WO2021192245A1 - High heat-dissipation module structure - Google Patents

High heat-dissipation module structure Download PDF

Info

Publication number
WO2021192245A1
WO2021192245A1 PCT/JP2020/014109 JP2020014109W WO2021192245A1 WO 2021192245 A1 WO2021192245 A1 WO 2021192245A1 JP 2020014109 W JP2020014109 W JP 2020014109W WO 2021192245 A1 WO2021192245 A1 WO 2021192245A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
core layer
opening
heat dissipation
metal core
Prior art date
Application number
PCT/JP2020/014109
Other languages
French (fr)
Japanese (ja)
Inventor
横田英樹
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to PCT/JP2020/014109 priority Critical patent/WO2021192245A1/en
Publication of WO2021192245A1 publication Critical patent/WO2021192245A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a high heat dissipation module structure.
  • Patent Documents 1 and 2 In order to increase the mounting density of electronic components, it is known that not only the electronic components are mounted on the surface of the substrate but also the modular structure in which the electronic components are embedded in the substrate (for example, Patent Documents 1 and 2).
  • the characteristics of the semiconductor component may fluctuate due to the stress applied to the semiconductor component when the heat sink is mounted on the semiconductor component in the module assembly process or during use after modularization.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve heat dissipation from a semiconductor component and reduce stress applied to the semiconductor component.
  • the present invention includes a metal core layer having a first opening, a semiconductor component provided in the first opening, and a heat radiating member joined to at least a part of the upper surface of the metal core layer and the upper surface of the semiconductor component.
  • the first insulating layer provided under the metal core layer, the first metal layer provided on the lower surface of the first insulating layer, and the metal core layer and the first metal layer provided in the first insulating layer. It is a high heat dissipation module structure including a first wiring for connecting one metal layer.
  • the heat radiating member may be joined to at least a part of the upper surface of the metal core layer surrounding the first opening.
  • the first opening has a substantially quadrangular shape
  • the heat radiating member is joined to an outer region of at least two opposite sides of the first opening on the upper surface of the metal core layer. be able to.
  • the electronic component provided in the second opening of the metal core layer may be provided, and the heat radiating member may not be provided above the electronic component.
  • the electronic component provided in the second opening of the metal core layer may be provided, and the heat radiating member may be provided above the electronic component and not joined to the upper surface of the electronic component. can.
  • the heat radiating member is joined to the upper surface of the metal core layer with at least a part of the first region surrounding the first opening and the second region on the opposite side of the semiconductor component with the electronic component interposed therebetween.
  • the electronic component provided in the second opening of the metal core layer is provided, and the heat radiating member includes at least a part of the first region of the upper surface of the metal core layer surrounding the first opening and the metal.
  • the structure is such that at least a part of the second region surrounding the second opening of the upper surface of the core layer is joined to the upper surface of the electronic component, and the first region and the second region are not connected. Can be done.
  • a second insulating layer provided on the metal core layer, surrounding the heat radiating member, and exposing the upper surface of the heat radiating member can be provided.
  • a plurality of the semiconductor components may be provided in the first opening, and the heat radiating member may be joined to the upper surface of the plurality of semiconductor components.
  • the present invention it is possible to improve the heat dissipation from the semiconductor component and reduce the stress applied to the semiconductor component.
  • 1 (a) and 1 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first embodiment.
  • 2 (a) and 2 (b) are cross-sectional views of the module structure according to Comparative Example 1.
  • 3 (a) and 3 (b) are cross-sectional views of the high heat dissipation module structure according to the first embodiment.
  • 4 (a) to 4 (d) are plan views showing the heat radiating plate and the bonding layer in the first embodiment.
  • 5 (a) and 5 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first modification of the first embodiment.
  • 6 (a) and 6 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the second modification of the first embodiment.
  • 7 (a) to 7 (c) are plan views showing the heat radiating plate and the bonding layer in the modified example 3 of the first embodiment.
  • FIG. 1 (a) and 1 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first embodiment.
  • FIG. 1B mainly illustrates the core layer 10 (cross-hatching), the heat sink 36 (dotted line), the bonding layer 38 (broken line), the semiconductor component 40, the electronic components 42 and 44, and the like.
  • the outer circumference of the heat sink 36 and the outer circumference of the joint layer 38 are substantially the same, but in FIG. 1 (b), the outer circumference of the heat sink 36 and the outer circumference of the joint layer 38 are for easy viewing. Is shown separately.
  • the outer circumference of the joint layer 38 may be located inside or outside the heat sink 36.
  • FIG. 1A corresponds to the AA cross section of FIG. 1B.
  • the core layer 10 has openings 12, 13 and 14.
  • the semiconductor component 40 is provided in the opening 12 (first opening).
  • the semiconductor component 40 has an electrode 41 on the lower surface (front surface).
  • An electronic component 42 is provided in the opening 13 (second opening).
  • the electronic component 42 has an electrode 43 on the lower surface.
  • An electronic component 44 is provided in the opening 14.
  • the electronic component 44 has an electrode 45.
  • An insulating layer 20 is provided in the openings 12 to 14 so as to seal the semiconductor component 40 and the electronic components 42 and 44.
  • An insulating layer 22 is provided under the insulating layer 20 and the core layer 10. Vias 31 (via plugs) that penetrate the insulating layer 22 and connect to the electrodes 41, 43, 45 and the core layer 10 are provided.
  • a metal layer 32 connected to the via 31 is provided under the insulating layer 22.
  • An insulating layer 24 is provided under the insulating layer 22 so as to cover the metal layer 32.
  • the insulating layers 22 and 24 form an insulating layer 23 (first insulating layer).
  • a via 33 is provided that penetrates the insulating layer 24 and connects to the metal layer 32.
  • a metal layer 34 connected to the via 33 is provided under the insulating layer 24.
  • a solder resist 26 that covers the metal layer 34 is provided under the insulating layer 24.
  • a part of the metal layer 34 is exposed to the opening 27 of the solder resist 26.
  • the metal layer 34 exposed to the opening 27 functions as a terminal for connecting the high heat dissipation module structure to the outside such as a mounting board.
  • the metal layer 34a first metal layer
  • the metal layer 34b second metal layer
  • the electrode 41 of the semiconductor component 40 via the wiring 35b (second wiring) including the via 33, the metal layer 32, and the via 31.
  • a heat radiating plate 36 (heat radiating member) is bonded to the upper surface of the semiconductor component 40 and the upper surface of the core layer 10 around the opening 12 via a bonding layer 38.
  • An insulating layer 28 (second insulating layer) is provided on the core layer 10, the electronic components 42, and 44 so as to surround the heat radiating plate 36. The upper surface of the heat radiating plate 36 is exposed from the insulating layer 28.
  • the core layer 10 is, for example, a metal core layer made of a metal material whose main material is copper, a metal material whose main component is iron, or a metal material whose main material is aluminum.
  • the insulating layers 20, 22, 24 and 28 are, for example, synthetic resins, such as epoxy resins, bismaleimide triazine resins or polyimide resins.
  • the insulating layers 20, 22, 24 and 28 may be a synthetic resin mixed with an inorganic filler such as silica.
  • the metal layers 32 and 34 are layers mainly made of, for example, copper, gold or silver, and may include a barrier layer such as titanium, nickel, chromium and titanium nitride and an adhesion layer as the base layer of the metal layers 32 and 34. good.
  • the vias 31 and 33 are layers mainly made of, for example, copper, gold or silver.
  • the solder resist 26 is a synthetic resin such as an epoxy resin.
  • the thickness of the core layer 10 is, for example, 340 ⁇ m, for example, 30 ⁇ m to 1000 ⁇ m.
  • the thickness of the insulating layer 22 is, for example, 20 ⁇ m, for example, 10 ⁇ m to 100 ⁇ m, respectively.
  • the thickness of the insulating layer 24 is, for example, 30 ⁇ m, for example, 5 ⁇ m to 100 ⁇ m, respectively.
  • the thickness of the metal layers 32 and 34 is, for example, 12 ⁇ m, for example 5 ⁇ m to 100 ⁇ m.
  • the thickness of the solder resist 26 is, for example, 25 ⁇ m, for example, 5 ⁇ m to 100 ⁇ m.
  • the semiconductor component 40 includes, for example, a power transistor 48 such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET (Field Effect Transistor).
  • a semiconductor material such as Si, GaN or SiC is used for the transistor.
  • the semiconductor component 40 is, for example, a bare chip or a package in which a bare chip is sealed and mounted.
  • the package on which the bare chip is mounted is a package such as WLP (Wafer Level Package).
  • the semiconductor component 40 is a bare chip of a horizontal transistor such as a GaN FET.
  • the thickness of the semiconductor component 40 is, for example, 10 ⁇ m to several hundred ⁇ m.
  • the thickness of the semiconductor component 40 is, for example, less than or equal to the thickness of the core layer 10.
  • the electronic component 42 is, for example, an integrated circuit having a silicon substrate, and controls a transistor provided in the semiconductor component 40.
  • the electronic component 42 is, for example, a bare chip or a package in which a bare chip is sealed and mounted.
  • the electronic component 44 is a discrete passive component such as a chip capacitor, a chip inductor or a chip resistor.
  • the electronic component 44 has external electrodes 45 at both ends.
  • the electrodes 41, 43 and 45 are metal layers mainly made of, for example, copper, gold, silver or aluminum.
  • the heat radiating plate 36 (heat radiating member) is a metal layer such as a copper layer or an aluminum layer or an insulating layer such as aluminum oxide or aluminum nitride.
  • the heat sink 36 may be a heat sink in which an insulating layer such as DBC (Direct Bonded Cupper) or DBA (Direct Bonded Aluminum) is sandwiched between metal layers.
  • the thickness of the heat radiating plate 36 is, for example, 100 ⁇ m to several mm.
  • the bonding layer 38 is a sintered metal layer in which a conductive paste such as silver paste is sintered, or a brazing material such as solder.
  • the thickness of the bonding layer 38 is, for example, several tens of ⁇ m.
  • the heat generated in the semiconductor component 40 is conducted to the heat sink 36 as in the path 50, and is discharged to the outside from the heat sink 36. Further, heat is conducted through the via 31, the metal layer 32, the via 33 and the metal layer 34, and is released from the metal layer 34 to the outside (for example, a mounting substrate).
  • paths 50 and 52 alone are not sufficient heat release paths.
  • Comparative Example 1 when the heat sink 36 is mounted on the semiconductor component 40 in the process of manufacturing the module, or when the module is used, as shown by the arrow 60.
  • stress is applied to the heat sink 36
  • stress is applied to the semiconductor component 40 as shown by arrow 64.
  • the characteristics of the semiconductor component 40 may change.
  • the semiconductor component 40 is a bare chip of a GaN FET
  • the characteristics of the GaN FET change (deteriorate) when stress is applied to the chip.
  • 3 (a) and 3 (b) are cross-sectional views of the high heat dissipation module structure according to the first embodiment, and is an enlarged view of the vicinity of the semiconductor component 40 of FIG. 1 (a).
  • the heat sink 36 is joined to at least a part of the upper surface of the core layer 10 and the upper surface of the semiconductor component 40.
  • heat is conducted from the heat sink 36 to the core layer 10 like the path 54.
  • Heat is conducted in the core layer 10 as in the path 56.
  • heat is conducted from the core layer 10 to the metal layer 34a via the wiring 35a provided in the insulating layer 23 and connecting the core layer 10 and the metal layer 34a as in the path 58.
  • the heat dissipation from the semiconductor component 40 can be improved by these paths.
  • heat is conducted from the semiconductor component 40 to the metal layer 34b via the wiring 35b provided in the insulating layer 23 and connecting the core layer 10 and the metal layer 34b as in the path 52. This path can further improve the heat dissipation from the semiconductor component 40.
  • the heat sink 36 when the heat sink 36 is mounted on the semiconductor component 40 or when the module is used, stress is applied to the heat sink 36 as shown by an arrow 60.
  • stress is applied to the core layer 10 rather than the semiconductor component 40 as shown by the arrow 62.
  • the stress applied to the semiconductor component 40 becomes smaller than that in FIG. 2 (b) of Comparative Example 1. Therefore, the change (deterioration) of the characteristics of the semiconductor component 40 can be suppressed.
  • the semiconductor component 40 is a bare chip of a GaN FET, the change (deterioration) in the characteristics of the GaN FET due to stress can be further suppressed.
  • planar shapes of the semiconductor component 40 is a substantially rectangular shape (for example, a substantially rectangular shape)
  • planar shape of the opening 12 is a substantially rectangular shape (for example, a substantially rectangular shape).
  • the heat sink 36 overlaps all of the openings 12, and the bonding layer 38 is provided in the outer region of all four sides of the opening 12. As a result, heat can be efficiently conducted from the heat sink 36 to the core layer 10. Therefore, heat dissipation can be improved.
  • the distance D1 is preferably 2 mm or less.
  • the distance D1 is preferably 25 ⁇ m or more in consideration of the alignment for mounting the semiconductor component 40 in the opening 12.
  • the width D2 of the bonding layer 38 that is, the width of the region where the heat sink 36 is bonded to the core layer 10.
  • the width D2 is preferably 50 ⁇ m or more. In order to increase the heat dissipation of the path 54, it is preferable to increase the width D2.
  • the bonding layer 38 is provided in the region outside the three sides of the opening 12, and the heat sink 36 is bonded to the core layer 10 in the region outside the three sides of the opening 12. ..
  • the bonding layer 38 is provided in the outer region of the two opposite sides of the opening 12, and the heat sink 36 is bonded to the core layer 10 in the outer region of the two opposite sides of the opening 12. ing.
  • the bonding layer 38 is provided in the region outside one side of the opening 12, and the heat sink 36 is bonded to the core layer 10 in the region outside one side of the opening 12. ..
  • the heat sink 36 is joined to at least a part of the upper surface of the core layer 10 surrounding the opening 12.
  • the heat generated in the semiconductor component 40 is transmitted from the heat radiating plate 36 to the core layer 10, so that the heat radiating property can be improved.
  • the heat sink 36 is formed as shown in FIGS. 4 (a) to 4 (c). It is preferable that the upper surface of the core layer 10 is joined to the outer regions of at least two opposite sides of the opening 12.
  • the heat sink 36 is joined to the outer regions of at least two opposite long sides of the inner opening 12 on the upper surface of the core layer 10. As a result, the stress of the arrow 60 is dispersed in the core layer 10, and the stress applied to the semiconductor component 40 can be suppressed.
  • FIG. 5A and 5 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first modification of the first embodiment.
  • FIG. 5A corresponds to the AA cross section of FIG. 5B.
  • the heat sink 36 is also arranged above the electronic components 42 and 44.
  • the heat sink 36 is not joined to the electronic components 42 and 44.
  • the bonding layer 38 is provided in the upper surface of the semiconductor component 40 and the upper surface region of the core layer 10 outside the opening 12, and the bonding layer 38a is a core layer at the end of the heat sink 36 opposite to the semiconductor component 40 with the electronic component 42 sandwiched therein. It is provided on the upper surface of 10. No bonding layer is provided on the other parts of the heat sink 36.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • the heat sink 36 In order to improve heat dissipation, it is preferable to increase the heat sink 36. Therefore, it is preferable that the heat sink 36 is provided above the electronic components 42 and 44. However, when the electronic component 44 is connected to the heat sink 36 with a joining material, both electrodes 45 of the electronic component 44 are short-circuited. Further, when the heat sink 36 is joined to the electronic components 42 and 44, the heat generated in the semiconductor component 40 raises the temperature of the electronic components 42 and 44. Therefore, it is preferable that the heat sink 36 is not bonded to the upper surface of the electronic component 42. Further, when the heat radiating plate 36 is joined to the entire heat radiating plate 36, the thermal stress becomes large.
  • the bonding layer 38 should be provided on the upper surface of the semiconductor component 40 that generates heat and the upper surface of the core layer 10 in the vicinity thereof, and the bonding layer 38 should not be provided on the upper surfaces of the other electronic components 42 and 44 and the upper surface of the other core layer 10. Is preferable.
  • the bonding layer 38 When the bonding layer 38 is provided only in a part of the upper surface of the core layer 10, a clearance is formed between the heat sink 36 and the core layer 10, and the thermal stress is relaxed. However, if the heat sink 36 is large, the heat sink 36 is tilted with respect to the upper surface of the core layer 10. Therefore, a bonding layer 38a is provided at the end of the heat radiating plate 36. As a result, it is possible to prevent the heat radiating plate 36 from tilting with respect to the upper surface of the core layer 10. For example, when the heat radiating plate 36 is not joined to the electronic component 42, the heat radiating plate 36 sandwiches at least a part of the first region surrounding the opening 12 on the upper surface of the core layer 10 and the electronic component 42 with the semiconductor component 40. It is joined to the second region on the opposite side. As a result, even if the heat sink 36 is not joined to the electronic component 42, it is possible to prevent the heat sink 36 from tilting with respect to the upper surface of the core layer 10.
  • FIG. 6A and 6 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the second modification of the first embodiment.
  • FIG. 6A corresponds to the AA cross section of FIG. 6B.
  • the heat sink 36 is also arranged above the electronic components 42 and 44.
  • the heat sink 36 is joined to the electronic component 42, not to the electronic component 44.
  • the bonding layer 38 is provided in the upper surface region of the semiconductor component 40 and the upper surface region of the core layer 10 outside the opening 12, and the bonding layer 38b is provided in the upper surface region of the electronic component 42 and the upper surface region of the core layer 10 outside the opening 13. Has been done. No bonding layer is provided between the bonding layers 38 and 38b.
  • Other configurations are the same as those of the first modification of the first embodiment, and the description thereof will be omitted.
  • the heat radiating plate 36 includes at least a first region of the upper surface of the semiconductor component 40 and the upper surface of the core layer 10 surrounding the opening 12, and the upper surface of the electronic component 42 and the upper surface of the electronic component 42. It is joined to at least a part of the second region surrounding the opening 13 of the upper surface of the core layer 10. Thereby, the heat dissipation from the semiconductor component 40 and the electronic component 42 can be improved.
  • the thermal stress becomes large.
  • the heat sink 36 is not bonded to the upper surface of the core layer 10 in the region between the bonding layers 38 and 38b or in the upper surface of the electronic component 44 or in the vicinity thereof. That is, it is preferable that the first region and the second region are not connected. If thermal stress is not a problem, the bonding layers 38 and 38b may be connected.
  • the electronic component 42 may include a power transistor 48 similar to the semiconductor component 40.
  • FIG. 7A two semiconductor parts 40a and 40b are housed in one opening 12.
  • One heat sink 36 is joined to the upper surfaces of the semiconductor parts 40a and 40b via a joining layer 38.
  • the heat radiating plate 36 is joined to a region surrounding the opening 12 on the upper surface of the core layer 10 via a joining layer 38.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • two semiconductor parts 40a and 40b are housed in one opening 12.
  • One heat sink 36 is joined to the upper surfaces of the semiconductor parts 40a and 40b via the joining layers 38a and 38b, respectively.
  • Two bonding layers 38a and 38b are provided corresponding to the semiconductor components 40a and 40b, and are separated from each other.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • two semiconductor parts 40a and 40b are housed in one opening 12.
  • the two heat sinks 36a and 36b are joined to the upper surfaces of the semiconductor parts 40a and 40b via the joining layers 38a and 38b, respectively.
  • Two heat sinks 36a and 36b are provided corresponding to the semiconductor parts 40a and 40b, and are separated from each other.
  • Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
  • a plurality of semiconductor parts 40a and 40b may be provided in one opening 12.
  • One heat sink 36 and one bonding layer 38 may be provided for one opening 12, or a plurality of heat sinks 36a and 36b and a plurality of bonding layers 38a and 38b are provided corresponding to the semiconductor parts 40a and 40b. It may have been.
  • a plurality of semiconductor parts 40a and 40b may be provided in one opening 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

This high heat-dissipation module structure comprises: a metal core layer 10 having a first opening 12; a semiconductor component 40 provided inside the first opening 12; a heat dissipation member joined to at least a portion of the upper surface of the metal core layer 10 and to the upper surface of the semiconductor component 40; a first insulating layer 23 provided under the metal core layer 10; a first metal layer 34a provided to the lower surface of the first insulating layer 23; and a first wire 35a that is provided inside the first insulating layer 23 and connects the metal core layer 10 and the first metal layer 34a. 

Description

高放熱モジュール構造High heat dissipation module structure
 本発明は、高放熱モジュール構造に関する。 The present invention relates to a high heat dissipation module structure.
 電子部品の実装密度を高くするため、基板の表面に電子部品を実装するだけでなく、基板に電子部品を内蔵するモジュール構造が知られている(例えば特許文献1および2)。 In order to increase the mounting density of electronic components, it is known that not only the electronic components are mounted on the surface of the substrate but also the modular structure in which the electronic components are embedded in the substrate (for example, Patent Documents 1 and 2).
特開2013-42136号公報Japanese Unexamined Patent Publication No. 2013-42136 特開2008-218521号公報Japanese Unexamined Patent Publication No. 2008-218521
 パワートランジスタ等の半導体部品を有するモジュール構造おいて、発熱する半導体部品の熱を効率よくモジュール外へ逃がすことは、そのモジュールの発揮する特性・機能にも影響する重要な要素である。そのため、いかにして多くの熱を放熱させるかが重要になり、それを考慮した構造が求められている。また、モジュール組み立て工程内での半導体部品への放熱板搭載時や、モジュール化した後の使用中において半導体部品にかかる応力により、半導体部品の特性が変動する場合がある。 In a module structure having semiconductor parts such as power transistors, efficiently releasing the heat of the semiconductor parts that generate heat to the outside of the module is an important factor that affects the characteristics and functions of the module. Therefore, how to dissipate a lot of heat is important, and a structure that takes this into consideration is required. In addition, the characteristics of the semiconductor component may fluctuate due to the stress applied to the semiconductor component when the heat sink is mounted on the semiconductor component in the module assembly process or during use after modularization.
 本発明は、上記課題に鑑みなされたものであり、半導体部品からの放熱性を向上させ、かつ半導体部品に加わる応力を低減させることを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to improve heat dissipation from a semiconductor component and reduce stress applied to the semiconductor component.
 本発明は、第1開口を有する金属コア層と、前記第1開口内に設けられた半導体部品と、前記金属コア層の上面の少なくとも一部および前記半導体部品の上面に接合された放熱部材と、前記金属コア層下に設けられた第1絶縁層と、前記第1絶縁層の下面に設けられた第1金属層と、前記第1絶縁層内に設けられ、前記金属コア層と前記第1金属層とを接続する第1配線と、を備える高放熱モジュール構造である。 The present invention includes a metal core layer having a first opening, a semiconductor component provided in the first opening, and a heat radiating member joined to at least a part of the upper surface of the metal core layer and the upper surface of the semiconductor component. , The first insulating layer provided under the metal core layer, the first metal layer provided on the lower surface of the first insulating layer, and the metal core layer and the first metal layer provided in the first insulating layer. It is a high heat dissipation module structure including a first wiring for connecting one metal layer.
 上記構成において、前記放熱部材は、前記金属コア層の上面うち前記第1開口を囲む少なくとも一部の領域に接合されている構成とすることができる。 In the above configuration, the heat radiating member may be joined to at least a part of the upper surface of the metal core layer surrounding the first opening.
 上記構成において、前記第1絶縁層の下面に設けられた第2金属層と、前記第1絶縁層内に設けられ、前記金属コア層と前記第2金属層とを接続する第2配線と、を備える構成とすることができる。 In the above configuration, a second metal layer provided on the lower surface of the first insulating layer, a second wiring provided in the first insulating layer and connecting the metal core layer and the second metal layer, and Can be configured to include.
 上記構成において、前記第1開口は略四角形状であり、前記放熱部材は、前記金属コア層の上面のうち前記第1開口の少なくとも対向する2辺の外側の領域に接合されている構成とすることができる。 In the above configuration, the first opening has a substantially quadrangular shape, and the heat radiating member is joined to an outer region of at least two opposite sides of the first opening on the upper surface of the metal core layer. be able to.
 上記構成において、前記金属コア層の第2開口内に設けられた電子部品を備え、前記放熱部材は前記電子部品の上方に設けられていない構成とすることができる。 In the above configuration, the electronic component provided in the second opening of the metal core layer may be provided, and the heat radiating member may not be provided above the electronic component.
 上記構成において、前記金属コア層の第2開口内に設けられた電子部品を備え、前記放熱部材は前記電子部品の上方に設けられ、前記電子部品の上面に接合されていない構成とすることができる。 In the above configuration, the electronic component provided in the second opening of the metal core layer may be provided, and the heat radiating member may be provided above the electronic component and not joined to the upper surface of the electronic component. can.
 上記構成において、前記放熱部材は、前記金属コア層の上面にうち前記第1開口を囲む少なくとも一部の第1領域および前記電子部品を挟み前記半導体部品と反対側の第2領域と接合されている構成とすることができる。 In the above configuration, the heat radiating member is joined to the upper surface of the metal core layer with at least a part of the first region surrounding the first opening and the second region on the opposite side of the semiconductor component with the electronic component interposed therebetween. Can be configured as
 上記構成において、前記金属コア層の第2開口内に設けられた電子部品を備え、前記放熱部材は、前記金属コア層の上面うち前記第1開口を囲む少なくとも一部の第1領域および前記金属コア層の上面うち前記第2開口を囲む少なくとも一部の第2領域と、前記電子部品の上面に接合され、前記第1領域と前記第2領域との間が接続されていない構成とすることができる。 In the above configuration, the electronic component provided in the second opening of the metal core layer is provided, and the heat radiating member includes at least a part of the first region of the upper surface of the metal core layer surrounding the first opening and the metal. The structure is such that at least a part of the second region surrounding the second opening of the upper surface of the core layer is joined to the upper surface of the electronic component, and the first region and the second region are not connected. Can be done.
 上記構成において、前記金属コア層上に設けられ、前記放熱部材を囲み、前記放熱部材の上面が露出する第2絶縁層を備える構成とすることができる。 In the above configuration, a second insulating layer provided on the metal core layer, surrounding the heat radiating member, and exposing the upper surface of the heat radiating member can be provided.
 上記構成において、前記第1開口内に複数の前記半導体部品が設けられ、前記放熱部材は前記複数の半導体部品の上面に接合されている構成とすることができる。 In the above configuration, a plurality of the semiconductor components may be provided in the first opening, and the heat radiating member may be joined to the upper surface of the plurality of semiconductor components.
 本発明によれば、半導体部品からの放熱性を向上させ、かつ半導体部品に加わる応力を低減させることができる。 According to the present invention, it is possible to improve the heat dissipation from the semiconductor component and reduce the stress applied to the semiconductor component.
図1(a)および図1(b)は、実施例1に係る高放熱モジュール構造の断面図および平面図である。1 (a) and 1 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first embodiment. 図2(a)および図2(b)は、比較例1に係るモジュール構造の断面図である。2 (a) and 2 (b) are cross-sectional views of the module structure according to Comparative Example 1. 図3(a)および図3(b)は、実施例1に係る高放熱モジュール構造の断面図である。3 (a) and 3 (b) are cross-sectional views of the high heat dissipation module structure according to the first embodiment. 図4(a)から図4(d)は、実施例1における放熱板および接合層を示す平面図である。4 (a) to 4 (d) are plan views showing the heat radiating plate and the bonding layer in the first embodiment. 図5(a)および図5(b)は、実施例1の変形例1に係る高放熱モジュール構造の断面図および平面図である。5 (a) and 5 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first modification of the first embodiment. 図6(a)および図6(b)は、実施例1の変形例2に係る高放熱モジュール構造の断面図および平面図である。6 (a) and 6 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the second modification of the first embodiment. 図7(a)から図7(c)は、実施例1の変形例3における放熱板および接合層を示す平面図である。7 (a) to 7 (c) are plan views showing the heat radiating plate and the bonding layer in the modified example 3 of the first embodiment.
 以下、図面を参照し本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.
 図1(a)および図1(b)は、実施例1に係る高放熱モジュール構造の断面図および平面図である。図1(b)は、主にコア層10(クロスハッチング)、放熱板36(点線)、接合層38(破線)、半導体部品40、電子部品42および44等を図示している。図1(a)のように、放熱板36の外周と接合層38の外周とは略一致しているが、図1(b)では、見やすいように放熱板36の外周と接合層38の外周を離して図示している。なお、接合層38の外周は放熱板36の内側に位置してもよいし、外側に位置してもよい。図1(a)は、図1(b)のA-A断面に相当する。 1 (a) and 1 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first embodiment. FIG. 1B mainly illustrates the core layer 10 (cross-hatching), the heat sink 36 (dotted line), the bonding layer 38 (broken line), the semiconductor component 40, the electronic components 42 and 44, and the like. As shown in FIG. 1 (a), the outer circumference of the heat sink 36 and the outer circumference of the joint layer 38 are substantially the same, but in FIG. 1 (b), the outer circumference of the heat sink 36 and the outer circumference of the joint layer 38 are for easy viewing. Is shown separately. The outer circumference of the joint layer 38 may be located inside or outside the heat sink 36. FIG. 1A corresponds to the AA cross section of FIG. 1B.
 図1(a)および図1(b)に示すように、コア層10は開口12、13および14を有する。開口12(第1開口)内に半導体部品40が設けられている。半導体部品40は、下面(表の面)に電極41を有する。開口13(第2開口)内に電子部品42が設けられている。電子部品42は、下面に電極43を有する。開口14内に電子部品44が設けられている。電子部品44は、電極45を有する。 As shown in FIGS. 1 (a) and 1 (b), the core layer 10 has openings 12, 13 and 14. The semiconductor component 40 is provided in the opening 12 (first opening). The semiconductor component 40 has an electrode 41 on the lower surface (front surface). An electronic component 42 is provided in the opening 13 (second opening). The electronic component 42 has an electrode 43 on the lower surface. An electronic component 44 is provided in the opening 14. The electronic component 44 has an electrode 45.
 開口12~14内に半導体部品40、電子部品42および44を封止するように絶縁層20が設けられている。絶縁層20およびコア層10下に絶縁層22が設けられている。絶縁層22を貫通し電極41、43、45およびコア層10に接続するビア31(ビアプラグ)が設けられている。絶縁層22下にビア31に接続する金属層32が設けられている。絶縁層22下に金属層32を覆うように絶縁層24が設けられている。絶縁層22と24とは絶縁層23(第1絶縁層)を形成する。絶縁層24を貫通し金属層32に接続するビア33が設けられている。絶縁層24下にビア33に接続する金属層34が設けられている。絶縁層24下に金属層34を覆うソルダーレジスト26が設けられている。 An insulating layer 20 is provided in the openings 12 to 14 so as to seal the semiconductor component 40 and the electronic components 42 and 44. An insulating layer 22 is provided under the insulating layer 20 and the core layer 10. Vias 31 (via plugs) that penetrate the insulating layer 22 and connect to the electrodes 41, 43, 45 and the core layer 10 are provided. A metal layer 32 connected to the via 31 is provided under the insulating layer 22. An insulating layer 24 is provided under the insulating layer 22 so as to cover the metal layer 32. The insulating layers 22 and 24 form an insulating layer 23 (first insulating layer). A via 33 is provided that penetrates the insulating layer 24 and connects to the metal layer 32. A metal layer 34 connected to the via 33 is provided under the insulating layer 24. A solder resist 26 that covers the metal layer 34 is provided under the insulating layer 24.
 金属層34の一部はソルダーレジスト26の開口27に露出する。開口27に露出する金属層34は、高放熱モジュール構造を実装基板等の外部と接続するための端子として機能する。金属層34のうち金属層34a(第1金属層)はビア33、金属層32およびビア31を含む配線35a(第1配線)を介しコア層10に接続される。金属層34のうち金属層34b(第2金属層)はビア33、金属層32およびビア31を含む配線35b(第2配線)を介し半導体部品40の電極41に接続される。 A part of the metal layer 34 is exposed to the opening 27 of the solder resist 26. The metal layer 34 exposed to the opening 27 functions as a terminal for connecting the high heat dissipation module structure to the outside such as a mounting board. Of the metal layers 34, the metal layer 34a (first metal layer) is connected to the core layer 10 via a wiring 35a (first wiring) including the via 33, the metal layer 32, and the via 31. Of the metal layers 34, the metal layer 34b (second metal layer) is connected to the electrode 41 of the semiconductor component 40 via the wiring 35b (second wiring) including the via 33, the metal layer 32, and the via 31.
 半導体部品40の上面および開口12の周辺のコア層10の上面に接合層38を介し放熱板36(放熱部材)が接合されている。コア層10、電子部品42および44上に放熱板36を囲むように絶縁層28(第2絶縁層)が設けられている。放熱板36の上面は絶縁層28から露出する。 A heat radiating plate 36 (heat radiating member) is bonded to the upper surface of the semiconductor component 40 and the upper surface of the core layer 10 around the opening 12 via a bonding layer 38. An insulating layer 28 (second insulating layer) is provided on the core layer 10, the electronic components 42, and 44 so as to surround the heat radiating plate 36. The upper surface of the heat radiating plate 36 is exposed from the insulating layer 28.
 コア層10は、例えば銅を主材料とする金属材料、鉄を主成分とする金属材料、またはアルミニウムを主材料とする金属材料からなる金属コア層である。絶縁層20、22、24および28は、例えば合成樹脂であり、エポキシ樹脂、ビスマレイミドトリアジン樹脂またはポリイミド樹脂である。絶縁層20、22,24および28は、例えば合成樹脂にシリカ等の無機フィラーが混合されていてもよい。金属層32および34は、例えば銅、金または銀を主材料とする層であり、金属層32および34の下地層として、チタン、ニッケル、クロム、窒化チタン等のバリア層および密着層を含んでもよい。ビア31および33は、例えば銅、金または銀を主材料とする層である。ソルダーレジスト26は、例えばエポキシ樹脂等の合成樹脂である。 The core layer 10 is, for example, a metal core layer made of a metal material whose main material is copper, a metal material whose main component is iron, or a metal material whose main material is aluminum. The insulating layers 20, 22, 24 and 28 are, for example, synthetic resins, such as epoxy resins, bismaleimide triazine resins or polyimide resins. The insulating layers 20, 22, 24 and 28 may be a synthetic resin mixed with an inorganic filler such as silica. The metal layers 32 and 34 are layers mainly made of, for example, copper, gold or silver, and may include a barrier layer such as titanium, nickel, chromium and titanium nitride and an adhesion layer as the base layer of the metal layers 32 and 34. good. The vias 31 and 33 are layers mainly made of, for example, copper, gold or silver. The solder resist 26 is a synthetic resin such as an epoxy resin.
 コア層10の厚さは、一例として340μmであり、例えば30μmから1000μmである。絶縁層22の厚さは、一例として20μmであり、例えば各々10μmから100μmである。絶縁層24の厚さは、一例として30μmであり、例えば各々5μmから100μmである。金属層32および34の厚さは一例として12μmであり、例えば5μmから100μmである。ソルダーレジスト26の厚さは一例として25μmであり、例えば5μmから100μmである。 The thickness of the core layer 10 is, for example, 340 μm, for example, 30 μm to 1000 μm. The thickness of the insulating layer 22 is, for example, 20 μm, for example, 10 μm to 100 μm, respectively. The thickness of the insulating layer 24 is, for example, 30 μm, for example, 5 μm to 100 μm, respectively. The thickness of the metal layers 32 and 34 is, for example, 12 μm, for example 5 μm to 100 μm. The thickness of the solder resist 26 is, for example, 25 μm, for example, 5 μm to 100 μm.
 半導体部品40は、例えばIGBT(Insulated Gate Bipolar Transistor)、バイポーラトランジスタまたはFET(Field Effect Transistor)等のパワートランジスタ48を含む。トランジスタには、Si、GaNまたはSiC等の半導体材料が用いられる。半導体部品40は、例えばベアチップまたはベアチップが封止実装されたパッケージである。ベアチップが実装されたパッケージは、WLP(Wafer Level Package)等のパッケージである。実施例1では、半導体部品40はGaNFET等の横型トランジスタのベアチップである。半導体部品40の厚さは例えば10μmから数100μmである。半導体部品40の厚さは例えばコア層10の厚さ以下である。 The semiconductor component 40 includes, for example, a power transistor 48 such as an IGBT (Insulated Gate Bipolar Transistor), a bipolar transistor, or a FET (Field Effect Transistor). A semiconductor material such as Si, GaN or SiC is used for the transistor. The semiconductor component 40 is, for example, a bare chip or a package in which a bare chip is sealed and mounted. The package on which the bare chip is mounted is a package such as WLP (Wafer Level Package). In the first embodiment, the semiconductor component 40 is a bare chip of a horizontal transistor such as a GaN FET. The thickness of the semiconductor component 40 is, for example, 10 μm to several hundred μm. The thickness of the semiconductor component 40 is, for example, less than or equal to the thickness of the core layer 10.
 電子部品42は、例えばシリコン基板を有する集積回路であり、半導体部品40に設けられたトランジスタを制御する。電子部品42は、例えばベアチップまたはベアチップが封止実装されたパッケージである。電子部品44は、例えばチップコンデンサ、チップインダクタまたはチップ抵抗等のディスクリート受動部品である。電子部品44は両端に外部電極45を有する。電極41、43および45は、例えば銅、金、銀またはアルミニウム等を主材料とする金属層である。 The electronic component 42 is, for example, an integrated circuit having a silicon substrate, and controls a transistor provided in the semiconductor component 40. The electronic component 42 is, for example, a bare chip or a package in which a bare chip is sealed and mounted. The electronic component 44 is a discrete passive component such as a chip capacitor, a chip inductor or a chip resistor. The electronic component 44 has external electrodes 45 at both ends. The electrodes 41, 43 and 45 are metal layers mainly made of, for example, copper, gold, silver or aluminum.
 放熱板36(放熱部材)は、銅層またはアルミニウム層等の金属層または酸化アルミニウムまたは窒化アルミニウム等の絶縁層である。放熱板36は、DBC(Direct Bonded Cupper)またはDBA(Direct Bonded Aluminum)等の絶縁層を金属層で挟んだ放熱板でもよい。放熱板36の厚さは例えば100μmから数mmである。接合層38は、例えば銀ペースト等の導電性ペーストが焼結された焼結金属層、またははんだ等のロウ材である。接合層38の厚さは例えば数10μmである。 The heat radiating plate 36 (heat radiating member) is a metal layer such as a copper layer or an aluminum layer or an insulating layer such as aluminum oxide or aluminum nitride. The heat sink 36 may be a heat sink in which an insulating layer such as DBC (Direct Bonded Cupper) or DBA (Direct Bonded Aluminum) is sandwiched between metal layers. The thickness of the heat radiating plate 36 is, for example, 100 μm to several mm. The bonding layer 38 is a sintered metal layer in which a conductive paste such as silver paste is sintered, or a brazing material such as solder. The thickness of the bonding layer 38 is, for example, several tens of μm.
[比較例1]
 図2(a)および図2(b)は、比較例1に係るモジュール構造の断面図である。
[Comparative Example 1]
2 (a) and 2 (b) are cross-sectional views of the module structure according to Comparative Example 1.
 図2(a)および図2(b)に示すように、比較例1では、放熱板36は半導体部品40上に接合されているが、コア層10上には接合されていない。その他の構成は実施例1の図1(a)と同じである。 As shown in FIGS. 2A and 2B, in Comparative Example 1, the heat sink 36 is bonded on the semiconductor component 40, but not on the core layer 10. Other configurations are the same as those in FIG. 1 (a) of the first embodiment.
 図2(a)に示すように、比較例1では、半導体部品40において発生した熱は、経路50のように放熱板36に伝導し、放熱板36から外部に放出される。また、熱はビア31、金属層32、ビア33および金属層34を伝導し、金属層34から外部(例えば実装基板)に放出される。しかし、経路50および52だけでは熱の放出経路は十分でない。 As shown in FIG. 2A, in Comparative Example 1, the heat generated in the semiconductor component 40 is conducted to the heat sink 36 as in the path 50, and is discharged to the outside from the heat sink 36. Further, heat is conducted through the via 31, the metal layer 32, the via 33 and the metal layer 34, and is released from the metal layer 34 to the outside (for example, a mounting substrate). However, paths 50 and 52 alone are not sufficient heat release paths.
 図2(b)に示すように、比較例1では、例えばモジュールを製造する工程において半導体部品40上に放熱板36を実装するとき、またはモジュールを使用しているときに、矢印60のように放熱板36に応力が加わると、矢印64のように半導体部品40に応力が加わる。これにより、半導体部品40の特性が変化する可能性がある。特に、半導体部品40がGaNFETのベアチップの場合、チップに応力が加わると、GaNFETの特性が変化(劣化)してしまう。 As shown in FIG. 2B, in Comparative Example 1, for example, when the heat sink 36 is mounted on the semiconductor component 40 in the process of manufacturing the module, or when the module is used, as shown by the arrow 60. When stress is applied to the heat sink 36, stress is applied to the semiconductor component 40 as shown by arrow 64. As a result, the characteristics of the semiconductor component 40 may change. In particular, when the semiconductor component 40 is a bare chip of a GaN FET, the characteristics of the GaN FET change (deteriorate) when stress is applied to the chip.
 図3(a)および図3(b)は、実施例1に係る高放熱モジュール構造の断面図であり、図1(a)の半導体部品40付近を拡大した図である。 3 (a) and 3 (b) are cross-sectional views of the high heat dissipation module structure according to the first embodiment, and is an enlarged view of the vicinity of the semiconductor component 40 of FIG. 1 (a).
 図3(a)に示すように、放熱板36は、コア層10の上面のうち少なくとも一部および半導体部品40の上面に接合されている。これにより、経路50に加え、経路54のように放熱板36からコア層10に熱が伝導する。経路56のようにコア層10内を熱が伝導する。さらに、経路58のように、絶縁層23内に設けられコア層10と金属層34aとを接続する配線35aを介しコア層10から金属層34aに熱が伝導する。これらの経路により半導体部品40からの放熱性を向上させることができる。さらに、経路52のように、絶縁層23内に設けられコア層10と金属層34bとを接続する配線35bを介し半導体部品40から金属層34bに熱が伝導する。この経路により半導体部品40からの放熱性をより向上させることができる。 As shown in FIG. 3A, the heat sink 36 is joined to at least a part of the upper surface of the core layer 10 and the upper surface of the semiconductor component 40. As a result, in addition to the path 50, heat is conducted from the heat sink 36 to the core layer 10 like the path 54. Heat is conducted in the core layer 10 as in the path 56. Further, heat is conducted from the core layer 10 to the metal layer 34a via the wiring 35a provided in the insulating layer 23 and connecting the core layer 10 and the metal layer 34a as in the path 58. The heat dissipation from the semiconductor component 40 can be improved by these paths. Further, heat is conducted from the semiconductor component 40 to the metal layer 34b via the wiring 35b provided in the insulating layer 23 and connecting the core layer 10 and the metal layer 34b as in the path 52. This path can further improve the heat dissipation from the semiconductor component 40.
 図3(b)に示すように、実施例1では、例えば半導体部品40上に放熱板36を実装するとき、またはモジュールを使用しているときに、矢印60のように放熱板36に応力が加わると、矢印62のように半導体部品40よりもコア層10に応力が加わる。これにより、半導体部品40に加わる応力が比較例1の図2(b)より小さくなる。よって、半導体部品40の特性の変化(劣化)を抑制できる。特に、半導体部品40がGaNFETのベアチップの場合、応力に起因するGaNFETの特性の変化(劣化)をより抑制できる。 As shown in FIG. 3B, in the first embodiment, for example, when the heat sink 36 is mounted on the semiconductor component 40 or when the module is used, stress is applied to the heat sink 36 as shown by an arrow 60. When applied, stress is applied to the core layer 10 rather than the semiconductor component 40 as shown by the arrow 62. As a result, the stress applied to the semiconductor component 40 becomes smaller than that in FIG. 2 (b) of Comparative Example 1. Therefore, the change (deterioration) of the characteristics of the semiconductor component 40 can be suppressed. In particular, when the semiconductor component 40 is a bare chip of a GaN FET, the change (deterioration) in the characteristics of the GaN FET due to stress can be further suppressed.
 図4(a)から図4(d)は、実施例1における放熱板および接合層を示す平面図である。図4(a)に示すように、半導体部品40の平面形状は略四角形状(例えば略矩形)であり、開口12の平面形状は略四角形状(例えば略矩形)である。放熱板36は開口12の全てと重なり、接合層38は開口12の4辺全ての外側の領域に設けられている。これにより、放熱板36からコア層10に熱が効率よく伝導できる。よって、放熱性を向上できる。 4 (a) to 4 (d) are plan views showing the heat sink and the bonding layer in the first embodiment. As shown in FIG. 4A, the planar shape of the semiconductor component 40 is a substantially rectangular shape (for example, a substantially rectangular shape), and the planar shape of the opening 12 is a substantially rectangular shape (for example, a substantially rectangular shape). The heat sink 36 overlaps all of the openings 12, and the bonding layer 38 is provided in the outer region of all four sides of the opening 12. As a result, heat can be efficiently conducted from the heat sink 36 to the core layer 10. Therefore, heat dissipation can be improved.
 半導体部品40の側面と開口12の側面との距離D1が大きすぎると、図3(a)の経路54のよる放熱板36からコア層10への熱抵抗が高くなる。よって、距離D1は2mm以下が好ましい。半導体部品40を開口12内に実装するための位置合わせを考慮して、距離D1は25μm以上が好ましい。接合層38の幅D2(すなわち放熱板36がコア層10に接合される領域の幅)が小さすぎると、図3(a)の経路54により放熱板36からコア層10へ熱が伝わり難くなる。よって、幅D2は50μm以上が好ましい。経路54の放熱を大きくするためには、幅D2を大きくすることが好ましい。 If the distance D1 between the side surface of the semiconductor component 40 and the side surface of the opening 12 is too large, the thermal resistance from the heat sink 36 to the core layer 10 by the path 54 in FIG. 3A becomes high. Therefore, the distance D1 is preferably 2 mm or less. The distance D1 is preferably 25 μm or more in consideration of the alignment for mounting the semiconductor component 40 in the opening 12. If the width D2 of the bonding layer 38 (that is, the width of the region where the heat sink 36 is bonded to the core layer 10) is too small, it becomes difficult for heat to be transferred from the heat sink 36 to the core layer 10 by the path 54 in FIG. 3 (a). .. Therefore, the width D2 is preferably 50 μm or more. In order to increase the heat dissipation of the path 54, it is preferable to increase the width D2.
 図4(b)に示すように、接合層38は開口12の3辺の外側の領域に設けられ、放熱板36は、開口12の3辺の外側の領域においてコア層10と接合されている。 As shown in FIG. 4B, the bonding layer 38 is provided in the region outside the three sides of the opening 12, and the heat sink 36 is bonded to the core layer 10 in the region outside the three sides of the opening 12. ..
 図4(c)に示すように、接合層38は開口12の対向する2辺の外側の領域に設けられ、放熱板36は、開口12の2辺の外側の領域においてコア層10と接合されている。 As shown in FIG. 4C, the bonding layer 38 is provided in the outer region of the two opposite sides of the opening 12, and the heat sink 36 is bonded to the core layer 10 in the outer region of the two opposite sides of the opening 12. ing.
 図4(d)に示すように、接合層38は開口12の1辺の外側の領域に設けられ、放熱板36は、開口12の1辺の外側の領域においてコア層10と接合されている。 As shown in FIG. 4D, the bonding layer 38 is provided in the region outside one side of the opening 12, and the heat sink 36 is bonded to the core layer 10 in the region outside one side of the opening 12. ..
 図4(a)から図4(d)のように、放熱板36は、コア層10の上面のうち開口12を囲む少なくとも一部の領域に接合されている。これにより、図3(a)のように、半導体部品40において発生した熱は、放熱板36からコア層10の伝送するため放熱性を向上できる。図3(b)のように、放熱板36に加わる矢印60の応力が半導体部品40に加わり難くするためには、図4(a)から図4(c)のように、放熱板36は、コア層10の上面のうち開口12の少なくとも対向する2辺の外側の領域に接合されていることが好ましい。開口の平面形状は略長方形状の場合、放熱板36はコア層10の上面の内開口12の少なくとも対向する2つの長辺の外側の領域と接合されていることが好ましい。これにより、矢印60の応力がコア層10に分散され、半導体部品40に加わる応力を抑制できる。 As shown in FIGS. 4A to 4D, the heat sink 36 is joined to at least a part of the upper surface of the core layer 10 surrounding the opening 12. As a result, as shown in FIG. 3A, the heat generated in the semiconductor component 40 is transmitted from the heat radiating plate 36 to the core layer 10, so that the heat radiating property can be improved. In order to make it difficult for the stress of the arrow 60 applied to the heat sink 36 to be applied to the semiconductor component 40 as shown in FIG. 3 (b), the heat sink 36 is formed as shown in FIGS. 4 (a) to 4 (c). It is preferable that the upper surface of the core layer 10 is joined to the outer regions of at least two opposite sides of the opening 12. When the planar shape of the opening is substantially rectangular, it is preferable that the heat sink 36 is joined to the outer regions of at least two opposite long sides of the inner opening 12 on the upper surface of the core layer 10. As a result, the stress of the arrow 60 is dispersed in the core layer 10, and the stress applied to the semiconductor component 40 can be suppressed.
[実施例1の変形例1]
 図5(a)および図5(b)は、実施例1の変形例1に係る高放熱モジュール構造の断面図および平面図である。図5(a)は、図5(b)のA-A断面に相当する。
[Modification 1 of Example 1]
5 (a) and 5 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the first modification of the first embodiment. FIG. 5A corresponds to the AA cross section of FIG. 5B.
 図5(a)および図5(b)に示すように、放熱板36は電子部品42および44の上方にも配置されている。放熱板36は電子部品42および44には接合されていない。接合層38は半導体部品40の上面および開口12の外側のコア層10の上面の領域に設けられ、接合層38aは電子部品42を挟み半導体部品40と反対の放熱板36の端部におけるコア層10の上面に設けられている。放熱板36のその他の部分には接合層は設けられていない。その他の構成は実施例1と同じであり説明を省略する。 As shown in FIGS. 5A and 5B, the heat sink 36 is also arranged above the electronic components 42 and 44. The heat sink 36 is not joined to the electronic components 42 and 44. The bonding layer 38 is provided in the upper surface of the semiconductor component 40 and the upper surface region of the core layer 10 outside the opening 12, and the bonding layer 38a is a core layer at the end of the heat sink 36 opposite to the semiconductor component 40 with the electronic component 42 sandwiched therein. It is provided on the upper surface of 10. No bonding layer is provided on the other parts of the heat sink 36. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
 放熱性を向上させるためには、放熱板36を大きくすることが好ましい。そこで、放熱板36は電子部品42および44の上方に設けることが好ましい。しかし、電子部品44を接合材で放熱板36と接続すると、電子部品44の両電極45を短絡させてしまう。また、放熱板36を電子部品42および44に接合させると、半導体部品40において発生した熱が電子部品42および44の温度を上昇させる。このため、放熱板36は、電子部品42の上面に接合しないことが好ましい。また、放熱板36が放熱板36の全体と接合されていると、熱応力が大きくなる。そこで、発熱する半導体部品40の上面およびその近傍のコア層10の上面に接合層38を設け、他の電子部品42および44の上面および他のコア層10の上面に接合層38を設けないことが好ましい。 In order to improve heat dissipation, it is preferable to increase the heat sink 36. Therefore, it is preferable that the heat sink 36 is provided above the electronic components 42 and 44. However, when the electronic component 44 is connected to the heat sink 36 with a joining material, both electrodes 45 of the electronic component 44 are short-circuited. Further, when the heat sink 36 is joined to the electronic components 42 and 44, the heat generated in the semiconductor component 40 raises the temperature of the electronic components 42 and 44. Therefore, it is preferable that the heat sink 36 is not bonded to the upper surface of the electronic component 42. Further, when the heat radiating plate 36 is joined to the entire heat radiating plate 36, the thermal stress becomes large. Therefore, the bonding layer 38 should be provided on the upper surface of the semiconductor component 40 that generates heat and the upper surface of the core layer 10 in the vicinity thereof, and the bonding layer 38 should not be provided on the upper surfaces of the other electronic components 42 and 44 and the upper surface of the other core layer 10. Is preferable.
 接合層38をコア層10の上面の一部の領域のみに設けると、放熱板36とコア層10との間にクリアランスが形成され、熱応力が緩和される。しかし、放熱板36が大きいと、放熱板36がコア層10の上面に対し傾いてしまう。そこで、放熱板36の端部に接合層38aを設ける。これにより、放熱板36がコア層10の上面に対し傾くことを抑制できる。例えば、放熱板36が電子部品42と接合されていないときに、放熱板36は、コア層10の上面にうち開口12を囲む少なくとも一部の第1領域と電子部品42を挟み半導体部品40と反対側の第2領域と接合されている。これにより、放熱板36が電子部品42と接合されていなくても、放熱板36がコア層10の上面に対し傾くことを抑制できる。 When the bonding layer 38 is provided only in a part of the upper surface of the core layer 10, a clearance is formed between the heat sink 36 and the core layer 10, and the thermal stress is relaxed. However, if the heat sink 36 is large, the heat sink 36 is tilted with respect to the upper surface of the core layer 10. Therefore, a bonding layer 38a is provided at the end of the heat radiating plate 36. As a result, it is possible to prevent the heat radiating plate 36 from tilting with respect to the upper surface of the core layer 10. For example, when the heat radiating plate 36 is not joined to the electronic component 42, the heat radiating plate 36 sandwiches at least a part of the first region surrounding the opening 12 on the upper surface of the core layer 10 and the electronic component 42 with the semiconductor component 40. It is joined to the second region on the opposite side. As a result, even if the heat sink 36 is not joined to the electronic component 42, it is possible to prevent the heat sink 36 from tilting with respect to the upper surface of the core layer 10.
[実施例1の変形例2]
 図6(a)および図6(b)は、実施例1の変形例2に係る高放熱モジュール構造の断面図および平面図である。図6(a)は、図6(b)のA-A断面に相当する。
[Modification 2 of Example 1]
6 (a) and 6 (b) are a cross-sectional view and a plan view of the high heat dissipation module structure according to the second modification of the first embodiment. FIG. 6A corresponds to the AA cross section of FIG. 6B.
 図6(a)および図6(b)に示すように、放熱板36は電子部品42および44の上方にも配置されている。放熱板36は電子部品42に接合されており、電子部品44に接合されていない。接合層38は半導体部品40の上面および開口12の外側のコア層10の上面の領域に設けられ、接合層38bは電子部品42の上面および開口13の外側のコア層10の上面の領域に設けられている。接合層38と38bとの間等に接合層は設けられていない。その他の構成は実施例1の変形例1と同じであり説明を省略する。 As shown in FIGS. 6 (a) and 6 (b), the heat sink 36 is also arranged above the electronic components 42 and 44. The heat sink 36 is joined to the electronic component 42, not to the electronic component 44. The bonding layer 38 is provided in the upper surface region of the semiconductor component 40 and the upper surface region of the core layer 10 outside the opening 12, and the bonding layer 38b is provided in the upper surface region of the electronic component 42 and the upper surface region of the core layer 10 outside the opening 13. Has been done. No bonding layer is provided between the bonding layers 38 and 38b. Other configurations are the same as those of the first modification of the first embodiment, and the description thereof will be omitted.
 半導体部品40および電子部品42の両方が発熱する場合、放熱板36は、半導体部品40の上面およびコア層10の上面うち開口12を囲む少なくとも一部の第1領域、並びに電子部品42の上面およびコア層10の上面うち開口13を囲む少なくとも一部の第2領域に接合する。これにより、半導体部品40および電子部品42からの放熱性を向上できる。放熱板36が放熱板36の全体と接合されていると、熱応力が大きくなる。そこで、放熱板36は接合層38と38bとの間の領域や電子部品44の上面およびその近傍においてコア層10の上面と接合されていないことが好ましい。すなわち、第1領域と第2領域との間が接続されていないことが好ましい。熱応力が問題とならない場合には、接合層38と38bとはつながっていてもよい。電子部品42は半導体部品40と同様のパワートランジスタ48を含んでもよい。 When both the semiconductor component 40 and the electronic component 42 generate heat, the heat radiating plate 36 includes at least a first region of the upper surface of the semiconductor component 40 and the upper surface of the core layer 10 surrounding the opening 12, and the upper surface of the electronic component 42 and the upper surface of the electronic component 42. It is joined to at least a part of the second region surrounding the opening 13 of the upper surface of the core layer 10. Thereby, the heat dissipation from the semiconductor component 40 and the electronic component 42 can be improved. When the heat radiating plate 36 is joined to the entire heat radiating plate 36, the thermal stress becomes large. Therefore, it is preferable that the heat sink 36 is not bonded to the upper surface of the core layer 10 in the region between the bonding layers 38 and 38b or in the upper surface of the electronic component 44 or in the vicinity thereof. That is, it is preferable that the first region and the second region are not connected. If thermal stress is not a problem, the bonding layers 38 and 38b may be connected. The electronic component 42 may include a power transistor 48 similar to the semiconductor component 40.
[実施例1の変形例3]
 図7(a)から図7(c)は、実施例1の変形例3における放熱板および接合層を示す平面図である。
[Modification 3 of Example 1]
7 (a) to 7 (c) are plan views showing the heat radiating plate and the bonding layer in the modified example 3 of the first embodiment.
 図7(a)に示すように、1つの開口12内に2つの半導体部品40aおよび40bが収納されている。1つの放熱板36は半導体部品40aおよび40bの上面に接合層38を介し接合されている。放熱板36はコア層10の上面のうち開口12を囲む領域と接合層38を介し接合されている。その他の構成は実施例1と同じであり説明を省略する。 As shown in FIG. 7A, two semiconductor parts 40a and 40b are housed in one opening 12. One heat sink 36 is joined to the upper surfaces of the semiconductor parts 40a and 40b via a joining layer 38. The heat radiating plate 36 is joined to a region surrounding the opening 12 on the upper surface of the core layer 10 via a joining layer 38. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
 図7(b)に示すように、1つの開口12内に2つの半導体部品40aおよび40bが収納されている。1つの放熱板36は半導体部品40aおよび40bの上面にそれぞれ接合層38aおよび38bを介し接合されている。接合層38aおよび38bは半導体部品40aおよび40bに対応し2つ設けられ、互いに分離されている。その他の構成は実施例1と同じであり説明を省略する。 As shown in FIG. 7B, two semiconductor parts 40a and 40b are housed in one opening 12. One heat sink 36 is joined to the upper surfaces of the semiconductor parts 40a and 40b via the joining layers 38a and 38b, respectively. Two bonding layers 38a and 38b are provided corresponding to the semiconductor components 40a and 40b, and are separated from each other. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
 図7(c)に示すように、1つの開口12内に2つの半導体部品40aおよび40bが収納されている。2つの放熱板36aおよび36bはそれぞれ半導体部品40aおよび40bの上面に接合層38aおよび38bを介し接合されている。放熱板36aおよび36bは半導体部品40aおよび40bに対応し2つ設けられ、互いに分離されている。その他の構成は実施例1と同じであり説明を省略する。 As shown in FIG. 7C, two semiconductor parts 40a and 40b are housed in one opening 12. The two heat sinks 36a and 36b are joined to the upper surfaces of the semiconductor parts 40a and 40b via the joining layers 38a and 38b, respectively. Two heat sinks 36a and 36b are provided corresponding to the semiconductor parts 40a and 40b, and are separated from each other. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.
 実施例1の変形例3の図7(a)から図7(b)のように、1つの開口12内に複数の半導体部品40aおよび40bが設けられていてもよい。放熱板36および接合層38は1つの開口12に対し1つ設けられていてもよいし、半導体部品40aおよび40bに対応し複数の放熱板36aおよび36b、並びに複数の接合層38aおよび38bが設けられていてもよい。実施例1の変形例1および2の図5(a)から図6(b)においても1つの開口12内に複数の半導体部品40aおよび40bが設けられていてもよい。 As shown in FIGS. 7 (a) to 7 (b) of the third modification of the first embodiment, a plurality of semiconductor parts 40a and 40b may be provided in one opening 12. One heat sink 36 and one bonding layer 38 may be provided for one opening 12, or a plurality of heat sinks 36a and 36b and a plurality of bonding layers 38a and 38b are provided corresponding to the semiconductor parts 40a and 40b. It may have been. In FIGS. 5 (a) to 6 (b) of the first and second modifications of the first embodiment, a plurality of semiconductor parts 40a and 40b may be provided in one opening 12.
 以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.
 10 コア層
 12、13、14 開口
 20、22、23、24、28 絶縁層
 26 ソルダーレジスト
 32、34、34a、34b 金属層
 35a、35b 配線
 36、36a、36b 放熱板
 38、38a-38d 接合層
 40、40a、40b 半導体部品
 41、43、45 電極
 42、44 電子部品
 
10 Core layer 12, 13, 14 Opening 20, 22, 23, 24, 28 Insulation layer 26 Solder resist 32, 34, 34a, 34b Metal layer 35a, 35b Wiring 36, 36a, 36b Heat sink 38, 38a- 38d Bonding layer 40, 40a, 40b Semiconductor parts 41, 43, 45 Electrodes 42, 44 Electronic parts

Claims (10)

  1.  第1開口を有する金属コア層と、
     前記第1開口内に設けられた半導体部品と、
     前記金属コア層の上面の少なくとも一部および前記半導体部品の上面に接合された放熱部材と、
     前記金属コア層下に設けられた第1絶縁層と、
     前記第1絶縁層の下面に設けられた第1金属層と、
     前記第1絶縁層内に設けられ、前記金属コア層と前記第1金属層とを接続する第1配線と、
    を備える高放熱モジュール構造。
    A metal core layer with a first opening and
    The semiconductor component provided in the first opening and
    A heat radiating member bonded to at least a part of the upper surface of the metal core layer and the upper surface of the semiconductor component,
    The first insulating layer provided under the metal core layer and
    A first metal layer provided on the lower surface of the first insulating layer and
    A first wiring provided in the first insulating layer and connecting the metal core layer and the first metal layer, and
    High heat dissipation module structure with.
  2.  前記放熱部材は、前記金属コア層の上面うち前記第1開口を囲む少なくとも一部の領域に接合されている請求項1に記載の高放熱モジュール構造。 The high heat dissipation module structure according to claim 1, wherein the heat dissipation member is joined to at least a part of the upper surface of the metal core layer surrounding the first opening.
  3.  前記第1絶縁層の下面に設けられた第2金属層と、
     前記第1絶縁層内に設けられ、前記金属コア層と前記第2金属層とを接続する第2配線と、
    を備える請求項1または2に記載の高放熱モジュール構造。
    A second metal layer provided on the lower surface of the first insulating layer and
    A second wiring provided in the first insulating layer and connecting the metal core layer and the second metal layer, and
    The high heat dissipation module structure according to claim 1 or 2.
  4.  前記第1開口は略四角形状であり、
     前記放熱部材は、前記金属コア層の上面のうち前記第1開口の少なくとも対向する2辺の外側の領域に接合されている請求項1から3のいずれか一項に記載の高放熱モジュール構造。
    The first opening has a substantially quadrangular shape.
    The high heat dissipation module structure according to any one of claims 1 to 3, wherein the heat dissipation member is joined to an outer region of at least two opposite sides of the first opening on the upper surface of the metal core layer.
  5.  前記金属コア層の第2開口内に設けられた電子部品を備え、
     前記放熱部材は前記電子部品の上方に設けられていない請求項1から4のいずれか一項に記載の高放熱モジュール構造。
    An electronic component provided in the second opening of the metal core layer is provided.
    The high heat dissipation module structure according to any one of claims 1 to 4, wherein the heat dissipation member is not provided above the electronic component.
  6.  前記金属コア層の第2開口内に設けられた電子部品を備え、
     前記放熱部材は前記電子部品の上方に設けられ、前記電子部品の上面に接合されていない請求項1から4のいずれか一項に記載の高放熱モジュール構造。
    An electronic component provided in the second opening of the metal core layer is provided.
    The high heat dissipation module structure according to any one of claims 1 to 4, wherein the heat dissipation member is provided above the electronic component and is not joined to the upper surface of the electronic component.
  7.  前記放熱部材は、前記金属コア層の上面にうち前記第1開口を囲む少なくとも一部の第1領域および前記電子部品を挟み前記半導体部品と反対側の第2領域と接合されている請求項6に記載の高放熱モジュール構造。 6. The heat radiating member is joined to an upper surface of the metal core layer with at least a part of a first region surrounding the first opening and a second region on the opposite side of the semiconductor component with the electronic component interposed therebetween. High heat dissipation module structure described in.
  8.  前記金属コア層の第2開口内に設けられた電子部品を備え、
     前記放熱部材は、前記金属コア層の上面うち前記第1開口を囲む少なくとも一部の第1領域および前記金属コア層の上面うち前記第2開口を囲む少なくとも一部の第2領域と、前記電子部品の上面に接合され、前記第1領域と前記第2領域との間が接続されていない請求項1から4のいずれか一項に記載の高放熱モジュール構造。
    An electronic component provided in the second opening of the metal core layer is provided.
    The heat radiating member includes at least a part of the first region of the upper surface of the metal core layer surrounding the first opening, at least a part of the second region of the upper surface of the metal core layer surrounding the second opening, and the electrons. The high heat dissipation module structure according to any one of claims 1 to 4, which is joined to the upper surface of a component and is not connected between the first region and the second region.
  9.  前記金属コア層上に設けられ、前記放熱部材を囲み、前記放熱部材の上面が露出する第2絶縁層を備える請求項1から8のいずれか一項に記載の高放熱モジュール構造。 The high heat dissipation module structure according to any one of claims 1 to 8, which is provided on the metal core layer, surrounds the heat dissipation member, and includes a second insulating layer in which the upper surface of the heat dissipation member is exposed.
  10.  前記第1開口内に複数の前記半導体部品が設けられ、
     前記放熱部材は前記複数の半導体部品の上面に接合されている請求項1から9のいずれか一項に記載の高放熱モジュール構造。
     
    A plurality of the semiconductor parts are provided in the first opening, and the semiconductor parts are provided.
    The high heat dissipation module structure according to any one of claims 1 to 9, wherein the heat dissipation member is joined to the upper surface of the plurality of semiconductor parts.
PCT/JP2020/014109 2020-03-27 2020-03-27 High heat-dissipation module structure WO2021192245A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014109 WO2021192245A1 (en) 2020-03-27 2020-03-27 High heat-dissipation module structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/014109 WO2021192245A1 (en) 2020-03-27 2020-03-27 High heat-dissipation module structure

Publications (1)

Publication Number Publication Date
WO2021192245A1 true WO2021192245A1 (en) 2021-09-30

Family

ID=77891558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/014109 WO2021192245A1 (en) 2020-03-27 2020-03-27 High heat-dissipation module structure

Country Status (1)

Country Link
WO (1) WO2021192245A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253118A (en) * 2011-06-01 2012-12-20 Denso Corp Semiconductor device
JP2017028060A (en) * 2015-07-21 2017-02-02 株式会社デンソー Electronic device
JP2018019057A (en) * 2017-01-12 2018-02-01 Tdk株式会社 Electronic circuit package
JP2019033178A (en) * 2017-08-08 2019-02-28 太陽誘電株式会社 Semiconductor module
WO2019167908A1 (en) * 2018-02-28 2019-09-06 株式会社村田製作所 High frequency module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012253118A (en) * 2011-06-01 2012-12-20 Denso Corp Semiconductor device
JP2017028060A (en) * 2015-07-21 2017-02-02 株式会社デンソー Electronic device
JP2018019057A (en) * 2017-01-12 2018-02-01 Tdk株式会社 Electronic circuit package
JP2019033178A (en) * 2017-08-08 2019-02-28 太陽誘電株式会社 Semiconductor module
WO2019167908A1 (en) * 2018-02-28 2019-09-06 株式会社村田製作所 High frequency module

Similar Documents

Publication Publication Date Title
JP3745213B2 (en) Semiconductor device and manufacturing method thereof
JP3525832B2 (en) Semiconductor device
US7005734B2 (en) Double-sided cooling isolated packaged power semiconductor device
US9030005B2 (en) Semiconductor device
JP2019071412A (en) Chip package
CN114078792A (en) Semiconductor package, semiconductor device, semiconductor package mounting apparatus, and semiconductor device mounting apparatus
JP7238330B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP6813259B2 (en) Semiconductor device
JP3599057B2 (en) Semiconductor device
JP2017123360A (en) Semiconductor module
JP2023085765A (en) Semiconductor device and method for manufacturing semiconductor device
WO2019038876A1 (en) Semiconductor device
JP2009176839A (en) Heat dissipation structure of semiconductor element
CN110098178A (en) Semiconductor devices
WO2021192245A1 (en) High heat-dissipation module structure
KR20220007878A (en) Electronic devices with double-sided cooling
JP4046623B2 (en) Power semiconductor module and fixing method thereof
US20190363042A1 (en) Semiconductor device
WO2021181468A1 (en) Semiconductor module
JP6981033B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2020129605A (en) Semiconductor module, semiconductor device, and method of manufacturing the same
JP2019212809A (en) Semiconductor device
JP2007115793A (en) High heat-dissipation package for housing electronic part
WO2021181649A1 (en) Semiconductor module and method for manufacturing same
JP2736161B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP