QCL参考源不同,第一QCL参考源包括第一TRS资源和第二TRS资源。
可选的,上述第一TRS资源可以经上述第一RRH发送,第二TRS资源可以上述第二RRH发送。
(2)上述目标QCL参数与第一QCL参数不同,第一QCL参数为第一TRS资源对应的QCL类型中的所有QCL参数和第二TRS资源对应的QCL类型中的所有QCL参数。
可以理解,在将DMRS的目标QCL参考源配置为与相关技术中参考第一TRS资源和第二TRS资源不同的QCL源,和/或目标QCL参考源对应的目标QCL参数配置与相关技术中DMRS资源所参考的QCL源对应的QCL参数不同时,可以避免出现多普勒频偏值失配的情况。
可选的,在本发明实施例的信息配置方法中,上述包括目标QCL参考源及其对应的目标QCL参数的目标QCL参考信息所包含的具体内容,可以配置为多种不同的方案,包括但不限于以下具体实施例中所描述的情况:
具体实施例一
在该具体实施例一中,上述目标QCL参考信息基于第一下行控制信息(Downlink Control Information,DCI)信令中的码点指示给终端设备,码点中包括第一TCI state和第二TCI state。
其中,第一TCI state中的QCL参考源为第一TRS资源,以及第一TCI state中的QCL类型为QCL TypeA;第二TCI state中的QCL参考源为第二TRS资源,以及第二TCI state中的QCL类型为QCL TypeA或第一QCL类型;其中,第一QCL类型中的QCL参数为时延扩展。
可以理解,在该具体实施例中,DMRS端口的目标QCL参考信息,可以由DCI指示为TCI域中的码点包含的两个TCI state,即DMRS端口的目标QCL参考源配置为第一TRS资源和第二TRS资源两者。目标QCL参考源对 应的目标QCL参数可以联合参考第一TRS资源的QCL TypeA中的QCL参数和第二TRS资源的QCL TypeA中的QCL参数。或者,目标QCL类型对应的QCL参数可以联合参考第一TRS资源的QCL TypeA中的QCL参数和新定义的第一QCL类型中的QCL参数即时延扩展。
其中,上述QCL TypeA表示QCL类型,QCL TypeA中的QCL参数为多普勒频偏、多普勒扩展、平均时延和时延扩展。
进一步可选的,在该具体实施例中,在上述第一TCI state中的QCL类型和第二TCI state中的QCL类型均为QCL TypeA的情况下,上述目标QCL参考源包括:主QCL参考源和非主QCL参考源。
其中,上述主QCL参考源为第一TRS资源和第二TRS资源中的一个,非主QCL参考源为第一TRS资源和第二TRS资源中的另一个;上述目标QCL参数包括主QCL参考源对应的QCL TypeA中的所有QCL参数和非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,部分QCL参数为时延扩展。
可以理解,目标QCL参考源在第一TRS资源和第二TRS资源间区分主次,且该目标QCL参考源对应的目标QCL参数与第一QCL参数不同,此时,UE将联合参考第一TRS资源和第二TRS资源两者的时延扩展进行信道估计和数据解调。
进一步可选的,在一个示例中,上述第一TRS资源或者第二TRS资源被配置为主QCL参考源,由网络设备通过第一信令显式的指示给终端设备;其中,第一信令包括无线资源控制信令、媒体接入控制控制单元(Medium Access ControlControl Element,MAC CE)信令或DCI信令。
进一步可选的,在另一个示例中,上述第一TRS资源或者第二TRS资源被配置为主QCL参考源,由网络设备通过第一顺序隐式的指示给终端设备,第一顺序为第一TCI state和第二TCI state在码点中的前后顺序,主QCL参考源为码点中排列在前的TCI state中的TRS资源。
举例来说,如图3所示的频偏预补偿的过程,网络设备的晶振频率为fc,UE的晶振频率为fc+fo。具体可以包括以下内容:
步骤201:基于同步信号块(Synchronization Signal and PBCH block,SSB)资源的频偏估计。
网络设备配置两个资源集SSB1和SSB2,分别从RRH1和RRH2发送给UE。UE根据接收到的SSB1和SSB2分别估计出多普勒频偏为Δf1-fo和Δf2-fo。进一步地,UE可以根据网络设备预先发送的信令指示,决定根据SSB1或SSB2对应的频偏估计结果调整晶振频率。那么,若网络设备指示根据SSB1对应的频偏估计结果Δf1调整晶振频率,则将晶振频率调整为fc+Δf1;而若网络设备指示根据SSB2对应的频偏估计结果Δf2调整晶振频率,则将晶振频率调整为fc+Δf2。在该实施例中,具体以网络设备指示根据SSB1对应的频偏估计结果Δf1调整晶振频率为例进行说明。
步骤203:基于TRS资源的频偏估计。
网络设备配置两个TRS资源集TRS1和TRS2,分别从RRH1和RRH2发送给UE。UE根据接收到的TRS1和TRS2分别估计出多普勒频偏为0和Δf2-Δf1。进一步地,UE可以根据网络设备预先发送的信令指示,决定根据TRS1或TRS2对应的频偏结果调整晶振频率。那么,若网络设备指示根据TRS1对应的频偏估计结果0调整晶振频率时,则将晶振频率调整为fc+Δf1;而若网络设备指示根据TRS2对应的频偏估计结果Δf2-Δf1调整晶振频率时,则将晶振频率调整为fc+Δf2。在该实施例中,具体以网络设备指示根据TRS1对应的频偏估计结果0调整晶振频率为例进行说明。
步骤205:上行网络设备频偏估计。
UE以晶振频率fc+Δf1发送上行探测参考信号(Sounding Reference Signal,SRS),网络设备则根据SRS估计出RRH1和RRH2上的多普勒频偏Δf1和Δf2。
步骤207:网络设备进行频偏预补偿后,从RRH1和RRH2发送相同的PDSCH。
UE在接收到PDSCH时,DMRS根据RRC、MAC CE、DCI域预先指示的TCI state进行信道估计,具体的指示如下:
RRC配置M个TCI state,MACCE从中激活N个TCI state(N≤8),而DCI指示N个TCI state中的其中一个。例如,此时DCI域中的码点表示的两个TCI state的QCL参考信息为:第一个TCI state中DMRS的QCL参考源为TRS1,QCL类型为QCL TypeA;第二个TCI state中DMRS的QCL参考源为TRS2,QCL类型为QCL TypeA。
另外,通过信令指示主QCL参考源为第一个TCI state中的TRS1。或者根据码点{TCI state1,TCI state2}中TCI state的先后顺序,隐式指示码点中顺序靠前的TCI state1为主QCL参考源。由于UE可根据高层信令获知其处于高铁SFN网络中,故此时默认其参考非主QCL参考源TRS2的时延扩展。即DMRS参考TRS1的平均时延、时延扩展、多普勒频偏和多普勒扩展,但只参考TRS2的时延扩展(QCL TypeA中的部分QCL参数)。UE在进行DMRS信道估计时,需联合TRS1和TRS2的时延信息。
进一步可选的,在该具体实施例中,在上述第一TCI state中的QCL类型为QCL TypeA,第二TCI state中的QCL类型为第一QCL类型的情况下,上述目标QCL参考源包括第一TRS资源和第二TRS资源;上述目标QCL参数包括:第一TRS资源对应的QCL TypeA中的所有QCL参数,以及第二TRS资源对应的第一QCL类型中的所有QCL参数。
可以理解,目标QCL参考源对应的目标QCL参数与第一QCL参数不同,此时,UE将联合参考第一TRS资源和第二TRS资源两者的时延扩展进行信道估计和数据解调。
举例来说,如图4所示的频偏预补偿的过程,其包含的步骤301、步骤303和步骤305的内容与上述图3所示的步骤201、步骤203和步骤205的内容基本相同,在此不再赘述。区别在于下述内容:
步骤307:网络设备进行频偏预补偿后,从RRH1和RRH2发送相同的 PDSCH。
UE在接收到PDSCH时,DMRS根据RRC、MAC CE、DCI域预先指示的TCI state进行信道估计,具体的指示如下:
RRC配置M个TCI state,MAC-CE从中激活N个TCI state(N≤8),而DCI指示N个TCI state中的其中一个。例如,此时DCI域中的码点表示的两个TCI state所对应的QCL参考信息为:第一个TCI state中DMRS的QCL参考源为TRS1,QCL类型为QCL TypeA{多普勒频偏、多普勒扩展、平均时延、时延扩展};第二个TCI state中DMRS的QCL参考源为TRS2,QCL类型为QCL TypeE{时延扩展}(即第一QCL类型)。此时,DMRS参考TRS1的平均时延、时延扩展、多普勒频偏和多普勒扩展,参考TRS2的时延扩展。UE进行DMRS信道估计时,需联合TRS1和TRS2的时延信息。
具体实施例二
在该具体实施例二中,上述目标QCL参考资源为第三TRS资源,第三TRS资源在进行频偏预补偿之后发送,且第三TRS资源的QCL参考源为第一TRS资源或第二TRS资源,第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,第一TRS资源、第二TRS资源和第三TRS资源均为周期性TRS资源。
其中,第二QCL类型为除QCL TypeA、QCL TypeB、QCL TypeC和QCL TypeD外的任一QCL类型;上述目标QCL参数为上述QCL TypeA中的所有QCL参数。
其中,上述QCL TypeB、QCL TypeC、QCL TypeD均表示QCL类型,QCL TypeB中的QCL参数为多普勒频偏和多普勒扩展,QCL TypeC中的QCL参数为多普勒频偏和平均时延,QCL TypeD中的QCL参数为空间接收参数。
可以理解,目标QCL参考源与第一QCL参考源不同,具体可以在进行频偏预补偿和发送相同的PDSCH之间发送的周期性TRS资源即第三TRS资源作为QCL参考源;其中,该第三TRS资源以QCL TypeC参考另一个周期 性TRS资源(即第一TRS资源或第二TRS资源)。
可选的,上述第三TRS资源可以经上述第一RRH和第二RRH在进行频偏预补偿之后、以及在经第一RRH和第二RRH发送相同的物理下行共享信道PDSCH之前发送。
举例来说,如图5所示的频偏预补偿的过程,其包含的步骤401、步骤403和步骤405的内容与上述图3所示的步骤201、步骤203和步骤205的内容基本相同,在此不再赘述。区别在于下述内容:
步骤407:网络设备进行频偏预补偿后,从RRH1和RRH2发送相同的TRS3。UE在接收TRS3时,根据RRC、MAC CE、DCI域预先指示的TCI state,将TRS3以TRS1为QCL参考,且QCL类型为QCL TypeC,来进行定时和频偏调整,并估计新的定时、时延扩展、多普勒频偏和多普勒扩展。
步骤409:网络设备进行频偏预补偿后,从RRH1和RRH2发送相同的PDSCH。
UE在接收到PDSCH时,DMRS根据RRC、MAC CE、DCI域预先指示的TCI state进行信道估计,DCI具体指示的TCI state为:DMRS的QCL参考源为TRS3,QCL类型为QCL TypeA。
也就是说,配置一个周期性TRS资源以另一个周期性TRS资源作为目标QCL参考源的新型QCL关系,即TRS3的QCL参考配置为TRS1或者TRS2,QCL类型可以配置为QCL TypeC或者其他新定义的QCL Type,将DMRS的QCL参考源配置为TRS3,QCL类型为QCL TypeA。
具体实施例三
在该具体实施例三中,将DMRS的目标QCL参考源配置为特定的DMRS资源,以及目标QCL参数为QCL TypeA中的所有QCL参数。其中,该特定的DMRS资源的指示信息通过第二信令配置,其中,该第二信令包括RRC信令、MAC CE信令或DCI信令。
可以理解,目标QCL参考源与第一QCL参考源不同,具体可以为预先 指定的特定的DMRS资源。
进一步可选的,在一个示例中,在一个时隙(slot)或连续两个时隙内发送的DMRS资源是特定的DMRS资源的情况下,目标QCL参考源为特定的DMRS资源。
可以理解,目标QCL参考源与第一QCL参考源不同,具体地,为DMRS资源配置的QCL参考源即为其自身,即均为预先指定的特定的DMRS资源。
可选的,可以是在经第一RRH和第二RRH在一个时隙或连续两个时隙内发送的DMRS资源是特定的DMRS资源的情况下,为DMRS资源配置的QCL参考源为预先指示的特定的DMRS资源。进一步可选的,在另一个示例中,在一个时隙或连续两个时隙内发送的DMRS资源不是特定的DMRS资源的情况下,目标QCL参考源为发送该DMRS资源前最后一次发送的特定的DMRS资源。
可选的,还可以是在经第一RRH和第二RRH在时隙或连续两个时隙内发送的DMRS资源不是特定的DMRS资源的情况下,为DMRS资源配置的QCL参考源为预先指示的特定的DMRS资源。
可选的,在本发明实施例的信息配置方法中,可以通过不同的方式将上述目标切换指示给终端设备,包括但不限于以下具体实施例:
具体实施例一
在该具体实施例一中,上述时间余量n用于供终端设备在接收到目标信令后的切换时段内进行目标切换,切换时段为时刻T到时刻(T+n)对应的时段,时刻T用于供终端设备发送与目标信令对应的肯定确认ACK消息,目标切换由协议约定在时刻(T+n)后完成,且时间余量n内不进行信号传输;其中,目标信令包括MAC CE信令或者物理层控制信令。
其中,上述时间余量n、时刻T、时刻(T+n)的单位为毫秒。
可以理解,上述目标切换由网络设备通过目标信令显式的指示给终端设备。同时,通过额外的提供n毫秒的时间余量,以确保UE具有足量的时间 余量完成相应的目标切换,从而保证终端设备的数据解调能力。
可选的,在第一个示例中,在上述目标信令为MAC CE信令或物理层控制信令,且上述目标信令为第一SpatialRelationInfo切换信令的情况下,目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。可选的,该目标切换为上述SpatialRelationInfo切换。
其中,时刻(T+3+n1)的单位为毫秒。
可以理解,在该示例中,上述时间余量n可以是在相关技术中提供的3毫秒的时间余量的基础上,进一步额外提供了n1毫秒的时间余量。
进一步可选的,在该示例中,上述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合。也就是说,第一集合和第二集合为两个与SpatialRelationInfo关联的参考信号集合。
其中,第一集合与第二集合为不同的两个参考信号集合,第一集合和第二集合由网络设备预先配置或者由协议约定。
可选的,在第二个示例中,在上述目标信令为MAC CE信令,且上述目标信令为第一TCI state切换信令的情况下,目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。可选的,该目标切换为上述TCI state切换。
可以理解,在该示例中,上述时间余量n可以是在相关技术中提供的3毫秒的时间余量的基础上,进一步额外提供了n1毫秒的时间余量。
进一步可选的,在该示例中,上述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合。也就是说,第三集合和第四集合为两个与TCI state关联的参考信号集合。
其中,第三集合和第四集合为不同的两个参考信号集合,第三集合和第四集合由网络设备预先配置或者由协议约定。
进一步可选的,在该示例中,上述第一TCI state切换信令用于对特定的控制资源集(Control Resource Set,CORESET)TCI state切换进行指示,该 特定的CORESET TCI state切换包括CORESET0TCI state切换。需要说明的是,该特定的CORESET TCI state切换还可以包括除了该CORESET0TCI state切换以外的其他某一指定的CORESET TCI state切换。
进一步可选的,在该示例中,上述第一TCI state切换信令还可以用于对PDSCH active TCI state切换进行指示。其中,PDSCH active TCI state为接收PDSCH所使用的TCI state。
可选的,在第三个示例中,在上述目标信令为DCI信令(即物理层控制信令),且上述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,目标切换由协议约定在时刻(T+n2)后完成,其中,n=n2。可选的,该目标切换对应的可以包括TCI state切换和SpatialRelationInfo切换中的至少一个。
进一步可选的,在该示例中,上述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
可选的,在第四个示例中,上述目标信令为专门约定的信令;其中,专门约定的信令为高铁模式下新定义的信令且包括以下之一:TRP切换信令、RRH切换信令、TRS切换信令、SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。也就是说,还可以通过专门约定的信令指示该目标切换。
具体实施例二
在该具体实施例二中,上述目标切换由网络设备通过隐式的方式指示给终端设备;其中,上述时间余量n内不进行信号传输。如此,可以节省信令开销。同时,通过额外的提供n毫秒的时间余量,以确保UE具有足量的时间余量完成相应的目标切换,从而保证终端设备的数据解调能力。
可选的,在本发明实施例的信息配置方法中,上述时间余量n的确定方式包括以下之一:
(1)由协议约定时间余量n。
(2)由网络设备配置时间余量n。也就是说,由网络设备直接配置该时间余量n。
(3)由终端设备上报时间余量n。也就是说,网络设备可以将终端设备基于其自身能力上报的一个时间余量配置为该时间余量n,以满足终端设备进行目标切换的时间需求。
(4)由网络设备基于终端设备上报的时间余量n3,配置时间余量n。可选的,网络设备在接收到终端设备基于其自身能力上报的时间余量n3后,可以直接将该时间余量n3配置为最终的时间余量n,也可以重新配置一个新的时间余量n4,并将该时间余量n4配置为最终的时间余量n,其中,时间余量n4可以比时间余量n大,以满足终端设备进行目标切换的时间需求。也就是说,时间余量n可以等于该时间余量n3,也可以不等于该时间余量n3。
(5)由网络设备基于终端设备上报的时间余量门限值,配置时间余量n。也就是说,网络设备可以在接收到终端设备基于其自身能力上报的时间余量门限值时,基于该时间余量门限值选择一个适当的时间余量作为最终的时间余量n,以满足终端设备进行目标切换的时间需求。其中,该时间余量n可以跟该时间余量门限值相等也可以不等。
综上可知,通过本发明实施例的信息配置方法,可以针对高铁场景的网络侧频偏预补偿方案,提供新的QCL参考关系和类型,以及相关的信令指示,以解决频偏预补偿后QCL参考信息失配的问题,保证终端设备的数据解调性能。并且,在网络侧指示终端设备切换spatialRelationInfo和TCI state时,额外引入n毫秒的时间余量,即为为终端设备的晶振调节额外引入足够的时间余量,以保证终端设备在发送和接收信号前完成晶振频率调节,从而保证终端设备的数据解调性能。
参见图6所示,本发明实施例提供一种信息确定方法,由终端设备执行,方法包括以下流程步骤:
步骤501:接收网络设备配置的目标配置信息,目标配置信息包括目标 QCL参考信息和时间余量n中的至少一个,其中,目标QCL参考信息与DMRS资源对应。
步骤503:根据目标QCL参考信息进行信道估计和数据解调。
步骤505:根据时间余量n进行目标切换,其中,目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。
在本发明实施例中,可以根据网络设备配置的目标配置信息获取到目标QCL参考信息和时间余量n中的至少一个。其中,当获取到DMRS资源对应的上述目标QCL参考信息时,可以基于该目标QCL参考信息和DMRS资源在进行信道估计和数据解调时,能够参考正确的QCL信息。当获取到网络设备配置的额外的时间余量n时,可以基于网络设备额外配置的足量的时间余量进行目标切换,从而保证终端设备的数据解调能力,其中,该目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。如此,可以提高***通信效率。
可选的,上述目标配置信息可以用于第一过程中,其中,该第一过程为终端设备位于采用SFN传输方式部署的网络中时,从第一RRH和第二RRH中的一个移动至另一个的过程。比如,从图1中的RRH1和RRH2中的一个移动至另一个的过程。
可选的,在本发明实施例的信息确定方法中,在上述目标配置信息包括目标QCL参考信息的情况下,上述目标QCL参考信息包括目标QCL参考源和目标QCL参考源对应的目标QCL参数。也就是说,通过该目标QCL参考信息可以使得DMRS资源在进行信道估计和数据解调时能够参考正确的QCL源及其对应的目标QCL参数。
进一步可选的,上述目标QCL参考信息满足以下条件中的至少一个:
(1)上述目标QCL参考源与第一QCL参考源不同,第一QCL参考源包括第一TRS资源和第二TRS资源。
可选的,上述第一TRS资源可以由网络设备经上述第一RRH发送,第 二TRS资源可以由网络设备经上述第二RRH发送。
(2)上述目标QCL参数与第一QCL参数不同,第一QCL参数为第一TRS资源对应的QCL类型中的所有QCL参数和第二TRS资源对应的QCL类型中的所有QCL参数。
可以理解,当DMRS的目标QCL参考源与相关技术中参考第一TRS资源和第二TRS资源不同的QCL源,和/或目标QCL参考源对应的目标QCL参数与相关技术中DMRS资源所参考的QCL源对应的QCL参数不同时,可以避免出现多普勒频偏值失配的情况。
可选的,在本发明实施例的信息确定方法中,包括目标QCL参考源及其对应的目标QCL参数的目标QCL参考信息所包含的具体内容,可以为多种不同的方案,包括但不限于以下具体实施例中所描述的情况:
具体实施例一
在该具体实施例一中,上述目标QCL参考信息由网络设备基于第一DCI信令中的码点进行指示,码点中包括第一TCI state和第二TCI state。
其中,第一TCI state中的QCL参考源为第一TRS资源,以及第一TCI state中的QCL类型为QCL TypeA;第二TCI state中的QCL参考源为第二TRS资源,以及第二TCI state中的QCL类型为QCL TypeA或第一QCL类型;其中,第一QCL类型中的QCL参数为时延扩展。
可以理解,在该具体实施例中,DMRS端口的目标QCL参考信息,可以由DCI指示为TCI域中的码点包含的两个TCI state,即DMRS端口的目标QCL参考源配置为第一TRS资源和第二TRS资源两者。目标QCL参考源对应的目标QCL参数可以联合参考第一TRS资源的QCL TypeA中的QCL参数和第二TRS资源的QCL TypeA中的QCL参数。或者,目标QCL类型对应的QCL参数可以联合参考第一TRS资源的QCL TypeA中的QCL参数和新定义的第一QCL类型中的QCL参数即时延扩展。
其中,上述QCL TypeA表示QCL类型,QCL TypeA中的QCL参数为多 普勒频偏、多普勒扩展、平均时延和时延扩展。
进一步可选的,在该具体实施例中,在上述第一TCI state中的QCL类型和第二TCI state中的QCL类型均为QCL TypeA的情况下,上述目标QCL参考源包括:主QCL参考源和非主QCL参考源。
其中,上述主QCL参考源为第一TRS资源和第二TRS资源中的一个,非主QCL参考源为第一TRS资源和第二TRS资源中的另一个;上述目标QCL参数包括主QCL参考源对应的QCL TypeA中的所有QCL参数和非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,部分QCL参数为时延扩展。
可以理解,目标QCL参考源在第一TRS资源和第二TRS资源间区分主次,且该目标QCL参考源对应的目标QCL参数与第一QCL参数不同,此时,UE将联合参考第一TRS资源和第二TRS资源两者的时延扩展进行信道估计和数据解调。
进一步可选的,在一个示例中,上述第一TRS资源或者第二TRS资源被配置为主QCL参考源,由网络设备通过第一信令进行显式的指示;其中,第一信令包括RRC信令、MAC CE信令或DCI信令。
进一步可选的,在另一个示例中,上述第一TRS资源或者第二TRS资源被配置为主QCL参考源,由网络设备通过第一顺序进行隐式的指示,该第一顺序为第一TCI state和第二TCI state在码点中的前后顺序,主QCL参考源为码点中排列在前的TCI state中的TRS资源。
进一步可选的,在该具体实施例中,在上述第一TCI state中的QCL类型为QCL TypeA,第二TCI state中的QCL类型为第一QCL类型的情况下,目标QCL参考源包括第一TRS资源和第二TRS资源;上述目标QCL参数包括:第一TRS资源对应的QCL TypeA中的所有QCL参数,以及第二TRS资源对应的第一QCL类型中的所有QCL参数。
可以理解,目标QCL参考源对应的目标QCL参数与第一QCL参数不同, 此时,UE将联合参考第一TRS资源和第二TRS资源两者的时延扩展进行信道估计和数据解调。
具体实施例二
在该具体实施例二中,上述目标QCL参考资源为第三TRS资源,第三TRS资源由网络设备在进行频偏预补偿之后发送,且第三TRS资源的QCL参考源为第一TRS资源或第二TRS资源,第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,第一TRS资源、第二TRS资源和第三TRS资源均为周期性TRS资源。
其中,第二QCL类型为除QCL TypeA、QCL TypeB、QCL TypeC和QCL TypeD外的任一QCL类型;上述目标QCL参数为上述QCL TypeA中的所有QCL参数。
其中,上述QCL TypeB、QCL TypeC、QCL TypeD均表示QCL类型,QCL TypeB中的QCL参数为多普勒频偏和多普勒扩展,QCL TypeC中的QCL参数为多普勒频偏和平均时延,QCL TypeD中的QCL参数为空间接收参数。
可以理解,目标QCL参考源与第一QCL参考源不同,具体可以在进行频偏预补偿和发送相同的PDSCH之间发送的周期性TRS资源即第三TRS资源作为QCL参考源;其中,该第三TRS资源以QCL TypeC参考另一个周期性TRS资源(即第一TRS资源或第二TRS资源)。
可选的,上述第三TRS资源可以由网络设备经上述第一RRH和第二RRH在进行频偏预补偿之后、以及在经第一RRH和第二RRH发送相同的物理下行共享信道PDSCH之前发送。
具体实施例三
在该具体实施例三中,DMRS的目标QCL参考源被配置为特定的DMRS资源,以及目标QCL参数为QCL TypeA中的所有QCL参数。其中,该特定的DMRS资源的指示信息由网络设备通过第二信令配置,其中,该第二信令包括RRC信令、MAC CE信令或DCI信令。
可以理解,目标QCL参考源与第一QCL参考源不同,具体可以为预先指定的特定的DMRS资源。
进一步可选的,在一个示例中,在一个时隙(slot)或连续两个时隙内接收的DMRS资源是特定的DMRS资源的情况下,目标QCL参考源为特定的DMRS资源。
可以理解,目标QCL参考源与第一QCL参考源不同,具体地,为DMRS资源配置的QCL参考源即为其自身,即均为预先指定的特定的DMRS资源。
可选的,网络设备可以是在经第一RRH和第二RRH在一个时隙或连续两个时隙内发送的DMRS资源是特定的DMRS资源的情况下,为DMRS资源配置的QCL参考源为预先指示的特定的DMRS资源。
进一步可选的,在另一个示例中,在一个时隙或连续两个时隙内接收的DMRS资源不是特定的DMRS资源的情况下,目标QCL参考源为发送该DMRS资源前最后一次发送的特定的DMRS资源。
可选的,网络设备还可以是在经第一RRH和第二RRH在时隙或连续两个时隙内发送的DMRS资源不是特定的DMRS资源的情况下,为DMRS资源配置的QCL参考源为预先指示的特定的DMRS资源。
可选的,在本发明实施例的信息确定方法中,上述目标切换可以由网络设备通过不同的方式进行指示,包括但不限于以下具体实施例:
具体实施例一
在该具体实施例一中,上述步骤507,可以具体执行为为以下内容:
在时刻T向网络设备发送目标信令对应的肯定确认ACK消息;在时刻T到时刻(T+n)对应的切换时段内,根据目标信令进行目标切换,目标切换由协议约定在时刻(T+n)后完成,且时间余量n内不进行信号传输;其中,目标信令包括MAC CE信令或者物理层控制信令。
其中,上述时间余量n、时刻T、时刻(T+n)的单位为毫秒。
可以理解,上述目标切换由网络设备通过目标信令进行显式的指示。同 时,通过额外的提供n毫秒的时间余量,以确保UE具有足量的时间余量完成相应的目标切换,从而保证终端设备的数据解调能力。
可选的,在第一个示例中,在上述目标信令为MAC CE信令或物理层控制信令,且上述目标信令为第一SpatialRelationInfo切换信令的情况下,上述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。可选的,该目标切换为SpatialRelationInfo切换。
其中,时刻(T+3+n1)的单位为毫秒。
可以理解,在该示例中,上述时间余量n可以是在相关技术中提供的3毫秒的时间余量的基础上,进一步额外提供了n1毫秒的时间余量。
进一步可选的,在该示例中,上述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合。也就是说,第一集合和第二集合为两个与SpatialRelationInfo关联的参考信号集合。
其中,第一集合与第二集合为不同的两个参考信号集合,第一集合和第二集合由网络设备预先配置或者由协议约定。
可选的,在第二个示例中,在上述目标信令为MAC CE信令,且上述目标信令为第一TCI state切换信令的情况下,上述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。可选的,该目标切换可以为TCI state切换。
可以理解,在该示例中,上述时间余量n可以是在相关技术中提供的3毫秒的时间余量的基础上,进一步额外提供了n1毫秒的时间余量。
进一步可选的,在该示例中,上述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合。也就是说,第三集合和第四集合为两个与TCI state关联的参考信号集合。
其中,第三集合和第四集合为不同的两个参考信号集合,第三集合和第四集合由网络设备预先配置或者由协议约定。
进一步可选的,在该示例中,上述第一TCI state切换信令用于对特定的 CORESETTCI state切换进行指示,该特定的CORESET TCI state切换包括CORESET0TCI state切换。需要说明的是,该特定的CORESETTCI state切换还可以包括除了该CORESET0TCI state切换以外的其他某一指定的CORESETTCI state切换。
进一步可选的,在该示例中,上述第一TCI state切换信令用于对PDSCH active TCI state切换进行指示。其中,PDSCH active TCI state为接收PDSCH所使用的TCI state。
可选的,在第三个示例中,在上述目标信令为DCI信令(即物理层控制信令),且上述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,上述目标切换由协议约定在时刻(T+n2)后完成,其中,n=n2。可选的,该目标切换对应的可以包括TCI state切换和SpatialRelationInfo切换中的至少一个。
进一步可选的,在该示例中,上述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
可选的,在第四个示例中,上述目标信令为专门约定的信令;其中,专门约定的信令为高铁模式下新定义的信令且包括以下之一:TRP切换信令、射频拉远头RRH切换信令、TRS切换信令、SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。也就是说,还可以通过专门约定的信令指示该目标切换。
具体实施例二
在该具体实施例二中,上述目标切换由网络设备通过隐式的方式进行指示;其中,时间余量n内不进行信号传输。如此,可以节省信令开销。同时,通过额外的提供n毫秒的时间余量,以确保UE具有足量的时间余量完成相应的目标切换,从而保证终端设备的数据解调能力。
可选的,在本发明实施例的信息配置方法中,上述时间余量n的确定方式包括以下之一:
(1)由协议约定时间余量n。
(2)由网络设备配置时间余量n。也就是说,由网络设备直接配置该时间余量n。
(3)由终端设备上报时间余量n。也就是说,网络设备可以将终端设备基于其自身能力上报的一个时间余量配置为该时间余量n,以满足终端设备进行目标切换的时间需求。
(4)由网络设备基于终端设备上报的时间余量n3,配置时间余量n。可选的,网络设备在接收到终端设备基于其自身能力上报的时间余量n3后,可以直接将该时间余量n3配置为最终的时间余量n,也可以重新配置一个新的时间余量n4,并将该时间余量n4配置为最终的时间余量n,其中,时间余量n4可以比时间余量n大,以满足终端设备进行目标切换的时间需求。也就是说,时间余量n可以等于该时间余量n3,也可以不等于该时间余量n3。
(5)由网络设备基于终端设备上报的时间余量门限值,配置时间余量n。也就是说,网络设备可以在接收到终端设备基于其自身能力上报的时间余量门限值时,基于该时间余量门限值选择一个适当的时间余量作为最终的时间余量n,以满足终端设备进行目标切换的时间需求。其中,该时间余量n可以跟该时间余量门限值相等也可以不等。
综上可知,通过本发明实施例的信息确定方法,可以针对高铁场景的网络侧频偏预补偿方案,提供新的QCL参考关系和类型,以及相关的信令指示,以解决频偏预补偿后QCL参考信息失配的问题,保证终端设备的数据解调性能。并且,在网络侧指示终端设备切换spatialRelationInfo和TCI state时,额外引入n毫秒的时间余量,即为为终端设备的晶振调节额外引入足够的时间余量,以保证终端设备在发送和接收信号前完成晶振频率调节,从而保证终端设备的数据解调性能。
参见图7所示,本发明实施例提供一种网络设备600,该网络设备600包括:
配置模块601,用于配置目标配置信息,目标配置信息包括目标QCL参考信息和时间余量n中的至少一个;其中,目标QCL参考信息与DMRS资源对应,目标QCL参考信息用于供终端设备进行信道估计和数据解调;时间余量n用于供终端设备进行目标切换,其中,目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。
可选的,在本发明实施例的网络设备600中,上述目标QCL参考信息包括目标QCL参考源和目标QCL参考源对应的目标QCL参数,目标QCL参考信息满足以下条件中的至少一个:
上述目标QCL参考源与第一QCL参考源不同,第一QCL参考源包括第一TRS资源和第二TRS资源;上述目标QCL参数与第一QCL参数不同,第一QCL参数为第一TRS资源对应的QCL类型中的所有QCL参数和第二TRS资源对应的QCL类型中的所有QCL参数。
可选的,在本发明实施例的网络设备600中,上述目标QCL参考信息基于第一DCI信令中的码点指示给终端设备,码点中包括第一TCI state和第二TCI state;其中,第一TCI state中的QCL参考源为第一TRS资源,以及第一TCI state中的QCL类型为QCL TypeA;第二TCI state中的QCL参考源为第二TRS资源,以及第二TCI state中的QCL类型为QCL TypeA或第一QCL类型;其中,第一QCL类型中的QCL参数为时延扩展。
可选的,在本发明实施例的网络设备600中,在上述第一TCI state中的QCL类型和第二TCI state中的QCL类型均为QCL TypeA的情况下,目标QCL参考源包括:主QCL参考源和非主QCL参考源;其中,主QCL参考源为第一TRS资源和第二TRS资源中的一个,非主QCL参考源为第一TRS资源和第二TRS资源中的另一个;目标QCL参数包括主QCL参考源对应的QCL TypeA中的所有QCL参数和非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,部分QCL参数为时延扩展。
可选的,在本发明实施例的网络设备600中,上述第一TRS资源或者第 二TRS资源被配置为主QCL参考源,由网络设备通过第一信令显式的指示给终端设备;其中,第一信令包括RRC信令、MAC CE信令或DCI信令。
可选的,在本发明实施例的网络设备600中,上述第一TRS资源或者第二TRS资源被配置为主QCL参考源,由网络设备通过第一顺序隐式的指示给终端设备,第一顺序为第一TCI state和第二TCI state在码点中的前后顺序,主QCL参考源为码点中排列在前的TCI state中的TRS资源。
可选的,在本发明实施例的网络设备600中,在上述第一TCI state中的QCL类型为QCL TypeA,第二TCI state中的QCL类型为第一QCL类型的情况下,目标QCL参考源包括第一TRS资源和第二TRS资源;上述目标QCL参数包括:第一TRS资源对应的QCL TypeA中的所有QCL参数,以及第二TRS资源对应的第一QCL类型中的所有QCL参数。
可选的,在本发明实施例的网络设备600中,上述目标QCL参考资源为第三TRS资源,第三TRS资源在进行频偏预补偿之后发送,且第三TRS资源的QCL参考源为第一TRS资源或第二TRS资源,第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,第一TRS资源、第二TRS资源和第三TRS资源均为周期性TRS资源;其中,第二QCL类型为除QCL TypeA、QCL TypeB、QCL TypeC和QCL TypeD外的任一QCL类型;目标QCL参数为QCL TypeA中的所有QCL参数。
可选的,在本发明实施例的网络设备600中,在一个时隙或连续两个时隙内发送的DMRS资源是特定的DMRS资源的情况下,目标QCL参考源为特定的DMRS资源。
可选的,在本发明实施例的网络设备600中,在一个时隙或连续两个时隙内发送的DMRS资源不是特定的DMRS资源的情况下,目标QCL参考源为发送DMRS资源前最后一次发送的特定的DMRS资源。
可选的,在本发明实施例的网络设备600中,上述特定的DMRS资源的指示信息通过第二信令配置,其中,第二信令包括RRC信令、MAC CE信令 或DCI信令;上述目标QCL参数为QCL TypeA中的所有QCL参数。
可选的,在本发明实施例的网络设备600中,上述时间余量n用于供终端设备在接收到目标信令后的切换时段内进行目标切换,切换时段为时刻T到时刻(T+n)对应的时段,时刻T用于供终端设备发送与目标信令对应的肯定确认ACK消息,目标切换由协议约定在时刻(T+n)后完成,且时间余量n内不进行信号传输;其中,目标信令包括MAC CE信令或者物理层控制信令。
可选的,在本发明实施例的网络设备600中,在上述目标信令为MAC CE信令或物理层控制信令,且上述目标信令为第一SpatialRelationInfo切换信令的情况下,上述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
可选的,在本发明实施例的网络设备600中,上述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合;其中,第一集合与第二集合为不同的两个参考信号集合,第一集合和第二集合由网络设备预先配置或者由协议约定。
可选的,在本发明实施例的网络设备600中,在上述目标信令为MAC CE信令,且上述目标信令为第一TCI state切换信令的情况下,上述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
可选的,在本发明实施例的网络设备600中,上述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合;其中,第三集合和第四集合为不同的两个参考信号集合,第三集合和第四集合由网络设备预先配置或者由协议约定。
可选的,在本发明实施例的网络设备600中,上述第一TCI state切换信令用于对特定的CORESET TCI state切换进行指示,特定的CORESET TCI state切换包括CORESET0TCI state切换。
可选的,在本发明实施例的网络设备600中,上述第一TCI state切换信令用于对PDSCH active TCI state切换进行指示。
可选的,在本发明实施例的网络设备600中,在上述目标信令为DCI信 令,且上述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,上述目标切换由协议约定在时刻(T+n2)后完成,其中,n=n2。
可选的,在本发明实施例的网络设备600中,上述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
可选的,在本发明实施例的网络设备600中,上述目标信令为专门约定的信令;其中,专门约定的信令为高铁模式下新定义的信令且包括以下之一:TRP切换信令、射频拉远头RRH切换信令、TRS切换信令、SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。
可选的,在本发明实施例的网络设备600中,上述目标切换由网络设备通过隐式的方式指示给终端设备;其中,时间余量n内不进行信号传输。
可选的,在本发明实施例的网络设备600中,上述时间余量n的确定方式包括以下之一:
由协议约定时间余量n;由网络设备配置时间余量n;由终端设备上报时间余量n;由网络设备基于终端设备上报的时间余量n3,配置时间余量n;由网络设备基于终端设备上报的时间余量门限值,配置时间余量n。
能够理解,本发明实施例提供的网络设备600,能够实现前述由网络设备600执行的信息配置方法,关于信息配置方法的相关阐述均适用于网络设备600,此处不再赘述。
在本发明实施例中,可以配置目标配置信息,该目标配置信息包括目标QCL参考信息和时间余量n中的至少一个。其中,当为DMRS资源配置了上述目标QCL参考信息时,可供终端设备在基于DMRS资源在进行信道估计和数据解调时,能够参考正确的QCL信息。当配置了额外的时间余量n时,可供终端设备基于该时间余量n进行目标切换,也就是说,为终端设备进行目标切换提供足量的时间余量,从而保证终端设备的数据解调能力,其中,该目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP 切换中的至少一个。如此,可以提高***通信效率。
参见图8所示,本发明实施例提供一种终端设备700,该终端设备700包括:接收模块701、第一处理模块703和第二处理模块705。
其中,接收模块701,用于接收网络设备配置的目标配置信息,目标配置信息包括目标QCL参考信息和时间余量n中的至少一个;第一处理模块703,用于根据目标QCL参考信息进行信道估计和数据解调;第二处理模块705,用于根据时间余量n进行目标切换,其中,目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。
可选的,在本发明实施例的终端设备700中,上述目标QCL参考信息包括目标QCL参考源和目标QCL参考源对应的目标QCL参数,目标QCL参考信息满足以下条件中的至少一个:
目标QCL参考源与第一QCL参考源不同,第一QCL参考源包括第一TRS资源和第二TRS资源;目标QCL参数与第一QCL参数不同,第一QCL参数为第一TRS资源对应的QCL类型中的所有QCL参数和第二TRS资源对应的QCL类型中的所有QCL参数。
可选的,在本发明实施例的终端设备700中,上述目标QCL参考信息由网络设备基于第一DCI信令中的码点进行指示,码点中包括第一TCI state和第二TCI state;其中,第一TCI state中的QCL参考源为第一TRS资源,以及第一TCI state中的QCL类型为QCL TypeA;第二TCI state中的QCL参考源为第二TRS资源,以及第二TCI state中的QCL类型为QCL TypeA或第一QCL类型;其中,第一QCL类型中的QCL参数为时延扩展。
可选的,在本发明实施例的终端设备700中,在上述第一TCI state中的QCL类型和第二TCI state中的QCL类型均为QCL TypeA的情况下,目标QCL参考源包括:主QCL参考源和非主QCL参考源;其中,主QCL参考源为第一TRS资源和第二TRS资源中的一个,非主QCL参考源为第一TRS资源和第二TRS资源中的另一个;目标QCL参数包括主QCL参考源对应的 QCL TypeA中的所有QCL参数和非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,部分QCL参数为时延扩展。
可选的,在本发明实施例的终端设备700中,上述第一TRS资源或者第二TRS资源被配置为主QCL参考源,由网络设备通过第一信令进行显式的指示;其中,第一信令包括RRC信令、MAC CE信令或DCI信令。
可选的,在本发明实施例的终端设备700中,上述第一TRS资源或者第二TRS资源被配置为主QCL参考源,由网络设备通过第一顺序进行隐式的指示,第一顺序为第一TCI state和第二TCI state在码点中的前后顺序,主QCL参考源为码点中排列在前的TCI state中的TRS资源。
可选的,在本发明实施例的终端设备700中,在上述第一TCI state中的QCL类型为QCL TypeA,第二TCI state中的QCL类型为第一QCL类型的情况下,目标QCL参考源包括第一TRS资源和第二TRS资源;上述目标QCL参数包括:第一TRS资源对应的QCL TypeA中的所有QCL参数,以及第二TRS资源对应的第一QCL类型中的所有QCL参数。
可选的,在本发明实施例的终端设备700中,上述目标QCL参考资源为第三TRS资源,第三TRS资源由网络设备在进行频偏预补偿之后发送,且第三TRS资源的QCL参考源为第一TRS资源或第二TRS资源,第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,第一TRS资源、第二TRS资源和第三TRS资源均为周期性TRS资源;其中,第二QCL类型为除QCL TypeA、QCL TypeB、QCL TypeC和QCL TypeD外的任一QCL类型;目标QCL参数为QCL TypeA中的所有QCL参数。
可选的,在本发明实施例的终端设备700中,在一个时隙或连续两个时隙内接收的DMRS资源是特定的DMRS资源的情况下,目标QCL参考源为特定的DMRS资源。
可选的,在本发明实施例的终端设备700中,在一个时隙或连续两个时隙内接收的DMRS资源不是特定的DMRS资源的情况下,目标QCL参考源 为发送DMRS资源前最后一次发送的特定的DMRS资源。
可选的,在本发明实施例的终端设备700中,上述特定的DMRS资源的指示信息由网络设备通过第二信令配置,其中,第二信令包括RRC信令、MAC CE信令或DCI信令;目标QCL参数为QCL TypeA中的所有QCL参数。
可选的,在本发明实施例的终端设备700中,上述第二处理模块,具体可以用于:
在时刻T向网络设备发送目标信令对应的肯定确认ACK消息;在时刻T到时刻(T+n)对应的切换时段内,根据目标信令进行目标切换,目标切换由协议约定在时刻(T+n)后完成,且时间余量n内不进行信号传输;其中,目标信令包括MAC CE信令或者物理层控制信令。
可选的,在本发明实施例的终端设备700中,在上述目标信令为MAC CE信令或物理层控制信令,且目标信令为第一SpatialRelationInfo切换信令的情况下,上述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
可选的,在本发明实施例的终端设备700中,上述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合;其中,第一集合与第二集合为不同的两个参考信号集合,第一集合和第二集合由网络设备预先配置或者由协议约定。
可选的,在本发明实施例的终端设备700中,在上述目标信令为MAC CE信令,且上述目标信令为第一TCI state切换信令的情况下,目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
可选的,在本发明实施例的终端设备700中,上述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合;其中,第三集合和第四集合为不同的两个参考信号集合,第三集合和第四集合由网络设备预先配置或者由协议约定。
可选的,在本发明实施例的终端设备700中,上述第一TCI state切换信 令用于对特定的CORESET TCI state切换进行指示,特定的CORESET TCI state切换包括CORESET0TCI state切换。
可选的,在本发明实施例的终端设备700中,上述第一TCI state切换信令用于对PDSCH active TCI state切换进行指示。
可选的,在本发明实施例的终端设备700中,在上述目标信令为DCI信令,且上述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,目标切换由协议约定在时刻(T+n2)后完成,其中,n=n2。
可选的,在本发明实施例的终端设备700中,上述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
可选的,在本发明实施例的终端设备700中,上述目标信令为专门约定的信令;其中,专门约定的信令为高铁模式下新定义的信令且包括以下之一:TRP切换信令、RRH切换信令、TRS切换信令、SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。
可选的,在本发明实施例的终端设备700中,上述目标切换由网络设备通过隐式的方式进行指示;其中,时间余量n内不进行信号传输。
可选的,在本发明实施例的终端设备700中,上述时间余量n的确定方式包括以下之一:
由协议约定时间余量n;由网络设备配置时间余量n;由终端设备上报时间余量n;由网络设备基于终端设备上报的时间余量n3,配置时间余量n;由网络设备基于终端设备上报的时间余量门限值,配置时间余量n。
能够理解,本发明实施例提供的终端设备700,能够实现前述由终端设备700执行的信息确定方法,关于信息确定方法的相关阐述均适用于终端设备700,此处不再赘述。
在本发明实施例中,可以根据网络设备配置的目标配置信息获取到目标QCL参考信息和时间余量n中的至少一个。其中,当获取到DMRS资源对应 的上述目标QCL参考信息时,可以基于该目标QCL参考信息和DMRS资源在进行信道估计和数据解调时,能够参考正确的QCL信息。当获取到网络设备配置的额外的时间余量n时,可以基于网络设备额外配置的足量的时间余量进行目标切换,从而保证终端设备的数据解调能力,其中,该目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。如此,可以提高***通信效率。
请参阅图9,图9是本发明实施例应用的网络设备的结构图,能够实现前述信息配置方法的细节,并达到相同的效果。如图9所示,网络设备800包括:处理器801、收发机802、存储器803、用户接口804和总线接口805,其中:
在本发明实施例中,网络设备800还包括:存储在存储器上803并可在处理器801上运行的计算机程序,计算机程序被处理器801、执行时实现如下步骤:
配置目标配置信息,目标配置信息包括目标QCL参考信息和时间余量n中的至少一个;其中,目标QCL参考信息与DMRS资源对应,目标QCL参考信息用于供终端设备进行信道估计和数据解调;时间余量n用于供终端设备进行目标切换,其中,目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。
在本发明实施例中,可以配置目标配置信息,该目标配置信息包括目标QCL参考信息和时间余量n中的至少一个。其中,当为DMRS资源配置了上述目标QCL参考信息时,可供终端设备在基于DMRS资源在进行信道估计和数据解调时,能够参考正确的QCL信息。当配置了额外的时间余量n时,可供终端设备基于该时间余量n进行目标切换,也就是说,为终端设备进行目标切换提供足量的时间余量,从而保证终端设备的数据解调能力,其中,该目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。如此,可以提高***通信效率。
在图9中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器801代表的一个或多个处理器和存储器803代表的存储器的各种电路链接在一起。总线架构还可以将诸如***设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口805提供接口。收发机802可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口804还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器801负责管理总线架构和通常的处理,存储器803可以存储处理器801在执行操作时所使用的数据。
图10是本发明另一个实施例的终端设备的框图。图10所示的终端设备900包括:至少一个处理器901、存储器902、至少一个网络接口904和用户接口903。终端设备900中的各个组件通过总线***905耦合在一起。可理解,总线***905用于实现这些组件之间的连接通信。总线***905除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图10中将各种总线都标为总线***905。
其中,用户接口903可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本发明实施例中的存储器902可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器 (Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本发明实施例描述的***和方法的存储器902旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器902存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作***9021和应用程序9022。
其中,操作***9021,包含各种***程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序9022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序9022中。
在本发明实施例中,终端设备900还包括:存储在存储器上902并可在处理器901上运行的计算机程序,计算机程序被处理器901执行时实现如下步骤:
接收网络设备配置的目标配置信息,目标配置信息包括目标QCL参考信息和时间余量n中的至少一个,其中,目标QCL参考信息与DMRS资源对应;根据目标QCL参考信息进行信道估计和数据解调;根据时间余量n进行目标切换,其中,目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和点TRP切换中的至少一个。
在本发明实施例中,可以根据网络设备配置的目标配置信息获取到目标QCL参考信息和时间余量n中的至少一个。其中,当获取到DMRS资源对应的上述目标QCL参考信息时,可以基于该目标QCL参考信息和DMRS资源 在进行信道估计和数据解调时,能够参考正确的QCL信息。当获取到网络设备配置的额外的时间余量n时,可以基于网络设备额外配置的足量的时间余量进行目标切换,从而保证终端设备的数据解调能力,其中,该目标切换包括晶振频率切换、SpatialRelationInfo切换、TCI state切换和TRP切换中的至少一个。如此,可以提高***通信效率。
上述本发明实施例揭示的方法可以应用于处理器901中,或者由处理器901实现。处理器901可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器901中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器901可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器902,处理器901读取存储器902中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器901执行时实现如上述信息确定方法实施例的各步骤。
可以理解的是,本发明实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门 阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本发明所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本发明实施例所述功能的模块(例如过程、函数等)来实现本发明实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备900能够实现前述实施例中终端设备实现的各个过程,为避免重复,这里不再赘述。
优选的,本发明实施例还提供一种网络设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于网络设备的信息配置方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
优选的,本发明实施例还提供一种终端设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述信息确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述应用于终端设备的信息确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟 或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (98)

  1. 一种信息配置方法,应用于网络设备,所述方法包括:
    配置目标配置信息,所述目标配置信息包括目标准共址QCL参考信息和时间余量n中的至少一个;
    其中,所述目标QCL参考信息与解调参考信号DMRS资源对应,所述目标QCL参考信息用于供终端设备进行信道估计和数据解调;
    所述时间余量n用于供所述终端设备进行目标切换,其中,所述目标切换包括晶振频率切换、空间关系信息SpatialRelationInfo切换、传输配置指示状态TCI state切换和传输接收点TRP切换中的至少一个。
  2. 根据权利要求1所述的方法,其中,所述目标QCL参考信息包括目标QCL参考源和所述目标QCL参考源对应的目标QCL参数,所述目标QCL参考信息满足以下条件中的至少一个:
    所述目标QCL参考源与第一QCL参考源不同,所述第一QCL参考源包括第一TRS资源和第二TRS资源;
    所述目标QCL参数与第一QCL参数不同,所述第一QCL参数为所述第一TRS资源对应的QCL类型中的所有QCL参数和所述第二TRS资源对应的QCL类型中的所有QCL参数。
  3. 根据权利要求2所述的方法,其中,所述目标QCL参考信息基于第一下行控制信息DCI信令中的码点指示给所述终端设备,所述码点中包括第一TCI state和第二TCI state;
    其中,所述第一TCI state中的QCL参考源为所述第一TRS资源,以及所述第一TCI state中的QCL类型为QCL TypeA;
    所述第二TCI state中的QCL参考源为所述第二TRS资源,以及所述第二TCI state中的QCL类型为所述QCL TypeA或第一QCL类型;
    其中,所述第一QCL类型中的QCL参数为时延扩展。
  4. 根据权利要求3所述的方法,其中,在所述第一TCI state中的QCL 类型和所述第二TCI state中的QCL类型均为所述QCL TypeA的情况下,所述目标QCL参考源包括:主QCL参考源和非主QCL参考源;
    其中,所述主QCL参考源为所述第一TRS资源和所述第二TRS资源中的一个,所述非主QCL参考源为所述第一TRS资源和所述第二TRS资源中的另一个;
    所述目标QCL参数包括所述主QCL参考源对应的QCL TypeA中的所有QCL参数和所述非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,所述部分QCL参数为时延扩展。
  5. 根据权利要求4所述的方法,其中,所述第一TRS资源或者所述第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一信令显式的指示给所述终端设备;其中,所述第一信令包括RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令。
  6. 根据权利要求4所述的方法,其中,所述第一TRS资源或者所述第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一顺序隐式的指示给所述终端设备,所述第一顺序为所述第一TCI state和所述第二TCI state在所述码点中的前后顺序,所述主QCL参考源为所述码点中排列在前的TCI state中的TRS资源。
  7. 根据权利要求3所述的方法,其中,在所述第一TCI state中的QCL类型为所述QCL TypeA,所述第二TCI state中的QCL类型为所述第一QCL类型的情况下,所述目标QCL参考源包括所述第一TRS资源和所述第二TRS资源;
    所述目标QCL参数包括:所述第一TRS资源对应的所述QCL TypeA中的所有QCL参数,以及所述第二TRS资源对应的所述第一QCL类型中的所有QCL参数。
  8. 根据权利要求2所述的方法,其中,所述目标QCL参考资源为第三TRS资源,所述第三TRS资源在进行频偏预补偿之后发送,且所述第三TRS 资源的QCL参考源为所述第一TRS资源或所述第二TRS资源,所述第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,所述第一TRS资源、所述第二TRS资源和所述第三TRS资源均为周期性TRS资源;
    其中,所述第二QCL类型为除QCL TypeA、QCL TypeB、所述QCL TypeC和QCL TypeD外的任一QCL类型;
    所述目标QCL参数为所述QCL TypeA中的所有QCL参数。
  9. 根据权利要求2所述的方法,其中,在一个时隙或连续两个时隙内发送的所述DMRS资源是特定的DMRS资源的情况下,所述目标QCL参考源为所述特定的DMRS资源。
  10. 根据权利要求2所述的方法,其中,在一个时隙或连续两个时隙内发送的所述DMRS资源不是特定的DMRS资源的情况下,所述目标QCL参考源为发送所述DMRS资源前最后一次发送的所述特定的DMRS资源。
  11. 根据权利要求9或10所述的方法,其中,所述特定的DMRS资源的指示信息通过第二信令配置,其中,所述第二信令包括RRC信令、MAC CE信令或DCI信令;
    所述目标QCL参数为QCL TypeA中的所有QCL参数。
  12. 根据权利要求1所述的方法,其中,所述时间余量n用于供所述终端设备在接收到目标信令后的切换时段内进行所述目标切换,所述切换时段为时刻T到时刻(T+n)对应的时段,所述时刻T用于供所述终端设备发送与所述目标信令对应的肯定确认ACK消息,所述目标切换由协议约定在所述时刻(T+n)后完成,且所述时间余量n内不进行信号传输;
    其中,所述目标信令包括媒体接入控制单元MAC CE信令或者物理层控制信令。
  13. 根据权利要求12所述的方法,其中,在所述目标信令为MAC CE信令或物理层控制信令,且所述目标信令为第一SpatialRelationInfo切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  14. 根据权利要求13所述的方法,其中,所述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合;
    其中,所述第一集合与所述第二集合为不同的两个参考信号集合,所述第一集合和所述第二集合由所述网络设备预先配置或者由协议约定。
  15. 根据权利要求12所述的方法,其中,在所述目标信令为MAC CE信令,且所述目标信令为第一TCI state切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  16. 根据权利要求15所述的方法,其中,所述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合;
    其中,所述第三集合和所述第四集合为不同的两个参考信号集合,所述第三集合和所述第四集合由所述网络设备预先配置或者由协议约定。
  17. 根据权利要求16所述的方法,其中,所述第一TCI state切换信令用于对特定的控制资源集CORESET TCI state切换进行指示,所述特定的CORESET TCI state切换包括CORESET0 TCI state切换。
  18. 根据权利要求16所述的方法,其中,所述第一TCI state切换信令用于对PDSCH active TCI state切换进行指示。
  19. 根据权利要求12所述的方法,其中,在所述目标信令为DCI信令,且所述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,所述目标切换由协议约定在所述时刻(T+n2)后完成,其中,n=n2。
  20. 根据权利要求19所述的方法,其中,所述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
  21. 根据权利要求12所述的方法,其中,所述目标信令为专门约定的信令;其中,所述专门约定的信令为高铁模式下新定义的信令且包括以下之一:
    TRP切换信令、射频拉远头RRH切换信令、跟踪参考信号TRS切换信 令、同步信号块SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。
  22. 根据权利要求1所述的方法,其中,所述目标切换由所述网络设备通过隐式的方式指示给所述终端设备;
    其中,所述时间余量n内不进行信号传输。
  23. 根据权利要求1所述的方法,其中,所述时间余量n的确定方式包括以下之一:
    由协议约定所述时间余量n;
    由所述网络设备配置时间余量n;
    由所述终端设备上报时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量n3,配置所述时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量门限值,配置所述时间余量n。
  24. 一种信息确定方法,应用于终端设备,所述方法包括:
    接收网络设备配置的目标配置信息,所述目标配置信息包括目标准共址QCL参考信息和时间余量n中的至少一个,其中,所述目标QCL参考信息与解调参考信号DMRS资源对应;
    根据所述目标QCL参考信息进行信道估计和数据解调;
    根据所述时间余量n进行目标切换,其中,所述目标切换包括空间关系信息晶振频率切换、SpatialRelationInfo切换、传输配置指示状态TCI state切换和传输接收点TRP切换中的至少一个。
  25. 根据权利要求24所述的方法,其中,所述目标QCL参考信息包括目标QCL参考源和所述目标QCL参考源对应的目标QCL参数,所述目标QCL参考信息满足以下条件中的至少一个:
    所述目标QCL参考源与第一QCL参考源不同,所述第一QCL参考源包 括第一跟踪参考信号TRS资源和第二TRS资源;
    所述目标QCL参数与第一QCL参数不同,所述第一QCL参数为所述第一TRS资源对应的QCL类型中的所有QCL参数和所述第二TRS资源对应的QCL类型中的所有QCL参数。
  26. 根据权利要求25所述的方法,其中,所述目标QCL参考信息由所述网络设备基于第一下行控制信息DCI信令中的码点进行指示,所述码点中包括第一TCI state和第二TCI state;
    其中,所述第一TCI state中的QCL参考源为所述第一TRS资源,以及所述第一TCI state中的QCL类型为QCL TypeA;
    所述第二TCI state中的QCL参考源为所述第二TRS资源,以及所述第二TCI state中的QCL类型为所述QCL TypeA或第一QCL类型;
    其中,所述第一QCL类型中的QCL参数为时延扩展。
  27. 根据权利要求26所述的方法,其中,在所述第一TCI state中的QCL类型和所述第二TCI state中的QCL类型均为所述QCL TypeA的情况下,所述目标QCL参考源包括:主QCL参考源和非主QCL参考源;
    其中,所述主QCL参考源为所述第一TRS资源和所述第二TRS资源中的一个,所述非主QCL参考源为所述第一TRS资源和所述第二TRS资源中的另一个;
    所述目标QCL参数包括所述主QCL参考源对应的QCL TypeA中的所有QCL参数和所述非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,所述部分QCL参数为时延扩展。
  28. 根据权利要求27所述的方法,其中,所述第一TRS资源或者所述第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一信令进行显式的指示;其中,所述第一信令包括RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令。
  29. 根据权利要求27所述的方法,其中,所述第一TRS资源或者所述 第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一顺序进行隐式的指示,所述第一顺序为所述第一TCI state和所述第二TCI state在所述码点中的前后顺序,所述主QCL参考源为所述码点中排列在前的TCI state中的TRS资源。
  30. 根据权利要求26所述的方法,其中,在所述第一TCI state中的QCL类型为所述QCL TypeA,所述第二TCI state中的QCL类型为所述第一QCL类型的情况下,所述目标QCL参考源包括所述第一TRS资源和所述第二TRS资源;
    所述目标QCL参数包括:所述第一TRS资源对应的所述QCL TypeA中的所有QCL参数,以及所述第二TRS资源对应的所述第一QCL类型中的所有QCL参数。
  31. 根据权利要求25所述的方法,其中,所述目标QCL参考资源为第三TRS资源,所述第三TRS资源由所述网络设备在进行频偏预补偿之后发送,且所述第三TRS资源的QCL参考源为所述第一TRS资源或所述第二TRS资源,所述第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,所述第一TRS资源、所述第二TRS资源和所述第三TRS资源均为周期性TRS资源;
    其中,所述第二QCL类型为除QCL TypeA、QCL TypeB、所述QCL TypeC和QCL TypeD外的任一QCL类型;
    所述目标QCL参数为QCL TypeA中的所有QCL参数。
  32. 根据权利要求25所述的方法,其中,在一个时隙或连续两个时隙内接收的所述DMRS资源是特定的DMRS资源的情况下,所述目标QCL参考源为所述特定的DMRS资源。
  33. 根据权利要求25所述的方法,其中,在一个时隙或连续两个时隙内接收的所述DMRS资源不是特定的DMRS资源的情况下,所述目标QCL参考源为发送所述DMRS资源前最后一次发送的所述特定的DMRS资源。
  34. 根据权利要求32或33所述的方法,其中,所述特定的DMRS资源的指示信息由所述网络设备通过第二信令配置,其中,所述第二信令包括RRC信令、MAC CE信令或DCI信令;
    所述目标QCL参数为QCL TypeA中的所有QCL参数。
  35. 根据权利要求24所述的方法,其中,所述根据所述时间余量n进行目标切换,包括:
    在时刻T向所述网络设备发送目标信令对应的肯定确认ACK消息;
    在所述时刻T到时刻(T+n)对应的切换时段内,根据所述目标信令进行所述目标切换,所述目标切换由协议约定在所述时刻(T+n)后完成,且所述时间余量n内不进行信号传输;
    其中,所述目标信令包括媒体接入控制单元MAC CE信令或者物理层控制信令。
  36. 根据权利要求35所述的方法,其中,在所述目标信令为MAC CE信令或物理层控制信令,且所述目标信令为第一SpatialRelationInfo切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  37. 根据权利要求36所述的方法,其中,所述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合;
    其中,所述第一集合与所述第二集合为不同的两个参考信号集合,所述第一集合和所述第二集合由所述网络设备预先配置或者由协议约定。
  38. 根据权利要求35所述的方法,其中,在所述目标信令为MAC CE信令,且所述目标信令为第一TCI state切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  39. 根据权利要求38所述的方法,其中,所述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合;
    其中,所述第三集合和所述第四集合为不同的两个参考信号集合,所述 第三集合和所述第四集合由所述网络设备预先配置或者由协议约定。
  40. 根据权利要求39所述的方法,其中,所述第一TCI state切换信令用于对特定的控制资源集CORESET TCI state切换进行指示,所述特定的CORESET TCI state切换包括CORESET0 TCI state切换。
  41. 根据权利要求39所述的方法,其中,所述第一TCI state切换信令用于对PDSCH active TCI state切换进行指示。
  42. 根据权利要求35所述的方法,其中,在所述目标信令为DCI信令,且所述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,所述目标切换由协议约定在时刻(T+n2)后完成,其中,n=n2。
  43. 根据权利要求42所述的方法,其中,所述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
  44. 根据权利要求35所述的方法,其中,所述目标信令为专门约定的信令;其中,所述专门约定的信令为高铁模式下新定义的信令且包括以下之一:
    TRP切换信令、射频拉远头RRH切换信令、跟踪参考信号TRS切换信令、同步信号块SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。
  45. 根据权利要求24所述的方法,其中,所述目标切换由所述网络设备通过隐式的方式进行指示;其中,所述时间余量n内不进行信号传输。
  46. 根据权利要求24所述的方法,其中,所述时间余量n的确定方式包括以下之一:
    由协议约定所述时间余量n;
    由所述网络设备配置时间余量n;
    由所述终端设备上报时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量n3,配置所述时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量门限值,配置所述时间余量n。
  47. 一种网络设备,包括:
    配置模块,用于配置目标配置信息,所述目标配置信息包括目标准共址QCL参考信息和时间余量n中的至少一个;
    其中,所述目标QCL参考信息与解调参考信号DMRS资源对应,所述目标QCL参考信息用于供终端设备进行信道估计和数据解调;
    所述时间余量n用于供所述终端设备进行目标切换,其中,所述目标切换包括晶振频率切换、空间关系信息SpatialRelationInfo切换、传输配置指示状态TCI state切换和传输接收点TRP切换中的至少一个。
  48. 根据权利要求47所述的网络设备,其中,所述目标QCL参考信息包括目标QCL参考源和所述目标QCL参考源对应的目标QCL参数,所述目标QCL参考信息满足以下条件中的至少一个:
    所述目标QCL参考源与第一QCL参考源不同,所述第一QCL参考源包括第一TRS资源和第二TRS资源;
    所述目标QCL参数与第一QCL参数不同,所述第一QCL参数为所述第一TRS资源对应的QCL类型中的所有QCL参数和所述第二TRS资源对应的QCL类型中的所有QCL参数。
  49. 根据权利要求48所述的网络设备,其中,所述目标QCL参考信息基于第一下行控制信息DCI信令中的码点指示给所述终端设备,所述码点中包括第一TCI state和第二TCI state;
    其中,所述第一TCI state中的QCL参考源为所述第一TRS资源,以及所述第一TCI state中的QCL类型为QCL TypeA;
    所述第二TCI state中的QCL参考源为所述第二TRS资源,以及所述第二TCI state中的QCL类型为所述QCL TypeA或第一QCL类型;
    其中,所述第一QCL类型中的QCL参数为时延扩展。
  50. 根据权利要求49所述的网络设备,其中,在所述第一TCI state中的QCL类型和所述第二TCI state中的QCL类型均为所述QCL TypeA的情况下,所述目标QCL参考源包括:主QCL参考源和非主QCL参考源;
    其中,所述主QCL参考源为所述第一TRS资源和所述第二TRS资源中的一个,所述非主QCL参考源为所述第一TRS资源和所述第二TRS资源中的另一个;
    所述目标QCL参数包括所述主QCL参考源对应的QCL TypeA中的所有QCL参数和所述非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,所述部分QCL参数为时延扩展。
  51. 根据权利要求50所述的网络设备,其中,所述第一TRS资源或者所述第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一信令显式的指示给所述终端设备;其中,所述第一信令包括RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令。
  52. 根据权利要求50所述的网络设备,其中,所述第一TRS资源或者所述第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一顺序隐式的指示给所述终端设备,所述第一顺序为所述第一TCI state和所述第二TCI state在所述码点中的前后顺序,所述主QCL参考源为所述码点中排列在前的TCI state中的TRS资源。
  53. 根据权利要求49所述的网络设备,其中,在所述第一TCI state中的QCL类型为所述QCL TypeA,所述第二TCI state中的QCL类型为所述第一QCL类型的情况下,所述目标QCL参考源包括所述第一TRS资源和所述第二TRS资源;
    所述目标QCL参数包括:所述第一TRS资源对应的所述QCL TypeA中的所有QCL参数,以及所述第二TRS资源对应的所述第一QCL类型中的所有QCL参数。
  54. 根据权利要求48所述的网络设备,其中,所述目标QCL参考资源 为第三TRS资源,所述第三TRS资源在进行频偏预补偿之后发送,且所述第三TRS资源的QCL参考源为所述第一TRS资源或所述第二TRS资源,所述第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,所述第一TRS资源、所述第二TRS资源和所述第三TRS资源均为周期性TRS资源;
    其中,所述第二QCL类型为除QCL TypeA、QCL TypeB、所述QCL TypeC和QCL TypeD外的任一QCL类型;
    所述目标QCL参数为所述QCL TypeA中的所有QCL参数。
  55. 根据权利要求48所述的网络设备,其中,在一个时隙或连续两个时隙内发送的所述DMRS资源是特定的DMRS资源的情况下,所述目标QCL参考源为所述特定的DMRS资源。
  56. 根据权利要求48所述的网络设备,其中,在一个时隙或连续两个时隙内发送的所述DMRS资源不是特定的DMRS资源的情况下,所述目标QCL参考源为发送所述DMRS资源前最后一次发送的所述特定的DMRS资源。
  57. 根据权利要求55或56所述的网络设备,其中,所述特定的DMRS资源的指示信息通过第二信令配置,其中,所述第二信令包括RRC信令、MAC CE信令或DCI信令;
    所述目标QCL参数为QCL TypeA中的所有QCL参数。
  58. 根据权利要求47所述的网络设备,其中,所述时间余量n用于供所述终端设备在接收到目标信令后的切换时段内进行所述目标切换,所述切换时段为时刻T到时刻(T+n)对应的时段,所述时刻T用于供所述终端设备发送与所述目标信令对应的肯定确认ACK消息,所述目标切换由协议约定在所述时刻(T+n)后完成,且所述时间余量n内不进行信号传输;
    其中,所述目标信令包括媒体接入控制单元MAC CE信令或者物理层控制信令。
  59. 根据权利要求58所述的网络设备,其中,在所述目标信令为MAC CE 信令或物理层控制信令,且所述目标信令为第一SpatialRelationInfo切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  60. 根据权利要求59所述的网络设备,其中,所述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合;
    其中,所述第一集合与所述第二集合为不同的两个参考信号集合,所述第一集合和所述第二集合由所述网络设备预先配置或者由协议约定。
  61. 根据权利要求58所述的网络设备,其中,在所述目标信令为MAC CE信令,且所述目标信令为第一TCI state切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  62. 根据权利要求61所述的网络设备,其中,所述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合;
    其中,所述第三集合和所述第四集合为不同的两个参考信号集合,所述第三集合和所述第四集合由所述网络设备预先配置或者由协议约定。
  63. 根据权利要求62所述的网络设备,其中,所述第一TCI state切换信令用于对特定的控制资源集CORESET TCI state切换进行指示,所述特定的CORESET TCI state切换包括CORESET0 TCI state切换。
  64. 根据权利要求62所述的网络设备,其中,所述第一TCI state切换信令用于对PDSCH active TCI state切换进行指示。
  65. 根据权利要求58所述的网络设备,其中,在所述目标信令为DCI信令,且所述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,所述目标切换由协议约定在所述时刻(T+n2)后完成,其中,n=n2。
  66. 根据权利要求65所述的网络设备,其中,所述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
  67. 根据权利要求58所述的网络设备,其中,所述目标信令为专门约定 的信令;其中,所述专门约定的信令为高铁模式下新定义的信令且包括以下之一:
    TRP切换信令、射频拉远头RRH切换信令、跟踪参考信号TRS切换信令、同步信号块SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。
  68. 根据权利要求47所述的网络设备,其中,所述目标切换由所述网络设备通过隐式的方式指示给所述终端设备;
    其中,所述时间余量n内不进行信号传输。
  69. 根据权利要求47所述的网络设备,其中,所述时间余量n的确定方式包括以下之一:
    由协议约定所述时间余量n;
    由所述网络设备配置时间余量n;
    由所述终端设备上报时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量n3,配置所述时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量门限值,配置所述时间余量n。
  70. 一种终端设备,包括:
    接收模块,用于接收网络设备配置的目标配置信息,所述目标配置信息包括目标准共址QCL参考信息和时间余量n中的至少一个;
    第一处理模块,用于根据所述目标QCL参考信息进行信道估计和数据解调;
    第二处理模块,用于根据所述时间余量n进行目标切换,其中,所述目标切换包括晶振频率切换、空间关系信息SpatialRelationInfo切换、传输配置指示状态TCI state切换和传输接收点TRP切换中的至少一个;
    其中,所述目标QCL参考信息与解调参考信号DMRS资源对应。
  71. 根据权利要求70所述的终端设备,其中,所述目标QCL参考信息包括目标QCL参考源和所述目标QCL参考源对应的目标QCL参数,所述目标QCL参考信息满足以下条件中的至少一个:
    所述目标QCL参考源与第一QCL参考源不同,所述第一QCL参考源包括第一跟踪参考信号TRS资源和第二TRS资源;
    所述目标QCL参数与第一QCL参数不同,所述第一QCL参数为所述第一TRS资源对应的QCL类型中的所有QCL参数和所述第二TRS资源对应的QCL类型中的所有QCL参数。
  72. 根据权利要求71所述的终端设备,其中,所述目标QCL参考信息由所述网络设备基于第一下行控制信息DCI信令中的码点进行指示,所述码点中包括第一TCI state和第二TCI state;
    其中,所述第一TCI state中的QCL参考源为所述第一TRS资源,以及所述第一TCI state中的QCL类型为QCL TypeA;
    所述第二TCI state中的QCL参考源为所述第二TRS资源,以及所述第二TCI state中的QCL类型为所述QCL TypeA或第一QCL类型;
    其中,所述第一QCL类型中的QCL参数为时延扩展。
  73. 根据权利要求72所述的终端设备,其中,在所述第一TCI state中的QCL类型和所述第二TCI state中的QCL类型均为所述QCL TypeA的情况下,所述目标QCL参考源包括:主QCL参考源和非主QCL参考源;
    其中,所述主QCL参考源为所述第一TRS资源和所述第二TRS资源中的一个,所述非主QCL参考源为所述第一TRS资源和所述第二TRS资源中的另一个;
    所述目标QCL参数包括所述主QCL参考源对应的QCL TypeA中的所有QCL参数和所述非主QCL参考源对应的QCL TypeA中的部分QCL参数,其中,所述部分QCL参数为时延扩展。
  74. 根据权利要求73所述的终端设备,其中,所述第一TRS资源或者 所述第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一信令进行显式的指示;其中,所述第一信令包括RRC信令、媒体接入控制控制单元MAC CE信令或下行控制信息DCI信令。
  75. 根据权利要求73所述的终端设备,其中,所述第一TRS资源或者所述第二TRS资源被配置为所述主QCL参考源,由所述网络设备通过第一顺序进行隐式的指示,所述第一顺序为所述第一TCI state和所述第二TCI state在所述码点中的前后顺序,所述主QCL参考源为所述码点中排列在前的TCI state中的TRS资源。
  76. 根据权利要求72所述的终端设备,其中,在所述第一TCI state中的QCL类型为所述QCL TypeA,所述第二TCI state中的QCL类型为所述第一QCL类型的情况下,所述目标QCL参考源包括所述第一TRS资源和所述第二TRS资源;
    所述目标QCL参数包括:所述第一TRS资源对应的所述QCL TypeA中的所有QCL参数,以及所述第二TRS资源对应的所述第一QCL类型中的所有QCL参数。
  77. 根据权利要求71所述的终端设备,其中,所述目标QCL参考资源为第三TRS资源,所述第三TRS资源由所述网络设备在进行频偏预补偿之后发送,且所述第三TRS资源的QCL参考源为所述第一TRS资源或所述第二TRS资源,所述第三TRS资源所参考的QCL类型为QCL TypeC或第二QCL类型,所述第一TRS资源、所述第二TRS资源和所述第三TRS资源均为周期性TRS资源;
    其中,所述第二QCL类型为除QCL TypeA、QCL TypeB、所述QCL TypeC和QCL TypeD外的任一QCL类型;
    所述目标QCL参数为QCL TypeA中的所有QCL参数。
  78. 根据权利要求71所述的终端设备,其中,在一个时隙或连续两个时隙内接收的所述DMRS资源是特定的DMRS资源的情况下,所述目标QCL 参考源为所述特定的DMRS资源。
  79. 根据权利要求71所述的终端设备,其中,在一个时隙或连续两个时隙内接收的所述DMRS资源不是特定的DMRS资源的情况下,所述目标QCL参考源为发送所述DMRS资源前最后一次发送的所述特定的DMRS资源。
  80. 根据权利要求78或79所述的终端设备,其中,所述特定的DMRS资源的指示信息由所述网络设备通过第二信令配置,其中,所述第二信令包括RRC信令、MAC CE信令或DCI信令;
    所述目标QCL参数为QCL TypeA中的所有QCL参数。
  81. 根据权利要求70所述的终端设备,其中,所述第二处理模块用于:
    在时刻T向所述网络设备发送目标信令对应的肯定确认ACK消息;
    在所述时刻T到时刻(T+n)对应的切换时段内,根据所述目标信令进行所述目标切换,所述目标切换由协议约定在所述时刻(T+n)后完成,且所述时间余量n内不进行信号传输;
    其中,所述目标信令包括媒体接入控制单元MAC CE信令或者物理层控制信令。
  82. 根据权利要求81所述的终端设备,其中,在所述目标信令为MAC CE信令或物理层控制信令,且所述目标信令为第一SpatialRelationInfo切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  83. 根据权利要求82所述的终端设备,其中,所述第一SpatialRelationInfo切换信令用于指示与SpatialRelationInfo关联的参考信号集合从第一集合切换至第二集合;
    其中,所述第一集合与所述第二集合为不同的两个参考信号集合,所述第一集合和所述第二集合由所述网络设备预先配置或者由协议约定。
  84. 根据权利要求81所述的终端设备,其中,在所述目标信令为MAC CE信令,且所述目标信令为第一TCI state切换信令的情况下,所述目标切换由协议约定在时刻(T+3+n1)后完成,其中,n=3+n1。
  85. 根据权利要求84所述的终端设备,其中,所述第一TCI state切换信令用于指示与TCI state关联的参考信号集合从第三集合切换至第四集合;
    其中,所述第三集合和所述第四集合为不同的两个参考信号集合,所述第三集合和所述第四集合由所述网络设备预先配置或者由协议约定。
  86. 根据权利要求85所述的终端设备,其中,所述第一TCI state切换信令用于对特定的控制资源集CORESET TCI state切换进行指示,所述特定的CORESET TCI state切换包括CORESET0 TCI state切换。
  87. 根据权利要求85所述的终端设备,其中,所述第一TCI state切换信令用于对PDSCH active TCI state切换进行指示。
  88. 根据权利要求81所述的终端设备,其中,在所述目标信令为DCI信令,且所述目标信令为第二TCI state切换信令和第二SpatialRelationInfo切换信令中的至少一个的情况下,所述目标切换由协议约定在时刻(T+n2)后完成,其中,n=n2。
  89. 根据权利要求88所述的终端设备,其中,所述第二TCI state切换信令用于切换CORESET TCI state或者PDSCH TCI state。
  90. 根据权利要求81所述的终端设备,其中,所述目标信令为专门约定的信令;其中,所述专门约定的信令为高铁模式下新定义的信令且包括以下之一:
    TRP切换信令、射频拉远头RRH切换信令、跟踪参考信号TRS切换信令、同步信号块SSB切换信令、第三TCI state切换信令和第三SpatialRelationInfo切换信令。
  91. 根据权利要求70所述的终端设备,其中,所述目标切换由所述网络设备通过隐式的方式进行指示;其中,所述时间余量n内不进行信号传输。
  92. 根据权利要求70所述的终端设备,其中,所述时间余量n的确定方式包括以下之一:
    由协议约定所述时间余量n;
    由所述网络设备配置时间余量n;
    由所述终端设备上报时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量n3,配置所述时间余量n;
    由所述网络设备基于所述终端设备上报的时间余量门限值,配置所述时间余量n。
  93. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至23中任一项所述的方法的步骤。
  94. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求24至46中任一项所述的方法的步骤。
  95. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至23中任一项所述的方法的步骤,或者所述计算机程序被处理器执行时实现如权利要求24至46中任一项所述的方法的步骤。
  96. 一种网络设备,所述网络设备被配置为用于执行如权利要求1至23中任一项所述的方法的步骤。
  97. 一种终端设备,所述终端被配置为用于执行如权利要求24至46中任一项所述的方法的步骤。
  98. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行时实现如权利要求1至23中任一项所述的方法的步骤,或者实现如权利要求24至46中任一项所述的方法的步骤。
PCT/CN2021/084921 2020-04-03 2021-04-01 信息配置及确定方法、网络设备和终端设备 WO2021197424A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010260696 2020-04-03
CN202010260696.7 2020-04-03
CN202010275976.5 2020-04-09
CN202010275976.5A CN113498089B (zh) 2020-04-03 2020-04-09 信息配置及确定方法、网络设备和终端设备

Publications (1)

Publication Number Publication Date
WO2021197424A1 true WO2021197424A1 (zh) 2021-10-07

Family

ID=77929652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084921 WO2021197424A1 (zh) 2020-04-03 2021-04-01 信息配置及确定方法、网络设备和终端设备

Country Status (1)

Country Link
WO (1) WO2021197424A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115834303A (zh) * 2023-02-14 2023-03-21 南京创芯慧联技术有限公司 自适应频域信道估计方法、装置、通信设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150349940A1 (en) * 2013-01-18 2015-12-03 Lg Electronics Inc. Method and apparatus for performing quasi co-location in wireless access system
CN108111272A (zh) * 2017-08-09 2018-06-01 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端
CN110944348A (zh) * 2016-11-04 2020-03-31 华为技术有限公司 一种无线通信数据传输方法、装置和***

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150349940A1 (en) * 2013-01-18 2015-12-03 Lg Electronics Inc. Method and apparatus for performing quasi co-location in wireless access system
CN110944348A (zh) * 2016-11-04 2020-03-31 华为技术有限公司 一种无线通信数据传输方法、装置和***
CN108111272A (zh) * 2017-08-09 2018-06-01 中兴通讯股份有限公司 参考信号配置信息的指示方法、基站及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Way Forward on TCI State Switching Delay", 3GPP DRAFT; R4-1900112_WF ON TCI STATE SWITCH, vol. RAN WG4, 15 February 2019 (2019-02-15), Athens, GR, pages 1 - 4, XP051604949 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115834303A (zh) * 2023-02-14 2023-03-21 南京创芯慧联技术有限公司 自适应频域信道估计方法、装置、通信设备和存储介质

Similar Documents

Publication Publication Date Title
WO2021088870A1 (zh) 信道信息的确定方法、网络设备及终端设备
US11985679B2 (en) Wireless communication method and device
WO2021159981A1 (zh) 下行控制信息传输方法、终端设备和网络设备
US11570810B2 (en) Method and device for scheduling uplink data based on carrier sensing of at least one beam
WO2021032203A1 (zh) Pucch传输方法、终端设备和网络设备
US20210168636A1 (en) Method for assessing radio link quality, parameter configuration method, apparatuses thereof and system
WO2021121233A1 (zh) 确定dc位置的方法、终端设备和网络设备
WO2021155789A1 (zh) 频偏预补偿指示方法、终端设备和网络设备
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2021160020A1 (zh) 小区切换方法和设备
US20220141819A1 (en) Parameter determining method, information configuration method, and device
WO2021197424A1 (zh) 信息配置及确定方法、网络设备和终端设备
WO2020034163A1 (zh) 一种上行信号传输方法、终端和存储介质
US20240022942A1 (en) Measurement parameter determination method, electronic device and storage medium
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2021026844A1 (zh) 数据传输方法、终端设备、网络设备及存储介质
US20230027631A1 (en) Method for transmitting power headroom, terminal device, and network device
TWI813728B (zh) 一種訊號傳輸方法及適用該方法的裝置、網路設備及終端設備
CN113498089B (zh) 信息配置及确定方法、网络设备和终端设备
WO2020107185A1 (zh) 一种数据处理方法、设备及存储介质
WO2020087467A1 (zh) 无线通信的方法、终端设备和网络设备
US11652517B2 (en) Method of indicating spatial characteristic parameter set, user-side device and network-side device
US11956666B2 (en) HARQ process determination method, network device and terminal
EP3986058A1 (en) Pucch sending and information configuration method and device
US20240260049A1 (en) Wireless Communication Method And Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21780724

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21780724

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2023)