WO2021191385A1 - Procede de fractionnement d'acides gras a deux carbones de difference par distillation moleculaire - Google Patents

Procede de fractionnement d'acides gras a deux carbones de difference par distillation moleculaire Download PDF

Info

Publication number
WO2021191385A1
WO2021191385A1 PCT/EP2021/057824 EP2021057824W WO2021191385A1 WO 2021191385 A1 WO2021191385 A1 WO 2021191385A1 EP 2021057824 W EP2021057824 W EP 2021057824W WO 2021191385 A1 WO2021191385 A1 WO 2021191385A1
Authority
WO
WIPO (PCT)
Prior art keywords
fatty acids
composition
equal
omega
acid
Prior art date
Application number
PCT/EP2021/057824
Other languages
English (en)
Inventor
Gildas Breton
Lionel LARVOL
Louis-Marie Martin
Original Assignee
Polaris
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polaris filed Critical Polaris
Priority to US17/914,086 priority Critical patent/US20230151297A1/en
Priority to KR1020227036887A priority patent/KR20220160041A/ko
Priority to EP21713697.7A priority patent/EP4127199A1/fr
Publication of WO2021191385A1 publication Critical patent/WO2021191385A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C1/00Preparation of fatty acids from fats, fatty oils, or waxes; Refining the fatty acids
    • C11C1/08Refining
    • C11C1/10Refining by distillation
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • TITLE Process for fractionating fatty acids with two difference carbons by molecular distillation
  • the invention relates to a process for fractionating fatty acids with two difference carbon by molecular distillation with double passage, in particular fractionation between eicosapentaenoic acid and docosahexaenoic acid, as well as oil compositions of microorganisms enriched in eicosapentaenoic acid or in docosahexaenoic acid obtained by such a process.
  • it has been recommended to enrich one's diet with polyunsaturated fatty acids because of their proven beneficial role in many physiological reactions and pharmaceutical functions.
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • ARA l arachidonic acid
  • DHA and EPA have been the subject of numerous physiological studies and we now know their essential role in infants, children and adults. EPA is well known for these anti-inflammatory effects via its oxygenated derivatives. It also has a well-recognized therapeutic activity against cardiovascular diseases. DHA is known for its essential role in the development of the brain and the retina and in the preservation of cognitive functions.
  • Some of them can produce quantities of polyunsaturated fatty acids representing up to 40 to 50% of their biomass. In addition, they have the advantage of being able to be cultivated under controlled conditions. Marine microalgae do not exhibit the negative odor and taste characteristics of fish oils. They also do not produce cholesterol.
  • microalgae belonging to the genus Thraustochytrium or Schizochytrium are sources rich in long-chain omega-3 polyunsaturated fatty acids. Some can in particular produce between 20% and 35% docosahexaenoic acid, or even more, by weight. total fatty acids (Hadley et al., 2017) (Hammond et al., 2001).
  • microalgae are beginning to be used today for the production of compositions enriched in DHA.
  • microorganisms are cultivated under photoautotrophic conditions, that is to say conditions which require light for growth.
  • EPA produced by photoautotrophy is found incorporated into membrane lipids, either in the form of glycolipids, mono- (MGDG) or di-galactosyl diacylglycerol (DGDG) or sulfo quinovosyl diacylglycerol (SQDG), or in the form of phospholipids, phosphatidyl glycerol, phosphatidyl choline or phosphatidyl ethanolamine, or in the form of free fatty acids.
  • MGDG mono-
  • DGDG di-galactosyl diacylglycerol
  • SQLDG sulfo quinovosyl diacylglycerol
  • heterotrophic culture An alternative to autotrophic culture is heterotrophic culture. This allows the production of biomass in closed reactors and in large quantities. To date, this method is used to provide biomass as a source of DHA.
  • DHA DHA
  • the strains of Schizochytrium sp. are well known to produce oils in the form of triglycerides containing more than 40% DHA.
  • the extraction of triglycerides is relatively simple and takes place by enzymatic rupture of the cell wall directly in the fermenter without going through an expensive phase of drying the biomass for lipid extraction. The main cost of production remains the carbon source sugar.
  • Some varieties of microalgae such as those of the genus Thraustochytrium and Schizochytrium, although sought after mainly for their DHA content, can also contain significant amounts of EPA in the form of triglycerides. It would therefore be desirable to be able to concentrate, from these oils, on the one hand GERA and, on the other hand, DHA in order to obtain, separately, fractions enriched in DHA and fractions enriched in EPA. To do this, it is necessary to take into account the separating capacities of the production methods. In fact, EPA and DHA are distinguished structurally in particular by a shadow of two carbon atoms, EPA containing 20 carbon atoms and DHA containing 22 carbon atoms. It is therefore difficult to separate these two compounds.
  • An aim of the invention is thus to provide a process for the fractionation of fatty acids with two carbon differences, in particular of fractionation between eicosapentaenoic acid and docosahexaenoic acid.
  • the invention relates to the fractionation of fatty acids with two difference carbon by molecular distillation, in particular fractionation between eicosapentaenoic acid and docosahexaenoic acid, characterized in that it comprises:
  • step (ii) a first step of molecular distillation under high vacuum of the oil resulting from step (i), in a scraped film evaporator coupled to a rectification column comprising at least seven theoretical plates, and recovery of a first residue and a first distillate,
  • step (iii) a second step of molecular distillation under high vacuum, of the residue recovered in step (ii), in said wiped film evaporator coupled to the rectification column comprising at least seven theoretical trays, and recovery of a second residue and a second distillate.
  • the process according to the invention allows the separation and concentration of EPA and DHA.
  • the second residue obtained contains EPA and the second distillate contains DHA.
  • the process therefore makes it possible to obtain compositions enriched in EPA on the one hand, and compositions enriched in DHA on the other hand.
  • the process according to the invention has good profitability in terms of EPA and DHA concentration, and is perfectly compatible with industrialization.
  • the starting oil is an oil which has been obtained from microorganisms cultivated under heterotrophic conditions.
  • Omega-3 polyunsaturated fatty acids are found in the form of triglycerides, i.e. esterified on the glycerol backbone.
  • One method of concentrating these fatty acids then consists first of all in freeing them from the glycerol.
  • Step (i) of reaction between the oil and an alcohol in the presence of a catalyst is a transesterification step which will make it possible to obtain fatty acids in the form of ethyl esters (EE).
  • the transesterification reaction is carried out with ethanol as alcohol and sodium ethoxide as catalyst.
  • This reaction is carried out at a temperature between 40 and 120 ° C, preferably between 40 and 60 °, for a time between 1 and 12 h, preferably between 1 to 2 h.
  • the ethyl esters of fatty acids formed can then be distilled by molecular distillation in order to collect the fraction concentrated in polyunsaturated fatty acids during step (ii).
  • High vacuum distillation allows the separation of ethyl esters according to their volatility. This depends on their molecular weight and the length of the fatty acid chains.
  • This step will make it possible to eliminate as much as possible the fatty acids whose chain contains less than 20 carbon atoms.
  • molecular distillation is carried out in a wiped film evaporator coupled to a rectification column comprising at least seven theoretical trays.
  • the use of the rectification column with up to seven plates makes it possible to avoid any oxidative deterioration of EPA and DHA and the parameters applied must prevent the risk of isomerization of EPA or DHA.
  • distillation parameters are therefore as follows:
  • Temperature at the bottom of the column from 160 to 200 ° C., Preferably 190 ° C,
  • Temperature at the top of the column from 130 to 200 ° C., Preferably 135 ° C.
  • This first concentration step therefore makes it possible to obtain a residue rich in esters of long-chain fatty acids and a distillate rich in esters of short-chain fatty acids.
  • This first molecular distillation step is not selective enough to fractionate fatty acids having just two different carbons, such as DHA and EPA.
  • the residue therefore comprises EPA and DHA, generally in a respective content of 20% and 50%, by weight.
  • the residue from step (ii) is reinjected into the scraped film evaporator coupled to the rectification column comprising at least seven Theoretical trays for a second concentration step by molecular distillation (iii).
  • the distillation temperatures are adjusted in order to distill a maximum of EPA.
  • distillation parameters are therefore as follows:
  • Temperature at the bottom of the column from 160 to 210 ° C., Preferably 202 ° C,
  • Temperature at the top of the column from 130 to 200 ° C., Preferably 160 ° C.
  • This second concentration step therefore makes it possible to obtain a residue rich in DHA and a distillate rich in EPA.
  • the method further comprises, optionally:
  • the ethyl esters of fatty acids contained in the residue rich in DHA and in the distillate rich in EPA obtained after step (iii) can then be converted during a step (iv) of re -esterification in the form of triglycerides, monoglycerides and diglycerides.
  • the enzyme used during this step is a lipase, advantageously a lipase B from Candida antarctica.
  • This re-esterification reaction is carried out at a temperature between 40 and 60 ° C, for a time between 15 and 30 h, preferably between 20 and 25 h.
  • Step (iv) of restructuring the monoglycerides, diglycerides and triglycerides is then followed by a step (v) of short path molecular distillation under high vacuum to remove residual ethyl esters, volatile odorous compounds but also to inactivate a potential residual enzymatic activity.
  • This step makes it possible to further concentrate the composition in monoglycerides, diglycerides and triglycerides.
  • the method according to the invention further comprises an (vi) addition of antioxidants.
  • Step (vi) of adding antioxidants is also an optional step which aims to improve the oxidation resistance of the composition.
  • Antioxidants such as ascorbyl palmitate, rosemary extract, phospholipids, tocopherol or any other antioxidant known to those skilled in the art can be used
  • the oil of the microorganisms of step (i) is obtained from microalgae of the genus Thraustochytrium, Schizochytrium, Nannochloropsis, Isochrysis, Phaeodactylum, Nitzchia, Staurosira, Crypthecodinium or Ulkenia, preferably of the genus Schizochytrium.
  • the process according to the invention therefore makes it possible to obtain oils from microorganisms enriched in omega-3 polyunsaturated fatty acids in a new way and responds to the problem of diversification of the supply, profiles and qualities of oils.
  • the invention thus also relates, according to a first embodiment, to an oil composition of microorganisms enriched in polyunsaturated fatty acids, capable of being obtained by the method described above, and which is characterized in that it has :
  • This composition corresponds to the second distillate obtained at the end of the fractionation process according to the invention, after carrying out the two molecular distillation stages.
  • the composition comprises an eicosapentaenoic acid content of greater than or equal to 650, preferentially to 700 mg / g of composition.
  • the composition also has: an arachidonic acid content of less than or equal to 60 mg / g of composition.
  • Arachidonic acid can thus be considered as an EPA antagonist. This is why the composition according to the invention has an advantageous profile since its EPA content is high and that of ARA is low.
  • composition also has: a content of omega-3 docosapentaenoic acid (DPA n-3) greater than the content of omega-6 docosapentaenoic acid (DPA n-6).
  • omega-3 docosapentaenoic acid
  • omega-6 docosapentaenoic acid is a fatty acid that is found in the brain in cases of DHA deficiency. Its molecular conformation is very close to DHA and can then take the place of DHA without having the effects. It is an unwanted fatty acid.
  • the invention thus also relates, according to a second embodiment, to an oil composition of microorganisms enriched in polyunsaturated fatty acids, capable of being obtained by the process described above and which is characterized in that it has:
  • the composition comprises a docosahexaenoic acid content greater than or equal to 650, preferably greater than 700 mg / g of composition.
  • composition corresponds to the second residue obtained at the end of the fractionation process according to the invention.
  • composition according to the second embodiment has a ratio between omega-3 docosapentaenoic acid (DPA n-3) and eicosapentaenoic acid (EPA) greater than or equal to 1.
  • DPA n-3 docosapentaenoic acid
  • EPA eicosapentaenoic acid
  • the composition has a content of omega-3 docosapentaenoic acid (DPA n-3) greater than or equal to 85 mg / g of composition.
  • DPA n-3 omega-3 docosapentaenoic acid
  • DPA n-3 docosapentaenoic acid
  • DPA has a role in neuroprotection and is the precursor of lipid mediators, for example oxygenated derivatives such as resolvins and neuroprotectins-DPAn-3.
  • Supplementation with DPA n-3 also helps act on platelet aggregation, blood triglyceride levels, cholesterol, and lower risk of cardiovascular disease.
  • composition also has: a content of omega-3 docosapentaenoic acid (DPA n-3) greater than the content of omega-6 docosapentaenoic acid (DPA n-6).
  • the invention also relates, according to a third embodiment, to an oil composition of microorganisms enriched in polyunsaturated fatty acids, capable of being obtained by the process described above, and which is characterized in that it contains, as a percentage relative to the total amount of fatty acids: - 20% eicosapentaenoic acid
  • composition corresponds to the first residue obtained at the end of step (ii) of the fractionation process according to the invention.
  • the polyunsaturated fatty acids are in the form of ethyl esters in the compositions according to the first, second and third embodiments.
  • the polyunsaturated fatty acids are in the form of glycerides in the compositions according to the first, second and third embodiments.
  • the triglyceride form is obtained only when the process according to the invention comprises steps (iv) and (v) mentioned above.
  • compositions mentioned above that is to say those enriched in EPA and those enriched in DHA, can be mixed together in order to provide mixtures having varied ratios of DHA and of EPA. These mixtures are interesting because, depending on the nutritional and physiological applications sought, the requirements for DHA and EPA vary.
  • the fractions are mixed and diluted in an oil free of DHA and EPA. It will preferably be a vegetable oil, such as an oelic sunflower oil.
  • the invention also relates to an oil composition of microorganisms enriched in polyunsaturated fatty acids comprising and exhibiting a ratio between eicosapentaenoic acid and docosahexaenoic acid chosen from the following: 10% / 65% - 15% / 65% - 20% / 55% - 25% / 50% - 30% / 45% - 38% / 38% - 45% / 30% - 50% / 25% - 58/20% - 65% / 10% - 70% / 8%.
  • any other ratio can of course be envisaged and reached, after dilution in an oil devoid of DHA and EPA, such as: 5% / 60%; 10% / 40%; 10% / 50%; 30% / 30%; 40% / 20%; 40% / 30%; 45% / 10%; 50% / 25%; 55% / 10%; 60% / 10%; 60% / 5%.
  • these mixture compositions have an arachidonic acid content of less than or equal to 6%, as a percentage relative to the total amount of fatty acids, and a content of omega-3 docosapentaenoic acid greater than the content of omega-6 docosapentaenoic acid. .
  • compositions according to the invention are provided in the form of a food supplement or of a pharmaceutical, nutraceutical, food, in particular infantile composition.
  • Example 1 EPA / DHA fractionation by molecular distillation and obtaining compositions of oil of microorganisms enriched in eicosapentaenoic acid and in docosahexaenoic acid
  • This example illustrates the process according to the invention and is implemented from a crude oil produced by the strain of microalgae Schizochytrium sp marketed by the company DSM under the brand Life's DHA 60.
  • the oil profile is as follows:
  • the objective here is at least to double the concentration of EPA and DHA.
  • a transesterification reaction is carried out on a biomass of 19 kg of microalgal oil using 4.75 kg of ethanol and 222 g of sodium ethoxide, in a suitable reactor.
  • the reaction temperature is 50 ° C and the reaction time is 1 hour.
  • the excess ethanol is evaporated off under vacuum, then the mixture is cooled to a temperature of approximately 30 ° C. and then subjected to decantation for 1 h.
  • the light phase is recovered then the glycerol is drained.
  • a second decantation is carried out for 30 sec. The glycerol and the residual monoglycerides are drained.
  • Washing with acidic water is then carried out by adding 3.2 kg of demineralized water containing 76.4 g of phosphoric acid (75%) with stirring for 20 sec. The mixture is decanted for 20 sec. and the aqueous phase is drained. Drying under vacuum (pressure ⁇ 90 mbar) at 60 ° C for a time greater than 2 hours follows.
  • the oil contains 192 mg / g of EPA and 374 mg / g of DHA in the form of ethyl esters.
  • the oil is then conducted in a degasser and then passes through a scraped film evaporator.
  • the vapors are then distilled through a rectification column which is coupled to the evaporator supplied by the company UIC GmbH.
  • the goal here is to eliminate the lightest fatty acids while retaining DHA and I ⁇ RA.
  • the column used contains seven theoretical plates.
  • the distillation residue is recovered and represents the fraction enriched in EPA and DHA.
  • the operating conditions are as follows: T ° of the evaporator: 225 ° C; Rectification column vacuum: less than 0.1 mbar; Reflux rate 70%, T ° (bottom of column): 190 ° C., T ° (top of column): 135 ° C.
  • the residue fraction contains 256 mg / g of EPA and 520 mg / g of DHA.
  • the yield is 68%.
  • step (II) is repeated on the residue.
  • the latter is therefore returned to the degasser and then passes through the scraped film evaporator.
  • the vapors are then distilled through the rectification column coupled to the evaporator as in the case of step (ii) above.
  • the goal here is to separate DHA and EPA.
  • T ° of the evaporator 235 ° C
  • Rectification column vacuum less than 0.05 mbar
  • Reflux rate 60% 60%
  • a residue fraction and a distillate fraction are obtained.
  • the distillate fraction contains 733 mg / g of EPA and 70 mg / g of DHA.
  • the yield of this fraction is 84% in EPA and 4% in DHA.
  • the residue fraction contains 706 mg / g DHA and 83 mg / g EPA.
  • the yield of this fraction is 93% in DHA and 22% in EPA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Nutrition Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Fats And Perfumes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

L'invention concerne un procédé de fractionnement d'acides gras à deux carbones de différence par distillation moléculaire avec double passage, en particulier de fractionnement entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque, ainsi que des compositions d'huiles de micro-organismes enrichies en acide eicosapentaénoïque ou en acide docosahexaénoïque obtenues par un tel procédé. A cet effet, l'invention concerne un procédé de fractionnement d'acides gras à deux carbones de différence par distillation moléculaire, en particulier de fractionnement entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque, caractérisé en ce qu'il comprend : (i) une étape de réaction entre une huile de micro-organismes comprenant des acides gras polyinsaturés omégas-3 sous forme de triglycérides et un alcool en présence d'un catalyseur chimique ou enzymatique, (ii) une première étape de distillation moléculaire sous vide poussé de l'huile issue de l'étape (i), dans un évaporateur à film raclé couplé à une colonne de rectification comportant au moins sept plateaux théoriques, et récupération d'un premier résidu et d'un premier distillat, (iii) une seconde étape de distillation moléculaire sous vide poussé, du résidu récupéré à l'étape (ii), dans ledit évaporateur à film raclé couplé à la colonne de rectification comportant au moins sept plateaux théoriques, et récupération d'un second résidu et d'un second distillat.

Description

DESCRIPTION
TITRE : Procédé de fractionnement d'acides gras à deux carbones de différence par distillation moléculaire L'invention concerne un procédé de fractionnement d'acides gras à deux carbones de différence par distillation moléculaire avec double passage, en particulier de fractionnement entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque, ainsi que des compositions d'huiles de micro-organismes enrichies en acide eicosapentaénoïque ou en acide docosahexaénoïque obtenues par un tel procédé. Depuis plusieurs années déjà, il est recommandé d'enrichir son régime alimentaire en acides gras polyinsaturés en raison de leur rôle bénéfique avéré dans bon nombre de réactions physiologiques et fonctions pharmaceutiques.
Parmi les acides gras polyinsaturés d'intérêt, on distingue ceux appartenant à la famille des omégas-3 tels que l'acide eicosapentaénoïque (EPA) et l'acide docosahexaénoïque (DHA) et ceux appartenant à la famille des omégas-6 tels que l'acide arachidonique (ARA).
Le DHA et l'EPA ont fait l'objet de nombreuses études physiologiques et l'on connaît aujourd'hui leur rôle essentiel à la fois chez le nourrisson, l'enfant et l'adulte. L'EPA est bien connu pour ces effets anti-inflammatoires via ses dérivés oxygénés. Il a aussi une activité thérapeutique bien reconnue contre les maladies cardio-vasculaires. Le DHA est quant à lui connu pour son rôle essentiel dans le développement du cerveau et de la rétine et dans la préservation des fonctions cognitives.
Les apports en EPA et en DHA à l'organisme peuvent se faire par un régime alimentaire d'origine marine, avec une consommation régulière de poissons. Cependant la quantité de poisson devant être consommée doit être importante pour obtenir les effets thérapeutiques attendus.
Une manière d'augmenter l'apport en acides gras polyinsaturés est de consommer des suppléments alimentaires ou des concentrés à base d'huile de poisson. Ces produits se présentent sous la forme d'huiles naturelles ou d'huiles concentrées en DHA ou en EPA sous forme de triglycérides ou sous forme d'esters éthyliques. Cependant, au vu de la demande croissante en acides gras polyinsaturés, les huiles de poissons ne peuvent plus servir d'unique source. En outre, elles présentent des caractéristiques de goût et d'odeur déplaisantes pour de nombreux consommateurs, et des teneurs potentiellement élevées en cholestérol. Enfin, on constate une irrégularité en termes de production d'acides gras en fonction des saisons. II est devenu nécessaire d'identifier des alternatives aux huiles de poissons et de trouver d'autres sources pour la production d'acides gras. Les micro-algues présentent elles aussi des teneurs élevées en acides gras polyinsaturés et représentent donc une source alternative intéressante. Certaines d'entre elles peuvent produire des quantités d'acides gras polyinsaturés représentant jusqu'à 40 à 50 % de leur biomasse. De plus, elles présentent l'avantage de pouvoir être cultivées en conditions contrôlées. Les micro-algues marines ne présentent pas les caractéristiques négatives d'odeur et de goût des huiles de poisson. Elles ne produisent pas non plus de cholestérol.
Par exemple, les micro-algues appartenant au genre des Thraustochytrium ou des Schizochytrium sont des sources riches en acides gras polyinsaturés à longue chaîne oméga- 3. Certaines peuvent notamment produire entre 20 % et 35 % d'acide docosahexaénoïque, voire plus, en poids total d'acides gras (Hadley et al., 2017) (Hammond et al., 2001).
De telles micro-algues commencent à être aujourd'hui utilisées pour la production de compositions enrichies en DHA.
Parmi les sources capables de produire de l'EPA, on trouve les bactéries marines, telles que Shewanella sp, mais les conditions de culture rendent difficiles leur exploitation commerciale. On trouve également les champignons du genre Mortirella sp mais les rendements ne sont pas à ce jour en accord avec une production industrielle.
A ce jour, pour la production d'EPA, les micro-organismes sont cultivés en conditions photoautotrophiques, c'est-à-dire qui nécessitent de la lumière pour la croissance.
L'EPA produit par photoautotrophie se trouve incorporé dans les lipides membranaires, soit sous forme de Gglycolipides, mono- (MGDG) ou di- galactosyl diacylglycérol (DGDG) ou sulfo quinovosyl diacylglycérol (SQDG), soit sous forme de phospholipides, phosphatidyl glycérol, phosphatidyl choline ou phosphatidyl éthanolamine, soit encore sous forme d'acides gras libres. La forme triglycéride est peu représentée.
Cependant, la culture autotrophe des micro-organismes dans des bassins ouverts convient peu à une exploitation industrielle et intensive. Par ailleurs, l'extraction des lipides contenant l'EPA est une étape longue et faible en termes de rendement.
Une alternative à la culture en autotrophie est la culture en hétérotrophie. Celle-ci permet la production de biomasse dans des réacteurs fermés et en grande quantité. A ce jour, cette méthode est employée pour fournir une biomasse comme source de DHA. A titre d'exemple, les souches de Schizochytrium sp. sont bien connues pour produire des huiles sous forme de triglycérides contenant plus de 40% de DHA. L'extraction des triglycérides est relativement simple et s'opère par rupture enzymatique de la paroi cellulaire directement dans le fermenteur sans passer par une phase coûteuse de séchage de la biomasse pour une extraction lipidique. Le principal coût de production reste le sucre source de carbone.
Certaines variétés de micro-algues, telles que celles du genre Thraustochytrium et Schizochytrium, bien que recherchées principalement pour leur contenu en DHA, peuvent également contenir des quantités non négligeables d'EPA sous forme de triglycérides. Il serait donc souhaitable de pouvoir concentrer, à partir de ces huiles, d'une part GERA et, d'autre part le DHA afin d'obtenir, séparément, des fractions enrichies en DHA et des fractions enrichies en EPA. Pour ce faire, il convient de tenir compte des capacités séparatives des méthodes d'obtention. En effet, l'EPA et le DHA se distinguent structurellement notamment par un ombre de deux atomes de carbones, l'EPA contenant 20 atomes de carbone et le DHA en contenant 22. Il est donc difficile de séparer ces deux composés.
Un but de l'invention est ainsi de proposer un procédé de fractionnement d'acides gras à deux carbones de différence, en particulier de fractionnement entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque.
A cet effet, l'invention concerne le fractionnement d'acides gras à deux carbones de différence par distillation moléculaire, en particulier de fractionnement entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque, caractérisé en ce qu'il comprend :
(i) une étape de réaction entre une huile de micro-organismes comprenant des acides gras polyinsaturés oméga-3 sous forme de triglycérides et un alcool en présence d'un catalyseur chimique ou enzymatique,
(ii) une première étape de distillation moléculaire sous vide poussé de l'huile issue de l'étape (i), dans un évaporateur à film raclé couplé à une colonne de rectification comportant au moins sept plateaux théoriques, et récupération d'un premier résidu et d'un premier distillât,
(iii) une seconde étape de distillation moléculaire sous vide poussé, du résidu récupéré à l'étape (ii), dans ledit évaporateur à film raclé couplé à la colonne de rectification comportant au moins sept plateaux théoriques, et récupération d'un second résidu et d'un second distillât.
Le procédé selon l'invention permet la séparation et la concentration de l'EPA et du DHA. Le second résidu obtenu contient l'EPA et le second distillât contient le DHA.
Le procédé permet donc l'obtention de compositions enrichies en EPA d'une part, et de compositions enrichies en DHA d'autre part.
Comme le démontrera l'exemple qui suit, le procédé selon l'invention présente une bonne rentabilité en termes de concentration en EPA et en DHA, et est parfaitement compatible avec une industrialisation.
Ainsi, l'huile de départ est une huile qui a été obtenue à partir de micro-organismes cultivés en conditions hétérotrophes. Les acides gras polyinsaturés oméga-3 se trouvent sous forme de triglycérides, c'est-à-dire estérifiés sur le squelette glycérol. Une méthode pour concentrer ces acides gras consiste alors dans un premier temps à les libérer du glycérol. L'étape (i) de réaction entre l'huile et un alcool en présence d'un catalyseur est une étape de transestérification qui va permettre l'obtention des acides gras sous une forme d'esters éthyliques (EE).
De manière préférée, la réaction de transestérification est réalisée avec de l'éthanol à titre d'alcool et de l'éthylate de sodium à titre de catalyseur.
Cette réaction se conduit à une température comprise entre 40 et 120 °C, préférentiellement entre 40 et 60°, durant un temps compris entre 1 et 12h, préférentiellement entre 1 à 2 h.
A la fin de la réaction, près de 100 % des acides gras sont sous la forme d'esters éthyliques.
Les éthyles esters d'acides gras formés peuvent alors être distillés par distillation moléculaire pour en recueillir la fraction concentrée en acides gras polyinsaturés lors de l'étape (ii).
La distillation sous vide poussé permet la séparation des esters éthyliques en fonction de leur volatilité. Celle-ci dépend de leur poids moléculaire et de la longueur des chaînes des acides gras.
Cette étape va permettre d'éliminer au maximum les acides gras dont la chaîne comporte moins de 20 atomes de carbone.
De manière importante, la distillation moléculaire est réalisée dans un évaporateur à film raclé couplé à une colonne de rectification comportant au moins sept plateaux théoriques. L'utilisation de la colonne de rectification à sept plateaux maximum permet d'éviter toute altération oxydative de l'EPA et du DHA et les paramètres appliqués doivent prévenir du risque d'isomérisation de l'EPA ou du DHA.
Les paramètres de distillation sont donc les suivants :
Vide de distillation de 0,01 à 0,20 mbar, préférentiellement moins de 0,1 mbar,
Température dans l'évaporateur à film raclé de 190 à 240°, préférentiellement 225°C,
Température dans le bas de colonne de 160 à 200°C., préférentiellement 190°C,
Température dans le haut de colonne de 130 à 200°C., préférentiellement 135°C.
Cette première étape de concentration permet donc d'obtenir un résidu riche en esters d'acides gras à chaînes longues et un distillât riche en esters d'acides gras à chaînes courtes. Cette première étape de distillation moléculaire n'est pas assez sélective pour fractionner des acides gras ayant simplement deux carbones de différence, tels que le DHA et l'EPA. Le résidu comprend donc de l'EPA et du DHA, généralement à une teneur respective de 20% et 50%, en poids.
Ainsi, de manière à séparer l'EPA et le DHA, en deux fractions distinctes et chacune valorisable, le résidu issu de l'étape (ii) est réinjecté dans l'évaporateur à film raclé couplé à la colonne de rectification comportant au moins sept plateaux théoriques pour une seconde étape de concentration par distillation moléculaire (iii). Au cours de cette seconde étape de concentration par distillation moléculaire (iii) les températures de distillation sont ajustées afin de distiller un maximum d'EPA.
Les paramètres de distillation sont donc les suivants :
Vide de distillation de 0,01 à 0,10 mbar, préférentiellement moins de 0,05 mbar,
Température dans l'évaporateur à film raclé de 190 à 245°, préférentiellement 235°C,
Température dans le bas de colonne de 160 à 210°C., préférentiellement 202°C,
Température dans le haut de colonne de 130 à 200°C., préférentiellement 160°C.
Cette seconde étape de concentration permet donc d'obtenir un résidu riche en DHA et un distillât riche en EPA.
Ainsi, à l'issue du procédé selon l'invention, on obtient donc une fraction contenant au moins 600 mg/g d'esters éthyliques d'EPA d'une part, et une fraction contenant au moins 600 mg/g d'esters éthyliques de DHA d'autre part.
Selon un mode de réalisation de l'invention, le procédé comprend de plus, de manière optionnelle :
(iv) une étape de restructuration de monoglycérides, diglycérides et triglycérides d'acides gras polyinsaturés oméga-3 en présence d'enzyme et de glycérol,
(v) une étape de distillation moléculaire court trajet sous vide.
En effet, de manière optionnelle, les esters éthyliques d'acides gras contenus dans le résidu riche en DHA et dans le distillât riche en EPA obtenus après l'étape (iii) peuvent ensuite être convertis lors d'une étape (iv) de ré-estérification sous forme de triglycérides, de monoglycérides et de diglycérides.
Préférentiellement, l'enzyme utilisée lors de cette étape est une lipase, avantageusement une lipase B de Candida antarctica.
Cette réaction de ré-estérification se conduit à une température comprise entre 40 et 60 °C, durant un temps compris entre 15 et 30h, préférentiellement entre 20 et 25 h.
L'étape (iv) de restructuration des monoglycérides, diglycérides et triglycérides est alors suivie d'une étape (v) de distillation moléculaire à court trajet et sous vide poussé pour éliminer les esters éthyliques résiduels, les composés volatiles odorants mais également pour inactiver une potentielle activité enzymatique résiduelle. Cette étape permet de concentrer d'avantage la composition en monoglycérides, diglycérides et triglycérides.
Selon un mode de réalisation, le procédé selon l'invention comprend de plus, un (vi) ajout d'antioxydants.
L'étape (vi) d'ajout d'antioxydants est une étape également optionnelle qui a pour but d'améliorer la résistance à l'oxydation de la composition. Des antioxydants tels que le palmitate d'ascorbyle, l'extrait de romarin, les phospholipides, le tocophérol ou tout autre antioxydant connu de l'homme du métier peuvent être utilisés
Avantageusement, l'huile de micro-organismes de l'étape (i) est issue de micro-algues du genre Thraustochytrium, Schizochytrium, Nannochloropsis, Isochrysis, Phaeodactylum, Nitzchia, Staurosira, Crypthecodinium ou Ulkenia, préférentiellement du genre Schizochytrium.
Le procédé selon l'invention permet donc d'obtenir selon une nouvelle voie des huiles de micro-organismes enrichies en acides gras polyinsaturés omégas-3 et répond à la problématique de diversification de l'offre, des profils et des qualités d'huiles.
L'invention concerne ainsi encore, selon un premier mode de réalisation, une composition d'huile de micro-organismes enrichie en acides gras polyinsaturés, susceptible d'être obtenue par le procédé décrit précédemment, et qui se caractérise en ce qu'elle présente :
- une teneur en acide eicosapentaénoïque supérieure ou égale à 600 mg/g de composition,
- une teneur en acide docosahexaénoïque inférieure ou égale à 90 mg/g de composition.
Cette composition correspond au second distillât obtenu à l'issue du procédé de fractionnement selon l'invention, après mise en oeuvre des deux étapes de distillation moléculaire.
Avantageusement, la composition comprend une teneur en acide eicosapentaénoïque supérieure ou égale à 650, préférentiellement à 700 mg/g de composition.
Avantageusement, la composition présente, de plus : une teneur en acide arachidonique inférieure ou égale à 60 mg/g de composition.
La dégradation des acides gras à longue chaîne entraîne la formation de métabolites qui ont des effets sur des mécanismes tels que la coagulation, l'inflammation et l'immunité. La dégradation de l'acide arachidonique par le biais des lipoxygénases et des cycloxygénases produit des dérivés tels que des leucotriènes et des prostaglandines pro-inflammatoires alors que la dégradation de l'acide eicosapentaénoïque aboutit à des composés anti inflammatoires. L'acide arachidonique (ARA) peut ainsi être considéré comme un antagoniste de l'EPA. C'est pourquoi la composition selon l'invention présente un profil avantageux puisque sa teneur en EPA est élevée et celle en ARA est faible.
Avantageusement encore, la composition présente de plus : une teneur en acide docosapentaénoïque oméga-3 (DPA n-3) supérieure à la teneur en acide docosapentaénoïque oméga-6 (DPA n-6).
Si les acides gras polyinsaturés appartenant à la famille des omégas-3 ont fait l'objet de nombreuses études et publications scientifiques depuis plusieurs années, celles-ci ne concernaient en réalité que majoritairement l'EPA et le DHA. Aujourd'hui, l'intérêt de la communauté scientifique se tourne vers d'autres omégas-3, lesquels ont probablement des rôles clés et indépendants dans de nombreux mécanismes physiologiques. Ceci est par exemple le cas de l'acide docosapentaénoïque oméga-3 (DPA). Cet acide gras commence à faire l'objet de quelques études et paraît intéressant sur le plan nutritionnel notamment pour son action sur le cholestérol.
Par ailleurs, l'acide docosapentaénoïque oméga-6 (DPAn-6) est un acide gras que l'on retrouve dans le cerveau dans les cas de carences en DHA. Sa conformation moléculaire est très proche du DHA et peut alors prendre la place du DHA sans en avoir les effets. C'est un acide gras indésirable.
L'invention concerne ainsi encore, selon un second mode de réalisation, une composition d'huile de micro-organismes enrichie en acides gras polyinsaturés, susceptible d'être obtenue par le procédé décrit précédemment et qui se caractérise en ce qu'elle présente :
- une teneur en acide docosahexaénoïque supérieure ou égale à 600 mg/g de composition,
- une teneur en acide eicosapentaénoïque inférieure ou égale à 90 mg/g de composition.
Avantageusement, la composition comprend une teneur en acide docosahexaénoïque supérieure ou égale à 650, préférentiellement supérieure à 700 mg/g de composition.
Cette composition correspond au second résidu obtenu à l'issue du procédé de fractionnement selon l'invention.
Avantageusement encore, la composition selon le second mode de réalisation, présente un ratio entre l'acide docosapentaénoïque oméga-3 (DPA n-3) et l'acide eicosapentaénoïque (EPA) supérieur ou égal à 1.
Avantageusement encore, la composition présente une teneur en acide docosapentaénoïque oméga-3 (DPA n-3) supérieure ou égale à 85 mg/g de composition.
Pour une application ciblée sur le cerveau, il est intéressant d'apporter de l'acide docosapentaénoïque oméga-3 (DPA n-3) car cet acide peut être considéré comme une forme de stockage pour produire du DHA. De plus, le DPA a un rôle dans la neuroprotection et est le précurseur de médiateurs lipidiques, par exemple les dérivés oxygénés tels que les résolvines et les neuroprotectines-DPAn-3. Une supplémentation en DPA n-3 permet également d'agir sur l'agrégation plaquettaire, sur le taux de triglycérides sanguin, le cholestérol, et la diminution du risque de maladie cardio vasculaire.
Avantageusement encore, la composition présente de plus : une teneur en acide docosapentaénoïque oméga-3 (DPA n-3) supérieure à la teneur en acide docosapentaénoïque oméga-6 (DPA n-6).
L'invention concerne encore, selon un troisième mode de réalisation, une composition d'huile de micro-organismes enrichie en acides gras polyinsaturés, susceptible d'être obtenue par le procédé décrit précédemment, et qui se caractérise en ce qu'elle contient, en pourcentage par rapport à la quantité totale des acides gras : - 20% d'acide eicosapentaénoïque
- 50% d'acide docosahexaénoïque
- au moins 5% d'acide docosapentaénoïque oméga-3
Cette composition correspond au premier résidu obtenu à l'issue de l'étape (ii) du procédé de fractionnement selon l'invention.
De manière préférée, les acides gras polyinsaturés sont sous la forme d'esters éthyliques dans les compositions selon les premier, second et troisième modes de réalisation.
De manière alternative, les acides gras polyinsaturés sont sous la forme de glycérides dans les compositions selon les premier, second et troisième modes de réalisation.
La forme de triglycérides est obtenue uniquement lorsque le procédé selon l'invention comprend les étapes (iv) et (v) mentionnées précédemment.
Les compositions mentionnées précédemment, c'est-à-dire celles enrichies en EPA et celles enrichies en DHA, peuvent être mélangées entre elles afin de proposer des mélanges présentant des ratios variés en DHA et en EPA. Ces mélanges sont intéressants, car en fonction des applications nutritionnelles et physiologiques recherchées, les besoins en DHA et en EPA varient.
Pour la préparation de ces mélanges, les fractions sont mélangées et diluées dans une huile dépourvue de DHA et d'EPA. Il s'agira préférentiellement d'une huile végétale, telle qu'une huile de tournesol oélique.
Ainsi, l'invention concerne encore une composition d'huile de micro-organismes enrichie en acides gras polyinsaturés comprenant et présentant un ratio entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque choisi parmi les suivants : 10%/65% - 15%/65% - 20%/55% - 25%/50% - 30%/45% - 38%/38% - 45%/30% - 50%/25% - 58/20% - 65%/ 10% - 70%/8%.
Tout autre ratio peut bien entendu être envisagé et atteint, après dilution dans une huile dépourvue de DHA et d'EPA, tel que : 5% / 60% ; 10% / 40% ; 10% / 50% ; 30% / 30% ; 40% / 20% ; 40% / 30% ; 45% / 10% ; 50% / 25% ; 55% / 10% ; 60% / 10% ; 60% / 5%.
Avantageusement, ces compositions de mélanges présentent une teneur en acide arachidonique inférieure ou égale à 6%, en pourcentage par rapport à la quantité totale des acides gras, et une teneur en acide docosapentaénoïque oméga-3 supérieure à la teneur en acide docosapentaénoïque oméga-6.
Avantageusement, les compositions selon l'invention se présentent sous la forme d'un complément alimentaire ou d'une composition pharmaceutique, nutraceutique, alimentaire, notamment infantile.
L'invention sera mieux comprise à la lecture des exemples qui suivent. Exemple 1 : fractionnement EPA/DHA par distillation moléculaire et obtention de compositions d'huile de micro-organismes enrichie en acide eicosapentaénoïque et en acide docosahexaénoïque
Cet exemple illustre le procédé selon l'invention et est mis en oeuvre à partir d'une huile brute produite par la souche de micro-algues Schizochytrium sp commercialisée par la société DSM sous la marque Life's DHA 60.
Le profil de l'huile est le suivant :
- 360 mg/g de DHA, en mg/g de composition,
- 184 mg/g d'EPA, en mg/g de composition,
- 94,1 % de triglycérides,
- 5,4% de diglycérides,
- 0,4% de monoglycérides.
L'objectif est ici au minimum de doubler la concentration en EPA et DHA.
Etape (i) : transestérification
Une réaction de transestérification est réalisée sur une biomasse de 19 kg d'huile de micro algues à l'aide de 4,75 kg d'éthanol et de 222 g d'éthylate de sodium, dans un réacteur approprié.
La température de réaction est de 50°C et le temps de réaction est de lh. A l'issue de la réaction, l'excès d'éthanol est évaporé sous vide, puis le mélange est refroidi à une température d'environ 30°C puis soumis à décantation durant lh. La phase légère est récupérée puis le glycérol est vidangé. Une seconde décantation est réalisée durant 30 sec. Le glycérol et les monoglycérides résiduels sont vidangés.
Un lavage à l'eau acide est ensuite réalisé en ajoutant 3,2 kg d'eau déminéralisée contenant 76,4 g d'acide phosphorique (75%) sous agitation durant 20 sec. Le mélange est décanté durant 20 sec. et la phase aqueuse est vidangée. Il s'ensuit un séchage sous vide (pression < 90 mbar) à 60°C durant un temps supérieur à 2h.
A l'issue de cette étape l'huile contient 192 mg/g de EPA et 374 mg/g de DHA sous forme d'esters éthyliques.
Etape (ii) : première étape de distillation moléculaire
L'huile est ensuite conduite dans un dégazeur puis traverse un évaporateur à film raclé. Les vapeurs sont ensuite distillées au travers d'une colonne de rectification qui est couplée à l'évaporateur fourni par la société UIC GmbH. Le but est ici d'éliminer les acides gras les plus légers en conservant le DHA et IΈRA. La colonne utilisée contient sept plateaux théoriques. Le résidu de distillation est récupéré et représente la fraction enrichie en EPA et DHA. Les conditions opérationnelles sont les suivantes : T° de l'évaporateur : 225°C ; Vide de la colonne de rectification : moins de 0,1 mbar ; Taux de reflux 70%, T° (bas de colonne) : 190°C., T° (haut de colonne) : 135°C.
A l'issue de cette étape, on obtient une fraction de résidu et une fraction de distillât. La fraction de résidu contient 256 mg/g d'EPA et 520 mg/g de DHA. Le rendement est de 68%.
Etape (iii) : seconde étape de distillation moléculaire
L'opération de l'étape (II) est reconduite sur le résidu. Celui-ci est donc reconduit dans le dégazeur puis traverse l'évaporateur à film raclé. Les vapeurs sont ensuite distillées au travers de la colonne de rectification couplée à l'évaporateur comme dans le cas de l'étape (ii) précédente. Le but est ici de séparer le DHA et l'EPA.
Les conditions opérationnelles sont les suivantes : T° de l'évaporateur : 235°C ; Vide de la colonne de rectification : moins de 0,05 mbar ; Taux de reflux 60%, T° (bas de colonne) : 202°C., T° (haut de colonne) : 160°C.
A l'issue de cette étape, on obtient une fraction de résidu et une fraction de distillât. La fraction de distillât contient 733 mg/g d'EPA et 70 mg/g de DHA. Le rendement de cette fraction est de 84% en EPA et de 4% en DHA. La fraction de résidu contient 706 mg/g de DHA et 83 mg/g d'EPA. Le rendement de cette fraction est de 93% en DHA et 22% en EPA.
Dans le Tableau 1 ci-dessous, le profil détaillé en acides gras des fractions de distillât et de résidu obtenues à l'issue de l'étape (iii) est indiqué (en mg/g de composition). [TABLEAU 1]
Figure imgf000012_0001
Figure imgf000013_0001

Claims

REVENDICATIONS
1) Procédé de fractionnement d'acides gras à deux carbones de différence par distillation moléculaire, en particulier de fractionnement entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque, caractérisé en ce qu'il comprend :
(i) une étape de réaction entre une huile de micro-organismes comprenant des acides gras polyinsaturés oméga-3 sous forme de triglycérides et un alcool en présence d'un catalyseur chimique ou enzymatique,
(ii) une première étape de distillation moléculaire sous vide poussé de l'huile issue de l'étape (i), dans un évaporateur à film raclé couplé à une colonne de rectification comportant au moins sept plateaux théoriques, et récupération d'un premier résidu et d'un premier distillât,
(iii) une seconde étape de distillation moléculaire sous vide poussé, du résidu récupéré à l'étape (ii), dans ledit évaporateur à film raclé couplé à la colonne de rectification comportant au moins sept plateaux théoriques, et récupération d'un second résidu et d'un second distillât.
2) Procédé selon la revendication 1, caractérisé en ce que les paramètres de distillation de l'étape (ii) sont les suivants :
Vide de distillation de 0,01 à 0,20 mbar, préférentiellement moins de 0,1 mbar, Température dans l'évaporateur à film raclé de 190 à 240°, préférentiellement 225°C, Température dans le bas de colonne de 160 à 200°C., préférentiellement 190°C,
Température dans le haut de colonne de 130 à 200°C., préférentiellement 135°C.
3) Procédé selon la revendication 1 ou 2, caractérisé en ce que les paramètres de distillation de l'étape (iii) sont les suivants : Vide de distillation de 0,01 à 0,10 mbar, préférentiellement moins de 0,05 mbar,
Température dans l'évaporateur à film raclé de 190 à 245°, préférentiellement 235°C, Température dans le bas de colonne de 160 à 210°C., préférentiellement 202°C,
Température dans le haut de colonne de 130 à 200°C., préférentiellement 160°C.
4) Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend de plus, de manière optionnelle :
(iv) une étape de restructuration de monoglycérides, diglycérides et triglycérides d'acides gras polyinsaturés omégas-3 en présence d'enzyme et de glycérol,
(v) une étape de distillation moléculaire court trajet sous vide. 5) Composition d'huile de micro-organismes enrichie en acides gras polyinsaturés obtenue par le procédé décrit dans l'une des revendications 1 à 4 caractérisée en ce qu'elle présente : - une teneur en acide eicosapentaénoïque supérieure ou égale à 600 mg/g de composition, une teneur en acide docosahexaénoïque inférieure ou égale à 90 mg/g de composition.
6) Composition selon la revendication 5, caractérisée en ce qu'elle présente une teneur en acide eicosapentaénoïque supérieure ou égale à 650, préférentiellement supérieure ou égale à 700 mg/g de composition.
7) Composition selon l'une des revendications 5 ou 6, caractérisée en ce qu'elle présente une teneur en acide arachidonique inférieure ou égale à 60 mg/g de composition.
8) Composition selon l'une des revendications 5 à 7, caractérisée en ce qu'elle présente, de plus, une teneur en acide docosapentaénoïque oméga-3 supérieure à la teneur en acide docosapentaénoïque oméga-6. 9) Composition d'huile de micro-organismes enrichie en acides gras polyinsaturés, obtenue par le procédé décrit dans l'une des revendications 1 à 4, caractérisée en ce qu'elle présente : une teneur en acide docosahexaénoïque supérieure ou égale à 600 mg/g de composition, - une teneur en acide eicosapentaénoïque inférieure ou égale à 90 mg/g de composition.
- une teneur en acide docosapentaénoïque oméga-3 (DPA n-3) supérieure ou égale à 85 mg/g de composition.
10) Composition selon la revendication 9, caractérisée en ce qu'elle présente une teneur en acide docosahexaénoïque supérieure ou égale à 650, préférentiellement supérieure ou égale à 700 mg/g de composition.
11) Composition selon la revendication 9 ou 10, caractérisée en ce qu'elle présente, de plus, un ratio entre l'acide docosapentaénoïque oméga-3 et l'acide eicosapentaénoïque supérieur ou égal à 1.
12) Composition d'huile de micro-organismes enrichie en acides gras polyinsaturés obtenue par le procédé décrit dans l'une des revendications précédentes, qui se caractérise en ce qu'elle contient, en pourcentage par rapport à la quantité totale des acides gras : 20% d'acide eicosapentaénoïque 50% d'acide docosahexaénoïque Au moins 5% d'acide docosapentaénoïque oméga-3. 13) Composition selon l'une des revendications 5 à 12, caractérisée en ce que les acides gras polyinsaturés sont sous la forme d'ester éthyliques.
14) Composition selon l'une des revendications 5 à 12, caractérisée en ce que les acides gras polyinsaturés sont sous la forme de glycérides.
15) Composition d'huile de micro-organismes enrichie en acides gras polyinsaturés, caractérisée en ce qu'elle présente un ratio entre l'acide eicosapentaénoïque et l'acide docosahexaénoïque choisi parmi les suivants : 10%/65% - 15%/65% - 20%/55% - 25%/50% - 30%/45% - 38%/38% - 45%/30% - 50%/25% - 58/20% - 65%/10% - 70%/8%.
16) Composition selon la revendication 15, caractérisée en ce qu'elle présente une teneur en acide arachidonique inférieure ou égale à 6%, en pourcentage par rapport à la quantité totale des acides gras, et une teneur en acide docosapentaénoïque oméga-3 supérieure à la teneur en acide docosapentaénoïque oméga-6.
17) Composition selon l'une des revendications 5 à 16, caractérisée en ce qu'elle se présente sous la forme d'un complément alimentaire ou d'une composition pharmaceutique, nutraceutique, alimentaire, notamment infantile.
PCT/EP2021/057824 2020-03-27 2021-03-25 Procede de fractionnement d'acides gras a deux carbones de difference par distillation moleculaire WO2021191385A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/914,086 US20230151297A1 (en) 2020-03-27 2021-03-25 Method for the fractionation of fatty acids with a difference of two carbons by molecular distillation
KR1020227036887A KR20220160041A (ko) 2020-03-27 2021-03-25 분자 증류에 의한 2개 탄소의 차이가 있는 지방산의 분별 방법
EP21713697.7A EP4127199A1 (fr) 2020-03-27 2021-03-25 Procede de fractionnement d'acides gras a deux carbones de difference par distillation moleculaire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2003018A FR3108622A1 (fr) 2020-03-27 2020-03-27 Procédé de fractionnement d’acides gras à deux carbones de différence par distillation moléculaire
FRFR2003018 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021191385A1 true WO2021191385A1 (fr) 2021-09-30

Family

ID=71994578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/057824 WO2021191385A1 (fr) 2020-03-27 2021-03-25 Procede de fractionnement d'acides gras a deux carbones de difference par distillation moleculaire

Country Status (5)

Country Link
US (1) US20230151297A1 (fr)
EP (1) EP4127199A1 (fr)
KR (1) KR20220160041A (fr)
FR (1) FR3108622A1 (fr)
WO (1) WO2021191385A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3132430A1 (fr) 2022-02-09 2023-08-11 Polaris Composition comprenant un melange de dha et/ou d’epa et d’un phospholipide d’orgine vegetale

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073254A1 (fr) * 1999-05-31 2000-12-07 Jfs Envirohealth Ltd. Concentration et purification d'esters d'acides gras polyinsatures par couplage distillation transesterification enzymatique
US20090023808A1 (en) 2007-06-29 2009-01-22 Martek Biosciences Corporation Production and Purification of Esters of Polyunsaturated Fatty Acids
WO2011092299A1 (fr) * 2010-01-28 2011-08-04 Polaris Composition huileuse riche en monoglycerides de dha
WO2012119745A1 (fr) 2011-03-08 2012-09-13 Cognis Ip Management Gmbh Procédé de distillation des esters d'acides gras
US20130292242A1 (en) * 2010-10-13 2013-11-07 Cognis Ip Management Gmbh Device and method for distilling temperature-sensitive substances
WO2017062523A2 (fr) * 2015-10-05 2017-04-13 Dsm Ip Assets B.V. Compositions d'huile et leurs procédés de production
CN107216252A (zh) * 2016-03-22 2017-09-29 浙江医药股份有限公司新昌制药厂 一种高含量Omega-3脂肪酸乙酯的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073254A1 (fr) * 1999-05-31 2000-12-07 Jfs Envirohealth Ltd. Concentration et purification d'esters d'acides gras polyinsatures par couplage distillation transesterification enzymatique
US20090023808A1 (en) 2007-06-29 2009-01-22 Martek Biosciences Corporation Production and Purification of Esters of Polyunsaturated Fatty Acids
WO2011092299A1 (fr) * 2010-01-28 2011-08-04 Polaris Composition huileuse riche en monoglycerides de dha
US20130292242A1 (en) * 2010-10-13 2013-11-07 Cognis Ip Management Gmbh Device and method for distilling temperature-sensitive substances
WO2012119745A1 (fr) 2011-03-08 2012-09-13 Cognis Ip Management Gmbh Procédé de distillation des esters d'acides gras
WO2017062523A2 (fr) * 2015-10-05 2017-04-13 Dsm Ip Assets B.V. Compositions d'huile et leurs procédés de production
CN107216252A (zh) * 2016-03-22 2017-09-29 浙江医药股份有限公司新昌制药厂 一种高含量Omega-3脂肪酸乙酯的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Eicosapentaenoic Acid: Sources, Health Effects and Role in Disease Prevention", 1 January 2012, article ROSSI PABLO, GROSSO, N. R.PRAMPARO, M. D. C.NEPOTE, V.: "Fractionation and concentration of omega-3 by molecular distillation", pages: 177 - 203, XP093137423
BREIVIK, HARALD: "Long-chain omega-3 specialty oils", 1 January 2007, BRIDGWATER : OILY PRESS , US , ISBN: 978-0-9552512-1-4, article BREIVIK HARALD: "Long-chain omega-3 specialty oils (passage)", pages: 111 - 117, XP093137413

Also Published As

Publication number Publication date
KR20220160041A (ko) 2022-12-05
FR3108622A1 (fr) 2021-10-01
US20230151297A1 (en) 2023-05-18
EP4127199A1 (fr) 2023-02-08

Similar Documents

Publication Publication Date Title
JP4537707B2 (ja) 高ポリ不飽和脂肪酸含量の天然ポリ不飽和脂肪酸トリグリセライド混合物、その製法およびその使用
EP2854558B1 (fr) Procédé continu d&#39;enrichissement en esters éthyliques de dha d&#39;une huile produite par des microalgues
EP2895628B1 (fr) Huile enrichie en acide arachidonique issue de microorganismes (champignon unicellulaire mortierella alpina) et son procede de preparation
CA2899231C (fr) Biomasse de la microalgue schizochytrium mangrovei et son procede de preparation
TWI343418B (en) Process for production of transesterified oils/fats or triglycerides
WO2013156720A2 (fr) Procédé de raffinage du squalène produit par microalgues
WO2016120558A1 (fr) Procédé d&#39;enrichissement de la biomasse de microalgues du genre traustochytrium en dha et en acides aminés arg et glu
WO2021191385A1 (fr) Procede de fractionnement d&#39;acides gras a deux carbones de difference par distillation moleculaire
FR3019544B1 (fr) Procede de raffinage du squalene produit par microalgues
WO2021105267A1 (fr) Composition d&#39;huile de micro-organismes enrichie en acides gras polyinsatures
EP3390617B1 (fr) Procédé d&#39;enrichissement de protistes en lipides riches en acides gras polyinsaturés, plus particulièrement de classe oméga 3, et sa mise en oeuvre pour la production de ces lipides
EP4281573A1 (fr) Composition d&#39;huile de microorganismes enrichis en diglycerides de dha ou d&#39;epa
WO2023152122A1 (fr) Composition comprenant un melange de dna et/ou d&#39;epa et d&#39;un phospholipide d&#39;orgine vegetale

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21713697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227036887

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021713697

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021713697

Country of ref document: EP

Effective date: 20221027

NENP Non-entry into the national phase

Ref country code: DE