WO2021192674A1 - Optical connector, optical harness, and vehicle-mounted communication system - Google Patents

Optical connector, optical harness, and vehicle-mounted communication system Download PDF

Info

Publication number
WO2021192674A1
WO2021192674A1 PCT/JP2021/004816 JP2021004816W WO2021192674A1 WO 2021192674 A1 WO2021192674 A1 WO 2021192674A1 JP 2021004816 W JP2021004816 W JP 2021004816W WO 2021192674 A1 WO2021192674 A1 WO 2021192674A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
connecting portion
optical connector
connection
Prior art date
Application number
PCT/JP2021/004816
Other languages
French (fr)
Japanese (ja)
Inventor
上野雄鋭
竹嶋進
木下遼太
河口竜己
藤原誠
Original Assignee
住友電気工業株式会社
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社, 住友ベークライト株式会社 filed Critical 住友電気工業株式会社
Publication of WO2021192674A1 publication Critical patent/WO2021192674A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device

Definitions

  • the present disclosure relates to optical connectors, optical harnesses and in-vehicle communication systems.
  • This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2020-54406 filed on March 25, 2020 and incorporates all of its disclosures herein.
  • Patent Document 1 International Publication No. 2019/11147 discloses the following in-vehicle communication system. That is, the in-vehicle communication system is an in-vehicle communication system mounted on a vehicle, and includes a master function unit and a plurality of slave function units, and the plurality of slave function units are provided via at least a common optical fiber. The uplink communication signal can be transmitted to the master function unit.
  • the optical connector of the present disclosure is an optical connector that relays an optical signal between functional units mounted on a vehicle, and is a first connection portion to which an optical fiber can be connected and a second connection to which an optical fiber can be connected.
  • An optical coupler connected between the first connecting portion and the second connecting portion, and a fixing portion for fixing the positional relationship between the first connecting portion and the second connecting portion. Be prepared.
  • FIG. 1 is a diagram showing an example of a configuration of an in-vehicle communication system according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of an optical fiber cable in the in-vehicle communication system according to the first embodiment of the present disclosure.
  • FIG. 3 is a front view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 5 is a plan view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 1 is a diagram showing an example of a configuration of an in-vehicle communication system according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of an optical fiber cable in the
  • FIG. 7 is a plan view showing an example of the optical harness according to the first embodiment of the present disclosure.
  • FIG. 8 is a diagram showing an example of a usage mode of the optical connector according to the first embodiment of the present disclosure.
  • FIG. 9 is a diagram showing another example of the usage mode of the optical connector according to the first embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view showing an optical connector according to a modification 1 of the first embodiment of the present disclosure.
  • FIG. 11 is a cross-sectional view showing an optical connector according to a second modification of the first embodiment of the present disclosure.
  • FIG. 12 is a cross-sectional view showing an optical connector according to a modification 3 of the first embodiment of the present disclosure.
  • FIG. 13 is a plan view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure.
  • FIG. 15 is a diagram showing an example of a usage mode of the optical connector according to the modified example 4 of the first embodiment of the present disclosure.
  • FIG. 16 is a diagram showing an example of the configuration of the in-vehicle communication system according to the second embodiment of the present disclosure.
  • FIG. 17 is a cross-sectional view showing an optical connector according to a second embodiment of the present disclosure.
  • FIG. 18 is a plan view showing an example of the optical harness according to the second embodiment of the present disclosure.
  • the present disclosure has been made to solve the above-mentioned problems, and an object thereof is an optical connector, an optical harness, and an in-vehicle device capable of suppressing breakage of the optical coupler when the optical coupler is used in an in-vehicle communication system. To provide a communication system.
  • the optical connector according to the embodiment of the present disclosure is an optical connector that relays an optical signal between functional units mounted on a vehicle, and has a first connecting portion to which an optical fiber can be connected and an optical fiber.
  • the fixing portion to fix the positional relationship between the connecting portion and the connecting portion, it is possible to suppress the occurrence of bending and twisting in the optical coupler when a load is applied to the optical connector. Therefore, the breakage of the optical coupler can be suppressed.
  • the first connection portion and the second connection portion have different heat resistances from each other.
  • first connecting portion and the second connecting portion are configured to have different heat resistances so as to be able to withstand the arranged temperature environment, for example, so that the functional units arranged in different temperature environments are separated from each other.
  • An optical connector can be used.
  • the second connecting portion is provided at a position other than the position facing the first connecting portion via the optical coupler.
  • each connection unit can be provided at a position corresponding to the positional relationship between the optical connector and the functional unit, so that the optical connector can be used for an in-vehicle communication system having various wiring structures.
  • the optical connector further includes a third connection portion to which an optical fiber can be connected
  • the optical coupler further comprises between the first connection portion and the third connection portion.
  • the second connection portion and the third connection portion, and the fixing portion further includes a positional relationship between the first connection portion and the third connection portion, and the second connection portion. The positional relationship between the connecting portion and the third connecting portion is fixed.
  • the optical connector can be used for an in-vehicle communication system having various wiring structures by the configuration including three connection portions.
  • the fixing portion fixes the positional relationship between the first connecting portion and the second connecting portion in a state where the optical coupler is curved.
  • the distance between the first connection portion and the second connection portion can be made shorter than the length of the optical coupler, so that the optical connector can be made compact in a vehicle having a limited wiring space. Can be done. Even when the optical coupler is connected to the first connecting portion and the second connecting portion in a curved state, the positional relationship between the first connecting portion and the second connecting portion is fixed by the fixing portion. Therefore, it is possible to suppress the occurrence of bending and twisting in the optical coupler due to the load applied to the optical connector.
  • the fixing portion is provided so as to cover the periphery of the optical coupler, and the optical connector further includes a filling portion that fills the space between the optical coupler and the fixing portion.
  • the filling portion is a resin.
  • the filling portion is a foamed resin.
  • the heat insulating property of the filled portion can be improved, and the influence of the change in the environmental temperature on the optical coupler can be suppressed.
  • the optical harness according to the first embodiment of the present disclosure is connected to the optical connector, the first optical fiber connected to the first connection portion, and the second connection portion.
  • a second optical fiber is provided.
  • the in-vehicle communication system includes the optical connector, a first functional unit connected to the first connection portion via a first optical fiber, and a first.
  • the optical connector includes a second functional unit connected to the second connecting portion via the optical fiber 2, and the optical connector is arranged so as to penetrate the heat insulating plate provided in the vehicle.
  • the optical connector since the optical connector is arranged so as to penetrate the heat insulating plate, the optical connector functions as a member for passing wiring through the heat insulating plate, for example, an in-line connector, so that such a member can be reduced.
  • FIG. 1 is a diagram showing an example of a configuration of an in-vehicle communication system according to the first embodiment of the present disclosure.
  • the in-vehicle communication system 401 includes a master function unit 201, a plurality of slave function units 211, and an optical connector 101.
  • the in-vehicle communication system 401 includes a master function unit 201A as a master function unit 201 and slave function units 211A and 211B as slave function units 211.
  • the master function unit 201 is an example of the first function unit.
  • the slave function unit 211 is an example of the second function unit.
  • the in-vehicle communication system 401 may be configured to include one or more slave function units 211.
  • the in-vehicle communication system 401 is mounted on the vehicle 1.
  • the in-vehicle communication system 401 is a PON (Passive Optical Network) system.
  • the in-vehicle communication system 401 may be an optical communication system other than the PON system.
  • the master function unit 201 and the slave function unit 211 are, for example, an ECU, a sensor, or an antenna module.
  • the ECU includes, for example, an automatic operation ECU (Electronic Control Unit), a navigation device, a TCU (Telematics Communication Unit), a gateway device, and the like.
  • the sensor is, for example, a camera, a millimeter wave sensor, LiDAR (Light Detection and Ringing), or the like.
  • the master function unit 201A is connected to the optical connector 101 via the optical fiber cable 203A. Further, the slave function unit 211A is connected to the optical connector 101 via the optical fiber cable 213A, and the slave function unit 211B is connected to the optical connector 101 via the optical fiber cable 213B.
  • the optical fiber cable 203A is an example of the optical fiber cable 203.
  • the optical fiber cables 213A and 213B are examples of the optical fiber cables 213.
  • FIG. 2 is a cross-sectional view showing an example of the configuration of an optical fiber cable in the in-vehicle communication system according to the first embodiment of the present disclosure.
  • FIG. 2 shows a cross-sectional view of the optical fiber cable 203 and the optical fiber cable 213.
  • the optical fiber cables 203 and 213 include a tension member 51, a plurality of optical fibers 52 arranged around the tension member 51, a protective layer 53 covering the plurality of optical fibers 52, and a protective layer.
  • a presser foot 54 covering the presser foot 53 and a sheath 55 covering the presser foot 54 are included.
  • the optical fiber 52 is, for example, an optical fiber core wire.
  • the number of optical fibers 52 in the optical fiber cables 203 and 213 is 12, but is not limited to 12 in the example of FIG.
  • the optical fiber cables 203 and 213 may be configured to include one optical fiber 52.
  • the optical fiber cables 203 and 213 are not limited to the configuration that accommodates the optical fiber 52 that is the optical fiber core wire, and may be, for example, a 0.25 mm wire, a 0.9 mm core wire, or a tape core wire. ..
  • the master function unit 201A is optically connected to the optical connector 101 via the optical fiber 52 in the optical fiber cable 203A. Further, the slave function unit 211A is optically connected to the optical connector 101 via the optical fiber 52 in the optical fiber cable 213A, and the slave function unit 211B is optically connected to the optical connector 101 via the optical fiber 52 in the optical fiber cable 213B. Will be done.
  • the optical harness 301 includes an optical connector 101, an optical fiber 52 in the optical fiber cable 203A, an optical fiber 52 in the optical fiber cable 213A, and an optical fiber 52 in the optical fiber cable 213B.
  • the master function unit 201A includes an optical transceiver 202A.
  • the slave function unit 211A includes an optical transceiver 212A.
  • the slave function unit 211B includes an optical transceiver 212B.
  • the optical transceiver 202A is an example of the optical transceiver 202.
  • the optical transceivers 212A and 212B are examples of the optical transceiver 212.
  • the optical connector 101 relays optical signals between functional units.
  • the optical connector 101 relays an optical signal between the master function unit 201 and the slave function unit 211.
  • the in-vehicle communication system 401 is, for example, a TDM-PON system.
  • the uplink direction is time division multiple access (TDMA: Time Division Multiple Access)
  • the downlink direction is time division multiplexing (TDM: Time Division Multiple Access).
  • Each slave function unit 211 can transmit an uplink light signal including an uplink communication signal such as a frame to the master function unit 201 via the corresponding optical fiber cable 213, optical connector 101, and optical fiber cable 203A. Further, the master function unit 201A can transmit a downlink optical signal including a downlink communication signal such as a frame to the corresponding slave function unit 211 via the optical fiber cable 203A, the optical connector 101, and each optical fiber cable 213.
  • the optical transceiver 202A in the master function unit 201A is connected to the optical fiber cable 203A.
  • the optical transceiver 202A receives an uplink signal in the 1280 nm band from the optical fiber cable 203A, converts the received uplink signal into an electric signal, and outputs the received uplink signal to a processing unit (not shown).
  • the optical transceiver 202A in the master function unit 201A receives an electric signal from a processing unit (not shown), converts the received electric signal into a downlink optical signal having a different wavelength, for example, the 1570 nm band, and outputs the received electric signal to the optical fiber cable 203A.
  • Communication between the optical transceiver 202 and the optical connector 101 is 1-core bidirectional communication when the number of optical fibers 52 included in the optical fiber cable 203A is one.
  • Communication between the optical transceiver 202 and the optical connector 101 may be one-core bidirectional communication or two-core bidirectional communication when the number of optical fibers 52 included in the optical fiber cable 203A is a plurality of lines. It may be.
  • the optical transceiver 212A in the slave function unit 211A is connected to the optical fiber cable 213A
  • the optical transceiver 212B in the slave function unit 211B is connected to the optical fiber cable 213B.
  • the optical transceiver 212 receives a downlink light signal in the 1570 nm band from the optical fiber cable 213, converts the received downlink light signal into an electric signal, and outputs the received downlink light signal to a processing unit (not shown). Further, the optical transceiver 212 in the slave function unit 211 receives an electric signal from a processing unit (not shown), converts the received electric signal into, for example, an uplink optical signal in the 1280 nm band, and outputs the received electric signal to the optical fiber cable 213.
  • the communication between the optical transceiver 212 and the optical connector 101 may be one-core bidirectional communication depending on the number of optical fibers 52 included in the optical fiber cable 213, as in the case of the master function unit 201A side. , Two-way communication by core may be used.
  • the in-vehicle communication system 401 in the uplink direction, not only TDMA but also wavelength division multiplexing (WDM: Wavelength Division Multiplexing) suitable for communication with a larger amount of data may be used.
  • WDM Wavelength Division Multiplexing
  • the plurality of slave function units 211 transmit uplink signals having different wavelengths from each other.
  • the master function unit 201 transmits downlink light signals having different wavelengths to each slave function unit 211.
  • the in-vehicle communication system 401 in the uplink direction, not only TDMA but also code division multiplexing (CDM: Code Division Multiplexing) suitable for communication with a larger amount of data may be used.
  • CDM Code Division Multiplexing
  • the plurality of slave function units 211 transmit an uplink signal including a communication signal diffused by different diffusion codes.
  • the master function unit 201 transmits a downlink light signal including a communication signal diffused by a different diffusion code to each slave function unit 211.
  • frequency division multiplexing Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • time division frequency multiplexing suitable for communication with a larger amount of data is not limited to the above method.
  • TWDM Time and Wavelength Division Multiplexing
  • FIG. 3 is a front view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
  • FIG. 5 is a plan view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG.
  • the optical connector 101 includes a connecting portion 10, a connecting portion 20, a fixing portion 30, and an optical coupler 40.
  • the connection units 10 and 20 can connect the optical fibers 52 in one or a plurality of optical fiber cables 203 and 213.
  • the connection portion 10 is an example of the first connection portion
  • the connection portion 20 is an example of the second connection portion.
  • the optical coupler 40 is connected between the connecting portion 10 and the connecting portion 20.
  • the optical coupler 40 includes a film-shaped main body 41 and an optical waveguide 42 formed on the main body 41.
  • the optical coupler 40 is made of resin. More specifically, the optical coupler 40 is generated by forming an optical waveguide 42 on a main body 41 made of resin by using a photolithography technique or the like.
  • the optical coupler 40 formed of resin is compact and flexible.
  • the optical waveguide 42 is formed in the main body 41 so as to extend between the connecting portion 10 and the connecting portion 20.
  • the optical waveguide 42 has a branch portion.
  • the optical waveguide 42 includes a first end 42A connected to the connecting portion 10, a second end 42B connected to the connecting portion 20, and a third end 42C connected to the connecting portion 20.
  • the fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20. More specifically, the fixing portion 30 is fixed to, for example, the outer peripheral surface of the connecting portion 10 and the outer peripheral surface of the connecting portion 20 by an adhesive, an adhesive, or a screw.
  • the fixing portion 30 is formed of, for example, resin or metal.
  • the fixing portion 30 is provided so as to cover the periphery of the optical coupler 40. More specifically, the fixing portion 30 is a tubular member having a square pillar outer shape. The inner peripheral portion of the first end of the fixed portion 30 is connected to the connecting portion 10, and the inner peripheral portion of the second end of the fixed portion 30 is connected to the connecting portion 20.
  • the fixing portion 30 may be a flat plate-shaped member.
  • the optical connector 101 includes a plurality of fixing portions 30.
  • the plurality of fixing portions 30 are provided so that the periphery of the optical coupler 40 is covered by the plurality of fixing portions 30.
  • FIG. 7 is a plan view showing an example of the optical harness according to the first embodiment of the present disclosure.
  • the optical harness 301 includes an optical connector 101, an optical fiber cable 203A, and optical fiber cables 213A and 213B.
  • the optical fiber 52 in the optical fiber cable 203A is connected to the connection portion 10 in the optical connector 101.
  • the optical fiber 52 in the optical fiber cable 213A and the optical fiber 52 in the optical fiber cable 213B are connected to the connection portion 20 in the optical connector 101.
  • the optical fiber cable 203A includes a cable portion 204A including the optical fiber 52 and a connector portion 205A provided at the first end of the cable portion 204A.
  • the optical fiber cable 213A includes a cable portion 214A including the optical fiber 52 and a connector portion 215A provided at the first end of the cable portion 214A.
  • the optical fiber cable 213B includes a cable portion 214B including the optical fiber 52 and a connector portion 215B provided at the first end of the cable portion 214B.
  • the connector portion 205A of the optical fiber cable 203A is connected to the connection portion 10 of the optical connector 101. Further, the connector portion 215A of the optical fiber cable 213A and the connector portion 215B of the optical fiber cable 213B are connected to the connection portion 20 of the optical connector 101. In addition, one or three or more optical fiber cables 213 may be connected to the connection portion 20.
  • the second end of the cable section 204A in the optical fiber cable 203A is connected to the master function section 201A. Further, the second end of the cable portion 214A of the optical fiber cable 213A is connected to the slave function portion 211A, and the second end of the cable portion 214B of the optical fiber cable 213B is connected to the slave function portion 211B.
  • the connection unit 10 receives an optical signal from the optical fiber cable 203A.
  • the optical signal received by the connection unit 10 from the optical fiber cable 203A is output to the optical fiber cables 213A and 213B via the optical waveguide 42 and the connection unit 20 in the optical coupler 40. That is, the optical signal received by the connection portion 10 from the optical fiber cable 203A is branched by the optical coupler 40 and output to the optical fiber cables 213A and 213B.
  • the connection unit 20 receives an optical signal from the optical fiber cables 213A and 213B.
  • the optical signal received by the connection unit 20 from the optical fiber cable 213A is output to the optical fiber cable 203A via the optical waveguide 42 and the connection unit 10 in the optical coupler 40.
  • the optical signal received by the connecting portion 20 from the optical fiber cable 213B is output to the optical fiber cable 203A via the optical waveguide 42 in the optical coupler 40 and the connecting portion 10. That is, the optical signal received by the connecting portion 20 from the optical fiber cable 213A and the optical signal received by the connecting portion 20 from the optical fiber cable 213B are merged by the optical coupler 40 and output to the optical fiber cable 203A.
  • FIG. 8 is a diagram showing an example of a usage mode of the optical connector according to the first embodiment of the present disclosure.
  • the master function unit 201A is arranged on the floor 2A in the vehicle 1, and the slave function units 211A and 211B are arranged in the engine room 2B in the vehicle 1.
  • the location of the master function unit 201 and the slave function unit 211 is not limited to this, and may be arranged on the instrument panel, the floor, or the trunk, for example. good.
  • the temperature environment in the floor 2A and the temperature environment in the engine room 2B are different from each other. More specifically, the temperature in the engine room 2B is higher than the temperature in the floor 2A. Therefore, in the vehicle 1, a heat insulating plate 3A that separates the floor 2A and the engine room 2B is provided between the floor 2A and the engine room 2B.
  • the optical connector 101 is arranged so as to penetrate the heat insulating plate 3A. More specifically, the heat insulating plate 3A has a through hole according to the shape of the optical connector 101. The optical connector 101 is inserted into the through hole and fixed in a state where the connecting portion 10 is located in the floor 2A and the connecting portion 20 is located in the engine room 1A.
  • connection portion 10 and the connection portion 20 have different heat resistances from each other. More specifically, for example, the connection portion 10 arranged in the floor 2A and the connection portion 10 arranged in the engine room 2B have different required temperature specifications. Therefore, the connecting portion 10 has heat resistance that can withstand the temperature environment in the floor 2A, and the connecting portion 20 has heat resistance that can withstand the temperature environment in the engine room 2B.
  • at least a part of each of the connecting portions 10 and 20 is formed of resin.
  • the resin forming at least a part of the connecting portion 10 has a heat resistant temperature that can withstand the temperature environment in the floor 2A.
  • the resin forming at least a part of the connecting portion 20 has a heat resistant temperature that can withstand the temperature environment in the engine room 2B.
  • the resin forming at least a part of the connecting part 10 is a thermoplastic resin whose glass transition temperature is higher than the operating temperature, that is, the temperature in the floor 2A, and forms at least a part of the connecting part 20.
  • the resin is a thermoplastic resin in which the glass transition temperature is higher than the operating temperature, that is, the temperature in the engine room 2B.
  • a resin other than the thermoplastic resin and suitable for each environmental temperature may be used. ..
  • a thermoplastic resin having a high glass transition temperature is generally expensive, but due to such a configuration, the material cost is higher than when a thermoplastic resin having a high glass transition temperature is used for both the connecting portions 10 and 20. Reduction is possible.
  • FIG. 9 is a diagram showing another example of the usage mode of the optical connector according to the first embodiment of the present disclosure.
  • the master function unit 201A is arranged in the trunk 2C in the vehicle 1, and the slave function units 211A and 211B are arranged in the engine room 2B in the vehicle 1.
  • a heat insulating plate 3B that separates the trunk 2C and the floor 2A is provided between the trunk 2C and the floor 2A, and the floor 2A and the engine room 2B are provided between the floor 2A and the engine room 2B.
  • a heat insulating plate 3A for partitioning is provided.
  • the optical connector 101 is arranged so as to penetrate the heat insulating plate 3A. Further, the cable portion 204A in the optical fiber cable 203A has a relay connector portion 206A arranged so as to penetrate the heat insulating plate 3B.
  • connection portion 10 has heat resistance that can withstand the temperature environment in the floor 2A
  • connection portion 20 has heat resistance that can withstand the temperature environment in the engine room 2B
  • at least a part of each of the connecting portions 10 and 20 is formed of resin.
  • the resin forming at least a part of the connecting portion 10 has a heat resistant temperature that can withstand the temperature environment in the floor 2A.
  • the resin forming at least a part of the connecting portion 20 has a heat resistant temperature that can withstand the temperature environment in the engine room 2B.
  • the resin forming at least a part of the connecting portion 10 and the resin forming at least a part of the connecting portion 20 are thermoplastic resins having a glass transition temperature higher than the operating temperature. be.
  • the resin forming at least a part of the connecting portion 10 and the resin forming at least a part of the connecting portion 20 are resins other than thermoplastic resins and suitable for each environmental temperature. May be used.
  • FIG. 10 is a cross-sectional view showing an optical connector according to a modification 1 of the first embodiment of the present disclosure.
  • FIG. 10 shows a cross-sectional view of the optical connector 101A according to the first modification when the optical connector 101A is cut by the XX line in FIG.
  • the fixing portion 30 may be fixed to the surface of the connecting portion 10 facing the connecting portion 20 and the surface of the connecting portion 20 facing the connecting portion 10.
  • FIG. 11 is a cross-sectional view showing an optical connector according to a second modification of the first embodiment of the present disclosure.
  • FIG. 11 shows a cross-sectional view of the optical connector 101B according to the second modification when the optical connector 101B is cut along the XI-XI line in FIG.
  • the optical connector 101B includes a filling portion 50.
  • the filling portion 50 fills between the optical coupler 40 and the fixing portion 30.
  • the filling portion 50 is a resin.
  • the resin constituting the filling portion 50 preferably has a linear expansion coefficient equivalent to the linear expansion coefficient of the main body portion 41 in the optical coupler 40.
  • the coefficient of linear expansion of the resin constituting the filling portion 50 is preferably 0.8 times or more and 1.2 times or less of the linear expansion coefficient of the main body 41, and more preferably the linear expansion of the main body 41. It is 0.9 times or more and 1.1 times or less of the coefficient.
  • the filling portion 50 is a foamed resin. More specifically, the filling portion 50 is an extruded polystyrene foam, a beaded polystyrene foam, a urethane foam, a highly foamed polyethylene foam or a phenolic foam.
  • FIG. 12 is a cross-sectional view showing an optical connector according to a modification 3 of the first embodiment of the present disclosure.
  • FIG. 12 shows a cross-sectional view of the optical connector 101C according to the third modification when the optical connector 101C is cut along the XII-XII line in FIG.
  • the optical coupler 40 in the optical connector 101C is connected between the connecting portion 10 and the connecting portion 20 in a curved state.
  • the optical coupler 40 is connected between the connecting portion 10 and the connecting portion 20 in a state of being curved in an S shape.
  • the optical coupler 40 has a first end connected to the connecting portion 10 and a second end connected to the connecting portion 20.
  • the length L from the first end to the second end of the optical coupler 40 is longer than the distance between the connecting portion 10 and the connecting portion 20.
  • the length L of the optical coupler 40 is at least twice the distance between the connecting portion 10 and the connecting portion 20.
  • the fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20 in a state where the optical coupler 40 is curved.
  • FIG. 13 is a plan view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure.
  • FIG. 14 shows a cross-sectional view of the optical connector 101D according to the modified example 4 when the optical connector 101D is cut along a cutting line corresponding to the IV-IV line in FIG.
  • the optical connector 101D further includes a connecting portion 21 as compared with the optical connector 101 shown in FIGS. 3 to 6.
  • the connection unit 21 can connect one or more optical fiber cables 203 and 213.
  • the connection unit 21 is an example of a third connection unit.
  • the connecting portion 21 is provided at a position facing the connecting portion 10 via the optical coupler 40.
  • the connecting portion 20 is provided at a position other than the position facing the connecting portion 10 via the optical coupler 40. More specifically, the connecting portion 20 is provided at a position on a virtual line orthogonal to the virtual line connecting the connecting portion 10 and the connecting portion 21.
  • the optical coupler 40 is connected between the connection unit 10 and the connection unit 20, between the connection unit 10 and the connection unit 21, and between the connection unit 20 and the connection unit 21.
  • the optical waveguide 42 in the optical coupler 40 is formed in the main body 41 so as to extend between the connecting portion 10, the connecting portion 20, and the connecting portion 21.
  • the optical waveguide 42 has a branch portion.
  • the first end 42A of the optical waveguide 42 is connected to the connection portion 10
  • the second end 42B of the optical waveguide 42 is connected to the connection part 20
  • the third end 42C of the optical waveguide 42 is connected to the connection part 21.
  • the second end 42B of the optical waveguide 42 is provided at a position on a virtual line orthogonal to the virtual line connecting the first end 42A and the third end 42C.
  • the fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20, the positional relationship between the connecting portion 10 and the connecting portion 21, and the positional relationship between the connecting portion 20 and the connecting portion 21.
  • FIG. 15 is a diagram showing an example of a usage mode of the optical connector according to the modified example 4 of the first embodiment of the present disclosure.
  • the master function unit 201A is arranged on the floor of the vehicle 1
  • the slave function unit 211A is arranged on the hood of the vehicle 1
  • the slave function unit 211B is arranged on the roof of the vehicle 1.
  • the master function unit 201A is an advanced driver assistance (ADAS) ECU
  • the slave function unit 211A is a sensor
  • the slave function unit 211B is a roof antenna module.
  • ADAS advanced driver assistance
  • connection unit 10 is provided at a position corresponding to the positional relationship between the master function unit 201A connected to the connection unit 10 via the cable unit 204A and the connector unit 205A of the optical fiber cable 203A and the optical connector 101.
  • connection portion 20 is provided at a position corresponding to the positional relationship between the slave function portion 211B connected to the connection portion 20 via the cable portion 214B and the connector portion 215B of the optical fiber cable 213B and the optical connector 101. Be done.
  • connection portion 21 is provided at a position corresponding to the positional relationship between the slave function portion 211A connected to the connection portion 21 via the cable portion 214A and the connector portion 215A of the optical fiber cable 213A and the optical connector 101. Be done.
  • connection portion 10 and the connection portion 20 are configured to have different heat resistances, but the present invention is not limited to this.
  • the connecting portion 10 and the connecting portion 20 may have the same heat resistance to each other.
  • the connecting portion 10 and the connecting portion 20 have heat resistance that can withstand the higher temperature environment of the temperature environment of the connecting portion 10 and the temperature environment of the connecting portion 20.
  • the fixing portion 30 is provided so as to cover the periphery of the optical coupler 40, but the present invention is not limited to this.
  • the fixing portion 30 may be provided so as not to cover the periphery of the optical coupler 40.
  • the fixing portion 30 is, for example, one flat plate-shaped member, the first end of the fixing portion 30 is connected to the connecting portion 10, and the second end of the fixing portion 30 is connected to the connecting portion 20. May be configured.
  • the optical coupler may be bent or twisted due to the load applied to the optical coupler, and as a result, the optical coupler may be broken.
  • a technique for forming an optical coupler from a resin has been developed. Since such an optical coupler is compact and flexible, it has been applied to various fields in recent years. However, the optical coupler formed of the resin may break when assembled in the vehicle.
  • connection portion 10 can connect the optical fiber 52.
  • the connection unit 20 can connect the optical fiber 52.
  • the optical coupler 40 is connected between the connecting portion 10 and the connecting portion 20.
  • the fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20.
  • This embodiment relates to an in-vehicle communication system 402 having a plurality of master function units 201 as compared with the in-vehicle communication system 401 according to the first embodiment. Except for the contents described below, the same as the in-vehicle communication system 401 according to the first embodiment.
  • FIG. 16 is a diagram showing an example of the configuration of the in-vehicle communication system according to the second embodiment of the present disclosure.
  • the in-vehicle communication system 402 includes an optical connector 102 instead of the optical connector 101, and further includes a master function unit 201B, as compared with the in-vehicle communication system 401 shown in FIG.
  • the master function unit 201B is an example of the master function unit 201.
  • the in-vehicle communication system 402 may be configured to include three or more master function units 201, or may be configured to include one or three or more slave function units 211.
  • the master function unit 201B is connected to the optical connector 102 via the optical fiber 52 in the optical fiber cable 203B.
  • the optical fiber cable 203B is an example of the optical fiber cable 203.
  • the optical harness 302 includes an optical connector 102, an optical fiber 52 in the optical fiber cable 203A, an optical fiber 52 in the optical fiber cable 203B, an optical fiber 52 in the optical fiber cable 213A, and an optical fiber cable 213B. It includes an optical fiber 52.
  • the master function unit 201B includes an optical transceiver 202B.
  • the optical transceiver 202B is an example of the optical transceiver 202.
  • the optical transceiver 202B in the master function unit 201B is connected to the optical fiber cable 203B.
  • WDM is used in the downlink direction.
  • the optical transceiver 202B receives, for example, an uplink signal in the 1280 nm band from the optical fiber cable 203B, converts the received uplink signal into an electric signal, and outputs the received uplink signal to a processing unit (not shown).
  • the optical transceiver 202B in the master function unit 201B receives an electric signal from a processing unit (not shown), and the received electric signal has a wavelength different from the wavelength of the received uplink optical signal, and the master function unit 201A It is converted into a downlink light signal having a wavelength different from the wavelength of the downlink light signal to be output and output to the optical fiber cable 203B.
  • TDMA Time Division Multiple Access
  • FDM Frequency Division Multiple Access
  • SDM Session Detection
  • TWDM Time Division Multiple Access
  • FIG. 17 is a cross-sectional view showing an optical connector according to the second embodiment of the present disclosure.
  • FIG. 17 shows a cross-sectional view of the optical connector 102 when it is cut along the line XVII-XVII in FIG.
  • the optical waveguide 42 in the optical coupler 40 is formed in the main body 41 so as to extend between the connecting portion 10 and the connecting portion 20.
  • the optical waveguide 42 has a branch portion.
  • the optical waveguide 42 is connected to a first end 42A connected to the connecting portion 10, a second end 42B connected to the connecting portion 20, a third end 42C connected to the connecting portion 20, and the connecting portion 10. Includes a fourth end 42D to be connected.
  • FIG. 18 is a plan view showing an example of the optical harness according to the second embodiment of the present disclosure.
  • the optical harness 302 includes an optical connector 102, optical fiber cables 203A and 203B, and optical fiber cables 213A and 213B.
  • optical fiber 52 in the optical fiber cable 203A and the optical fiber 52 in the optical fiber cable 203B are connected to the connection portion 10 in the optical connector 102.
  • the optical fiber 52 in the optical fiber cable 213A and the optical fiber 52 in the optical fiber cable 213B are connected to the connection portion 20 in the optical connector 102.
  • the optical fiber cable 203A includes a cable portion 204A including the optical fiber 52 and a connector portion 205A provided at the first end of the cable portion 204A.
  • the optical fiber cable 203B includes a cable portion 204B including the optical fiber 52 and a connector portion 205B provided at the first end of the cable portion 204B.
  • the optical fiber cable 213A includes a cable portion 214A including the optical fiber 52 and a connector portion 215A provided at the first end of the cable portion 214A.
  • the optical fiber cable 213B includes a cable portion 214B including the optical fiber 52 and a connector portion 215B provided at the first end of the cable portion 214B.
  • the connector portion 205A of the optical fiber cable 203A and the connector portion 205B of the optical fiber cable 203B are connected to the connection portion 10 of the optical connector 102. Further, the connector portion 215A of the optical fiber cable 213A and the connector portion 215B of the optical fiber cable 213B are connected to the connection portion 20 of the optical connector 102. In addition, three or more optical fiber cables 213 may be connected to the connection portion 10, and one or three or more optical fiber cables 213 may be connected to the connection portion 20.
  • the second end of the cable unit 204A in the optical fiber cable 203A is connected to the master function unit 201A, and the second end of the cable unit 204B in the optical fiber cable 203B is connected to the master function unit 201B.
  • the second end of the cable portion 214A of the optical fiber cable 213A is connected to the slave function portion 211A, and the second end of the cable portion 214B of the optical fiber cable 213B is connected to the slave function portion 211B.
  • the connection unit 10 receives an optical signal from the optical fiber cables 203A and 203B.
  • the optical signal received by the connection unit 10 from the optical fiber cable 203A is output to the optical fiber cables 213A and 213B via the optical waveguide 42 and the connection unit 20 in the optical coupler 40.
  • the optical signal received by the connecting portion 10 from the optical fiber cable 203B is output to the optical fiber cables 213A and 213B via the optical waveguide 42 and the connecting portion 20 in the optical coupler 40.
  • the connection unit 20 receives an optical signal from the optical fiber cables 213A and 213B.
  • the optical signal received by the connection unit 20 from the optical fiber cable 213A is output to the optical fiber cables 203A and 203B via the optical waveguide 42 and the connection unit 10 in the optical coupler 40.
  • the optical signal received by the connecting portion 20 from the optical fiber cable 213B is output to the optical fiber cables 203A and 203B via the optical waveguide 42 in the optical coupler 40 and the connecting portion 10.
  • An optical connector that relays optical signals between functional units mounted on a vehicle.
  • a fixing portion for fixing the positional relationship between the first connecting portion and the second connecting portion is provided.
  • the optical coupler The main body made of resin and An optical connector including an optical waveguide having a branch portion formed on the main body portion.
  • [Appendix 2] An optical connector that relays optical signals between functional units mounted on a vehicle.
  • a fixing portion for fixing the positional relationship between the first connecting portion and the second connecting portion is provided.
  • the functional unit is an optical connector which is at least one of an ECU, a sensor, and an antenna module.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

This optical connector is provided with: a first connecting part capable of connecting an optical fiber; a second connecting part capable of connecting the optical fiber; an optical coupler connected between the first connecting part and the second connecting part; and a fixing part that fixes a positional relation between the first connecting part and the second connecting part.

Description

光コネクタ、光ハーネスおよび車載通信システムOptical connectors, optical harnesses and in-vehicle communication systems
 本開示は、光コネクタ、光ハーネスおよび車載通信システムに関する。
 この出願は、2020年3月25日に出願された日本出願特願2020-54406号を基礎とする優先権を主張し、その開示のすべてをここに取り込む。
The present disclosure relates to optical connectors, optical harnesses and in-vehicle communication systems.
This application claims priority on the basis of Japanese Application Japanese Patent Application No. 2020-54406 filed on March 25, 2020 and incorporates all of its disclosures herein.
 特許文献1(国際公開第2019/111447号)には、以下のような車載通信システムが開示されている。すなわち、車載通信システムは、車両に搭載される車載通信システムであって、マスタ機能部と、複数のスレーブ機能部とを備え、前記複数のスレーブ機能部は、少なくとも共通の光ファイバを介して、上り通信信号を前記マスタ機能部へ送信可能である。 Patent Document 1 (International Publication No. 2019/11147) discloses the following in-vehicle communication system. That is, the in-vehicle communication system is an in-vehicle communication system mounted on a vehicle, and includes a master function unit and a plurality of slave function units, and the plurality of slave function units are provided via at least a common optical fiber. The uplink communication signal can be transmitted to the master function unit.
国際公開第2019/111447号International Publication No. 2019/11147
 本開示の光コネクタは、車両に搭載される機能部間の光信号を中継する光コネクタであって、光ファイバを接続可能な第1の接続部と、光ファイバを接続可能な第2の接続部と、前記第1の接続部と前記第2の接続部との間に接続される光カプラと、前記第1の接続部および前記第2の接続部の位置関係を固定する固定部とを備える。 The optical connector of the present disclosure is an optical connector that relays an optical signal between functional units mounted on a vehicle, and is a first connection portion to which an optical fiber can be connected and a second connection to which an optical fiber can be connected. An optical coupler connected between the first connecting portion and the second connecting portion, and a fixing portion for fixing the positional relationship between the first connecting portion and the second connecting portion. Be prepared.
図1は、本開示の第1の実施の形態に係る車載通信システムの構成の一例を示す図である。FIG. 1 is a diagram showing an example of a configuration of an in-vehicle communication system according to the first embodiment of the present disclosure. 図2は、本開示の第1の実施の形態に係る車載通信システムにおける光ファイバケーブルの構成の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the configuration of an optical fiber cable in the in-vehicle communication system according to the first embodiment of the present disclosure. 図3は、本開示の第1の実施の形態に係る光コネクタの一例を示す正面図である。FIG. 3 is a front view showing an example of an optical connector according to the first embodiment of the present disclosure. 図4は、本開示の第1の実施の形態に係る光コネクタの一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure. 図5は、本開示の第1の実施の形態に係る光コネクタの一例を示す平面図である。FIG. 5 is a plan view showing an example of an optical connector according to the first embodiment of the present disclosure. 図6は、本開示の第1の実施の形態に係る光コネクタの一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure. 図7は、本開示の第1の実施の形態に係る光ハーネスの一例を示す平面図である。FIG. 7 is a plan view showing an example of the optical harness according to the first embodiment of the present disclosure. 図8は、本開示の第1の実施の形態に係る光コネクタの使用態様の一例を示す図である。FIG. 8 is a diagram showing an example of a usage mode of the optical connector according to the first embodiment of the present disclosure. 図9は、本開示の第1の実施の形態に係る光コネクタの使用態様の他の例を示す図である。FIG. 9 is a diagram showing another example of the usage mode of the optical connector according to the first embodiment of the present disclosure. 図10は、本開示の第1の実施の形態の変形例1に係る光コネクタを示す断面図である。FIG. 10 is a cross-sectional view showing an optical connector according to a modification 1 of the first embodiment of the present disclosure. 図11は、本開示の第1の実施の形態の変形例2に係る光コネクタを示す断面図である。FIG. 11 is a cross-sectional view showing an optical connector according to a second modification of the first embodiment of the present disclosure. 図12は、本開示の第1の実施の形態の変形例3に係る光コネクタを示す断面図である。FIG. 12 is a cross-sectional view showing an optical connector according to a modification 3 of the first embodiment of the present disclosure. 図13は、本開示の第1の実施の形態の変形例4に係る光コネクタを示す平面図である。FIG. 13 is a plan view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure. 図14は、本開示の第1の実施の形態の変形例4に係る光コネクタを示す断面図である。FIG. 14 is a cross-sectional view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure. 図15は、本開示の第1の実施の形態の変形例4に係る光コネクタの使用態様の一例を示す図である。FIG. 15 is a diagram showing an example of a usage mode of the optical connector according to the modified example 4 of the first embodiment of the present disclosure. 図16は、本開示の第2の実施の形態に係る車載通信システムの構成の一例を示す図である。FIG. 16 is a diagram showing an example of the configuration of the in-vehicle communication system according to the second embodiment of the present disclosure. 図17は、本開示の第2の実施の形態に係る光コネクタを示す断面図である。FIG. 17 is a cross-sectional view showing an optical connector according to a second embodiment of the present disclosure. 図18は、本開示の第2の実施の形態に係る光ハーネスの一例を示す平面図である。FIG. 18 is a plan view showing an example of the optical harness according to the second embodiment of the present disclosure.
 従来、車両におけるデータ通信量の増加に対応するために、車載通信システムに光ファイバを用いる技術が提案されている。 Conventionally, a technology using an optical fiber for an in-vehicle communication system has been proposed in order to cope with an increase in data communication volume in a vehicle.
 [本開示が解決しようとする課題]
 特許文献1に記載の技術を超えて、光カプラを車載通信システムに用いる場合において、光カプラの破断を抑制することを可能とする技術が望まれる。
[Issues to be solved by this disclosure]
Beyond the technique described in Patent Document 1, when the optical coupler is used in an in-vehicle communication system, a technique capable of suppressing the breakage of the optical coupler is desired.
 本開示は、上述の課題を解決するためになされたもので、その目的は、光カプラを車載通信システムに用いる場合において、光カプラの破断を抑制することが可能な光コネクタ、光ハーネスおよび車載通信システムを提供することである。 The present disclosure has been made to solve the above-mentioned problems, and an object thereof is an optical connector, an optical harness, and an in-vehicle device capable of suppressing breakage of the optical coupler when the optical coupler is used in an in-vehicle communication system. To provide a communication system.
 [本開示の効果]
 本開示によれば、光カプラを車載通信システムに用いる場合において、光カプラの破断を抑制することができる。
[Effect of the present disclosure]
According to the present disclosure, when the optical coupler is used in an in-vehicle communication system, it is possible to suppress the breakage of the optical coupler.
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
[Explanation of Embodiments of the present disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
 (1)本開示の実施の形態に係る光コネクタは、車両に搭載される機能部間の光信号を中継する光コネクタであって、光ファイバを接続可能な第1の接続部と、光ファイバを接続可能な第2の接続部と、前記第1の接続部と前記第2の接続部との間に接続される光カプラと、前記第1の接続部および前記第2の接続部の位置関係を固定する固定部とを備える。 (1) The optical connector according to the embodiment of the present disclosure is an optical connector that relays an optical signal between functional units mounted on a vehicle, and has a first connecting portion to which an optical fiber can be connected and an optical fiber. The position of the second connection portion to which the above can be connected, the optical coupler connected between the first connection portion and the second connection portion, and the positions of the first connection portion and the second connection portion. It is provided with a fixing portion for fixing the relationship.
 このように、固定部が接続部および接続部の位置関係を固定する構成により、光コネクタに負荷が加わった際の光カプラにおける曲げおよび捻じれの発生を抑制することができる。したがって、光カプラの破断を抑制することができる。 In this way, by configuring the fixing portion to fix the positional relationship between the connecting portion and the connecting portion, it is possible to suppress the occurrence of bending and twisting in the optical coupler when a load is applied to the optical connector. Therefore, the breakage of the optical coupler can be suppressed.
 (2)好ましくは、前記第1の接続部および前記第2の接続部は、互いに異なる耐熱性を有する。 (2) Preferably, the first connection portion and the second connection portion have different heat resistances from each other.
 このように、第1の接続部および第2の接続部が、たとえば配置される温度環境に耐え得るように互いに異なる耐熱性を有する構成により、互いに異なる温度環境に配置された機能部間おいて光コネクタを用いることができる。 In this way, the first connecting portion and the second connecting portion are configured to have different heat resistances so as to be able to withstand the arranged temperature environment, for example, so that the functional units arranged in different temperature environments are separated from each other. An optical connector can be used.
 (3)好ましくは、前記第2の接続部は、前記光カプラを介して前記第1の接続部に対向する位置以外の位置に設けられる。 (3) Preferably, the second connecting portion is provided at a position other than the position facing the first connecting portion via the optical coupler.
 このような構成により、たとえば、光コネクタと機能部との位置関係に応じた位置に各接続部を設けることができるため、多様な配線構造を有する車載通信システムに光コネクタを用いることができる。 With such a configuration, for example, each connection unit can be provided at a position corresponding to the positional relationship between the optical connector and the functional unit, so that the optical connector can be used for an in-vehicle communication system having various wiring structures.
 (4)好ましくは、前記光コネクタは、さらに、光ファイバを接続可能な第3の接続部を備え、前記光カプラは、さらに、前記第1の接続部と前記第3の接続部との間、および前記第2の接続部と前記第3の接続部との間に接続され、前記固定部は、さらに、前記第1の接続部および前記第3の接続部の位置関係、ならびに前記第2の接続部および前記第3の接続部の位置関係を固定する。 (4) Preferably, the optical connector further includes a third connection portion to which an optical fiber can be connected, and the optical coupler further comprises between the first connection portion and the third connection portion. , And the second connection portion and the third connection portion, and the fixing portion further includes a positional relationship between the first connection portion and the third connection portion, and the second connection portion. The positional relationship between the connecting portion and the third connecting portion is fixed.
 このように、3つの接続部を備える構成により、多様な配線構造を有する車載通信システムに光コネクタを用いることができる。 As described above, the optical connector can be used for an in-vehicle communication system having various wiring structures by the configuration including three connection portions.
 (5)好ましくは、前記固定部は、前記光カプラが湾曲した状態で前記第1の接続部および前記第2の接続部の位置関係を固定する。 (5) Preferably, the fixing portion fixes the positional relationship between the first connecting portion and the second connecting portion in a state where the optical coupler is curved.
 このような構成により、第1の接続部および第2の接続部の間隔を光カプラの長さよりも短くすることができるため、配索スペースが限られた車両において、光コネクタをコンパクト化することができる。なお、光カプラが湾曲した状態で第1の接続部および第2の接続部に接続される場合においても、第1の接続部および第2の接続部の位置関係が固定部により固定される構成により、光コネクタに負荷が加わることによる光カプラにおける曲げおよび捻じれの発生を抑制することができる。 With such a configuration, the distance between the first connection portion and the second connection portion can be made shorter than the length of the optical coupler, so that the optical connector can be made compact in a vehicle having a limited wiring space. Can be done. Even when the optical coupler is connected to the first connecting portion and the second connecting portion in a curved state, the positional relationship between the first connecting portion and the second connecting portion is fixed by the fixing portion. Therefore, it is possible to suppress the occurrence of bending and twisting in the optical coupler due to the load applied to the optical connector.
 (6)好ましくは、前記固定部は、前記光カプラの周囲を覆うように設けられ、前記光コネクタは、さらに、前記光カプラと前記固定部との間を充填する充填部を備える。 (6) Preferably, the fixing portion is provided so as to cover the periphery of the optical coupler, and the optical connector further includes a filling portion that fills the space between the optical coupler and the fixing portion.
 このような構成により、高湿環境における光カプラの劣化および特性変化を抑制することができるとともに、光カプラを難燃化することができる。 With such a configuration, deterioration and characteristic change of the optical coupler in a high humidity environment can be suppressed, and the optical coupler can be made flame-retardant.
 (7)より好ましくは、前記充填部は、樹脂である。 More preferably than (7), the filling portion is a resin.
 このような構成により、容易に、かつ低コストで、光カプラと固定部との間を隙間なく充填することができる。また、たとえば光カプラの線膨張係数と同等の線膨張係数を有する樹脂を用いることにより、温度が変化した際の光カプラおよび樹脂の膨張率の差異に起因する光カプラの破断を抑制することができる。 With such a configuration, it is possible to easily and at low cost to fill the space between the optical coupler and the fixed portion without a gap. Further, for example, by using a resin having a linear expansion coefficient equivalent to that of the optical coupler, it is possible to suppress breakage of the optical coupler due to the difference in expansion coefficient between the optical coupler and the resin when the temperature changes. can.
 (8)より好ましくは、前記充填部は、発泡樹脂である。 More preferably than (8), the filling portion is a foamed resin.
 このような構成により、充填部の断熱性を向上させることができ、環境温度の変化が光カプラに与える影響を抑制することができる。 With such a configuration, the heat insulating property of the filled portion can be improved, and the influence of the change in the environmental temperature on the optical coupler can be suppressed.
 (9)本開示の第1の実施の形態に係る光ハーネスは、前記光コネクタと、前記第1の接続部に接続される第1の光ファイバと、前記第2の接続部に接続される第2の光ファイバとを備える。 (9) The optical harness according to the first embodiment of the present disclosure is connected to the optical connector, the first optical fiber connected to the first connection portion, and the second connection portion. A second optical fiber is provided.
 このような構成により、光コネクタを備える光ハーネスにおいて、光カプラの破断を抑制することができる。 With such a configuration, it is possible to suppress the breakage of the optical coupler in the optical harness provided with the optical connector.
 (10)本開示の第1の実施の形態に係る車載通信システムは、前記光コネクタと、第1の光ファイバを介して前記第1の接続部に接続される第1の機能部と、第2の光ファイバを介して前記第2の接続部に接続される第2の機能部とを備え、前記光コネクタは、前記車両に設けられた断熱板を貫通するように配置される。 (10) The in-vehicle communication system according to the first embodiment of the present disclosure includes the optical connector, a first functional unit connected to the first connection portion via a first optical fiber, and a first. The optical connector includes a second functional unit connected to the second connecting portion via the optical fiber 2, and the optical connector is arranged so as to penetrate the heat insulating plate provided in the vehicle.
 このような構成により、光コネクタを備える車載通信システムにおいて、光カプラの破断を抑制することができる。また、光コネクタが断熱板を貫通するように配置される構成により、光コネクタが、断熱板に配線を通すための部材たとえばインラインコネクタとして機能するため、このような部材を削減することができる。 With such a configuration, it is possible to suppress breakage of the optical coupler in an in-vehicle communication system including an optical connector. Further, since the optical connector is arranged so as to penetrate the heat insulating plate, the optical connector functions as a member for passing wiring through the heat insulating plate, for example, an in-line connector, so that such a member can be reduced.
 以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated. In addition, at least a part of the embodiments described below may be arbitrarily combined.
 <第1の実施の形態>
 [構成および基本動作]
 図1は、本開示の第1の実施の形態に係る車載通信システムの構成の一例を示す図である。
<First Embodiment>
[Configuration and basic operation]
FIG. 1 is a diagram showing an example of a configuration of an in-vehicle communication system according to the first embodiment of the present disclosure.
 図1を参照して、車載通信システム401は、マスタ機能部201と、複数のスレーブ機能部211と、光コネクタ101とを備える。図に示す例では、車載通信システム401は、マスタ機能部201として、マスタ機能部201Aを備え、スレーブ機能部211として、スレーブ機能部211A,211Bを備える。マスタ機能部201は、第1の機能部の一例である。スレーブ機能部211は、第2の機能部の一例である。車載通信システム401は、1つまたは3つ以上のスレーブ機能部211を備える構成であってもよい。 With reference to FIG. 1, the in-vehicle communication system 401 includes a master function unit 201, a plurality of slave function units 211, and an optical connector 101. In the example shown in the figure, the in-vehicle communication system 401 includes a master function unit 201A as a master function unit 201 and slave function units 211A and 211B as slave function units 211. The master function unit 201 is an example of the first function unit. The slave function unit 211 is an example of the second function unit. The in-vehicle communication system 401 may be configured to include one or more slave function units 211.
 車載通信システム401は、車両1に搭載される。たとえば、車載通信システム401は、PON(Passive Optical Network)システムである。なお、車載通信システム401は、PONシステム以外の光通信システムであってもよい。 The in-vehicle communication system 401 is mounted on the vehicle 1. For example, the in-vehicle communication system 401 is a PON (Passive Optical Network) system. The in-vehicle communication system 401 may be an optical communication system other than the PON system.
 マスタ機能部201およびスレーブ機能部211は、たとえば、ECU、センサ、またはアンテナモジュールである。ECUは、たとえば、自動運転ECU(Electronic Control Unit)、ナビゲーション装置、TCU(Telematics Communication Unit)およびゲートウェイ装置等である。センサは、たとえば、カメラ、ミリ波センサおよびLiDAR(Light Detection and Ranging)等である。 The master function unit 201 and the slave function unit 211 are, for example, an ECU, a sensor, or an antenna module. The ECU includes, for example, an automatic operation ECU (Electronic Control Unit), a navigation device, a TCU (Telematics Communication Unit), a gateway device, and the like. The sensor is, for example, a camera, a millimeter wave sensor, LiDAR (Light Detection and Ringing), or the like.
 マスタ機能部201Aは、光ファイバケーブル203Aを介して光コネクタ101に接続される。また、スレーブ機能部211Aは、光ファイバケーブル213Aを介して光コネクタ101に接続され、スレーブ機能部211Bは、光ファイバケーブル213Bを介して光コネクタ101に接続される。光ファイバケーブル203Aは、光ファイバケーブル203の一例である。光ファイバケーブル213A,213Bは、光ファイバケーブル213の一例である The master function unit 201A is connected to the optical connector 101 via the optical fiber cable 203A. Further, the slave function unit 211A is connected to the optical connector 101 via the optical fiber cable 213A, and the slave function unit 211B is connected to the optical connector 101 via the optical fiber cable 213B. The optical fiber cable 203A is an example of the optical fiber cable 203. The optical fiber cables 213A and 213B are examples of the optical fiber cables 213.
 図2は、本開示の第1の実施の形態に係る車載通信システムにおける光ファイバケーブルの構成の一例を示す断面図である。図2は、光ファイバケーブル203および光ファイバケーブル213の断面図を示している。 FIG. 2 is a cross-sectional view showing an example of the configuration of an optical fiber cable in the in-vehicle communication system according to the first embodiment of the present disclosure. FIG. 2 shows a cross-sectional view of the optical fiber cable 203 and the optical fiber cable 213.
 図2を参照して、光ファイバケーブル203,213は、テンションメンバ51と、テンションメンバ51の周囲に配置される複数の光ファイバ52と、複数の光ファイバ52を覆う保護層53と、保護層53を覆う押さえ巻54と、押さえ巻54を覆うシース55とを含む。光ファイバ52は、たとえば光ファイバ心線である。光ファイバケーブル203,213における光ファイバ52の数は、図2の一例では12本であるが、これに限定されない。光ファイバケーブル203,213は、1本の光ファイバ52を含む構成であってもよい。光ファイバケーブル203,213は、光ファイバ心線である光ファイバ52を収容する構成に限定されず、たとえば、0.25mm素線、0.9mm心線、またはテープ心線などであってもよい。 With reference to FIG. 2, the optical fiber cables 203 and 213 include a tension member 51, a plurality of optical fibers 52 arranged around the tension member 51, a protective layer 53 covering the plurality of optical fibers 52, and a protective layer. A presser foot 54 covering the presser foot 53 and a sheath 55 covering the presser foot 54 are included. The optical fiber 52 is, for example, an optical fiber core wire. The number of optical fibers 52 in the optical fiber cables 203 and 213 is 12, but is not limited to 12 in the example of FIG. The optical fiber cables 203 and 213 may be configured to include one optical fiber 52. The optical fiber cables 203 and 213 are not limited to the configuration that accommodates the optical fiber 52 that is the optical fiber core wire, and may be, for example, a 0.25 mm wire, a 0.9 mm core wire, or a tape core wire. ..
 マスタ機能部201Aは、光ファイバケーブル203Aにおける光ファイバ52を介して光コネクタ101に光接続される。また、スレーブ機能部211Aは、光ファイバケーブル213Aにおける光ファイバ52を介して光コネクタ101に光接続され、スレーブ機能部211Bは、光ファイバケーブル213Bにおける光ファイバ52を介して光コネクタ101に光接続される。 The master function unit 201A is optically connected to the optical connector 101 via the optical fiber 52 in the optical fiber cable 203A. Further, the slave function unit 211A is optically connected to the optical connector 101 via the optical fiber 52 in the optical fiber cable 213A, and the slave function unit 211B is optically connected to the optical connector 101 via the optical fiber 52 in the optical fiber cable 213B. Will be done.
 光コネクタ101、光ファイバケーブル203Aおよび光ファイバケーブル213A,213Bの各々は、光ハーネス301の一部を構成する。より詳細には、光ハーネス301は、光コネクタ101と、光ファイバケーブル203Aにおける光ファイバ52と、光ファイバケーブル213Aにおける光ファイバ52と、光ファイバケーブル213Bにおける光ファイバ52とを備える。 Each of the optical connector 101, the optical fiber cable 203A, and the optical fiber cables 213A and 213B constitutes a part of the optical harness 301. More specifically, the optical harness 301 includes an optical connector 101, an optical fiber 52 in the optical fiber cable 203A, an optical fiber 52 in the optical fiber cable 213A, and an optical fiber 52 in the optical fiber cable 213B.
 マスタ機能部201Aは、光トランシーバ202Aを含む。スレーブ機能部211Aは、光トランシーバ212Aを含む。スレーブ機能部211Bは、光トランシーバ212Bを含む。光トランシーバ202Aは、光トランシーバ202の一例である。光トランシーバ212A,212Bは、光トランシーバ212の一例である。 The master function unit 201A includes an optical transceiver 202A. The slave function unit 211A includes an optical transceiver 212A. The slave function unit 211B includes an optical transceiver 212B. The optical transceiver 202A is an example of the optical transceiver 202. The optical transceivers 212A and 212B are examples of the optical transceiver 212.
 光コネクタ101は、機能部間の光信号を中継する。たとえば、光コネクタ101は、マスタ機能部201とスレーブ機能部211との間の光信号を中継する。 The optical connector 101 relays optical signals between functional units. For example, the optical connector 101 relays an optical signal between the master function unit 201 and the slave function unit 211.
 ここで、スレーブ機能部211からマスタ機能部201への方向を上り方向と称し、マスタ機能部201からスレーブ機能部211への方向を下り方向と称する。車載通信システム401は、たとえば、TDM-PONシステムである。具体的には、車載通信システム401では、上り方向が時分割多重アクセス(TDMA:Time Division Multiple Access)であり、下り方向が時分割多重(TDM:Time Division Multiplexing)である。 Here, the direction from the slave function unit 211 to the master function unit 201 is referred to as an up direction, and the direction from the master function unit 201 to the slave function unit 211 is referred to as a down direction. The in-vehicle communication system 401 is, for example, a TDM-PON system. Specifically, in the in-vehicle communication system 401, the uplink direction is time division multiple access (TDMA: Time Division Multiple Access), and the downlink direction is time division multiplexing (TDM: Time Division Multiple Access).
 各スレーブ機能部211は、フレーム等の上り通信信号を含む上り光信号を対応の光ファイバケーブル213、光コネクタ101および光ファイバケーブル203A経由でマスタ機能部201へ送信可能である。また、マスタ機能部201Aは、フレーム等の下り通信信号を含む下り光信号を光ファイバケーブル203A、光コネクタ101および各光ファイバケーブル213経由で対応のスレーブ機能部211へ送信可能である。 Each slave function unit 211 can transmit an uplink light signal including an uplink communication signal such as a frame to the master function unit 201 via the corresponding optical fiber cable 213, optical connector 101, and optical fiber cable 203A. Further, the master function unit 201A can transmit a downlink optical signal including a downlink communication signal such as a frame to the corresponding slave function unit 211 via the optical fiber cable 203A, the optical connector 101, and each optical fiber cable 213.
 マスタ機能部201Aにおける光トランシーバ202Aは、光ファイバケーブル203Aと接続される。光トランシーバ202Aは、たとえば1280nm帯の上り光信号を光ファイバケーブル203Aから受信し、受信した上り光信号を電気信号に変換して図示しない処理部へ出力する。また、マスタ機能部201Aにおける光トランシーバ202Aは、図示しない処理部から電気信号を受けて、受けた電気信号を別波長たとえば1570nm帯の下り光信号に変換して光ファイバケーブル203Aへ出力する。光トランシーバ202と光コネクタ101との間の通信は、光ファイバケーブル203Aに含まれる光ファイバ52の数が1本である場合、1芯双方向通信である。光トランシーバ202と光コネクタ101との間の通信は、光ファイバケーブル203Aに含まれる光ファイバ52の数が複数本である場合、1芯双方向通信であってもよいし、芯別双方向通信であってもよい。 The optical transceiver 202A in the master function unit 201A is connected to the optical fiber cable 203A. For example, the optical transceiver 202A receives an uplink signal in the 1280 nm band from the optical fiber cable 203A, converts the received uplink signal into an electric signal, and outputs the received uplink signal to a processing unit (not shown). Further, the optical transceiver 202A in the master function unit 201A receives an electric signal from a processing unit (not shown), converts the received electric signal into a downlink optical signal having a different wavelength, for example, the 1570 nm band, and outputs the received electric signal to the optical fiber cable 203A. Communication between the optical transceiver 202 and the optical connector 101 is 1-core bidirectional communication when the number of optical fibers 52 included in the optical fiber cable 203A is one. Communication between the optical transceiver 202 and the optical connector 101 may be one-core bidirectional communication or two-core bidirectional communication when the number of optical fibers 52 included in the optical fiber cable 203A is a plurality of lines. It may be.
 スレーブ機能部211Aにおける光トランシーバ212Aは、光ファイバケーブル213Aと接続され、スレーブ機能部211Bにおける光トランシーバ212Bは、光ファイバケーブル213Bと接続される。光トランシーバ212は、1570nm帯の下り光信号を光ファイバケーブル213から受信し、受信した下り光信号を電気信号に変換して図示しない処理部へ出力する。また、スレーブ機能部211おける光トランシーバ212は、図示しない処理部から電気信号を受けて、受けた電気信号をたとえば1280nm帯の上り光信号に変換して光ファイバケーブル213へ出力する。光トランシーバ212と光コネクタ101との間の通信は、マスタ機能部201A側と同様に、光ファイバケーブル213に含まれる光ファイバ52の数に応じて、1芯双方向通信であってもよいし、芯別双方向通信であってもよい。 The optical transceiver 212A in the slave function unit 211A is connected to the optical fiber cable 213A, and the optical transceiver 212B in the slave function unit 211B is connected to the optical fiber cable 213B. The optical transceiver 212 receives a downlink light signal in the 1570 nm band from the optical fiber cable 213, converts the received downlink light signal into an electric signal, and outputs the received downlink light signal to a processing unit (not shown). Further, the optical transceiver 212 in the slave function unit 211 receives an electric signal from a processing unit (not shown), converts the received electric signal into, for example, an uplink optical signal in the 1280 nm band, and outputs the received electric signal to the optical fiber cable 213. The communication between the optical transceiver 212 and the optical connector 101 may be one-core bidirectional communication depending on the number of optical fibers 52 included in the optical fiber cable 213, as in the case of the master function unit 201A side. , Two-way communication by core may be used.
 なお、車載通信システム401では、上り方向において、TDMAに限らず、よりデータ量の大きい通信に適した波長分割多重(WDM:Wavelength Division Multiplexing)を用いてもよい。この場合、複数のスレーブ機能部211は、互いに異なる波長の上り光信号を送信する。 In the in-vehicle communication system 401, in the uplink direction, not only TDMA but also wavelength division multiplexing (WDM: Wavelength Division Multiplexing) suitable for communication with a larger amount of data may be used. In this case, the plurality of slave function units 211 transmit uplink signals having different wavelengths from each other.
 また、車載通信システム401では、下り方向において、TDMに限らず、よりデータ量の大きい通信に適したWDMを用いてもよい。この場合、マスタ機能部201は、各スレーブ機能部211へ異なる波長の下り光信号を送信する。 Further, in the in-vehicle communication system 401, in the downlink direction, not only TDM but also WDM suitable for communication with a larger amount of data may be used. In this case, the master function unit 201 transmits downlink light signals having different wavelengths to each slave function unit 211.
 また、車載通信システム401では、上り方向において、TDMAに限らず、よりデータ量の大きい通信に適した符号分割多重(CDM:Code Division Multiplexing)を用いてもよい。この場合、複数のスレーブ機能部211は、互いに異なる拡散符号により拡散された通信信号を含む上り光信号を送信する。 Further, in the in-vehicle communication system 401, in the uplink direction, not only TDMA but also code division multiplexing (CDM: Code Division Multiplexing) suitable for communication with a larger amount of data may be used. In this case, the plurality of slave function units 211 transmit an uplink signal including a communication signal diffused by different diffusion codes.
 また、車載通信システム401では、下り方向において、TDMに限らず、よりデータ量の大きい通信に適したCDMを用いてもよい。この場合、マスタ機能部201は、各スレーブ機能部211へ異なる拡散符号により拡散された通信信号を含む下り光信号を送信する。 Further, in the in-vehicle communication system 401, in the downlink direction, not only TDM but also CDM suitable for communication with a larger amount of data may be used. In this case, the master function unit 201 transmits a downlink light signal including a communication signal diffused by a different diffusion code to each slave function unit 211.
 また、車載通信システム401では、上記の方法に限らず、よりデータ量の大きい通信に適した周波数分割多重(FDM:Frequency Division Multiplexing)、空間分割多重(SDM:Space Division Multiplexing)または時分割波長多重(TWDM:Time and Wavelength Division Multiplexing)等を用いてもよい。 Further, in the in-vehicle communication system 401, not limited to the above method, frequency division multiplexing (FDM: Frequency Division Multiplexing), space division multiplexing (SDM: Space Division Multiplexing) or time division frequency multiplexing suitable for communication with a larger amount of data is not limited to the above method. (TWDM: Time and Wavelength Division Multiplexing) or the like may be used.
 [光ハーネスおよび光コネクタ]
 図3は、本開示の第1の実施の形態に係る光コネクタの一例を示す正面図である。図4は、本開示の第1の実施の形態に係る光コネクタの一例を示す断面図である。図4は、図3におけるIV-IV線矢視断面図である。
[Optical harness and optical connector]
FIG. 3 is a front view showing an example of an optical connector according to the first embodiment of the present disclosure. FIG. 4 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure. FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG.
 図5は、本開示の第1の実施の形態に係る光コネクタの一例を示す平面図である。図6は、本開示の第1の実施の形態に係る光コネクタの一例を示す断面図である。図6は、図5におけるVI-VI線矢視断面図である。 FIG. 5 is a plan view showing an example of an optical connector according to the first embodiment of the present disclosure. FIG. 6 is a cross-sectional view showing an example of an optical connector according to the first embodiment of the present disclosure. FIG. 6 is a cross-sectional view taken along the line VI-VI in FIG.
 図3~図6を参照して、光コネクタ101は、接続部10と、接続部20と、固定部30と、光カプラ40とを備える。接続部10,20は、1または複数の光ファイバケーブル203,213における光ファイバ52を接続可能である。接続部10は、第1の接続部の一例であり、接続部20は、第2の接続部の一例である。 With reference to FIGS. 3 to 6, the optical connector 101 includes a connecting portion 10, a connecting portion 20, a fixing portion 30, and an optical coupler 40. The connection units 10 and 20 can connect the optical fibers 52 in one or a plurality of optical fiber cables 203 and 213. The connection portion 10 is an example of the first connection portion, and the connection portion 20 is an example of the second connection portion.
 図4および図6を参照して、光カプラ40は、接続部10と接続部20との間に接続される。光カプラ40は、フィルム状の本体部41と、本体部41に形成された光導波路42とを含む。たとえば、光カプラ40は、樹脂により形成される。より詳細には、光カプラ40は、樹脂により形成された本体部41に、フォトリソグラフィ技術等を用いて光導波路42を形成することにより生成される。樹脂により形成される光カプラ40は、コンパクトかつフレキシブル性を有する。 With reference to FIGS. 4 and 6, the optical coupler 40 is connected between the connecting portion 10 and the connecting portion 20. The optical coupler 40 includes a film-shaped main body 41 and an optical waveguide 42 formed on the main body 41. For example, the optical coupler 40 is made of resin. More specifically, the optical coupler 40 is generated by forming an optical waveguide 42 on a main body 41 made of resin by using a photolithography technique or the like. The optical coupler 40 formed of resin is compact and flexible.
 光導波路42は、接続部10と接続部20との間において延びるように本体部41に形成される。光導波路42は、分岐部を有する。たとえば、光導波路42は、接続部10に接続される第1端42Aと、接続部20に接続される第2端42Bと、接続部20に接続される第3端42Cとを含む。 The optical waveguide 42 is formed in the main body 41 so as to extend between the connecting portion 10 and the connecting portion 20. The optical waveguide 42 has a branch portion. For example, the optical waveguide 42 includes a first end 42A connected to the connecting portion 10, a second end 42B connected to the connecting portion 20, and a third end 42C connected to the connecting portion 20.
 図3~図6を参照して、固定部30は、接続部10および接続部20の位置関係を固定する。より詳細には、固定部30は、たとえば接続部10の外周面および接続部20の外周面に、接着剤、粘着剤、またはネジ止めにより固定される。固定部30は、たとえば、樹脂または金属により形成される。 With reference to FIGS. 3 to 6, the fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20. More specifically, the fixing portion 30 is fixed to, for example, the outer peripheral surface of the connecting portion 10 and the outer peripheral surface of the connecting portion 20 by an adhesive, an adhesive, or a screw. The fixing portion 30 is formed of, for example, resin or metal.
 たとえば、固定部30は、光カプラ40の周囲を覆うように設けられる。より詳細には、固定部30は、外形が四角柱である筒状の部材である。固定部30の第1端の内周部分が接続部10に接続され、固定部30の第2端の内周部分が接続部20に接続される。 For example, the fixing portion 30 is provided so as to cover the periphery of the optical coupler 40. More specifically, the fixing portion 30 is a tubular member having a square pillar outer shape. The inner peripheral portion of the first end of the fixed portion 30 is connected to the connecting portion 10, and the inner peripheral portion of the second end of the fixed portion 30 is connected to the connecting portion 20.
 なお、固定部30は、平板状の部材であってもよい。この場合、たとえば、光コネクタ101は、複数の固定部30を備える。当該複数の固定部30は、当該複数の固定部30によって光カプラ40の周囲が覆われるように設けられる。 The fixing portion 30 may be a flat plate-shaped member. In this case, for example, the optical connector 101 includes a plurality of fixing portions 30. The plurality of fixing portions 30 are provided so that the periphery of the optical coupler 40 is covered by the plurality of fixing portions 30.
 図7は、本開示の第1の実施の形態に係る光ハーネスの一例を示す平面図である。 FIG. 7 is a plan view showing an example of the optical harness according to the first embodiment of the present disclosure.
 図7を参照して、光ハーネス301は、光コネクタ101と、光ファイバケーブル203Aと、光ファイバケーブル213A,213Bとを備える。 With reference to FIG. 7, the optical harness 301 includes an optical connector 101, an optical fiber cable 203A, and optical fiber cables 213A and 213B.
 光ファイバケーブル203Aにおける光ファイバ52は、光コネクタ101における接続部10に接続される。光ファイバケーブル213Aにおける光ファイバ52および光ファイバケーブル213Bにおける光ファイバ52は、光コネクタ101における接続部20に接続される。 The optical fiber 52 in the optical fiber cable 203A is connected to the connection portion 10 in the optical connector 101. The optical fiber 52 in the optical fiber cable 213A and the optical fiber 52 in the optical fiber cable 213B are connected to the connection portion 20 in the optical connector 101.
 より詳細には、光ファイバケーブル203Aは、光ファイバ52を含むケーブル部204Aと、ケーブル部204Aの第1端に設けられたコネクタ部205Aとを含む。光ファイバケーブル213Aは、光ファイバ52を含むケーブル部214Aと、ケーブル部214Aの第1端に設けられたコネクタ部215Aとを含む。光ファイバケーブル213Bは、光ファイバ52を含むケーブル部214Bと、ケーブル部214Bの第1端に設けられたコネクタ部215Bとを含む。 More specifically, the optical fiber cable 203A includes a cable portion 204A including the optical fiber 52 and a connector portion 205A provided at the first end of the cable portion 204A. The optical fiber cable 213A includes a cable portion 214A including the optical fiber 52 and a connector portion 215A provided at the first end of the cable portion 214A. The optical fiber cable 213B includes a cable portion 214B including the optical fiber 52 and a connector portion 215B provided at the first end of the cable portion 214B.
 光ファイバケーブル203Aにおけるコネクタ部205Aは、光コネクタ101における接続部10に接続される。また、光ファイバケーブル213Aにおけるコネクタ部215Aおよび光ファイバケーブル213Bにおけるコネクタ部215Bは、光コネクタ101における接続部20に接続される。なお、接続部20に1本または3本以上の光ファイバケーブル213が接続されてもよい。 The connector portion 205A of the optical fiber cable 203A is connected to the connection portion 10 of the optical connector 101. Further, the connector portion 215A of the optical fiber cable 213A and the connector portion 215B of the optical fiber cable 213B are connected to the connection portion 20 of the optical connector 101. In addition, one or three or more optical fiber cables 213 may be connected to the connection portion 20.
 たとえば、光ファイバケーブル203Aにおけるケーブル部204Aの第2端は、マスタ機能部201Aに接続される。また、光ファイバケーブル213Aにおけるケーブル部214Aの第2端は、スレーブ機能部211Aに接続され、光ファイバケーブル213Bにおけるケーブル部214Bの第2端は、スレーブ機能部211Bに接続される。 For example, the second end of the cable section 204A in the optical fiber cable 203A is connected to the master function section 201A. Further, the second end of the cable portion 214A of the optical fiber cable 213A is connected to the slave function portion 211A, and the second end of the cable portion 214B of the optical fiber cable 213B is connected to the slave function portion 211B.
 接続部10は、光ファイバケーブル203Aから光信号を受ける。接続部10が光ファイバケーブル203Aから受けた光信号は、光カプラ40における光導波路42および接続部20経由で光ファイバケーブル213A,213Bへ出力される。すなわち、接続部10が光ファイバケーブル203Aから受けた光信号は、光カプラ40により分岐されて光ファイバケーブル213A,213Bへ出力される。 The connection unit 10 receives an optical signal from the optical fiber cable 203A. The optical signal received by the connection unit 10 from the optical fiber cable 203A is output to the optical fiber cables 213A and 213B via the optical waveguide 42 and the connection unit 20 in the optical coupler 40. That is, the optical signal received by the connection portion 10 from the optical fiber cable 203A is branched by the optical coupler 40 and output to the optical fiber cables 213A and 213B.
 接続部20は、光ファイバケーブル213A,213Bから光信号を受ける。接続部20が光ファイバケーブル213Aから受けた光信号は、光カプラ40における光導波路42および接続部10経由で光ファイバケーブル203Aへ出力される。また、接続部20が光ファイバケーブル213Bから受けた光信号は、光カプラ40における光導波路42および接続部10経由で光ファイバケーブル203Aへ出力される。すなわち、接続部20が光ファイバケーブル213Aから受けた光信号および接続部20が光ファイバケーブル213Bから受けた光信号は、光カプラ40により合流されて光ファイバケーブル203Aへ出力される。 The connection unit 20 receives an optical signal from the optical fiber cables 213A and 213B. The optical signal received by the connection unit 20 from the optical fiber cable 213A is output to the optical fiber cable 203A via the optical waveguide 42 and the connection unit 10 in the optical coupler 40. Further, the optical signal received by the connecting portion 20 from the optical fiber cable 213B is output to the optical fiber cable 203A via the optical waveguide 42 in the optical coupler 40 and the connecting portion 10. That is, the optical signal received by the connecting portion 20 from the optical fiber cable 213A and the optical signal received by the connecting portion 20 from the optical fiber cable 213B are merged by the optical coupler 40 and output to the optical fiber cable 203A.
 図8は、本開示の第1の実施の形態に係る光コネクタの使用態様の一例を示す図である。 FIG. 8 is a diagram showing an example of a usage mode of the optical connector according to the first embodiment of the present disclosure.
 図8を参照して、たとえば、マスタ機能部201Aは、車両1におけるフロア2Aに配置され、スレーブ機能部211A,211Bは、車両1におけるエンジンルーム2Bに配置される。なお、マスタ機能部201およびスレーブ機能部211の配置箇所は、これに限定されず、たとえば、インストルメントパネルに配置されてもよいし、フロアに配置されてもよいし、トランクに配置されてもよい。 With reference to FIG. 8, for example, the master function unit 201A is arranged on the floor 2A in the vehicle 1, and the slave function units 211A and 211B are arranged in the engine room 2B in the vehicle 1. The location of the master function unit 201 and the slave function unit 211 is not limited to this, and may be arranged on the instrument panel, the floor, or the trunk, for example. good.
 たとえば、フロア2A内の温度環境と、エンジンルーム2B内の温度環境とは互いに異なる。より詳細には、エンジンルーム2B内の温度は、フロア2A内の温度よりも高い。そこで、車両1において、フロア2Aとエンジンルーム2Bとの間に、フロア2Aとエンジンルーム2Bとを仕切る断熱板3Aが設けられる。 For example, the temperature environment in the floor 2A and the temperature environment in the engine room 2B are different from each other. More specifically, the temperature in the engine room 2B is higher than the temperature in the floor 2A. Therefore, in the vehicle 1, a heat insulating plate 3A that separates the floor 2A and the engine room 2B is provided between the floor 2A and the engine room 2B.
 たとえば、光コネクタ101は、断熱板3Aを貫通するように配置される。より詳細には、断熱板3Aは、光コネクタ101の形状に応じた貫通孔を有する。光コネクタ101は、当該貫通孔に挿入され、接続部10がフロア2A内に位置し、かつ接続部20がエンジンルーム1A内に位置した状態で固定される。 For example, the optical connector 101 is arranged so as to penetrate the heat insulating plate 3A. More specifically, the heat insulating plate 3A has a through hole according to the shape of the optical connector 101. The optical connector 101 is inserted into the through hole and fixed in a state where the connecting portion 10 is located in the floor 2A and the connecting portion 20 is located in the engine room 1A.
 たとえば、接続部10および接続部20は、互いに異なる耐熱性を有する。より詳細には、たとえば、フロア2A内に配置される接続部10と、エンジンルーム2B内に配置される接続部10とは、要求される温度仕様が異なる。そこで、接続部10は、フロア2A内の温度環境に耐え得る耐熱性を有し、接続部20は、エンジンルーム2B内の温度環境に耐え得る耐熱性を有する。一例として、接続部10,20それぞれの少なくとも一部分は、樹脂により形成される。接続部10の少なくとも一部分を形成する上記樹脂は、フロア2A内の温度環境に耐え得る耐熱温度を有する。接続部20の少なくとも一部分を形成する上記樹脂は、エンジンルーム2B内の温度環境に耐え得る耐熱温度を有する。 For example, the connection portion 10 and the connection portion 20 have different heat resistances from each other. More specifically, for example, the connection portion 10 arranged in the floor 2A and the connection portion 10 arranged in the engine room 2B have different required temperature specifications. Therefore, the connecting portion 10 has heat resistance that can withstand the temperature environment in the floor 2A, and the connecting portion 20 has heat resistance that can withstand the temperature environment in the engine room 2B. As an example, at least a part of each of the connecting portions 10 and 20 is formed of resin. The resin forming at least a part of the connecting portion 10 has a heat resistant temperature that can withstand the temperature environment in the floor 2A. The resin forming at least a part of the connecting portion 20 has a heat resistant temperature that can withstand the temperature environment in the engine room 2B.
 具体的には、たとえば、接続部10の少なくとも一部分を形成する上記樹脂は、ガラス転移温度が使用温度すなわちフロア2A内の温度よりも高い熱可塑性樹脂であり、接続部20の少なくとも一部分を形成する上記樹脂は、ガラス転移温度が使用温度すなわちエンジンルーム2B内の温度よりも高い熱可塑性樹脂である。なお、接続部10の少なくとも一部分を形成する上記樹脂および接続部20の少なくとも一部分を形成する上記樹脂として、熱可塑性樹脂以外の樹脂であって、各々の環境温度に適した樹脂を用いてもよい。ガラス転移温度が高い熱可塑性樹脂は一般的に高価であるところ、このような構成により、接続部10,20の両方にガラス転移温度が高い熱可塑性樹脂を使用する場合と比べて、材料費の低減が可能になる。 Specifically, for example, the resin forming at least a part of the connecting part 10 is a thermoplastic resin whose glass transition temperature is higher than the operating temperature, that is, the temperature in the floor 2A, and forms at least a part of the connecting part 20. The resin is a thermoplastic resin in which the glass transition temperature is higher than the operating temperature, that is, the temperature in the engine room 2B. As the resin forming at least a part of the connecting portion 10 and the resin forming at least a part of the connecting portion 20, a resin other than the thermoplastic resin and suitable for each environmental temperature may be used. .. A thermoplastic resin having a high glass transition temperature is generally expensive, but due to such a configuration, the material cost is higher than when a thermoplastic resin having a high glass transition temperature is used for both the connecting portions 10 and 20. Reduction is possible.
 図9は、本開示の第1の実施の形態に係る光コネクタの使用態様の他の例を示す図である。 FIG. 9 is a diagram showing another example of the usage mode of the optical connector according to the first embodiment of the present disclosure.
 図9を参照して、たとえば、マスタ機能部201Aは、車両1におけるトランク2Cに配置され、スレーブ機能部211A,211Bは、車両1におけるエンジンルーム2Bに配置される。 With reference to FIG. 9, for example, the master function unit 201A is arranged in the trunk 2C in the vehicle 1, and the slave function units 211A and 211B are arranged in the engine room 2B in the vehicle 1.
 たとえば、車両1において、トランク2Cとフロア2Aとの間に、トランク2Cとフロア2Aとを仕切る断熱板3Bが設けられ、フロア2Aとエンジンルーム2Bとの間に、フロア2Aとエンジンルーム2Bとを仕切る断熱板3Aが設けられる。 For example, in vehicle 1, a heat insulating plate 3B that separates the trunk 2C and the floor 2A is provided between the trunk 2C and the floor 2A, and the floor 2A and the engine room 2B are provided between the floor 2A and the engine room 2B. A heat insulating plate 3A for partitioning is provided.
 光コネクタ101は、断熱板3Aを貫通するように配置される。また、光ファイバケーブル203Aにおけるケーブル部204Aは、断熱板3Bを貫通するように配置される中継コネクタ部206Aを有する。 The optical connector 101 is arranged so as to penetrate the heat insulating plate 3A. Further, the cable portion 204A in the optical fiber cable 203A has a relay connector portion 206A arranged so as to penetrate the heat insulating plate 3B.
 たとえば、接続部10は、フロア2A内の温度環境に耐え得る耐熱性を有し、接続部20は、エンジンルーム2B内の温度環境に耐え得る耐熱性を有する。一例として、接続部10,20それぞれの少なくとも一部分は、樹脂により形成される。接続部10の少なくとも一部分を形成する上記樹脂は、フロア2A内の温度環境に耐え得る耐熱温度を有する。接続部20の少なくとも一部分を形成する上記樹脂は、エンジンルーム2B内の温度環境に耐え得る耐熱温度を有する。 For example, the connection portion 10 has heat resistance that can withstand the temperature environment in the floor 2A, and the connection portion 20 has heat resistance that can withstand the temperature environment in the engine room 2B. As an example, at least a part of each of the connecting portions 10 and 20 is formed of resin. The resin forming at least a part of the connecting portion 10 has a heat resistant temperature that can withstand the temperature environment in the floor 2A. The resin forming at least a part of the connecting portion 20 has a heat resistant temperature that can withstand the temperature environment in the engine room 2B.
 具体的には、たとえば、上述したように、接続部10の少なくとも一部分を形成する上記樹脂および接続部20の少なくとも一部分を形成する上記樹脂は、ガラス転移温度が使用温度よりも高い熱可塑性樹脂である。なお、上述したように、接続部10の少なくとも一部分を形成する上記樹脂および接続部20の少なくとも一部分を形成する上記樹脂として、熱可塑性樹脂以外の樹脂であって、各々の環境温度に適した樹脂を用いてもよい。 Specifically, for example, as described above, the resin forming at least a part of the connecting portion 10 and the resin forming at least a part of the connecting portion 20 are thermoplastic resins having a glass transition temperature higher than the operating temperature. be. As described above, the resin forming at least a part of the connecting portion 10 and the resin forming at least a part of the connecting portion 20 are resins other than thermoplastic resins and suitable for each environmental temperature. May be used.
 (変形例1)
 図10は、本開示の第1の実施の形態の変形例1に係る光コネクタを示す断面図である。図10は、変形例1に係る光コネクタ101Aを図3におけるX-X線で切断したときの断面図を示している。
(Modification example 1)
FIG. 10 is a cross-sectional view showing an optical connector according to a modification 1 of the first embodiment of the present disclosure. FIG. 10 shows a cross-sectional view of the optical connector 101A according to the first modification when the optical connector 101A is cut by the XX line in FIG.
 図10を参照して、固定部30は、接続部10における接続部20と対向する面および接続部20における接続部10と対向する面に固定されてもよい。 With reference to FIG. 10, the fixing portion 30 may be fixed to the surface of the connecting portion 10 facing the connecting portion 20 and the surface of the connecting portion 20 facing the connecting portion 10.
 (変形例2)
 図11は、本開示の第1の実施の形態の変形例2に係る光コネクタを示す断面図である。図11は、変形例2に係る光コネクタ101Bを図5におけるXI-XI線で切断したときの断面図を示している。
(Modification 2)
FIG. 11 is a cross-sectional view showing an optical connector according to a second modification of the first embodiment of the present disclosure. FIG. 11 shows a cross-sectional view of the optical connector 101B according to the second modification when the optical connector 101B is cut along the XI-XI line in FIG.
 図11を参照して、光コネクタ101Bは、充填部50を備える。充填部50は、光カプラ40と固定部30との間を充填する。 With reference to FIG. 11, the optical connector 101B includes a filling portion 50. The filling portion 50 fills between the optical coupler 40 and the fixing portion 30.
 たとえば、充填部50は、樹脂である。充填部50を構成する樹脂は、好ましくは、光カプラ40における本体部41の線膨張係数と同等の線膨張係数を有する。たとえば、充填部50を構成する樹脂の線膨張係数は、好ましくは、本体部41の線膨張係数の0.8倍以上かつ1.2倍以下であり、より好ましくは、本体部41の線膨張係数の0.9倍以上かつ1.1倍以下である。 For example, the filling portion 50 is a resin. The resin constituting the filling portion 50 preferably has a linear expansion coefficient equivalent to the linear expansion coefficient of the main body portion 41 in the optical coupler 40. For example, the coefficient of linear expansion of the resin constituting the filling portion 50 is preferably 0.8 times or more and 1.2 times or less of the linear expansion coefficient of the main body 41, and more preferably the linear expansion of the main body 41. It is 0.9 times or more and 1.1 times or less of the coefficient.
 あるいは、充填部50は、発泡樹脂である。より詳細には、充填部50は、押出法ポリスチレンフォーム、ビーズ法ポリスチレンフォーム、ウレタンフォーム、高発泡ポリエチレンフォームまたはフェノールフォームである。 Alternatively, the filling portion 50 is a foamed resin. More specifically, the filling portion 50 is an extruded polystyrene foam, a beaded polystyrene foam, a urethane foam, a highly foamed polyethylene foam or a phenolic foam.
 (変形例3)
 図12は、本開示の第1の実施の形態の変形例3に係る光コネクタを示す断面図である。図12は、変形例3に係る光コネクタ101Cを図5におけるXII-XII線で切断したときの断面図を示している。
(Modification example 3)
FIG. 12 is a cross-sectional view showing an optical connector according to a modification 3 of the first embodiment of the present disclosure. FIG. 12 shows a cross-sectional view of the optical connector 101C according to the third modification when the optical connector 101C is cut along the XII-XII line in FIG.
 図12を参照して、光コネクタ101Cにおける光カプラ40は、湾曲した状態で接続部10と接続部20との間に接続される。たとえば、光カプラ40は、S字に湾曲した状態で接続部10と接続部20との間に接続される。 With reference to FIG. 12, the optical coupler 40 in the optical connector 101C is connected between the connecting portion 10 and the connecting portion 20 in a curved state. For example, the optical coupler 40 is connected between the connecting portion 10 and the connecting portion 20 in a state of being curved in an S shape.
 たとえば、光カプラ40は、接続部10に接続される第1端と、接続部20に接続される第2端とを有する。光カプラ40における第1端から第2端までの長さLは、接続部10と接続部20との間の距離よりも長い。たとえば、光カプラ40の長さLは、接続部10と接続部20との間の距離の2倍以上である。 For example, the optical coupler 40 has a first end connected to the connecting portion 10 and a second end connected to the connecting portion 20. The length L from the first end to the second end of the optical coupler 40 is longer than the distance between the connecting portion 10 and the connecting portion 20. For example, the length L of the optical coupler 40 is at least twice the distance between the connecting portion 10 and the connecting portion 20.
 固定部30は、光カプラ40が湾曲した状態で接続部10および接続部20の位置関係を固定する。 The fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20 in a state where the optical coupler 40 is curved.
 (変形例4)
 図13は、本開示の第1の実施の形態の変形例4に係る光コネクタを示す平面図である。図14は、本開示の第1の実施の形態の変形例4に係る光コネクタを示す断面図である。図14は、変形例4に係る光コネクタ101Dを図3におけるIV-IV線に相当する切断線で切断したときの断面図を示している。
(Modification example 4)
FIG. 13 is a plan view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure. FIG. 14 is a cross-sectional view showing an optical connector according to a modification 4 of the first embodiment of the present disclosure. FIG. 14 shows a cross-sectional view of the optical connector 101D according to the modified example 4 when the optical connector 101D is cut along a cutting line corresponding to the IV-IV line in FIG.
 図13および図14を参照して、光コネクタ101Dは、図3~図6に示す光コネクタ101と比べて、接続部21をさらに備える。接続部21は、1または複数の光ファイバケーブル203,213を接続可能である。接続部21は、第3の接続部の一例である。 With reference to FIGS. 13 and 14, the optical connector 101D further includes a connecting portion 21 as compared with the optical connector 101 shown in FIGS. 3 to 6. The connection unit 21 can connect one or more optical fiber cables 203 and 213. The connection unit 21 is an example of a third connection unit.
 接続部21は、光カプラ40を介して接続部10に対向する位置に設けられる。一方、接続部20は、光カプラ40を介して接続部10に対向する位置以外の位置に設けられる。より詳細には、接続部20は、接続部10と接続部21とを結ぶ仮想線に直交する仮想線上の位置に設けられる。 The connecting portion 21 is provided at a position facing the connecting portion 10 via the optical coupler 40. On the other hand, the connecting portion 20 is provided at a position other than the position facing the connecting portion 10 via the optical coupler 40. More specifically, the connecting portion 20 is provided at a position on a virtual line orthogonal to the virtual line connecting the connecting portion 10 and the connecting portion 21.
 光カプラ40は、接続部10と接続部20との間、接続部10と接続部21との間、および接続部20と接続部21との間に接続される。 The optical coupler 40 is connected between the connection unit 10 and the connection unit 20, between the connection unit 10 and the connection unit 21, and between the connection unit 20 and the connection unit 21.
 光カプラ40における光導波路42は、接続部10、接続部20および接続部21の間において延びるように本体部41に形成される。光導波路42は、分岐部を有する。たとえば、光導波路42における第1端42Aは接続部10に接続され、光導波路42における第2端42Bは接続部20に接続され、光導波路42における第3端42Cは接続部21に接続される。たとえば、光導波路42における第2端42Bは、第1端42Aと第3端42Cとを結ぶ仮想線に直交する仮想線上の位置に設けられる。 The optical waveguide 42 in the optical coupler 40 is formed in the main body 41 so as to extend between the connecting portion 10, the connecting portion 20, and the connecting portion 21. The optical waveguide 42 has a branch portion. For example, the first end 42A of the optical waveguide 42 is connected to the connection portion 10, the second end 42B of the optical waveguide 42 is connected to the connection part 20, and the third end 42C of the optical waveguide 42 is connected to the connection part 21. .. For example, the second end 42B of the optical waveguide 42 is provided at a position on a virtual line orthogonal to the virtual line connecting the first end 42A and the third end 42C.
 固定部30は、接続部10および接続部20の位置関係、接続部10および接続部21の位置関係、ならびに接続部20および接続部21の位置関係を固定する。 The fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20, the positional relationship between the connecting portion 10 and the connecting portion 21, and the positional relationship between the connecting portion 20 and the connecting portion 21.
 図15は、本開示の第1の実施の形態の変形例4に係る光コネクタの使用態様の一例を示す図である。 FIG. 15 is a diagram showing an example of a usage mode of the optical connector according to the modified example 4 of the first embodiment of the present disclosure.
 図15を参照して、たとえば、マスタ機能部201Aは、車両1におけるフロアに配置され、スレーブ機能部211Aは、車両1におけるボンネットに配置され、スレーブ機能部211Bは、車両1におけるルーフに配置される。 With reference to FIG. 15, for example, the master function unit 201A is arranged on the floor of the vehicle 1, the slave function unit 211A is arranged on the hood of the vehicle 1, and the slave function unit 211B is arranged on the roof of the vehicle 1. NS.
 たとえば、マスタ機能部201Aは、先進運転支援(ADAS:Advanced Driver Assistance Systems)ECUであり、スレーブ機能部211Aは、センサであり、スレーブ機能部211Bは、ルーフアンテナモジュールである。 For example, the master function unit 201A is an advanced driver assistance (ADAS) ECU, the slave function unit 211A is a sensor, and the slave function unit 211B is a roof antenna module.
 たとえば、接続部10は、光ファイバケーブル203Aにおけるケーブル部204Aおよびコネクタ部205Aを介して接続部10に接続されるマスタ機能部201Aと、光コネクタ101との位置関係に応じた位置に設けられる。また、たとえば、接続部20は、光ファイバケーブル213Bにおけるケーブル部214Bおよびコネクタ部215Bを介して接続部20に接続されるスレーブ機能部211Bと、光コネクタ101との位置関係に応じた位置に設けられる。また、たとえば、接続部21は、光ファイバケーブル213Aにおけるケーブル部214Aおよびコネクタ部215Aを介して接続部21に接続されるスレーブ機能部211Aと、光コネクタ101との位置関係に応じた位置に設けられる。 For example, the connection unit 10 is provided at a position corresponding to the positional relationship between the master function unit 201A connected to the connection unit 10 via the cable unit 204A and the connector unit 205A of the optical fiber cable 203A and the optical connector 101. Further, for example, the connection portion 20 is provided at a position corresponding to the positional relationship between the slave function portion 211B connected to the connection portion 20 via the cable portion 214B and the connector portion 215B of the optical fiber cable 213B and the optical connector 101. Be done. Further, for example, the connection portion 21 is provided at a position corresponding to the positional relationship between the slave function portion 211A connected to the connection portion 21 via the cable portion 214A and the connector portion 215A of the optical fiber cable 213A and the optical connector 101. Be done.
 なお、本開示の第1の実施の形態に係る光コネクタ101では、接続部10および接続部20は、互いに異なる耐熱性を有する構成であるとしたが、これに限定するものではない。接続部10および接続部20は、互いに同じ耐熱性を有する構成であってもよい。この場合、接続部10および接続部20は、接続部10の温度環境および接続部20の温度環境のうちのより高温の温度環境に耐え得る耐熱性を有する。 In the optical connector 101 according to the first embodiment of the present disclosure, the connection portion 10 and the connection portion 20 are configured to have different heat resistances, but the present invention is not limited to this. The connecting portion 10 and the connecting portion 20 may have the same heat resistance to each other. In this case, the connecting portion 10 and the connecting portion 20 have heat resistance that can withstand the higher temperature environment of the temperature environment of the connecting portion 10 and the temperature environment of the connecting portion 20.
 また、本開示の第1の実施の形態に係る光コネクタ101では、固定部30は、光カプラ40の周囲を覆うように設けられる構成であるとしたが、これに限定するものではない。固定部30は、光カプラ40の周囲を覆わないように設けられる構成であってもよい。より詳細には、固定部30は、たとえば1枚の平板状の部材であり、固定部30の第1端が接続部10に接続され、固定部30の第2端が接続部20に接続される構成であってもよい。 Further, in the optical connector 101 according to the first embodiment of the present disclosure, the fixing portion 30 is provided so as to cover the periphery of the optical coupler 40, but the present invention is not limited to this. The fixing portion 30 may be provided so as not to cover the periphery of the optical coupler 40. More specifically, the fixing portion 30 is, for example, one flat plate-shaped member, the first end of the fixing portion 30 is connected to the connecting portion 10, and the second end of the fixing portion 30 is connected to the connecting portion 20. May be configured.
 ところで、光カプラを車載通信システムに用いる場合において、光カプラの破断を抑制することが可能な技術が望まれる。 By the way, when an optical coupler is used in an in-vehicle communication system, a technology capable of suppressing breakage of the optical coupler is desired.
 たとえば、光カプラを車両に組み付ける工程において、光カプラに負荷が加わることにより光カプラに曲げおよび捻じれが生じ、その結果、光カプラが破断するおそれがある。また、従来、樹脂により光カプラを形成する技術が開発されている。このような光カプラは、コンパクトかつフレキシブル性を有することから、近年、様々な分野に適用されている。しかしながら、樹脂により形成される光カプラは、車両に組み付ける際に破断する可能性がある。 For example, in the process of assembling the optical coupler to the vehicle, the optical coupler may be bent or twisted due to the load applied to the optical coupler, and as a result, the optical coupler may be broken. Further, conventionally, a technique for forming an optical coupler from a resin has been developed. Since such an optical coupler is compact and flexible, it has been applied to various fields in recent years. However, the optical coupler formed of the resin may break when assembled in the vehicle.
 これに対して、本開示の第1の実施の形態に係る光コネクタでは、接続部10は、光ファイバ52を接続可能である。接続部20は、光ファイバ52を接続可能である。光カプラ40は、接続部10と接続部20との間に接続される。固定部30は、接続部10および接続部20の位置関係を固定する。 On the other hand, in the optical connector according to the first embodiment of the present disclosure, the connection portion 10 can connect the optical fiber 52. The connection unit 20 can connect the optical fiber 52. The optical coupler 40 is connected between the connecting portion 10 and the connecting portion 20. The fixing portion 30 fixes the positional relationship between the connecting portion 10 and the connecting portion 20.
 このように、固定部30が接続部10および接続部20の位置関係を固定する構成により、光コネクタ101に負荷が加わった際の光カプラ40における曲げおよび捻じれの発生を抑制することができる。 In this way, by configuring the fixing portion 30 to fix the positional relationship between the connecting portion 10 and the connecting portion 20, it is possible to suppress the occurrence of bending and twisting in the optical coupler 40 when a load is applied to the optical connector 101. ..
 したがって、本開示の第1の実施の形態に係る光コネクタでは、光カプラの破断を抑制することができる。 Therefore, in the optical connector according to the first embodiment of the present disclosure, breakage of the optical coupler can be suppressed.
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Next, other embodiments of the present invention will be described with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 <第2の実施の形態>
 本実施の形態は、第1の実施の形態に係る車載通信システム401と比べて、複数のマスタ機能部201を備える車載通信システム402に関する。以下で説明する内容以外は第1の実施の形態に係る車載通信システム401と同様である。
<Second Embodiment>
This embodiment relates to an in-vehicle communication system 402 having a plurality of master function units 201 as compared with the in-vehicle communication system 401 according to the first embodiment. Except for the contents described below, the same as the in-vehicle communication system 401 according to the first embodiment.
 図16は、本開示の第2の実施の形態に係る車載通信システムの構成の一例を示す図である。 FIG. 16 is a diagram showing an example of the configuration of the in-vehicle communication system according to the second embodiment of the present disclosure.
 図16を参照して、車載通信システム402は、図1に示す車載通信システム401と比べて、光コネクタ101の代わりに光コネクタ102を備え、マスタ機能部201Bをさらに備える。マスタ機能部201Bは、マスタ機能部201の一例である。車載通信システム402は、3つ以上のマスタ機能部201を備える構成であってもよいし、1つまたは3つ以上のスレーブ機能部211を備える構成であってもよい。 With reference to FIG. 16, the in-vehicle communication system 402 includes an optical connector 102 instead of the optical connector 101, and further includes a master function unit 201B, as compared with the in-vehicle communication system 401 shown in FIG. The master function unit 201B is an example of the master function unit 201. The in-vehicle communication system 402 may be configured to include three or more master function units 201, or may be configured to include one or three or more slave function units 211.
 マスタ機能部201Bは、光ファイバケーブル203Bにおける光ファイバ52を介して光コネクタ102に接続される。光ファイバケーブル203Bは、光ファイバケーブル203の一例である。 The master function unit 201B is connected to the optical connector 102 via the optical fiber 52 in the optical fiber cable 203B. The optical fiber cable 203B is an example of the optical fiber cable 203.
 光コネクタ102、光ファイバケーブル203A,203Bおよび光ファイバケーブル213A,213Bの各々は、光ハーネス302の一部を構成する。より詳細には、光ハーネス302は、光コネクタ102と、光ファイバケーブル203Aにおける光ファイバ52と、光ファイバケーブル203Bにおける光ファイバ52と、光ファイバケーブル213Aにおける光ファイバ52と、光ファイバケーブル213Bにおける光ファイバ52とを備える。 Each of the optical connector 102, the optical fiber cables 203A and 203B and the optical fiber cables 213A and 213B form a part of the optical harness 302. More specifically, the optical harness 302 includes an optical connector 102, an optical fiber 52 in the optical fiber cable 203A, an optical fiber 52 in the optical fiber cable 203B, an optical fiber 52 in the optical fiber cable 213A, and an optical fiber cable 213B. It includes an optical fiber 52.
 マスタ機能部201Bは、光トランシーバ202Bを含む。光トランシーバ202Bは、光トランシーバ202の一例である。マスタ機能部201Bにおける光トランシーバ202Bは、光ファイバケーブル203Bと接続される。 The master function unit 201B includes an optical transceiver 202B. The optical transceiver 202B is an example of the optical transceiver 202. The optical transceiver 202B in the master function unit 201B is connected to the optical fiber cable 203B.
 たとえば、車載通信システム402では、下り方向において、WDMを用いる。より詳細には、光トランシーバ202Bは、たとえば1280nm帯の上り光信号を光ファイバケーブル203Bから受信し、受信した上り光信号を電気信号に変換して図示しない処理部へ出力する。また、マスタ機能部201Bにおける光トランシーバ202Bは、図示しない処理部から電気信号を受けて、受けた電気信号を、受信した上り光信号の波長とは異なる波長であって、かつマスタ機能部201Aが出力する下り光信号の波長とは異なる波長の下り光信号に変換して光ファイバケーブル203Bへ出力する。 For example, in the in-vehicle communication system 402, WDM is used in the downlink direction. More specifically, the optical transceiver 202B receives, for example, an uplink signal in the 1280 nm band from the optical fiber cable 203B, converts the received uplink signal into an electric signal, and outputs the received uplink signal to a processing unit (not shown). Further, the optical transceiver 202B in the master function unit 201B receives an electric signal from a processing unit (not shown), and the received electric signal has a wavelength different from the wavelength of the received uplink optical signal, and the master function unit 201A It is converted into a downlink light signal having a wavelength different from the wavelength of the downlink light signal to be output and output to the optical fiber cable 203B.
 なお、車載通信システム402では、下り方向において、TDMA、FDM、SDMまたはTWDMを用いてもよい。 In the in-vehicle communication system 402, TDMA, FDM, SDM, or TWDM may be used in the downlink direction.
 図17は、本開示の第2の実施の形態に係る光コネクタを示す断面図である。図17は、光コネクタ102を図3におけるXVII-XVII線で切断したときの断面図を示している。 FIG. 17 is a cross-sectional view showing an optical connector according to the second embodiment of the present disclosure. FIG. 17 shows a cross-sectional view of the optical connector 102 when it is cut along the line XVII-XVII in FIG.
 図17を参照して、光カプラ40における光導波路42は、接続部10および接続部20の間において延びるように本体部41に形成される。光導波路42は、分岐部を有する。たとえば、光導波路42は、接続部10に接続される第1端42Aと、接続部20に接続される第2端42Bと、接続部20に接続される第3端42Cと、接続部10に接続される第4端42Dとを含む。 With reference to FIG. 17, the optical waveguide 42 in the optical coupler 40 is formed in the main body 41 so as to extend between the connecting portion 10 and the connecting portion 20. The optical waveguide 42 has a branch portion. For example, the optical waveguide 42 is connected to a first end 42A connected to the connecting portion 10, a second end 42B connected to the connecting portion 20, a third end 42C connected to the connecting portion 20, and the connecting portion 10. Includes a fourth end 42D to be connected.
 図18は、本開示の第2の実施の形態に係る光ハーネスの一例を示す平面図である。 FIG. 18 is a plan view showing an example of the optical harness according to the second embodiment of the present disclosure.
 図18を参照して、光ハーネス302は、光コネクタ102と、光ファイバケーブル203A,203Bと、光ファイバケーブル213A,213Bとを備える。 With reference to FIG. 18, the optical harness 302 includes an optical connector 102, optical fiber cables 203A and 203B, and optical fiber cables 213A and 213B.
 光ファイバケーブル203Aにおける光ファイバ52および光ファイバケーブル203Bにおける光ファイバ52は、光コネクタ102における接続部10に接続される。光ファイバケーブル213Aにおける光ファイバ52および光ファイバケーブル213Bにおける光ファイバ52は、光コネクタ102における接続部20に接続される。 The optical fiber 52 in the optical fiber cable 203A and the optical fiber 52 in the optical fiber cable 203B are connected to the connection portion 10 in the optical connector 102. The optical fiber 52 in the optical fiber cable 213A and the optical fiber 52 in the optical fiber cable 213B are connected to the connection portion 20 in the optical connector 102.
 より詳細には、光ファイバケーブル203Aは、光ファイバ52を含むケーブル部204Aと、ケーブル部204Aの第1端に設けられたコネクタ部205Aとを含む。光ファイバケーブル203Bは、光ファイバ52を含むケーブル部204Bと、ケーブル部204Bの第1端に設けられたコネクタ部205Bとを含む。光ファイバケーブル213Aは、光ファイバ52を含むケーブル部214Aと、ケーブル部214Aの第1端に設けられたコネクタ部215Aとを含む。光ファイバケーブル213Bは、光ファイバ52を含むケーブル部214Bと、ケーブル部214Bの第1端に設けられたコネクタ部215Bとを含む。 More specifically, the optical fiber cable 203A includes a cable portion 204A including the optical fiber 52 and a connector portion 205A provided at the first end of the cable portion 204A. The optical fiber cable 203B includes a cable portion 204B including the optical fiber 52 and a connector portion 205B provided at the first end of the cable portion 204B. The optical fiber cable 213A includes a cable portion 214A including the optical fiber 52 and a connector portion 215A provided at the first end of the cable portion 214A. The optical fiber cable 213B includes a cable portion 214B including the optical fiber 52 and a connector portion 215B provided at the first end of the cable portion 214B.
 光ファイバケーブル203Aにおけるコネクタ部205Aおよび光ファイバケーブル203Bにおけるコネクタ部205Bは、光コネクタ102における接続部10に接続される。また、光ファイバケーブル213Aにおけるコネクタ部215Aおよび光ファイバケーブル213Bにおけるコネクタ部215Bは、光コネクタ102における接続部20に接続される。なお、接続部10に3本以上の光ファイバケーブル213が接続されてもよく、接続部20に1本または3本以上の光ファイバケーブル213が接続されてもよい。 The connector portion 205A of the optical fiber cable 203A and the connector portion 205B of the optical fiber cable 203B are connected to the connection portion 10 of the optical connector 102. Further, the connector portion 215A of the optical fiber cable 213A and the connector portion 215B of the optical fiber cable 213B are connected to the connection portion 20 of the optical connector 102. In addition, three or more optical fiber cables 213 may be connected to the connection portion 10, and one or three or more optical fiber cables 213 may be connected to the connection portion 20.
 たとえば、光ファイバケーブル203Aにおけるケーブル部204Aの第2端は、マスタ機能部201Aに接続され、光ファイバケーブル203Bにおけるケーブル部204Bの第2端は、マスタ機能部201Bに接続される。また、光ファイバケーブル213Aにおけるケーブル部214Aの第2端は、スレーブ機能部211Aに接続され、光ファイバケーブル213Bにおけるケーブル部214Bの第2端は、スレーブ機能部211Bに接続される。 For example, the second end of the cable unit 204A in the optical fiber cable 203A is connected to the master function unit 201A, and the second end of the cable unit 204B in the optical fiber cable 203B is connected to the master function unit 201B. Further, the second end of the cable portion 214A of the optical fiber cable 213A is connected to the slave function portion 211A, and the second end of the cable portion 214B of the optical fiber cable 213B is connected to the slave function portion 211B.
 接続部10は、光ファイバケーブル203A,203Bから光信号を受ける。接続部10が光ファイバケーブル203Aから受けた光信号は、光カプラ40における光導波路42および接続部20経由で光ファイバケーブル213A,213Bへ出力される。また、接続部10が光ファイバケーブル203Bから受けた光信号は、光カプラ40における光導波路42および接続部20経由で光ファイバケーブル213A,213Bへ出力される。 The connection unit 10 receives an optical signal from the optical fiber cables 203A and 203B. The optical signal received by the connection unit 10 from the optical fiber cable 203A is output to the optical fiber cables 213A and 213B via the optical waveguide 42 and the connection unit 20 in the optical coupler 40. Further, the optical signal received by the connecting portion 10 from the optical fiber cable 203B is output to the optical fiber cables 213A and 213B via the optical waveguide 42 and the connecting portion 20 in the optical coupler 40.
 接続部20は、光ファイバケーブル213A,213Bから光信号を受ける。接続部20が光ファイバケーブル213Aから受けた光信号は、光カプラ40における光導波路42および接続部10経由で光ファイバケーブル203A,203Bへ出力される。また、接続部20が光ファイバケーブル213Bから受けた光信号は、光カプラ40における光導波路42および接続部10経由で光ファイバケーブル203A,203Bへ出力される。 The connection unit 20 receives an optical signal from the optical fiber cables 213A and 213B. The optical signal received by the connection unit 20 from the optical fiber cable 213A is output to the optical fiber cables 203A and 203B via the optical waveguide 42 and the connection unit 10 in the optical coupler 40. Further, the optical signal received by the connecting portion 20 from the optical fiber cable 213B is output to the optical fiber cables 203A and 203B via the optical waveguide 42 in the optical coupler 40 and the connecting portion 10.
 上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The above embodiment should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 以上の説明は、以下に付記する特徴を含む。
 [付記1]
 車両に搭載される機能部間の光信号を中継する光コネクタであって、
 光ファイバを接続可能な第1の接続部と、
 光ファイバを接続可能な第2の接続部と、
 前記第1の接続部と前記第2の接続部との間に接続される光カプラと、
 前記第1の接続部および前記第2の接続部の位置関係を固定する固定部とを備え、
 前記光カプラは、
 樹脂により形成された本体部と、
 前記本体部に形成された、分岐部を有する光導波路とを含む、光コネクタ。
The above description includes the features described below.
[Appendix 1]
An optical connector that relays optical signals between functional units mounted on a vehicle.
The first connection part to which the optical fiber can be connected and
A second connection that can connect an optical fiber,
An optical coupler connected between the first connecting portion and the second connecting portion,
A fixing portion for fixing the positional relationship between the first connecting portion and the second connecting portion is provided.
The optical coupler
The main body made of resin and
An optical connector including an optical waveguide having a branch portion formed on the main body portion.
 [付記2]
 車両に搭載される機能部間の光信号を中継する光コネクタであって、
 光ファイバを接続可能な第1の接続部と、
 光ファイバを接続可能な第2の接続部と、
 前記第1の接続部と前記第2の接続部との間に接続される光カプラと、
 前記第1の接続部および前記第2の接続部の位置関係を固定する固定部とを備え、
 前記機能部は、ECU、センサおよびアンテナモジュールのうちの少なくともいずれか1つである、光コネクタ。
[Appendix 2]
An optical connector that relays optical signals between functional units mounted on a vehicle.
The first connection part to which the optical fiber can be connected and
A second connection that can connect an optical fiber,
An optical coupler connected between the first connecting portion and the second connecting portion,
A fixing portion for fixing the positional relationship between the first connecting portion and the second connecting portion is provided.
The functional unit is an optical connector which is at least one of an ECU, a sensor, and an antenna module.
 1     車両
 2A    フロア
 2B    エンジンルーム
 2C    トランク
 3A,3B 断熱板
 10    接続部
 20    接続部
 21    接続部
 30    固定部
 40    光カプラ
 41    本体部
 42    光導波路
 42A   第1端
 42B   第2端
 42C   第3端
 42D   第4端
 50    充填部
 51    テンションメンバ
 52    光ファイバ
 53    保護層
 54    押さえ巻
 55    シース
 101   光コネクタ
 102   光コネクタ
 201   マスタ機能部
 201A  マスタ機能部
 201B  マスタ機能部
 202   光トランシーバ
 202A  光トランシーバ
 202B  光トランシーバ
 203   光ファイバケーブル
 203A  光ファイバケーブル
 203B  光ファイバケーブル
 204A  ケーブル部
 204B  ケーブル部
 205A  コネクタ部
 205B  コネクタ部
 211   スレーブ機能部
 211A  スレーブ機能部
 211B  スレーブ機能部
 212   光トランシーバ
 212A  光トランシーバ
 212B  光トランシーバ
 213   光ファイバケーブル
 213A  光ファイバケーブル
 213B  光ファイバケーブル
 214A  ケーブル部
 214B  ケーブル部
 215A  コネクタ部
 215B  コネクタ部
 301   光ハーネス
 302   光ハーネス
 401   車載通信システム
 402   車載通信システム
1 Vehicle 2A Floor 2B Engine Room 2C Trunk 3A, 3B Insulation Plate 10 Connection 20 Connection 21 Connection 30 Fixed 40 Optical Coupler 41 Main Body 42 Optical Fiber Optic 42A 1st End 42B 2nd End 42C 3rd End 42D 4th End 50 Filling part 51 Tension member 52 Optical fiber 53 Protective layer 54 Press winding 55 Sheath 101 Optical connector 102 Optical connector 201 Master function unit 201A Master function unit 201B Master function unit 202 Optical transceiver 202A Optical transceiver 202B Optical transceiver 203 Optical fiber cable 203A Optical fiber cable 203B Optical fiber cable 204A Cable part 204B Cable part 205A Connector part 205B Connector part 211 Slave function part 211A Slave function part 211B Slave function part 212 Optical transceiver 212A Optical transceiver 212B Optical transceiver 213 Optical fiber cable 213A Optical fiber cable 213B Optical Fiber cable 214A Cable part 214B Cable part 215A Connector part 215B Connector part 301 Optical harness 302 Optical harness 401 In-vehicle communication system 402 In-vehicle communication system

Claims (10)

  1.  車両に搭載される機能部間の光信号を中継する光コネクタであって、
     光ファイバを接続可能な第1の接続部と、
     光ファイバを接続可能な第2の接続部と、
     前記第1の接続部と前記第2の接続部との間に接続される光カプラと、
     前記第1の接続部および前記第2の接続部の位置関係を固定する固定部とを備える、光コネクタ。
    An optical connector that relays optical signals between functional units mounted on a vehicle.
    The first connection part to which the optical fiber can be connected and
    A second connection that can connect an optical fiber,
    An optical coupler connected between the first connecting portion and the second connecting portion,
    An optical connector including a fixing portion for fixing the positional relationship between the first connecting portion and the second connecting portion.
  2.  前記第1の接続部および前記第2の接続部は、互いに異なる耐熱性を有する、請求項1に記載の光コネクタ。 The optical connector according to claim 1, wherein the first connection portion and the second connection portion have different heat resistances from each other.
  3.  前記第2の接続部は、前記光カプラを介して前記第1の接続部に対向する位置以外の位置に設けられる、請求項1または請求項2に記載の光コネクタ。 The optical connector according to claim 1 or 2, wherein the second connecting portion is provided at a position other than the position facing the first connecting portion via the optical coupler.
  4.  前記光コネクタは、さらに、
     光ファイバを接続可能な第3の接続部を備え、
     前記光カプラは、さらに、前記第1の接続部と前記第3の接続部との間、および前記第2の接続部と前記第3の接続部との間に接続され、
     前記固定部は、さらに、前記第1の接続部および前記第3の接続部の位置関係、ならびに前記第2の接続部および前記第3の接続部の位置関係を固定する、請求項1から請求項3のいずれか1項に記載の光コネクタ。
    The optical connector further
    Equipped with a third connection to which an optical fiber can be connected
    The optical coupler is further connected between the first connecting portion and the third connecting portion, and between the second connecting portion and the third connecting portion.
    The fixing portion further fixes the positional relationship between the first connection portion and the third connection portion, and the positional relationship between the second connection portion and the third connection portion, according to claim 1. Item 3. The optical connector according to any one of items 3.
  5.  前記固定部は、前記光カプラが湾曲した状態で前記第1の接続部および前記第2の接続部の位置関係を固定する、請求項1から請求項4のいずれか1項に記載の光コネクタ。 The optical connector according to any one of claims 1 to 4, wherein the fixing portion fixes the positional relationship between the first connection portion and the second connection portion in a curved state of the optical coupler. ..
  6.  前記固定部は、前記光カプラの周囲を覆うように設けられ、
     前記光コネクタは、さらに、
     前記光カプラと前記固定部との間を充填する充填部を備える、請求項1から請求項5のいずれか1項に記載の光コネクタ。
    The fixing portion is provided so as to cover the periphery of the optical coupler.
    The optical connector further
    The optical connector according to any one of claims 1 to 5, further comprising a filling portion that fills the space between the optical coupler and the fixing portion.
  7.  前記充填部は、樹脂である、請求項6に記載の光コネクタ。 The optical connector according to claim 6, wherein the filling portion is made of resin.
  8.  前記充填部は、発泡樹脂である、請求項6に記載の光コネクタ。 The optical connector according to claim 6, wherein the filling portion is a foamed resin.
  9.  請求項1から請求項8のいずれか1項に記載の光コネクタと、
     前記第1の接続部に接続される第1の光ファイバと、
     前記第2の接続部に接続される第2の光ファイバとを備える、光ハーネス。
    The optical connector according to any one of claims 1 to 8.
    The first optical fiber connected to the first connection portion and
    An optical harness including a second optical fiber connected to the second connecting portion.
  10.  請求項1から請求項8のいずれか1項に記載の光コネクタと、
     第1の光ファイバを介して前記第1の接続部に接続される第1の機能部と、
     第2の光ファイバを介して前記第2の接続部に接続される第2の機能部とを備え、
     前記光コネクタは、前記車両に設けられた断熱板を貫通するように配置される、車載通信システム。
    The optical connector according to any one of claims 1 to 8.
    A first functional unit connected to the first connection unit via a first optical fiber, and a first functional unit.
    It is provided with a second functional unit connected to the second connection portion via a second optical fiber.
    An in-vehicle communication system in which the optical connector is arranged so as to penetrate a heat insulating plate provided in the vehicle.
PCT/JP2021/004816 2020-03-25 2021-02-09 Optical connector, optical harness, and vehicle-mounted communication system WO2021192674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020054406A JP2023056060A (en) 2020-03-25 2020-03-25 Optical connector, optical harness, and on-vehicle communication system
JP2020-054406 2020-03-25

Publications (1)

Publication Number Publication Date
WO2021192674A1 true WO2021192674A1 (en) 2021-09-30

Family

ID=77891399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004816 WO2021192674A1 (en) 2020-03-25 2021-02-09 Optical connector, optical harness, and vehicle-mounted communication system

Country Status (2)

Country Link
JP (1) JP2023056060A (en)
WO (1) WO2021192674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090195A1 (en) * 2022-10-26 2024-05-02 ソニーグループ株式会社 Information processing system, communication method, and mobile body

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123804A (en) * 1984-11-21 1986-06-11 Furukawa Electric Co Ltd:The Optical multiplexer and demultiplexer
US5375184A (en) * 1992-12-29 1994-12-20 Honeywell Inc. Flexible channel optical waveguide having self-aligned ports for interconnecting optical devices
JPH0777625A (en) * 1993-09-07 1995-03-20 Fujikura Ltd Optical coupler component
JPH07198983A (en) * 1993-12-28 1995-08-01 Sumitomo Electric Ind Ltd Optical fiber coupler and its production
JPH08338923A (en) * 1995-06-13 1996-12-24 Sumitomo Electric Ind Ltd Optical branching device unit
JP2005165181A (en) * 2003-12-05 2005-06-23 Yazaki Corp Method of manufacturing optical waveguide member and optical junction block
JP2005250270A (en) * 2004-03-05 2005-09-15 Sony Corp Star coupler and optical integrated circuit
JP2006184752A (en) * 2004-12-28 2006-07-13 Hitachi Chem Co Ltd Package, optical waveguide substrate mounted package, and optical waveguide package
JP2008116962A (en) * 2006-11-03 2008-05-22 Schott Ag Star coupler for optical network, in particular for optical data bus in motor vehicle
JP2011158497A (en) * 2010-01-29 2011-08-18 Yazaki Corp Optical connector device
JP2014085416A (en) * 2012-10-19 2014-05-12 Sumitomo Bakelite Co Ltd Optical transmission substrate
US20150078030A1 (en) * 2013-09-13 2015-03-19 Federal-Mogul Corporation Optical coupler for vehicle lighting systems
JP2018013640A (en) * 2016-07-21 2018-01-25 住友ベークライト株式会社 Optical wiring component, optical connector connection structure and electronic apparatus
JP2019102340A (en) * 2017-12-05 2019-06-24 住友電装株式会社 connector

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61123804A (en) * 1984-11-21 1986-06-11 Furukawa Electric Co Ltd:The Optical multiplexer and demultiplexer
US5375184A (en) * 1992-12-29 1994-12-20 Honeywell Inc. Flexible channel optical waveguide having self-aligned ports for interconnecting optical devices
JPH0777625A (en) * 1993-09-07 1995-03-20 Fujikura Ltd Optical coupler component
JPH07198983A (en) * 1993-12-28 1995-08-01 Sumitomo Electric Ind Ltd Optical fiber coupler and its production
JPH08338923A (en) * 1995-06-13 1996-12-24 Sumitomo Electric Ind Ltd Optical branching device unit
JP2005165181A (en) * 2003-12-05 2005-06-23 Yazaki Corp Method of manufacturing optical waveguide member and optical junction block
JP2005250270A (en) * 2004-03-05 2005-09-15 Sony Corp Star coupler and optical integrated circuit
JP2006184752A (en) * 2004-12-28 2006-07-13 Hitachi Chem Co Ltd Package, optical waveguide substrate mounted package, and optical waveguide package
JP2008116962A (en) * 2006-11-03 2008-05-22 Schott Ag Star coupler for optical network, in particular for optical data bus in motor vehicle
JP2011158497A (en) * 2010-01-29 2011-08-18 Yazaki Corp Optical connector device
JP2014085416A (en) * 2012-10-19 2014-05-12 Sumitomo Bakelite Co Ltd Optical transmission substrate
US20150078030A1 (en) * 2013-09-13 2015-03-19 Federal-Mogul Corporation Optical coupler for vehicle lighting systems
JP2018013640A (en) * 2016-07-21 2018-01-25 住友ベークライト株式会社 Optical wiring component, optical connector connection structure and electronic apparatus
JP2019102340A (en) * 2017-12-05 2019-06-24 住友電装株式会社 connector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024090195A1 (en) * 2022-10-26 2024-05-02 ソニーグループ株式会社 Information processing system, communication method, and mobile body

Also Published As

Publication number Publication date
JP2023056060A (en) 2023-04-19

Similar Documents

Publication Publication Date Title
US9176295B2 (en) Stranded optical cable with connectors
EP0506265B1 (en) Optical cable joints
WO2021192674A1 (en) Optical connector, optical harness, and vehicle-mounted communication system
CN108267818B (en) Optical cable and optical cable assembly having the same
US20080219623A1 (en) Star coupler for optical networks, in particular for optical data buses in motor vehicles
EP2631690A1 (en) Optical fiber terminal affixing member, optical connector, and optical fiber cable with connector
CN104040389A (en) Optical fiber and optical cable
JPWO2020121463A1 (en) Wire harness and wire harness manufacturing method
JP3617808B2 (en) Wire harness structure
JP7486027B2 (en) On-board wiring system and method for constructing on-board wiring system
US20020085820A1 (en) Cable assembly having ripcords with excess length and ripcords attached to tape
CN114830266B (en) Wiring member
EP2631691A1 (en) Optical fiber terminal, optical fiber cable with terminal, optical connector, optical fiber cable with connector, and connection structure
WO2021220654A1 (en) Vehicle-mounted wiring system, optical coupler, and method of constructing vehicle-mounted wiring system
WO2021141433A1 (en) Flexible flat cable and manufacturing method therefor
US20040208458A1 (en) Bidirectional optical module, optical drop module, and optical transmission device
JP4158992B2 (en) Light junction block
US7457497B2 (en) Optical multiplexer/demultiplexer and optical communication system
JP3926764B2 (en) Optical junction block and method for manufacturing optical waveguide member
JP2012220797A (en) Connecting structure of optical connector
JP2021163568A (en) Wiring member
JP2002182041A (en) Optical/electric composite harness
WO2022202667A1 (en) Wiring member
JP7226111B2 (en) Wiring material
JP3896034B2 (en) Optical connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21773459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21773459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP