WO2021193739A1 - Method for manufacturing ceramic plate and method for using cutting processing machine - Google Patents

Method for manufacturing ceramic plate and method for using cutting processing machine Download PDF

Info

Publication number
WO2021193739A1
WO2021193739A1 PCT/JP2021/012300 JP2021012300W WO2021193739A1 WO 2021193739 A1 WO2021193739 A1 WO 2021193739A1 JP 2021012300 W JP2021012300 W JP 2021012300W WO 2021193739 A1 WO2021193739 A1 WO 2021193739A1
Authority
WO
WIPO (PCT)
Prior art keywords
setter
green sheet
ceramic green
ceramic plate
cutting
Prior art date
Application number
PCT/JP2021/012300
Other languages
French (fr)
Japanese (ja)
Inventor
山縣 利貴
龍平 渡邊
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022510609A priority Critical patent/JPWO2021193739A1/ja
Publication of WO2021193739A1 publication Critical patent/WO2021193739A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/13Surface milling of plates, sheets or strips
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/12Travelling or movable supports or containers for the charge

Definitions

  • This disclosure relates to a method of manufacturing a ceramic plate and a method of using a cutting machine.
  • Power modules that control large currents are used in fields such as automobiles, electric railways, industrial equipment, and power generation.
  • the circuit board mounted on the power module has an insulating ceramic plate.
  • a method for manufacturing a ceramic plate for example, the following manufacturing method as described in Patent Document 1 is known. That is, a step of extruding the ceramic powder into a sheet after mixing it with a sintering aid or the like, a step of punching to form a ceramic green sheet, and a step of firing the ceramic green sheet are performed. Then, a ceramic plate is manufactured. In the firing step of the ceramic green sheet, the ceramic green sheet is fired in a state where a required number of ceramic green sheets of about 10 to 20 sheets are stacked on the setter.
  • the setter used in the firing process of the ceramic green sheet is preferably used repeatedly from the viewpoint of effective utilization of resources. Therefore, the present disclosure provides a method for manufacturing a ceramic plate, which can improve the production efficiency of the ceramic plate by repeatedly using the setter. Further, the present invention provides a method of using a cutting machine capable of improving the production efficiency of a ceramic plate.
  • the setter after firing the first laminated body including the setter and the first ceramic green sheet, the setter is recovered from the first laminated body, and the facing surface of the setter facing the first ceramic green sheet is cut.
  • a method for manufacturing a ceramic plate which comprises a step of obtaining a processed surface and a step of firing a second laminated body laminated so that the processed surface and the second ceramic green sheet face each other to obtain a ceramic plate. offer.
  • the setter is recovered from the fired first laminated body, and the facing surface of the setter, which is facing the first ceramic green sheet, is cut.
  • the facing surfaces By cutting the facing surfaces in this way, minute foreign substances can be reduced, and it is possible to suppress the occurrence of irregularities on the ceramic plate obtained by firing the second laminated body.
  • the yield of the ceramic plate can be maintained even if the setter is repeatedly used, the production efficiency of the ceramic plate can be improved.
  • the cutting allowance of the setter when cutting the facing surface of the setter may be 5 ⁇ m or more. As a result, the foreign matter adhering to the facing surface can be sufficiently removed, and the unevenness generated on the surface of the ceramic plate can be sufficiently reduced. Therefore, the yield of the ceramic plate can be further improved.
  • the cutting allowance is the thickness of the setter removed by cutting. The cutting allowance is calculated as the difference between the thickness of the setter before cutting and the thickness of the setter after cutting.
  • the surface roughness (Ra) of the processed surface may be less than 4 ⁇ m.
  • the surface (processed surface) of the setter can be sufficiently smoothed while sufficiently removing the foreign matter adhering to the facing surface.
  • the surface roughness Ra in the present disclosure is the arithmetic mean roughness defined by JIS B0601: 2001.
  • the facing surface of the setter may be cut by cutting by rotating a tool to obtain the above processed surface.
  • the cutting allowance can be sufficiently reduced and the damage caused by processing can be reduced. Therefore, the life of the setter is extended, and the number of times the setter is repeatedly used for firing the ceramic green sheet can be sufficiently increased.
  • the method of using the cutting machine according to one aspect of the present disclosure is to fire a laminate in which a setter and a ceramic green sheet are laminated, collect the setter from the laminate, and use the setter facing the ceramic green sheet. It has a step of cutting the facing surface by using a cutting machine equipped with a rotary tool.
  • the facing surface of the setter that was facing the ceramic green sheet is cut using a cutting machine equipped with a rotary tool.
  • the components contained in the ceramic green sheet or the ceramic plate may adhere to the facing surface of the setter facing the ceramic green sheet as a foreign substance. Even if the foreign matter is minute, it grows and becomes coarse when the ceramic green sheet is fired, and causes unevenness on the surface of the ceramic plate.
  • the setter is recovered from the laminated body, and the facing surface of the setter facing the ceramic green sheet is cut by using a cutting machine equipped with a rotary tool. By cutting the facing surface in this way, foreign matter can be reduced and unevenness on the ceramic plate can be suppressed.
  • the yield of the ceramic plate can be maintained even if the setter is repeatedly used, the production efficiency of the ceramic plate can be improved.
  • the present disclosure it is possible to provide a method for manufacturing a ceramic plate capable of improving the production efficiency of the ceramic plate by repeatedly using the setter. Further, it is possible to provide a method of using a cutting machine capable of improving the production efficiency of a ceramic plate.
  • FIG. 1 is a diagram illustrating an example of a method for degreasing and firing a laminated body.
  • FIG. 2 is a diagram showing an example of a cutting device that cuts the main surface of the collected setter.
  • FIG. 3 is an SEM photograph of the main surface (before cutting) of the setter.
  • FIG. 4 is an SEM photograph of the main surface (before cutting) of the setter taken at a higher magnification than that of FIG.
  • FIG. 5 is an SEM photograph of the main surface of the setter when the cutting allowance is 5 ⁇ m.
  • FIG. 6 is an SEM photograph of the main surface of the setter when the cutting allowance is 10 ⁇ m.
  • FIG. 7 is an SEM photograph of the main surface of the setter when the cutting allowance is 15 ⁇ m.
  • the method for manufacturing a ceramic plate includes a first step of preparing a setter and a ceramic green sheet, and firing a laminate (first laminate) containing the setter and the ceramic green sheet to obtain a ceramic plate.
  • the setter is collected from the laminated body, and the facing surface of the setter facing the ceramic green sheet is cut to obtain a processed surface, so that the processed surface and the ceramic green sheet face each other.
  • It has a fourth step of firing the laminated body (second laminated body) to obtain a ceramic plate.
  • the ceramic green sheet prepared in the first step is manufactured by, for example, the following procedure. First, a raw material slurry containing a ceramic powder, a sintering aid and a binder is formed.
  • the ceramic is not particularly limited, and examples thereof include carbides, oxides, and nitrides. Specific examples thereof include silicon carbide, alumina, silicon nitride, aluminum nitride and boron nitride. Binders include those containing organic components.
  • the ceramic green sheet may be processed into a desired shape by, for example, cutting.
  • a commercially available ceramic sintered body may be purchased, or may be manufactured by a known method.
  • the setter include those composed of at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride.
  • the boron nitride setter is preferably used because it has both heat resistance and good machinability.
  • the material of the setter may be different from the material of the ceramic plate from the viewpoint of suppressing the adhesion between the setter and the ceramic plate after firing.
  • a boron nitride sintered body When a boron nitride sintered body is used as the setter, it can be manufactured by the following procedure. First, a molded product is prepared using hexagonal boron nitride powder as a raw material. If necessary, a sintering aid may be added to the hexagonal boron nitride powder before molding. Examples of the sintering aid include alkaline earth oxides such as magnesium oxide and calcium oxide, rare earth oxides such as aluminum oxide, silicon oxide and yttrium oxide, and composite oxides such as spinel. Molding may be performed by uniaxial pressure molding and CIP molding. Uniaxial pressure molding may be performed at 3 to 20 MPa. CIP molding may be performed at 50 to 300 MPa.
  • the obtained molded product is fired to obtain a boron nitride sintered body.
  • the firing may be carried out under the conditions of a non-oxidizing atmosphere, a heating rate of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time in this temperature range of 5 hours or more.
  • the non-oxidizing atmosphere include a nitride gas atmosphere such as nitrogen and ammonia.
  • the density of the boron nitride sintered body may be 1600 kg / m 3 or more.
  • the method for producing the boron nitride sintered body is not limited to the above method. For example, it may be manufactured by a hot press method. Ceramic sintered bodies other than the boron nitride sintered body can be produced by a known method.
  • the setter and the ceramic green sheet are laminated to prepare a laminated body.
  • the number of setters and ceramic green sheets constituting the laminate is not particularly limited.
  • the laminate may have, for example, a plurality of (for example, 50 to 100) ceramic green sheets sandwiched between a pair of setters.
  • a mold release agent may be applied to the main surface of the ceramic green sheet in order to prevent adjacent ceramic green sheets from adhering to each other during firing. Further, the release agent may be applied to the surface of the setter facing the main surface of the ceramic green sheet. Examples of the component contained in the release agent include ceramic powder such as boron nitride, graphite powder, and binder.
  • FIG. 1 is a diagram illustrating an example of a method for degreasing and firing a laminated body.
  • the laminate 50 includes three setters 10 and a plurality of ceramic green sheets 30. Of the three setters 10, the pair of setters 10A and 10B are laminated at the bottom and top of the laminated body 50. Therefore, in the setters 10A and 10B, one main surface faces and is in contact with one of the ceramic green sheets 30.
  • the remaining setter 10C is laminated in the central portion of the laminated body 50. Therefore, in the setter 10C, each of both main surfaces faces and is in contact with one of the ceramic green sheets 30.
  • the main surface facing and contacting one of the ceramic green sheets 30 and the main surface facing and contacting one of the ceramic green sheets 30 are referred to as "opposing surfaces”. .. Approximately the same number of ceramic green sheets 30 may be laminated between the setter 10A and the setter 10C, and between the setter 10C and the setter 10B.
  • the laminated body 50 is housed in the degreasing furnace 20 and heated to, for example, 300 ° C. to 700 ° C. As a result, the binder contained in the ceramic green sheet 30 is removed. Subsequently, the degreased laminate 50 is housed in the firing furnace 25 and heated to 1600 ° C. to 2000 ° C. As a result, the ceramic green sheet is fired to obtain a ceramic plate.
  • the degreasing furnace 20 used for degreasing and the firing furnace 25 used for firing may be the same furnace or different furnaces. Further, the heating temperature, time and atmosphere may be appropriately adjusted according to the composition of the ceramic green sheet.
  • the setter is collected from the fired laminate.
  • the obtained ceramic plate may be processed as necessary to form, for example, a circuit board.
  • the ceramic green sheet or the component contained in the ceramic plate adheres as a foreign substance to the ceramic green sheet of the recovered setter and the facing surface facing the ceramic plate.
  • minute foreign matters adhere to one of the main surfaces facing the ceramic green sheet 30.
  • minute foreign matter adheres to both main surfaces facing the ceramic green sheet 30.
  • the ceramic green sheet and the facing surface of the setter that was facing the ceramic plate are cut.
  • a method of cutting by rotating a tool can be appropriately adopted. For example, it may be milled. With such a cutting process, it is possible to sufficiently reduce minute foreign matters on the main surface of the setter while reducing the cutting allowance. Moreover, the damage to the setter can be sufficiently reduced. Therefore, the life of the setter is extended, and the number of times the setter is repeatedly used can be sufficiently increased. Milling may be performed using an end mill as a rotary tool. The number of blades of the end mill may be 6 or more, or 10 or more, from the viewpoint of obtaining a smooth machined surface.
  • FIG. 2 is a diagram showing an example of a cutting device that cuts the main surface of the collected setter.
  • the cutting device 100 includes a milling machine 60.
  • An end mill 70 is attached to the tip of the spindle 62 of the milling cutter 60.
  • a position adjusting unit 42 is placed on the table 64 of the milling machine 60.
  • the position adjusting unit 42 may be, for example, a hexapod.
  • a support portion 40 having a fixing function for fixing the setter 10 such as a vacuum chuck is arranged on the position adjusting portion 42.
  • the setter 10 is fixed by the fixing function of the support portion 40.
  • the upper main surface 11 of the setter 10 fixed to the support portion 40 is cut by the end mill 70. This main surface is the facing surface of the laminated body 50 that was opposed to the ceramic green sheet 30.
  • the facing surface 11 of the setter 10 is cut to obtain a machined surface.
  • the cutting allowance of the setter 10 may be 5 ⁇ m or more, 10 ⁇ m or more, or 15 ⁇ m or more.
  • the cutting allowance of the setter 10 may be 50 ⁇ m or less, or 40 ⁇ m or less.
  • one main surface (opposing surface) may be cut, and then the setter 10C may be turned over to cut the other main surface (opposing surface). As a result, both main surfaces become machined surfaces.
  • the surface roughness (Ra) of the processed surface may be, for example, less than 4 ⁇ m and may be less than 3 ⁇ m.
  • the processed surface of the setter can be sufficiently smoothed while sufficiently removing the foreign matter adhering to the facing surface 11 of the setter 10.
  • the surface roughness (Ra) of the machined surface may be 1 ⁇ m or more and may be 2 ⁇ m or more from the viewpoint of facilitating the cutting operation.
  • a laminated body (second laminated body) is produced again using a setter having a processed surface obtained by cutting in the third step. Specifically, the processed surface of the setter and the ceramic green sheet (second ceramic green sheet) are laminated so as to face each other to obtain a second laminated body.
  • This second laminated body is heated in a degreasing furnace and a firing furnace to obtain a ceramic plate.
  • the degreasing furnace and the firing furnace may be the same as those used in the second step, or may be different.
  • the second laminated body may have the same laminated structure as the first laminated body 50 used in the second step, or may have a different laminated structure.
  • a ceramic plate can be obtained by sequentially performing degreasing and firing in the same manner as in the second step.
  • the facing surface facing the first ceramic green sheet in the first laminated body is cut. Therefore, foreign matter on the main surface of the setter is sufficiently reduced. Therefore, even if the setter is used repeatedly, it is possible to prevent the ceramic plate obtained by firing the second laminated body from having irregularities. In this way, the yield of the ceramic plate can be maintained even if the setter is used repeatedly. Therefore, the production efficiency of the ceramic plate can be improved.
  • the 1st to 4th steps may be repeated.
  • the number of repetitions may be once or multiple times.
  • the setter may cut the facing surface each time the laminate is fired once, or the facing surface may be cut after repeating the production, firing, and removal of the setter a plurality of times.
  • the frequency of cutting may be adjusted according to the presence or absence of foreign matter on the main surface or the amount of foreign matter. In any case, by repeatedly using the setter, it is possible to effectively utilize resources and reduce the manufacturing cost of the ceramic plate.
  • the ceramic plates obtained in the first step and the fourth step of the above-mentioned manufacturing method have the same surface quality. Therefore, it can be used for the same purpose.
  • the ceramic plate may be used as a circuit board by forming an electric circuit composed of a metal layer on one or both main surfaces, for example.
  • the method of using the cutting machine includes a first step of producing a setter and a ceramic green sheet, and a first step of firing a laminate (first laminate) containing the setter and the ceramic green sheet to obtain a ceramic plate. It has two steps and a third step of collecting the setter from the fired laminate and cutting the facing surface of the setter facing the ceramic green sheet to obtain a processed surface. Each of these steps may be the same as the first step, the second step, and the third step of the above-mentioned method for manufacturing a ceramic plate. Further, after the third step, a fourth step may be performed in which a laminated body (second laminated body) laminated so that the processed surface and the ceramic green sheet face each other is fired to obtain a ceramic plate.
  • the cutting machine when the ceramic green sheet is fired to obtain a ceramic plate, even if the setter is repeatedly used, it is possible to suppress the occurrence of unevenness on the ceramic plate. As described above, since the yield of the ceramic plate can be maintained even if the setter is repeatedly used, the production efficiency of the ceramic plate can be improved.
  • the cutting machine include a drilling machine, a milling machine, a machining center, and the like in which a rotary tool cuts a fixed setter.
  • the present disclosure is not limited to the above embodiment.
  • the ceramic plate, the ceramic green sheet, and the setter may have a shape other than the rectangular parallelepiped shape. These may be chamfered at the corners. Further, the setter may be arranged only below the laminated body.
  • Example 1 A molded body (sheet material) was prepared by uniaxial pressure molding of a raw material powder containing a silicon nitride powder and a sintering aid (magnesium oxide powder, yttrium oxide powder, and silicon dioxide powder). This sheet material was punched out using a cutting device to form 70 ceramic green sheets having a rectangular parallelepiped shape. Separately, two setters made of boron nitride having a rectangular parallelepiped shape (manufactured by Denka Co., Ltd., trade name: NB-1000) were prepared.
  • 70 ceramic green sheets were sandwiched between a pair of setters to obtain a laminate in which 2 setters and 70 ceramic green sheets were laminated.
  • a slurry for mold release was applied to one main surface of each ceramic green sheet.
  • the degreasing temperature was 500 ° C. and the degreasing time was 30 hours.
  • the firing temperature was 1800 ° C. and the firing time was 30 hours. After firing, the laminate was taken out from the firing furnace, the ceramic plate was removed from the laminate, and a pair of setters were recovered.
  • FIG. 3 is an SEM photograph of the facing surface (before cutting) of the setter.
  • FIG. 4 is an SEM photograph of the facing surface (before cutting) of the setter taken at a higher magnification than that of FIG.
  • coarse particles were scattered on the facing surfaces of the setters.
  • coarse particles having columnar crystals are projected in the central part of the SEM photograph.
  • Si and N were detected in the coarse particles. From this, it was confirmed that the silicon nitride particles, which are the components contained in the ceramic green sheet (ceramic plate), were present as foreign substances on the facing surface of the setter.
  • a cutting device as shown in FIG. 2 was manufactured.
  • an NC milling machine (trade name: YZ-400SG) manufactured by Yamazaki Giken Co., Ltd. was used.
  • a tongue mill manufactured by Dangaloy Co., Ltd. (model number: TPW13R250M47.6-12, diameter: 250 mm, number of blades: 12) was used.
  • a commercially available hexapod was used as the position adjusting unit.
  • the facing surface of the setter in which the silicon nitride was present was cut to obtain a machined surface.
  • the machined surface when the cutting allowance was 5 ⁇ m, 10 ⁇ m, and 15 ⁇ m was observed with a scanning electron microscope (SEM) with reference to before cutting.
  • SEM scanning electron microscope
  • FIG. 5 is an SEM photograph of the facing surface (main surface) of the setter when the cutting allowance is 5 ⁇ m.
  • FIG. 6 is an SEM photograph of the facing surface (main surface) of the setter when the cutting allowance is 10 ⁇ m.
  • FIG. 7 is an SEM photograph of the facing surface (main surface) of the setter when the cutting allowance is 15 ⁇ m.
  • a contact type surface roughness meter small surface roughness measuring machine "SJ-210" (trade name) manufactured by Mitutoyo Co., Ltd.) was used for the measurement. The measurement results are as shown in Table 1. After cutting. The surface roughness of the machined surface was smaller than the surface roughness of the main surface before cutting.
  • the present disclosure it is possible to provide a method for manufacturing a ceramic plate capable of improving the production efficiency of the ceramic plate. Further, it is possible to provide a method of using a cutting machine capable of improving the production efficiency of a ceramic plate.

Abstract

This method for manufacturing a ceramic plate has: a step for obtaining a machined surface by baking a first laminated body that includes a setter and a first ceramic green sheet, thereafter recovering the setter from the first laminated body, and cutting an opposing surface of the setter which had opposed the first ceramic green sheet; and a step for obtaining a ceramic plate by baking a second laminated body obtained by laminating the machined surface and a second ceramic green sheet so as to oppose each other.

Description

セラミック板の製造方法、及び、切削加工機の使用方法How to manufacture ceramic plates and how to use cutting machines
 本開示は、セラミック板の製造方法、及び、切削加工機の使用方法に関する。 This disclosure relates to a method of manufacturing a ceramic plate and a method of using a cutting machine.
 自動車、電鉄、産業用機器、及び発電関係等の分野には、大電流を制御するパワーモジュールが用いられている。パワーモジュールに搭載される回路基板は、絶縁性のセラミック板を有する。セラミック板の製造方法としては、例えば特許文献1に記載されるような以下の製造方法が知られている。すなわち、セラミックの粉末を焼結助剤等と混合した後にシート状に押出成形する工程と、打抜加工してセラミックグリーンシートを形成する工程と、セラミックグリーンシートを焼成する工程とが行われることで、セラミック板が製造される。セラミックグリーンシートの焼成工程では、セッターの上に10~20枚程度の所要枚数のセラミックグリーンシートが積み重ねられた状態でセラミックグリーンシートの焼成が行われる。 Power modules that control large currents are used in fields such as automobiles, electric railways, industrial equipment, and power generation. The circuit board mounted on the power module has an insulating ceramic plate. As a method for manufacturing a ceramic plate, for example, the following manufacturing method as described in Patent Document 1 is known. That is, a step of extruding the ceramic powder into a sheet after mixing it with a sintering aid or the like, a step of punching to form a ceramic green sheet, and a step of firing the ceramic green sheet are performed. Then, a ceramic plate is manufactured. In the firing step of the ceramic green sheet, the ceramic green sheet is fired in a state where a required number of ceramic green sheets of about 10 to 20 sheets are stacked on the setter.
特開平3-60469号公報Japanese Unexamined Patent Publication No. 3-60469
 セラミックグリーンシートの焼成工程で用いられたセッターは、資源の有効活用の観点から繰り返し使用することが好ましい。そこで、本開示では、セッターを繰り返し使用することによって、セラミック板の生産効率を向上することが可能なセラミック板の製造方法を提供する。また、セラミック板の生産効率を向上することが可能な切削加工機の使用方法を提供する。 The setter used in the firing process of the ceramic green sheet is preferably used repeatedly from the viewpoint of effective utilization of resources. Therefore, the present disclosure provides a method for manufacturing a ceramic plate, which can improve the production efficiency of the ceramic plate by repeatedly using the setter. Further, the present invention provides a method of using a cutting machine capable of improving the production efficiency of a ceramic plate.
 セラミックグリーンシートの焼成にセッターを繰り返し使用すると、焼成前のセッターの対向面が平滑であっても、セラミック板の表面に凹凸が発生する場合がある。その要因を検討したところ、セッターの対向面に付着していた、セラミックグリーンシート又はセラミック板の含有成分に起因する微小な異物が、焼成によって成長して粗大粒子となり、この粗大粒子の形状が転写されてセラミック板の表面に凹凸を生じさせることが分かった。 When the setter is repeatedly used for firing the ceramic green sheet, unevenness may occur on the surface of the ceramic plate even if the facing surface of the setter before firing is smooth. When the cause was examined, minute foreign substances due to the components contained in the ceramic green sheet or ceramic plate adhering to the facing surface of the setter grew by firing to become coarse particles, and the shape of the coarse particles was transferred. It was found that the surface of the ceramic plate was uneven.
 そこで、本開示は、セッター及び第1セラミックグリーンシートを含む第1積層体を焼成した後、第1積層体からセッターを回収し、第1セラミックグリーンシートと対向していたセッターの対向面を切削して加工面を得る工程と、加工面と第2セラミックグリーンシートとが対向するようにして積層された第2積層体を焼成しセラミック板を得る工程と、を有する、セラミック板の製造方法を提供する。 Therefore, in the present disclosure, after firing the first laminated body including the setter and the first ceramic green sheet, the setter is recovered from the first laminated body, and the facing surface of the setter facing the first ceramic green sheet is cut. A method for manufacturing a ceramic plate, which comprises a step of obtaining a processed surface and a step of firing a second laminated body laminated so that the processed surface and the second ceramic green sheet face each other to obtain a ceramic plate. offer.
 上述の製造方法では、焼成された第1積層体からセッターを回収し、第1セラミックグリーンシートと対向していた、セッターの対向面を切削している。このように対向面を切削することで微小な異物が低減され、第2積層体の焼成で得られるセラミック板に凹凸が生じることを抑制できる。このように、セッターを繰り返し使用してもセラミック板の歩留まりを維持できることから、セラミック板の生産効率を向上することができる。 In the above-mentioned manufacturing method, the setter is recovered from the fired first laminated body, and the facing surface of the setter, which is facing the first ceramic green sheet, is cut. By cutting the facing surfaces in this way, minute foreign substances can be reduced, and it is possible to suppress the occurrence of irregularities on the ceramic plate obtained by firing the second laminated body. As described above, since the yield of the ceramic plate can be maintained even if the setter is repeatedly used, the production efficiency of the ceramic plate can be improved.
 セッターの対向面を切削する際のセッターの削り代は5μm以上であってよい。これによって、対向面に付着していた異物を十分に除去し、セラミック板の表面に発生する凹凸を十分に低減することができる。したがって、セラミック板の歩留まりを一層向上することができる。なお、削り代とは、切削によって除去されるセッターの厚さである。削り代は切削前のセッターの厚みと切削後のセッターの厚みの差として求められる。 The cutting allowance of the setter when cutting the facing surface of the setter may be 5 μm or more. As a result, the foreign matter adhering to the facing surface can be sufficiently removed, and the unevenness generated on the surface of the ceramic plate can be sufficiently reduced. Therefore, the yield of the ceramic plate can be further improved. The cutting allowance is the thickness of the setter removed by cutting. The cutting allowance is calculated as the difference between the thickness of the setter before cutting and the thickness of the setter after cutting.
 上記加工面の表面粗さ(Ra)は4μm未満であってよい。これによって、対向面に付着していた異物を十分に除去しつつ、セッターの表面(加工面)を十分に平滑にすることができる。その結果、セラミック板の表面に発生する凹凸を一層低減することができる。なお、本開示における表面粗さRaは、JIS B0601:2001で規定される算術平均粗さである。 The surface roughness (Ra) of the processed surface may be less than 4 μm. As a result, the surface (processed surface) of the setter can be sufficiently smoothed while sufficiently removing the foreign matter adhering to the facing surface. As a result, the unevenness generated on the surface of the ceramic plate can be further reduced. The surface roughness Ra in the present disclosure is the arithmetic mean roughness defined by JIS B0601: 2001.
 上記製造方法では、セッターの対向面を工具の回転による切削加工によって切削し、上記加工面を得てもよい。これによって、削り代を十分に小さくできるとともに、加工に伴うダメージを低減できる。したがって、セッターの寿命が延び、セラミックグリーンシートの焼成にセッターを繰り返して使用する回数を十分に増やすことができる。 In the above manufacturing method, the facing surface of the setter may be cut by cutting by rotating a tool to obtain the above processed surface. As a result, the cutting allowance can be sufficiently reduced and the damage caused by processing can be reduced. Therefore, the life of the setter is extended, and the number of times the setter is repeatedly used for firing the ceramic green sheet can be sufficiently increased.
 本開示の一側面に係る切削加工機の使用方法は、セッターとセラミックグリーンシートとが積層された積層体を焼成した後、積層体からセッターを回収し、セラミックグリーンシートと対向していたセッターの対向面を、回転工具を備える切削加工機を用いて切削する工程を有する。 The method of using the cutting machine according to one aspect of the present disclosure is to fire a laminate in which a setter and a ceramic green sheet are laminated, collect the setter from the laminate, and use the setter facing the ceramic green sheet. It has a step of cutting the facing surface by using a cutting machine equipped with a rotary tool.
 この使用方法では、セラミックグリーンシートと対向していたセッターの対向面を、回転工具を備える切削加工機を用いて切削している。セッターとセラミックグリーンシートとが積層された積層体を焼成すると、セッターのセラミックグリーンシートと対向していた対向面にセラミックグリーンシート又はセラミック板の含有成分が異物として付着する場合がある。このような異物は、微小であっても、セラミックグリーンシートを焼成する際に成長し粗大化し、セラミック板の表面に凹凸を生じさせる。しかしながら、上記使用方法では、積層体からセッターを回収し、セラミックグリーンシートと対向していたセッターの対向面を、回転工具を備える切削加工機を用いて切削している。このように対向面を切削することで異物が低減され、セラミック板に凹凸が生じることを抑制できる。このように、セッターを繰り返し使用してもセラミック板の歩留まりを維持できることから、セラミック板の生産効率を向上することができる。 In this usage method, the facing surface of the setter that was facing the ceramic green sheet is cut using a cutting machine equipped with a rotary tool. When the laminate in which the setter and the ceramic green sheet are laminated is fired, the components contained in the ceramic green sheet or the ceramic plate may adhere to the facing surface of the setter facing the ceramic green sheet as a foreign substance. Even if the foreign matter is minute, it grows and becomes coarse when the ceramic green sheet is fired, and causes unevenness on the surface of the ceramic plate. However, in the above method of use, the setter is recovered from the laminated body, and the facing surface of the setter facing the ceramic green sheet is cut by using a cutting machine equipped with a rotary tool. By cutting the facing surface in this way, foreign matter can be reduced and unevenness on the ceramic plate can be suppressed. As described above, since the yield of the ceramic plate can be maintained even if the setter is repeatedly used, the production efficiency of the ceramic plate can be improved.
 本開示によれば、セッターを繰り返し使用することによって、セラミック板の生産効率を向上することが可能なセラミック板の製造方法を提供することができる。また、セラミック板の生産効率を向上することが可能な切削加工機の使用方法を提供することができる。 According to the present disclosure, it is possible to provide a method for manufacturing a ceramic plate capable of improving the production efficiency of the ceramic plate by repeatedly using the setter. Further, it is possible to provide a method of using a cutting machine capable of improving the production efficiency of a ceramic plate.
図1は、積層体の脱脂及び焼成方法の一例を説明する図である。FIG. 1 is a diagram illustrating an example of a method for degreasing and firing a laminated body. 図2は、回収したセッターの主面を切削する切削装置の一例を示す図である。FIG. 2 is a diagram showing an example of a cutting device that cuts the main surface of the collected setter. 図3は、セッターの主面(切削前)のSEM写真である。FIG. 3 is an SEM photograph of the main surface (before cutting) of the setter. 図4は、図3よりも高い倍率で撮影したセッターの主面(切削前)のSEM写真である。FIG. 4 is an SEM photograph of the main surface (before cutting) of the setter taken at a higher magnification than that of FIG. 図5は、削り代が5μmのときのセッターの主面のSEM写真である。FIG. 5 is an SEM photograph of the main surface of the setter when the cutting allowance is 5 μm. 図6は、削り代が10μmのときのセッターの主面のSEM写真である。FIG. 6 is an SEM photograph of the main surface of the setter when the cutting allowance is 10 μm. 図7は、削り代が15μmのときのセッターの主面のSEM写真である。FIG. 7 is an SEM photograph of the main surface of the setter when the cutting allowance is 15 μm.
 以下、場合により図面を参照して、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。また、説明に使用される上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings in some cases. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same elements or elements having the same function are designated by the same reference numerals, and duplicate description will be omitted. Further, unless otherwise specified, the positional relationship such as up, down, left, and right used in the explanation shall be based on the positional relationship shown in the drawings.
 本開示の一側面に係るセラミック板の製造方法は、セッター及びセラミックグリーンシートを準備する第1工程と、セッター及びセラミックグリーンシートを含む積層体(第1積層体)を焼成してセラミック板を得る第2工程と、積層体からセッターを回収し、セラミックグリーンシートと対向していたセッターの対向面を切削して加工面を得る第3工程と、加工面とセラミックグリーンシートとが対向するようにして積層された積層体(第2積層体)を焼成しセラミック板を得る第4工程と、を有する。 The method for manufacturing a ceramic plate according to one aspect of the present disclosure includes a first step of preparing a setter and a ceramic green sheet, and firing a laminate (first laminate) containing the setter and the ceramic green sheet to obtain a ceramic plate. In the second step, the setter is collected from the laminated body, and the facing surface of the setter facing the ceramic green sheet is cut to obtain a processed surface, so that the processed surface and the ceramic green sheet face each other. It has a fourth step of firing the laminated body (second laminated body) to obtain a ceramic plate.
 第1工程で準備するセラミックグリーンシートは、例えば以下の手順で製造する。まず、セラミック粉末、焼結助剤及びバインダを含む原料スラリーを形成する。セラミックとしては、特に制限されず、例えば、炭化物、酸化物及び窒化物等が挙げられる。具体的には、炭化ケイ素、アルミナ、窒化ケイ素、窒化アルミニウム及び窒化ホウ素等が挙げられる。バインダは有機成分を含むものが挙げられる。 The ceramic green sheet prepared in the first step is manufactured by, for example, the following procedure. First, a raw material slurry containing a ceramic powder, a sintering aid and a binder is formed. The ceramic is not particularly limited, and examples thereof include carbides, oxides, and nitrides. Specific examples thereof include silicon carbide, alumina, silicon nitride, aluminum nitride and boron nitride. Binders include those containing organic components.
 原料スラリーをドクターブレード法、カレンダー法、又は押し出し法等によって離型フィルム上に所定の厚みで塗布する。その後、塗布された原料スラリーを乾燥させて離型フィルムから剥がすことによって、セラミックグリーンシートが得られる。セラミックグリーンシートは、例えば切断等によって所望の形状に加工してよい。 Apply the raw material slurry to the release film to a predetermined thickness by the doctor blade method, calendar method, extrusion method, etc. Then, the applied raw material slurry is dried and peeled off from the release film to obtain a ceramic green sheet. The ceramic green sheet may be processed into a desired shape by, for example, cutting.
 第1工程で準備するセッターは、例えば市販のセラミック焼結体を購入してもよいし、公知の方法で製造してもよい。セッターは、例えば、窒化ホウ素、炭化ケイ素、アルミナ、ジルコニア、グラファイト、及び窒化ケイ素からなる群より選ばれる少なくとも一種で構成されるものが挙げられる。これらのうち、窒化ホウ素製のセッターは、耐熱性と良好な切削性を兼ね備えるため、好適に用いられる。なお、焼成後のセッターとセラミック板との接着を抑制する観点から、セッターの材質は、セラミック板の材質とは異なるものであってよい。 As the setter prepared in the first step, for example, a commercially available ceramic sintered body may be purchased, or may be manufactured by a known method. Examples of the setter include those composed of at least one selected from the group consisting of boron nitride, silicon carbide, alumina, zirconia, graphite, and silicon nitride. Of these, the boron nitride setter is preferably used because it has both heat resistance and good machinability. The material of the setter may be different from the material of the ceramic plate from the viewpoint of suppressing the adhesion between the setter and the ceramic plate after firing.
 セッターとして、窒化ホウ素焼結体を用いる場合、以下の手順で製造することができる。まず、原料として、六方晶窒化ホウ素粉末を用いて成形体を作製する。必要に応じて、成形前に六方晶窒化ホウ素粉末に焼結助剤を配合してもよい。焼結助剤としては、酸化マグネシウム、酸化カルシウム等のアルカリ土類酸化物、酸化アルミニウム、酸化ケイ素、酸化イットリウム等の希土類酸化物、及び、スピネル等の複合酸化物が挙げられる。成形は、一軸加圧成形とCIP成形を行ってよい。一軸加圧成形は3~20MPaで行ってよい。CIP成形は、50~300MPaで行ってよい。 When a boron nitride sintered body is used as the setter, it can be manufactured by the following procedure. First, a molded product is prepared using hexagonal boron nitride powder as a raw material. If necessary, a sintering aid may be added to the hexagonal boron nitride powder before molding. Examples of the sintering aid include alkaline earth oxides such as magnesium oxide and calcium oxide, rare earth oxides such as aluminum oxide, silicon oxide and yttrium oxide, and composite oxides such as spinel. Molding may be performed by uniaxial pressure molding and CIP molding. Uniaxial pressure molding may be performed at 3 to 20 MPa. CIP molding may be performed at 50 to 300 MPa.
 得られた成形体の焼成を行って窒化ホウ素焼結体を得る。焼成は、非酸化性雰囲気下、昇温速度を150℃/hr以下、最高温度を1800~2200℃、この温度範囲における保持時間を5時間以上の条件で行ってよい。非酸化性雰囲気としては、例えば窒素、アンモニア等の窒化性ガス雰囲気が挙げられる。窒化ホウ素焼結体の密度は1600kg/m以上であってよい。なお、窒化ホウ素焼結体の製造方法は上述の方法に限定されない。例えば、ホットプレス法によって製造してもよい。窒化ホウ素焼結体以外のセラミック焼結体は公知の方法で製造することができる。 The obtained molded product is fired to obtain a boron nitride sintered body. The firing may be carried out under the conditions of a non-oxidizing atmosphere, a heating rate of 150 ° C./hr or less, a maximum temperature of 1800 to 2200 ° C., and a holding time in this temperature range of 5 hours or more. Examples of the non-oxidizing atmosphere include a nitride gas atmosphere such as nitrogen and ammonia. The density of the boron nitride sintered body may be 1600 kg / m 3 or more. The method for producing the boron nitride sintered body is not limited to the above method. For example, it may be manufactured by a hot press method. Ceramic sintered bodies other than the boron nitride sintered body can be produced by a known method.
 第2工程では、セッターとセラミックグリーンシート(第1セラミックシート)とを積層して積層体を作製する。積層体を構成するセッター及びセラミックグリーンシートの枚数に特に制限はない。積層体は、例えば、一対のセッターの間に、複数枚(例えば50~100枚)のセラミックグリーンシートを挟んでいてよい。セラミックグリーンシートの主面には、焼成の際に隣り合うセラミックグリーンシート同士が接着することを抑制するため、離型剤が塗布されていてもよい。また、セッターのセラミックグリーンシートの主面との対向面にも、離型剤が塗布されていてもよい。離型剤の含有成分としては、窒化ホウ素等のセラミック粉末、黒鉛粉末、及びバインダ等が挙げられる。 In the second step, the setter and the ceramic green sheet (first ceramic sheet) are laminated to prepare a laminated body. The number of setters and ceramic green sheets constituting the laminate is not particularly limited. The laminate may have, for example, a plurality of (for example, 50 to 100) ceramic green sheets sandwiched between a pair of setters. A mold release agent may be applied to the main surface of the ceramic green sheet in order to prevent adjacent ceramic green sheets from adhering to each other during firing. Further, the release agent may be applied to the surface of the setter facing the main surface of the ceramic green sheet. Examples of the component contained in the release agent include ceramic powder such as boron nitride, graphite powder, and binder.
 図1は、積層体の脱脂及び焼成方法の一例を説明する図である。積層体50は、3枚のセッター10と、複数のセラミックグリーンシート30を含む。3枚のセッター10のうち、一対のセッター10A,10Bは、積層体50の最下部と最上部に積層されている。したがって、セッター10A、10Bでは、一方の主面がセラミックグリーンシート30の一つと対向し接触している。残りのセッター10Cは、積層体50の中央部に積層されている。したがって、セッター10Cは、両方の主面のそれぞれがセラミックグリーンシート30の一つと対向し接触している。このように、セッター10の主面のうち、セラミックグリーンシート30の一つと対向し接触する主面、及び、セラミックグリーンシート30の一つと対向し接触していた主面を「対向面」と称する。セッター10Aとセッター10Cの間、及び、セッター10Cとセッター10Bの間には、ほぼ同数のセラミックグリーンシート30が積層されていてよい。 FIG. 1 is a diagram illustrating an example of a method for degreasing and firing a laminated body. The laminate 50 includes three setters 10 and a plurality of ceramic green sheets 30. Of the three setters 10, the pair of setters 10A and 10B are laminated at the bottom and top of the laminated body 50. Therefore, in the setters 10A and 10B, one main surface faces and is in contact with one of the ceramic green sheets 30. The remaining setter 10C is laminated in the central portion of the laminated body 50. Therefore, in the setter 10C, each of both main surfaces faces and is in contact with one of the ceramic green sheets 30. As described above, among the main surfaces of the setter 10, the main surface facing and contacting one of the ceramic green sheets 30 and the main surface facing and contacting one of the ceramic green sheets 30 are referred to as "opposing surfaces". .. Approximately the same number of ceramic green sheets 30 may be laminated between the setter 10A and the setter 10C, and between the setter 10C and the setter 10B.
 図1に示すように、積層体50を、脱脂炉20に収容し、例えば300℃~700℃に加熱する。これによって、セラミックグリーンシート30に含まれるバインダが除去される。続いて、脱脂された積層体50を焼成炉25に収容して、1600℃~2000℃に加熱する。これによって、セラミックグリーンシートが焼成され、セラミック板が得られる。なお、脱脂で用いる脱脂炉20と焼成で用いる焼成炉25は同一炉であってもよいし、異なる炉であってもよい。また、加熱の温度、時間及び雰囲気は、セラミックグリーンシートの組成に応じて適宜調整してよい。 As shown in FIG. 1, the laminated body 50 is housed in the degreasing furnace 20 and heated to, for example, 300 ° C. to 700 ° C. As a result, the binder contained in the ceramic green sheet 30 is removed. Subsequently, the degreased laminate 50 is housed in the firing furnace 25 and heated to 1600 ° C. to 2000 ° C. As a result, the ceramic green sheet is fired to obtain a ceramic plate. The degreasing furnace 20 used for degreasing and the firing furnace 25 used for firing may be the same furnace or different furnaces. Further, the heating temperature, time and atmosphere may be appropriately adjusted according to the composition of the ceramic green sheet.
 第3工程では、焼成した積層体からセッターを回収する。得られたセラミック板は必要に応じて加工を行って、例えば回路基板にしてもよい。回収したセッターのセラミックグリーンシート及びセラミック板と対向していた対向面には、セラミックグリーンシート又はセラミック板の含有成分が異物として付着している。具体的には、積層体50から回収されるセッター10A,10Bでは、セラミックグリーンシート30と対向していた一方の主面に微小な異物が付着する。積層体50から回収されるセッター10Cでは、セラミックグリーンシート30と対向していた両方の主面に微小な異物が付着する。 In the third step, the setter is collected from the fired laminate. The obtained ceramic plate may be processed as necessary to form, for example, a circuit board. The ceramic green sheet or the component contained in the ceramic plate adheres as a foreign substance to the ceramic green sheet of the recovered setter and the facing surface facing the ceramic plate. Specifically, in the setters 10A and 10B recovered from the laminated body 50, minute foreign matters adhere to one of the main surfaces facing the ceramic green sheet 30. In the setter 10C recovered from the laminated body 50, minute foreign matter adheres to both main surfaces facing the ceramic green sheet 30.
 このような異物を低減するため、セラミックグリーンシート及びセラミック板と対向していたセッターの対向面の切削加工を行う。切削加工は、工具を回転させて切削する方法を適宜採用できる。例えば、フライス削りによって行ってもよい。このような切削加工であれば、削り代を小さくしつつ、セッターの主面にある微小な異物を十分に低減することができる。また、セッターへのダメージを十分に低減することができる。したがって、セッターの寿命が延び、セッターの繰り返し使用回数を十分に多くすることができる。フライス削りは、回転工具としてエンドミルを用いて行ってよい。エンドミルの刃の数は、平滑な加工面を得る観点から、6枚以上であってよく、10枚以上であってもよい。 In order to reduce such foreign matter, the ceramic green sheet and the facing surface of the setter that was facing the ceramic plate are cut. For cutting, a method of cutting by rotating a tool can be appropriately adopted. For example, it may be milled. With such a cutting process, it is possible to sufficiently reduce minute foreign matters on the main surface of the setter while reducing the cutting allowance. Moreover, the damage to the setter can be sufficiently reduced. Therefore, the life of the setter is extended, and the number of times the setter is repeatedly used can be sufficiently increased. Milling may be performed using an end mill as a rotary tool. The number of blades of the end mill may be 6 or more, or 10 or more, from the viewpoint of obtaining a smooth machined surface.
 図2は、回収したセッターの主面を切削する切削装置の一例を示す図である。切削装置100は、フライス盤60を備える。フライス盤60の主軸62の先端には、エンドミル70が取り付けられている。フライス盤60のテーブル64の上には、位置調節部42が載置されている。位置調節部42は例えばヘキサポッドであってよい。位置調節部42の上には真空チャック等、セッター10を固定する固定機能を有する支持部40が配置されている。セッター10は、支持部40の固定機能によって固定されている。支持部40に固定されているセッター10の上側の主面11は、エンドミル70によって切削される。この主面は、積層体50において、セラミックグリーンシート30と対向していた対向面である。 FIG. 2 is a diagram showing an example of a cutting device that cuts the main surface of the collected setter. The cutting device 100 includes a milling machine 60. An end mill 70 is attached to the tip of the spindle 62 of the milling cutter 60. A position adjusting unit 42 is placed on the table 64 of the milling machine 60. The position adjusting unit 42 may be, for example, a hexapod. A support portion 40 having a fixing function for fixing the setter 10 such as a vacuum chuck is arranged on the position adjusting portion 42. The setter 10 is fixed by the fixing function of the support portion 40. The upper main surface 11 of the setter 10 fixed to the support portion 40 is cut by the end mill 70. This main surface is the facing surface of the laminated body 50 that was opposed to the ceramic green sheet 30.
 図2に示すような切削装置100を用いて、セッター10の対向面11を切削し加工面を得る。セッター10の削り代は、5μm以上であってよく、10μm以上であってよく、15μm以上であってもよい。これによって、セッター10の対向面11における異物を十分に低減することができる。過剰な切削を抑制してセッター10の繰り返し使用回数を多くする観点から、セッター10の削り代は、50μm以下であってよく、40μm以下であってもよい。積層体50におけるセッター10Cでは、一方の主面(対向面)を切削した後、セッター10Cをひっくり返して、他方の主面(対向面)を切削してよい。これによって、両方の主面が加工面となる。 Using the cutting device 100 as shown in FIG. 2, the facing surface 11 of the setter 10 is cut to obtain a machined surface. The cutting allowance of the setter 10 may be 5 μm or more, 10 μm or more, or 15 μm or more. As a result, foreign matter on the facing surface 11 of the setter 10 can be sufficiently reduced. From the viewpoint of suppressing excessive cutting and increasing the number of times the setter 10 is repeatedly used, the cutting allowance of the setter 10 may be 50 μm or less, or 40 μm or less. In the setter 10C in the laminated body 50, one main surface (opposing surface) may be cut, and then the setter 10C may be turned over to cut the other main surface (opposing surface). As a result, both main surfaces become machined surfaces.
 加工面の表面粗さ(Ra)は、例えば、4μm未満であってよく、3μm未満であってもよい。これによって、セッター10の対向面11に付着していた異物を十分に除去しつつ、セッターの加工面を十分に平滑にすることができる。その結果、セラミック板の表面に発生する凹凸を一層低減することができる。加工面の表面粗さ(Ra)は、切削作業を円滑にする観点から、1μm以上であってよく、2μm以上であってもよい。 The surface roughness (Ra) of the processed surface may be, for example, less than 4 μm and may be less than 3 μm. As a result, the processed surface of the setter can be sufficiently smoothed while sufficiently removing the foreign matter adhering to the facing surface 11 of the setter 10. As a result, the unevenness generated on the surface of the ceramic plate can be further reduced. The surface roughness (Ra) of the machined surface may be 1 μm or more and may be 2 μm or more from the viewpoint of facilitating the cutting operation.
 第4工程では、第3工程の切削加工によって得られた、加工面を有するセッターを用いて再び積層体(第2積層体)を作製する。具体的には、セッターの加工面とセラミックグリーンシート(第2セラミックグリーンシート)とが対向するようにして積層して第2積層体を得る。この第2積層体を、脱脂炉及び焼成炉で加熱してセラミック板を得る。脱脂炉及び焼成炉は、第2工程で用いたものと同じであってよく、異なっていてもよい。第2積層体は、第2工程で用いた第1積層体50と同じ積層構造を有していてもよいし、異なる積層構造を有していてもよい。第4工程において、第2工程と同様に脱脂及び焼成を順次行ってセラミック板を得ることができる。 In the fourth step, a laminated body (second laminated body) is produced again using a setter having a processed surface obtained by cutting in the third step. Specifically, the processed surface of the setter and the ceramic green sheet (second ceramic green sheet) are laminated so as to face each other to obtain a second laminated body. This second laminated body is heated in a degreasing furnace and a firing furnace to obtain a ceramic plate. The degreasing furnace and the firing furnace may be the same as those used in the second step, or may be different. The second laminated body may have the same laminated structure as the first laminated body 50 used in the second step, or may have a different laminated structure. In the fourth step, a ceramic plate can be obtained by sequentially performing degreasing and firing in the same manner as in the second step.
 第2積層体に含まれるセッターは、第1積層体において第1セラミックグリーンシートと対向していた対向面が切削されている。このため、セッターの主面における異物が十分に低減されている。したがって、セッターを繰り返し使用しても、第2積層体の焼成で得られるセラミック板に凹凸が生じることを抑制できる。このように、セッターを繰り返し使用しても、セラミック板の歩留まりを維持することができる。したがって、セラミック板の生産効率を向上することができる。 In the setter included in the second laminated body, the facing surface facing the first ceramic green sheet in the first laminated body is cut. Therefore, foreign matter on the main surface of the setter is sufficiently reduced. Therefore, even if the setter is used repeatedly, it is possible to prevent the ceramic plate obtained by firing the second laminated body from having irregularities. In this way, the yield of the ceramic plate can be maintained even if the setter is used repeatedly. Therefore, the production efficiency of the ceramic plate can be improved.
 第4工程の後、第1工程~第4工程を繰り返し行ってよい。繰り返し回数は1回でも複数回でもよい。セッターは、積層体として一度焼成される毎に対向面を切削してもよいし、積層体の作製、焼成及びセッターの取り出しを複数回繰り返した後に対向面を切削してもよい。切削の頻度は、主面における異物の有無又は異物の量に応じて調整してよい。いずれにしても、セッターを繰り返し使用することで、資源の有効活用を図るとともに、セラミック板の製造コストを低減することができる。 After the 4th step, the 1st to 4th steps may be repeated. The number of repetitions may be once or multiple times. The setter may cut the facing surface each time the laminate is fired once, or the facing surface may be cut after repeating the production, firing, and removal of the setter a plurality of times. The frequency of cutting may be adjusted according to the presence or absence of foreign matter on the main surface or the amount of foreign matter. In any case, by repeatedly using the setter, it is possible to effectively utilize resources and reduce the manufacturing cost of the ceramic plate.
 上述の製造方法の第1工程と第4工程で得られるセラミック板は、同等の表面品質を有する。このため、同様の用途に用いることができる。セラミック板は、例えば、一方又は両方の主面に金属層で構成される電気回路を形成して回路基板としてよい。 The ceramic plates obtained in the first step and the fourth step of the above-mentioned manufacturing method have the same surface quality. Therefore, it can be used for the same purpose. The ceramic plate may be used as a circuit board by forming an electric circuit composed of a metal layer on one or both main surfaces, for example.
 一実施形態に係る切削加工機の使用方法は、セッター及びセラミックグリーンシートを作製する第1工程と、セッター及びセラミックグリーンシートを含む積層体(第1積層体)を焼成してセラミック板を得る第2工程と、焼成した積層体からセッターを回収し、セラミックグリーンシートと対向していたセッターの対向面を切削して加工面を得る第3工程と、を有する。これら各工程は、上述のセラミック板の製造方法の第1工程、第2工程及び第3工程と同様であってよい。また、第3工程の後に、加工面とセラミックグリーンシートとが対向するようにして積層された積層体(第2積層体)を焼成しセラミック板を得る第4工程を行ってよい。 The method of using the cutting machine according to one embodiment includes a first step of producing a setter and a ceramic green sheet, and a first step of firing a laminate (first laminate) containing the setter and the ceramic green sheet to obtain a ceramic plate. It has two steps and a third step of collecting the setter from the fired laminate and cutting the facing surface of the setter facing the ceramic green sheet to obtain a processed surface. Each of these steps may be the same as the first step, the second step, and the third step of the above-mentioned method for manufacturing a ceramic plate. Further, after the third step, a fourth step may be performed in which a laminated body (second laminated body) laminated so that the processed surface and the ceramic green sheet face each other is fired to obtain a ceramic plate.
 切削加工機の使用方法によれば、セラミックグリーンシートを焼成してセラミック板を得る際に、セッターを繰り返して使用しても、セラミック板に凹凸が生じることを抑制できる。このように、セッターを繰り返し使用してもセラミック板の歩留まりを維持できることから、セラミック板の生産効率を向上することができる。切削加工機としては、固定されたセッターを回転工具が切削するボール盤、フライス盤、及びマシニングセンタ等が挙げられる。 According to the method of using the cutting machine, when the ceramic green sheet is fired to obtain a ceramic plate, even if the setter is repeatedly used, it is possible to suppress the occurrence of unevenness on the ceramic plate. As described above, since the yield of the ceramic plate can be maintained even if the setter is repeatedly used, the production efficiency of the ceramic plate can be improved. Examples of the cutting machine include a drilling machine, a milling machine, a machining center, and the like in which a rotary tool cuts a fixed setter.
 以上、本開示の一実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。例えば、セラミック板、セラミックグリーンシート及びセッターは、直方体形状以外の形状を有していてもよい。これらは角部において面取りが施されていてもよい。また、セッターは、積層体の下方にのみ配置されてもよい。 Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the above embodiment. For example, the ceramic plate, the ceramic green sheet, and the setter may have a shape other than the rectangular parallelepiped shape. These may be chamfered at the corners. Further, the setter may be arranged only below the laminated body.
(実施例1)
 窒化ケイ素粉末と焼結助剤(酸化マグネシウム粉末、酸化イットリウム粉末及び二酸化ケイ素粉末)を含む原料粉末を一軸加圧成形して成形体(シート材)を作製した。このシート材を、切断装置を用いて打ち抜いて、直方体形状を有する70枚のセラミックグリーンシートを形成した。これとは別に、直方体形状を有する窒化ホウ素製のセッター(デンカ株式会社製、商品名:NB-1000)を2枚準備した。
(Example 1)
A molded body (sheet material) was prepared by uniaxial pressure molding of a raw material powder containing a silicon nitride powder and a sintering aid (magnesium oxide powder, yttrium oxide powder, and silicon dioxide powder). This sheet material was punched out using a cutting device to form 70 ceramic green sheets having a rectangular parallelepiped shape. Separately, two setters made of boron nitride having a rectangular parallelepiped shape (manufactured by Denka Co., Ltd., trade name: NB-1000) were prepared.
 70枚のセラミックグリーンシートを一対のセッターで挟み、2枚のセッターと70枚のセラミックグリーンシートが積層された積層体を得た。積層体を作製するにあたり、各セラミックグリーンシートの一方の主面には、離型用のスラリーを塗布した。脱脂炉及び焼成炉を用い、作製した積層体の脱脂及び焼成を行った。脱脂温度は500℃、脱脂時間は30時間とした。また、焼成温度は1800℃、焼成時間は30時間とした。焼成後、焼成炉から積層体を取り出し、積層体からセラミック板を取り除いて一対のセッターを回収した。 70 ceramic green sheets were sandwiched between a pair of setters to obtain a laminate in which 2 setters and 70 ceramic green sheets were laminated. In producing the laminate, a slurry for mold release was applied to one main surface of each ceramic green sheet. Using a degreasing furnace and a firing furnace, the produced laminate was degreased and fired. The degreasing temperature was 500 ° C. and the degreasing time was 30 hours. The firing temperature was 1800 ° C. and the firing time was 30 hours. After firing, the laminate was taken out from the firing furnace, the ceramic plate was removed from the laminate, and a pair of setters were recovered.
 セッターの対向面(セラミックグリーンシートと対向し接触していた主面)を、走査型電子顕微鏡(SEM)で観察した。図3は、セッターの対向面(切削前)のSEM写真である。図4は、図3よりも高い倍率で撮影したセッターの対向面(切削前)のSEM写真である。図3に示すようにセッターの対向面には粗大粒子が点在していた。図4ではSEM写真の中央部に柱状晶を有する粗大粒子が写し出されている。この粗大粒子のEDS分析を行ったところ、粗大粒子からはSiとNが検出された。このことから、セッターの対向面には、セラミックグリーンシート(セラミック板)の含有成分である窒化ケイ素粒子が異物として存在していたことが確認された。 The facing surface of the setter (the main surface facing and in contact with the ceramic green sheet) was observed with a scanning electron microscope (SEM). FIG. 3 is an SEM photograph of the facing surface (before cutting) of the setter. FIG. 4 is an SEM photograph of the facing surface (before cutting) of the setter taken at a higher magnification than that of FIG. As shown in FIG. 3, coarse particles were scattered on the facing surfaces of the setters. In FIG. 4, coarse particles having columnar crystals are projected in the central part of the SEM photograph. When EDS analysis of these coarse particles was performed, Si and N were detected in the coarse particles. From this, it was confirmed that the silicon nitride particles, which are the components contained in the ceramic green sheet (ceramic plate), were present as foreign substances on the facing surface of the setter.
 図2に示すような切削装置を作製した。フライス盤として、株式会社山崎技研製のNCフライス盤(商品名:YZ-400SG)を用いた。エンドミルとしては、株式会社ダンガロイ製のタング・ミル(型番:TPW13R250M47.6-12、直径:250mm、刃の数:12枚)を用いた。位置調節部としては市販のヘキサポッドを用いた。このような切削装置を用いて、窒化ケイ素が存在していたセッターの対向面を切削して加工面を得た。切削前を基準として、削り代が5μm、10μm、及び15μmのときの加工面を、走査型電子顕微鏡(SEM)で観察した。 A cutting device as shown in FIG. 2 was manufactured. As the milling machine, an NC milling machine (trade name: YZ-400SG) manufactured by Yamazaki Giken Co., Ltd. was used. As the end mill, a tongue mill manufactured by Dangaloy Co., Ltd. (model number: TPW13R250M47.6-12, diameter: 250 mm, number of blades: 12) was used. A commercially available hexapod was used as the position adjusting unit. Using such a cutting device, the facing surface of the setter in which the silicon nitride was present was cut to obtain a machined surface. The machined surface when the cutting allowance was 5 μm, 10 μm, and 15 μm was observed with a scanning electron microscope (SEM) with reference to before cutting.
 図5は、削り代が5μmのときのセッターの対向面(主面)のSEM写真である。図6は、削り代が10μmのときのセッターの対向面(主面)のSEM写真である。図7は、削り代が15μmのときのセッターの対向面(主面)のSEM写真である。SEM観察結果に基づいて、柱状晶を有する粗大粒子の量を評価した。その結果、削り代が5μmでも、セッターの主面(加工面)を平滑化しつつ、柱状晶を有する粗大粒子を低減できることが確認された。また、削り代が10μmであれば、柱状晶を有する粗大粒子を十分に低減できること、及び、削り代が15μmであれば、柱状晶を有する粗大粒子をより十分に低減できることが確認された。 FIG. 5 is an SEM photograph of the facing surface (main surface) of the setter when the cutting allowance is 5 μm. FIG. 6 is an SEM photograph of the facing surface (main surface) of the setter when the cutting allowance is 10 μm. FIG. 7 is an SEM photograph of the facing surface (main surface) of the setter when the cutting allowance is 15 μm. Based on the SEM observation results, the amount of coarse particles having columnar crystals was evaluated. As a result, it was confirmed that even if the cutting allowance is 5 μm, coarse particles having columnar crystals can be reduced while smoothing the main surface (processed surface) of the setter. Further, it was confirmed that when the shaving allowance is 10 μm, the coarse particles having columnar crystals can be sufficiently reduced, and when the shaving allowance is 15 μm, the coarse particles having columnar crystals can be sufficiently reduced.
 切削前の主面、並びに、削り代が5μm、10μm、及び15μmのときの加工面の表面粗さ(算術平均粗さ:Ra)を、JIS B 0601:2001に準拠してそれぞれ測定した。測定には、接触式の表面粗さ計(株式会社ミツトヨ製の小形表面粗さ測定機「SJ-210」(商品名)を用いた。測定結果は表1に示すとおりであった。切削後の加工面の表面粗さは、切削前の主面の表面粗さよりも小さかった。 The surface roughness (arithmetic mean roughness: Ra) of the main surface before cutting and the machined surface when the cutting allowance was 5 μm, 10 μm, and 15 μm was measured in accordance with JIS B 0601: 2001, respectively. A contact type surface roughness meter (small surface roughness measuring machine "SJ-210" (trade name) manufactured by Mitutoyo Co., Ltd.) was used for the measurement. The measurement results are as shown in Table 1. After cutting. The surface roughness of the machined surface was smaller than the surface roughness of the main surface before cutting.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、セラミック板の生産効率を向上することが可能なセラミック板の製造方法を提供することができる。また、セラミック板の生産効率を向上することが可能な切削加工機の使用方法を提供することができる。 According to the present disclosure, it is possible to provide a method for manufacturing a ceramic plate capable of improving the production efficiency of the ceramic plate. Further, it is possible to provide a method of using a cutting machine capable of improving the production efficiency of a ceramic plate.
 10,10A,10B…セッター,11…対向面(主面)、20…脱脂炉,25…焼成炉,30…セラミックグリーンシート,40…支持部,42…位置調節部,50…積層体(第1積層体),60…フライス盤,62…主軸,64…テーブル,70…エンドミル,100…切削装置。 10, 10A, 10B ... Setter, 11 ... Facing surface (main surface), 20 ... Solvent degreasing furnace, 25 ... Baking furnace, 30 ... Ceramic green sheet, 40 ... Support part, 42 ... Position adjustment part, 50 ... Laminated body (No. 1 laminated body), 60 ... milling machine, 62 ... spindle, 64 ... table, 70 ... end mill, 100 ... cutting device.

Claims (5)

  1.  セッター及び第1セラミックグリーンシートを含む第1積層体を焼成した後、前記第1積層体から前記セッターを回収し、前記第1セラミックグリーンシートと対向していた前記セッターの対向面を切削して加工面を得る工程と、
     前記加工面と第2セラミックグリーンシートとが対向するようにして積層された第2積層体を焼成しセラミック板を得る工程と、を有する、セラミック板の製造方法。
    After firing the first laminated body containing the setter and the first ceramic green sheet, the setter is recovered from the first laminated body, and the facing surface of the setter facing the first ceramic green sheet is cut. The process of obtaining the machined surface and
    A method for manufacturing a ceramic plate, comprising a step of firing a second laminated body laminated so that the processed surface and the second ceramic green sheet face each other to obtain a ceramic plate.
  2.  前記セッターの前記対向面を切削する際の前記セッターの削り代は5μm以上である、請求項1に記載のセラミック板の製造方法。 The method for manufacturing a ceramic plate according to claim 1, wherein the cutting allowance of the setter when cutting the facing surface of the setter is 5 μm or more.
  3.  前記加工面の表面粗さRaは4μm未満である、請求項1又は2に記載のセラミック板の製造方法。 The method for manufacturing a ceramic plate according to claim 1 or 2, wherein the surface roughness Ra of the processed surface is less than 4 μm.
  4.  前記セッターの前記対向面を工具の回転による切削加工によって切削し、前記加工面を得る、請求項1~3のいずれか一項に記載のセラミック板の製造方法。 The method for manufacturing a ceramic plate according to any one of claims 1 to 3, wherein the facing surface of the setter is cut by cutting by rotating a tool to obtain the processed surface.
  5.  セッターとセラミックグリーンシートとが積層された積層体を焼成した後、前記積層体から前記セッターを回収し、前記セラミックグリーンシートと対向していた前記セッターの対向面を、回転工具を備える切削加工機を用いて切削する工程を有する、切削加工機の使用方法。
     
    After firing the laminate in which the setter and the ceramic green sheet are laminated, the setter is recovered from the laminate, and the facing surface of the setter facing the ceramic green sheet is a cutting machine equipped with a rotary tool. How to use a cutting machine that has a process of cutting with.
PCT/JP2021/012300 2020-03-26 2021-03-24 Method for manufacturing ceramic plate and method for using cutting processing machine WO2021193739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510609A JPWO2021193739A1 (en) 2020-03-26 2021-03-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-056234 2020-03-26
JP2020056234 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193739A1 true WO2021193739A1 (en) 2021-09-30

Family

ID=77892237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012300 WO2021193739A1 (en) 2020-03-26 2021-03-24 Method for manufacturing ceramic plate and method for using cutting processing machine

Country Status (2)

Country Link
JP (1) JPWO2021193739A1 (en)
WO (1) WO2021193739A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038151A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Method for producing boron nitride sintered body, and boron nitride sintered body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024690U (en) * 1988-06-22 1990-01-12
JPH04203888A (en) * 1990-11-30 1992-07-24 Toshiba Ceramics Co Ltd Ceramic firing jig and manufacture thereof
JPH09132464A (en) * 1995-11-02 1997-05-20 Sumitomo Kinzoku Erekutorodebaisu:Kk Apparatus for producing ceramic substrate
JP2004103863A (en) * 2002-09-10 2004-04-02 Murata Mfg Co Ltd Method of manufacturing ceramic electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH024690U (en) * 1988-06-22 1990-01-12
JPH04203888A (en) * 1990-11-30 1992-07-24 Toshiba Ceramics Co Ltd Ceramic firing jig and manufacture thereof
JPH09132464A (en) * 1995-11-02 1997-05-20 Sumitomo Kinzoku Erekutorodebaisu:Kk Apparatus for producing ceramic substrate
JP2004103863A (en) * 2002-09-10 2004-04-02 Murata Mfg Co Ltd Method of manufacturing ceramic electronic component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023038151A1 (en) * 2021-09-13 2023-03-16 デンカ株式会社 Method for producing boron nitride sintered body, and boron nitride sintered body
JP7282279B1 (en) * 2021-09-13 2023-05-26 デンカ株式会社 Method for manufacturing boron nitride sintered body and boron nitride sintered body

Also Published As

Publication number Publication date
JPWO2021193739A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP4013386B2 (en) Support for manufacturing semiconductor and method for manufacturing the same
TWI445682B (en) Alumina sintered body, and its manufacturing method and semiconductor manufacturing device parts
JP5339214B2 (en) Method for manufacturing silicon nitride substrate and silicon nitride substrate
JP2000058631A5 (en)
JPWO2007125878A1 (en) Aluminum-silicon carbide composite and heat dissipation component using the same
WO2021193739A1 (en) Method for manufacturing ceramic plate and method for using cutting processing machine
JP7377961B2 (en) Method of manufacturing silicon nitride substrate
WO2022196693A1 (en) Silicon nitride substrate
WO2021235407A1 (en) Ceramic place production method, setter production method, and setter regeneration method
JP7211549B2 (en) silicon nitride substrate
JP5092135B2 (en) Porous material and method for producing the same
JP4421910B2 (en) Heat treatment tray and method for producing ceramic product using the same
JPH0799263A (en) Manufacture of ceramic substrate
JP5284706B2 (en) Aluminum-silicon carbide composite and method for producing the same
JP2010024488A (en) Aluminum-silicon carbide composite body and method for producing the same
JP7248187B2 (en) silicon nitride substrate
WO2008023766A1 (en) Method for producing silicon carbide member
JPWO2019082916A1 (en) Method for producing oriented ceramic sintered body and flat sheet
JP7318835B2 (en) silicon nitride substrate
JP7248186B2 (en) silicon nitride substrate
JP7211476B2 (en) silicon nitride substrate
JP7429825B2 (en) Aluminum nitride sintered body, method for manufacturing the same, circuit board, and laminated board
JPH02279569A (en) Boron nitride sheet
WO2021095845A1 (en) Ceramic substrate, composite substrate, circuit board, ceramic substrate production method, composite substrate production method, circuit board production method, and method for producing multiple circuit boards
WO2021020424A1 (en) Electrolyte sheet for solid oxide fuel cell, method for producing electrolyte sheet for solid oxide fuel cell, and cell unit for solid oxide fuel cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21775501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510609

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21775501

Country of ref document: EP

Kind code of ref document: A1