WO2021192590A1 - Transmitter, receiver, and transmitting/receiving system - Google Patents

Transmitter, receiver, and transmitting/receiving system Download PDF

Info

Publication number
WO2021192590A1
WO2021192590A1 PCT/JP2021/002913 JP2021002913W WO2021192590A1 WO 2021192590 A1 WO2021192590 A1 WO 2021192590A1 JP 2021002913 W JP2021002913 W JP 2021002913W WO 2021192590 A1 WO2021192590 A1 WO 2021192590A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data signal
symbol
generation
transmission
Prior art date
Application number
PCT/JP2021/002913
Other languages
French (fr)
Japanese (ja)
Inventor
弘基 渡部
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Priority to JP2022509331A priority Critical patent/JPWO2021192590A1/ja
Publication of WO2021192590A1 publication Critical patent/WO2021192590A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the technology according to the present disclosure includes a transmission device that transmits a data signal by making horizontally polarized waves and vertically polarized waves orthogonal to each other, a receiving device that receives a data signal via a transmission line, and a transmitting device and receiving.
  • the present invention relates to the technology of a transmission / reception system equipped with a device.
  • a known signal called a scattered pilot (SP) signal is inserted into the ISDB-T signal at regular intervals in the time axis direction and the frequency axis direction.
  • the receiver for the current system that receives the ISDB-T signal demodulates the received current system signal by estimating the transmission line response from the SP signal defined by ISDB-T.
  • the horizontally polarized waves and the vertically polarized waves are specified to include SP signals, and the generally known polarization MIMO method is established.
  • the received next-generation system signal is demodulated by estimating the transmission path response from the SP signal contained in the horizontally polarized light and the SP signal contained in the vertically polarized light. do.
  • the receiver for the current system uses the ISDB-T signal (2K signal, one-segment signal) as well as the SP signal defined by ISDB-T in the horizontally polarized 4K signal segment, but ISDB-T. It is impossible to utilize the SP signal contained in the vertically polarized waves that are not defined in. Therefore, in the technique disclosed in Patent Document 1, interference with the SP signal defined by ISDB-T in the segment of the horizontally polarized 4K signal generated by the broadcast data signal including the vertically polarized wave is caused. It is impossible to correct. This adversely affects the estimation of the transmission line response using the SP signal, so that there is a problem that reception failure occurs in the receiver for the current method. Further, the technique disclosed in Patent Document 1 has a problem that reception failure occurs even in a receiver for a next-generation system because the power of vertically polarized waves to be transmitted is reduced.
  • an object of the present technology is to provide a transmission device and a reception device capable of reducing reception defects, and a transmission / reception system in which the transmission device and the reception device are connected via a transmission line. ..
  • the transmission device is a transmission device that transmits a data signal by making horizontally polarized waves and vertically polarized waves orthogonal to each other, and is a pilot signal generation unit, a first symbol generation unit, and a second. It is provided with a symbol generation unit of.
  • the pilot signal generation unit generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to zero.
  • the first symbol generation unit includes the current SP signal and the next-generation SP signal generated by the pilot signal generation unit for the first data signal to be transmitted in one of the horizontal polarization and the vertical polarization, and the first.
  • the first symbol signal is generated by arranging the broadcast data signal including the data signal of the above and corresponding to the content to be broadcast along the direction of the elapsed time and the direction of the frequency change.
  • the second symbol generator has the next-generation SP signal and the NUML signal generated by the pilot signal generator for the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves, and the second.
  • a second symbol signal is generated by arranging the broadcast data signal included in the data signal and corresponding to the content to be broadcast along the direction of the elapsed time and the direction in which the frequency changes. Further, the second symbol generation unit generates the second symbol signal by arranging the NULL signal at the position where the first symbol generation unit arranges the current SP signal.
  • the receiving device receives a data signal transmitted from the transmitting device and formed by making the horizontally polarized waves and the vertically polarized waves orthogonal to each other through a plurality of transmission lines having different transmission line responses. It is a receiving device that includes a transmission line estimation unit and a demodulation unit.
  • the data signal transmitted from the transmission device includes a next-generation SP signal used in a method newer than a preset broadcasting method and an inverted SP signal in which the code of the next-generation SP signal is inverted.
  • the data signal included in the horizontally polarized waves includes a next-generation SP signal arranged along the direction of elapsed time and the direction of frequency change.
  • the data signal included in the vertically polarized light includes a next-generation SP signal and an inverted SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
  • the transmission path estimation unit includes the next-generation SP signal included in the data signal transmitted in horizontal polarization and the next-generation SP signal included in the data signal transmitted in vertical polarization.
  • a signal in which the signal arranged at the same position and the next-generation SP signal included in the data signal transmitted in horizontal polarization and the inverted SP signal included in the data signal transmitted in vertical polarization are arranged at the same position. Estimate the transmission line response using. Further, the demodulation unit demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
  • the transmission / reception system includes a transmission device that transmits a data signal by making horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives a data signal from the transmitting device via a transmission line. It is a transmission / reception system equipped.
  • the transmission device includes a pilot signal generation unit, a first symbol generation unit, and a second symbol generation unit.
  • the pilot signal generation unit is a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and an inverted SP signal in which the code of the next-generation SP signal is inverted. And generate a NUML signal that makes the power zero.
  • the first symbol generation unit includes the current SP signal and the next-generation SP signal generated by the pilot signal generation unit for the first data signal to be transmitted in one of the horizontal polarization and the vertical polarization, and the first.
  • the first symbol signal is generated by arranging the broadcast data signal including the data signal of the above and corresponding to the content to be broadcast along the direction of the elapsed time and the direction of the frequency change.
  • the second symbol generator includes the next-generation SP signal, the inverted SP signal, and the NUML signal generated by the pilot signal generator for the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves.
  • the second symbol signal is generated by arranging the broadcast data signal including the second data signal and corresponding to the content to be broadcast along the direction of the elapsed time and the direction of the frequency change. .. Further, the second symbol generation unit generates the second symbol signal by arranging the NULL signal at the position where the first symbol generation unit arranges the current SP signal.
  • the transmission / reception system 1 includes a transmission device 100, a reception device 200, and a transmission line 300.
  • the transmission / reception system 1 is, for example, a system related to digital television broadcasting.
  • the transmission device 100 is, for example, a device on the broadcasting station side that performs digital television broadcasting. Further, the transmission device 100 processes the data signal input from the antenna 2, transmits the transmission signal S1 having horizontal polarization from the transmission side horizontal antenna 100a, and transmits the transmission signal S1 having vertical polarization from the transmission side vertical antenna 100b.
  • the signal S2 is transmitted. Specifically, the transmission signal S1 and the transmission signal S2 are orthogonally transmitted. Therefore, the transmission device 100 transmits the data signal with the horizontally polarized waves and the vertically polarized waves orthogonal to each other.
  • the horizontally polarized wave includes the current ISDB-T signal (2K signal, one-segment signal) and the next-generation 4K signal.
  • vertically polarized waves include 4K signals.
  • the 4K signal included in the horizontally polarized wave and the 4K signal included in the vertically polarized wave are signals containing different data.
  • the 4K signal included in the horizontally polarized light and the 4K signal included in the vertically polarized light are different from the layer for transmitting and receiving the 2K signal and the one-segment signal included in the horizontally polarized light (the one-segment signal is the A layer and the 2K signal is the C layer). It is transmitted and received in the hierarchy (B hierarchy).
  • the receiving device 200 receives the received signal R1 and the received signal R2 from the transmitting device 100 via the transmission line 300 (network), processes the data included in the received received signal R1 and the received signal R2, and processes the video and audio. Generate a signal of. Then, the receiving device 200 outputs the generated signal to the application device 3.
  • the transmission via the transmission line 300 can also be the transmission of information related to the content being broadcast. Specifically, the receiving device 200 receives the reception signal R1 by the receiving side horizontal antenna 200a, and receives the receiving signal R2 by the receiving side vertical antenna 200b.
  • the transmission line from the transmitting side horizontal antenna 100a to the receiving side horizontal antenna 200a is indicated by the symbol “ hhh ” as a transmission line having a transmission line response of hhh.
  • the transmission line from the transmitting side horizontal antenna 100a to the receiving side vertical antenna 200b is indicated by the code “h hv " as a transmission line having a transmission line response of h hv.
  • the transmission line from the transmitting side vertical antenna 100b to the receiving side horizontal antenna 200a is indicated by the symbol “h vh ” as a transmission line having a transmission line response of h vr.
  • the transmission line from the transmitting side vertical antenna 100b to the receiving side vertical antenna 200b is indicated by the symbol "h vv " as a transmission line having a transmission line response of h vv. That is, the transmission line 300 is a plurality of transmission lines having different transmission line responses. Therefore, the receiving device 200 receives the data signal transmitted from the transmitting device 100 and formed by making the horizontally polarized waves and the vertically polarized waves orthogonal to each other through a plurality of transmission lines having different transmission line responses.
  • the application device 3 is, for example, a television, a tablet terminal, a smartphone, or the like.
  • the transmission device 100 includes a pilot signal generation unit 101, a horizontal symbol generation unit 102, a vertical symbol generation unit 103, a horizontal reverse conversion unit 104, and a vertical reverse conversion unit 105. Be prepared.
  • the pilot signal generation unit 101 generates the current SP signal, the next-generation SP signal, the inverted SP signal, and the NULL signal. Further, the pilot signal generation unit 101 outputs the generated current SP signal, next-generation SP signal, inverted SP signal, and FULL signal to the horizontal side symbol generation unit 102 and the vertical side symbol generation unit 103.
  • the current SP signal is an SP signal used in the current system of terrestrial television broadcasting.
  • the next-generation SP signal is an SP signal used in the next-generation system (4K broadcasting, etc.) of terrestrial television broadcasting.
  • the inverting SP signal is a signal in which the sign of the next-generation SP signal is inverted.
  • the NULL signal is a signal that makes the power zero.
  • the horizontal side data signal is input from the antenna 2 to the horizontal side symbol generation unit 102.
  • the current SP signal, the next-generation SP signal, the inverted SP signal, and the NULL signal are input from the pilot signal generation unit 101 to the horizontal symbol generation unit 102.
  • the horizontal data signal includes a broadcast data signal transmitted in horizontal polarization, a TMCC signal, and an AC signal.
  • the broadcast data signal is a signal of data corresponding to the content to be broadcast, for example, a signal including video data and audio data.
  • the TMCC (Transmission and Multiplexing Control) signal is a transmission control information signal containing transmission parameter information, and is a signal containing information necessary for receiving a data signal.
  • the AC (Auxiliary Channel) signal is an auxiliary information signal containing information related to Earthquake Early Warning.
  • the horizontal side symbol generation unit 102 generates a horizontal side symbol signal by using the horizontal side data signal input from the antenna 2 and the current SP signal and the next-generation SP signal input from the pilot signal generation unit 101. .. Then, the horizontal side symbol generation unit 102 outputs the generated horizontal side symbol signal to the horizontal side inverse conversion unit 104. Specifically, the horizontal side symbol generation unit 102 sets the current SP signal, the broadcast data signal, the next-generation SP signal, the TMCC signal, and the AC signal as the direction of the elapsed time, as shown by “horizontal polarization” in FIG. By arranging it along the direction in which the frequency changes, a horizontal symbol signal is generated. In the first embodiment, as an example, the horizontal symbol generation unit 102 uniformly arranges one current SP signal, one next-generation SP signal, and two horizontal data signals along the direction of elapsed time. The case of doing so will be described.
  • the current SP signal is indicated by a circle with a cross inside
  • the broadcast data signal is indicated by a white circle
  • the next-generation SP signal is indicated by a circle with a vertical line inside.
  • the TMCC signal is indicated by an internally shaded circle
  • the AC signal is indicated by an internally shaded circle having a concentration lower than that of the TMCC signal.
  • the arrangement shown in FIG. 4 is an arrangement generated by the horizontal symbol generation unit 102 at a certain time, and the arrangement at the next time is generated each time the time elapses. In the example shown in FIG. 4, the four columns of symbols arranged along the elapsed time are shown as a group GP generated at the same time.
  • the horizontal side symbol generation unit 102 includes the current SP signal and the next-generation SP signal generated by the pilot signal generation unit 101 and the horizontal side data signal with respect to the horizontal side data signal for transmission in horizontal polarization.
  • the horizontal side symbol signal is generated by arranging the broadcast data signal along the direction of the elapsed time and the direction in which the frequency changes.
  • a vertical data signal is input from the antenna 2 to the vertical symbol generation unit 103.
  • the current SP signal, the next-generation SP signal, the inverted SP signal, and the FULL signal are input to the vertical side symbol generation unit 103 from the pilot signal generation unit 101.
  • the vertical data signal includes a broadcast data signal transmitted in vertically polarized light, a TMCC signal, and an AC signal.
  • the vertical side symbol generation unit 103 uses the vertical side data signal input from the antenna 2, the next-generation SP signal input from the pilot signal generation unit 101, the inverted SP signal, and the NUML signal to generate the vertical side symbol. Generate a signal. Then, the vertical side symbol generation unit 103 outputs the generated vertical side symbol signal to the vertical side inverse conversion unit 105. Specifically, as shown by "vertical polarization" in FIG. 4, the vertical side symbol generation unit 103 changes the direction and frequency of the elapsed time of the NUML signal, the next-generation SP signal, the inverted SP signal, and the broadcast data signal. A vertical symbol signal is generated by arranging the signal along the direction of the signal.
  • the NULL signal is indicated by a shaded circle having a density higher than that of the TMCC signal
  • the inverted SP signal is indicated by a circle having a grid formed by diagonal lines inside.
  • the arrangement shown in FIG. 4 is an arrangement generated by the vertical side symbol generation unit 103 at the same time as the horizontal side symbol generation unit 102, and like the horizontal side symbol generation unit 102, the following arrangement is made every time the time elapses. Generate an arrangement at time.
  • the vertical side symbol generation unit 103 has a position where the horizontal side symbol generation unit 102 arranges the current SP signal and the horizontal side symbol generation unit 102 when generating the vertical side symbol signal.
  • the NUML signal is arranged at the position where the TMCC signal is arranged.
  • the vertical side symbol generation unit 103 performs the process of arranging the NULL signal for all the 4K signals included in the vertically polarized waves.
  • the vertical side symbol generation unit 103 arranges the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal when generating the vertical side symbol signal.
  • the vertical side symbol generation unit 103 arranges the inverted SP signal at a part of the position where the horizontal side symbol generation unit 102 arranges the next generation SP signal when generating the vertical side symbol signal.
  • an inverted SP signal is alternately placed at a position where the horizontal symbol generation unit 102 arranges the next-generation SP signal for two consecutive groups GPa and GPb along the elapsed time. The case of arranging will be described.
  • the vertical side symbol generation unit 103 includes the next-generation SP signal, the inverted SP signal, the FULL signal, and the vertical side data generated by the pilot signal generation unit 101 with respect to the vertical side data signal to be transmitted by vertically polarized waves.
  • a vertical side symbol signal is generated by arranging the broadcast data signal included in the signal along the direction of the elapsed time and the direction in which the frequency changes.
  • the horizontal inverse transform unit 104 generates a horizontal time domain signal by, for example, performing an inverse Fourier transform (IFFT) operation on the horizontal symbol signal input from the horizontal symbol generation unit 102. Then, the horizontal reverse conversion unit 104 outputs the generated horizontal time domain signal to the transmitting horizontal antenna 100a. The horizontal time domain signal output to the transmitting horizontal antenna 100a is transmitted to the receiving device 200 via the transmission line 300.
  • IFFT inverse Fourier transform
  • the vertical side inverse transform unit 105 generates a vertical time domain signal by, for example, performing an inverse Fourier transform calculation on the vertical side symbol signal input from the vertical side symbol generation unit 103. Then, the vertical-side inverse conversion unit 105 outputs the generated vertical-side time domain signal to the transmitting-side vertical antenna 100b. The vertical time domain signal output to the transmitting vertical antenna 100b is transmitted to the receiving device 200 via the transmission line 300.
  • the receiving device 200 includes a horizontal conversion unit 201, a vertical conversion unit 202, a horizontal signal extraction unit 203, a vertical signal extraction unit 204, and a horizontal transmission line estimation unit 205.
  • a vertical transmission line estimation unit 206 and a demodulation unit 207 are provided.
  • the receiving device 200 is configured to receive a 4K signal.
  • the horizontal conversion unit 201 generates a horizontal reception signal by, for example, performing a Fourier transform (FFT) calculation on the signal input from the reception side horizontal antenna 200a. Then, the horizontal conversion unit 201 outputs the generated horizontal reception signal to the horizontal signal extraction unit 203 and the demodulation unit 207.
  • the signal input from the receiving side horizontal antenna 200a is a signal received by the receiving side horizontal antenna 200a from the transmitting side horizontal antenna 100a via a transmission line having a transmission line response of hh (see FIG. 1).
  • the signal input from the receiving side horizontal antenna 200a is a signal received by the receiving side horizontal antenna 200a from the transmitting side vertical antenna 100b via the transmission line having a transmission line response of hvh (see FIG. 1). ).
  • the vertical conversion unit 202 generates a vertical reception signal by, for example, performing a Fourier transform operation on the signal input from the reception vertical antenna 200b. Then, the vertical conversion unit 202 outputs the generated vertical reception signal to the vertical signal extraction unit 204 and the demodulation unit 207.
  • the signal input from the receiving side vertical antenna 200b is a signal received by the receiving side horizontal antenna 200a from the transmitting side horizontal antenna 100a via a transmission line having a transmission line response of h hv (see FIG. 1).
  • the signal input from the receiving side vertical antenna 200b is a signal received by the receiving side horizontal antenna 200a from the transmitting side vertical antenna 100b via a transmission line having a transmission line response of h vv (see FIG. 1). ).
  • the horizontal side signal extraction unit 203 extracts the next-generation SP signal and the inverted SP signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted next-generation SP signal and the inverted SP signal are output to the horizontal transmission line estimation unit 205.
  • the vertical side signal extraction unit 204 extracts the next-generation SP signal and the inverted SP signal from the vertical side received signal input from the vertical side conversion unit 202. Then, the extracted next-generation SP signal and the inverted SP signal are output to the vertical transmission line estimation unit 206.
  • Horizontal side channel estimation unit 205 uses the method described below, to estimate the channel response h vh and channel response h hh.
  • the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the next-generation SP signal received from the transmitting side vertical antenna 100b are arranged at the same position. Is defined as "P sum”.
  • the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the inverted SP signal received from the transmitting side vertical antenna 100b are arranged at the same position is defined as "P diff".
  • the signal P sum and the signal P diff are calculated for the portion of the broadcast data signal received by the receiving device 200.
  • the unknown variables are the two channel response h vh and channel response h hh. Therefore, by solving the two relational expressions as simultaneous equations for all broadcast data signal, estimates the channel response h vh and channel response h hh.
  • the vertical transmission line estimation unit 206 estimates the transmission line response h hv and the transmission line response h vv by using the method described below. Then, the vertical transmission line estimation unit 206 outputs the estimated transmission line response h hv and the transmission line response h vv to the demodulation unit 207.
  • the signal P sum and the signal P diff are calculated for the portion of the broadcast data signal received by the receiving device 200. ..
  • P sum ph hv + ph vv
  • P diff ph hv -ph vv
  • the demodulation unit 207 multiplies the received signal R1 and the received signal R2 by the inverse matrix of the transmission line response matrix using the following relational expression (1).
  • the channel response matrix, the channel response h hh and the channel response h vh, the channel response h hv and channel response h is estimated with the vertical side channel estimation unit 206 to estimate the horizontal side channel estimation unit 205 It is a matrix formed by vv.
  • the demodulation unit 207 demodulates the transmission signal S1 and the transmission signal S2. Then, the demodulation unit 207 outputs the demodulated transmission signal S1 and the transmission signal S2 to the application device 3.
  • the demodulation unit 207 demodulates the data signal received via the transmission line 300 by using the transmission line response estimated by the transmission line estimation unit (horizontal side transmission line estimation unit 205 and vertical side transmission line estimation unit 206). do.
  • the data signal transmitted from the transmission device 100 includes a next-generation SP signal and an inverted SP signal.
  • the data signal included in the horizontal polarization includes the next-generation SP signal arranged along the direction of the elapsed time and the direction in which the frequency changes, and the data signal included in the vertical polarization has the direction and frequency of the elapsed time. It includes a next-generation SP signal and an inverted SP signal arranged along the changing direction. Then, the horizontal channel estimation unit 205 and the vertical channel estimation unit 206 are vertically polarized with the next-generation SP signal included in the data signal transmitted in horizontal polarization among the data signals formed at right angles.
  • the horizontally polarized wave corresponds to one of the horizontally polarized wave and the vertically polarized wave
  • the horizontal data signal corresponds to the first data signal.
  • the horizontal side symbol signal corresponds to the first symbol signal
  • the horizontal side symbol generation unit 102 corresponds to the first symbol generation unit.
  • the vertically polarized light corresponds to the other of the horizontally polarized light and the vertically polarized light
  • the vertical data signal corresponds to the second data signal.
  • the vertical side symbol signal corresponds to the second symbol signal
  • the vertical side symbol generation unit 103 corresponds to the second symbol generation unit.
  • the transmission device 100 of the first embodiment can exhibit the following actions and effects.
  • the horizontal side symbol generation unit 102 changes the current SP signal, the next-generation SP signal, and the broadcast data signal included in the horizontal side data signal in the direction in which the elapsed time and the frequency change with respect to the horizontal side data signal. By arranging along the line, a horizontal symbol signal is generated.
  • the vertical side symbol generation unit 103 transmits the next-generation SP signal and the FULL signal and the broadcast data signal included in the vertical side data signal to the vertical side data signal in the direction in which the elapsed time direction and the frequency change. By arranging them along, a vertical symbol signal is generated.
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the current SP signal. This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. It is possible to provide a transmission device 100 capable of reducing reception defects. Further, since it is possible to reduce the interference with the current SP signal that has entered the segment of the horizontally polarized 4K signal without reducing the power of the carrier that requires vertically polarized waves, the polarization MIMO method is adopted. It is possible to suppress an adverse effect on the reception used. This makes it possible to provide a transmitter 100 capable of reducing reception defects for a receiver for the next-generation system by suppressing a decrease in the power of vertically polarized waves to be transmitted.
  • the horizontal side data signal further includes the TMCC signal
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. do.
  • the horizontal side data signal further includes the AC signal
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. do.
  • the pilot signal generation unit 101 generates an inverted SP signal in which the sign of the next-generation SP signal is inverted.
  • the vertical side symbol generation unit 103 further arranges the inverted SP signal generated by the pilot signal generation unit 101 at a part of the position where the horizontal side symbol generation unit 102 arranges the next-generation SP signal. , Generate a vertical symbol signal. This makes it possible for the receiver to estimate the transmission line response using the polarization MIMO method of the code inversion method, and it is possible to reduce reception defects.
  • the first data signal is a horizontal data signal for transmission in horizontal polarization
  • the second data signal is a vertical data signal for transmission in vertical polarization.
  • the receiving device 200 of the first embodiment can exhibit the following actions and effects.
  • (6) Among the data signals formed by the horizontal channel estimation unit 205 and the vertical channel estimation unit 206 at right angles, the next-generation SP signal and the vertical polarization included in the data signal transmitted by horizontal polarization.
  • the signal in which the next-generation SP signal included in the data signal transmitted in is arranged at the same position, and the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization are The transmission line response is estimated using the signal in which the including inverted SP signal is arranged at the same position.
  • the demodulation unit 207 demodulates the data signal received via the transmission line 300 by using the transmission line response estimated by the horizontal side transmission line estimation unit 205 and the vertical side transmission line estimation unit 206. As a result, it is possible to correct the interference received in the transmission line with respect to the received data signal, and provide the receiving device 200 capable of improving the receiving environment of the receiving device 200 and reducing reception defects. It becomes possible to do.
  • the transmission / reception system 1 of the first embodiment can exhibit the following actions and effects.
  • the vertical side symbol generation unit 103 included in the transmission device 100 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 included in the transmission device 100 arranges the current SP signal. do. This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. This makes it possible to provide a transmission / reception system 1 capable of reducing reception defects.
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. , Not limited to this. That is, for example, as shown in FIG. 6, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. May be. In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. , Not limited to this. That is, for example, as shown in FIG. 6, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. May be. In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
  • the first data signal is a horizontal data signal for transmission in horizontally polarized light
  • the second data signal is a vertical data signal for transmission in vertically polarized light
  • the configuration is not limited to this. That is, the first data signal may be a horizontal data signal for transmission in vertically polarized light
  • the second data signal may be a vertical data signal for transmission in horizontally polarized light.
  • the vertical side symbol generation unit 103 performs the process of arranging the NULL signal for all the 4K signals included in the vertically polarized waves, but the present invention is not limited to this. That is, for example, as shown in FIG. 7, the process of arranging the NULL signal by the vertical side symbol generation unit 103 is performed only in the vicinity of the boundary with the 1seg signal and the boundary with the 2K signal among the 4K signals included in the vertically polarized light. It may be configured to be performed on.
  • the configuration of the horizontal side symbol generation unit 102 is made uniform for one current SP signal, one next-generation SP signal, and two horizontal data signals along the direction of elapsed time. Although it is configured to be arranged in, it is not limited to this. That is, for example, as shown in FIGS. 8 to 19, the configuration of the horizontal symbol generation unit 102 is such that the current SP signal, the next-generation SP signal, and the horizontal data signal are non-uniform along the direction of elapsed time. It may be configured to be arranged in. Further, for example, as shown in FIG. 20, the next-generation SP signal and the inverted SP signal may be arranged while avoiding the position of the TMCC signal.
  • the transmission / reception system includes a transmission device 100, a reception device 200, and a transmission line 300 (see FIG. 1).
  • the transmission device 100 includes a pilot signal generation unit 101, a horizontal symbol generation unit 102, a vertical symbol generation unit 103, a horizontal reverse conversion unit 104, and a vertical reverse conversion unit 105 (see FIG. 3). ..
  • the pilot signal generation unit 101 generates the current SP signal, the next-generation SP signal, and the NULL signal. Further, the pilot signal generation unit 101 outputs the generated current SP signal, next-generation SP signal, and NULL signal to the horizontal side symbol generation unit 102 and the vertical side symbol generation unit 103. A horizontal data signal is input from the antenna 2 to the horizontal symbol generation unit 102. In addition to this, the current SP signal and the NULL signal are input to the horizontal symbol generation unit 102 from the pilot signal generation unit 101.
  • the horizontal data signal includes a broadcast data signal transmitted in horizontal polarization, a TMCC signal, and an AC signal.
  • the horizontal side symbol generation unit 102 generates a horizontal side symbol signal by using the horizontal side data signal input from the antenna 2 and the current SP signal and the FULL signal input from the pilot signal generation unit 101. Then, the horizontal side symbol generation unit 102 outputs the generated horizontal side symbol signal to the horizontal side inverse conversion unit 104. Specifically, as shown in "horizontal polarization" in FIG. 21, the horizontal side symbol generation unit 102 transmits the current SP signal, broadcast data signal, NUML signal, TMCC signal, and AC signal in the direction and frequency of elapsed time. By arranging it along the changing direction, a horizontal symbol signal is generated.
  • the horizontal side symbol generation unit 102 transmits one current SP signal, one horizontal side data signal, one FULL signal, and one horizontal side data signal in the direction of elapsed time. A case of uniformly arranging along the line will be described.
  • the arrangement shown in FIG. 21 is an arrangement generated by the horizontal symbol generation unit 102 at a certain time, and the arrangement at the next time is generated each time the time elapses.
  • the four columns of symbols arranged along the elapsed time are shown as a group GP generated at the same time.
  • the horizontal side symbol generation unit 102 includes the current SP signal and NUML signal generated by the pilot signal generation unit 101 and the broadcast data included in the horizontal side data signal with respect to the horizontal side data signal for transmission in horizontal polarization.
  • a horizontal symbol signal is generated by arranging the signal along the direction of the elapsed time and the direction in which the frequency changes.
  • a vertical data signal is input from the antenna 2 to the vertical symbol generation unit 103.
  • the next-generation SP signal and the NULL signal are input to the vertical side symbol generation unit 103 from the pilot signal generation unit 101.
  • the vertical data signal includes a broadcast data signal transmitted in vertically polarized light, a TMCC signal, and an AC signal.
  • the vertical side symbol generation unit 103 generates a vertical side symbol signal by using the vertical side data signal input from the antenna 2 and the next-generation SP signal and the FULL signal input from the pilot signal generation unit 101. Then, the vertical side symbol generation unit 103 outputs the generated vertical side symbol signal to the vertical side inverse conversion unit 105. Specifically, as shown by "vertical polarization" in FIG. 21, the vertical side symbol generation unit 103 transmits the NUML signal, the broadcast data signal, and the next-generation SP signal along the direction of the elapsed time and the direction in which the frequency changes. By arranging them, a vertical symbol signal is generated.
  • the arrangement shown in FIG. 21 is an arrangement generated by the vertical side symbol generation unit 103 at the same time as the horizontal side symbol generation unit 102, and like the horizontal side symbol generation unit 102, the following arrangement is made every time the time elapses. Generate an arrangement at time. Further, as shown in FIG. 21, the vertical side symbol generation unit 103 arranges the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the current SP signal when generating the vertical side symbol signal. Further, the vertical side symbol generation unit 103 arranges the next-generation SP signal at the position where the horizontal side symbol generation unit 102 arranges the NULL signal. In addition to this, the vertical side symbol generation unit 103 arranges the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal and the position where the horizontal side symbol generation unit 102 arranges the AC signal.
  • the vertical side symbol generation unit 103 performs the process of arranging the next-generation SP signal and the process of arranging the NULL signal for all the 4K signals included in the vertically polarized light. As described above, the vertical side symbol generation unit 103 broadcasts the next-generation SP signal and FULL signal generated by the pilot signal generation unit 101 and the vertical side data signal with respect to the vertical side data signal to be transmitted by vertically polarized waves. A vertical symbol signal is generated by arranging the data signal along the direction of the elapsed time and the direction in which the frequency changes.
  • the configuration of the horizontal reverse conversion unit 104 and the vertical reverse conversion unit 105 is the same as that of the first embodiment.
  • the receiving device 200 includes a horizontal conversion unit 201, a vertical conversion unit 202, a horizontal signal extraction unit 203, a vertical signal extraction unit 204, a horizontal transmission line estimation unit 205, and a vertical transmission line estimation unit. It includes 206 and a demodulator 207 (see FIG. 5).
  • a demodulator 207 see FIG. 5
  • the configuration of the horizontal conversion unit 201 and the vertical conversion unit 202 is the same as that of the first embodiment.
  • the horizontal side signal extraction unit 203 extracts the current SP signal and the NULL signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted current SP signal and the NULL signal are output to the horizontal transmission line estimation unit 205.
  • the vertical side signal extraction unit 204 extracts the next-generation SP signal and the NULL signal from the vertical side reception signal input from the vertical side conversion unit 202. Then, the extracted next-generation SP signal and the NULL signal are output to the vertical transmission line estimation unit 206.
  • Horizontal side channel estimation unit 205 using the method described below, to estimate the channel response h vh and channel response h hh.
  • the signal in which the current SP signal received from the transmitting side horizontal antenna 100a and the NULL signal received from the transmitting side vertical antenna 100b are arranged at the same position is referred to as " It is defined as "Ph”.
  • the current SP signal is defined as "p”
  • the vertical transmission line estimation unit 206 estimates the transmission line response h hv and the transmission line response h vv by using the method described below. Then, the vertical transmission line estimation unit 206 outputs the estimated transmission line response h hv and the transmission line response h vv to the demodulation unit 207.
  • the unknown variables are the transmission line response h hv and the transmission line response h vv . Therefore, by solving each of the two relational expressions as an equation, the transmission line response h hv and the transmission line response h vv are estimated for all the broadcast data signals.
  • the configuration of the demodulation unit 207 is the same as that of the first embodiment.
  • the horizontally polarized wave corresponds to one of the horizontally polarized wave and the vertically polarized wave
  • the horizontal data signal corresponds to the first data signal
  • the horizontal side symbol signal corresponds to the first symbol signal
  • the horizontal side symbol generation unit 102 corresponds to the first symbol generation unit.
  • the vertically polarized light corresponds to the other of the horizontally polarized light and the vertically polarized light
  • the vertical data signal corresponds to the second data signal.
  • the vertical side symbol signal corresponds to the second symbol signal
  • the vertical side symbol generation unit 103 corresponds to the second symbol generation unit.
  • the transmission device 100 of the second embodiment can exhibit the following actions and effects.
  • the horizontal side symbol generation unit 102 sets the current SP signal and the FULL signal and the broadcast data signal included in the horizontal side data signal with respect to the horizontal side data signal along the direction of elapsed time and the direction in which the frequency changes. By arranging it, a horizontal symbol signal is generated.
  • the vertical side symbol generation unit 103 transmits the next-generation SP signal and the FULL signal and the broadcast data signal included in the vertical side data signal to the vertical side data signal in the direction in which the elapsed time direction and the frequency change. By arranging them along, a vertical symbol signal is generated.
  • the vertical side symbol generation unit 103 arranges the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the current SP signal, and the horizontal side symbol generation unit 102 arranges the NUML signal at the position where the NUML signal is arranged.
  • a vertical symbol signal is generated. This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. It is possible to provide a transmission device 100 capable of reducing reception defects.
  • the polarization MIMO method is adopted. It is possible to suppress an adverse effect on the reception used. This makes it possible to provide a transmitter 100 capable of reducing reception defects for a receiver for the next-generation system by suppressing a decrease in the power of vertically polarized waves to be transmitted.
  • the horizontal side data signal further includes the TMCC signal
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. do.
  • the horizontal side data signal further includes the AC signal
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. do.
  • the first data signal is a horizontal data signal for transmission in horizontal polarization
  • the second data signal is a vertical data signal for transmission in vertical polarization.
  • the receiving device 200 of the second embodiment can exhibit the following actions and effects.
  • Next-generation SP signal including a signal in which the NUML signal included in the transmitted data signal is arranged at the same position, a NUML signal included in the data signal transmitted in horizontal polarization, and a data signal transmitted in vertical polarization.
  • the transmission line response is estimated using the signals arranged at the same position.
  • the demodulation unit 207 demodulates the data signal received via the transmission line 300 by using the transmission line response estimated by the horizontal side transmission line estimation unit 205 and the vertical side transmission line estimation unit 206. As a result, it is possible to correct the interference received in the transmission line with respect to the received data signal, improve the reception environment of the receiving device 200, and provide the receiving device 200 capable of reducing reception defects. It becomes possible.
  • the transmission / reception system 1 of the second embodiment can exhibit the following actions and effects.
  • the vertical side symbol generation unit 103 included in the transmission device 100 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 included in the transmission device 100 arranges the current SP signal. do. This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. This makes it possible to provide a transmission / reception system 1 capable of reducing reception defects.
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. , Not limited to this. That is, the vertical side symbol generation unit 103 may generate the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
  • the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. , Not limited to this. That is, the vertical side symbol generation unit 103 may generate the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
  • the first data signal is a horizontal data signal for transmission in horizontally polarized light
  • the second data signal is a vertical data signal for transmission in vertically polarized light
  • the configuration is not limited to this. That is, the first data signal may be a horizontal data signal for transmission in vertically polarized light
  • the second data signal may be a vertical data signal for transmission in horizontally polarized light.
  • the configuration of the horizontal side symbol generation unit 102 is the elapsed time of one current SP signal, one horizontal data signal, one FULL signal, and one horizontal data signal.
  • the configuration is such that the components are uniformly arranged along the direction of, but the present invention is not limited to this. That is, for example, as shown in FIGS. 22 to 30, the configuration of the horizontal side symbol generation unit 102 is such that the current SP signal, the next-generation SP signal, the NULL signal, and the horizontal data signal are arranged in the direction of elapsed time. It may be configured to be arranged non-uniformly along the line.
  • the transmission / reception system includes a transmission device 100, a reception device 200, and a transmission line 300 (see FIG. 1).
  • the configuration of the transmission device 100 is the same as that of the first embodiment.
  • the receiving device 200 includes a horizontal conversion unit 201, a vertical conversion unit 202, a horizontal side next-generation signal extraction unit 208, a vertical side next-generation signal extraction unit 209, and a horizontal side current signal. It includes an extraction unit 210 and a vertical side current signal extraction unit 211.
  • the receiving device 200 includes a horizontal side next-generation transmission line estimation unit 212, a vertical side next-generation transmission line estimation unit 213, a horizontal side current transmission line estimation unit 214, and a vertical side current transmission line estimation unit 215.
  • the horizontal side first transmission line extraction unit 216 and the horizontal side second transmission line extraction unit 217 are provided.
  • the receiving device 200 includes a vertical side first transmission line extraction unit 218, a vertical side second transmission line extraction unit 219, a horizontal side estimation accuracy improvement unit 220, a vertical side estimation accuracy improvement unit 221 and a demodulation unit 207. To be equipped.
  • a case where the receiving device 200 is configured to receive a 4K signal will be described as an example.
  • the horizontal conversion unit 201 generates a horizontal reception signal by, for example, performing a Fourier transform operation on the signal input from the reception side horizontal antenna 200a. Then, the horizontal conversion unit 201 outputs the generated horizontal reception signal to the horizontal side next-generation signal extraction unit 208, the horizontal side current signal extraction unit 210, and the demodulation unit 207.
  • the vertical conversion unit 202 generates a vertical reception signal by, for example, performing a Fourier transform operation on the signal input from the reception vertical antenna 200b. Then, the vertical conversion unit 202 outputs the generated vertical reception signal to the vertical next-generation signal extraction unit 209, the vertical current signal extraction unit 211, and the demodulation unit 207.
  • the horizontal side next-generation signal extraction unit 208 extracts the next-generation SP signal and the inverted SP signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted next-generation SP signal and the inverted SP signal are output to the horizontal side next-generation transmission line estimation unit 212.
  • the vertical side next-generation signal extraction unit 209 extracts the next-generation SP signal and the inverted SP signal from the vertical side reception signal input from the vertical side conversion unit 202. Then, the extracted next-generation SP signal and the inverted SP signal are output to the vertical side next-generation transmission line estimation unit 213.
  • the horizontal side current signal extraction unit 210 extracts the current SP signal and the NULL signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted current SP signal and the NULL signal are output to the horizontal current transmission line estimation unit 214.
  • the vertical side current signal extraction unit 211 extracts the current SP signal and the NULL signal from the vertical side reception signal input from the vertical side conversion unit 202. Then, the extracted current SP signal and the NULL signal are output to the vertical side current transmission line estimation unit 215.
  • Horizontal side next generation transmission channel estimation unit 212 uses a method described below, to estimate the channel response h vh and channel response h hh.
  • the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the next-generation SP signal received from the transmitting side vertical antenna 100b are arranged at the same position. Is defined as "P sum”.
  • the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the inverted SP signal received from the transmitting side vertical antenna 100b are arranged at the same position is defined as "P diff".
  • the unknown variables are the two channel response h vh and channel response h hh. Therefore, by solving the two relational expressions as simultaneous equations for all broadcast data signal, estimates the channel response h vh and channel response h hh.
  • the estimated transmission line response h vh is output to the horizontal first transmission line extraction unit 216.
  • the estimated transmission line response hh is output to the horizontal side second transmission line extraction unit 217.
  • the transmission line response h hv and the transmission line response h vv are estimated for all the broadcast data signals.
  • the estimated transmission line response h vv is output to the vertical side first transmission line extraction unit 218.
  • the estimated transmission line response h hv is output to the vertical side second transmission line extraction unit 219.
  • the horizontal side next-generation transmission line estimation unit 212 and the vertical side next-generation transmission line estimation unit 213 include the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization.
  • the signal in which the next-generation SP signal is located at the same position and the inverted SP signal included in the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization are in the same position.
  • the transmission line response is estimated using the signals arranged in.
  • the horizontal side current transmission line estimation unit 214 uses the current SP signal and the FULL signal input from the horizontal side current signal extraction unit 210 in the time axis direction (elapsed time direction) and the frequency axis direction (direction in which the frequency changes). ) Is the transmission line response of the current SP signal inserted at regular intervals. Further, interpolation processing is performed in the time axis direction and the frequency axis direction. As a result, the horizontal side virtual transmission line response h'hh is estimated by obtaining the transmission line response of the horizontal side data signal. Then, the horizontal side current transmission line estimation unit 214 outputs the estimated horizontal side virtual transmission line response h'hh to the horizontal side estimation accuracy improvement unit 220.
  • the vertical side current transmission line estimation unit 215 uses the current SP signal and the FULL signal input from the vertical side current signal extraction unit 211, and inserts the current SP signal at regular intervals in the time axis direction and the frequency axis direction. The transmission line response of is obtained. Further, interpolation processing is performed in the time axis direction and the frequency axis direction. As a result, the vertical side virtual transmission line response h'hv is estimated by obtaining the transmission line response of the vertical side data signal. Then, the vertical side current transmission line estimation unit 215 outputs the estimated vertical side virtual transmission line response h'hv to the vertical side estimation accuracy improvement unit 221.
  • the horizontal channel estimation unit 214 and the vertical channel estimation unit 215 include the current SP signal included in the data signal transmitted in horizontal polarization and the NUML signal included in the data signal transmitted in vertical polarization. Use to estimate transmission line response.
  • the horizontal first transmission line extraction unit 216 extracts the transmission line response hvh input from the horizontal side next-generation transmission line estimation unit 212 and outputs it to the demodulation unit 207.
  • the horizontal side second transmission line extraction unit 217 extracts the transmission line response hh input from the horizontal side next-generation transmission line estimation unit 212 and outputs it to the horizontal side estimation accuracy improvement unit 220.
  • the vertical side first transmission line extraction unit 218 extracts the transmission line response hvv input from the vertical side next-generation transmission line estimation unit 213 and outputs it to the demodulation unit 207.
  • the vertical side second transmission line extraction unit 219 extracts the transmission line response h hv input from the vertical side next-generation transmission line estimation unit 213 and outputs it to the vertical side estimation accuracy improvement unit 221.
  • the horizontal side estimation accuracy improving unit 220 has a horizontal side virtual transmission line response h'hh input from the horizontal side current transmission line estimation unit 214 and a transmission line response h hh input from the horizontal side second transmission line extraction unit 217. Is used to calculate the horizontal accuracy improvement transmission line response h''hh.
  • the horizontal side accuracy-enhanced transmission line response h''hh is a transmission line response in which the estimation accuracy is improved with respect to the transmission line response hh. Then, the horizontal side estimation accuracy improvement unit 220 outputs the calculated horizontal side accuracy improvement transmission line response h''hh to the demodulation unit 207.
  • the horizontal side estimation accuracy improving unit 220 calculates the horizontal side accuracy improving transmission line response h''hh.
  • h '' hh (w1h hh + w2h 'hh) / (w1 + w2)
  • the transmission line response h hh and the horizontal virtual transmission line response h'hh are basically the results of estimating the same transmission line response, but by estimating the transmission line response from different SP signals, , The degree of noise mixing is different. Therefore, it is possible to improve the estimation accuracy of the horizontal side accuracy improvement transmission line response h''hh by using the above-mentioned method.
  • the vertical side estimation accuracy improving unit 221 receives the vertical side virtual transmission line response h'hv input from the vertical side current transmission line estimation unit 215 and the transmission line response h hv input from the vertical side second transmission line extraction unit 219. Is used to calculate the vertical accuracy improvement transmission line response h''hv.
  • the vertical side accuracy-enhanced transmission line response h''hv is a transmission line response in which the estimation accuracy is improved with respect to the transmission line response h hv. Then, the vertical side estimation accuracy improvement unit 221 outputs the calculated vertical side accuracy improvement transmission line response h''hv to the demodulation unit 207.
  • the vertical side estimation accuracy improving unit 221 calculates the vertical side accuracy improving transmission line response h''hv.
  • h '' hv (w1h hv + w2h 'hv) / (w1 + w2)
  • a weighting index for example, the closer the transmission line response input to the vertical side estimation accuracy improvement unit 221 is to the SP signal (current SP signal, next-generation SP signal) used for interpolation of the corresponding transmission line, the more. It is possible to use a method of increasing the weight of the coefficient.
  • noise such as additive white Gaussian noise is mixed in the received signal, so noise is also mixed in the estimated transmission line response.
  • the transmission line response h hv and the vertical virtual transmission line response h'hv are basically the results of estimating the same transmission line response, but by estimating the transmission line response from different SP signals, , The degree of noise mixing is different. Therefore, it is possible to improve the estimation accuracy of the vertical side accuracy improvement transmission line response h''hv by using the above-mentioned method.
  • the demodulation unit 207 multiplies the received signal R1 and the received signal R2 by the inverse matrix of the transmission line response matrix, as in the relational expression (1) described above.
  • the channel response matrix, the channel response h '' hh, channel response h vh, the channel response h '' hv is a matrix formed by a channel response h vv. That is, in the third embodiment, 'is replaced with the "hh, the" h hv "" h to "h hh” in the above-described relational expression (1) h''' replaced with 'hv "performs an operation. As a result, the demodulation unit 207 demodulates the transmission signal S1 and the transmission signal S2.
  • the demodulation unit 207 outputs the demodulated transmission signal S1 and the transmission signal S2 to the application device 3.
  • the transmission signal S1 and the transmission signal S2 include a broadcast data signal, a TMCC signal, and an AC signal transmitted by horizontally polarized waves, and a broadcast data signal, a TMCC signal, and an AC signal transmitted by vertically polarized waves. Therefore, the demodulation unit 207 has a horizontal side accuracy improvement transmission line response h''hh calculated by the horizontal side estimation accuracy improvement unit 220 and a vertical side accuracy improvement transmission line response h''h calculated by the vertical side estimation accuracy improvement unit 221.
  • the data signal received via the transmission line 300 is demodulated using hv.
  • the horizontally polarized wave corresponds to one of the horizontally polarized wave and the vertically polarized wave
  • the horizontal data signal corresponds to the first data signal
  • the horizontal side symbol signal corresponds to the first symbol signal
  • the horizontal side symbol generation unit 102 corresponds to the first symbol generation unit.
  • the vertically polarized light corresponds to the other of the horizontally polarized light and the vertically polarized light
  • the vertical data signal corresponds to the second data signal.
  • the vertical side symbol signal corresponds to the second symbol signal
  • the vertical side symbol generation unit 103 corresponds to the second symbol generation unit.
  • the receiving device 200 of the third embodiment can exhibit the following actions and effects.
  • the horizontal side next-generation transmission line estimation unit 212 and the vertical side next-generation transmission line estimation unit 213 display the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization.
  • the signal in which the next-generation SP signal including is arranged at the same position and the inverted SP signal included in the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization are the same.
  • the transmission line response is estimated using the signal placed at the position.
  • the horizontal side current transmission line estimation unit 214 and the vertical side current transmission line estimation unit 215 input the current SP signal included in the data signal transmitted in horizontal polarization and the NUML signal included in the data signal transmitted in vertical polarization. Use to estimate transmission line response. Additionally, calculating the horizontal side estimation accuracy unit 220 'calculates hh, vertical side estimation accuracy 221, a vertical side accuracy channel response h' horizontal side accuracy channel response h 'a' hv do. Further, the demodulation unit 207 has a horizontal side accuracy improvement transmission line response h''hh calculated by the horizontal side estimation accuracy improvement unit 220 and a vertical side accuracy improvement transmission line response h''h calculated by the vertical side estimation accuracy improvement unit 221.
  • the data signal received via the transmission line 300 is demodulated using hv.
  • the reception performance is improved as compared with the case where the current SP signal is not used, thereby preventing reception failure. It is possible to provide a receiving device 200 that can be reduced.
  • the present technology can have the following configurations.
  • a transmitter that transmits data signals by making horizontally polarized waves and vertically polarized waves orthogonal to each other.
  • a pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
  • the current SP signal and the next-generation SP signal generated by the pilot signal generator and the first data for the first data signal to be transmitted in one of the horizontally polarized waves and the vertically polarized waves.
  • a first symbol generation that generates a first symbol signal by arranging a broadcast data signal that includes the signal and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes.
  • a second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes.
  • the second symbol generation unit is a transmission device that generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the current SP signal.
  • the first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
  • the first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
  • the second symbol generation unit is described in (1) above, in which the second symbol signal is generated by arranging the broadcast data signal at a position where the first symbol generation unit arranges the TMCC signal. Transmitter.
  • the first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
  • the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the AC signal (1) to (3).
  • the first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
  • the second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the AC signal from (1) to (3).
  • the pilot signal generation unit further generates an inverted SP signal in which the sign of the next-generation SP signal is inverted.
  • the second symbol generation unit further arranges the inverted SP signal generated by the pilot signal generation unit at a part of the position where the first symbol generation unit arranges the next-generation SP signal.
  • the transmitter according to any one of (1) to (5) above, which generates a second symbol signal.
  • the first data signal is a horizontal data signal for transmission with the horizontally polarized waves.
  • the transmission device according to any one of (1) to (6) above, wherein the second data signal is a vertical data signal for transmission in the vertically polarized wave.
  • the first data signal is a vertical data signal for transmission with the vertically polarized waves.
  • the transmission device according to any one of (1) to (6) above, wherein the second data signal is a horizontal data signal for transmission in the horizontally polarized wave.
  • a transmitter that transmits data signals by making horizontally polarized waves and vertically polarized waves orthogonal to each other.
  • a pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
  • the current SP signal and the NUML signal generated by the pilot signal generator and the first data signal are A broadcast data signal that includes and corresponds to the content to be broadcast, and a first symbol generator that generates a first symbol signal by arranging the broadcast data signal along the direction of elapsed time and the direction of frequency change.
  • a second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with The second symbol generation unit arranges the NULL signal at a position where the first symbol generation unit arranges the current SP signal, and the first symbol generation unit arranges the NULL signal at a position where the NULL signal is arranged.
  • a transmitter that generates the second symbol signal by arranging the next-generation SP signal.
  • the first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
  • Device. (11)
  • the first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
  • the second symbol generation unit is described in (9) above, in which the second symbol signal is generated by arranging the broadcast data signal at a position where the first symbol generation unit arranges the TMCC signal. Transmitter.
  • the first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
  • the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the AC signal (9) to (11).
  • the first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
  • the second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the AC signal (9) to (11). )
  • the first data signal is a horizontal data signal for transmission with the horizontally polarized waves.
  • the transmission device according to any one of (9) to (13) above, wherein the second data signal is a vertical data signal for transmission in the vertically polarized wave.
  • the first data signal is a vertical data signal for transmission with the vertically polarized waves.
  • the transmission device according to any one of (9) to (13) above, wherein the second data signal is a horizontal data signal for transmission in the horizontally polarized wave.
  • a receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
  • the data signal transmitted from the transmission device includes a next-generation SP signal used in a method newer than a preset broadcasting method and an inverted SP signal in which the code of the next-generation SP signal is inverted.
  • the data signal included in the horizontally polarized waves includes the next-generation SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
  • the data signal included in the vertically polarized light includes the next-generation SP signal and the inverted SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
  • the next-generation SP signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are at the same position.
  • the next-generation SP signal included in the horizontally polarized data signal and the inverted SP signal included in the vertically polarized data signal are arranged at the same position.
  • a transmission line estimation unit that estimates the transmission line response using the signal
  • a receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
  • a receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
  • the data signals transmitted from the transmission device are the current SP signal used in the preset broadcasting method, the next-generation SP signal used in a newer method than the preset broadcasting method, and the NULL signal that reduces the power to 0.
  • the data signal included in the horizontally polarized light includes the current SP signal and the NULL signal arranged along the direction of elapsed time and the direction in which the frequency changes.
  • the data signal included in the vertically polarized light includes the next-generation SP signal and the NULL signal arranged along the direction of elapsed time and the direction in which the frequency changes.
  • the current SP signal included in the data signal transmitted in the horizontally polarized wave and the NUML signal included in the data signal transmitted in the vertically polarized wave are arranged at the same position.
  • a signal in which the NULL signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are arranged at the same position.
  • a transmission line estimation unit that estimates the transmission line response using,
  • a receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
  • a receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
  • the data signals transmitted from the transmission device are the current SP signal used in the preset broadcasting method, the next-generation SP signal used in a method newer than the preset broadcasting method, and the code of the next-generation SP signal. Includes an inverted SP signal that inverts the above and a NUML signal that sets the power to 0.
  • the data signal included in the horizontally polarized light includes the current SP signal and the next-generation SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
  • the data signal included in the vertically polarized light includes the next-generation SP signal, the inverted SP signal, and the NUML signal arranged along the direction of elapsed time and the direction in which the frequency changes.
  • the next-generation SP signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are the same.
  • the signal arranged at the position, the next-generation SP signal included in the data signal transmitted in the horizontally polarized wave, and the inverted SP signal included in the data signal transmitted in the vertically polarized wave are arranged at the same position.
  • Next-generation transmission line estimation unit that estimates the transmission line response using the signal
  • the current transmission line estimation unit that estimates the transmission line response using the current SP signal and the NULL signal included in the data signal transmitted in the horizontally polarized light, and the current transmission line estimation unit.
  • An estimation accuracy improvement unit that calculates a certain accuracy improvement transmission line response
  • a receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the accuracy improvement transmission line response calculated by the estimation accuracy improvement unit.
  • a transmission / reception system including a transmission device that transmits a data signal with horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives the data signal from the transmitting device via a transmission line.
  • the transmitter is The current SP signal used in the preset broadcasting method, the next-generation SP signal used in a newer method than the preset broadcasting method, the inverted SP signal in which the code of the next-generation SP signal is inverted, and the power are used.
  • a first symbol generation that generates a first symbol signal by arranging a broadcast data signal that includes the signal and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. Department and With respect to the second data signal for transmission in the other of the horizontally polarized waves and the vertically polarized waves, the next-generation SP signal, the inverted SP signal, and the NUML signal generated by the pilot signal generator, and the above.
  • a second symbol signal is generated by arranging a broadcast data signal included in the second data signal and corresponding to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes.
  • the second symbol generation unit is a transmission / reception system that generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the current SP signal.
  • a transmission / reception system including a transmission device that transmits a data signal with horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives the data signal from the transmitting device via a transmission line.
  • the transmitter is A pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
  • the current SP signal and the NUML signal generated by the pilot signal generator and the first data signal are A broadcast data signal that includes and corresponds to the content to be broadcast, and a first symbol generator that generates a first symbol signal by arranging the broadcast data signal along the direction of elapsed time and the direction of frequency change.
  • a second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with The second symbol generation unit arranges the NULL signal at a position where the first symbol generation unit arranges the current SP signal, and the first symbol generation unit arranges the NULL signal at a position where the NULL signal is arranged.
  • a transmission / reception system that generates the second symbol signal by arranging the next-generation SP signal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

A transmitting/receiving system provided with a transmitter for transmitting a data signal, of which the horizontally and vertically polarized waves are made to be orthogonal, and a receiver for receiving data signals from the transmitter via a transmission line, wherein: for a first data signal transmitted using one of the horizontally and vertically polarized waves, a present SP signal, a next-generation SP signal, and a broadcast data signal included in the first data signal are arranged along the direction of elapsed time and a direction in which the frequency changes; for a second data signal transmitted using the other of the horizontally and vertically polarized waves, the next-generation SP signal, a NULL signal, and a broadcast data signal included in the second data signal are arranged along the direction of elapsed time and a direction in which the frequency changes; and the NULL signal is furthermore arranged at a position among first symbol signals at which the present SP signal is arranged.

Description

送信装置、受信装置、送受信システムTransmitter, receiver, transmitter / receiver system
 本開示に係る技術(本技術)は、水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置と、伝送路を介してデータ信号を受信する受信装置と、送信装置と受信装置を備える送受信システムの技術に関する。 The technology according to the present disclosure (the present technology) includes a transmission device that transmits a data signal by making horizontally polarized waves and vertically polarized waves orthogonal to each other, a receiving device that receives a data signal via a transmission line, and a transmitting device and receiving. The present invention relates to the technology of a transmission / reception system equipped with a device.
 地上波テレビ放送の現行方式から次世代方式への移行方法として、偏波MIMO(Multiple Input Multiple Output)を用いることで、現行方式と互換性のある次世代方式を導入する技術がある。偏波MIMOを用いて現行方式と互換性のある次世代方式を導入する技術としては、例えば、特許文献1に開示されている技術がある。特許文献1に開示されている技術では、水平偏波で現行方式のISDB-T信号を伝送し、水平偏波の一部と垂直偏波で次世代方式の4K信号を伝送する。
 そして、特許文献1に開示されている技術では、ISDB-T信号に、スキャッタードパイロット(SP)信号と呼称される既知信号が、時間軸方向と周波数軸方向に一定の間隔で挿入されている。ISDB-T信号を受信する現行方式向けの受信機は、ISDB-Tで定められたSP信号から伝送路応答を推定することで受信した現行方式信号を復調する。また、特許文献1に開示されている技術では、水平偏波及び垂直偏波がSP信号を含む仕様となっており、一般的に知られる偏波MIMO方式が成立する仕様となっている。さらに、偏波MIMOに対応した次世代方式向けの受信機では、水平偏波が含むSP信号と垂直偏波が含むSP信号から伝送路応答を推定することで、受信した次世代方式信号を復調する。
As a method of shifting from the current method of terrestrial television broadcasting to the next-generation method, there is a technique for introducing a next-generation method compatible with the current method by using polarization MIMO (Multiple Input Multiple Output). As a technique for introducing a next-generation method compatible with the current method using polarized MIMO, for example, there is a technique disclosed in Patent Document 1. In the technique disclosed in Patent Document 1, the current ISDB-T signal is transmitted with horizontally polarized light, and the next-generation 4K signal is transmitted with a part of horizontally polarized light and vertically polarized light.
Then, in the technique disclosed in Patent Document 1, a known signal called a scattered pilot (SP) signal is inserted into the ISDB-T signal at regular intervals in the time axis direction and the frequency axis direction. There is. The receiver for the current system that receives the ISDB-T signal demodulates the received current system signal by estimating the transmission line response from the SP signal defined by ISDB-T. Further, in the technique disclosed in Patent Document 1, the horizontally polarized waves and the vertically polarized waves are specified to include SP signals, and the generally known polarization MIMO method is established. Furthermore, in the receiver for the next-generation system that supports polarization MIMO, the received next-generation system signal is demodulated by estimating the transmission path response from the SP signal contained in the horizontally polarized light and the SP signal contained in the vertically polarized light. do.
特開2017-192052号公報Japanese Unexamined Patent Publication No. 2017-192052
 現行方式向けの受信機は、ISDB-T信号(2K信号、ワンセグ信号)に加え、水平偏波の4K信号のセグメントに入ったISDB-Tで定められたSP信号も利用するが、ISDB-Tでは定められていない垂直偏波が含むSP信号を利用することは不可能である。このため、特許文献1に開示されている技術では、垂直偏波が含む放送データ信号によって発生する、水平偏波の4K信号のセグメントに入ったISDB-Tで定められたSP信号への干渉を補正することが不可能である。これにより、SP信号を使用した伝送路応答の推定に悪影響を及ぼすため、現行方式向けの受信機では、受信不良が発生するという問題点がある。また、特許文献1に開示されている技術では、送信する垂直偏波の電力を低下させるため、次世代方式向けの受信機においても、受信不良が発生するという問題点がある。 The receiver for the current system uses the ISDB-T signal (2K signal, one-segment signal) as well as the SP signal defined by ISDB-T in the horizontally polarized 4K signal segment, but ISDB-T. It is impossible to utilize the SP signal contained in the vertically polarized waves that are not defined in. Therefore, in the technique disclosed in Patent Document 1, interference with the SP signal defined by ISDB-T in the segment of the horizontally polarized 4K signal generated by the broadcast data signal including the vertically polarized wave is caused. It is impossible to correct. This adversely affects the estimation of the transmission line response using the SP signal, so that there is a problem that reception failure occurs in the receiver for the current method. Further, the technique disclosed in Patent Document 1 has a problem that reception failure occurs even in a receiver for a next-generation system because the power of vertically polarized waves to be transmitted is reduced.
 本技術は、上記問題点を鑑み、受信不良を低減させることが可能な送信装置及び受信装置と、伝送路を介して送信装置と受信装置とを接続した送受信システムを提供することを目的とする。 In view of the above problems, an object of the present technology is to provide a transmission device and a reception device capable of reducing reception defects, and a transmission / reception system in which the transmission device and the reception device are connected via a transmission line. ..
 本技術の一態様に係る送信装置は、水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置であって、パイロット信号生成部と、第一のシンボル生成部と、第二のシンボル生成部を備える。パイロット信号生成部は、予め設定した放送の方式で用いる現行SP信号と、予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を生成する。第一のシンボル生成部は、水平偏波及び垂直偏波のうち一方で送信するための第一のデータ信号に対し、パイロット信号生成部が生成した現行SP信号及び次世代SP信号と、第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する。第二のシンボル生成部は、水平偏波及び垂直偏波のうち他方で送信するための第二のデータ信号に対し、パイロット信号生成部が生成した次世代SP信号及びNULL信号と、第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する。さらに、第二のシンボル生成部は、第一のシンボル生成部が現行SP信号を配置した位置にNULL信号を配置することで第二のシンボル信号を生成する。 The transmission device according to one aspect of the present technology is a transmission device that transmits a data signal by making horizontally polarized waves and vertically polarized waves orthogonal to each other, and is a pilot signal generation unit, a first symbol generation unit, and a second. It is provided with a symbol generation unit of. The pilot signal generation unit generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to zero. The first symbol generation unit includes the current SP signal and the next-generation SP signal generated by the pilot signal generation unit for the first data signal to be transmitted in one of the horizontal polarization and the vertical polarization, and the first. The first symbol signal is generated by arranging the broadcast data signal including the data signal of the above and corresponding to the content to be broadcast along the direction of the elapsed time and the direction of the frequency change. The second symbol generator has the next-generation SP signal and the NUML signal generated by the pilot signal generator for the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves, and the second. A second symbol signal is generated by arranging the broadcast data signal included in the data signal and corresponding to the content to be broadcast along the direction of the elapsed time and the direction in which the frequency changes. Further, the second symbol generation unit generates the second symbol signal by arranging the NULL signal at the position where the first symbol generation unit arranges the current SP signal.
 本技術の一態様に係る受信装置は、送信装置から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する受信装置であって、伝送路推定部と、復調部を備える。送信装置から送信されたデータ信号は、予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、次世代SP信号の符号を反転させた反転SP信号を含む。水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された次世代SP信号を含む。垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、次世代SP信号と、反転SP信号を含む。伝送路推定部は、直交させて形成されたデータ信号のうち、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号と、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む反転SP信号とが同じ位置に配置されている信号を用いて伝送路応答を推定する。また、復調部は、伝送路推定部が推定した伝送路応答を用いて、伝送路を介して受信したデータ信号を復調する。 The receiving device according to one aspect of the present technology receives a data signal transmitted from the transmitting device and formed by making the horizontally polarized waves and the vertically polarized waves orthogonal to each other through a plurality of transmission lines having different transmission line responses. It is a receiving device that includes a transmission line estimation unit and a demodulation unit. The data signal transmitted from the transmission device includes a next-generation SP signal used in a method newer than a preset broadcasting method and an inverted SP signal in which the code of the next-generation SP signal is inverted. The data signal included in the horizontally polarized waves includes a next-generation SP signal arranged along the direction of elapsed time and the direction of frequency change. The data signal included in the vertically polarized light includes a next-generation SP signal and an inverted SP signal arranged along the direction of elapsed time and the direction in which the frequency changes. Among the data signals formed at right angles, the transmission path estimation unit includes the next-generation SP signal included in the data signal transmitted in horizontal polarization and the next-generation SP signal included in the data signal transmitted in vertical polarization. A signal in which the signal arranged at the same position and the next-generation SP signal included in the data signal transmitted in horizontal polarization and the inverted SP signal included in the data signal transmitted in vertical polarization are arranged at the same position. Estimate the transmission line response using. Further, the demodulation unit demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
 本技術の一態様に係る送受信システムは、水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置と、送信装置から伝送路を介してデータ信号を受信する受信装置と、を備える送受信システムである。送信装置は、パイロット信号生成部と、第一のシンボル生成部と、第二のシンボル生成部を備える。パイロット信号生成部は、予め設定した放送の方式で用いる現行SP信号と、予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、次世代SP信号の符号を反転させた反転SP信号と、電力を0にするNULL信号を生成する。第一のシンボル生成部は、水平偏波及び垂直偏波のうち一方で送信するための第一のデータ信号に対し、パイロット信号生成部が生成した現行SP信号及び次世代SP信号と、第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する。第二のシンボル生成部は、水平偏波及び垂直偏波のうち他方で送信するための第二のデータ信号に対し、パイロット信号生成部が生成した次世代SP信号、反転SP信号及びNULL信号と、第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する。さらに、第二のシンボル生成部は、第一のシンボル生成部が現行SP信号を配置した位置にNULL信号を配置することで第二のシンボル信号を生成する。 The transmission / reception system according to one aspect of the present technology includes a transmission device that transmits a data signal by making horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives a data signal from the transmitting device via a transmission line. It is a transmission / reception system equipped. The transmission device includes a pilot signal generation unit, a first symbol generation unit, and a second symbol generation unit. The pilot signal generation unit is a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and an inverted SP signal in which the code of the next-generation SP signal is inverted. And generate a NUML signal that makes the power zero. The first symbol generation unit includes the current SP signal and the next-generation SP signal generated by the pilot signal generation unit for the first data signal to be transmitted in one of the horizontal polarization and the vertical polarization, and the first. The first symbol signal is generated by arranging the broadcast data signal including the data signal of the above and corresponding to the content to be broadcast along the direction of the elapsed time and the direction of the frequency change. The second symbol generator includes the next-generation SP signal, the inverted SP signal, and the NUML signal generated by the pilot signal generator for the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves. , The second symbol signal is generated by arranging the broadcast data signal including the second data signal and corresponding to the content to be broadcast along the direction of the elapsed time and the direction of the frequency change. .. Further, the second symbol generation unit generates the second symbol signal by arranging the NULL signal at the position where the first symbol generation unit arranges the current SP signal.
第1実施形態における送受信システムの構成を示す図である。It is a figure which shows the structure of the transmission / reception system in 1st Embodiment. 水平偏波と垂直偏波が含む信号を示す図である。It is a figure which shows the signal which includes the horizontally polarized wave and the vertically polarized wave. 送信装置の構成を示すブロック図である。It is a block diagram which shows the structure of a transmission device. 水平側シンボル生成部が生成した水平側シンボル信号と、垂直側シンボル生成部が生成した垂直側シンボル信号を示す図である。It is a figure which shows the horizontal side symbol signal generated by the horizontal side symbol generation part, and the vertical side symbol signal generated by a vertical side symbol generation part. 受信装置の構成を示すブロック図である。It is a block diagram which shows the structure of a receiving device. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第1実施形態の変形例を示す図である。It is a figure which shows the modification of 1st Embodiment. 第2実施形態において、水平側シンボル生成部が生成した水平側シンボル信号と、垂直側シンボル生成部が生成した垂直側シンボル信号を示す図である。In the second embodiment, it is a figure which shows the horizontal side symbol signal generated by the horizontal side symbol generation part, and the vertical side symbol signal generated by a vertical side symbol generation part. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第2実施形態の変形例を示す図である。It is a figure which shows the modification of 2nd Embodiment. 第3実施形態の送受信システムが備える受信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the receiving apparatus provided in the transmission / reception system of 3rd Embodiment.
 以下、図面を参照して、本技術の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。以下に示す実施形態は、本技術の技術的思想を具体化するための装置や方法を例示するものであって、本技術の技術的思想は、下記の実施形態に例示した装置や方法に特定するものでない。本技術の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることが可能である。 Hereinafter, embodiments of the present technology will be described with reference to the drawings. In the description of the drawings, the same or similar parts are designated by the same or similar reference numerals, and duplicate description will be omitted. Each drawing is schematic and may differ from the actual one. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present technology, and the technical idea of the present technology is specified in the devices and methods exemplified in the following embodiments. Not something to do. The technical idea of the present technology can be modified in various ways within the technical scope described in the claims.
 (第1実施形態)
 以下、図を参照して、受信装置と、送信装置と、送受信システムについて説明する。
 図1に示すように、送受信システム1は、送信装置100と、受信装置200と、伝送路300を備える。
(First Embodiment)
Hereinafter, the receiving device, the transmitting device, and the transmitting / receiving system will be described with reference to the drawings.
As shown in FIG. 1, the transmission / reception system 1 includes a transmission device 100, a reception device 200, and a transmission line 300.
 <送受信システムの構成>
 送受信システム1は、例えば、デジタルテレビ放送に関わるシステムである。
 送信装置100は、例えば、デジタルテレビ放送を行う放送局側の装置である。
 また、送信装置100は、アンテナ2から入力されたデータ信号を処理して、送信側水平アンテナ100aから水平偏波である送信信号S1を送信し、送信側垂直アンテナ100bから垂直偏波である送信信号S2を送信する。具体的には、送信信号S1と送信信号S2とを直交させて送信する。したがって、送信装置100は、水平偏波と垂直偏波とを直交させてデータ信号を送信する。
<Configuration of transmission / reception system>
The transmission / reception system 1 is, for example, a system related to digital television broadcasting.
The transmission device 100 is, for example, a device on the broadcasting station side that performs digital television broadcasting.
Further, the transmission device 100 processes the data signal input from the antenna 2, transmits the transmission signal S1 having horizontal polarization from the transmission side horizontal antenna 100a, and transmits the transmission signal S1 having vertical polarization from the transmission side vertical antenna 100b. The signal S2 is transmitted. Specifically, the transmission signal S1 and the transmission signal S2 are orthogonally transmitted. Therefore, the transmission device 100 transmits the data signal with the horizontally polarized waves and the vertically polarized waves orthogonal to each other.
 また、図2に示すように、水平偏波は、現行方式のISDB-T信号(2K信号、ワンセグ信号)と、次世代方式の4K信号を含む。また、垂直偏波は、4K信号を含む。水平偏波が含む4K信号と、垂直偏波が含む4K信号は、異なるデータを含む信号である。また、水平偏波が含む4K信号及び垂直偏波が含む4K信号は、水平偏波が含む2K信号及びワンセグ信号を送受信する階層(ワンセグ信号はA階層、2K信号はC階層)とは、異なる階層(B階層)で送受信される。 Further, as shown in FIG. 2, the horizontally polarized wave includes the current ISDB-T signal (2K signal, one-segment signal) and the next-generation 4K signal. Also, vertically polarized waves include 4K signals. The 4K signal included in the horizontally polarized wave and the 4K signal included in the vertically polarized wave are signals containing different data. Further, the 4K signal included in the horizontally polarized light and the 4K signal included in the vertically polarized light are different from the layer for transmitting and receiving the 2K signal and the one-segment signal included in the horizontally polarized light (the one-segment signal is the A layer and the 2K signal is the C layer). It is transmitted and received in the hierarchy (B hierarchy).
 受信装置200は、送信装置100から、伝送路300(ネットワーク)を介して、受信信号R1と受信信号R2を受信し、受信した受信信号R1と受信信号R2が含むデータを処理して映像や音声の信号を生成する。そして、受信装置200は、生成した信号をアプリケーション装置3へ出力する。なお、伝送路300を介した送信は、放送されているコンテンツに係わる情報の送信とすることも可能である。
 具体的に、受信装置200は、受信側水平アンテナ200aにより受信信号R1を受信し、受信側垂直アンテナ200bにより受信信号R2を受信する。
The receiving device 200 receives the received signal R1 and the received signal R2 from the transmitting device 100 via the transmission line 300 (network), processes the data included in the received received signal R1 and the received signal R2, and processes the video and audio. Generate a signal of. Then, the receiving device 200 outputs the generated signal to the application device 3. The transmission via the transmission line 300 can also be the transmission of information related to the content being broadcast.
Specifically, the receiving device 200 receives the reception signal R1 by the receiving side horizontal antenna 200a, and receives the receiving signal R2 by the receiving side vertical antenna 200b.
 なお、図1では、送信側水平アンテナ100aから受信側水平アンテナ200aへの伝送路を、伝送路応答がhhhである伝送路として符号「hhh」で示す。また、送信側水平アンテナ100aから受信側垂直アンテナ200bへの伝送路を、伝送路応答がhhvである伝送路として符号「hhv」で示す。同様に、送信側垂直アンテナ100bから受信側水平アンテナ200aへの伝送路を、伝送路応答がhvhである伝送路として符号「hvh」で示す。さらに、送信側垂直アンテナ100bから受信側垂直アンテナ200bへの伝送路を、伝送路応答がhvvである伝送路として符号「hvv」で示す。
 すなわち、伝送路300は、伝送路応答が異なる複数の伝送路である。したがって、受信装置200は、送信装置100から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する。
In FIG. 1, the transmission line from the transmitting side horizontal antenna 100a to the receiving side horizontal antenna 200a is indicated by the symbol “ hhh ” as a transmission line having a transmission line response of hhh. Further, the transmission line from the transmitting side horizontal antenna 100a to the receiving side vertical antenna 200b is indicated by the code "h hv " as a transmission line having a transmission line response of h hv. Similarly, the transmission line from the transmitting side vertical antenna 100b to the receiving side horizontal antenna 200a is indicated by the symbol “h vh ” as a transmission line having a transmission line response of h vr. Further, the transmission line from the transmitting side vertical antenna 100b to the receiving side vertical antenna 200b is indicated by the symbol "h vv " as a transmission line having a transmission line response of h vv.
That is, the transmission line 300 is a plurality of transmission lines having different transmission line responses. Therefore, the receiving device 200 receives the data signal transmitted from the transmitting device 100 and formed by making the horizontally polarized waves and the vertically polarized waves orthogonal to each other through a plurality of transmission lines having different transmission line responses.
 アプリケーション装置3は、例えば、テレビジョン、タブレット端末、スマートフォン等である。 The application device 3 is, for example, a television, a tablet terminal, a smartphone, or the like.
 <送信装置の構成>
 送信装置100は、図3に示すように、パイロット信号生成部101と、水平側シンボル生成部102と、垂直側シンボル生成部103と、水平側逆変換部104と、垂直側逆変換部105を備える。
<Configuration of transmitter>
As shown in FIG. 3, the transmission device 100 includes a pilot signal generation unit 101, a horizontal symbol generation unit 102, a vertical symbol generation unit 103, a horizontal reverse conversion unit 104, and a vertical reverse conversion unit 105. Be prepared.
 パイロット信号生成部101は、現行SP信号と、次世代SP信号と、反転SP信号と、NULL信号を生成する。また、パイロット信号生成部101は、生成した現行SP信号、次世代SP信号、反転SP信号及びNULL信号を、水平側シンボル生成部102と垂直側シンボル生成部103へ出力する。 The pilot signal generation unit 101 generates the current SP signal, the next-generation SP signal, the inverted SP signal, and the NULL signal. Further, the pilot signal generation unit 101 outputs the generated current SP signal, next-generation SP signal, inverted SP signal, and FULL signal to the horizontal side symbol generation unit 102 and the vertical side symbol generation unit 103.
 現行SP信号は、地上波テレビ放送の現行方式で用いるSP信号である。
 次世代SP信号は、地上波テレビ放送の次世代方式(4K放送等)で用いるSP信号である。
 反転SP信号は、次世代SP信号の符号を反転させた信号である。
 NULL信号は、電力を0にする信号である。
The current SP signal is an SP signal used in the current system of terrestrial television broadcasting.
The next-generation SP signal is an SP signal used in the next-generation system (4K broadcasting, etc.) of terrestrial television broadcasting.
The inverting SP signal is a signal in which the sign of the next-generation SP signal is inverted.
The NULL signal is a signal that makes the power zero.
 水平側シンボル生成部102には、アンテナ2から水平側データ信号が入力される。これに加え、水平側シンボル生成部102には、パイロット信号生成部101から、現行SP信号、次世代SP信号、反転SP信号及びNULL信号が入力される。 The horizontal side data signal is input from the antenna 2 to the horizontal side symbol generation unit 102. In addition to this, the current SP signal, the next-generation SP signal, the inverted SP signal, and the NULL signal are input from the pilot signal generation unit 101 to the horizontal symbol generation unit 102.
 水平側データ信号は、水平偏波で送信する放送データ信号と、TMCC信号と、AC信号を含む。
 放送データ信号は、放送するコンテンツの内容に対応するデータの信号、例えば、映像データや音声データを含む信号である。
The horizontal data signal includes a broadcast data signal transmitted in horizontal polarization, a TMCC signal, and an AC signal.
The broadcast data signal is a signal of data corresponding to the content to be broadcast, for example, a signal including video data and audio data.
 TMCC(Transmission and Multiplexing Configuration Control)信号は、送信パラメータ情報の入った伝送制御情報信号であり、データ信号を受信するために必要な情報が入っている信号である。
 AC(Auxiliary Channel)信号は、緊急地震速報関連の情報の入った補助情報信号である。
The TMCC (Transmission and Multiplexing Control) signal is a transmission control information signal containing transmission parameter information, and is a signal containing information necessary for receiving a data signal.
The AC (Auxiliary Channel) signal is an auxiliary information signal containing information related to Earthquake Early Warning.
 また、水平側シンボル生成部102は、アンテナ2から入力された水平側データ信号と、パイロット信号生成部101から入力された現行SP信号及び次世代SP信号を用いて、水平側シンボル信号を生成する。そして、水平側シンボル生成部102は、生成した水平側シンボル信号を水平側逆変換部104へ出力する。
 具体的に、水平側シンボル生成部102は、図4に「水平偏波」で示すように、現行SP信号、放送データ信号、次世代SP信号、TMCC信号、AC信号を、経過時間の方向と周波数が変化する方向に沿って配置することで、水平側シンボル信号を生成する。第1実施形態では、一例として、水平側シンボル生成部102が、一つの現行SP信号と、一つの次世代SP信号と、二つの水平側データ信号を、経過時間の方向に沿って均一に配置する場合について説明する。
Further, the horizontal side symbol generation unit 102 generates a horizontal side symbol signal by using the horizontal side data signal input from the antenna 2 and the current SP signal and the next-generation SP signal input from the pilot signal generation unit 101. .. Then, the horizontal side symbol generation unit 102 outputs the generated horizontal side symbol signal to the horizontal side inverse conversion unit 104.
Specifically, the horizontal side symbol generation unit 102 sets the current SP signal, the broadcast data signal, the next-generation SP signal, the TMCC signal, and the AC signal as the direction of the elapsed time, as shown by “horizontal polarization” in FIG. By arranging it along the direction in which the frequency changes, a horizontal symbol signal is generated. In the first embodiment, as an example, the horizontal symbol generation unit 102 uniformly arranges one current SP signal, one next-generation SP signal, and two horizontal data signals along the direction of elapsed time. The case of doing so will be described.
 なお、図4では、現行SP信号を、×印が内部に記載された円で示し、放送データ信号を、白抜きの円で示し、次世代SP信号を、縦線が内部に記載された円で示す。同様に、図4では、TMCC信号を、内部に網掛けを施した円で示し、AC信号を、TMCC信号よりも濃度が薄い網掛けを内部に施した円で示す。
 また、図4に示す配置は、ある時刻に水平側シンボル生成部102で生成した配置であり、時間が経過するごとに、次の時刻における配置を生成する。図4に示す例では、経過時間に沿って配列した4列のシンボルを、同じ時刻に生成したグループGPとして示す。
 以上により、水平側シンボル生成部102は、水平偏波で送信するための水平側データ信号に対し、パイロット信号生成部101が生成した現行SP信号及び次世代SP信号と、水平側データ信号が含む放送データ信号とを、経過時間の方向と周波数が変化する方向に沿って配置することで、水平側シンボル信号を生成する。
In FIG. 4, the current SP signal is indicated by a circle with a cross inside, the broadcast data signal is indicated by a white circle, and the next-generation SP signal is indicated by a circle with a vertical line inside. Indicated by. Similarly, in FIG. 4, the TMCC signal is indicated by an internally shaded circle, and the AC signal is indicated by an internally shaded circle having a concentration lower than that of the TMCC signal.
Further, the arrangement shown in FIG. 4 is an arrangement generated by the horizontal symbol generation unit 102 at a certain time, and the arrangement at the next time is generated each time the time elapses. In the example shown in FIG. 4, the four columns of symbols arranged along the elapsed time are shown as a group GP generated at the same time.
As described above, the horizontal side symbol generation unit 102 includes the current SP signal and the next-generation SP signal generated by the pilot signal generation unit 101 and the horizontal side data signal with respect to the horizontal side data signal for transmission in horizontal polarization. The horizontal side symbol signal is generated by arranging the broadcast data signal along the direction of the elapsed time and the direction in which the frequency changes.
 垂直側シンボル生成部103には、アンテナ2から垂直側データ信号が入力される。これに加え、垂直側シンボル生成部103には、パイロット信号生成部101から、現行SP信号、次世代SP信号、反転SP信号及びNULL信号が入力される。
 垂直側データ信号は、垂直偏波で送信する放送データ信号と、TMCC信号と、AC信号を含む。
A vertical data signal is input from the antenna 2 to the vertical symbol generation unit 103. In addition to this, the current SP signal, the next-generation SP signal, the inverted SP signal, and the FULL signal are input to the vertical side symbol generation unit 103 from the pilot signal generation unit 101.
The vertical data signal includes a broadcast data signal transmitted in vertically polarized light, a TMCC signal, and an AC signal.
 また、垂直側シンボル生成部103は、アンテナ2から入力された垂直側データ信号と、パイロット信号生成部101から入力された次世代SP信号と、反転SP信号及びNULL信号を用いて、垂直側シンボル信号を生成する。そして、垂直側シンボル生成部103は、生成した垂直側シンボル信号を垂直側逆変換部105へ出力する。
 具体的に、垂直側シンボル生成部103は、図4に「垂直偏波」で示すように、NULL信号、次世代SP信号、反転SP信号、放送データ信号を、経過時間の方向と周波数が変化する方向に沿って配置することで、垂直側シンボル信号を生成する。
Further, the vertical side symbol generation unit 103 uses the vertical side data signal input from the antenna 2, the next-generation SP signal input from the pilot signal generation unit 101, the inverted SP signal, and the NUML signal to generate the vertical side symbol. Generate a signal. Then, the vertical side symbol generation unit 103 outputs the generated vertical side symbol signal to the vertical side inverse conversion unit 105.
Specifically, as shown by "vertical polarization" in FIG. 4, the vertical side symbol generation unit 103 changes the direction and frequency of the elapsed time of the NUML signal, the next-generation SP signal, the inverted SP signal, and the broadcast data signal. A vertical symbol signal is generated by arranging the signal along the direction of the signal.
 なお、図4では、NULL信号を、TMCC信号よりも濃度が濃い網掛けを内部に施した円で示し、反転SP信号を、斜線で形成された格子が内部に記載された円で示す。
 また、図4に示す配置は、水平側シンボル生成部102と同じ時刻に垂直側シンボル生成部103で生成した配置であり、水平側シンボル生成部102と同様、時間が経過するごとに、次の時刻における配置を生成する。
In FIG. 4, the NULL signal is indicated by a shaded circle having a density higher than that of the TMCC signal, and the inverted SP signal is indicated by a circle having a grid formed by diagonal lines inside.
Further, the arrangement shown in FIG. 4 is an arrangement generated by the vertical side symbol generation unit 103 at the same time as the horizontal side symbol generation unit 102, and like the horizontal side symbol generation unit 102, the following arrangement is made every time the time elapses. Generate an arrangement at time.
 さらに、垂直側シンボル生成部103は、図4に示すように、垂直側シンボル信号を生成する際に、水平側シンボル生成部102が現行SP信号を配置した位置と、水平側シンボル生成部102がTMCC信号を配置した位置に、NULL信号を配置する。
 なお、垂直側シンボル生成部103が、NULL信号を配置する処理は、垂直偏波が含む4K信号の全てに対して行う。
Further, as shown in FIG. 4, the vertical side symbol generation unit 103 has a position where the horizontal side symbol generation unit 102 arranges the current SP signal and the horizontal side symbol generation unit 102 when generating the vertical side symbol signal. The NUML signal is arranged at the position where the TMCC signal is arranged.
The vertical side symbol generation unit 103 performs the process of arranging the NULL signal for all the 4K signals included in the vertically polarized waves.
 さらに、垂直側シンボル生成部103は、垂直側シンボル信号を生成する際に、水平側シンボル生成部102がAC信号を配置した位置に、NULL信号を配置する。
 これに加え、垂直側シンボル生成部103は、垂直側シンボル信号を生成する際に、水平側シンボル生成部102が次世代SP信号を配置した位置の一部に、反転SP信号を配置する。第1実施形態では、一例として、経過時間に沿って連続する二つのグループGPa,GPbに対して、交互に、水平側シンボル生成部102が次世代SP信号を配置した位置に、反転SP信号を配置する場合について説明する。
Further, the vertical side symbol generation unit 103 arranges the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal when generating the vertical side symbol signal.
In addition to this, the vertical side symbol generation unit 103 arranges the inverted SP signal at a part of the position where the horizontal side symbol generation unit 102 arranges the next generation SP signal when generating the vertical side symbol signal. In the first embodiment, as an example, an inverted SP signal is alternately placed at a position where the horizontal symbol generation unit 102 arranges the next-generation SP signal for two consecutive groups GPa and GPb along the elapsed time. The case of arranging will be described.
 以上により、垂直側シンボル生成部103は、垂直偏波で送信するための垂直側データ信号に対し、パイロット信号生成部101が生成した次世代SP信号、反転SP信号及びNULL信号と、垂直側データ信号が含む放送データ信号とを、経過時間の方向と周波数が変化する方向に沿って配置することで、垂直側シンボル信号を生成する。 As described above, the vertical side symbol generation unit 103 includes the next-generation SP signal, the inverted SP signal, the FULL signal, and the vertical side data generated by the pilot signal generation unit 101 with respect to the vertical side data signal to be transmitted by vertically polarized waves. A vertical side symbol signal is generated by arranging the broadcast data signal included in the signal along the direction of the elapsed time and the direction in which the frequency changes.
 水平側逆変換部104は、水平側シンボル生成部102から入力された水平側シンボル信号に対して、例えば、逆フーリエ変換(IFFT)演算を行うことで、水平側時間域信号を生成する。そして、水平側逆変換部104は、生成した水平側時間域信号を、送信側水平アンテナ100aへ出力する。送信側水平アンテナ100aへ出力された水平側時間域信号は、伝送路300を介して受信装置200へ送信される。 The horizontal inverse transform unit 104 generates a horizontal time domain signal by, for example, performing an inverse Fourier transform (IFFT) operation on the horizontal symbol signal input from the horizontal symbol generation unit 102. Then, the horizontal reverse conversion unit 104 outputs the generated horizontal time domain signal to the transmitting horizontal antenna 100a. The horizontal time domain signal output to the transmitting horizontal antenna 100a is transmitted to the receiving device 200 via the transmission line 300.
 垂直側逆変換部105は、垂直側シンボル生成部103から入力された垂直側シンボル信号に対して、例えば、逆フーリエ変換演算を行うことで、垂直側時間域信号を生成する。そして、垂直側逆変換部105は、生成した垂直側時間域信号を、送信側垂直アンテナ100bへ出力する。送信側垂直アンテナ100bへ出力された垂直側時間域信号は、伝送路300を介して受信装置200へ送信される。 The vertical side inverse transform unit 105 generates a vertical time domain signal by, for example, performing an inverse Fourier transform calculation on the vertical side symbol signal input from the vertical side symbol generation unit 103. Then, the vertical-side inverse conversion unit 105 outputs the generated vertical-side time domain signal to the transmitting-side vertical antenna 100b. The vertical time domain signal output to the transmitting vertical antenna 100b is transmitted to the receiving device 200 via the transmission line 300.
 <受信装置の構成>
 受信装置200は、図5に示すように、水平側変換部201と、垂直側変換部202と、水平側信号抽出部203と、垂直側信号抽出部204と、水平側伝送路推定部205と、垂直側伝送路推定部206と、復調部207を備える。なお、第1実施形態では、一例として、受信装置200の構成を、4K信号を受信する構成とした場合について説明する。
<Configuration of receiver>
As shown in FIG. 5, the receiving device 200 includes a horizontal conversion unit 201, a vertical conversion unit 202, a horizontal signal extraction unit 203, a vertical signal extraction unit 204, and a horizontal transmission line estimation unit 205. A vertical transmission line estimation unit 206 and a demodulation unit 207 are provided. In the first embodiment, as an example, a case where the receiving device 200 is configured to receive a 4K signal will be described.
 水平側変換部201は、受信側水平アンテナ200aから入力された信号に対して、例えば、フーリエ変換(FFT)演算を行うことで、水平側受信信号を生成する。そして、水平側変換部201は、生成した水平側受信信号を、水平側信号抽出部203と復調部207へ出力する。
 なお、受信側水平アンテナ200aから入力された信号とは、送信側水平アンテナ100aから伝送路応答がhhhの伝送路を介して受信側水平アンテナ200aが受信した信号である(図1参照)。これに加え、受信側水平アンテナ200aから入力された信号とは、送信側垂直アンテナ100bから伝送路応答がhvhの伝送路を介して受信側水平アンテナ200aが受信した信号である(図1参照)。
The horizontal conversion unit 201 generates a horizontal reception signal by, for example, performing a Fourier transform (FFT) calculation on the signal input from the reception side horizontal antenna 200a. Then, the horizontal conversion unit 201 outputs the generated horizontal reception signal to the horizontal signal extraction unit 203 and the demodulation unit 207.
The signal input from the receiving side horizontal antenna 200a is a signal received by the receiving side horizontal antenna 200a from the transmitting side horizontal antenna 100a via a transmission line having a transmission line response of hh (see FIG. 1). In addition to this, the signal input from the receiving side horizontal antenna 200a is a signal received by the receiving side horizontal antenna 200a from the transmitting side vertical antenna 100b via the transmission line having a transmission line response of hvh (see FIG. 1). ).
 垂直側変換部202は、受信側垂直アンテナ200bから入力された信号に対して、例えば、フーリエ変換演算を行うことで、垂直側受信信号を生成する。そして、垂直側変換部202は、生成した垂直側受信信号を、垂直側信号抽出部204と復調部207へ出力する。
 なお、受信側垂直アンテナ200bから入力された信号とは、送信側水平アンテナ100aから伝送路応答がhhvの伝送路を介して受信側水平アンテナ200aが受信した信号である(図1参照)。これに加え、受信側垂直アンテナ200bから入力された信号とは、送信側垂直アンテナ100bから伝送路応答がhvvの伝送路を介して受信側水平アンテナ200aが受信した信号である(図1参照)。
The vertical conversion unit 202 generates a vertical reception signal by, for example, performing a Fourier transform operation on the signal input from the reception vertical antenna 200b. Then, the vertical conversion unit 202 outputs the generated vertical reception signal to the vertical signal extraction unit 204 and the demodulation unit 207.
The signal input from the receiving side vertical antenna 200b is a signal received by the receiving side horizontal antenna 200a from the transmitting side horizontal antenna 100a via a transmission line having a transmission line response of h hv (see FIG. 1). In addition to this, the signal input from the receiving side vertical antenna 200b is a signal received by the receiving side horizontal antenna 200a from the transmitting side vertical antenna 100b via a transmission line having a transmission line response of h vv (see FIG. 1). ).
 水平側信号抽出部203は、水平側変換部201から入力された水平側受信信号から、次世代SP信号と、反転SP信号を抽出する。そして、抽出した次世代SP信号と、反転SP信号を、水平側伝送路推定部205へ出力する。
 垂直側信号抽出部204は、垂直側変換部202から入力された垂直側受信信号から、次世代SP信号と、反転SP信号を抽出する。そして、抽出した次世代SP信号と、反転SP信号を、垂直側伝送路推定部206へ出力する。
The horizontal side signal extraction unit 203 extracts the next-generation SP signal and the inverted SP signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted next-generation SP signal and the inverted SP signal are output to the horizontal transmission line estimation unit 205.
The vertical side signal extraction unit 204 extracts the next-generation SP signal and the inverted SP signal from the vertical side received signal input from the vertical side conversion unit 202. Then, the extracted next-generation SP signal and the inverted SP signal are output to the vertical transmission line estimation unit 206.
 水平側伝送路推定部205は、以下に説明する方法を用いて、伝送路応答hhhと伝送路応答hvhを推定する。そして、水平側伝送路推定部205は、推定した伝送路応答hhhと伝送路応答hvhを、復調部207へ出力する。 Horizontal side channel estimation unit 205, using the method described below, to estimate the channel response h vh and channel response h hh. The horizontal side channel estimation unit 205, the channel response h vh and the channel response h hh estimated, and outputs to the demodulator 207.
 まず、受信側水平アンテナ200aから入力された信号のうち、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した次世代SP信号が同じ位置に配置されている信号を、「Psum」と定義する。さらに、次世代SP信号を「p」と定義し、「Psum=phhh+phvh」の関係式を定義する。
 次に、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した反転SP信号が同じ位置に配置されている信号を、「Pdiff」と定義する。さらに、次世代SP信号を「p」と定義し、「Pdiff=phhh-phvh」の関係式を定義する。
First, among the signals input from the receiving side horizontal antenna 200a, the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the next-generation SP signal received from the transmitting side vertical antenna 100b are arranged at the same position. Is defined as "P sum". Further, the next-generation SP signal is defined as "p", and the relational expression of "P sum = ph h h + ph vh" is defined.
Next, the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the inverted SP signal received from the transmitting side vertical antenna 100b are arranged at the same position is defined as "P diff". In addition, the next generation SP signal is defined as "p", to define the relationship of "P diff = ph hh -ph vh".
 そして、信号Psumと信号Pdiffのそれぞれを、経過時間の方向と周波数の方向に補間することで、受信装置200が受信した放送データ信号の部分について、信号Psumと信号Pdiffを算出する。
 ここで、関係式「Psum=phhh+phvh」と関係式「Pdiff=phhh-phvh」では、未知の変数は伝送路応答hhhと伝送路応答hvhの二つである。このため、二つの関係式を連立方程式として解くことで、全ての放送データ信号に対し、伝送路応答hhhと伝送路応答hvhを推定する。
Then, by interpolating each of the signal P sum and the signal P diff in the direction of the elapsed time and the direction of the frequency, the signal P sum and the signal P diff are calculated for the portion of the broadcast data signal received by the receiving device 200. ..
Here, the relationship "P sum = ph hh + ph vh" and relation "P diff = ph hh -ph vh", the unknown variables are the two channel response h vh and channel response h hh. Therefore, by solving the two relational expressions as simultaneous equations for all broadcast data signal, estimates the channel response h vh and channel response h hh.
 垂直側伝送路推定部206は、以下に説明する方法を用いて、伝送路応答hhvと伝送路応答hvvを推定する。そして、垂直側伝送路推定部206は、推定した伝送路応答hhvと伝送路応答hvvを、復調部207へ出力する。 The vertical transmission line estimation unit 206 estimates the transmission line response h hv and the transmission line response h vv by using the method described below. Then, the vertical transmission line estimation unit 206 outputs the estimated transmission line response h hv and the transmission line response h vv to the demodulation unit 207.
 まず、受信側垂直アンテナ200bから入力された信号のうち、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した次世代SP信号が同じ位置に配置されている信号を、「Psum」と定義する。さらに、次世代SP信号を「p」と定義し、「Psum=phhv+phvv」の関係式を定義する。
 次に、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した反転SP信号が同じ位置に配置されている信号を、「Pdiff」と定義する。さらに、次世代SP信号を「p」と定義し、「Pdiff=phhv-phvv」の関係式を定義する。
First, among the signals input from the receiving-side vertical antenna 200b, the next-generation SP signal received from the transmitting-side horizontal antenna 100a and the next-generation SP signal received from the transmitting-side vertical antenna 100b are arranged at the same position. Is defined as "P sum". Further, the next-generation SP signal is defined as "p", and the relational expression of "P sum = ph hv + ph vv" is defined.
Next, the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the inverted SP signal received from the transmitting side vertical antenna 100b are arranged at the same position is defined as "P diff". Further, the next-generation SP signal is defined as “p”, and the relational expression of “P diff = ph hv − ph vv” is defined.
 そして、信号Psumと信号Pdiffのそれぞれを、経過時間の方向と周波数の方向に補間することで、受信装置200が受信した放送データ信号の部分について、信号Psumと信号Pdiffを算出する。
 ここで、関係式「Psum=phhv+phvv」と関係式「Pdiff=phhv-phvv」では、未知の変数は伝送路応答hhvと伝送路応答hvvの二つである。このため、二つの関係式を連立方程式として解くことで、全ての放送データ信号に対し、伝送路応答hhvと伝送路応答hvvを推定する。
Then, by interpolating each of the signal P sum and the signal P diff in the direction of the elapsed time and the direction of the frequency, the signal P sum and the signal P diff are calculated for the portion of the broadcast data signal received by the receiving device 200. ..
Here, in the relational expression "P sum = ph hv + ph vv " and the relational expression "P diff = ph hv -ph vv ", there are two unknown variables, the transmission line response h hv and the transmission line response h vv. Therefore, by solving the two relational equations as simultaneous equations, the transmission line response h hv and the transmission line response h vv are estimated for all the broadcast data signals.
 復調部207は、以下の関係式(1)を用いて、受信信号R1と受信信号R2に対し、伝送路応答行列の逆行列を乗算する。伝送路応答行列とは、水平側伝送路推定部205で推定した伝送路応答hhh及び伝送路応答hvhと、垂直側伝送路推定部206で推定した伝送路応答hhv及び伝送路応答hvvとで形成された行列である。これにより、復調部207は、送信信号S1と送信信号S2を復調する。そして、復調部207は、復調した送信信号S1及び送信信号S2を、アプリケーション装置3へ出力する。 The demodulation unit 207 multiplies the received signal R1 and the received signal R2 by the inverse matrix of the transmission line response matrix using the following relational expression (1). The channel response matrix, the channel response h hh and the channel response h vh, the channel response h hv and channel response h is estimated with the vertical side channel estimation unit 206 to estimate the horizontal side channel estimation unit 205 It is a matrix formed by vv. As a result, the demodulation unit 207 demodulates the transmission signal S1 and the transmission signal S2. Then, the demodulation unit 207 outputs the demodulated transmission signal S1 and the transmission signal S2 to the application device 3.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 すなわち、復調部207は、伝送路推定部(水平側伝送路推定部205と垂直側伝送路推定部206)が推定した伝送路応答を用いて、伝送路300を介して受信したデータ信号を復調する。 That is, the demodulation unit 207 demodulates the data signal received via the transmission line 300 by using the transmission line response estimated by the transmission line estimation unit (horizontal side transmission line estimation unit 205 and vertical side transmission line estimation unit 206). do.
 以上説明したように、送信装置100から送信されたデータ信号は、次世代SP信号と反転SP信号とを含む。また、水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された次世代SP信号を含み、垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された次世代SP信号と反転SP信号とを含む。そして、水平側伝送路推定部205と垂直側伝送路推定部206は、直交させて形成されたデータ信号のうち、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号と、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む反転SP信号とが同じ位置に配置されている信号とを用いて、伝送路応答を推定する。 As described above, the data signal transmitted from the transmission device 100 includes a next-generation SP signal and an inverted SP signal. Further, the data signal included in the horizontal polarization includes the next-generation SP signal arranged along the direction of the elapsed time and the direction in which the frequency changes, and the data signal included in the vertical polarization has the direction and frequency of the elapsed time. It includes a next-generation SP signal and an inverted SP signal arranged along the changing direction. Then, the horizontal channel estimation unit 205 and the vertical channel estimation unit 206 are vertically polarized with the next-generation SP signal included in the data signal transmitted in horizontal polarization among the data signals formed at right angles. Includes a signal in which the next-generation SP signal included in the transmitted data signal is located at the same position, and a next-generation SP signal included in the data signal transmitted in horizontal polarization and a data signal transmitted in vertical polarization. The transmission line response is estimated using the signal in which the inverted SP signal is arranged at the same position.
 <請求項との対応>
 第1実施形態では、水平偏波が、水平偏波及び垂直偏波のうち一方に対応し、水平側データ信号が、第一のデータ信号に対応する。また、第1実施形態では、水平側シンボル信号が、第一のシンボル信号に対応し、水平側シンボル生成部102が、第一のシンボル生成部に対応する。
 また、第1実施形態では、垂直偏波が、水平偏波及び垂直偏波のうち他方に対応し、垂直側データ信号が、第二のデータ信号に対応する。また、第1実施形態では、垂直側シンボル信号が、第二のシンボル信号に対応し、垂直側シンボル生成部103が、第二のシンボル生成部に対応する。
<Correspondence with claims>
In the first embodiment, the horizontally polarized wave corresponds to one of the horizontally polarized wave and the vertically polarized wave, and the horizontal data signal corresponds to the first data signal. Further, in the first embodiment, the horizontal side symbol signal corresponds to the first symbol signal, and the horizontal side symbol generation unit 102 corresponds to the first symbol generation unit.
Further, in the first embodiment, the vertically polarized light corresponds to the other of the horizontally polarized light and the vertically polarized light, and the vertical data signal corresponds to the second data signal. Further, in the first embodiment, the vertical side symbol signal corresponds to the second symbol signal, and the vertical side symbol generation unit 103 corresponds to the second symbol generation unit.
 <第1実施形態の作用・効果>
 第1実施形態の送信装置100であれば、以下の作用・効果を奏することが可能である。
(1)水平側シンボル生成部102が、水平側データ信号に対し、現行SP信号及び次世代SP信号と、水平側データ信号が含む放送データ信号とを経過時間の方向と周波数が変化する方向に沿って配置することで、水平側シンボル信号を生成する。これに加え、垂直側シンボル生成部103が、垂直側データ信号に対し、次世代SP信号及びNULL信号と、垂直側データ信号が含む放送データ信号とを経過時間の方向と周波数が変化する方向に沿って配置することで、垂直側シンボル信号を生成する。さらに、垂直側シンボル生成部103が、水平側シンボル生成部102が現行SP信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入った現行SP信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送信装置100を提供することが可能となる。
 また、垂直偏波を必要とするキャリアの電力を低下させずに、水平偏波の4K信号のセグメントに入った現行SP信号への干渉を低減することが可能となるため、偏波MIMO方式を用いた受信への悪影響を抑制することが可能となる。
 これにより、送信する垂直偏波の電力が低下することを抑制して、次世代方式向けの受信機に対し、受信不良を低減させることが可能な送信装置100を提供することが可能となる。
<Action / effect of the first embodiment>
The transmission device 100 of the first embodiment can exhibit the following actions and effects.
(1) The horizontal side symbol generation unit 102 changes the current SP signal, the next-generation SP signal, and the broadcast data signal included in the horizontal side data signal in the direction in which the elapsed time and the frequency change with respect to the horizontal side data signal. By arranging along the line, a horizontal symbol signal is generated. In addition to this, the vertical side symbol generation unit 103 transmits the next-generation SP signal and the FULL signal and the broadcast data signal included in the vertical side data signal to the vertical side data signal in the direction in which the elapsed time direction and the frequency change. By arranging them along, a vertical symbol signal is generated. Further, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the current SP signal.
This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. It is possible to provide a transmission device 100 capable of reducing reception defects.
Further, since it is possible to reduce the interference with the current SP signal that has entered the segment of the horizontally polarized 4K signal without reducing the power of the carrier that requires vertically polarized waves, the polarization MIMO method is adopted. It is possible to suppress an adverse effect on the reception used.
This makes it possible to provide a transmitter 100 capable of reducing reception defects for a receiver for the next-generation system by suppressing a decrease in the power of vertically polarized waves to be transmitted.
(2)水平側データ信号がTMCC信号をさらに含み、垂直側シンボル生成部103が、水平側シンボル生成部102がTMCC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入ったTMCC信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送信装置を提供することが可能となる。
(2) The horizontal side data signal further includes the TMCC signal, and the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. do.
This makes it possible to reduce interference with the TMCC signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for current broadcasting. Therefore, it is possible to provide a transmission device capable of reducing reception defects.
(3)水平側データ信号がAC信号をさらに含み、垂直側シンボル生成部103が、水平側シンボル生成部102がAC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入ったAC信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送信装置を提供することが可能となる。
(3) The horizontal side data signal further includes the AC signal, and the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. do.
This makes it possible to reduce interference with the AC signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for current broadcasting. Therefore, it is possible to provide a transmission device capable of reducing reception defects.
(4)パイロット信号生成部101が、次世代SP信号の符号を反転させた反転SP信号を生成する。これに加え、垂直側シンボル生成部103が、さらに、水平側シンボル生成部102が次世代SP信号を配置した位置の一部に、パイロット信号生成部101が生成した反転SP信号を配置することで、垂直側シンボル信号を生成する。
 これにより、受信機が符号反転方式の偏波MIMO方式を用いた伝送路応答の推定を行うことが可能になり、受信不良を低減することが可能となる。
(4) The pilot signal generation unit 101 generates an inverted SP signal in which the sign of the next-generation SP signal is inverted. In addition to this, the vertical side symbol generation unit 103 further arranges the inverted SP signal generated by the pilot signal generation unit 101 at a part of the position where the horizontal side symbol generation unit 102 arranges the next-generation SP signal. , Generate a vertical symbol signal.
This makes it possible for the receiver to estimate the transmission line response using the polarization MIMO method of the code inversion method, and it is possible to reduce reception defects.
(5)第一のデータ信号が、水平偏波で送信するための水平側データ信号であり、第二のデータ信号が、垂直偏波で送信するための垂直側データ信号である。
 これにより、垂直偏波が含む信号によって発生する水平偏波への干渉及び水平偏波が含む信号によって発生する垂直偏波への干渉を低減することが可能となり、受信装置200の受信環境を改善させて、受信不良を低減させることが可能な送信装置を提供することが可能となる。
(5) The first data signal is a horizontal data signal for transmission in horizontal polarization, and the second data signal is a vertical data signal for transmission in vertical polarization.
As a result, it is possible to reduce the interference with the horizontally polarized wave generated by the signal included in the vertically polarized wave and the interference with the vertically polarized wave generated by the signal included in the horizontally polarized wave, and the reception environment of the receiving device 200 is improved. Therefore, it is possible to provide a transmission device capable of reducing reception defects.
 第1実施形態の受信装置200であれば、以下の作用・効果を奏することが可能である。
(6)水平側伝送路推定部205と垂直側伝送路推定部206が、直交させて形成されたデータ信号のうち、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号と、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む反転SP信号とが同じ位置に配置されている信号とを用いて、伝送路応答を推定する。これに加え、復調部207が、水平側伝送路推定部205と垂直側伝送路推定部206が推定した伝送路応答を用いて、伝送路300を介して受信したデータ信号を復調する。
 これにより、受信したデータ信号に対して、伝送路で受けた干渉を補正することが可能となり、受信装置200の受信環境を改善させて、受信不良を低減させることが可能な受信装置200を提供することが可能となる。
The receiving device 200 of the first embodiment can exhibit the following actions and effects.
(6) Among the data signals formed by the horizontal channel estimation unit 205 and the vertical channel estimation unit 206 at right angles, the next-generation SP signal and the vertical polarization included in the data signal transmitted by horizontal polarization. The signal in which the next-generation SP signal included in the data signal transmitted in is arranged at the same position, and the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization are The transmission line response is estimated using the signal in which the including inverted SP signal is arranged at the same position. In addition to this, the demodulation unit 207 demodulates the data signal received via the transmission line 300 by using the transmission line response estimated by the horizontal side transmission line estimation unit 205 and the vertical side transmission line estimation unit 206.
As a result, it is possible to correct the interference received in the transmission line with respect to the received data signal, and provide the receiving device 200 capable of improving the receiving environment of the receiving device 200 and reducing reception defects. It becomes possible to do.
 第1実施形態の送受信システム1であれば、以下の作用・効果を奏することが可能である。
(7)送信装置100が備える垂直側シンボル生成部103が、送信装置100が備える水平側シンボル生成部102が現行SP信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入った現行SP信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送受信システム1を提供することが可能となる。
The transmission / reception system 1 of the first embodiment can exhibit the following actions and effects.
(7) The vertical side symbol generation unit 103 included in the transmission device 100 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 included in the transmission device 100 arranges the current SP signal. do.
This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. This makes it possible to provide a transmission / reception system 1 capable of reducing reception defects.
 <第1実施形態の変形例>
(1)第1実施形態では、垂直側シンボル生成部103が、水平側シンボル生成部102がTMCC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する構成としたが、これに限定するものではない。すなわち、例えば、図6に示すように、垂直側シンボル生成部103が、水平側シンボル生成部102がTMCC信号を配置した位置に放送データ信号を配置することで、垂直側シンボル信号を生成する構成としてもよい。
 この場合、垂直偏波で送信する信号の伝送効率を向上させることが可能となる。
<Modified example of the first embodiment>
(1) In the first embodiment, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. , Not limited to this. That is, for example, as shown in FIG. 6, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. May be.
In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
(2)第1実施形態では、垂直側シンボル生成部103が、水平側シンボル生成部102がAC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する構成としたが、これに限定するものではない。すなわち、例えば、図6に示すように、垂直側シンボル生成部103が、水平側シンボル生成部102がAC信号を配置した位置に放送データ信号を配置することで、垂直側シンボル信号を生成する構成としてもよい。
 この場合、垂直偏波で送信する信号の伝送効率を向上させることが可能となる。
(2) In the first embodiment, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. , Not limited to this. That is, for example, as shown in FIG. 6, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. May be.
In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
(3)第1実施形態では、第一のデータ信号が、水平偏波で送信するための水平側データ信号であり、第二のデータ信号が、垂直偏波で送信するための垂直側データ信号である構成としたが、これに限定するものではない。すなわち、第一のデータ信号が、垂直偏波で送信するための水平側データ信号であり、第二のデータ信号が、水平偏波で送信するための垂直側データ信号である構成としてもよい。
 この場合、垂直偏波で現行方式のISDB-T信号を送信している地域において、水平偏波が含む放送データ信号によって発生する垂直偏波の4K信号のセグメントに入った現行SP信号、TMCC信号及びAC信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能となる。
(3) In the first embodiment, the first data signal is a horizontal data signal for transmission in horizontally polarized light, and the second data signal is a vertical data signal for transmission in vertically polarized light. However, the configuration is not limited to this. That is, the first data signal may be a horizontal data signal for transmission in vertically polarized light, and the second data signal may be a vertical data signal for transmission in horizontally polarized light.
In this case, the current SP signal and TMCC signal in the vertically polarized 4K signal segment generated by the broadcast data signal included in the horizontally polarized signal in the area where the current ISDB-T signal is transmitted by vertically polarized light. In addition, it is possible to reduce interference with AC signals, improve the reception environment of the receiver for current broadcasting, and reduce reception defects.
(4)第1実施形態では、垂直側シンボル生成部103がNULL信号を配置する処理を、垂直偏波が含む4K信号の全てに対して行う構成としたが、これに限定するものではない。すなわち、例えば、図7に示すように、垂直側シンボル生成部103がNULL信号を配置する処理を、垂直偏波が含む4K信号のうち、ワンセグ信号との境界付近や2K信号との境界付近のみに対して行う構成としてもよい。 (4) In the first embodiment, the vertical side symbol generation unit 103 performs the process of arranging the NULL signal for all the 4K signals included in the vertically polarized waves, but the present invention is not limited to this. That is, for example, as shown in FIG. 7, the process of arranging the NULL signal by the vertical side symbol generation unit 103 is performed only in the vicinity of the boundary with the 1seg signal and the boundary with the 2K signal among the 4K signals included in the vertically polarized light. It may be configured to be performed on.
(5)第1実施形態では、水平側シンボル生成部102の構成を、一つの現行SP信号と、一つの次世代SP信号と、二つの水平側データ信号を、経過時間の方向に沿って均一に配置する構成としたが、これに限定するものではない。すなわち、例えば、図8から図19に示すように、水平側シンボル生成部102の構成を、現行SP信号と、次世代SP信号と、水平側データ信号を、経過時間の方向に沿って不均一に配置する構成としてもよい。また、例えば、図20に示すように、TMCC信号の位置を避けて、次世代SP信号と反転SP信号を配置する構成としてもよい。 (5) In the first embodiment, the configuration of the horizontal side symbol generation unit 102 is made uniform for one current SP signal, one next-generation SP signal, and two horizontal data signals along the direction of elapsed time. Although it is configured to be arranged in, it is not limited to this. That is, for example, as shown in FIGS. 8 to 19, the configuration of the horizontal symbol generation unit 102 is such that the current SP signal, the next-generation SP signal, and the horizontal data signal are non-uniform along the direction of elapsed time. It may be configured to be arranged in. Further, for example, as shown in FIG. 20, the next-generation SP signal and the inverted SP signal may be arranged while avoiding the position of the TMCC signal.
 (第2実施形態)
 以下、図を参照して、受信装置と、送信装置と、送受信システムについて説明する。なお、以下の説明では、第1実施形態との共通する部分の説明を省略する場合がある。
 第2実施形態に係る送受信システムは、送信装置100と、受信装置200と、伝送路300を備える(図1を参照)。
(Second Embodiment)
Hereinafter, the receiving device, the transmitting device, and the transmitting / receiving system will be described with reference to the drawings. In the following description, the description of the parts common to the first embodiment may be omitted.
The transmission / reception system according to the second embodiment includes a transmission device 100, a reception device 200, and a transmission line 300 (see FIG. 1).
 <送信装置の構成>
 送信装置100は、パイロット信号生成部101と、水平側シンボル生成部102と、垂直側シンボル生成部103と、水平側逆変換部104と、垂直側逆変換部105を備える(図3を参照)。
<Configuration of transmitter>
The transmission device 100 includes a pilot signal generation unit 101, a horizontal symbol generation unit 102, a vertical symbol generation unit 103, a horizontal reverse conversion unit 104, and a vertical reverse conversion unit 105 (see FIG. 3). ..
 パイロット信号生成部101は、現行SP信号と、次世代SP信号と、NULL信号を生成する。また、パイロット信号生成部101は、生成した現行SP信号、次世代SP信号及びNULL信号を、水平側シンボル生成部102と垂直側シンボル生成部103へ出力する。
 水平側シンボル生成部102には、アンテナ2から水平側データ信号が入力される。これに加え、水平側シンボル生成部102には、パイロット信号生成部101から、現行SP信号及びNULL信号が入力される。
The pilot signal generation unit 101 generates the current SP signal, the next-generation SP signal, and the NULL signal. Further, the pilot signal generation unit 101 outputs the generated current SP signal, next-generation SP signal, and NULL signal to the horizontal side symbol generation unit 102 and the vertical side symbol generation unit 103.
A horizontal data signal is input from the antenna 2 to the horizontal symbol generation unit 102. In addition to this, the current SP signal and the NULL signal are input to the horizontal symbol generation unit 102 from the pilot signal generation unit 101.
 水平側データ信号は、水平偏波で送信する放送データ信号と、TMCC信号と、AC信号を含む。
 また、水平側シンボル生成部102は、アンテナ2から入力された水平側データ信号と、パイロット信号生成部101から入力された現行SP信号及びNULL信号を用いて、水平側シンボル信号を生成する。そして、水平側シンボル生成部102は、生成した水平側シンボル信号を水平側逆変換部104へ出力する。
 具体的に、水平側シンボル生成部102は、図21に「水平偏波」で示すように、現行SP信号、放送データ信号、NULL信号、TMCC信号、AC信号を、経過時間の方向と周波数が変化する方向に沿って配置することで、水平側シンボル信号を生成する。第2実施形態では、一例として、水平側シンボル生成部102が、一つの現行SP信号と、一つの水平側データ信号と、一つのNULL信号と、一つの水平側データ信号を、経過時間の方向に沿って均一に配置する場合について説明する。
The horizontal data signal includes a broadcast data signal transmitted in horizontal polarization, a TMCC signal, and an AC signal.
Further, the horizontal side symbol generation unit 102 generates a horizontal side symbol signal by using the horizontal side data signal input from the antenna 2 and the current SP signal and the FULL signal input from the pilot signal generation unit 101. Then, the horizontal side symbol generation unit 102 outputs the generated horizontal side symbol signal to the horizontal side inverse conversion unit 104.
Specifically, as shown in "horizontal polarization" in FIG. 21, the horizontal side symbol generation unit 102 transmits the current SP signal, broadcast data signal, NUML signal, TMCC signal, and AC signal in the direction and frequency of elapsed time. By arranging it along the changing direction, a horizontal symbol signal is generated. In the second embodiment, as an example, the horizontal side symbol generation unit 102 transmits one current SP signal, one horizontal side data signal, one FULL signal, and one horizontal side data signal in the direction of elapsed time. A case of uniformly arranging along the line will be described.
 また、図21に示す配置は、ある時刻に水平側シンボル生成部102で生成した配置であり、時間が経過するごとに、次の時刻における配置を生成する。図21に示す例では、経過時間に沿って配列した4列のシンボルを、同じ時刻に生成したグループGPとして示す。
 以上により、水平側シンボル生成部102は、水平偏波で送信するための水平側データ信号に対し、パイロット信号生成部101が生成した現行SP信号及びNULL信号と、水平側データ信号が含む放送データ信号とを、経過時間の方向と周波数が変化する方向に沿って配置することで、水平側シンボル信号を生成する。
Further, the arrangement shown in FIG. 21 is an arrangement generated by the horizontal symbol generation unit 102 at a certain time, and the arrangement at the next time is generated each time the time elapses. In the example shown in FIG. 21, the four columns of symbols arranged along the elapsed time are shown as a group GP generated at the same time.
As described above, the horizontal side symbol generation unit 102 includes the current SP signal and NUML signal generated by the pilot signal generation unit 101 and the broadcast data included in the horizontal side data signal with respect to the horizontal side data signal for transmission in horizontal polarization. A horizontal symbol signal is generated by arranging the signal along the direction of the elapsed time and the direction in which the frequency changes.
 垂直側シンボル生成部103には、アンテナ2から垂直側データ信号が入力される。これに加え、垂直側シンボル生成部103には、パイロット信号生成部101から、次世代SP信号及びNULL信号が入力される。
 垂直側データ信号は、垂直偏波で送信する放送データ信号と、TMCC信号と、AC信号を含む。
A vertical data signal is input from the antenna 2 to the vertical symbol generation unit 103. In addition to this, the next-generation SP signal and the NULL signal are input to the vertical side symbol generation unit 103 from the pilot signal generation unit 101.
The vertical data signal includes a broadcast data signal transmitted in vertically polarized light, a TMCC signal, and an AC signal.
 また、垂直側シンボル生成部103は、アンテナ2から入力された垂直側データ信号と、パイロット信号生成部101から入力された次世代SP信号及びNULL信号を用いて、垂直側シンボル信号を生成する。そして、垂直側シンボル生成部103は、生成した垂直側シンボル信号を垂直側逆変換部105へ出力する。
 具体的に、垂直側シンボル生成部103は、図21に「垂直偏波」で示すように、NULL信号、放送データ信号、次世代SP信号を、経過時間の方向と周波数が変化する方向に沿って配置することで、垂直側シンボル信号を生成する。
Further, the vertical side symbol generation unit 103 generates a vertical side symbol signal by using the vertical side data signal input from the antenna 2 and the next-generation SP signal and the FULL signal input from the pilot signal generation unit 101. Then, the vertical side symbol generation unit 103 outputs the generated vertical side symbol signal to the vertical side inverse conversion unit 105.
Specifically, as shown by "vertical polarization" in FIG. 21, the vertical side symbol generation unit 103 transmits the NUML signal, the broadcast data signal, and the next-generation SP signal along the direction of the elapsed time and the direction in which the frequency changes. By arranging them, a vertical symbol signal is generated.
 また、図21に示す配置は、水平側シンボル生成部102と同じ時刻に垂直側シンボル生成部103で生成した配置であり、水平側シンボル生成部102と同様、時間が経過するごとに、次の時刻における配置を生成する。
 さらに、垂直側シンボル生成部103は、図21に示すように、垂直側シンボル信号を生成する際に、水平側シンボル生成部102が現行SP信号を配置した位置に、NULL信号を配置する。また、垂直側シンボル生成部103は、水平側シンボル生成部102がNULL信号を配置した位置に、次世代SP信号を配置する。これに加え、垂直側シンボル生成部103は、水平側シンボル生成部102がTMCC信号を配置した位置と、水平側シンボル生成部102がAC信号を配置した位置に、NULL信号を配置する。
Further, the arrangement shown in FIG. 21 is an arrangement generated by the vertical side symbol generation unit 103 at the same time as the horizontal side symbol generation unit 102, and like the horizontal side symbol generation unit 102, the following arrangement is made every time the time elapses. Generate an arrangement at time.
Further, as shown in FIG. 21, the vertical side symbol generation unit 103 arranges the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the current SP signal when generating the vertical side symbol signal. Further, the vertical side symbol generation unit 103 arranges the next-generation SP signal at the position where the horizontal side symbol generation unit 102 arranges the NULL signal. In addition to this, the vertical side symbol generation unit 103 arranges the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal and the position where the horizontal side symbol generation unit 102 arranges the AC signal.
 なお、垂直側シンボル生成部103が、次世代SP信号を配置する処理と、NULL信号を配置する処理は、垂直偏波が含む4K信号の全てに対して行う。
 以上により、垂直側シンボル生成部103は、垂直偏波で送信するための垂直側データ信号に対し、パイロット信号生成部101が生成した次世代SP信号及びNULL信号と、垂直側データ信号が含む放送データ信号とを、経過時間の方向と周波数が変化する方向に沿って配置することで、垂直側シンボル信号を生成する。
 水平側逆変換部104及び垂直側逆変換部105の構成は、第1実施形態と同様である。
The vertical side symbol generation unit 103 performs the process of arranging the next-generation SP signal and the process of arranging the NULL signal for all the 4K signals included in the vertically polarized light.
As described above, the vertical side symbol generation unit 103 broadcasts the next-generation SP signal and FULL signal generated by the pilot signal generation unit 101 and the vertical side data signal with respect to the vertical side data signal to be transmitted by vertically polarized waves. A vertical symbol signal is generated by arranging the data signal along the direction of the elapsed time and the direction in which the frequency changes.
The configuration of the horizontal reverse conversion unit 104 and the vertical reverse conversion unit 105 is the same as that of the first embodiment.
 <受信装置の構成>
 受信装置200は、水平側変換部201と、垂直側変換部202と、水平側信号抽出部203と、垂直側信号抽出部204と、水平側伝送路推定部205と、垂直側伝送路推定部206と、復調部207を備える(図5を参照)。なお、第2実施形態では、第1実施形態と同様、一例として、受信装置200の構成を、4K信号を受信する構成とした場合について説明する。
 水平側変換部201と垂直側変換部202の構成は、第1実施形態と同様である。
<Configuration of receiver>
The receiving device 200 includes a horizontal conversion unit 201, a vertical conversion unit 202, a horizontal signal extraction unit 203, a vertical signal extraction unit 204, a horizontal transmission line estimation unit 205, and a vertical transmission line estimation unit. It includes 206 and a demodulator 207 (see FIG. 5). In the second embodiment, as in the first embodiment, a case where the receiving device 200 is configured to receive a 4K signal will be described as an example.
The configuration of the horizontal conversion unit 201 and the vertical conversion unit 202 is the same as that of the first embodiment.
 水平側信号抽出部203は、水平側変換部201から入力された水平側受信信号から、現行SP信号と、NULL信号を抽出する。そして、抽出した現行SP信号と、NULL信号を、水平側伝送路推定部205へ出力する。
 垂直側信号抽出部204は、垂直側変換部202から入力された垂直側受信信号から、次世代SP信号と、NULL信号を抽出する。そして、抽出した次世代SP信号と、NULL信号を、垂直側伝送路推定部206へ出力する。
The horizontal side signal extraction unit 203 extracts the current SP signal and the NULL signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted current SP signal and the NULL signal are output to the horizontal transmission line estimation unit 205.
The vertical side signal extraction unit 204 extracts the next-generation SP signal and the NULL signal from the vertical side reception signal input from the vertical side conversion unit 202. Then, the extracted next-generation SP signal and the NULL signal are output to the vertical transmission line estimation unit 206.
 水平側伝送路推定部205は、以下に説明する方法を用いて、伝送路応答hhhと伝送路応答hvhを推定する。そして、水平側伝送路推定部205は、推定した伝送路応答hhhと伝送路応答hvhを、復調部207へ出力する。
 まず、受信側水平アンテナ200aから入力された信号のうち、送信側水平アンテナ100aから受信した現行SP信号と、送信側垂直アンテナ100bから受信したNULL信号が同じ位置に配置されている信号を、「Ph」と定義する。さらに、現行SP信号を「p」と定義し、「Ph=phhh」の関係式を定義する。
Horizontal side channel estimation unit 205, using the method described below, to estimate the channel response h vh and channel response h hh. The horizontal side channel estimation unit 205, the channel response h vh and the channel response h hh estimated, and outputs to the demodulator 207.
First, among the signals input from the receiving side horizontal antenna 200a, the signal in which the current SP signal received from the transmitting side horizontal antenna 100a and the NULL signal received from the transmitting side vertical antenna 100b are arranged at the same position is referred to as " It is defined as "Ph". Further, the current SP signal is defined as "p", and the relational expression of "Ph = phh" is defined.
 次に、送信側水平アンテナ100aから受信したNULL信号と、送信側垂直アンテナ100bから受信した次世代SP信号が同じ位置に配置されている信号を、「Pv」と定義する。さらに、次世代SP信号を「p」と定義し、「Pv=phvh」の関係式を定義する。
 そして、信号Phと信号Pvのそれぞれを、経過時間の方向と周波数の方向に補間することで、受信装置200が受信した放送データ信号の部分について、信号Phと信号Pvを算出する。
 ここで、関係式「Ph=phhh」と関係式「Pv=phvh」では、未知の変数は伝送路応答hhhと伝送路応答hvhの二つである。このため、二つの関係式のそれぞれを方程式として解くことで、全ての放送データ信号に対し、伝送路応答hhhと伝送路応答hvhを推定する。
Next, the signal in which the NULL signal received from the transmitting side horizontal antenna 100a and the next-generation SP signal received from the transmitting side vertical antenna 100b are arranged at the same position is defined as "Pv". Further, the next-generation SP signal is defined as "p", and the relational expression of "Pv = ph vh" is defined.
Then, by interpolating each of the signal Ph and the signal Pv in the direction of the elapsed time and the direction of the frequency, the signal Ph and the signal Pv are calculated for the portion of the broadcast data signal received by the receiving device 200.
Here, the relationship "Ph = ph hh" and relation "Pv = ph vh", the unknown variables are the two channel response h vh and channel response h hh. Therefore, by solving each of the two relational expressions as equations for all broadcast data signal, estimates the channel response h vh and channel response h hh.
 垂直側伝送路推定部206は、以下に説明する方法を用いて、伝送路応答hhvと伝送路応答hvvを推定する。そして、垂直側伝送路推定部206は、推定した伝送路応答hhvと伝送路応答hvvを、復調部207へ出力する。
 まず、受信側垂直アンテナ200bから入力された信号のうち、送信側水平アンテナ100aから受信した現行SP信号と、送信側垂直アンテナ100bから受信したNULL信号が同じ位置に配置されている信号を、「Ph」と定義する。さらに、現行SP信号を「p」と定義し、「Ph=phhv」の関係式を定義する。
The vertical transmission line estimation unit 206 estimates the transmission line response h hv and the transmission line response h vv by using the method described below. Then, the vertical transmission line estimation unit 206 outputs the estimated transmission line response h hv and the transmission line response h vv to the demodulation unit 207.
First, among the signals input from the receiving side vertical antenna 200b, the signal in which the current SP signal received from the transmitting side horizontal antenna 100a and the NULL signal received from the transmitting side vertical antenna 100b are arranged at the same position is referred to as " It is defined as "Ph". Further, the current SP signal is defined as "p", and the relational expression of "Ph = ph hv" is defined.
 次に、送信側水平アンテナ100aから受信したNULLと、送信側垂直アンテナ100bから受信した次世代SP信号が同じ位置に配置されている信号を、「Pv」と定義する。さらに、次世代SP信号を「p」と定義し、「Pv=phvv」の関係式を定義する。
 そして、信号Phと信号Pvのそれぞれを、経過時間の方向と周波数の方向に補間することで、受信装置200が受信した放送データ信号の部分について、信号Phと信号Pvを算出する。
 ここで、関係式「Ph=phhv」と関係式「Pv=phvv」では、未知の変数は伝送路応答hhvと伝送路応答hvvの二つである。このため、二つの関係式のそれぞれを方程式として解くことで、全ての放送データ信号に対し、伝送路応答hhvと伝送路応答hvvを推定する。
 復調部207の構成は、第1実施形態と同様である。
Next, the signal in which the NULL received from the transmitting horizontal antenna 100a and the next-generation SP signal received from the transmitting vertical antenna 100b are arranged at the same position is defined as "Pv". Further, the next-generation SP signal is defined as "p", and the relational expression of "Pv = ph vv" is defined.
Then, by interpolating each of the signal Ph and the signal Pv in the direction of the elapsed time and the direction of the frequency, the signal Ph and the signal Pv are calculated for the portion of the broadcast data signal received by the receiving device 200.
Here, in the relational expression "Ph = ph hv " and the relational expression "Pv = ph vv ", the unknown variables are the transmission line response h hv and the transmission line response h vv . Therefore, by solving each of the two relational expressions as an equation, the transmission line response h hv and the transmission line response h vv are estimated for all the broadcast data signals.
The configuration of the demodulation unit 207 is the same as that of the first embodiment.
 <請求項との対応>
 第2実施形態では、水平偏波が、水平偏波及び垂直偏波のうち一方に対応し、水平側データ信号が、第一のデータ信号に対応する。また、第2実施形態では、水平側シンボル信号が、第一のシンボル信号に対応し、水平側シンボル生成部102が、第一のシンボル生成部に対応する。
 また、第2実施形態では、垂直偏波が、水平偏波及び垂直偏波のうち他方に対応し、垂直側データ信号が、第二のデータ信号に対応する。また、第2実施形態では、垂直側シンボル信号が、第二のシンボル信号に対応し、垂直側シンボル生成部103が、第二のシンボル生成部に対応する。
<Correspondence with claims>
In the second embodiment, the horizontally polarized wave corresponds to one of the horizontally polarized wave and the vertically polarized wave, and the horizontal data signal corresponds to the first data signal. Further, in the second embodiment, the horizontal side symbol signal corresponds to the first symbol signal, and the horizontal side symbol generation unit 102 corresponds to the first symbol generation unit.
Further, in the second embodiment, the vertically polarized light corresponds to the other of the horizontally polarized light and the vertically polarized light, and the vertical data signal corresponds to the second data signal. Further, in the second embodiment, the vertical side symbol signal corresponds to the second symbol signal, and the vertical side symbol generation unit 103 corresponds to the second symbol generation unit.
 <第2実施形態の作用・効果>
 第2実施形態の送信装置100であれば、以下の作用・効果を奏することが可能である。
(1)水平側シンボル生成部102が、水平側データ信号に対し、現行SP信号及びNULL信号と、水平側データ信号が含む放送データ信号とを経過時間の方向と周波数が変化する方向に沿って配置することで、水平側シンボル信号を生成する。これに加え、垂直側シンボル生成部103が、垂直側データ信号に対し、次世代SP信号及びNULL信号と、垂直側データ信号が含む放送データ信号とを経過時間の方向と周波数が変化する方向に沿って配置することで、垂直側シンボル信号を生成する。さらに、垂直側シンボル生成部103が、水平側シンボル生成部102が現行SP信号を配置した位置にNULL信号を配置し、且つ水平側シンボル生成部102がNULL信号を配置した位置に次世代SP信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入った現行SP信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送信装置100を提供することが可能となる。
 また、垂直偏波を必要とするキャリアの電力を低下させずに、水平偏波の4K信号のセグメントに入った現行SP信号への干渉を低減することが可能となるため、偏波MIMO方式を用いた受信への悪影響を抑制することが可能となる。
 これにより、送信する垂直偏波の電力が低下することを抑制して、次世代方式向けの受信機に対し、受信不良を低減させることが可能な送信装置100を提供することが可能となる。
<Action / effect of the second embodiment>
The transmission device 100 of the second embodiment can exhibit the following actions and effects.
(1) The horizontal side symbol generation unit 102 sets the current SP signal and the FULL signal and the broadcast data signal included in the horizontal side data signal with respect to the horizontal side data signal along the direction of elapsed time and the direction in which the frequency changes. By arranging it, a horizontal symbol signal is generated. In addition to this, the vertical side symbol generation unit 103 transmits the next-generation SP signal and the FULL signal and the broadcast data signal included in the vertical side data signal to the vertical side data signal in the direction in which the elapsed time direction and the frequency change. By arranging them along, a vertical symbol signal is generated. Further, the vertical side symbol generation unit 103 arranges the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the current SP signal, and the horizontal side symbol generation unit 102 arranges the NUML signal at the position where the NUML signal is arranged. By arranging, a vertical symbol signal is generated.
This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. It is possible to provide a transmission device 100 capable of reducing reception defects.
Further, since it is possible to reduce the interference with the current SP signal that has entered the segment of the horizontally polarized 4K signal without reducing the power of the carrier that requires vertically polarized waves, the polarization MIMO method is adopted. It is possible to suppress an adverse effect on the reception used.
This makes it possible to provide a transmitter 100 capable of reducing reception defects for a receiver for the next-generation system by suppressing a decrease in the power of vertically polarized waves to be transmitted.
(2)水平側データ信号がTMCC信号をさらに含み、垂直側シンボル生成部103が、水平側シンボル生成部102がTMCC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入ったTMCC信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送信装置を提供することが可能となる。
(2) The horizontal side data signal further includes the TMCC signal, and the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. do.
This makes it possible to reduce interference with the TMCC signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for current broadcasting. Therefore, it is possible to provide a transmission device capable of reducing reception defects.
(3)水平側データ信号がAC信号をさらに含み、垂直側シンボル生成部103が、水平側シンボル生成部102がAC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入ったAC信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送信装置を提供することが可能となる。
(3) The horizontal side data signal further includes the AC signal, and the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. do.
This makes it possible to reduce interference with the AC signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for current broadcasting. Therefore, it is possible to provide a transmission device capable of reducing reception defects.
(4)第一のデータ信号が、水平偏波で送信するための水平側データ信号であり、第二のデータ信号が、垂直偏波で送信するための垂直側データ信号である。
 これにより、垂直偏波が含む信号によって発生する水平偏波への干渉及び水平偏波が含む信号によって発生する垂直偏波への干渉を低減することが可能となり、受信装置200の受信環境を改善させて、受信不良を低減させることが可能な送信装置を提供することが可能となる。
(4) The first data signal is a horizontal data signal for transmission in horizontal polarization, and the second data signal is a vertical data signal for transmission in vertical polarization.
As a result, it is possible to reduce the interference with the horizontally polarized wave generated by the signal included in the vertically polarized wave and the interference with the vertically polarized wave generated by the signal included in the horizontally polarized wave, and the reception environment of the receiving device 200 is improved. Therefore, it is possible to provide a transmission device capable of reducing reception defects.
 第2実施形態の受信装置200であれば、以下の作用・効果を奏することが可能である。
(5)水平側伝送路推定部205と垂直側伝送路推定部206が、直交させて形成されたデータ信号のうち、水平偏波で送信されたデータ信号が含む現行SP信号と垂直偏波で送信されたデータ信号が含むNULL信号とが同じ位置に配置されている信号と、水平偏波で送信されたデータ信号が含むNULL信号と垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号とを用いて、伝送路応答を推定する。これに加え、復調部207が、水平側伝送路推定部205と垂直側伝送路推定部206が推定した伝送路応答を用いて、伝送路300を介して受信したデータ信号を復調する。
 これにより、受信したデータ信号に対して伝送路で受けた干渉を補正することが可能となり、受信装置200の受信環境を改善させて、受信不良を低減させることが可能な受信装置200を提供することが可能となる。
The receiving device 200 of the second embodiment can exhibit the following actions and effects.
(5) Of the data signals formed by the horizontal channel estimation unit 205 and the vertical channel estimation unit 206 at right angles, the current SP signal included in the data signal transmitted in horizontal polarization and the vertical polarization are used. Next-generation SP signal including a signal in which the NUML signal included in the transmitted data signal is arranged at the same position, a NUML signal included in the data signal transmitted in horizontal polarization, and a data signal transmitted in vertical polarization. The transmission line response is estimated using the signals arranged at the same position. In addition to this, the demodulation unit 207 demodulates the data signal received via the transmission line 300 by using the transmission line response estimated by the horizontal side transmission line estimation unit 205 and the vertical side transmission line estimation unit 206.
As a result, it is possible to correct the interference received in the transmission line with respect to the received data signal, improve the reception environment of the receiving device 200, and provide the receiving device 200 capable of reducing reception defects. It becomes possible.
 第2実施形態の送受信システム1であれば、以下の作用・効果を奏することが可能である。
(6)送信装置100が備える垂直側シンボル生成部103が、送信装置100が備える水平側シンボル生成部102が現行SP信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する。
 これにより、垂直偏波が含む放送データ信号によって発生する水平偏波の4K信号のセグメントに入った現行SP信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能な送受信システム1を提供することが可能となる。
The transmission / reception system 1 of the second embodiment can exhibit the following actions and effects.
(6) The vertical side symbol generation unit 103 included in the transmission device 100 generates the vertical side symbol signal by arranging the NUML signal at the position where the horizontal side symbol generation unit 102 included in the transmission device 100 arranges the current SP signal. do.
This makes it possible to reduce interference with the current SP signal in the segment of the horizontally polarized 4K signal generated by the broadcast data signal included in the vertically polarized broadcast, improving the reception environment of the receiver for the current broadcast. This makes it possible to provide a transmission / reception system 1 capable of reducing reception defects.
 <第2実施形態の変形例>
(1)第2実施形態では、垂直側シンボル生成部103が、水平側シンボル生成部102がTMCC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する構成としたが、これに限定するものではない。すなわち、垂直側シンボル生成部103が、水平側シンボル生成部102がTMCC信号を配置した位置に放送データ信号を配置することで、垂直側シンボル信号を生成する構成としてもよい。
 この場合、垂直偏波で送信する信号の伝送効率を向上させることが可能となる。
<Modified example of the second embodiment>
(1) In the second embodiment, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal. , Not limited to this. That is, the vertical side symbol generation unit 103 may generate the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the TMCC signal.
In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
(2)第2実施形態では、垂直側シンボル生成部103が、水平側シンボル生成部102がAC信号を配置した位置にNULL信号を配置することで、垂直側シンボル信号を生成する構成としたが、これに限定するものではない。すなわち、垂直側シンボル生成部103が、水平側シンボル生成部102がAC信号を配置した位置に放送データ信号を配置することで、垂直側シンボル信号を生成する構成としてもよい。
 この場合、垂直偏波で送信する信号の伝送効率を向上させることが可能となる。
(2) In the second embodiment, the vertical side symbol generation unit 103 generates the vertical side symbol signal by arranging the NULL signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal. , Not limited to this. That is, the vertical side symbol generation unit 103 may generate the vertical side symbol signal by arranging the broadcast data signal at the position where the horizontal side symbol generation unit 102 arranges the AC signal.
In this case, it is possible to improve the transmission efficiency of the signal transmitted by vertically polarized waves.
(3)第2実施形態では、第一のデータ信号が、水平偏波で送信するための水平側データ信号であり、第二のデータ信号が、垂直偏波で送信するための垂直側データ信号である構成としたが、これに限定するものではない。すなわち、第一のデータ信号が、垂直偏波で送信するための水平側データ信号であり、第二のデータ信号が、水平偏波で送信するための垂直側データ信号である構成としてもよい。
 この場合、垂直偏波で現行方式のISDB-T信号を送信している地域において、水平偏波が含む放送データ信号によって発生する垂直偏波の4K信号のセグメントに入った現行SP信号、TMCC信号及びAC信号への干渉を低減することが可能となり、現行放送向けの受信機の受信環境を改善させて、受信不良を低減させることが可能となる。
(3) In the second embodiment, the first data signal is a horizontal data signal for transmission in horizontally polarized light, and the second data signal is a vertical data signal for transmission in vertically polarized light. However, the configuration is not limited to this. That is, the first data signal may be a horizontal data signal for transmission in vertically polarized light, and the second data signal may be a vertical data signal for transmission in horizontally polarized light.
In this case, the current SP signal and TMCC signal in the vertically polarized 4K signal segment generated by the broadcast data signal included in the horizontally polarized signal in the area where the current ISDB-T signal is transmitted by vertically polarized light. In addition, it is possible to reduce interference with AC signals, improve the reception environment of the receiver for current broadcasting, and reduce reception defects.
(4)第2実施形態では、水平側シンボル生成部102の構成を、一つの現行SP信号と、一つの水平側データ信号と、一つのNULL信号と、一つの水平側データ信号を、経過時間の方向に沿って均一に配置する構成としたが、これに限定するものではない。すなわち、例えば、図22から図30に示すように、水平側シンボル生成部102の構成を、現行SP信号と、次世代SP信号と、NULL信号と、水平側データ信号を、経過時間の方向に沿って不均一に配置する構成としてもよい。 (4) In the second embodiment, the configuration of the horizontal side symbol generation unit 102 is the elapsed time of one current SP signal, one horizontal data signal, one FULL signal, and one horizontal data signal. The configuration is such that the components are uniformly arranged along the direction of, but the present invention is not limited to this. That is, for example, as shown in FIGS. 22 to 30, the configuration of the horizontal side symbol generation unit 102 is such that the current SP signal, the next-generation SP signal, the NULL signal, and the horizontal data signal are arranged in the direction of elapsed time. It may be configured to be arranged non-uniformly along the line.
 (第3実施形態)
 以下、図を参照して、受信装置と、送信装置と、送受信システムについて説明する。なお、以下の説明では、第1実施形態及び第2実施形態との共通する部分の説明を省略する場合がある。
 第3実施形態に係る送受信システムは、送信装置100と、受信装置200と、伝送路300を備える(図1を参照)。
(Third Embodiment)
Hereinafter, the receiving device, the transmitting device, and the transmitting / receiving system will be described with reference to the drawings. In the following description, the description of the parts common to the first embodiment and the second embodiment may be omitted.
The transmission / reception system according to the third embodiment includes a transmission device 100, a reception device 200, and a transmission line 300 (see FIG. 1).
 <送信装置の構成>
 送信装置100の構成は、第1実施形態と同様である。
<Configuration of transmitter>
The configuration of the transmission device 100 is the same as that of the first embodiment.
 <受信装置の構成>
 受信装置200は、図31に示すように、水平側変換部201と、垂直側変換部202と、水平側次世代信号抽出部208と、垂直側次世代信号抽出部209と、水平側現行信号抽出部210と、垂直側現行信号抽出部211を備える。これに加え、受信装置200は、水平側次世代伝送路推定部212と、垂直側次世代伝送路推定部213と、水平側現行伝送路推定部214と、垂直側現行伝送路推定部215と、水平側第一伝送路抽出部216と、水平側第二伝送路抽出部217を備える。さらに、受信装置200は、垂直側第一伝送路抽出部218と、垂直側第二伝送路抽出部219と、水平側推定精度向上部220と、垂直側推定精度向上部221と、復調部207を備える。なお、第3実施形態では、第1実施形態と同様、一例として、受信装置200の構成を、4K信号を受信する構成とした場合について説明する。
<Configuration of receiver>
As shown in FIG. 31, the receiving device 200 includes a horizontal conversion unit 201, a vertical conversion unit 202, a horizontal side next-generation signal extraction unit 208, a vertical side next-generation signal extraction unit 209, and a horizontal side current signal. It includes an extraction unit 210 and a vertical side current signal extraction unit 211. In addition to this, the receiving device 200 includes a horizontal side next-generation transmission line estimation unit 212, a vertical side next-generation transmission line estimation unit 213, a horizontal side current transmission line estimation unit 214, and a vertical side current transmission line estimation unit 215. , The horizontal side first transmission line extraction unit 216 and the horizontal side second transmission line extraction unit 217 are provided. Further, the receiving device 200 includes a vertical side first transmission line extraction unit 218, a vertical side second transmission line extraction unit 219, a horizontal side estimation accuracy improvement unit 220, a vertical side estimation accuracy improvement unit 221 and a demodulation unit 207. To be equipped. In the third embodiment, as in the first embodiment, a case where the receiving device 200 is configured to receive a 4K signal will be described as an example.
 水平側変換部201は、受信側水平アンテナ200aから入力された信号に対して、例えば、フーリエ変換演算を行うことで、水平側受信信号を生成する。そして、水平側変換部201は、生成した水平側受信信号を、水平側次世代信号抽出部208と、水平側現行信号抽出部210と、復調部207へ出力する。
 垂直側変換部202は、受信側垂直アンテナ200bから入力された信号に対して、例えば、フーリエ変換演算を行うことで、垂直側受信信号を生成する。そして、垂直側変換部202は、生成した垂直側受信信号を、垂直側次世代信号抽出部209と、垂直側現行信号抽出部211と、復調部207へ出力する。
The horizontal conversion unit 201 generates a horizontal reception signal by, for example, performing a Fourier transform operation on the signal input from the reception side horizontal antenna 200a. Then, the horizontal conversion unit 201 outputs the generated horizontal reception signal to the horizontal side next-generation signal extraction unit 208, the horizontal side current signal extraction unit 210, and the demodulation unit 207.
The vertical conversion unit 202 generates a vertical reception signal by, for example, performing a Fourier transform operation on the signal input from the reception vertical antenna 200b. Then, the vertical conversion unit 202 outputs the generated vertical reception signal to the vertical next-generation signal extraction unit 209, the vertical current signal extraction unit 211, and the demodulation unit 207.
 水平側次世代信号抽出部208は、水平側変換部201から入力された水平側受信信号から、次世代SP信号と、反転SP信号を抽出する。そして、抽出した次世代SP信号と、反転SP信号を、水平側次世代伝送路推定部212へ出力する。
 垂直側次世代信号抽出部209は、垂直側変換部202から入力された垂直側受信信号から、次世代SP信号と、反転SP信号を抽出する。そして、抽出した次世代SP信号と、反転SP信号を、垂直側次世代伝送路推定部213へ出力する。
The horizontal side next-generation signal extraction unit 208 extracts the next-generation SP signal and the inverted SP signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted next-generation SP signal and the inverted SP signal are output to the horizontal side next-generation transmission line estimation unit 212.
The vertical side next-generation signal extraction unit 209 extracts the next-generation SP signal and the inverted SP signal from the vertical side reception signal input from the vertical side conversion unit 202. Then, the extracted next-generation SP signal and the inverted SP signal are output to the vertical side next-generation transmission line estimation unit 213.
 水平側現行信号抽出部210は、水平側変換部201から入力された水平側受信信号から、現行SP信号と、NULL信号を抽出する。そして、抽出した現行SP信号と、NULL信号を、水平側現行伝送路推定部214へ出力する。
 垂直側現行信号抽出部211は、垂直側変換部202から入力された垂直側受信信号から、現行SP信号と、NULL信号を抽出する。そして、抽出した現行SP信号と、NULL信号を、垂直側現行伝送路推定部215へ出力する。
The horizontal side current signal extraction unit 210 extracts the current SP signal and the NULL signal from the horizontal side reception signal input from the horizontal side conversion unit 201. Then, the extracted current SP signal and the NULL signal are output to the horizontal current transmission line estimation unit 214.
The vertical side current signal extraction unit 211 extracts the current SP signal and the NULL signal from the vertical side reception signal input from the vertical side conversion unit 202. Then, the extracted current SP signal and the NULL signal are output to the vertical side current transmission line estimation unit 215.
 水平側次世代伝送路推定部212は、以下に説明する方法を用いて、伝送路応答hhhと伝送路応答hvhを推定する。
 まず、受信側水平アンテナ200aから入力された信号のうち、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した次世代SP信号が同じ位置に配置されている信号を、「Psum」と定義する。さらに、次世代SP信号を「p」と定義し、「Psum=phhh+phvh」の関係式を定義する。
Horizontal side next generation transmission channel estimation unit 212 uses a method described below, to estimate the channel response h vh and channel response h hh.
First, among the signals input from the receiving side horizontal antenna 200a, the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the next-generation SP signal received from the transmitting side vertical antenna 100b are arranged at the same position. Is defined as "P sum". Further, the next-generation SP signal is defined as "p", and the relational expression of "P sum = ph h h + ph vh" is defined.
 次に、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した反転SP信号が同じ位置に配置されている信号を、「Pdiff」と定義する。さらに、次世代SP信号を「p」と定義し、「Pdiff=phhh-phvh」の関係式を定義する。
 そして、信号Psumと信号Pdiffのそれぞれを、経過時間の方向と周波数の方向に補間することで、受信装置200が受信した放送データ信号の部分について、信号Psumと信号Pdiffを算出する。
Next, the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the inverted SP signal received from the transmitting side vertical antenna 100b are arranged at the same position is defined as "P diff". In addition, the next generation SP signal is defined as "p", to define the relationship of "P diff = ph hh -ph vh".
Then, by interpolating each of the signal P sum and the signal P diff in the direction of the elapsed time and the direction of the frequency, the signal P sum and the signal P diff are calculated for the portion of the broadcast data signal received by the receiving device 200. ..
 ここで、関係式「Psum=phhh+phvh」と関係式「Pdiff=phhh-phvh」では、未知の変数は伝送路応答hhhと伝送路応答hvhの二つである。このため、二つの関係式を連立方程式として解くことで、全ての放送データ信号に対し、伝送路応答hhhと伝送路応答hvhを推定する。
 推定した伝送路応答hvhは、水平側第一伝送路抽出部216へ出力する。一方、推定した伝送路応答hhhは、水平側第二伝送路抽出部217へ出力する。
Here, the relationship "P sum = ph hh + ph vh" and relation "P diff = ph hh -ph vh", the unknown variables are the two channel response h vh and channel response h hh. Therefore, by solving the two relational expressions as simultaneous equations for all broadcast data signal, estimates the channel response h vh and channel response h hh.
The estimated transmission line response h vh is output to the horizontal first transmission line extraction unit 216. On the other hand, the estimated transmission line response hh is output to the horizontal side second transmission line extraction unit 217.
 垂直側次世代伝送路推定部213は、以下に説明する方法を用いて、伝送路応答hhvと伝送路応答hvvを推定する。
 まず、受信側垂直アンテナ200bから入力された信号のうち、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した次世代SP信号が同じ位置に配置されている信号を、「Psum」と定義する。さらに、次世代SP信号を「p」と定義し、「Psum=phhv+phvv」の関係式を定義する。
The vertical side next-generation transmission line estimation unit 213 estimates the transmission line response h hv and the transmission line response h vv by using the method described below.
First, among the signals input from the receiving-side vertical antenna 200b, the next-generation SP signal received from the transmitting-side horizontal antenna 100a and the next-generation SP signal received from the transmitting-side vertical antenna 100b are arranged at the same position. Is defined as "P sum". Further, the next-generation SP signal is defined as "p", and the relational expression of "P sum = ph hv + ph vv" is defined.
 次に、送信側水平アンテナ100aから受信した次世代SP信号と、送信側垂直アンテナ100bから受信した反転SP信号が同じ位置に配置されている信号を、「Pdiff」と定義する。さらに、次世代SP信号を「p」と定義し、「Pdiff=phhv-phvv」の関係式を定義する。
 そして、信号Psumと信号Pdiffのそれぞれを、経過時間の方向と周波数の方向に補間することで、受信装置200が受信した放送データ信号の部分について、信号Psumと信号Pdiffを算出する。
Next, the signal in which the next-generation SP signal received from the transmitting side horizontal antenna 100a and the inverted SP signal received from the transmitting side vertical antenna 100b are arranged at the same position is defined as "P diff". Further, the next-generation SP signal is defined as “p”, and the relational expression of “P diff = ph hv − ph vv” is defined.
Then, by interpolating each of the signal P sum and the signal P diff in the direction of the elapsed time and the direction of the frequency, the signal P sum and the signal P diff are calculated for the portion of the broadcast data signal received by the receiving device 200. ..
 ここで、関係式「Psum=phhv+phvv」と関係式「Pdiff=phhv-phvv」では、未知の変数は伝送路応答hhvと伝送路応答hvvの二つである。このため、二つの関係式を連立方程式として解くことで、全ての放送データ信号に対し、伝送路応答hhvと伝送路応答hvvを推定する。
 推定した伝送路応答hvvは、垂直側第一伝送路抽出部218へ出力する。一方、推定した伝送路応答hhvは、垂直側第二伝送路抽出部219へ出力する。
Here, in the relational expression "P sum = ph hv + ph vv " and the relational expression "P diff = ph hv -ph vv ", there are two unknown variables, the transmission line response h hv and the transmission line response h vv. Therefore, by solving the two relational equations as simultaneous equations, the transmission line response h hv and the transmission line response h vv are estimated for all the broadcast data signals.
The estimated transmission line response h vv is output to the vertical side first transmission line extraction unit 218. On the other hand, the estimated transmission line response h hv is output to the vertical side second transmission line extraction unit 219.
 したがって、水平側次世代伝送路推定部212と垂直側次世代伝送路推定部213は、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号と、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む反転SP信号とが同じ位置に配置されている信号とを用いて、伝送路応答を推定する。 Therefore, the horizontal side next-generation transmission line estimation unit 212 and the vertical side next-generation transmission line estimation unit 213 include the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization. The signal in which the next-generation SP signal is located at the same position and the inverted SP signal included in the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization are in the same position. The transmission line response is estimated using the signals arranged in.
 水平側現行伝送路推定部214は、水平側現行信号抽出部210から入力された現行SP信号とNULL信号を用いて、時間軸方向(経過時間の方向)と周波数軸方向(周波数が変化する方向)に一定の間隔で挿入されている現行SP信号の伝送路応答を求める。さらに、時間軸方向と周波数軸方向に補間処理を行う。これにより、水平側データ信号の伝送路応答を求めることで、水平側仮想伝送路応答h’hhを推定する。そして、水平側現行伝送路推定部214は、推定した水平側仮想伝送路応答h’hhを、水平側推定精度向上部220へ出力する。
 垂直側現行伝送路推定部215は、垂直側現行信号抽出部211から入力された現行SP信号とNULL信号を用いて、時間軸方向と周波数軸方向に一定の間隔で挿入されている現行SP信号の伝送路応答を求める。さらに、時間軸方向と周波数軸方向に補間処理を行う。これにより、垂直側データ信号の伝送路応答を求めることで、垂直側仮想伝送路応答h’hvを推定する。そして、垂直側現行伝送路推定部215は、推定した垂直側仮想伝送路応答h’hvを、垂直側推定精度向上部221へ出力する。
The horizontal side current transmission line estimation unit 214 uses the current SP signal and the FULL signal input from the horizontal side current signal extraction unit 210 in the time axis direction (elapsed time direction) and the frequency axis direction (direction in which the frequency changes). ) Is the transmission line response of the current SP signal inserted at regular intervals. Further, interpolation processing is performed in the time axis direction and the frequency axis direction. As a result, the horizontal side virtual transmission line response h'hh is estimated by obtaining the transmission line response of the horizontal side data signal. Then, the horizontal side current transmission line estimation unit 214 outputs the estimated horizontal side virtual transmission line response h'hh to the horizontal side estimation accuracy improvement unit 220.
The vertical side current transmission line estimation unit 215 uses the current SP signal and the FULL signal input from the vertical side current signal extraction unit 211, and inserts the current SP signal at regular intervals in the time axis direction and the frequency axis direction. The transmission line response of is obtained. Further, interpolation processing is performed in the time axis direction and the frequency axis direction. As a result, the vertical side virtual transmission line response h'hv is estimated by obtaining the transmission line response of the vertical side data signal. Then, the vertical side current transmission line estimation unit 215 outputs the estimated vertical side virtual transmission line response h'hv to the vertical side estimation accuracy improvement unit 221.
 したがって、水平側現行伝送路推定部214と垂直側現行伝送路推定部215は、水平偏波で送信されたデータ信号が含む現行SP信号及び垂直偏波で送信されたデータ信号が含むNULL信号を用いて、伝送路応答を推定する。 Therefore, the horizontal channel estimation unit 214 and the vertical channel estimation unit 215 include the current SP signal included in the data signal transmitted in horizontal polarization and the NUML signal included in the data signal transmitted in vertical polarization. Use to estimate transmission line response.
 水平側第一伝送路抽出部216は、水平側次世代伝送路推定部212から入力された伝送路応答hvhを抽出し、復調部207へ出力する。
 水平側第二伝送路抽出部217は、水平側次世代伝送路推定部212から入力された伝送路応答hhhを抽出し、水平側推定精度向上部220へ出力する。
The horizontal first transmission line extraction unit 216 extracts the transmission line response hvh input from the horizontal side next-generation transmission line estimation unit 212 and outputs it to the demodulation unit 207.
The horizontal side second transmission line extraction unit 217 extracts the transmission line response hh input from the horizontal side next-generation transmission line estimation unit 212 and outputs it to the horizontal side estimation accuracy improvement unit 220.
 垂直側第一伝送路抽出部218は、垂直側次世代伝送路推定部213から入力された伝送路応答hvvを抽出し、復調部207へ出力する。
 垂直側第二伝送路抽出部219は、垂直側次世代伝送路推定部213から入力された伝送路応答hhvを抽出し、垂直側推定精度向上部221へ出力する。
The vertical side first transmission line extraction unit 218 extracts the transmission line response hvv input from the vertical side next-generation transmission line estimation unit 213 and outputs it to the demodulation unit 207.
The vertical side second transmission line extraction unit 219 extracts the transmission line response h hv input from the vertical side next-generation transmission line estimation unit 213 and outputs it to the vertical side estimation accuracy improvement unit 221.
 水平側推定精度向上部220は、水平側現行伝送路推定部214から入力された水平側仮想伝送路応答h’hhと、水平側第二伝送路抽出部217から入力された伝送路応答hhhを用いて、水平側精度向上伝送路応答h’’hhを算出する。水平側精度向上伝送路応答h’’hhは、伝送路応答hhhに対して推定精度を向上させた伝送路応答である。そして、水平側推定精度向上部220は、算出した水平側精度向上伝送路応答h’’hhを、復調部207へ出力する。 The horizontal side estimation accuracy improving unit 220 has a horizontal side virtual transmission line response h'hh input from the horizontal side current transmission line estimation unit 214 and a transmission line response h hh input from the horizontal side second transmission line extraction unit 217. Is used to calculate the horizontal accuracy improvement transmission line response h''hh. The horizontal side accuracy-enhanced transmission line response h''hh is a transmission line response in which the estimation accuracy is improved with respect to the transmission line response hh. Then, the horizontal side estimation accuracy improvement unit 220 outputs the calculated horizontal side accuracy improvement transmission line response h''hh to the demodulation unit 207.
 以下、水平側推定精度向上部220が水平側精度向上伝送路応答h’’hhを算出する具体的な方法を説明する。
 水平側精度向上伝送路応答h’’hhを算出する方法としては、例えば、h’’hh=(hhh+h’hh)/2の計算式を用いて、水平側仮想伝送路応答h’hhと伝送路応答hhhとの平均値を算出する方法を用いることが可能である。
Hereinafter, a specific method in which the horizontal side estimation accuracy improving unit 220 calculates the horizontal side accuracy improving transmission line response h''hh will be described.
As a method of calculating the horizontal side accuracy improvement transmission line response h''hh , for example, the calculation formula of h''hh = ( hhh + h'hh ) / 2 is used to calculate the horizontal side virtual transmission line response h'hh. it is possible to use a method of calculating an average value of the channel response h hh with.
 また、例えば、h’’hh=(w1hhh+w2h’hh)/(w1+w2)の計算式を用いることで、係数w1及び係数w2による重み付けにより、加重平均値を算出する方法を用いることが可能である。重み付けの指標としては、例えば、水平側推定精度向上部220に入力された伝送路応答が、対応する伝送路の補間に使用されたSP信号(現行SP信号、次世代SP信号)に近いほど、係数の重みを大きくする方法を用いることが可能である。
 通常、受信信号には、加算性白色ガウス雑音(AWGN:Additive White Gaussian Noise)等のノイズが混入しているため、推定した伝送路応答にもノイズが混入している。そのため、伝送路応答hhhと水平側仮想伝送路応答h’hhとは、基本的には同じ伝送路応答を推定した結果になっているが、異なるSP信号から伝送路応答を推定したことにより、ノイズの混入度合いが異なる。このため、上述した方法を用いて、水平側精度向上伝送路応答h’’hhの推定精度を向上させることが可能となっている。
Further, for example, h '' hh = (w1h hh + w2h 'hh) / (w1 + w2) By using the calculation formula by weighting by factors w1 and coefficients w2, it can be used a method of calculating the weighted average be. As an index of weighting, for example, the closer the transmission line response input to the horizontal side estimation accuracy improvement unit 220 is to the SP signal (current SP signal, next-generation SP signal) used for interpolation of the corresponding transmission line, the more. It is possible to use a method of increasing the weight of the coefficient.
Normally, noise such as additive white Gaussian noise (AWGN) is mixed in the received signal, so noise is also mixed in the estimated transmission line response. Therefore, the transmission line response h hh and the horizontal virtual transmission line response h'hh are basically the results of estimating the same transmission line response, but by estimating the transmission line response from different SP signals, , The degree of noise mixing is different. Therefore, it is possible to improve the estimation accuracy of the horizontal side accuracy improvement transmission line response h''hh by using the above-mentioned method.
 垂直側推定精度向上部221は、垂直側現行伝送路推定部215から入力された垂直側仮想伝送路応答h’hvと、垂直側第二伝送路抽出部219から入力された伝送路応答hhvを用いて、垂直側精度向上伝送路応答h’’hvを算出する。垂直側精度向上伝送路応答h’’hvは、伝送路応答hhvに対して推定精度を向上させた伝送路応答である。そして、垂直側推定精度向上部221は、算出した垂直側精度向上伝送路応答h’’hvを、復調部207へ出力する。 The vertical side estimation accuracy improving unit 221 receives the vertical side virtual transmission line response h'hv input from the vertical side current transmission line estimation unit 215 and the transmission line response h hv input from the vertical side second transmission line extraction unit 219. Is used to calculate the vertical accuracy improvement transmission line response h''hv. The vertical side accuracy-enhanced transmission line response h''hv is a transmission line response in which the estimation accuracy is improved with respect to the transmission line response h hv. Then, the vertical side estimation accuracy improvement unit 221 outputs the calculated vertical side accuracy improvement transmission line response h''hv to the demodulation unit 207.
 以下、垂直側推定精度向上部221が垂直側精度向上伝送路応答h’’hvを算出する具体的な方法を説明する。
 垂直側精度向上伝送路応答h’’hvを算出する方法としては、例えば、h’’hv=(hhv+h’hv)/2の計算式を用いて、垂直側仮想伝送路応答h’hvと伝送路応答hhvとの平均値を算出する方法を用いることが可能である。
Hereinafter, a specific method in which the vertical side estimation accuracy improving unit 221 calculates the vertical side accuracy improving transmission line response h''hv will be described.
As a method of calculating the vertical side accuracy improvement transmission line response h''hv , for example, the calculation formula of h''hv = (h hv + h'hv ) / 2 is used to calculate the vertical side virtual transmission line response h'hv. It is possible to use a method of calculating the average value of the transmission line response h hv and the transmission line response h hv.
 また、例えば、h’’hv=(w1hhv+w2h’hv)/(w1+w2)の計算式を用いることで、係数w1及び係数w2による重み付けにより、加重平均値を算出する方法を用いることが可能である。重み付けの指標としては、例えば、垂直側推定精度向上部221に入力された伝送路応答が、対応する伝送路の補間に使用されたSP信号(現行SP信号、次世代SP信号)に近いほど、係数の重みを大きくする方法を用いることが可能である。
 通常、受信信号には、加算性白色ガウス雑音等のノイズが混入しているため、推定した伝送路応答にもノイズが混入している。そのため、伝送路応答hhvと垂直側仮想伝送路応答h’hvとは、基本的には同じ伝送路応答を推定した結果になっているが、異なるSP信号から伝送路応答を推定したことにより、ノイズの混入度合いが異なる。このため、上述した方法を用いて、垂直側精度向上伝送路応答h’’hvの推定精度を向上させることが可能となっている。
Further, for example, h '' hv = (w1h hv + w2h 'hv) / (w1 + w2) By using the calculation formula by weighting by factors w1 and coefficients w2, can be used a method of calculating the weighted average be. As a weighting index, for example, the closer the transmission line response input to the vertical side estimation accuracy improvement unit 221 is to the SP signal (current SP signal, next-generation SP signal) used for interpolation of the corresponding transmission line, the more. It is possible to use a method of increasing the weight of the coefficient.
Normally, noise such as additive white Gaussian noise is mixed in the received signal, so noise is also mixed in the estimated transmission line response. Therefore, the transmission line response h hv and the vertical virtual transmission line response h'hv are basically the results of estimating the same transmission line response, but by estimating the transmission line response from different SP signals, , The degree of noise mixing is different. Therefore, it is possible to improve the estimation accuracy of the vertical side accuracy improvement transmission line response h''hv by using the above-mentioned method.
 復調部207は、上述した関係式(1)と同様、受信信号R1と受信信号R2に対し、伝送路応答行列の逆行列を乗算する。第3実施形態において、伝送路応答行列とは、伝送路応答h’’hh、伝送路応答hvh、伝送路応答h’’hv、伝送路応答hvvとで形成された行列である。すなわち、第3実施形態では、上述した関係式(1)における「hhh」を「h’’hh」に置き換えるとともに、「hhv」を「h’’hv」に置き換えて、演算を行う。
 これにより、復調部207は、送信信号S1と送信信号S2を復調する。そして、復調部207は、復調した送信信号S1及び送信信号S2を、アプリケーション装置3へ出力する。なお、送信信号S1及び送信信号S2には、水平偏波で送信した放送データ信号、TMCC信号、AC信号と、垂直偏波で送信した放送データ信号、TMCC信号、AC信号を含む。
 したがって、復調部207は、水平側推定精度向上部220が算出した水平側精度向上伝送路応答h’’hhと、垂直側推定精度向上部221が算出した垂直側精度向上伝送路応答h’’hvを用いて、伝送路300を介して受信したデータ信号を復調する。
The demodulation unit 207 multiplies the received signal R1 and the received signal R2 by the inverse matrix of the transmission line response matrix, as in the relational expression (1) described above. In a third embodiment, the channel response matrix, the channel response h '' hh, channel response h vh, the channel response h '' hv, is a matrix formed by a channel response h vv. That is, in the third embodiment, 'is replaced with the "hh, the" h hv "" h to "h hh" in the above-described relational expression (1) h''' replaced with 'hv "performs an operation.
As a result, the demodulation unit 207 demodulates the transmission signal S1 and the transmission signal S2. Then, the demodulation unit 207 outputs the demodulated transmission signal S1 and the transmission signal S2 to the application device 3. The transmission signal S1 and the transmission signal S2 include a broadcast data signal, a TMCC signal, and an AC signal transmitted by horizontally polarized waves, and a broadcast data signal, a TMCC signal, and an AC signal transmitted by vertically polarized waves.
Therefore, the demodulation unit 207 has a horizontal side accuracy improvement transmission line response h''hh calculated by the horizontal side estimation accuracy improvement unit 220 and a vertical side accuracy improvement transmission line response h''h calculated by the vertical side estimation accuracy improvement unit 221. The data signal received via the transmission line 300 is demodulated using hv.
 <請求項との対応>
 第3実施形態では、水平偏波が、水平偏波及び垂直偏波のうち一方に対応し、水平側データ信号が、第一のデータ信号に対応する。また、第3実施形態では、水平側シンボル信号が、第一のシンボル信号に対応し、水平側シンボル生成部102が、第一のシンボル生成部に対応する。
 また、第3実施形態では、垂直偏波が、水平偏波及び垂直偏波のうち他方に対応し、垂直側データ信号が、第二のデータ信号に対応する。また、第3実施形態では、垂直側シンボル信号が、第二のシンボル信号に対応し、垂直側シンボル生成部103が、第二のシンボル生成部に対応する。
<Correspondence with claims>
In the third embodiment, the horizontally polarized wave corresponds to one of the horizontally polarized wave and the vertically polarized wave, and the horizontal data signal corresponds to the first data signal. Further, in the third embodiment, the horizontal side symbol signal corresponds to the first symbol signal, and the horizontal side symbol generation unit 102 corresponds to the first symbol generation unit.
Further, in the third embodiment, the vertically polarized light corresponds to the other of the horizontally polarized light and the vertically polarized light, and the vertical data signal corresponds to the second data signal. Further, in the third embodiment, the vertical side symbol signal corresponds to the second symbol signal, and the vertical side symbol generation unit 103 corresponds to the second symbol generation unit.
 <第3実施形態の作用・効果>
 第3実施形態の受信装置200であれば、以下の作用・効果を奏することが可能である。
(1)水平側次世代伝送路推定部212と垂直側次世代伝送路推定部213が、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号と、水平偏波で送信されたデータ信号が含む次世代SP信号と垂直偏波で送信されたデータ信号が含む反転SP信号とが同じ位置に配置されている信号とを用いて、伝送路応答を推定する。また、水平側現行伝送路推定部214と垂直側現行伝送路推定部215が、水平偏波で送信されたデータ信号が含む現行SP信号及び垂直偏波で送信されたデータ信号が含むNULL信号を用いて、伝送路応答を推定する。これに加え、水平側推定精度向上部220が、水平側精度向上伝送路応答h’’hhを算出し、垂直側推定精度向上部221が、垂直側精度向上伝送路応答h’’hvを算出する。さらに、復調部207が、水平側推定精度向上部220が算出した水平側精度向上伝送路応答h’’hhと、垂直側推定精度向上部221が算出した垂直側精度向上伝送路応答h’’hvを用いて、伝送路300を介して受信したデータ信号を復調する。
 これにより、符号反転方式であっても、現行SP信号を用いて伝送路応答の推定精度を向上させるため、現行SP信号を用いない場合と比較して受信性能を向上させることで、受信不良を低減させることが可能な受信装置200を提供することが可能となる。
<Action / effect of the third embodiment>
The receiving device 200 of the third embodiment can exhibit the following actions and effects.
(1) The horizontal side next-generation transmission line estimation unit 212 and the vertical side next-generation transmission line estimation unit 213 display the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization. The signal in which the next-generation SP signal including is arranged at the same position and the inverted SP signal included in the next-generation SP signal included in the data signal transmitted in horizontal polarization and the data signal transmitted in vertical polarization are the same. The transmission line response is estimated using the signal placed at the position. Further, the horizontal side current transmission line estimation unit 214 and the vertical side current transmission line estimation unit 215 input the current SP signal included in the data signal transmitted in horizontal polarization and the NUML signal included in the data signal transmitted in vertical polarization. Use to estimate transmission line response. Additionally, calculating the horizontal side estimation accuracy unit 220 'calculates hh, vertical side estimation accuracy 221, a vertical side accuracy channel response h' horizontal side accuracy channel response h 'a' hv do. Further, the demodulation unit 207 has a horizontal side accuracy improvement transmission line response h''hh calculated by the horizontal side estimation accuracy improvement unit 220 and a vertical side accuracy improvement transmission line response h''h calculated by the vertical side estimation accuracy improvement unit 221. The data signal received via the transmission line 300 is demodulated using hv.
As a result, even in the code inversion method, in order to improve the estimation accuracy of the transmission line response by using the current SP signal, the reception performance is improved as compared with the case where the current SP signal is not used, thereby preventing reception failure. It is possible to provide a receiving device 200 that can be reduced.
 なお、本技術は、以下のような構成を取ることが可能である。
(1)
 水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置であって、
 予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
 前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記次世代SP信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
 前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する送信装置。
(2)
 前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する前記(1)に記載した送信装置。
(3)
 前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する前記(1)に記載した送信装置。
(4)
 前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する前記(1)から(3)のうちいずれかに記載した送信装置。
(5)
 前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する前記(1)から(3)のうちいずれかに記載した送信装置。
(6)
 前記パイロット信号生成部は、さらに、前記次世代SP信号の符号を反転させた反転SP信号を生成し、
 前記第二のシンボル生成部は、さらに、前記第一のシンボル生成部が前記次世代SP信号を配置した位置の一部に前記パイロット信号生成部が生成した前記反転SP信号を配置することで前記第二のシンボル信号を生成する前記(1)から(5)のうちいずれかに記載した送信装置。
(7)
 前記第一のデータ信号は、前記水平偏波で送信するための水平側データ信号であり、
 前記第二のデータ信号は、前記垂直偏波で送信するための垂直側データ信号である前記(1)から(6)のうちいずれかに記載した送信装置。
(8)
 前記第一のデータ信号は、前記垂直偏波で送信するための垂直側データ信号であり、
 前記第二のデータ信号は、前記水平偏波で送信するための水平側データ信号である前記(1)から(6)のうちいずれかに記載した送信装置。
(9)
 水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置であって、
 予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
 前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記NULL信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
 前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置し、且つ前記第一のシンボル生成部が前記NULL信号を配置した位置に前記次世代SP信号を配置することで前記第二のシンボル信号を生成する送信装置。
(10)
 前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する前記(9)に記載した送信装置。
(11)
 前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する前記(9)に記載した送信装置。
(12)
 前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する前記(9)から(11)のうちいずれかに記載した送信装置。
(13)
 前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する前記(9)から(11)のうちいずれかに記載した送信装置。
(14)
 前記第一のデータ信号は、前記水平偏波で送信するための水平側データ信号であり、
 前記第二のデータ信号は、前記垂直偏波で送信するための垂直側データ信号である前記(9)から(13)のうちいずれかに記載した送信装置。
(15)
 前記第一のデータ信号は、前記垂直偏波で送信するための垂直側データ信号であり、
 前記第二のデータ信号は、前記水平偏波で送信するための水平側データ信号である前記(9)から(13)のうちいずれかに記載した送信装置。
(16)
 送信装置から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する受信装置であって、
 前記送信装置から送信されたデータ信号は、予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、前記次世代SP信号の符号を反転させた反転SP信号と、を含み、
 前記水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された前記次世代SP信号を含み、
 前記垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記次世代SP信号と、前記反転SP信号と、を含み、
 前記直交させて形成されたデータ信号のうち、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号と、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む前記反転SP信号とが同じ位置に配置されている信号と、を用いて前記伝送路応答を推定する伝送路推定部と、
 前記伝送路推定部が推定した伝送路応答を用いて、前記伝送路を介して受信した前記データ信号を復調する復調部と、を備える受信装置。
(17)
 送信装置から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する受信装置であって、
 前記送信装置から送信されたデータ信号は、予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を含み、
 前記水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記現行SP信号と、前記NULL信号と、を含み、
 前記垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記次世代SP信号と、前記NULL信号と、を含み、
 前記直交させて形成されたデータ信号のうち、前記水平偏波で送信されたデータ信号が含む前記現行SP信号と前記垂直偏波で送信されたデータ信号が含む前記NULL信号とが同じ位置に配置されている信号と、前記水平偏波で送信されたデータ信号が含む前記NULL信号と前記垂直偏波で送信されたデータ信号が含む前記次世代SP信号とが同じ位置に配置されている信号と、を用いて前記伝送路応答を推定する伝送路推定部と、
 前記伝送路推定部が推定した伝送路応答を用いて、前記伝送路を介して受信した前記データ信号を復調する復調部と、を備える受信装置。
(18)
 送信装置から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する受信装置であって、
 前記送信装置から送信されたデータ信号は、予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、前記次世代SP信号の符号を反転させた反転SP信号と、電力を0にするNULL信号と、を含み、
 前記水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記現行SP信号と、前記次世代SP信号と、を含み、
 前記垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記次世代SP信号と、前記反転SP信号と、前記NULL信号と、を含み、
 前記直交させて形成されたデータ信号のうち、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む前記次世代SP信号とが同じ位置に配置されている信号と、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む前記反転SP信号とが同じ位置に配置されている信号と、を用いて前記伝送路応答を推定する次世代伝送路推定部と、
 前記水平偏波で送信されたデータ信号が含む前記現行SP信号及び前記NULL信号を用いて前記伝送路応答を推定する現行伝送路推定部と、
 前記次世代伝送路推定部が推定した伝送路応答と、前記現行伝送路推定部が推定した伝送路応答と、を用いて、前記伝送路応答に対して推定精度を向上させた伝送路応答である精度向上伝送路応答を算出する推定精度向上部と、
 前記推定精度向上部が算出した精度向上伝送路応答を用いて、前記伝送路を介して受信した前記データ信号を復調する復調部と、を備える受信装置。
(19)
 水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置と、前記送信装置から伝送路を介して前記データ信号を受信する受信装置と、を備える送受信システムであって、
 前記送信装置は、
 予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、前記次世代SP信号の符号を反転させた反転SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
 前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記次世代SP信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
 前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号、前記反転SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する送受信システム。
(20)
 水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置と、前記送信装置から伝送路を介して前記データ信号を受信する受信装置と、を備える送受信システムであって、
 前記送信装置は、
 予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
 前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記NULL信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
 前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
 前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置し、且つ前記第一のシンボル生成部が前記NULL信号を配置した位置に前記次世代SP信号を配置することで前記第二のシンボル信号を生成する送受信システム。
The present technology can have the following configurations.
(1)
A transmitter that transmits data signals by making horizontally polarized waves and vertically polarized waves orthogonal to each other.
A pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
The current SP signal and the next-generation SP signal generated by the pilot signal generator and the first data for the first data signal to be transmitted in one of the horizontally polarized waves and the vertically polarized waves. A first symbol generation that generates a first symbol signal by arranging a broadcast data signal that includes the signal and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. Department and
The next-generation SP signal and the NUML signal generated by the pilot signal generator and the second data signal with respect to the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves. A second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with
The second symbol generation unit is a transmission device that generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the current SP signal.
(2)
The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
The transmission according to (1) above, wherein the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the TMCC signal. Device.
(3)
The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
The second symbol generation unit is described in (1) above, in which the second symbol signal is generated by arranging the broadcast data signal at a position where the first symbol generation unit arranges the TMCC signal. Transmitter.
(4)
The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
The second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the AC signal (1) to (3). The transmitter described in any of the above.
(5)
The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
The second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the AC signal from (1) to (3). ) The transmitter described in any one of them.
(6)
The pilot signal generation unit further generates an inverted SP signal in which the sign of the next-generation SP signal is inverted.
The second symbol generation unit further arranges the inverted SP signal generated by the pilot signal generation unit at a part of the position where the first symbol generation unit arranges the next-generation SP signal. The transmitter according to any one of (1) to (5) above, which generates a second symbol signal.
(7)
The first data signal is a horizontal data signal for transmission with the horizontally polarized waves.
The transmission device according to any one of (1) to (6) above, wherein the second data signal is a vertical data signal for transmission in the vertically polarized wave.
(8)
The first data signal is a vertical data signal for transmission with the vertically polarized waves.
The transmission device according to any one of (1) to (6) above, wherein the second data signal is a horizontal data signal for transmission in the horizontally polarized wave.
(9)
A transmitter that transmits data signals by making horizontally polarized waves and vertically polarized waves orthogonal to each other.
A pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
With respect to the first data signal for transmitting one of the horizontally polarized waves and the vertically polarized waves, the current SP signal and the NUML signal generated by the pilot signal generator and the first data signal are A broadcast data signal that includes and corresponds to the content to be broadcast, and a first symbol generator that generates a first symbol signal by arranging the broadcast data signal along the direction of elapsed time and the direction of frequency change. ,
The next-generation SP signal and the NUML signal generated by the pilot signal generator and the second data signal with respect to the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves. A second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with
The second symbol generation unit arranges the NULL signal at a position where the first symbol generation unit arranges the current SP signal, and the first symbol generation unit arranges the NULL signal at a position where the NULL signal is arranged. A transmitter that generates the second symbol signal by arranging the next-generation SP signal.
(10)
The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
The transmission according to (9) above, wherein the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the TMCC signal. Device.
(11)
The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
The second symbol generation unit is described in (9) above, in which the second symbol signal is generated by arranging the broadcast data signal at a position where the first symbol generation unit arranges the TMCC signal. Transmitter.
(12)
The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
The second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the AC signal (9) to (11). The transmitter described in any of the above.
(13)
The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
The second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the AC signal (9) to (11). ) The transmitter described in any one of them.
(14)
The first data signal is a horizontal data signal for transmission with the horizontally polarized waves.
The transmission device according to any one of (9) to (13) above, wherein the second data signal is a vertical data signal for transmission in the vertically polarized wave.
(15)
The first data signal is a vertical data signal for transmission with the vertically polarized waves.
The transmission device according to any one of (9) to (13) above, wherein the second data signal is a horizontal data signal for transmission in the horizontally polarized wave.
(16)
A receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
The data signal transmitted from the transmission device includes a next-generation SP signal used in a method newer than a preset broadcasting method and an inverted SP signal in which the code of the next-generation SP signal is inverted.
The data signal included in the horizontally polarized waves includes the next-generation SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
The data signal included in the vertically polarized light includes the next-generation SP signal and the inverted SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
Among the data signals formed at right angles, the next-generation SP signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are at the same position. The next-generation SP signal included in the horizontally polarized data signal and the inverted SP signal included in the vertically polarized data signal are arranged at the same position. A transmission line estimation unit that estimates the transmission line response using the signal
A receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
(17)
A receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
The data signals transmitted from the transmission device are the current SP signal used in the preset broadcasting method, the next-generation SP signal used in a newer method than the preset broadcasting method, and the NULL signal that reduces the power to 0. And, including
The data signal included in the horizontally polarized light includes the current SP signal and the NULL signal arranged along the direction of elapsed time and the direction in which the frequency changes.
The data signal included in the vertically polarized light includes the next-generation SP signal and the NULL signal arranged along the direction of elapsed time and the direction in which the frequency changes.
Among the data signals formed at right angles, the current SP signal included in the data signal transmitted in the horizontally polarized wave and the NUML signal included in the data signal transmitted in the vertically polarized wave are arranged at the same position. A signal in which the NULL signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are arranged at the same position. A transmission line estimation unit that estimates the transmission line response using,
A receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
(18)
A receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
The data signals transmitted from the transmission device are the current SP signal used in the preset broadcasting method, the next-generation SP signal used in a method newer than the preset broadcasting method, and the code of the next-generation SP signal. Includes an inverted SP signal that inverts the above and a NUML signal that sets the power to 0.
The data signal included in the horizontally polarized light includes the current SP signal and the next-generation SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
The data signal included in the vertically polarized light includes the next-generation SP signal, the inverted SP signal, and the NUML signal arranged along the direction of elapsed time and the direction in which the frequency changes.
Among the data signals formed at right angles, the next-generation SP signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are the same. The signal arranged at the position, the next-generation SP signal included in the data signal transmitted in the horizontally polarized wave, and the inverted SP signal included in the data signal transmitted in the vertically polarized wave are arranged at the same position. Next-generation transmission line estimation unit that estimates the transmission line response using the signal
The current transmission line estimation unit that estimates the transmission line response using the current SP signal and the NULL signal included in the data signal transmitted in the horizontally polarized light, and the current transmission line estimation unit.
Using the transmission line response estimated by the next-generation transmission line estimation unit and the transmission line response estimated by the current transmission line estimation unit, the transmission line response with improved estimation accuracy with respect to the transmission line response. An estimation accuracy improvement unit that calculates a certain accuracy improvement transmission line response,
A receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the accuracy improvement transmission line response calculated by the estimation accuracy improvement unit.
(19)
A transmission / reception system including a transmission device that transmits a data signal with horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives the data signal from the transmitting device via a transmission line.
The transmitter is
The current SP signal used in the preset broadcasting method, the next-generation SP signal used in a newer method than the preset broadcasting method, the inverted SP signal in which the code of the next-generation SP signal is inverted, and the power are used. A NUML signal to be set to 0, a pilot signal generator to generate, and a pilot signal generator.
The current SP signal and the next-generation SP signal generated by the pilot signal generator and the first data for the first data signal to be transmitted in one of the horizontally polarized waves and the vertically polarized waves. A first symbol generation that generates a first symbol signal by arranging a broadcast data signal that includes the signal and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. Department and
With respect to the second data signal for transmission in the other of the horizontally polarized waves and the vertically polarized waves, the next-generation SP signal, the inverted SP signal, and the NUML signal generated by the pilot signal generator, and the above. A second symbol signal is generated by arranging a broadcast data signal included in the second data signal and corresponding to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. With a second symbol generator,
The second symbol generation unit is a transmission / reception system that generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the current SP signal.
(20)
A transmission / reception system including a transmission device that transmits a data signal with horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives the data signal from the transmitting device via a transmission line.
The transmitter is
A pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
With respect to the first data signal for transmitting one of the horizontally polarized waves and the vertically polarized waves, the current SP signal and the NUML signal generated by the pilot signal generator and the first data signal are A broadcast data signal that includes and corresponds to the content to be broadcast, and a first symbol generator that generates a first symbol signal by arranging the broadcast data signal along the direction of elapsed time and the direction of frequency change. ,
The next-generation SP signal and the NUML signal generated by the pilot signal generator and the second data signal with respect to the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves. A second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with
The second symbol generation unit arranges the NULL signal at a position where the first symbol generation unit arranges the current SP signal, and the first symbol generation unit arranges the NULL signal at a position where the NULL signal is arranged. A transmission / reception system that generates the second symbol signal by arranging the next-generation SP signal.
 1…送受信システム、2…アンテナ、3…アプリケーション装置、100…送信装置、100a…送信側水平アンテナ、100b…送信側垂直アンテナ、101…パイロット信号生成部、102…水平側シンボル生成部、103…垂直側シンボル生成部、104…水平側逆変換部、105…垂直側逆変換部、200…受信装置、200a…受信側水平アンテナ、200b…受信側垂直アンテナ、201…水平側変換部、202…垂直側変換部、203…水平側信号抽出部、204…垂直側信号抽出部、205…水平側伝送路推定部、206…垂直側伝送路推定部、207…復調部、208…水平側次世代信号抽出部、209…垂直側次世代信号抽出部、210…水平側現行信号抽出部、211…垂直側現行信号抽出部、212…水平側次世代伝送路推定部、213…垂直側次世代伝送路推定部、214…水平側現行伝送路推定部、215…垂直側現行伝送路推定部、216…水平側第一伝送路抽出部、217…水平側第二伝送路抽出部、218…垂直側第一伝送路抽出部、219…垂直側第二伝送路抽出部、220…水平側推定精度向上部、221…垂直側推定精度向上部、300…伝送路 1 ... Transmission / reception system, 2 ... Antenna, 3 ... Application device, 100 ... Transmission device, 100a ... Transmission side horizontal antenna, 100b ... Transmission side vertical antenna, 101 ... Pilot signal generation unit, 102 ... Horizontal side symbol generation unit, 103 ... Vertical side symbol generation unit, 104 ... horizontal side reverse conversion unit, 105 ... vertical side reverse conversion unit, 200 ... receiver, 200a ... reception side horizontal antenna, 200b ... reception side vertical antenna, 201 ... horizontal side conversion unit, 202 ... Vertical conversion unit, 203 ... horizontal signal extraction unit, 204 ... vertical signal extraction unit, 205 ... horizontal transmission line estimation unit, 206 ... vertical transmission line estimation unit, 207 ... demodulation unit, 208 ... horizontal side next generation Signal extraction unit, 209 ... Vertical side next-generation signal extraction unit, 210 ... Horizontal side current signal extraction unit, 211 ... Vertical side current signal extraction unit, 212 ... Horizontal side next-generation transmission line estimation unit, 213 ... Vertical side next-generation transmission Road estimation unit, 214 ... Horizontal side current transmission line estimation unit, 215 ... Vertical side current transmission line estimation unit, 216 ... Horizontal side first transmission line extraction unit, 217 ... Horizontal side second transmission line extraction unit, 218 ... Vertical side First transmission line extraction unit, 219 ... Vertical side second transmission line extraction unit, 220 ... Horizontal side estimation accuracy improvement unit, 221 ... Vertical side estimation accuracy improvement unit, 300 ... Transmission line

Claims (20)

  1.  水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置であって、
     予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
     前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記次世代SP信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
     前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する送信装置。
    A transmitter that transmits data signals by making horizontally polarized waves and vertically polarized waves orthogonal to each other.
    A pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
    The current SP signal and the next-generation SP signal generated by the pilot signal generator and the first data for the first data signal to be transmitted in one of the horizontally polarized waves and the vertically polarized waves. A first symbol generation that generates a first symbol signal by arranging a broadcast data signal that includes the signal and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. Department and
    The next-generation SP signal and the NUML signal generated by the pilot signal generator and the second data signal with respect to the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves. A second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with
    The second symbol generation unit is a transmission device that generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the current SP signal.
  2.  前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する請求項1に記載した送信装置。
    The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
    The transmission device according to claim 1, wherein the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the TMCC signal. ..
  3.  前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する請求項1に記載した送信装置。
    The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
    The transmission according to claim 1, wherein the second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the TMCC signal. Device.
  4.  前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する請求項1に記載した送信装置。
    The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
    The transmission device according to claim 1, wherein the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the AC signal. ..
  5.  前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する請求項1に記載した送信装置。
    The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
    The transmission according to claim 1, wherein the second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the AC signal. Device.
  6.  前記パイロット信号生成部は、さらに、前記次世代SP信号の符号を反転させた反転SP信号を生成し、
     前記第二のシンボル生成部は、さらに、前記第一のシンボル生成部が前記次世代SP信号を配置した位置の一部に前記パイロット信号生成部が生成した前記反転SP信号を配置することで前記第二のシンボル信号を生成する請求項1に記載した送信装置。
    The pilot signal generation unit further generates an inverted SP signal in which the sign of the next-generation SP signal is inverted.
    The second symbol generation unit further arranges the inverted SP signal generated by the pilot signal generation unit at a part of the position where the first symbol generation unit arranges the next-generation SP signal. The transmitter according to claim 1, which generates a second symbol signal.
  7.  前記第一のデータ信号は、前記水平偏波で送信するための水平側データ信号であり、
     前記第二のデータ信号は、前記垂直偏波で送信するための垂直側データ信号である請求項1に記載した送信装置。
    The first data signal is a horizontal data signal for transmission with the horizontally polarized waves.
    The transmission device according to claim 1, wherein the second data signal is a vertical data signal for transmission in the vertically polarized wave.
  8.  前記第一のデータ信号は、前記垂直偏波で送信するための垂直側データ信号であり、
     前記第二のデータ信号は、前記水平偏波で送信するための水平側データ信号である請求項1に記載した送信装置。
    The first data signal is a vertical data signal for transmission with the vertically polarized waves.
    The transmission device according to claim 1, wherein the second data signal is a horizontal data signal for transmission in the horizontally polarized wave.
  9.  水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置であって、
     予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
     前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記NULL信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
     前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置し、且つ前記第一のシンボル生成部が前記NULL信号を配置した位置に前記次世代SP信号を配置することで前記第二のシンボル信号を生成する送信装置。
    A transmitter that transmits data signals by making horizontally polarized waves and vertically polarized waves orthogonal to each other.
    A pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
    With respect to the first data signal for transmitting one of the horizontally polarized waves and the vertically polarized waves, the current SP signal and the NUML signal generated by the pilot signal generator and the first data signal are A broadcast data signal that includes and corresponds to the content to be broadcast, and a first symbol generator that generates a first symbol signal by arranging the broadcast data signal along the direction of elapsed time and the direction of frequency change. ,
    The next-generation SP signal and the NUML signal generated by the pilot signal generator and the second data signal with respect to the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves. A second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with
    The second symbol generation unit arranges the NULL signal at a position where the first symbol generation unit arranges the current SP signal, and the first symbol generation unit arranges the NULL signal at a position where the NULL signal is arranged. A transmitter that generates the second symbol signal by arranging the next-generation SP signal.
  10.  前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する請求項9に記載した送信装置。
    The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
    The transmission device according to claim 9, wherein the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the TMCC signal. ..
  11.  前記第一のデータ信号は、送信パラメータ情報の入った伝送制御情報信号であるTMCC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記TMCC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する請求項9に記載した送信装置。
    The first data signal further includes a TMCC signal which is a transmission control information signal containing transmission parameter information.
    The transmission according to claim 9, wherein the second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the TMCC signal. Device.
  12.  前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する請求項9に記載した送信装置。
    The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
    The transmission device according to claim 9, wherein the second symbol generation unit generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the AC signal. ..
  13.  前記第一のデータ信号は、緊急地震速報関連の情報の入った補助情報信号であるAC信号をさらに含み、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記AC信号を配置した位置に前記放送データ信号を配置することで前記第二のシンボル信号を生成する請求項9に記載した送信装置。
    The first data signal further includes an AC signal which is an auxiliary information signal containing information related to Earthquake Early Warning.
    The transmission according to claim 9, wherein the second symbol generation unit generates the second symbol signal by arranging the broadcast data signal at a position where the first symbol generation unit arranges the AC signal. Device.
  14.  前記第一のデータ信号は、前記水平偏波で送信するための水平側データ信号であり、
     前記第二のデータ信号は、前記垂直偏波で送信するための垂直側データ信号である請求項9に記載した送信装置。
    The first data signal is a horizontal data signal for transmission with the horizontally polarized waves.
    The transmission device according to claim 9, wherein the second data signal is a vertical data signal for transmission in the vertically polarized wave.
  15.  前記第一のデータ信号は、前記垂直偏波で送信するための垂直側データ信号であり、
     前記第二のデータ信号は、前記水平偏波で送信するための水平側データ信号である請求項9に記載した送信装置。
    The first data signal is a vertical data signal for transmission with the vertically polarized waves.
    The transmission device according to claim 9, wherein the second data signal is a horizontal data signal for transmission in the horizontally polarized wave.
  16.  送信装置から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する受信装置であって、
     前記送信装置から送信されたデータ信号は、予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、前記次世代SP信号の符号を反転させた反転SP信号と、を含み、
     前記水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された前記次世代SP信号を含み、
     前記垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記次世代SP信号と、前記反転SP信号と、を含み、
     前記直交させて形成されたデータ信号のうち、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む次世代SP信号とが同じ位置に配置されている信号と、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む前記反転SP信号とが同じ位置に配置されている信号と、を用いて前記伝送路応答を推定する伝送路推定部と、
     前記伝送路推定部が推定した伝送路応答を用いて、前記伝送路を介して受信した前記データ信号を復調する復調部と、を備える受信装置。
    A receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
    The data signal transmitted from the transmission device includes a next-generation SP signal used in a method newer than a preset broadcasting method and an inverted SP signal in which the code of the next-generation SP signal is inverted.
    The data signal included in the horizontally polarized waves includes the next-generation SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
    The data signal included in the vertically polarized light includes the next-generation SP signal and the inverted SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
    Among the data signals formed at right angles, the next-generation SP signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are at the same position. The next-generation SP signal included in the horizontally polarized data signal and the inverted SP signal included in the vertically polarized data signal are arranged at the same position. A transmission line estimation unit that estimates the transmission line response using the signal
    A receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
  17.  送信装置から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する受信装置であって、
     前記送信装置から送信されたデータ信号は、予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を含み、
     前記水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記現行SP信号と、前記NULL信号と、を含み、
     前記垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記次世代SP信号と、前記NULL信号と、を含み、
     前記直交させて形成されたデータ信号のうち、前記水平偏波で送信されたデータ信号が含む前記現行SP信号と前記垂直偏波で送信されたデータ信号が含む前記NULL信号とが同じ位置に配置されている信号と、前記水平偏波で送信されたデータ信号が含む前記NULL信号と前記垂直偏波で送信されたデータ信号が含む前記次世代SP信号とが同じ位置に配置されている信号と、を用いて前記伝送路応答を推定する伝送路推定部と、
     前記伝送路推定部が推定した伝送路応答を用いて、前記伝送路を介して受信した前記データ信号を復調する復調部と、を備える受信装置。
    A receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
    The data signals transmitted from the transmission device are the current SP signal used in the preset broadcasting method, the next-generation SP signal used in a newer method than the preset broadcasting method, and the NULL signal that reduces the power to 0. And, including
    The data signal included in the horizontally polarized light includes the current SP signal and the NULL signal arranged along the direction of elapsed time and the direction in which the frequency changes.
    The data signal included in the vertically polarized light includes the next-generation SP signal and the NULL signal arranged along the direction of elapsed time and the direction in which the frequency changes.
    Among the data signals formed at right angles, the current SP signal included in the data signal transmitted in the horizontally polarized wave and the NUML signal included in the data signal transmitted in the vertically polarized wave are arranged at the same position. A signal in which the NULL signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are arranged at the same position. A transmission line estimation unit that estimates the transmission line response using,
    A receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the transmission line response estimated by the transmission line estimation unit.
  18.  送信装置から送信され、且つ水平偏波と垂直偏波とを直交させて形成されたデータ信号を、伝送路応答が異なる複数の伝送路を介して受信する受信装置であって、
     前記送信装置から送信されたデータ信号は、予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、前記次世代SP信号の符号を反転させた反転SP信号と、電力を0にするNULL信号と、を含み、
     前記水平偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記現行SP信号と、前記次世代SP信号と、を含み、
     前記垂直偏波が含むデータ信号は、経過時間の方向と周波数が変化する方向に沿って配置された、前記次世代SP信号と、前記反転SP信号と、前記NULL信号と、を含み、
     前記直交させて形成されたデータ信号のうち、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む前記次世代SP信号とが同じ位置に配置されている信号と、前記水平偏波で送信されたデータ信号が含む前記次世代SP信号と前記垂直偏波で送信されたデータ信号が含む前記反転SP信号とが同じ位置に配置されている信号と、を用いて前記伝送路応答を推定する次世代伝送路推定部と、
     前記水平偏波で送信されたデータ信号が含む前記現行SP信号及び前記NULL信号を用いて前記伝送路応答を推定する現行伝送路推定部と、
     前記次世代伝送路推定部が推定した伝送路応答と、前記現行伝送路推定部が推定した伝送路応答と、を用いて、前記伝送路応答に対して推定精度を向上させた伝送路応答である精度向上伝送路応答を算出する推定精度向上部と、
     前記推定精度向上部が算出した精度向上伝送路応答を用いて、前記伝送路を介して受信した前記データ信号を復調する復調部と、を備える受信装置。
    A receiving device that receives a data signal transmitted from a transmitting device and formed by orthogonalizing horizontally polarized waves and vertically polarized waves through a plurality of transmission lines having different transmission line responses.
    The data signals transmitted from the transmission device are the current SP signal used in the preset broadcasting method, the next-generation SP signal used in a method newer than the preset broadcasting method, and the code of the next-generation SP signal. Includes an inverted SP signal that inverts the above and a NUML signal that sets the power to 0.
    The data signal included in the horizontally polarized light includes the current SP signal and the next-generation SP signal arranged along the direction of elapsed time and the direction in which the frequency changes.
    The data signal included in the vertically polarized light includes the next-generation SP signal, the inverted SP signal, and the NUML signal arranged along the direction of elapsed time and the direction in which the frequency changes.
    Among the data signals formed at right angles, the next-generation SP signal included in the horizontally polarized data signal and the next-generation SP signal included in the vertically polarized data signal are the same. The signal arranged at the position, the next-generation SP signal included in the data signal transmitted in the horizontally polarized wave, and the inverted SP signal included in the data signal transmitted in the vertically polarized wave are arranged at the same position. Next-generation transmission line estimation unit that estimates the transmission line response using the signal
    The current transmission line estimation unit that estimates the transmission line response using the current SP signal and the NULL signal included in the data signal transmitted in the horizontally polarized light, and the current transmission line estimation unit.
    Using the transmission line response estimated by the next-generation transmission line estimation unit and the transmission line response estimated by the current transmission line estimation unit, the transmission line response with improved estimation accuracy with respect to the transmission line response. An estimation accuracy improvement unit that calculates a certain accuracy improvement transmission line response,
    A receiving device including a demodulation unit that demodulates the data signal received via the transmission line by using the accuracy improvement transmission line response calculated by the estimation accuracy improvement unit.
  19.  水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置と、前記送信装置から伝送路を介して前記データ信号を受信する受信装置と、を備える送受信システムであって、
     前記送信装置は、
     予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、前記次世代SP信号の符号を反転させた反転SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
     前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記次世代SP信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
     前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号、前記反転SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置することで前記第二のシンボル信号を生成する送受信システム。
    A transmission / reception system including a transmission device that transmits a data signal with horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives the data signal from the transmitting device via a transmission line.
    The transmitter is
    The current SP signal used in the preset broadcasting method, the next-generation SP signal used in a newer method than the preset broadcasting method, the inverted SP signal in which the code of the next-generation SP signal is inverted, and the power are used. A NUML signal to be set to 0, a pilot signal generator to generate, and a pilot signal generator.
    The current SP signal and the next-generation SP signal generated by the pilot signal generator and the first data for the first data signal to be transmitted in one of the horizontally polarized waves and the vertically polarized waves. A first symbol generation that generates a first symbol signal by arranging a broadcast data signal that includes the signal and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. Department and
    With respect to the second data signal for transmission in the other of the horizontally polarized waves and the vertically polarized waves, the next-generation SP signal, the inverted SP signal, and the NUML signal generated by the pilot signal generator, and the above. A second symbol signal is generated by arranging a broadcast data signal included in the second data signal and corresponding to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. With a second symbol generator,
    The second symbol generation unit is a transmission / reception system that generates the second symbol signal by arranging the NULL signal at a position where the first symbol generation unit arranges the current SP signal.
  20.  水平偏波と垂直偏波とを直交させてデータ信号を送信する送信装置と、前記送信装置から伝送路を介して前記データ信号を受信する受信装置と、を備える送受信システムであって、
     前記送信装置は、
     予め設定した放送の方式で用いる現行SP信号と、前記予め設定した放送の方式よりも新しい方式で用いる次世代SP信号と、電力を0にするNULL信号と、を生成するパイロット信号生成部と、
     前記水平偏波及び前記垂直偏波のうち一方で送信するための第一のデータ信号に対し、前記パイロット信号生成部が生成した前記現行SP信号及び前記NULL信号と、前記第一のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第一のシンボル信号を生成する第一のシンボル生成部と、
     前記水平偏波及び前記垂直偏波のうち他方で送信するための第二のデータ信号に対し、前記パイロット信号生成部が生成した前記次世代SP信号及び前記NULL信号と、前記第二のデータ信号が含み、且つ放送するコンテンツの内容に対応する放送データ信号と、を経過時間の方向と周波数が変化する方向に沿って配置することで、第二のシンボル信号を生成する第二のシンボル生成部と、を備え、
     前記第二のシンボル生成部は、前記第一のシンボル生成部が前記現行SP信号を配置した位置に前記NULL信号を配置し、且つ前記第一のシンボル生成部が前記NULL信号を配置した位置に前記次世代SP信号を配置することで前記第二のシンボル信号を生成する送受信システム。
    A transmission / reception system including a transmission device that transmits a data signal with horizontally polarized waves and vertically polarized waves orthogonal to each other, and a receiving device that receives the data signal from the transmitting device via a transmission line.
    The transmitter is
    A pilot signal generator that generates a current SP signal used in a preset broadcasting method, a next-generation SP signal used in a newer method than the preset broadcasting method, and a NULL signal that reduces power to 0.
    With respect to the first data signal for transmitting one of the horizontally polarized waves and the vertically polarized waves, the current SP signal and the NUML signal generated by the pilot signal generator and the first data signal are A broadcast data signal that includes and corresponds to the content to be broadcast, and a first symbol generator that generates a first symbol signal by arranging the broadcast data signal along the direction of elapsed time and the direction of frequency change. ,
    The next-generation SP signal and the NUML signal generated by the pilot signal generator and the second data signal with respect to the second data signal to be transmitted in the other of the horizontally polarized waves and the vertically polarized waves. A second symbol generator that generates a second symbol signal by arranging a broadcast data signal that includes and corresponds to the content to be broadcast along the direction of elapsed time and the direction in which the frequency changes. And with
    The second symbol generation unit arranges the NULL signal at a position where the first symbol generation unit arranges the current SP signal, and the first symbol generation unit arranges the NULL signal at a position where the NULL signal is arranged. A transmission / reception system that generates the second symbol signal by arranging the next-generation SP signal.
PCT/JP2021/002913 2020-03-24 2021-01-27 Transmitter, receiver, and transmitting/receiving system WO2021192590A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022509331A JPWO2021192590A1 (en) 2020-03-24 2021-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020052416 2020-03-24
JP2020-052416 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021192590A1 true WO2021192590A1 (en) 2021-09-30

Family

ID=77889956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002913 WO2021192590A1 (en) 2020-03-24 2021-01-27 Transmitter, receiver, and transmitting/receiving system

Country Status (2)

Country Link
JP (1) JPWO2021192590A1 (en)
WO (1) WO2021192590A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010213A (en) * 2010-06-28 2012-01-12 Sony Corp Reception device, reception method and reception system
WO2018155544A1 (en) * 2017-02-23 2018-08-30 日本電気株式会社 Broadcast system
WO2020137740A1 (en) * 2018-12-26 2020-07-02 日本電気株式会社 Broadcast transmission system, broadcast reception system, broadcast transmission/reception system, broadcast transmission method, and broadcast transmission program

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012010213A (en) * 2010-06-28 2012-01-12 Sony Corp Reception device, reception method and reception system
WO2018155544A1 (en) * 2017-02-23 2018-08-30 日本電気株式会社 Broadcast system
WO2020137740A1 (en) * 2018-12-26 2020-07-02 日本電気株式会社 Broadcast transmission system, broadcast reception system, broadcast transmission/reception system, broadcast transmission method, and broadcast transmission program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHITOMI TAKUYA; MURAYAMA KENICHI; ASAKURA SHINGO; SHIBUYA KAZUHIKO: "A study on advanced single frequency network technology using STC-SDM transmission", 2013 IEEE INTERNATIONAL SYMPOSIUM ON BROADBAND MULTIMEDIA SYSTEMS AND BROADCASTING (BMSB), 5 June 2013 (2013-06-05), pages 1 - 5, XP032495808, ISSN: 2155-5044, DOI: 10.1109/BMSB.2013.6621692 *

Also Published As

Publication number Publication date
JPWO2021192590A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
US8126066B2 (en) Time and frequency channel estimation
US7864836B1 (en) Adaptive orthogonal frequency division multiplexing (OFDM) equalizers, OFDM receivers including the same, and methods thereof
RU2597002C2 (en) Receiving device, receiving method and program
US8548101B2 (en) Demodulation method and demodulator for orthogonal frequency multiplexing—multiple input multiple output system
US20010015954A1 (en) Orthogonal frequency division multiplexing receiver device
US20110194633A1 (en) Apparatus and method of calculating channel frequency domain correlation
JP6228419B2 (en) Transmitting apparatus and program
US11477058B2 (en) Inter-carrier interference compensation
CN102263725B (en) Mobile ofdm receiver
Kida et al. Experimental demonstration on long-range time-reversal multiple-input/multiple-output underwater acoustic communication over tens of kbps in 12.5 km range
CN102594737A (en) Adjacent region interference detection method and system
JP2008227622A (en) Reception device and communication method
WO2021192590A1 (en) Transmitter, receiver, and transmitting/receiving system
US8780941B2 (en) MMSE method and system
JP2010062865A (en) Demodulator
US8107909B2 (en) Reception device, radio communication terminal, radio base station, and reception method
US7424073B2 (en) Orthogonal frequency division multiplexing (OFDM) receiver, OFDM receiving circuit and OFDM diversity reception method
US20150103944A1 (en) Mobile communication method and radio terminal
US8488689B2 (en) Channel equalization in a receiver
JP7265943B2 (en) Equalizer, receiver, and program
JP6259214B2 (en) MIMO receiver
Du et al. Decision-feedback detection for block differential space-time modulation
JP5174741B2 (en) Semiconductor integrated circuit and received signal processing method
Anitha et al. Improved Channel Estimation and Removal of Fading for MIMO-OFDM Systems
Martínez et al. Novel pilot structures for BEM channel estimation and ICI compensation in high-mobility DVB

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022509331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774294

Country of ref document: EP

Kind code of ref document: A1