WO2021190248A1 - 机台匹配检测方法、检测***、预警方法以及预警*** - Google Patents

机台匹配检测方法、检测***、预警方法以及预警*** Download PDF

Info

Publication number
WO2021190248A1
WO2021190248A1 PCT/CN2021/078509 CN2021078509W WO2021190248A1 WO 2021190248 A1 WO2021190248 A1 WO 2021190248A1 CN 2021078509 W CN2021078509 W CN 2021078509W WO 2021190248 A1 WO2021190248 A1 WO 2021190248A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
machine
inspection
deviation
result
Prior art date
Application number
PCT/CN2021/078509
Other languages
English (en)
French (fr)
Inventor
汪韦刚
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/436,802 priority Critical patent/US20220328364A1/en
Publication of WO2021190248A1 publication Critical patent/WO2021190248A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • H01L22/22Connection or disconnection of sub-entities or redundant parts of a device in response to a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/28Scanning microscopes
    • H01J2237/2813Scanning microscopes characterised by the application
    • H01J2237/2817Pattern inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/282Determination of microscope properties
    • H01J2237/2826Calibration

Definitions

  • This application relates to the field of semiconductor semiconductor device application technology, and in particular to a machine matching detection method, a detection system, an early warning method, and an early warning system.
  • the embodiments of the present application provide a machine matching detection method, a detection system, an early warning method, and an early warning system.
  • the deviation between different line width scanning electron microscope machines can be obtained through a new matching calibration method, and the difference can be detected in time.
  • the measurement difference between the linewidth scanning electron microscope machines avoids the instability of the manufacturing process caused by the measurement difference of the machines.
  • an embodiment of the present application provides a machine matching inspection method, including: providing a wafer to be inspected, a first inspection machine and a second inspection machine, the wafer to be inspected includes a first target inspection area A second target detection area and a third target detection area, wherein the first target detection area and the second target detection area are independent of each other, and the third target detection area includes at least the first target detection area and the second target detection area;
  • the inspection machine measures the key dimensions of the first target detection area to obtain the first detection result;
  • the second inspection machine measures the key dimensions of the third target detection area to obtain the third detection result; Measure the critical dimensions of the second target detection area to obtain the second detection result; obtain the measurement difference between the first detection machine and the second detection machine based on the first detection result, the second detection result, and the third detection result; The difference is measured to obtain the degree of deviation between the second inspection machine and the first inspection machine.
  • this application adopts the ABA calibration detection method (wherein the first A indicates that the first detection machine detects the key dimensions of the first target detection area, and B indicates the second detection machine Detect the key size of the third target detection area, the second A indicates that the first target detection machine detects the key size of the second target detection detection area) Get the distance between the first detection machine and the second detection machine
  • the detection is more efficient, and the measurement differences between scanning electron microscope machines with different line widths can be found in time, thereby avoiding process instability caused by machine measurement differences.
  • the first target detection area includes M first detection units
  • the second target detection area includes H second detection units
  • the third target detection area includes L third detection units
  • M and H are greater than or equal to 1 is a natural number
  • L is a natural number greater than or equal to the sum of M and H
  • the first detection result is the average value obtained after measuring the key dimensions of M first detection units
  • the second detection result is the second detection of H
  • the average value obtained after the key dimensions of the unit are measured
  • the third detection result is the average value obtained after the key dimensions of the L third detection units are measured.
  • the embodiment of the present application also provides a machine matching detection system for detecting the degree of deviation between machines, including: a first acquisition module for acquiring a first detection result, the first detection result being the first detection machine The result of measuring the critical dimensions of the first target inspection area of the wafer to be inspected; the second acquisition module is used to acquire the second inspection result, and the second inspection result is the second target of the wafer to be inspected by the first inspection machine The measurement result of the key size of the inspection area; the third acquisition module is used to acquire the third inspection result, the third inspection result is the measurement result of the key dimension of the third target inspection area of the wafer to be inspected by the second inspection machine ; The first processing module, which connects the first detection module, the second detection module and the third detection module, and obtains the first detection machine and the second detection machine based on the first detection result, the second detection result and the third detection result ⁇ measurement difference; the second processing module, connected to the first processing module, based on the measurement difference to obtain the deviation degree of the second detection machine and the first detection machine.
  • the deviation between the first inspection machine and the second inspection machine is obtained through a more efficient calibration detection method, and the measurement difference between the scanning electron microscope machines with different line widths can be found in time, thereby It avoids the instability of the manufacturing process caused by the difference in machine measurement.
  • the embodiment of the present application also provides a machine early warning method, including: providing a wafer to be inspected, a first inspection machine and a second inspection machine, the wafer to be inspected includes a first target detection area and a second target detection area And a third target detection area, wherein the first target detection area and the second target detection area are independent of each other, and the third target detection area includes at least the first target detection area and the second target detection area; based on the wafer to be inspected, the above
  • the machine matching detection method detects the deviation of the first detection machine and the second detection machine, and obtains the deviation of the first detection machine and the second detection machine; if the deviation is less than the deviation threshold , To issue an early warning message.
  • the deviation degree between the first inspection machine and the second inspection machine is obtained through a more efficient calibration detection method, and the obtained deviation degree is compared with the preset deviation degree, which does not meet the preset deviation. For deviations, an early warning message is issued to notify relevant staff in time to inspect and maintain the machine to improve the stability of the process.
  • the wafer to be inspected includes at least one of a product wafer and a monitoring wafer.
  • wafers to be inspected include product wafers and monitoring wafers; acquiring the deviation of the first inspection and inspection machine and the second inspection machine and if the deviation is less than the threshold of the deviation, issuing an early warning message, including: based on monitoring For wafers, perform deviation detection on the first inspection machine and the second inspection machine, and obtain the first deviation of the first inspection machine and the second inspection machine; if the first deviation is less than the first deviation threshold, Based on the product wafer, perform deviation detection on the first inspection machine and the second inspection machine, and obtain the second deviation of the first inspection machine and the second inspection machine; if the second deviation is less than the second deviation Threshold, to issue an early warning message. First, check the deviation of the machine by monitoring the wafer.
  • the machine may have a large matching error at this time, and then use the product wafer to check the deviation of the machine. If the deviation is less than the second deviation threshold, an early warning message will be sent out. Through double detection, the stability of the manufacturing process is further ensured and the workload of related staff is reduced.
  • performing deviation detection on the first detection machine and the second detection machine includes: performing deviation detection based on a preset interval time, or performing deviation detection in real time. Set the detection time for machine deviation according to actual requirements. In occasions with low accuracy requirements, timing detection can save energy and improve process efficiency; in situations with high accuracy requirements, real-time detection can improve the accuracy of detection.
  • the early warning method of the machine is written into the test program, and the deviation detection is performed when the first detection machine and the second detection machine are running; after the early warning module sends out the warning information, it also includes: the first detection machine and the second detection machine.
  • the testing machine stops measuring. When the deviation degree between different line width scanning electron microscope machines does not meet the preset deviation degree, the first inspection machine and the second inspection machine stop measuring to prevent the production of inferior wafers, thereby saving manufacturing costs.
  • the embodiment of the present application also provides a machine early warning system for detecting the degree of deviation between machines, including: a first acquisition module for acquiring a first detection result, the first detection result being the first detection machine The result of measuring the key size of the first target inspection area of the wafer to be inspected; the second acquisition module is used to acquire the second inspection result, and the second inspection result is the second target inspection of the wafer to be inspected by the first inspection machine The result of measuring the key size of the area; the third acquisition module is used to obtain the third inspection result, and the third inspection result is the result of measuring the key size of the third target inspection area of the wafer to be inspected by the second inspection machine; The first processing module is connected to the first detection module, the second detection module, and the third detection module, and based on the first detection result, the second detection result, and the third detection result, obtains the information between the first detection machine and the second detection machine Measuring the difference; the second processing module, connected to the first processing module, based on the measurement difference to obtain the degree of deviation between the
  • the deviation degree between the first inspection machine and the second inspection machine is obtained through a more efficient calibration detection method, and the obtained deviation degree is compared with the preset deviation degree, which does not meet the preset deviation. For deviations, an early warning message is issued to notify relevant staff in time to inspect and maintain the machine to improve the stability of the process.
  • FIG. 1 is a flowchart of a machine matching detection method according to an embodiment of the application
  • FIG. 2 is a schematic diagram of the principle of obtaining a first detection result in an embodiment of the application
  • FIG. 3 is a schematic diagram of the principle of obtaining a second detection result in an embodiment of the application.
  • FIG. 4 is a schematic diagram of the principle of obtaining a third detection result in an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a machine matching detection system related to another embodiment of the application.
  • 6 and 7 are schematic diagrams of the principle of determining the first detection machine and the second detection machine from N detection machines according to another embodiment of the application;
  • FIG. 8 is a flowchart of a machine early warning method according to another embodiment of this application.
  • FIG. 9 is a flowchart of a machine early warning method according to still another embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a machine early warning system related to another embodiment of this application.
  • the current ABBA calibration method (where the first A indicates that the first inspection machine detects the key dimensions of the first target detection area, and the first B indicates that the second inspection machine performs the key dimensions of the first target detection area Detection, the second B indicates that the second target detection machine detects the key size of the second target detection area, and the second A indicates that the first target detection machine detects the key size of the second target detection area) It is complicated, has a certain hysteresis and inefficiency, and cannot avoid the measurement difference of the linewidth scanning electron microscope machine in time, which will affect the manufacturing process.
  • an embodiment of the present application provides a machine matching inspection method, which provides a wafer to be inspected, a first inspection machine and a second inspection machine.
  • the wafer to be inspected includes a first target inspection area and a second inspection machine.
  • the first detection machine measures the key dimensions of the first target detection area to obtain the first detection result; the second detection machine measures the key dimensions of the third target detection area to obtain the third detection result; the first detection machine compares the second The key dimensions of the target detection area are measured to obtain the second detection result; based on the first detection result, the second detection result, and the third detection result, the measurement difference between the first detection machine and the second detection machine is obtained; based on the measurement difference Obtain the degree of deviation between the second inspection machine and the first inspection machine.
  • FIG. 1 is a flowchart of the machine matching detection method involved in this embodiment
  • FIG. 2 is a schematic diagram of the principle of obtaining a first detection result in this embodiment
  • FIG. 3 is a schematic diagram of the principle of obtaining a second detection result in this embodiment
  • 4 is a schematic diagram of the principle of obtaining the third detection result in this embodiment.
  • the machine matching detection method includes:
  • Step 11 is performed to provide the wafer to be inspected, the first inspection machine, and the second inspection machine.
  • the first inspection machine and the second inspection machine are both line-width scanning electron microscope machines (CDSEM machines).
  • CDSEM machines line-width scanning electron microscope machines
  • the machine matching detection method in this embodiment can be applied to detect the deviation between two different machines, and can also be applied to the deviation detection of any two of more than two different machines.
  • the wafer to be inspected includes a first target inspection area, a second target inspection area, and a third target inspection area.
  • the first target inspection area and the second target inspection area are independent of each other, and the third target inspection area includes at least the first target inspection area.
  • Area and the second target inspection area; the wafer to be inspected is used for the deviation inspection of the first inspection machine and the second inspection machine.
  • each small square represents a inspection unit 101.
  • the first target detection area 110 includes at least M first detection units, and M is a natural number greater than or equal to 1.
  • the second target detection area 120 includes at least H second detection units, and H is a natural number greater than or equal to 1.
  • the third target detection area includes at least the first target detection area 110 and the second target detection area 120.
  • the third target detection area includes the first target detection area 110 and the second target detection area 120.
  • Step 12 is performed and referring to FIG. 2, the first inspection machine measures the critical dimensions of the first inspection area 110 of the wafer 100 to be inspected, and obtains the first inspection result.
  • the first detection result is obtained. Specifically, the first detection result is the average of 40 first unit detection results.
  • Step 13 is performed and referring to FIG. 3, the second inspection machine performs critical dimensions of the third inspection area of the wafer 100 to be inspected (in this embodiment, the third inspection area is the first inspection area 110 and the second inspection area 120). Measure to obtain the third detection result.
  • the second inspection machine is used to measure the critical dimensions of each of the 80 third inspection units 101 to obtain the third unit inspection result of each of the inspection units 101.
  • the third detection result is obtained.
  • the third detection result is the average value of 80 third unit detection results.
  • Step 14 is performed and referring to FIG. 4, the first inspection machine measures the critical dimensions of the second inspection area 120 of the wafer 100 to be inspected to obtain the second inspection result.
  • the second detection result is obtained.
  • the second detection result is the average of 40 second unit detection results.
  • Step 15 is executed to obtain the measurement difference between the first inspection machine and the second inspection machine. Specifically, based on the first detection result, the second detection result, and the third detection result, the measurement difference between the first detection machine and the second detection machine is acquired.
  • the measurement difference is obtained based on a preset difference calculation formula:
  • Step 16 is executed to obtain the degree of deviation between the second inspection machine and the first inspection machine. Specifically, the degree of deviation between the second inspection machine and the first inspection machine is acquired based on the measurement difference.
  • the degree of deviation is obtained based on a preset matching calculation formula:
  • this ABA test method not only retains the accuracy, but also simplifies the machine deviation test process, and improves the efficiency of machine matching test.
  • the following will combine specific principles to demonstrate the effect of the scheme provided in this implementation:
  • the errors produced by different CDSEM machines on the wafer to be inspected include ⁇ T and ⁇ C; among them, ⁇ T represents the measurement error, that is, the measurement error of the same wafer to be inspected by different CDSEM machines, which is a vector; ⁇ C represents Graphic variation error and charging error are a vector.
  • the pattern variation error refers to the measurement error of different inspection areas of the same wafer to be inspected; the charging error refers to the error caused by continuous inspection of the same wafer to be inspected.
  • ⁇ C1 represents the graphic variation error and charging error calculated in this way.
  • ⁇ C2 represents the graphic variation error and charging error calculated in this way.
  • the first detection result A1 is the result obtained by the first detection machine on the first detection area
  • the second detection result A2 is the result obtained by the first detection machine on the second detection area.
  • the same machine is tested, and the difference in measurement is the same.
  • the third detection result is obtained by the second detection machine on the third detection area
  • the third detection area includes the first detection area and the second detection area that are independent of each other, and the first detection machine compares the first detection area to the first detection area.
  • this embodiment takes the third detection area as the sum of the first detection area and the second detection area as an example for description only to make the description of the detection method of this application clear, and does not constitute a limitation to this solution;
  • the third detection area may include other detection areas in addition to the first detection area and the second detection area, and the specific range of the third detection area is set according to the actual production process.
  • the deviation between the first inspection machine and the second inspection machine is obtained by the ABA calibration detection method, the detection is more efficient, and the scanning electron microscope machine with different line widths can be found in time.
  • the measurement difference between the two thus avoiding the instability of the process caused by the measurement difference of the machine.
  • FIG. 5 is a schematic diagram of the structure of the machine matching detection system involved in this embodiment.
  • the machine matching detection system provided in this embodiment will be described in detail below with reference to the accompanying drawings. The parts that are the same as or corresponding to the above embodiment will not be described in detail below.
  • the machine matching detection system 300 is used to detect the deviation between machines, including:
  • the first acquiring module 301 is configured to acquire a first inspection result, and the first inspection result is the result of the first inspection machine measuring the key dimensions of the first target inspection area of the wafer to be inspected.
  • the second acquisition module 302 is configured to acquire a second inspection result, and the second inspection result is the result of the measurement of the critical dimensions of the second target inspection area of the wafer to be inspected by the first inspection machine.
  • the third acquiring module 303 is configured to acquire a third inspection result, and the third inspection result is the result of the second inspection machine measuring the critical dimensions of the third target inspection area of the wafer to be inspected.
  • the first processing module 304 is connected to the first detection module 301, the second detection module 302, and the third detection module 303. Based on the first detection result, the second detection result, and the third detection result, obtain the first detection machine and the second detection module. The measurement difference of the detection machine.
  • the second processing module 305 is connected to the first processing module 304, and obtains the degree of deviation between the second inspection machine and the first inspection machine based on the measurement difference.
  • the first detection machine measures the key dimensions of the first target detection area to obtain the first detection result
  • the second detection machine measures the key dimensions of the third target detection area to obtain the third detection result
  • a detection machine measures the key dimensions of the second target detection area to obtain the second detection result
  • the first detection machine and the second detection machine are obtained ⁇ measurement difference; based on the measurement difference to obtain the deviation degree of the second inspection machine and the first inspection machine.
  • selecting the first inspection machine and the second inspection machine from N machines includes the following two methods:
  • Method 1 Referring to Fig. 6, choose two machines from N machines as the first detection machine and the second detection machine respectively, and use the machine matching detection method provided by an embodiment of the present application to compare the first detection machine Perform matching detection between the second detection machine and the second detection machine; repeat the above steps until the deviation detection between two of the N machines is completed.
  • Method 2 Referring to Fig. 7, one target selection machine is selected from N machines as the first detection machine, and one machine is selected from the remaining N-1 machines as the second detection machine, using an embodiment of the present application
  • the provided machine matching detection method performs matching detection on the first detection machine and the second detection machine; repeat the above steps until the deviation between each of the N-1 remaining machines and the target detection machine is completed Detection.
  • this embodiment obtains the deviation between the first inspection machine and the second inspection machine through a more efficient calibration detection method, and finds the measurement difference between the scanning electron microscope machines with different line widths in time , thus avoiding the instability of the process caused by the difference of the machine measurement.
  • each unit involved in this embodiment is a logical unit.
  • a logical unit can be a physical unit, a part of a physical unit, or multiple physical units. The combination of units is realized.
  • this embodiment does not introduce units that are not closely related to solving the technical problems proposed by the present application, but this does not indicate that there are no other units in this embodiment.
  • FIG. 8 is a flowchart of the machine early warning method involved in this embodiment.
  • the implementation details of the machine early warning method of this embodiment will be described in detail below with reference to the accompanying drawings. The same or corresponding parts of the foregoing embodiments will not be described in detail below.
  • the machine early warning methods include:
  • Step 21 is performed to obtain the deviation degree between the second inspection machine and the first inspection machine by using the product wafer or the monitoring wafer.
  • the monitoring wafer is a non-product wafer (NPW).
  • a wafer to be inspected, a first inspection machine and a second inspection machine are provided.
  • the wafer to be inspected includes at least one of a product wafer and a monitoring wafer;
  • the machine performs deviation detection.
  • the deviation detection process is the same as that of the specific embodiment, so I will not repeat it here.
  • the deviation detection of the first inspection machine and the second inspection machine includes the following two methods:
  • Method 1 Perform deviation detection of the first inspection machine and the second inspection machine based on a preset interval; for example, perform the first inspection machine and the second inspection machine every 1, 3, 5, 6 or 8 hours Perform deviation detection.
  • Method 2 Perform real-time deviation detection on the first inspection machine and the second inspection machine.
  • timing detection can save energy and improve process efficiency; in situations with high accuracy requirements, real-time detection can improve the accuracy of detection.
  • the results of the deviation detection can be counted and monitored, and converted into a table form or a graph form.
  • the deviation detection results of the first inspection machine and the second detection machine are acquired in real time, the deviation detection results are counted and monitored, and they are uploaded to the production automation control system (MM system), and the matching detection results are converted into Table form or graph form, that is, output a SPC form through the MM system.
  • MM system production automation control system
  • Table form or graph form that is, output a SPC form through the MM system.
  • step 23 is executed, and the first detection machine and the second detection machine operate normally; if the first detection machine If the deviation from the second detection machine is less than the deviation threshold, step 24 is executed to issue an early warning message.
  • Step 24 to send out an early warning message.
  • the issuing of early warning information can notify relevant staff through PAN to inspect and maintain the machine.
  • the above-mentioned machine early warning method is written into the test program, and the above-mentioned deviation detection is performed when the first detection machine and the second detection machine are running. That is, the deviation degree between different CDSEM machines is automatically detected.
  • the early warning information is issued, it is also used to control the first inspection machine and the second inspection machine to stop the measurement process to prevent subsequent production of inferior wafers, thereby saving manufacturing costs.
  • the deviation degree between the first inspection machine and the second inspection machine is obtained through a more efficient calibration detection method, and the obtained deviation degree is compared with the preset deviation degree, which does not meet the preset deviation
  • the degree will issue an early warning message to notify relevant staff in time to inspect and maintain the machine to improve the stability of the process.
  • Another embodiment of the present application relates to a machine early warning method. This embodiment is roughly the same as the previous embodiment. The difference is that this embodiment uses a combination of monitoring wafers and product wafers to perform the machine early warning method. Implement.
  • FIG. 9 is a flowchart of the machine early warning method involved in this embodiment.
  • the implementation details of the machine early warning method of this embodiment will be described in detail below.
  • the same or corresponding parts as the above embodiment will not be described in detail below.
  • the machine early warning methods include:
  • Step 31 is executed to obtain the first degree of deviation by using the monitoring wafer.
  • the deviation detection is performed on the first inspection machine and the second inspection machine, and the first deviation of the first inspection machine and the second inspection machine is obtained.
  • the deviation detection process is the same as that of the specific embodiment, and it is not repeated here.
  • Step 32 is executed. Is the first deviation degree smaller than the first deviation degree threshold?
  • step 33 if the first degree of deviation is greater than or equal to the first degree of deviation threshold, step 33 is executed, and the first detection machine and the second detection machine operate normally; if the first degree of deviation is less than the first degree of deviation threshold, step 34 is executed. Use product wafers to obtain the second degree of deviation.
  • Step 34 is performed to obtain the second degree of deviation by using the product wafer.
  • the deviation detection is performed on the first inspection machine and the second inspection machine to obtain the second deviation of the first inspection machine and the second inspection machine.
  • the deviation detection process is the same as that of the specific embodiment, and it is not repeated here.
  • step 36 if the second degree of deviation is greater than or equal to the second degree of deviation threshold, step 36 is executed, and the first detection machine and the second detection machine operate normally; if the second degree of deviation is less than the second degree of deviation threshold, step 37 is executed. Issue an early warning message.
  • the first degree of deviation threshold is the degree of deviation required for monitoring wafer inspection
  • the second degree of deviation threshold is the degree of deviation required for product wafer inspection.
  • the relationship with the second degree of deviation threshold is limited, that is, in a specific implementation process, the second degree of deviation threshold may be less than the first degree of deviation threshold, or may be greater than the first degree of deviation threshold, or both can be set equal.
  • Step 37 to send out an early warning message.
  • the issuing of early warning information can notify relevant staff through PAN to inspect and maintain the machine.
  • the deviation detection of the machine is performed by monitoring the wafer. If the first deviation does not meet the first deviation threshold, the machine may have a large matching error at this time. At this time, the product wafer is used to perform the deviation detection on the machine. Deviation detection, if the second deviation degree does not meet the second deviation degree threshold, an early warning message will be sent out.
  • the double detection method further ensures the stability of the process and reduces the workload of related staff.
  • FIG. 10 is a schematic diagram of the structure of the machine early warning system involved in this embodiment.
  • the implementation details of the machine early warning system of this embodiment will be described in detail below. The same or corresponding parts will not be described in detail below.
  • a machine early warning system 400 is used to detect deviations between machines, including:
  • the first acquiring module 401 is configured to acquire a first inspection result, and the first inspection result is the result of the first inspection machine measuring the key dimensions of the first target inspection area of the wafer to be inspected.
  • the second acquisition module 402 is configured to acquire a second inspection result, the second inspection result being the result of the first inspection machine measuring the critical dimensions of the second target inspection area of the wafer to be inspected.
  • the third acquisition module 403 is configured to acquire a third inspection result, and the third inspection result is a measurement result of the critical dimension of the third target inspection area of the wafer to be inspected by the second inspection machine.
  • the first processing module 404 is connected to the first detection module 401, the second detection module 402, and the third detection module 403, and based on the first detection result, the second detection result, and the third detection result, obtains the first detection machine and the second detection module.
  • the measurement difference of the detection machine is connected to the first detection module 401, the second detection module 402, and the third detection module 403, and based on the first detection result, the second detection result, and the third detection result.
  • the second processing module 405 is connected to the first processing module 404 to obtain the degree of deviation between the second inspection machine and the first inspection machine based on the measurement difference.
  • the third processing module 406, connected to the second processing module 405, is used to determine whether the deviation degree meets the deviation degree threshold, and if the deviation degree is less than the deviation degree threshold, a control signal is sent.
  • the early warning module 407 is connected to the third processing module 406 and sends out early warning information based on the control signal.
  • the early warning module is a virtual module independent of the first detection machine and the second detection machine; in other embodiments, the early warning module can be integrated in the first detection machine or the second detection machine. 2. At least one of the inspection machines.
  • the first detection machine measures the key dimensions of the first target detection area to obtain the first detection result
  • the second detection machine measures the key dimensions of the third target detection area to obtain the third detection result
  • a detection machine measures the key dimensions of the second target detection area to obtain the second detection result
  • the first detection machine and the second detection machine are obtained ⁇ measurement difference; based on the measurement difference to obtain the deviation degree of the second inspection machine and the first inspection machine.
  • the first inspection machine and the second inspection machine operate normally; if the deviation between the first inspection machine and the second inspection machine is If it is less than the deviation threshold, the early warning module 407 sends out early warning information.
  • the deviation degree between the first inspection machine and the second inspection machine is obtained through a more efficient calibration detection method, and the obtained deviation degree is compared with the preset deviation degree, which does not meet the preset deviation
  • the degree will issue an early warning message to notify relevant staff in time to inspect and maintain the machine to improve the stability of the process.
  • each unit involved in this embodiment is a logical unit.
  • a logical unit can be a physical unit, a part of a physical unit, or multiple physical units. The combination of units is realized.
  • this embodiment does not introduce units that are not closely related to solving the technical problems proposed by the present application, but this does not indicate that there are no other units in this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一种机台匹配检测方法、检测***、预警方法以及预警***,机台匹配检测方法包括:提供待检测晶圆(100)、第一检测机台(201)和第二检测机台(202);第一检测机台(201)对第一目标检测区域(110)进行测量,获取第一检测结果(A1);第二检测机台(202)对第三目标检测区域进行测量,获取第三检测结果(B);第一检测机台(201)对第二目标检测区域(120)进行测量,获取第二检测结果(A2);基于第一检测结果(A1)、第二检测结果(A2)和第三检测结果(B),获取第一检测机台(201)与第二检测机台(202)的测量差异;基于测量差异获取第二检测机台(202)与第一检测机台(201)的偏差度。能够及时发现不同线宽扫描式电子显微镜机台之间的测量差异,避免了因机台测量差异造成的制程不稳定性。

Description

机台匹配检测方法、检测***、预警方法以及预警***
交叉引用
本申请引用于2020年3月24日递交的名称为“机台匹配检测方法、检测***、预警方法以及预警***”的第202010215055.X号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及半导体半导体器件应用技术领域,特别涉及一种机台匹配检测方法、检测***、预警方法以及预警***。
背景技术
随着半导体集成电路器件特征尺寸的不断缩小,DRAM的关键尺寸也变得越来越小,因此对关键尺寸测量的精准度,稳定性以及可靠性变得更为重要。不同的扫描式电子显微镜机台测量结果具有偏差,因而会影响制程的精准性以及稳定性,因此在半导体制程中需检测不同的扫描式电子显微镜机台的偏差,即检测不同扫描式电子显微镜机台的偏差度。
然而,目前检测不同扫描式电子显微镜机台的偏差度的检测方法具有一定的滞后性和低效性,从而对制程造成影响。
发明内容
本申请实施例提供一种机台匹配检测方法、检测***、预警方法以及预警***,通过一种新的匹配校准方法获取不同线宽扫描式电子显微镜机台之间的偏差度,能够及时发现不同线宽扫描式电子显微镜机台之间的测量差异,避免了因机台测量差异造成的制程不稳定性。
为解决上述技术问题,本申请实施例提供了一种机台匹配检测方法,包括:提供待检测晶圆、第一检测机台和第二检测机台,待检测晶圆包括第一目标检测区域、第二目标检测区域以及第三目标检测区域,其中,第一目标检测区域与第二目标检测区域相互独立,第三目标检测区域至少包含第一目标检测区域和第二目标检测区域;第一检测机台对第一目标检测区域的关键尺寸进行测量,获取第一检测结果;第二检测机台对第三目标检测区域的关键尺寸进行测量,获取第三检测结果;第一检测机台对第二目标检测区域的关键尺寸进行测量,获取第二检测结果;基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异;基于测量差异获取第二检测机台与第一检测机台的偏差度。
相对于相关技术的校准方式而言,本申请通过ABA的校准检测方法(其中,第一个A表示第一检测机台对第一目标检测区域的关键尺寸进行检测,B表示第二检测机台对第三目标检测区域的关键尺寸进行检测,第二个A表示第一目标检测机台对第二目标检测检测区域的关键尺寸进行检测)获取第一检测机台与第二检测机台之间的偏差度,检测更加高效,可以及时发现不同线宽扫描式电子显微镜机台之间的测量差异,从而避免了因机台测量差异造成的制程不稳定性。
另外,基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异,包括:基于预设差异计算公式获取测量差异;预设差异计算公式为:Δ=(A1-2B+A2)/2,Δ表示测量差异,A1表示第一检测结果,B表示第三检测结果,A2表示第二检测结果。
另外,第一目标检测区域中包括M个第一检测单元,第二目标检测区域 中包括H个第二检测单元,第三目标检测区域中包括L个第三检测单元;M和H为大于等于1的自然数,L为大于等于M与H之和的自然数;第一检测结果为对M个第一检测单元的关键尺寸进行测量后获取的平均值;第二检测结果为对H个第二检测单元的关键尺寸进行测量后获取的平均值;第三检测结果为对L个第三检测单元的关键尺寸进行测量后获取的平均值。
本申请实施例还提供了一种机台匹配检测***,用于检测机台之间的偏差度,包括:第一获取模块,用于获取第一检测结果,第一检测结果为第一检测机台对待检测晶圆的第一目标检测区域的关键尺寸进行测量的结果;第二获取模块,用于获取第二检测结果,第二检测结果为第一检测机台对待检测晶圆的第二目标检测区域的关键尺寸进行测量的结果;第三获取模块,用于获取第三检测结果,第三检测结果为第二检测机台对待检测晶圆的第三目标检测区域的关键尺寸进行测量的结果;第一处理模块,连接第一检测模块、第二检测模块和第三检测模块,基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异;第二处理模块,连接第一处理模块,基于测量差异获取第二检测机台与第一检测机台的偏差度。
相对于相关技术而言,通过更加高效的校准检测方法获取第一检测机台与第二检测机台之间的偏差度,及时发现不同线宽扫描式电子显微镜机台之间的测量差异,从而避免了因机台测量差异造成的制程不稳定性。
本申请实施例还提供了一种机台预警方法,包括:提供待检测晶圆、第一检测机台和第二检测机台,待检测晶圆包括第一目标检测区域、第二目标检测区域以及第三目标检测区域,其中,第一目标检测区域与第二目标检测区域相互独立,第三目标检测区域至少包含第一目标检测区域和第二目标检测区域; 基于待检测晶圆,采用上述机台匹配检测方法对第一检测机台和第二检测机台进行偏差度检测,获取所述第一检测检测机台和所述第二检测机台的偏差度;若偏差度小于偏差度阈值,发出预警信息。
相比相关技术而言,通过更加高效的校准检测方法获取第一检测机台与第二检测机台之间的偏差度,并将获取的偏差度与预设偏差度进行比较,不满足预设偏差度则发出预警信息,及时通知相关工作人员对机台进行检查和维护,提高制程稳定性。
另外,待检测晶圆至少包括产品晶圆和监控晶圆中的其中一种。
另外,待检测晶圆包括产品晶圆和监控晶圆;获取第一检测检测机台和第二检测机台的偏差度以及若所述偏差度小于偏差度阈值,发出预警信息,包括:基于监控晶圆,对第一检测机台和第二检测机台进行偏差度检测,获取第一检测机台和第二检测机台的第一偏差度;若第一偏差度小于第一偏差度阈值,基于产品晶圆,对第一检测机台和第二检测机台进行偏差度检测,获取第一检测机台和第二检测机台的第二偏差度;若第二偏差度小于第二偏差度阈值,发出预警信息。先通过监控晶圆对机台进行偏差度检测,若偏差度小于第一偏差度阈值,此时机台可能出现较大的匹配误差,此时再采用产品晶圆对机台进行偏差度检测,若偏差度小于第二偏差度阈值再发出预警信息,通过双重检测的方式,进一步保证制程的稳定性,同时减少相关工作人员的工作负担。
另外,对第一检测机台和第二检测机台进行偏差度检测,包括:基于预设间隔时间进行偏差度检测,或实时进行偏差度检测。通过实际需求设置对机台偏差度的检测时间,在精度要求不高的场合,通过定时检测可以节约能源,提高制程效率;在精度要求高的场合通过实时检测可以提高检测的精确性。
另外,将机台预警方法写入测试程式,在第一检测机台和第二检测机台运行时,进行偏差度检测;预警模块发出预警信息后,还包括:第一检测机台和第二检测机台停止测量。当不同线宽扫描式电子显微镜机台之间的偏差度不满足预设偏差度时第一检测机台和第二检测机台停止测量,防止制造出劣质晶圆,从而节约制造成本。
本申请实施例还提供了一种机台预警***,用于检测机台之间的偏差度,包括:第一获取模块,用于获取第一检测结果,第一检测结果为第一检测机台对待检测晶圆的第一目标检测区域的关键尺寸进行测量的结果;第二获取模块,用于获取第二检测结果,第二检测结果为第一检测机台对待检测晶圆的第二目标检测区域的关键尺寸进行测量的结果;第三获取模块,用于获取第三检测结果,第三检测结果为第二检测机台对待检测晶圆的第三目标检测区域的关键尺寸进行测量的结果;第一处理模块,连接第一检测模块、第二检测模块和第三检测模块,基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异;第二处理模块,连接第一处理模块,基于测量差异获取第二检测机台与第一检测机台的偏差度;第三处理模块,连接第二处理模块,用于判断偏差度是否满足偏差度阈值,若偏差度小于偏差度阈值,发出控制信号;预警模块,连接第三处理模块,基于控制信号发出预警信息。
相比相关技术而言,通过更加高效的校准检测方法获取第一检测机台与第二检测机台之间的偏差度,并将获取的偏差度与预设偏差度进行比较,不满足预设偏差度则发出预警信息,及时通知相关工作人员对机台进行检查和维护,提高制程稳定性。
附图说明
图1为本申请一实施例涉及的机台匹配检测方法的流程图;
图2为本申请一实施例中获取第一检测结果的原理示意图;
图3为本申请一实施例中获取第二检测结果的原理示意图;
图4为本申请一实施例中获取第三检测结果的原理示意图;
图5为本申请另一实施例涉及的机台匹配检测***的结构示意图;
图6及图7为本申请另一实施例从N个检测机台中确定第一检测机台和第二检测机台的原理示意图;
图8为本申请又一实施例涉及的机台预警方法的流程图;
图9为本申请再一实施例涉及的机台预警方法的流程图;
图10为本申请还一实施例涉及的机台预警***的结构示意图。
具体实施方式
目前ABBA的校准方法(其中,第一个A表示第一检测机台对第一目标检测区域的关键尺寸进行检测,第一个B表示第二检测机台对第一目标检测区域的关键尺寸进行检测,第二个B表示第二目标检测机台对第二目标检测区域的关键尺寸进行检测,第二个A表示第一目标检测机台对第二目标检测检测区域的关键尺寸进行检测)流程复杂,具有一定的滞后性和低效性,不能及时避免线宽扫描式电子显微镜机台的测量差异,从而对制程造成的影响。
为解决上述问题,本申请一实施例提供了一种机台匹配检测方法,提供待检测晶圆、第一检测机台和第二检测机台,待检测晶圆包括第一目标检测区域、第二目标检测区域以及第三目标检测区域,其中,第一目标检测区域与第二目标检测区域相互独立,第三目标检测区域至少包含第一目标检测区域和第二目标检测区域;第一检测机台对第一目标检测区域的关键尺寸进行测量,获 取第一检测结果;第二检测机台对第三目标检测区域的关键尺寸进行测量,获取第三检测结果;第一检测机台对第二目标检测区域的关键尺寸进行测量,获取第二检测结果;基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异;基于测量差异获取第二检测机台与第一检测机台的偏差度。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。以下各个实施例的划分是为了描述方便,不应对本申请的具体实现方式构成任何限定,各个实施例在不矛盾的前提下可以相互结合,相互引用。
图1为本实施例涉及的机台匹配检测方法的流程图,图2为本实施例中获取第一检测结果的原理示意图,图3为本实施例中获取第二检测结果的原理示意图,图4为本实施例中获取第三检测结果的原理示意图,下面结合附图对本实施例的机台匹配检测方法的实现细节进行具体说明。
参考图1,机台匹配检测方法包括:
执行步骤11,提供待检测晶圆、第一检测机台和第二检测机台。
具体地,在本实施例中,第一检测机台和第二检测机台均为线宽扫描式电子显微镜机台(CDSEM机台)。本实施例中的机台匹配检测方法可以应用于检测两个不同的机台之间的偏差度,也可以应用于多于两个不同的机台中的任意两个机台的偏差度检测。
待检测晶圆包括第一目标检测区域、第二目标检测区域以及第三目标检测区域,其中,第一目标检测区域与第二目标检测区域相互独立,第三目标检测区域至少包含第一目标检测区域和第二目标检测区域;待检测晶圆用于对第一检测机台和第二检测机台进行偏差度检测。
具体地,待检测晶圆被划分为多个检测单元,如图2~图4所示,每一个小正方形都代表一个检测单元101。
第一目标检测区域110至少包括M个第一检测单元,M为大于等于1的自然数;在本实施例中,第一目标检测区域110包括40个第一检测单元(即M=40),即图2中第一检测区域110内包括的标记1~40的第一检测单元。需要说明的是,本实施例以40个第一检测单元为例进行论述是为了本领域技术人员能够理解本方案的检测流程,并不对本方案构成限定,在具体应用中可以根据划分的检测单元的尺寸大小来确定所需的第一检测单元个数。
第二目标检测区域120至少包括H个第二检测单元,H为大于等于1的自然数;在本实施例中,第二目标检测区域120包括40个第二检测单元(即H=40),即图4中第二检测区域120内包括的标记1~40的第二检测单元。需要说明的是,本实施例以40个第二检测单元为例进行论述是为了本领域技术人员能够理解本方案的检测流程,并不对本方案构成限定,在具体应用中可以根据划分的检测单元的尺寸大小来确定所需的第二检测单元个数。
第三目标检测区域至少包含第一目标检测区域110和第二目标检测区域120,在本实施例中,第三目标检测区域包括第一目标检测区域110与第二目标检测区域120。
具体地,第三目标检测区域至少包括L个第三检测单元,L为大于等于 H和M之和的自然数;在本实施例中,第三目标检测区域包括80个第三检测单元(即L=H+M=80),80个第三检测单元即图4中第一检测区域110中标记为1~40的检测单元以及第二检测区域120中标记为1~40的检测单元。
执行步骤12,参考图2,第一检测机台对待检测晶圆100的第一检测区域110的关键尺寸进行测量,获取第一检测结果。
第一检测机台用于测量40个(M=40)第一检测单元中每一个第一检测单元的关键尺寸,以获得每一个第一检测单元的第一单元检测结果;其中,关键尺寸指的是晶圆上一个图形的最小尺寸,例如:一条线的最小线宽,一个接触孔的最小尺寸。
基于40个第一单元检测结果,获取第一检测结果。具体地,第一检测结果为40个第一单元检测结果的平均值。
执行步骤13,参考图3,第二检测机台对待检测晶圆100的第三检测区域(在本实施例中第三检测区域即第一检测区域110和第二检测区域120)的关键尺寸进行测量,获取第三检测结果。
第二检测机台用于测量80个第三检测单元中每一个检测单元101的关键尺寸,以获得每一个所述检测单元101的第三单元检测结果。
基于80个第三单元检测结果,获取第三检测结果。具体地,第三检测结果为80个第三单元检测结果的平均值。
执行步骤14,参考图4,第一检测机台对待检测晶圆100的第二检测区域120的关键尺寸进行测量,获取第二检测结果。
第一检测机台用于测量40个(H=40)第二检测单元中每一个第二检测单元的关键尺寸,以获得每一个第二检测单元的第二单元检测结果。
基于40个第二单元检测结果,获取第二检测结果。具体地,第二检测结果为40个第二单元检测结果的平均值。
执行步骤15,获取第一检测机台与第二检测机台的测量差异。具体地,基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异。
具体地,基于预设差异计算公式获取所述测量差异:
预设差异计算公式为:Δ=(A1-2B+A2)/2;其中,Δ表示所述测量差异,A1表示所述第一检测结果,B表示所述第三检测结果,A2表示所述第二检测结果。
执行步骤16,获取第二检测机台与第一检测机台的偏差度。具体地,基于测量差异获取第二检测机台与第一检测机台的偏差度。
具体地,基于预设匹配计算公式获取所述偏差度:
预设匹配计算公式为:α=(A1-2B+A2)/2A1=Δ/A1;其中,α表示所述第二检测机台与所述第一检测机台的偏差度,A1表示所述第一检测结果,B表示所述第三检测结果,A2表示所述第二检测结果。
这种ABA的测试方法较比与现有方法相比不仅保留了准确度,还简化了机台偏差度测试流程,提高了机台匹配测试的效率。以下将结合具体原理对本实施里提供的方案的效果进行论证:
关于其精准度,不同CDSEM机台对待检测晶圆产生的误差包括ΔT和ΔC;其中,ΔT表示测量误差,即不同CDSEM机台对同一个待检测晶圆的测量误差,是一个矢量;ΔC表示图形变异误差以及带电误差,是一个矢量。其中,图形变异误差即对同一个待检测晶圆的不同检测区域的测量误差;带电误 差即对同一个待检测晶圆连续检测时造成的误差。
若仅采用第三检测结果B和第一检测结果A1获取第一检测机台与第二检测机台的测量差异Δ,则Δ=(A1-B)=ΔT+ΔC1。其中,ΔC1表示采用这种方式计算出的图形变异误差以及带电误差。
若仅采用第三检测结果B和第二检测结果A2获取第一检测机台与第二检测机台的测量差异Δ,则Δ=(A2-B)=ΔT+ΔC2。其中,ΔC2表示采用这种方式计算出的图形变异误差以及带电误差。
由前文所述可知,第一检测结果A1为第一检测机台对第一检测区域检测获取的结果,第二检测结果A2为第一检测机台对第二检测区域检测获取的结果,由于是同一个机台进行检测,其测量差异的大小相同。第三检测结果为第二检测机台对第三检测区域进行检测获取的,而第三检测区域包含相互独立的第一检测区域和第二检测区域,与第一检测机台对第一检测区域或第二检测区域进行检测的结果作差,其测量差异的方向相反,即矢量ΔC1与矢量ΔC2等大反向(ΔC1+ΔC2=0)。
若采用本申请给出的ABA的测试方法,即:Δ=(A1-2B+A2)/2=[(A1-B)+(A2-B)]/2=(2ΔT+ΔC1+ΔC2)/2=ΔT;获取的第一检测机台与第二检测机台的测量差异Δ刚好消除了图形变异误差和带电误差的影响。
需要说明的是,本实施例以第三检测区域为第一检测区域与第二检测区域之和为例进行说明只是为了使本申请的检测方法描述清楚,并不构成对本方案的限定;在其他实施例中,第三检测区域除了包含第一检测区域和第二检测区域,还可以包含其他检测区域,第三检测区域的具体范围根据实际生产过程进行设定。
因此,相对于相关技术而言,通过ABA的校准检测方法获取第一检测机台与第二检测机台之间的偏差度,检测更加高效,可以及时发现不同线宽扫描式电子显微镜机台之间的测量差异,从而避免了因机台测量差异造成的制程不稳定性。
上面各种步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其流程的核心设计都在该专利的保护范围内。
本申请另一实施例涉及一种机台匹配检测***,图5为本实施例涉及的机台匹配检测***的结构示意图,图6及图7为本实施例从N个检测机台中确定第一检测机台和第二检测机台的原理示意图,以下将结合附图对本实施例提供的机台匹配检测***进行详细说明,与上述实施例相同或相应的部分,以下将不做详细赘述。
参考图5,机台匹配检测***300,用于检测机台之间的偏差度,包括:
第一获取模块301,用于获取第一检测结果,第一检测结果为第一检测机台对待检测晶圆的第一目标检测区域的关键尺寸进行测量的结果。
第二获取模块302,用于获取第二检测结果,第二检测结果为第一检测机台对待检测晶圆的第二目标检测区域的关键尺寸进行测量的结果。
第三获取模块303,用于获取第三检测结果,第三检测结果为第二检测机台对待检测晶圆的第三目标检测区域的关键尺寸进行测量的结果。
第一处理模块304,连接第一检测模块301、第二检测模块302和第三检测模块303,基于第一检测结果、第二检测结果和第三检测结果,获取第一检 测机台与第二检测机台的测量差异。
第二处理模块305,连接第一处理模块304,基于测量差异获取第二检测机台与第一检测机台的偏差度。
具体地,第一检测机台对第一目标检测区域的关键尺寸进行测量,获取第一检测结果;第二检测机台对第三目标检测区域的关键尺寸进行测量,获取第三检测结果;第一检测机台对第二目标检测区域的关键尺寸进行测量,获取第二检测结果;基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异;基于测量差异获取第二检测机台与第一检测机台的偏差度。
在具体应用中,从N个机台中选取第一检测机台和第二检测机台,包含如下两种方式:
方式一:参考图6,从N个机台中任选两个机台分别作为第一检测机台和第二检测机台,采用本申请一实施例提供的机台匹配检测方法对第一检测机台与第二检测机台执行匹配检测;重复执行上述步骤,直至完成N个机台中两两机台之间的偏差度检测。
方式二:参考图7,从N个机台中选择一个目标选择机台作为第一检测机台,从剩余N-1个机台中选择一个机台作为第二检测机台,采用本申请一实施例提供的机台匹配检测方法对第一检测机台与第二检测机台执行匹配检测;重复执行上述步骤,直至完成N-1个剩余机台中每一个机台都与目标检测机台的偏差度检测。
与相关技术相比,本实施例通过更加高效的校准检测方法获取第一检测机台与第二检测机台之间的偏差度,及时发现不同线宽扫描式电子显微镜机台 之间的测量差异,从而避免了因机台测量差异造成的制程不稳定性。
由于上述实施例与本实施例相互对应,因此本实施例可与上述实施例互相配合实施。上述实施例中提到的相关技术细节在本实施例中依然有效,在上述实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
值得一提的是,本实施例中所涉及到的各单元均为逻辑单元,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本申请又一实施例涉及一种机台预警方法,图8为本实施例涉及的机台预警方法的流程图,下面结合附图对本实施例的机台预警方法的实现细节进行具体说明,与上述实施例相同或相应的部分,以下将不做详细赘述。
参考图8,机台预警方法包括:
执行步骤21,采用产品晶圆或监控晶圆获取第二检测机台与第一检测机台的偏差度。在本实施例中,监控晶圆为非产品晶圆(Non-Product Wafer,NPW)。
具体地,提供待检测晶圆、第一检测机台和第二检测机台,待检测晶圆至少包括产品晶圆和监控晶圆中的其中一种;对第一检测机台和第二检测机台进行偏差度检测。其偏差度检测流程同具体一实施例,在此不过多赘述。
对第一检测机台和第二检测机台进行偏差度检测,包括以下两种方式:
方式一:基于预设间隔时间对第一检测机台和第二检测机台进行偏差度 检测;例如每间隔1、3、5、6或8小时对第一检测机台和第二检测机台进行偏差度检测。
方式二:实时对第一检测机台和第二检测机台进行偏差度检测。
根据实际需求设置对机台偏差度的检测时间,在精度要求不高的场合,通过定时检测可以节约能源,提高制程效率;在精度要求高的场合通过实时检测可以提高检测的精确性。
若采用实时检测的方式,可以将所述偏差度检测的结果进行统计和监控,并转化成表格形式或曲线图形式。具体地,实时获取第一检测机台与第二检测机台的偏差度检测结果,对偏差度检测结果进行统计和监控,并上传至生产自动化控制***(MM***),将匹配检测结果转化成表格形式或曲线图形式,即通过MM***输出一个SPC表格,通过SPC表格可以直观的看出第一检测机台与第二检测机台的偏差度变化过程,以及是否处于预设的规格范围内。
执行步骤22,偏差度小于偏差度阈值?
具体地,若第一检测机台和第二检测机台之间的偏差度大于等于偏差度阈值,执行步骤23,第一检测机台和第二检测机台正常运行;若第一检测机台和第二检测机台之间的偏差度小于偏差度阈值,执行步骤24,发出预警信息。
执行步骤23,机台正常运行。
执行步骤24,发出预警信息。具体地,发出预警信息可以通过PAN的方式通知相关工作人员对机台进行检查和维护。
需要说明的是,在本实施例中,将上述机台预警方法写入测试程式中,在第一检测机台和第二检测机台运行时,进行上述偏差度检测。即自动化检测不同CDSEM机台之间的偏差度。在本实施例中,发出预警信息后,还用于控 制第一检测机台和第二检测机台停止测量过程,防止后续制造出劣质晶圆,从而节约制造成本。
与相关技术相比,通过更加高效的校准检测方法获取第一检测机台与第二检测机台之间的偏差度,并将获取的偏差度与预设偏差度进行比较,不满足预设偏差度则发出预警信息,及时通知相关工作人员对机台进行检查和维护,提高制程稳定性。
上面各种步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其流程的核心设计都在该专利的保护范围内。
本申请再一实施例涉及一种机台预警方法,本实施例与上一实施例大致相同,不同之处在于:本实施例采用监控晶圆和产品晶圆结合的方式进行机台预警方法的实施。
图9为本实施例涉及的机台预警方法的流程图,下面对本实施例的机台预警方法的实现细节进行具体说明,与上述实施例相同或相应的部分,以下将不做详细赘述。
参考图9,机台预警方法包括:
执行步骤31,采用监控晶圆获取第一偏差度。
具体地,基于监控晶圆,对第一检测机台和第二检测机台进行偏差度检测,获取第一检测机台和第二检测机台的第一偏差度。偏差度检测流程同具体一实施例,在此不过多赘述。
执行步骤32,第一偏差度小于第一偏差度阈值?
具体地,若第一偏差度大于等于第一偏差度阈值,执行步骤33,第一检测机台和第二检测机台正常运行;若第一偏差度小于第一偏差度阈值,执行步骤34,采用产品晶圆获取第二偏差度。
执行步骤33,机台正常运行。
执行步骤34,采用产品晶圆获取第二偏差度。
具体地,基于产品晶圆,对第一检测机台和第二检测机台进行偏差度检测,获取第一检测机台和第二检测机台的第二偏差度。偏差度检测流程同具体一实施例,在此不过多赘述。
执行步骤35,第二偏差度小于第二偏差度阈值?
具体地,若第二偏差度大于等于第二偏差度阈值,执行步骤36,第一检测机台和第二检测机台正常运行;若第二偏差度小于第二偏差度阈值,执行步骤37,发出预警信息。
需要说明的是,第一偏差度阈值为采用监控晶圆检测所需达到的偏差度;第二偏差度阈值为采用产品晶圆检测所需达到的偏差度,本实施例不对第一偏差度阈值和第二偏差度阈值的关系进行限制,即在具体实施过程中,第二偏差度阈值可以小于第一偏差度阈值,也可以大于第一偏差度阈值,或是两者相等设置。
执行步骤36,机台正常运行。
执行步骤37,发出预警信息。具体地,发出预警信息可以通过PAN的方式通知相关工作人员对机台进行检查和维护。
本实施例通过监控晶圆对机台进行偏差度检测,若第一偏差度不满足第一偏差度阈值,此时机台可能出现较大的匹配误差,此时再采用产品晶圆对 机台进行偏差度检测,若第二偏差度不满足第二偏差度阈值再发出预警信息,通过双重检测的方式,进一步保证制程的稳定性,同时减少相关工作人员的工作负担。
上面各种步骤划分,只是为了描述清楚,实现时可以合并为一个步骤或者对某些步骤进行拆分,分解为多个步骤,只要包括相同的逻辑关系,都在本专利的保护范围内;对流程中添加无关紧要的修改或者引入无关紧要的设计,但不改变其流程的核心设计都在该专利的保护范围内。
本申请还一实施例涉及一种机台预警***,图10为本实施例涉及的机台预警***的结构示意图,下面对本实施例的机台预警***的实现细节进行具体说明,与上述实施例相同或相应的部分,以下将不做详细赘述。
参考图10,机台预警***400,用于检测机台之间的偏差度,包括:
第一获取模块401,用于获取第一检测结果,第一检测结果为第一检测机台对待检测晶圆的第一目标检测区域的关键尺寸进行测量的结果。
第二获取模块402,用于获取第二检测结果,第二检测结果为第一检测机台对待检测晶圆的第二目标检测区域的关键尺寸进行测量的结果。
第三获取模块403,用于获取第三检测结果,第三检测结果为第二检测机台对待检测晶圆的第三目标检测区域的关键尺寸进行测量的结果。
第一处理模块404,连接第一检测模块401、第二检测模块402和第三检测模块403,基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异。
第二处理模块405,连接第一处理模块404,基于测量差异获取第二检测机台与第一检测机台的偏差度。
第三处理模块406,连接第二处理模块405,用于判断偏差度是否满足偏差度阈值,若偏差度小于偏差度阈值,发出控制信号。
预警模块407,连接第三处理模块406,基于控制信号发出预警信息。
需要说明的是,在本实施例中,预警模块是一个独立于第一检测机台和第二检测机台的虚拟模块;在其他实施例中,预警模块可以集成在第一检测机台或第二检测机台的至少一个中。
具体地,第一检测机台对第一目标检测区域的关键尺寸进行测量,获取第一检测结果;第二检测机台对第三目标检测区域的关键尺寸进行测量,获取第三检测结果;第一检测机台对第二目标检测区域的关键尺寸进行测量,获取第二检测结果;基于第一检测结果、第二检测结果和第三检测结果,获取第一检测机台与第二检测机台的测量差异;基于测量差异获取第二检测机台与第一检测机台的偏差度。
若第一检测机台和第二检测机台的偏差度大于等于偏差度阈值,第一检测机台和第二检测机台正常运行;若第一检测机台和第二检测机台的偏差度小于偏差度阈值,预警模块407发出预警信息。
与相关技术相比,通过更加高效的校准检测方法获取第一检测机台与第二检测机台之间的偏差度,并将获取的偏差度与预设偏差度进行比较,不满足预设偏差度则发出预警信息,及时通知相关工作人员对机台进行检查和维护,提高制程稳定性。
由于上述实施例与本实施例相互对应,因此本实施例可与上述实施例互相配合实施。上述实施例中提到的相关技术细节在本实施例中依然有效,在上述实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重 复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在上述实施例中。
值得一提的是,本实施例中所涉及到的各单元均为逻辑单元,在实际应用中,一个逻辑单元可以是一个物理单元,也可以是一个物理单元的一部分,还可以以多个物理单元的组合实现。此外,为了突出本申请的创新部分,本实施例中并没有将与解决本申请所提出的技术问题关系不太密切的单元引入,但这并不表明本实施例中不存在其它的单元。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (10)

  1. 一种机台匹配检测方法,其特征在于,包括:
    提供待检测晶圆、第一检测机台和第二检测机台,所述待检测晶圆包括第一目标检测区域、第二目标检测区域以及第三目标检测区域,其中,所述第一目标检测区域与所述第二目标检测区域相互独立,所述第三目标检测区域至少包含所述第一目标检测区域和所述第二目标检测区域;
    所述第一检测机台对所述第一目标检测区域的关键尺寸进行测量,获取第一检测结果;
    所述第二检测机台对所述第三目标检测区域的关键尺寸进行测量,获取第三检测结果;
    所述第一检测机台对所述第二目标检测区域的关键尺寸进行测量,获取第二检测结果;
    基于所述第一检测结果、所述第二检测结果和所述第三检测结果,获取所述第一检测机台与所述第二检测机台的测量差异;
    基于所述测量差异获取所述第二检测机台与所述第一检测机台的偏差度。
  2. 根据权利要求1所述的机台匹配检测方法,其特征在于,所述基于所述第一检测结果、所述第二检测结果和所述第三检测结果,获取所述第一检测机台与所述第二检测机台的测量差异,包括:
    基于预设差异计算公式获取所述测量差异,所述预设差异计算公式为:
    Δ=(A1-2B+A2)/2,Δ表示所述测量差异,A1表示所述第一检测结果,B表示所述第三检测结果,A2表示所述第二检测结果。
  3. 根据权利要求1所述的机台匹配检测方法,其特征在于,包括:
    所述第一目标检测区域中包括M个第一检测单元,所述第二目标检测区域中包括H个第二检测单元,所述第三目标检测区域中包括L个第三检测单元;
    所述M和H为大于等于1的自然数,所述L为大于等于所述M与所述H之和的自然数;
    所述第一检测结果为对所述M个第一检测单元的关键尺寸进行测量后获取的平均值;
    所述第二检测结果为对所述H个第二检测单元的关键尺寸进行测量后获取的平均值;
    所述第三检测结果为对所述L个第三检测单元的关键尺寸进行测量后获取的平均值。
  4. 一种机台匹配检测***,用于检测机台之间的偏差度,其特征在于,包括:
    第一获取模块,用于获取第一检测结果,所述第一检测结果为第一检测机台对待检测晶圆的第一目标检测区域的关键尺寸进行测量的结果;
    第二获取模块,用于获取第二检测结果,所述第二检测结果为所述第一检测机台对所述待检测晶圆的第二目标检测区域的关键尺寸进行测量的结果;
    第三获取模块,用于获取第三检测结果,所述第三检测结果为第二检测机台对所述待检测晶圆的第三目标检测区域的关键尺寸进行测量的结果;
    第一处理模块,连接所述第一检测模块、所述第二检测模块和第三检测模块,基于所述第一检测结果、所述第二检测结果和所述第三检测结果,获取所述第一检测机台与所述第二检测机台的测量差异;
    第二处理模块,连接所述第一处理模块,基于所述测量差异获取所述第二检测机台与所述第一检测机台的偏差度。
  5. 一种机台预警方法,其特征在于,包括:
    提供待检测晶圆、第一检测机台和第二检测机台,所述待检测晶圆包括第一目标检测区域、第二目标检测区域以及第三目标检测区域,其中,所述第一目标检测区域与所述第二目标检测区域相互独立,所述第三目标检测区域至少包含所述第一目标检测区域和所述第二目标检测区域;
    基于所述待检测晶圆,采用如权利要求1-3任一项所述的机台匹配检测方法对所述第一检测机台和所述第二检测机台进行偏差度检测,获取所述第一检测检测机台和所述第二检测机台的偏差度;
    若所述偏差度小于偏差度阈值,发出预警信息。
  6. 根据权利要求5所述的机台预警方法,其特征在于,所述待检测晶圆包括产品晶圆和监控晶圆中的其中一种。
  7. 根据权利要求5所述的机台预警方法,其特征在于,包括:
    所述待检测晶圆包括产品晶圆和监控晶圆;
    所述获取所述第一检测检测机台和所述第二检测机台的偏差度以及若所述偏差度小于偏差度阈值,发出预警信息,包括:
    基于所述监控晶圆,对所述第一检测机台和所述第二检测机台进行所述偏差度检测,获取所述第一检测机台和所述第二检测机台的第一偏差度;
    若所述第一偏差度小于第一偏差度阈值,基于所述产品晶圆,对所述第一检测机台和所述第二检测机台进行所述偏差度检测,获取所述第一检测机台和所述第二检测机台的第二偏差度;
    若所述第二偏差度小于第二偏差度阈值,发出预警信息。
  8. 根据权利要求7所述的机台预警方法,其特征在于,所述对所述第一检测机 台和所述第二检测机台进行所述偏差度检测,包括:
    基于预设间隔时间进行所述偏差度检测,或实时进行所述偏差度检测。
  9. 根据权利要求5所述的机台预警方法,其特征在于,包括:
    将所述机台预警方法写入测试程式,在所述第一检测机台和所述第二检测机台运行时,进行所述偏差度检测;
    所述发出预警信息后,还包括:所述第一检测机台和所述第二检测机台停止测量。
  10. 一种机台预警***,用于检测机台之间的偏差度,其特征在于,包括:
    第一获取模块,用于获取第一检测结果,所述第一检测结果为第一检测机台对待检测晶圆的第一目标检测区域的关键尺寸进行测量的结果;
    第二获取模块,用于获取第二检测结果,所述第二检测结果为所述第一检测机台对所述待检测晶圆的第二目标检测区域的关键尺寸进行测量的结果;
    第三获取模块,用于获取第三检测结果,所述第三检测结果为第二检测机台对所述待检测晶圆的第三目标检测区域的关键尺寸进行测量的结果;
    第一处理模块,连接所述第一检测模块、所述第二检测模块和第三检测模块,基于所述第一检测结果、所述第二检测结果和所述第三检测结果,获取所述第一检测机台与所述第二检测机台的测量差异;
    第二处理模块,连接所述第一处理模块,基于所述测量差异获取所述第二检测机台与所述第一检测机台的偏差度;
    第三处理模块,连接所述第二处理模块,用于判断所述偏差度是否满足偏差度阈值,若所述偏差度小于所述偏差度阈值,发出控制信号;
    预警模块,连接所述第三处理模块,基于所述控制信号发出预警信息。
PCT/CN2021/078509 2020-03-24 2021-03-01 机台匹配检测方法、检测***、预警方法以及预警*** WO2021190248A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/436,802 US20220328364A1 (en) 2020-03-24 2021-03-01 Apparatus match detection method, detection system, prewarning method, and prewarning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010215055.XA CN113451162B (zh) 2020-03-24 2020-03-24 机台匹配检测方法、检测***、预警方法以及预警***
CN202010215055.X 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021190248A1 true WO2021190248A1 (zh) 2021-09-30

Family

ID=77806689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078509 WO2021190248A1 (zh) 2020-03-24 2021-03-01 机台匹配检测方法、检测***、预警方法以及预警***

Country Status (3)

Country Link
US (1) US20220328364A1 (zh)
CN (1) CN113451162B (zh)
WO (1) WO2021190248A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570157B1 (en) * 2000-06-09 2003-05-27 Advanced Micro Devices, Inc. Multi-pitch and line calibration for mask and wafer CD-SEM system
CN101634546A (zh) * 2009-06-09 2010-01-27 上海宏力半导体制造有限公司 一种cdsem机台的校准方法
CN102569258A (zh) * 2010-12-09 2012-07-11 中芯国际集成电路制造(上海)有限公司 一种关键尺寸扫描电子显微镜的样品结构和测量方法
US20130188037A1 (en) * 2011-02-22 2013-07-25 Hermes Microvision Inc. Method and system for measuring critical dimension and monitoring fabrication uniformity
CN104658936A (zh) * 2013-11-19 2015-05-27 中芯国际集成电路制造(上海)有限公司 检测半导体器件图形的方法及***
CN104752251A (zh) * 2013-12-30 2015-07-01 中芯国际集成电路制造(上海)有限公司 采用cdsem测试图形的方法
CN110823089A (zh) * 2018-08-10 2020-02-21 睿励科学仪器(上海)有限公司 用于测量半导体器件的光学关键尺寸的方法和设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6538753B2 (en) * 2001-05-22 2003-03-25 Nikon Precision, Inc. Method and apparatus for dimension measurement of a pattern formed by lithographic exposure tools
JP4223979B2 (ja) * 2004-03-16 2009-02-12 株式会社日立ハイテクノロジーズ 走査型電子顕微鏡装置及び走査型電子顕微鏡装置における装置としての再現性能評価方法
JP4500099B2 (ja) * 2004-05-06 2010-07-14 株式会社日立ハイテクノロジーズ 電子顕微鏡装置システム及び電子顕微鏡装置システムを用いた寸法計測方法
JP6088337B2 (ja) * 2013-04-17 2017-03-01 株式会社アドバンテスト パターン検査方法及びパターン検査装置
CN104332421B (zh) * 2014-09-01 2017-05-03 上海华力微电子有限公司 一种检测扫描机台的性能方法
CN108413866B (zh) * 2018-01-22 2019-09-03 深圳市亿图视觉自动化技术有限公司 一种偏位检测方法、***及终端设备
CN110034034B (zh) * 2019-03-04 2021-06-15 上海华力集成电路制造有限公司 缺陷观察设备晶圆载台精度偏移的补偿方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6570157B1 (en) * 2000-06-09 2003-05-27 Advanced Micro Devices, Inc. Multi-pitch and line calibration for mask and wafer CD-SEM system
CN101634546A (zh) * 2009-06-09 2010-01-27 上海宏力半导体制造有限公司 一种cdsem机台的校准方法
CN102569258A (zh) * 2010-12-09 2012-07-11 中芯国际集成电路制造(上海)有限公司 一种关键尺寸扫描电子显微镜的样品结构和测量方法
US20130188037A1 (en) * 2011-02-22 2013-07-25 Hermes Microvision Inc. Method and system for measuring critical dimension and monitoring fabrication uniformity
CN104658936A (zh) * 2013-11-19 2015-05-27 中芯国际集成电路制造(上海)有限公司 检测半导体器件图形的方法及***
CN104752251A (zh) * 2013-12-30 2015-07-01 中芯国际集成电路制造(上海)有限公司 采用cdsem测试图形的方法
CN110823089A (zh) * 2018-08-10 2020-02-21 睿励科学仪器(上海)有限公司 用于测量半导体器件的光学关键尺寸的方法和设备

Also Published As

Publication number Publication date
CN113451162B (zh) 2022-06-24
US20220328364A1 (en) 2022-10-13
CN113451162A (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
CN104425302B (zh) 半导体器件的缺陷检测方法和装置
CN110289224B (zh) 一种精确监控并改善方块电阻量测稳定性的方法
TWI639203B (zh) 診斷半導體晶圓之方法以及系統
CN104736962A (zh) 用于估计及校正偏移目标不准确度的方法
WO2021175245A1 (zh) 掩模板的参数分析方法及装置
WO2021190248A1 (zh) 机台匹配检测方法、检测***、预警方法以及预警***
CN104465619B (zh) 一种套刻精度测量的图像结构及其套刻精度测量方法
CN103809197B (zh) 扫描电镜的电子束的检测方法、微细图形的检测方法
CN102867762B (zh) 一种量测晶圆检测机台稳定性和精确性的监控方法
TW201526131A (zh) 影像關鍵尺寸量測校正方法及系統
TWI750368B (zh) 光學檢驗結果之計量導引檢驗樣品成形
JP2004163174A (ja) 座標補正方法及び外観検査方法
US20220383473A1 (en) Method and system for diagnosing a semiconductor wafer
CN102566315B (zh) 一种检测光刻机焦距偏移的方法
CN116106337A (zh) 一种检测芯片故障原因的方法
TWI803916B (zh) 一種晶片測試機測量晶片內阻的方法
CN112071766B (zh) 接触孔填充缺陷监控方法及其监控***
CN208334913U (zh) 图形化工艺光刻套准校正设备
CN107437514B (zh) 一种针对产品量测区域缺陷监控的方法
CN104810302B (zh) 一种监控晶圆的使用方法
WO2022134563A1 (zh) 制程监测方法及制程监测***
JP7478073B2 (ja) 誤差特定装置、誤差特定方法及びプログラム
Chang et al. Scribe Line Self Reference Targets to enable Accurate and Robust After-Etch Overlay Metrology of Active layer
US20220026504A1 (en) Method for measuring shortest distance between capacitances and method for evaluating capacitance manufacture procedure
Ahn et al. Automatic Defect Review of a Patterned Wafer using Hybrid Metrology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21774858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21774858

Country of ref document: EP

Kind code of ref document: A1