WO2021190025A1 - 一种基于铵络体系的铅锌镉铜分离和纯化的方法 - Google Patents

一种基于铵络体系的铅锌镉铜分离和纯化的方法 Download PDF

Info

Publication number
WO2021190025A1
WO2021190025A1 PCT/CN2020/140100 CN2020140100W WO2021190025A1 WO 2021190025 A1 WO2021190025 A1 WO 2021190025A1 CN 2020140100 W CN2020140100 W CN 2020140100W WO 2021190025 A1 WO2021190025 A1 WO 2021190025A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
liquid
separation
cadmium
plate
Prior art date
Application number
PCT/CN2020/140100
Other languages
English (en)
French (fr)
Inventor
罗彦
马黎阳
冯国军
张武
陈锐
马青龙
Original Assignee
鑫联环保科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鑫联环保科技股份有限公司 filed Critical 鑫联环保科技股份有限公司
Priority to US17/914,278 priority Critical patent/US20230124749A1/en
Publication of WO2021190025A1 publication Critical patent/WO2021190025A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • C22B3/46Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/12Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions
    • C22B3/14Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic alkaline solutions containing ammonia or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/04Obtaining lead by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0078Leaching or slurrying with ammoniacal solutions, e.g. ammonium hydroxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0089Treating solutions by chemical methods
    • C22B15/0091Treating solutions by chemical methods by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B17/00Obtaining cadmium
    • C22B17/04Obtaining cadmium by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/24Obtaining zinc otherwise than by distilling with leaching with alkaline solutions, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/20Obtaining zinc otherwise than by distilling
    • C22B19/26Refining solutions containing zinc values, e.g. obtained by leaching zinc ores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the application belongs to the field of electrolytic zinc production, and relates to a method for separation and purification of lead, zinc, cadmium and copper, for example, to a method for separation and purification of lead, zinc, cadmium and copper based on an ammonium complex system.
  • CN 107385472 A discloses a production method of electrolytic zinc, in which the purification process is divided into one-stage purification, two-stage purification and three-stage purification.
  • Zinc powder is added 1.5 times, the liquid temperature is maintained at 80-90°C, copper sulfate and potassium permanganate react for 1 hour
  • the second-stage purification continue to add zinc powder and potassium permanganate to the purification tank, and fill it with water vapor to make The temperature of the liquid is maintained at 80-90°C for 1.5 hours.
  • the three-stage purification is that the filtrate obtained by the first-stage purification and the second-stage purification is added with a purifying agent to remove Co and Ni.
  • the reaction time is 40 minutes and a zinc liquid is obtained.
  • the zinc liquid after stage purification is temporarily stored in the purification liquid storage tank and then pumped into the zinc liquid pool after cooling.
  • the said purification process is mainly used for zinc production by acid method, and is not suitable for zinc extraction by ammonia method
  • CN 209669311 U discloses a steel low zinc ash hazardous waste waste heat power generation system for electrolytic zinc production system, wherein the purification filter press mechanism includes a coarse purification device, a third filter press device, a secondary purification device and a fourth filter press device.
  • the material inlet of the coarse purification device is connected to the filtrate outlet of the first leaching filter press mechanism, and the coarse purification device is also provided with a coarse purification zinc inlet for passing zinc particles or zinc powder into the coarse purification device;
  • the material outlet of the coarse purification device is connected to the material inlet of the third filter press device, the filtrate outlet of the third filter press device is connected to the material inlet of the secondary purification device, and the material of the secondary purification device
  • the outlet is connected to the fourth filter press device, and the filtrate outlet of the fourth filter press device is connected to the electrolysis device;
  • the secondary purification device is provided with a secondary purification zinc inlet for feeding to the secondary purification device Into the ultra-pure fine zinc powder.
  • the Zn(II)-NH 3 -NH 4 Cl-H 2 O system is usually used, and zinc powder is used to intermittently remove impurity elements such as copper, lead, and cadmium.
  • This process can obtain lead slag with a content of 30-50%, with low lead content and many impurities, which does not maximize the value of lead.
  • the conditions of the obtained copper, cadmium and lead are similar, and the utilization rate of zinc when removing impurities from the zinc powder is less than 60%, resulting in a high cost of removing impurities.
  • the purpose of this application is to provide a method for separation and purification of lead, zinc, cadmium, and copper based on an ammonium complex system, which uses self-produced lead and cadmium to realize self-production and self-use and reduce production costs.
  • This application provides a method for separation and purification of lead, zinc, cadmium, and copper based on an ammonium complex system.
  • the method includes the following steps:
  • step (3) Mix the filtrate obtained in step (2) with metallic lead to replace copper, and obtain a first separation liquid after solid-liquid separation; mix the first separation liquid and metallic cadmium to replace lead, and obtain the first separation liquid after solid-liquid separation.
  • Second separation liquid mixing the second separation liquid and metallic zinc to replace cadmium, and solid-liquid separation to obtain a third separation liquid;
  • step (3) Electrolyze the third separation solution obtained in step (3) to obtain metallic zinc, and the electrolyzed solution after electrolysis is returned to step (1) for leaching the zinc-containing raw materials.
  • the leachate in step (1) contains a complexing agent.
  • the complexing agent includes ammonia water and/or liquid ammonia.
  • a complexing agent is added to the leaching solution until the pH value of the leaching solution is 3.5-8, such as 4, 4.5, 5, 5.5, 6, 6.5, 7 or 7.5, etc., but not limited to the listed values. Other unlisted values within the numerical range also apply.
  • the mass ratio of the zinc-containing raw material to the leaching liquid is configured according to the Zn content of the outlet purified liquid from 45 to 120g/L, such as 50g/L, 55g/L, 66g/L, 65g/L, 75g/L, 85g/L L, 95g/L, 105g/L, or 115g/L, etc., but not limited to the listed values, other unlisted values within this range of values are also applicable, and can be 50 ⁇ 90g/L, and further can be 70g /L.
  • the liquid-to-solid ratio is 8-20:1, such as 8:1, 9:1, 10:1, 11:1, 12:1, 14: 1, 15:1, 16:1 or 19:1, but not limited to the listed values, other unlisted values within this range of values are also applicable.
  • the filtering method in step (2) is plate and frame filter press.
  • the plate and frame filter press includes a first plate and frame filter press and a second plate and frame filter press.
  • the filtrate obtained by the first plate and frame filter press enters step (3), the obtained filter residue is subjected to residue washing and the second plate and frame press filter in sequence, and the filtrate obtained by the second plate and frame filter press enters the step ( 3).
  • the filtration is coarse filtration, and the leaching solution is injected into the coarse filtration process using a slurry pump.
  • the coarse filtration process includes one stage of plate and frame filter press, mixing tank, slurry pump and two stages of plate and frame filter press.
  • the filtrate obtained by the leaching solution through the plate and frame filter press enters the purification process, and the filter residue enters the stirring tank for rehydration and stirring, and then enters the second plate and frame filter press.
  • the obtained filtrate enters the purification process, and the filter residue is returned to the rotary kiln for use as a raw material.
  • the amount of metal lead added in step (3) is 0.25 to 0.3 times the mass of copper in the filtrate of step (2), such as 0.26 times, 0.27 times, 0.28 times or 0.29 times Etc., but not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the amount of metal cadmium added in step (3) is 0.5 to 0.8 times the mass of lead in the first separation solution, such as 0.6 times, 0.65 times, 0.7 times, or 0.75 times, etc., but not It is not limited to the listed values, and other unlisted values within this range of values also apply.
  • the added amount of metallic zinc in step (3) is 3-10 times the mass of cadmium in the second separation liquid, such as 4 times, 5 times, 6 times, 7 times, 8 times or 9 times, etc., but not limited to the listed values, and other unlisted values within this range of values are also applicable.
  • the step (3) the reaction of replacing copper with lead is carried out in the first purifier, the step (3) the reaction of replacing lead with cadmium in the second purifier, and the step (3) the reaction of replacing cadmium with zinc in the third purifier. Carried out in a purifier. Among them, the cadmium and lead added in step (3) are preferentially applied to the metal cadmium and lead produced by this application.
  • the replacement reaction in step (3) of this application is not limited to being carried out in a purifier, but can also be carried out in other reaction equipment.
  • the pH of the electrolyte in the step (4) electrolysis is 3.5-8, such as 3.5, 4.5, 5.5, 6.5 or 7.5, etc., but it is not limited to the listed values, and others within the range of values. Values not listed also apply.
  • step (4) is followed by step (5) to melt and cast the metallic zinc obtained in step (4) to obtain zinc ingots and scum.
  • step (5) the dross in step (5) is separated to obtain zinc ash and zinc particles, the zinc ash is returned to step (1) for leaching, and the zinc particles are returned to step (3) for leaching. Replace cadmium.
  • the method for separation and purification of lead, zinc, cadmium, and copper based on the ammonium complex system includes the following steps:
  • step (2) The leaching liquid obtained in step (1) is subjected to plate and frame filter press processing, the plate and frame filter press includes a first plate and frame filter press and a second plate and frame filter press, and the first plate and frame filter press obtains Enter step (3) for the filtrate obtained, and the obtained filter residue is subjected to slag washing and second plate-and-frame filter press in sequence, and the filtrate obtained by the second plate-and-frame press filter enters step (3);
  • step (3) The filtrate obtained in step (2) is mixed with metallic lead to replace copper, and the amount of metallic lead added is 0.25 to 0.3 times the mass of copper in the filtrate of step (2), and the second is obtained after solid-liquid separation.
  • a separation liquid mixing the first separation liquid and metallic cadmium to replace lead, the added amount of the metallic cadmium is 0.5 to 0.8 times the mass of lead in the first separation liquid, and the second separation liquid is obtained after solid-liquid separation; Mixing the second separation liquid and metallic zinc to replace cadmium, the added amount of the metallic zinc is 3-10 times the mass of cadmium in the second separation liquid, and solid-liquid separation obtains a third separation liquid;
  • step (3) Electrolyze the third separation solution obtained in step (3) to obtain metallic zinc, the pH of the electrolyte in the electrolysis is 3.5-8, and the electrolytic solution after electrolysis is returned to step (1) for leaching zinc-containing raw materials;
  • step (4) The metallic zinc obtained in step (4) is melted and cast to obtain zinc ingots and dross.
  • the dross is sorted to obtain zinc ash and zinc particles, and the zinc ash is returned to step (1) for leaching.
  • the zinc particles return to step (3) to replace cadmium.
  • this application selectively reduces different metal ions step by step in multiple stages
  • This application uses the lead and cadmium produced by itself through precise control of the addition of lead, cadmium, and zinc to gradually replace the purchased lead powder and cadmium powder, so as to realize self-production and self-use and reduce production costs.
  • Fig. 1 is a schematic structural diagram of a system for separating and cooperating with ammonium to trap low-boiling heavy metals in zinc-containing solid waste according to Example 1 of the present application.
  • This embodiment provides a method for separation and purification of lead, zinc, cadmium, and copper based on an ammonium complex system.
  • the process flow is shown in FIG. 1. The method includes the following steps:
  • the leaching solution contains ammonia water and the pH of the leaching solution is 7 to obtain a leaching solution.
  • the zinc content in the leaching solution is 70g/L.
  • the zinc raw material is in the leaching stage, and the liquid-to-solid mass ratio 12:1;
  • step (2) The leaching solution obtained in step (1) is subjected to plate and frame filter press processing, the plate and frame filter press includes a first plate and frame filter press and a second plate and frame filter press, and the first plate and frame filter press obtains Enter step (3) for the filtrate obtained, and the obtained filter residue is subjected to slag washing and second plate-and-frame filter press in sequence, and the filtrate obtained by the second plate-and-frame press filter enters step (3);
  • step (3) The filtrate obtained in step (2) is mixed with metallic lead to replace copper, and the added amount of metallic lead is 0.25 times the mass of copper in the filtrate of step (2), and the first separation is obtained after solid-liquid separation Mixing the first separation liquid and metallic cadmium to replace lead, the added amount of the metallic cadmium is 0.6 times the mass of lead in the first separation solution, and the second separation solution is obtained after solid-liquid separation;
  • the second separation liquid is mixed with metallic zinc to replace cadmium, the added amount of the metallic zinc is 7 times the mass of cadmium in the second separation liquid, and the third separation liquid is obtained by solid-liquid separation;
  • step (3) Electrolyze the third separation solution obtained in step (3) to obtain metallic zinc, the pH of the electrolyte in the electrolysis is 7, and the electrolyte after electrolysis is returned to step (1) for leaching the zinc-containing raw materials;
  • step (4) The metallic zinc obtained in step (4) is melted and cast to obtain zinc ingots and dross.
  • the dross is sorted to obtain zinc ash and zinc particles, and the zinc ash is returned to step (1) for leaching.
  • the zinc particles return to step (3) to replace cadmium.
  • This embodiment provides a method for separation and purification of lead, zinc, cadmium, and copper based on an ammonium complex system.
  • the process flow is shown in FIG. 1. The method includes the following steps:
  • the leaching solution contains ammonia water, the pH of the leaching solution is 6.5, and the leaching solution is obtained.
  • the zinc content in the leaching solution is 65g/L.
  • the zinc raw material is in the leaching stage, and the liquid-solid mass ratio 13:1;
  • step (2) The leaching solution obtained in step (1) is subjected to plate and frame filter press processing, the plate and frame filter press includes a first plate and frame filter press and a second plate and frame filter press, and the first plate and frame filter press obtains Enter step (3) for the filtrate obtained, and the obtained filter residue is subjected to slag washing and second plate-and-frame filter press in sequence, and the filtrate obtained by the second plate-and-frame press filter enters step (3);
  • step (3) The filtrate obtained in step (2) is mixed with metallic lead to replace copper, and the added amount of metallic lead is 0.3 times the mass of copper in the filtrate of step (2), and the first separation is obtained after solid-liquid separation Liquid; mixing the first separation liquid and metallic cadmium to replace lead, the added amount of the metallic cadmium is 0.7 times the mass of lead in the first separation liquid, and the second separation liquid is obtained after solid-liquid separation; The second separation liquid is mixed with metallic zinc to replace cadmium, the added amount of the metallic zinc is 6 times the mass of cadmium in the second separation liquid, and the third separation liquid is obtained by solid-liquid separation;
  • step (3) Perform electrolysis on the third separation solution obtained in step (3) to obtain metallic zinc, the pH of the electrolyte in the electrolysis is 6.5, and the electrolytic solution after electrolysis is returned to step (1) for leaching the zinc-containing raw materials;
  • step (4) The metallic zinc obtained in step (4) is melted and cast to obtain zinc ingots and dross.
  • the dross is sorted to obtain zinc ash and zinc particles, and the zinc ash is returned to step (1) for leaching.
  • the zinc particles return to step (3) to replace cadmium.
  • This embodiment provides a method for separation and purification of lead, zinc, cadmium, and copper based on an ammonium complex system.
  • the process flow is shown in FIG. 1. The method includes the following steps:
  • the leaching solution contains ammonia water, the pH of the leaching solution is 7.5, and the leaching solution is obtained.
  • the zinc content in the leaching solution is 60g/L.
  • the zinc raw material is in the leaching stage, and the liquid-to-solid mass ratio 15:1;
  • step (2) The leaching solution obtained in step (1) is subjected to plate and frame filter press processing, the plate and frame filter press includes a first plate and frame filter press and a second plate and frame filter press, and the first plate and frame filter press obtains Enter step (3) for the filtrate obtained, and the obtained filter residue is subjected to slag washing and second plate-and-frame filter press in sequence, and the filtrate obtained by the second plate-and-frame press filter enters step (3);
  • step (3) The filtrate obtained in step (2) is mixed with metallic lead to replace copper, and the amount of metallic lead added is 0.28 times the mass of copper in the filtrate of step (2), and the first separation is obtained after solid-liquid separation Liquid; mixing the first separation liquid and metallic cadmium to replace lead, the added amount of the metallic cadmium is 0.75 times the mass of lead in the first separation liquid, and the second separation liquid is obtained after solid-liquid separation; The second separation liquid is mixed with metallic zinc to replace cadmium, the added amount of the metallic zinc is 9 times the mass of cadmium in the second separation liquid, and the solid-liquid separation obtains the third separation liquid;
  • step (3) Electrolyze the third separation solution obtained in step (3) to obtain metallic zinc, the pH of the electrolyte in the electrolysis is 7.5, and the electrolyte after electrolysis is returned to step (1) for leaching the zinc-containing raw materials;
  • step (4) The metallic zinc obtained in step (4) is melted and cast to obtain zinc ingots and dross.
  • the dross is sorted to obtain zinc ash and zinc particles, and the zinc ash is returned to step (1) for leaching.
  • the zinc particles return to step (3) to replace cadmium.
  • This embodiment provides a method for separation and purification of lead, zinc, cadmium, and copper based on an ammonium complex system.
  • the process flow is shown in FIG. 1. The method includes the following steps:
  • the leaching solution contains ammonia water, the pH of the leaching solution is 5.5, and the leaching solution is obtained.
  • the zinc content in the leaching solution is 50g/L. 18:1;
  • step (2) The leaching liquid obtained in step (1) is subjected to plate and frame filter press processing, the plate and frame filter press includes a first plate and frame filter press and a second plate and frame filter press, and the first plate and frame filter press obtains Enter step (3) for the filtrate obtained, and the obtained filter residue is subjected to slag washing and second plate-and-frame filter press in sequence, and the filtrate obtained by the second plate-and-frame press filter enters step (3);
  • step (3) The filtrate obtained in step (2) is mixed with metallic lead to replace copper, and the added amount of metallic lead is 0.26 times the mass of copper in the filtrate of step (2), and the first separation is obtained after solid-liquid separation Mixing the first separation liquid and metallic cadmium to replace lead, the added amount of the metallic cadmium is 0.8 times the mass of lead in the first separation solution, and the second separation solution is obtained after solid-liquid separation;
  • the second separation liquid is mixed with metallic zinc to replace cadmium, the added amount of the metallic zinc is 9 times the mass of cadmium in the second separation liquid, and the solid-liquid separation obtains the third separation liquid;
  • step (3) Electrolyze the third separation solution obtained in step (3) to obtain metallic zinc, the pH of the electrolyte in the electrolysis is 5.5, and the electrolyte after electrolysis is returned to step (1) for leaching zinc-containing raw materials;
  • step (4) The metallic zinc obtained in step (4) is melted and cast to obtain zinc ingots and dross.
  • the dross is sorted to obtain zinc ash and zinc particles, and the zinc ash is returned to step (1) for leaching.
  • the zinc particles return to step (3) to replace cadmium.
  • the source of zinc-containing raw materials can be one or more of secondary zinc oxide powder, blast furnace gas ash, converter ash, electric furnace ash, and zinc-containing solid waste containing chlorine, fluorine and other refractory impurities.
  • the content is 40%-70%
  • the electrolysis conditions are voltage 2.35-3.5V
  • the current is 200-600A
  • the current efficiency is above 94%
  • the electrolyte temperature is 50-80°C.
  • the metal copper, lead, cadmium prepared in Examples 1-4 and the new purity were tested, and the results are shown in Table 1.
  • Example 1 To Copper purity/% Lead purity/% Cadmium purity/% Zinc purity/% Example 1 54.23 93.87 80.37 99.997
  • Example 2 55.34 91.87 82.18 99.996
  • Example 3 54.86 92.49 85.94 99.995
  • Example 4 56.57 95.12 83.85 99.998

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种基于铵络体系的铅锌镉铜分离和纯化的方法,包括以下步骤:使用浸出液对含锌原料进行浸出得到浸出后液;过滤得到滤液和滤渣;滤液与金属铅混合置换出铜,固液分离后得到第一分离液,与金属镉混合置换出铅,固液分离后得到第二分离液,与金属锌混合置换出镉,固液分离得到第三分离液;电解第三分离液得到金属锌,电解液返回浸出步骤。

Description

一种基于铵络体系的铅锌镉铜分离和纯化的方法 技术领域
本申请属于电解锌生产领域,涉及一种铅锌镉铜分离和纯化的方法,例如涉及一种基于铵络体系的铅锌镉铜分离和纯化的方法。
背景技术
当前,世界上约80%的锌都是通过湿法工艺提取,锌浸出液的净化是整个工艺的关键过程之一。浸出液中存在的铜、铅、镉等杂质,不但对电沉积产物阴极锌的质量有较大的危害,而且使得电流效率降低,能耗增大,因此电沉积前对浸出液进行有效净化至关重要。
CN 107385472 A公开了一种电解锌的生产方法,其中净化工序分为一段净化、二段净化以及三段净化,所述一段净化:按杂质含量,向净化桶中按镉、铜含量的1.2-1.5倍加入锌粉,液体温度保持80-90℃,硫酸铜和高锰酸钾反应1h,所述二段净化:向净化桶中继续加入锌粉和高锰酸钾,并充入水蒸气,使液体温度保持在80-90℃反应1.5h,所述三段净化为所述一段净化与二段净化得到的滤液中加入净化剂,除去Co、Ni,反应时间40min,并得到锌液,经过三段净化后的锌液在净化液储存罐暂存降温后泵入锌液池。所述的净化工序主要用于酸法制锌,不适用于氨法提锌。
CN 209669311 U公开了一种钢铁低锌灰危废物余热发电用于电解锌生产***,其中净化压滤机构包括粗净化装置、第三压滤装置、二次净化装置和第四压滤装置,所述粗净化装置的物料进口连通第一浸取压滤机构的滤液出口,且所述粗净化装置上还设置有粗净化锌进口,用于向粗净化装置内通入锌粒或锌粉;所述粗净化装置的物料出口连通至所述第三压滤装置的物料入口,所述第 三压滤装置的滤液出口连通至所述二次净化装置的物料进口,所述二次净化装置的物料出口连通至所述第四压滤装置,所述第四压滤装置的滤液出口连通至电解装置;所述二次净化装置上设置有二次净化锌进口,用于向所述二次净化装置内通入超纯细锌粉。
以上文献均未获得纯度较高的铜、铅、镉等金属,另外没有将获得的铅、镉金属再回用于净化液除杂,因此锌粉消耗量较大。
现有氨法电解锌规模生产中,通常采用Zn(Ⅱ)-NH 3-NH 4Cl-H 2O体系,使用锌粉间断除铜、铅、镉等杂质元素。这种工艺可得到含量30-50%的铅渣,含铅品位低,杂质多,没最大化体现铅的价值。获得的铜、镉与铅的情况类似,同时锌粉除杂时锌的利用率不足60%,造成除杂成本高。
发明内容
本申请的目的在于提供一种基于铵络体系的铅锌镉铜分离和纯化的方法,所述方法使用自身产出的铅和镉,实现自产自用,降低生产成本。
为达此目的,本申请采用以下技术方案:
本申请提供了一种基于铵络体系的铅锌镉铜分离和纯化的方法,所述方法包括以下步骤:
(1)使用浸出液对含锌原料进行浸出,得到浸出后液;
(2)对步骤(1)得到的浸出后液进行过滤处理,得到滤液和滤渣;
(3)将步骤(2)得到的滤液与金属铅混合置换出铜,固液分离后得到第一分离液;将所述第一分离液与金属镉混合置换出铅,固液分离后得到第二分离液;将所述第二分离液与金属锌混合置换出镉,固液分离得到第三分离液;
(4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解后的电 解液返回步骤(1)对含锌原料进行浸出。
作为本申请可选的技术方案,步骤(1)所述浸出液中含有络合剂。
可选地,所述络合剂包括氨水和/或液氨。
可选地,所述浸出液中加入络合剂,直至浸出液pH值在3.5~8,如4、4.5、5、5.5、6、6.5、7或7.5等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
可选地,所述含锌原料与浸出液的质量比按照出口净化液Zn含量45~120g/L配置,如50g/L、55g/L、66g/L、65g/L、75g/L、85g/L、95g/L、105g/L或115g/L等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用,可选为50~90g/L,进一步可选为70g/L。
可选地,所述含锌原料在浸出阶段,液固比(质量比)为8~20:1,如8:1、9:1、10:1、11:1、12:1、14:1、15:1、16:1或19:1,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,步骤(2)所述过滤的方法为板框压滤。
可选地,所述板框压滤包括第一板框压滤和第二板框压滤。
可选地,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3)。
本申请中,所述过滤为粗过滤,浸出溶液采用渣浆泵注入到粗过滤工序。粗过滤工序包括一段板框压滤机、搅拌罐、渣浆泵和二段板框压滤机。浸出溶液经段板框压滤机获得的滤液进入到净化工序,滤渣进入搅拌罐补水搅拌,之后进入二段板框压滤机。获得的滤液进入到净化工序,滤渣返回转窑作为原料使用。
作为本申请可选的技术方案,步骤(3)所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.25~0.3倍,如0.26倍、0.27倍、0.28倍或0.29倍等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,步骤(3)所述金属镉的加入量为第一分离液中铅质量的0.5~0.8倍,如0.6倍、0.65倍、0.7倍或0.75倍等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,步骤(3)所述金属锌的加入量为第二分离液中镉质量的3~10倍,如4倍、5倍、6倍、7倍、8倍或9倍等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
本申请中,步骤(3)铅置换铜的反应在第一净化器中进行,步骤(3)镉置换铅的反应在第二净化器中进行,步骤(3)锌置换镉的反应在第三净化器中进行。其中,步骤(3)加入的镉和铅优先适用本申请自身产出的金属镉和铅。本申请步骤(3)的置换反应,不仅限于在净化器中进行,也可在其他反应设备中进行。
作为本申请可选的技术方案,步骤(4)电解中电解液的pH为3.5~8,如3.5、4.5、5.5、6.5或7.5等,但并不仅限于所列举的数值,该数值范围内其他未列举的数值同样适用。
作为本申请可选的技术方案,步骤(4)后进行步骤(5)将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣。
作为本申请可选的技术方案,步骤(5)所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
作为本申请可选的技术方案,所述基于铵络体系的铅锌镉铜分离和纯化的 方法包括以下步骤:
(1)使用浸出液对含锌原料进行浸出,所述浸出液中含有氨水和/或液氨,得到浸出后液;
(2)对步骤(1)得到的浸出后液进行板框压滤处理,所述板框压滤包括第一板框压滤和第二板框压滤,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3);
(3)将步骤(2)得到的滤液与金属铅混合置换出铜,所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.25~0.3倍,固液分离后得到第一分离液;将所述第一分离液与金属镉混合置换出铅,所述金属镉的加入量为第一分离液中铅质量的0.5~0.8倍,固液分离后得到第二分离液;将所述第二分离液与金属锌混合置换出镉,所述金属锌的加入量为第二分离液中镉质量的3~10倍,固液分离得到第三分离液;
(4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解中电解液的pH为3.5~8,电解后的电解液返回步骤(1)对含锌原料进行浸出;
(5)将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣,所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
与现有技术相比,本申请具有以下有益效果:
(1)本申请根据金属离子的电极电位不同,多级逐步选择性还原出不同的金属离子;
(2)本申请通过精准控制铅、镉、锌的加入,使用自身产出的铅和镉,逐 步替代外购铅粉和镉粉,实现自产自用,降低生产成本。
附图说明
图1是本申请实施例1提供的分离协同铵络捕集含锌固废中低沸点重金属的***的结构示意图。
具体实施方式
为更好地说明本申请,便于理解本申请的技术方案,下面对本申请进一步详细说明,但下述的实施例仅是本申请的简易例子,并不代表或限制本申请的权利保护范围,本申请保护范围以权利要求书为准。
以下为本申请典型但非限制性实施例:
实施例1
本实施例提供一种基于铵络体系的铅锌镉铜分离和纯化的方法,其工艺流程如图1所示,所述方法包括以下步骤:
(1)使用浸出液对含锌原料进行浸出,所述浸出液中含有氨水,浸出液pH为7,得到浸出后液,浸出后液中锌含量为70g/L,锌原料在浸出阶段,液固质量比为12:1;
(2)对步骤(1)得到的浸出后液进行板框压滤处理,所述板框压滤包括第一板框压滤和第二板框压滤,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3);
(3)将步骤(2)得到的滤液与金属铅混合置换出铜,所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.25倍,固液分离后得到第一分离液;将所述第一分离液与金属镉混合置换出铅,所述金属镉的加入量为第一分离液中 铅质量的0.6倍,固液分离后得到第二分离液;将所述第二分离液与金属锌混合置换出镉,所述金属锌的加入量为第二分离液中镉质量的7倍,固液分离得到第三分离液;
(4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解中电解液的pH为7,电解后的电解液返回步骤(1)对含锌原料进行浸出;
(5)将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣,所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
实施例2
本实施例提供一种基于铵络体系的铅锌镉铜分离和纯化的方法,其工艺流程如图1所示,所述方法包括以下步骤:
(1)使用浸出液对含锌原料进行浸出,所述浸出液中含有氨水,浸出液pH为6.5,得到浸出后液,浸出后液中锌含量为65g/L,锌原料在浸出阶段,液固质量比为13:1;
(2)对步骤(1)得到的浸出后液进行板框压滤处理,所述板框压滤包括第一板框压滤和第二板框压滤,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3);
(3)将步骤(2)得到的滤液与金属铅混合置换出铜,所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.3倍,固液分离后得到第一分离液;将所述第一分离液与金属镉混合置换出铅,所述金属镉的加入量为第一分离液中铅质量的0.7倍,固液分离后得到第二分离液;将所述第二分离液与金属锌混合 置换出镉,所述金属锌的加入量为第二分离液中镉质量的6倍,固液分离得到第三分离液;
(4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解中电解液的pH为6.5,电解后的电解液返回步骤(1)对含锌原料进行浸出;
(5)将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣,所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
实施例3
本实施例提供一种基于铵络体系的铅锌镉铜分离和纯化的方法,其工艺流程如图1所示,所述方法包括以下步骤:
(1)使用浸出液对含锌原料进行浸出,所述浸出液中含有氨水,浸出液pH为7.5,得到浸出后液,浸出后液中锌含量为60g/L,锌原料在浸出阶段,液固质量比为15:1;
(2)对步骤(1)得到的浸出后液进行板框压滤处理,所述板框压滤包括第一板框压滤和第二板框压滤,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3);
(3)将步骤(2)得到的滤液与金属铅混合置换出铜,所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.28倍,固液分离后得到第一分离液;将所述第一分离液与金属镉混合置换出铅,所述金属镉的加入量为第一分离液中铅质量的0.75倍,固液分离后得到第二分离液;将所述第二分离液与金属锌混合置换出镉,所述金属锌的加入量为第二分离液中镉质量的9倍,固液分离得 到第三分离液;
(4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解中电解液的pH为7.5,电解后的电解液返回步骤(1)对含锌原料进行浸出;
(5)将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣,所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
实施例4
本实施例提供一种基于铵络体系的铅锌镉铜分离和纯化的方法,其工艺流程如图1所示,所述方法包括以下步骤:
(1)使用浸出液对含锌原料进行浸出,所述浸出液中含有氨水,浸出液pH为5.5,得到浸出后液,浸出后液中锌含量为50g/L,锌原料在浸出阶段,液固质量比为18:1;
(2)对步骤(1)得到的浸出后液进行板框压滤处理,所述板框压滤包括第一板框压滤和第二板框压滤,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3);
(3)将步骤(2)得到的滤液与金属铅混合置换出铜,所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.26倍,固液分离后得到第一分离液;将所述第一分离液与金属镉混合置换出铅,所述金属镉的加入量为第一分离液中铅质量的0.8倍,固液分离后得到第二分离液;将所述第二分离液与金属锌混合置换出镉,所述金属锌的加入量为第二分离液中镉质量的9倍,固液分离得到第三分离液;
(4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解中电解液的pH为5.5,电解后的电解液返回步骤(1)对含锌原料进行浸出;
(5)将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣,所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
本申请具体实施方式中,含锌原料的来源可为次氧化锌粉和高炉瓦斯灰、转炉灰、电炉灰以及含氯、氟等难处理杂质的含锌固废等一种或多种,锌含量40%-70%,电解的条件为电压2.35-3.5V,使电流在200-600A,电流效率94%以上,电解液温度在50-80℃。对实施例1-4制备得到的金属铜、铅、镉以及新的纯度进行测试,其结果如表1所示。
表1
  铜纯度/% 铅纯度/% 镉纯度/% 锌纯度/%
实施例1 54.23 93.87 80.37 99.997
实施例2 55.34 91.87 82.18 99.996
实施例3 54.86 92.49 85.94 99.995
实施例4 56.57 95.12 83.85 99.998
从表1的测试结果可以看出,本申请实施例1-4提供的基于铵络体系的铅锌镉铜分离和纯化的方法,最终制备得到的锌纯度可达99.995%以上,铅纯度可达90%以上,而镉纯度可达80%以上。
申请人声明,本申请通过上述实施例来说明本申请的详细方法,但本申请并不局限于上述详细方法,即不意味着本申请必须依赖上述方法才能实施。

Claims (10)

  1. 一种基于铵络体系的铅锌镉铜分离和纯化的方法,其中,所述方法包括以下步骤:
    (1)使用浸出液对含锌原料进行浸出,得到浸出后液;
    (2)对步骤(1)得到的浸出后液进行过滤处理,得到滤液和滤渣;
    (3)将步骤(2)得到的滤液与金属铅混合置换出铜,固液分离后得到第一分离液;将所述第一分离液与金属镉混合置换出铅,固液分离后得到第二分离液;将所述第二分离液与金属锌混合置换出镉,固液分离得到第三分离液;
    (4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解后的电解液返回步骤(1)对含锌原料进行浸出。
  2. 根据权利要求1所述的方法,其中,步骤(1)所述浸出液中含有络合剂。
  3. 根据权利要求2所述的方法,其中,所述络合剂包括氨水和/或液氨。
  4. 根据权利要求1-3中任一项所述的方法,其中,所述浸出液中加入络合剂,直至浸出液pH值在3.5~8;
    可选地,所述含锌原料与浸出液的质量比按照出口净化液Zn含量45-120g/L配置,可选为50-90g/L,进一步可选为70g/L;
    可选地,所述含锌原料在浸出阶段,液固质量比为8~20:1。
  5. 根据权利要求1-4中任一项所述的方法,其中,步骤(2)所述过滤的方法为板框压滤;
    可选地,所述板框压滤包括第一板框压滤和第二板框压滤;
    可选地,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3)。
  6. 根据权利要求1-5任一项所述的方法,其中,步骤(3)所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.25~0.3倍,可选为0.3倍;
    可选地,步骤(3)所述金属镉的加入量为第一分离液中铅质量的0.5~0.8倍,可选为0.6倍;
    可选地,步骤(3)所述金属锌的加入量为第二分离液中镉质量的3~10倍,可选为5倍。
  7. 根据权利要求1-6任一项所述的方法,其中,步骤(4)电解中电解液的pH值为3.5~8。
  8. 根据权利要求1-7任一项所述的方法,其中,步骤(4)后还进行步骤(5),将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣。
  9. 根据权利要求8所述的方法,其中,步骤(5)所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
  10. 根据权利要求1-9任一项所述的方法,其包括以下步骤:
    (1)使用浸出液对含锌原料进行浸出,所述浸出液中含有氨水和/或液氨,得到浸出后液;
    (2)对步骤(1)得到的浸出后液进行板框压滤处理,所述板框压滤包括第一板框压滤和第二板框压滤,所述第一板框压滤得到的滤液进入步骤(3),得到的滤渣依次进行洗渣和第二板框压滤,所述第二板框压滤得到的滤液进入步骤(3);
    (3)将步骤(2)得到的滤液与金属铅混合置换出铜,所述金属铅的加入量为步骤(2)所述滤液中的铜质量的0.25~0.3倍,固液分离后得到第一分离液; 将所述第一分离液与金属镉混合置换出铅,所述金属镉的加入量为第一分离液中铅质量的0.5~0.8倍,固液分离后得到第二分离液;将所述第二分离液与金属锌混合置换出镉,所述金属锌的加入量为第二分离液中镉质量的3~10倍,固液分离得到第三分离液;
    (4)对步骤(3)得到的第三分离液进行电解,得到金属锌,电解中电解液的pH为3.5~8,电解后的电解液返回步骤(1)对含锌原料进行浸出;
    (5)将步骤(4)得到的金属锌进行熔铸,得到锌锭和浮渣,所述浮渣经分选后得到锌灰和锌粒,所述锌灰返回步骤(1)进行浸出,所述锌粒返回步骤(3)进行置换镉。
PCT/CN2020/140100 2020-03-24 2020-12-28 一种基于铵络体系的铅锌镉铜分离和纯化的方法 WO2021190025A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/914,278 US20230124749A1 (en) 2020-03-24 2020-12-28 Ammonium complex system-based method for separating and purifying lead, zinc, cadmium, and copper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010214067.0 2020-03-24
CN202010214067.0A CN111286609A (zh) 2020-03-24 2020-03-24 一种基于铵络体系的铅锌镉铜分离和纯化的方法

Publications (1)

Publication Number Publication Date
WO2021190025A1 true WO2021190025A1 (zh) 2021-09-30

Family

ID=71020347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140100 WO2021190025A1 (zh) 2020-03-24 2020-12-28 一种基于铵络体系的铅锌镉铜分离和纯化的方法

Country Status (3)

Country Link
US (1) US20230124749A1 (zh)
CN (1) CN111286609A (zh)
WO (1) WO2021190025A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111286609A (zh) * 2020-03-24 2020-06-16 鑫联环保科技股份有限公司 一种基于铵络体系的铅锌镉铜分离和纯化的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046761A (zh) * 1989-04-29 1990-11-07 化工部天津化工研究院 湿法炼锌
CN1093418A (zh) * 1993-04-09 1994-10-12 广州市新技术应用研究所 络合物电解制锌
US20090272227A1 (en) * 2007-05-23 2009-11-05 Phitex Meip, Llc Metal Extraction Without Cyanide
CN101928827A (zh) * 2010-08-31 2010-12-29 湖南子廷有色金属有限公司 锌氨络合物除杂炼锌的方法
CN105197982A (zh) * 2015-09-29 2015-12-30 湖南荣鹏环保科技股份有限公司 一种以高氯次氧化锌为原料生产电子级氧化锌的方法
CN108277345A (zh) * 2018-01-29 2018-07-13 昆明理工大学 一种从硫酸锌浸出液中除铜镉的方法
CN111286609A (zh) * 2020-03-24 2020-06-16 鑫联环保科技股份有限公司 一种基于铵络体系的铅锌镉铜分离和纯化的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517455A (zh) * 2011-12-29 2012-06-27 株洲冶炼集团股份有限公司 一种从铜镉渣中回收镉的方法
CN103757420B (zh) * 2014-01-20 2016-09-21 北京矿冶研究总院 一种从锌浸出渣中回收铅、银的方法
CN104451172B (zh) * 2014-08-26 2016-06-22 云南罗平锌电股份有限公司 从湿法炼锌高温净化渣中综合回收有价金属的方法
CN104805468A (zh) * 2015-04-01 2015-07-29 郴州雄风环保科技有限公司 用含Cu、Pb、Zn、Ag复杂成分的氧化锌物料制锌工艺

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1046761A (zh) * 1989-04-29 1990-11-07 化工部天津化工研究院 湿法炼锌
CN1093418A (zh) * 1993-04-09 1994-10-12 广州市新技术应用研究所 络合物电解制锌
US20090272227A1 (en) * 2007-05-23 2009-11-05 Phitex Meip, Llc Metal Extraction Without Cyanide
CN101928827A (zh) * 2010-08-31 2010-12-29 湖南子廷有色金属有限公司 锌氨络合物除杂炼锌的方法
CN105197982A (zh) * 2015-09-29 2015-12-30 湖南荣鹏环保科技股份有限公司 一种以高氯次氧化锌为原料生产电子级氧化锌的方法
CN108277345A (zh) * 2018-01-29 2018-07-13 昆明理工大学 一种从硫酸锌浸出液中除铜镉的方法
CN111286609A (zh) * 2020-03-24 2020-06-16 鑫联环保科技股份有限公司 一种基于铵络体系的铅锌镉铜分离和纯化的方法

Also Published As

Publication number Publication date
US20230124749A1 (en) 2023-04-20
CN111286609A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN109207730B (zh) 一种从废旧磷酸铁锂电池中回收锂的方法及***
CN109234524B (zh) 一种从废旧三元锂电池中综合回收有价金属的方法及***
CN102851707B (zh) 一种碱浸法从冶炼烟灰中回收生产电解锌粉和铅粉的工艺
TW201737548A (zh) 從具有高錳含量的廢棄鋰離子電池回收有價金屬的方法
CN109055757B (zh) 一种回收电解锰或电解锌的阳极渣中二氧化锰和铅的方法
CN103849775B (zh) 一种从高温合金废料中回收镍和钴的方法
CN102912138A (zh) 一种从锌电积阳极泥中回收锌、锰、铅和银的方法
CN103911514B (zh) 废旧硬质合金磨削料的回收处理方法
CN108588420A (zh) 一种废铅酸蓄电池湿法回收铅的方法
CN111647754A (zh) 一种钢铁厂含锌尘泥的综合利用方法
WO2014112198A1 (ja) Itoターゲットスクラップからのインジウム-錫合金の回収方法、酸化インジウム-酸化錫粉末の製造、及びitoターゲットの製造方法
WO2021190025A1 (zh) 一种基于铵络体系的铅锌镉铜分离和纯化的方法
CN100586617C (zh) 从含锌粉料中回收并制取超细锌粉的方法
CN108866337B (zh) 一种处理金属污泥的方法
CN110846512B (zh) 一种电解锰阳极渣硫酸熟化浸出锰的方法
CN112645387A (zh) 一种利用阳极渣制备电池级二氧化锰的方法
CN109536992B (zh) 一种两脱两积净化铜电解液的方法
CN115072688B (zh) 一种废旧磷酸铁锂电池全组分回收方法
CN110735048A (zh) 一种湿法炼锌含锌溶液中镁、氟的脱除方法
CN1341760A (zh) 一种湿法炼锌工艺
CN113603119B (zh) 一种从废旧磷酸铁锂材料回收锂的方法
CN213977836U (zh) 一种电解锰阳极渣生产硫酸锰的***
CN113604678A (zh) 一种通过氨浸-萃取工艺回收锡冶炼烟尘中锌的方法
CN102888624A (zh) 一种含锌碱液旋流电解生产超细锌粉的方法
CN111020194A (zh) 一种从废旧钛酸锂正负极粉合成钛铝合金的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927301

Country of ref document: EP

Kind code of ref document: A1