WO2021189813A1 - 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法 - Google Patents

一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法 Download PDF

Info

Publication number
WO2021189813A1
WO2021189813A1 PCT/CN2020/120433 CN2020120433W WO2021189813A1 WO 2021189813 A1 WO2021189813 A1 WO 2021189813A1 CN 2020120433 W CN2020120433 W CN 2020120433W WO 2021189813 A1 WO2021189813 A1 WO 2021189813A1
Authority
WO
WIPO (PCT)
Prior art keywords
construction
monitoring
shield
tunnel
grouting
Prior art date
Application number
PCT/CN2020/120433
Other languages
English (en)
French (fr)
Inventor
李刚柱
刘伟
李亚鹏
杜红波
孙伯乐
赵昕龙
王海东
秦亮
褚晓晖
李波
梁卿恺
史邢凯
吴磊
李晓坤
崔利豪
李朝旭
代先斌
何兰英
詹世伟
刘宇
Original Assignee
中铁三局集团桥隧工程有限公司
中铁三局集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁三局集团桥隧工程有限公司, 中铁三局集团有限公司 filed Critical 中铁三局集团桥隧工程有限公司
Priority to US17/148,034 priority Critical patent/US20210301660A1/en
Publication of WO2021189813A1 publication Critical patent/WO2021189813A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/04Driving tunnels or galleries through loose materials; Apparatus therefor not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/003Linings or provisions thereon, specially adapted for traffic tunnels, e.g. with built-in cleaning devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/08Lining with building materials with preformed concrete slabs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/105Transport or application of concrete specially adapted for the lining of tunnels or galleries ; Backfilling the space between main building element and the surrounding rock, e.g. with concrete
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/003Arrangement of measuring or indicating devices for use during driving of tunnels, e.g. for guiding machines
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/0607Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield being provided with devices for lining the tunnel, e.g. shuttering
    • E21D9/0609Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining the shield being provided with devices for lining the tunnel, e.g. shuttering with means for applying a continuous liner, e.g. sheets of plastics, between the main concrete lining and the rock
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/06Making by using a driving shield, i.e. advanced by pushing means bearing against the already placed lining
    • E21D9/093Control of the driving shield, e.g. of the hydraulic advancing cylinders

Definitions

  • the invention belongs to the technical field of tunnel construction, and specifically relates to a construction method for a water-rich sand layer shield to cross over an existing line and pass a sewage jacking pipe at a short distance.
  • Tunnel traversing projects include new tunnels passing underneath or laterally traversing adjacent surface buildings, underpassing and overpassing existing tunnels, tunnels underpassing underground pipe networks, and excavation of foundation pits above the tunnels.
  • searching domestic and foreign engineering cases most of them are cases where the shield goes under the existing tunnel and the pipeline underneath, and the supporting construction technology is also relatively complete, but there is no case where the shield goes up the operating tunnel and goes down the sewage pipeline at the same time.
  • Shield tunnels mainly pass through the ground with sandy silt mixed with silt and sandy silt.
  • the soil is soft and rich in water, with poor mechanical properties and strong water permeability.
  • the tunnel will inevitably float up due to the unloading of the upper soil body. If the deformation is too large, it will affect its normal operation; the sewage jacking process has no foundation underneath, and the shield tunneling process will inevitably cause settlement.
  • how to control the upper sewage jacking culvert not to settle, and the lower existing tunnel not to float has become the most difficult point of the project.
  • An object of the present invention is to solve at least the above-mentioned problems and provide at least the advantages described later.
  • the present invention provides a construction method for a shield tunneling in a water-rich sand layer to cross over an existing line and pass through a sewage jacking pipe at a short distance.
  • the shield parameters are controlled according to the plan, and the existing line is controlled to float through the backpressure and heap load in the tunnel under construction, and the real-time dynamic adjustment of the shield parameter system is established based on the automatic monitoring and construction monitoring data of the tunnel and track in the existing line , Adjust the shield parameters in time.
  • the steel bar is weighed; each ring weighs 4.5-5t in total.
  • the method of the present invention includes the following parts:
  • test section is to cross the 45m-60m stratum in the forward shield direction;
  • S3) Shield crossing construction includes:
  • the material ratio of synchronous grouting is per 1m 3 of the slurry contains: 200-220kg of cement, 300-350kg of fly ash, 700-800kg of sand, 100-150kg of bentonite, 400-450kg of water, initial slurry The setting time is 6-7h;
  • Tunnel automatic monitoring relying on the automatic monitoring and construction monitoring data of the existing tunnels and tracks to establish a real-time dynamic adjustment shield parameter system.
  • step S3 is:
  • step S3 when the synchronous grouting cannot meet the settlement requirements, the second or more compensation grouting is performed in time; the second compensation grouting uses the opening of the lifting hole of the pipe segment to supplement the grouting, and adopts cement slurry and water glass slurry Double-liquid grouting is used to make up for the gaps behind the wall that is not filled with the grout.
  • the second grouting is carried out on the construction pores behind the segment.
  • tunnel automatic monitoring monitoring point arrangement method described in step S3 is:
  • each tunnel monitoring section is equipped with 4 prisms, including a set of horizontal convergence monitoring points, a set of track bed differential settlement monitoring points, select One of the points is used as a monitoring point for the settlement and horizontal displacement of the track bed.
  • step S3 the measurement method of tunnel automatic monitoring described in step S3 is:
  • the automated monitoring system includes sensors, data acquisition units, computers, information management software and communication networks; various measurement control units DAU automatically measure the instruments under its jurisdiction according to the time set by the monitoring host’s commands, and convert them into digital quantities for temporary storage In the measurement control unit DAU, it transmits the measured data to the host according to the command of the monitoring host; the monitoring host checks and online monitors the actual measurement data, and transmits the verified data to the management host for storage; the management host performs storage on the stored data Process and analyze, and send information that affects construction safety to the competent authorities at all levels.
  • the three-dimensional coordinates of the control points set in the existing cable tunnel are used for automatic real-time monitoring during monitoring.
  • the automatic real-time monitoring ends when the tunnel is 5 meters;
  • Uplink unit 1 monitors 10 rings on the left and right of the existing line tunnel, and every 3 rings is a monitoring section;
  • Downlink unit 1 monitors 10 rings on the left and right of the existing line tunnel’s positive impact area , Every 3 rings is a monitoring section;
  • the automatic real-time monitoring only monitors the settlement of the track bed within a range of 5 meters from both sides of the tunnel under construction and the existing tunnel.
  • the technical measures such as finite element analysis, automatic monitoring of existing lines, back pressure of steel rods in the tunnel to prevent floating, and secondary grouting reinforcement are adopted to optimize the existing lines and sewage pipe jacking.
  • the uplift control effect the actual construction effect is remarkable. It provides a good reference for solving the problem of difficult control of the construction of the shield tunnel passing through the risk point in the water-rich sand layer.
  • the economic and social benefits are significant, and the application prospect is very good.
  • Figure 1 is a schematic diagram of secondary compensation grouting.
  • Figure 2 is a schematic diagram of the pressure in the tunnel.
  • Figure 3 is the construction parameter diagram of thrust and thrust in the implementation case.
  • Figure 4 shows the synchronous grouting construction parameter table in the implementation case.
  • Figure 5 shows the distribution diagram of tunnel section monitoring prisms.
  • Figure 6 is a data analysis diagram of each monitoring project in the implementation case.
  • Figure 7 shows the distribution curve of the track bed settlement of the uplink tunnel in the implementation case.
  • Figure 8 is a curve diagram of the settlement distribution of the track bed of the down-line tunnel in the implementation case.
  • Figure 9 is a diagram showing the relationship between p-p0 ⁇ and the amount of excavation from the screw conveyor in the implementation case.
  • a construction method for a shield tunneling in a water-rich sand layer to cross over an existing line and pass through a sewage jacking pipe at a close distance including the following steps:
  • S3) Shield crossing construction includes:
  • Soil pressure control on the excavation surface in order to ensure ground settlement, maintaining the stability of the excavation surface is a prerequisite, and the stability of the excavation surface is achieved by the balance between the soil pressure in the soil tank and the earth pressure on the tunnel surface. Therefore, the dynamic control and management of the excavation surface earth pressure is one of the cores of the shield construction technology.
  • the earth pressure of the excavation surface should be kept stable by maintaining the balance between the excavated soil volume and the discharge volume.
  • the earth pressure is set between 0.9 and 1.1 bar, and the fluctuation range of the earth pressure of each ring is controlled within 0.1 bar;
  • the horizontal and vertical deflection angles of the shield axis should be controlled within 1 ⁇ , that is, the difference between the horizontal and vertical directions should be controlled within 8.5mm;
  • Synchronous grouting during shield crossing needs to ensure the following properties: 1The grout has good filling properties to ensure that the settlement after the shield machine passes through can be effectively controlled; 2The initial setting time of the grout is appropriate, the early strength is high, and the grout The volume shrinkage rate after hardening is small; 3The consistency of the slurry is appropriate, too thick will easily cause pipeline blockage, and too thin will easily cause the segment to float.
  • the material ratio of synchronous grouting is that every 1m 3 of the slurry contains: 200-220kg of cement, 300-350kg of fly ash, 700-800kg of sand, 100-150kg of bentonite, 400-450kg of water, and the initial setting time of the slurry is 6-7h ;
  • Simultaneous grouting pressure and grouting volume are controlled at the same time, and the grouting pressure is controlled between 0.15 and 0.25Mpa;
  • Tunnel automatic monitoring relying on the automatic monitoring and construction monitoring data of the existing tunnels and tracks to establish a real-time dynamic adjustment shield parameter system.
  • step S3 when the synchronous grouting cannot meet the settlement requirements, a second (or multiple) grouting is carried out in time; the second compensation grouting is carried out after the opening of the hoisting hole of the pipe piece, and cement slurry and water glass are used.
  • Two-liquid grout grouting can make up for the gaps behind the wall when the grout is not fully filled, and reduce the settlement caused by insufficient simultaneous grouting.
  • it is required to carry out a second grout replenishment for each ring during the construction.
  • the position and method of grout filling and injection are shown in Figure 2.
  • the second grouting is performed immediately on the construction pores behind the segment.
  • the tunnel automatic monitoring monitoring point arrangement method described in step S3 is:
  • step S3 the measurement method of tunnel automatic monitoring described in step S3 is:
  • the automated monitoring system includes sensors, data acquisition units, computers, information management software and communication networks; various measurement control units DAU automatically measure the instruments under its jurisdiction according to the time set by the monitoring host’s commands, and convert them into digital quantities for temporary storage In the measurement control unit DAU, it transmits the measured data to the host according to the command of the monitoring host; the monitoring host checks and online monitors the actual measurement data, and transmits the verified data to the management host for storage; the management host mainly stores The data is processed and analyzed, and safety-related information is sent to the competent authorities at all levels.
  • the three-dimensional coordinates of the control points set in the existing cable tunnel are used for automatic real-time monitoring.
  • Automatic real-time monitoring is carried out when the shield head of the tunnel under construction is 5 meters away from the existing tunnel to 5 meters away from the shield tail.
  • the upstream line No. 1 monitors the 10 rings on the left and the right of the existing tunnel being affected, and every 3 rings is a monitoring Section;
  • Downlink Unit 1 monitors 10 loops on the left and right of the area being affected by the existing cable tunnel, and every 3 loops is a monitoring section;
  • automatic real-time monitoring is only for the tunnel under construction and the existing tunnel crossing section and a range of 5 meters on both sides of the crossing section The settlement of the inner track bed is monitored.
  • the project is located in an urban area.
  • the minimum clear distance between the construction tunnel and the existing line tunnel is 2.987m, which directly affects the normal operation of the subway.
  • the sewage jacking culvert has a diameter of 1200mm, and the minimum vertical clear distance from the right line of the construction tunnel is 1.6m, which poses a great construction safety risk.
  • the shield tunnel Before the construction of the shield tunnel, the shield tunnel will cross over the existing line and pass through the sewage jacking culvert. Before construction, use the MIDAS GTS NX software to cooperate with FLAC3D to optimize the excavation plan and determine the unfavorable parts of the force.
  • a real-time dynamic adjustment shield parameter system is established, and the parameters are adjusted at the first time In order to adapt to the actual situation, and appropriately carry out the secondary grouting to strengthen the control effect. It took 11 days for the right line of the tunnel under construction to traverse the existing line, and the left line of the tunnel under construction took 11 days to traverse the existing line.
  • the construction parameters can be based on the micro-disturbance control technology of "push slowly and in small sections; turn slowly and evenly; withstand the front and adjust the pressure; seal the tail of the shield and rationally grouting" and combine with specific conditions. Make optimized settings. According to the risk analysis, it is inappropriate for the positive pressure to be too large or too small. Therefore, according to the different buried depth of the tunnel, the frontal pressure should be maintained at about 0.9-1.1bar, and the pressure fluctuation should be kept less than 0.1bar to ensure the stability of the soil in front of the incision.
  • the advancing speed should be controlled at ⁇ 40mm/min, and the advancing should be carried out according to each section of 20 ⁇ 30cm; in order to reduce the time interval of construction-related information feedback, the parameters can be optimized and adjusted in time.
  • the posture of the slow-correcting shield is ensured, and the horizontal and vertical deflection angles of the shield axis are controlled within 0.5 ⁇ to 1 ⁇ , that is, the difference between the horizontal and vertical directions must be controlled within 4.25 to 8.5mm.
  • the synchronous grouting grout adopts a high-density grout with a consistency of 9-10 and a grouting volume of 5m 3 to improve the filling and reinforcement effect of the soil around the shield.
  • the stability of the excavation surface is achieved by balancing the soil pressure in the soil tank and the earth pressure on the tunnel surface. Therefore, the dynamic control and management of the excavation surface earth pressure is one of the cores of the shield construction technology. During the construction process, the earth pressure of the excavation surface should be kept stable by maintaining the balance between the excavated soil volume and the discharge volume.
  • Reasonable setting of earth pressure is an important part of target earth pressure management.
  • the basic principles for setting the target earth pressure of this project are: to ensure the stability of the soil at the excavation surface, and to minimize the interference of the excavation on the surrounding soil.
  • the method for determining the earth pressure in the soil tank is generally calculated as "static earth pressure + water pressure + reserved pressure".
  • the magnitude of the earth pressure on the excavation surface and its variation range are important factors for the stability of the excavation surface.
  • the management of the target earth pressure value also involves the control of the amount of mud added, the pushing speed of the jack, and the speed of the cutting cutter. Therefore, the management of target work pressure is actually a comprehensive management technique. After the above earth pressure adjustment, the earth pressure is stabilized.
  • the amount of excavated soil and the amount of soil discharged are balanced has a relatively large impact on the earth pressure of the excavation surface.
  • the amount of excavated soil and the amount of soil discharged can be obtained through the actual measurement of the amount of excavated soil and the amount of soil discharged. The relationship with earth pressure; if the excavated soil volume is greater than the discharge volume, the earth pressure tends to increase; if the excavated soil volume is less than the discharge volume, the earth pressure tends to decrease.
  • the theoretical earth pressure and the actual strength of the soil should be referenced to set the earth pressure, and the proposed earth pressure should be set to 0.9 ⁇ 1.1bar.
  • the monitoring results of the number line should adjust the pressure of the earth tank in a timely manner to avoid the swelling and excessive settlement of the reinforced soil due to squeezing and over-excavation instability of the soil, and to ensure the stability of the existing line.
  • the pressure of the earth tank should be strictly controlled to avoid drastic fluctuations in earth pressure.
  • the fluctuation range of the earth pressure of each ring excavation should be controlled within 0.1bar.
  • Figure 3 is the construction parameter diagram of thrust and propulsion speed.
  • Synchronous grouting during shield crossing needs to ensure the following properties: 1The grout has good filling properties to ensure that the settlement after the shield machine passes through can be effectively controlled; 2The initial setting time of the grout is appropriate, the early strength is high, and the volume shrinkage rate after the grout is hardened is small. 3The consistency of the slurry is appropriate, too thick will easily cause pipeline blockage, and too thin will easily cause the segment to float.
  • the material ratio of synchronous grouting is that every 1m 3 of the slurry contains: 200-220kg of cement, 300-350kg of fly ash, 700-800kg of sand, 100-150kg of bentonite, 400-450kg of water, and the initial setting time of the slurry is 6-7h .
  • the diameter of the cutter head of the shield machine is 6.46m, and the outer diameter of the precast reinforced concrete segment is 6.2m, and the filling factor is 1.5 ⁇ 2.0.
  • the space formed by the shield excavating the soil and the outer wall of the segment The theoretical volume of the void is:
  • Synchronous grouting should be determined by controlling the double standard of grouting pressure and grouting amount, and the specific grouting parameters will be adjusted according to the ground subsidence after the construction of the test section is completed;
  • the grouting pressure is controlled at 0.15 ⁇ 0.25Mpa, and the pressure control is the main principle during grouting, and the grouting volume control is the supplementary policy.
  • the stratum about 50m before the crossing is used as a test section, and monitoring data are combined during the tunneling process to ensure stable advancement.
  • the grouting operation is a key process in the shield construction.
  • the grouting management is strengthened during the construction and strictly in accordance with the dual guarantee principle of "guaranteeing the grouting pressure and taking into account the amount of grouting".
  • the grouting operation is completed by a dedicated person, and the grouting amount must be recorded after the completion of each ring. When it is found that the grouting amount has changed greatly, the reason should be carefully analyzed, and the grouting pressure should be increased. When grouting cannot meet the settlement requirements, two (multiple) grouting needs to be carried out in time.
  • Figure 4 shows the synchronous grouting construction parameter table.
  • Bolt tightening is the key to quality control of segment bolt connection, and its tightening torque should meet the design requirements.
  • During the assembling process of each ring segment connect with bolts while positioning the segments, and perform initial tightening of the bolts. After digging into the next ring, the segment is out of the shield tail and there is a working surface for tightening the bolts. At this time, the ring bolts should be tightened again.
  • the connecting bolts within the adjacent 3 rings that have been assembled into a ring are comprehensively inspected and tightened.
  • the secondary compensation grouting utilizes the opening of the hoisting hole of the pipe segment to fill the grouting.
  • the two-liquid grouting of cement slurry and water glass slurry is used to make up the gap of the slurry behind the wall and reduce the gap due to synchronization.
  • the construction requires a secondary grouting for each ring, and the grouting position is the upper part of the tunnel segment.
  • the second grouting is performed immediately on the construction pores behind the segment.
  • Two-liquid grout is proposed to be used for the secondary grouting.
  • A:B 1:1 (volume ratio)
  • the grouting amount of the supplement grouting behind the wall is determined according to the construction monitoring data.
  • the secondary grouting pressure is controlled between 0.2 and 0.3Mpa.
  • the principle of less injection and frequent injection is adopted.
  • the method of stacking weight is used in the tunnel under construction.
  • the weight range is from the impact area of 10 rings before and after the tunnel and the existing line.
  • Each ring weighs 78 steel bars, totaling 4.8t, as shown in Figure 2.
  • Existing subway lines are left (down) k05+133.5 ⁇ k05+231.8, right (up) k05+179.9 ⁇ k05+250.4, 1 section/3 ring.
  • a total of 46 monitoring sections are laid up and down the crossing section.
  • a total of 4 prisms are placed on each tunnel monitoring section, including a set of horizontal convergence monitoring points and a set of track bed differential settlement monitoring points (select one of these points as the track bed settlement and horizontal displacement monitoring point. As shown in Figure 5.
  • the automated monitoring system generally consists of sensors, data acquisition units, computers, information management software and communication networks.
  • Various measurement control units DAU
  • DAU measurement control units
  • the monitoring host inspects and monitors the measured data online according to certain criteria, and transmits the verified data to the management host for storage; the management host mainly processes and analyzes the stored data, and sends relevant safety information to the competent authorities at all levels Aspect information.
  • the upstream line No. 1 monitors the 10 rings on the left and right sides of the positive impact area of the No. 4 line, with a section for every 3 rings There are 11 sections in total from S349 to S379.
  • the real-time monitoring section of the No. 1 downstream line is from X367 to X400, with a total of 12 sections.
  • Automated real-time monitoring only monitors the settlement of the track bed in the above range.
  • the maximum track bed settlement is 1.8mm
  • the maximum horizontal displacement is 0.8mm, which has a significant effect compared to the numerical calculation result of 7.17mm.
  • the maximum cumulative settlement change is SCJ346: +1.4mm
  • the maximum cumulative horizontal displacement is XSP397: -1.0mm
  • the maximum cumulative level convergence is SSL590: +0.9mm
  • the maximum cumulative height difference between rails is SCY361: +0.9mm.
  • Figure 6 is the data analysis diagram of each monitoring project
  • Figure 7 is the settling distribution curve of the up-line tunnel track bed
  • Figure 8 is the settling distribution curve of the down-line tunnel track bed.
  • the method of the present invention brings the following benefits:
  • the shield By controlling the construction parameters of the shield, the load weight in the tunnel, the automatic monitoring in the tunnel and other technical measures, it not only effectively suppresses the floating of the existing line, but also keeps the pipeline and ground settlement within a controllable range, ensuring the operation of the tunnel and the pipeline. Stable and safe. Compared with shield construction under the same conditions, it saves a large amount of manpower, material resources, financial resources and construction period investment for the secondary grouting and settlement of the shield. The project has a direct economic benefit of 3 million yuan and significant economic benefits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法。具体包括以下步骤:S1)施工前利用MIDAS GTS NX软件配合FLAC3D先行数值模拟优化掘进方案,确定受力不利部位;S2)试验段掘进,穿越前沿盾构方向45m-60m地层为试验段;S3)盾构穿越施工,盾构穿越施工过程中包括:1)土压控制,2)盾构推力控制,3)同步注浆,4)隧道内压重措施;5)隧道自动化监测。该施工方法为解决富水砂层盾构近距离穿越风险点工程施工难控制问题提供了良好借鉴,经济、社会效益显著,应用前景十分良好。

Description

一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法 技术领域
本发明属于隧道施工技术领域,具体涉及一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法。
背景技术
随着社会的发展,伴随大量的城市地铁隧道建设,轨道交通网络的不断完善,许多隧道线路的交叉等问题也将不断涌现,带来大量的隧道穿越施工的问题。这类隧道穿越工程问题可能对既有隧道结构产生不利影响,从而影响到既有地铁的正常运营。盾构机在穿越管线吋,由于地层扰动对管线造成沉降影响,如管线劈裂将对周边坏境安全将造成极其恶劣的影响。
隧道穿越工程包括新建隧道下穿或侧穿临近地表建筑、下穿上跨既有隧道、隧道下穿地下管网、隧道上方开挖基坑等。通过查找国内外工程案例,多为盾构下穿既有隧道和下穿管线的案例,配套施工技术亦较完善,而没有盾构上跨运营中隧道同时下穿污水管线的案例。
而且在富水砂层条件下。盾构隧道主要穿越地层为砂质粉土夹粉砂、砂质粉土,土层软弱且富水,力学性差且透水性强。运营中隧道由于上部土体卸载必然产生上浮,如变形过大,则会影响其正常运营;污水顶管因其顶进工艺,下方没有基础,盾构下穿过程必然引起沉降。在穿越过程中如何控制上方污水顶进涵不沉降,下方既有隧道不上浮成了工程的重难点。
发明内容
本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
为了实现上述目的,本发明提供了一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,包括以下步骤:施工前先行数值模拟优化掘进方案,确定受力不利部位,施工过程中根据方案控制盾构参数,并通过在建隧道内反压堆载压重控制既有线上浮,根据既有线内隧道及轨道的自动化监测和施工监测数据建立实时动态调整盾构参数体系,及时调整盾构参数。
具体的,所述的堆载压重的压重范围为在建隧道与既有线穿越范围内以及在建隧道与既有线穿越范围的前后各10环的影响区域内,采用Φ=100mm、长度1m的钢棒压重;每环共压重4.5-5t。
具体的,本发明的方法包括以下部分:
S1)施工前利用MIDAS GTS NX软件配合FLAC3D先行数值模拟优化掘进方案,确定受力不利部位;
S2)盾构穿越施工,穿越前沿盾构方向45m-60m地层为试验段;
S3)盾构穿越施工,盾构穿越施工过程中包括:
1)开挖面土压控制;施工过程中,土压力设定为0.9~1.1bar之间,每环掘进土压波动范围控制在0.1bar以内;
2)盾构推力控制;推进速度≦40mm/min,按每段20~30cm进行推进;盾构轴线水平向和垂直向偏角控制在1‰以内,即水平和垂直向差值需控制在8.5mm以内;
3)同步注浆,同步注浆的材料配比为每1m 3浆液中包含:水泥200-220kg,粉煤灰300-350kg,砂700-800kg,膨润土100-150kg,水400-450kg,浆液初凝时间为6-7h;
同步注浆中同时控制注浆压力和注浆量,确保注浆压力,兼顾注浆量,注浆压力控制在0.15~0.25Mpa之间;
4)隧道自动化监测,依托既有线内隧道及轨道的自动化监测和施工监测数据建立实时动态调整盾构参数体系。
进一步地,步骤S3中所述的土压控制的方法为:
采用“静止土压+水压+预留压力”计算土舱内土压力;通过调节与控制螺旋输送机的排土量实现地层水土压力P和密封舱内泥土压力P0保持动态平衡;以及控制加泥量、千斤顶推进速度、切削刀盘转速;通过对开挖土量和排土量的实际测量,得出开挖土量、排土量与土压力的关系;若开挖土量大于排土量,则土压力有升高的趋势;若开挖土量小于排土量,则土压力有降低的趋势。
进一步地,步骤S3中所述的注浆量计算按下式计算:Q=Vα,式中V为理论空隙量,α为充填系数,Q为注浆量;充填系数取1.5~2.0,V=π×(R1-R2)×1.2,式中R1为盾构机刀盘半径,R2为预制钢筋混凝土管片半径。
进一步地,步骤S3中当同步注浆无法满足沉降要求时,及时进行二次或二次以上补偿注浆;二次补偿注浆利用管片的吊装孔开口进行补浆,采用水泥浆加水玻璃浆双液注浆,弥补壁后浆液的填充不实的空隙,为防止掘进后的后期沉降,在管片脱出盾尾后5环,对管片后的建筑孔隙进行二次注浆。
进一步地,二次补偿注浆中,水泥浆组分的质量配比为,水:水泥=1:1;水玻璃浆组分的体积配比为,水:水玻璃=2:1;水泥浆与水玻璃浆的体积比为1:1;二次注浆压力控制在0.2~0.3Mpa之间。
进一步地,步骤S3中所述的隧道自动化监测监测点布置方法为:
在在建隧道与既有线前后穿越节点之间,每3环为一个隧道监测断面;每个隧道监测断面共布设4个棱镜,包含一组水平收敛监测点,一组道床差异沉降监测点,选取其中一个点 作为道床沉降及水平位移监测点。
进一步地,步骤S3中所述的隧道自动化监测的测量方法为:
自动化监测***包括传感器、数据采集单元、计算机、信息管理软件及通讯网络;各种测量控制单元DAU对所辖的仪器按照监控主机的命令设定的时间自动测量,并转换为数字量,暂存于测量控制单元DAU中,并根据监控主机的命令向主机传送所测数据;监控主机对实测数据进行检查和在线监控,并向管理主机传送经过检验的数据入库;管理主机对存储的数据进行处理和分析,并向各级主管部门发送影响施工安全的信息。
进一步地,监测时采用既有线隧道内设置有的控制点的三维坐标对其进行自动化实时监测,当在建隧道盾构盾头距既有隧道5米时进行自动化实时监测、盾尾距既有隧道5米时结束自动化实时监测;上行线1号机监测既有线隧道正影响区域左右各10环,每3环为一个监测断面;下行线1号机监测既有线隧道正影响区域左右各10环,每3环为一个监测断面;自动化实时监测仅对在建隧道与既有隧道穿越段和穿越段两侧5米的范围内道床沉降进行监测。
与现有技术相比,本发明的优势在于:
相比传统的盾构穿越工程施工创新之处在于采取了有限元分析、既有线自动化监测、隧道内钢棒反压防止上浮、二次注浆补强等技术措施优化既有线和污水顶管的隆沉控制效果,实际施工效果显著。为解决富水砂层盾构近距离穿越风险点工程施工难控制问题提供了良好借鉴,经济、社会效益显著,应用前景十分良好。
附图说明
图1为二次补偿注浆示意图。
图2为隧道内压重示意图。
图3为实施案例中推力与推进速度施工参数图。
图4为实施案例中同步注浆施工参数表。
图5为隧道断面监测棱镜分布图。
图6为实施案例中各监测项目数据分析图。
图7为实施案例中上行线隧道道床沉降分布曲线图。
图8为实施案例中下行线隧道道床沉降分布曲线图。
图9为实施案例中丨p-p0丨与螺旋输送机出土量关系图。
图中:1、中上部盾构管片,2、水玻璃注入孔,3、管件快速接头装备,4、水泥浆液管,5、钢棒。
具体实施方式
结合附图,对本发明的具体实施方式作进一步描述。
一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,包括以下步骤:
S1)施工前利用MIDAS GTS NX软件配合FLAC3D先行数值模拟优化掘进方案,确定受力不利部位;
S2)试验段掘进,穿越前50m地层为试验段;试验段调整收集各项施工参数,观察监测情况;
S3)盾构穿越施工,盾构穿越施工过程中包括:
1)开挖面土压控制;为保证地面沉降,保持开挖面稳定是前提条件,而开挖面的稳定又是靠土舱内泥土压力与掌子面土压力平衡来实现的。因此,开挖面土压动态控制管理是盾构施工技术的核心之一,在施工过程中要通过保持开挖土量与排土量的平衡来维持开挖面的土压稳定。施工过程中,土压力设定为0.9~1.1bar之间,每环掘进土压波动范围控制在0.1bar以内;
采用“静止土压+水压+预留压力”来计算土舱内土压力;通过调节与控制螺旋输送机的排土量来实现地层水土压力P和密封舱内泥土压力P0保持动态平衡;以及控制加泥量、千斤顶推进速度、切削刀盘转速;通过对开挖土量和排土量的实际测量,得出开挖土量、排土量与土压力的关系;若开挖土量大于排土量,则土压力有升高的趋势;若开挖土量小于排土量,则土压力有降低的趋势。
2)盾构推力控制;推进速度≦40mm/min,按每段20~30cm进行推进;以缩小施工相关信息反馈的时间间隔,及时对参数进行优化调整,在慢推的基础上保证慢纠盾构姿态,盾构轴线水平向和垂直向偏角控制在1‰以内,即水平和垂直向差值需控制在8.5mm以内;
3)同步注浆,盾构穿越时的同步注浆需要保证以下性能:①浆液充填性好,保证盾构机通过后的沉降能够得到有效控制;②浆液初凝时间适当,早期强度高,浆液硬化后体积收缩率小;③浆液稠度合适,过稠容易造成管路堵塞,过稀容易造成管片上浮。
同步注浆的材料配比为每1m 3浆液中包含:水泥200-220kg,粉煤灰300-350kg,砂700-800kg,膨润土100-150kg,水400-450kg,浆液初凝时间为6-7h;
同步注浆中同时控制注浆压力和注浆量,注浆压力控制在0.15~0.25Mpa之间;
注浆量计算按下式计算:Q=Vα,式中V为理论空隙量,α为充填系数;充填系数取1.5~2.0,V=π×(R1-R2)×1.2=3.102m3,式中R1为盾构机刀盘半径,R2为预制钢筋混凝土管片半径。
4)隧道内压重措施,在建隧道内采用堆载压重的方法,压重范围为在建隧道与既有线穿越范围内以及前后各10环的影响区域;采用Φ=100mm,长度1m的钢棒压重;每环共压重78根钢棒,共计4.8t;如图2所示。
通过在在建隧道中压重的方法,既能够有效控制下部既有线隧道的上浮,同时能够控制在建隧道的上浮,进而减小上部管线的沉降。
5)隧道自动化监测,依托既有线内隧道及轨道的自动化监测和施工监测数据建立实时动态调整盾构参数体系。
步骤S3中当所述同步注浆无法满足沉降要求时,及时进行二次(或多次)补浆;二次补偿注浆利用管片的吊装孔开口后进行补浆,采用水泥浆、水玻璃浆双液注浆,弥补壁后浆液的填充不实的空隙,减小因同步注浆不饱满产生的沉降,为满足既有线沉降要求,施工中要求每环进行二次补浆,补浆位置为隧道管片上部,补浆和注入位置和方式如图2所示。为防止掘进后的后期沉降,在管片脱出盾尾后5环,立即对管片后的建筑孔隙进行二次注浆。
二次注浆中,A液,水泥浆的配比为,水:水泥=1:1(质量比);B液,水玻璃浆的配比为,水:水玻璃=2:1(体积比);A:B=1:1(体积比);二次注浆压力控制在0.2~0.3Mpa之间,采用少注、勤注原则,注浆时密切注意管片的变化,以压力为主控制。密切关注地表监测数据,及时调整。
具体的,步骤S3中所述的隧道自动化监测监测点布置方法为:
在在建隧道与既有线前后穿越节点之间,1断面/3环;每个隧道监测断面共布设4个棱镜,包含一组水平收敛监测点,一组道床差异沉降监测点选取其中一个点作为道床沉降及水平位移监测点。如图5所示。
具体的,步骤S3中所述的隧道自动化监测的测量方法为:
自动化监测***包括传感器、数据采集单元、计算机、信息管理软件及通讯网络;各种测量控制单元DAU对所辖的仪器按照监控主机的命令设定的时间自动测量,并转换为数字量,暂存于测量控制单元DAU中,并根据监控主机的命令向主机传送所测数据;监控主机对实测数据进行检查和在线监控,并向管理主机传送经过检验的数据入库;管理主机主要是对存储的数据进行处理和分析,并向各级主管部门发送有关安全方面的信息。
监测时采用既有线隧道内设置有的控制点的三维坐标对其进行自动化实时监测。当在建隧道盾构盾头距既有隧道5米~盾尾距隧道5米时进行自动化实时监测,上行线1号机监测既有线隧道正影响区域左右各10环,每3环为一个监测断面;下行线1号机监测既有线隧道正影响区域左右各10环,每3环为一个监测断面;自动化实时监测仅对在建隧道与既有 隧道穿越段和穿越段两侧5米的范围内道床沉降进行监测。
施工案例
以申请人承建的某工程为例,该工程位于市区,施工隧道上穿位置与既有线隧道最小净距2.987m,直接影响到地铁的正常运营;同时该处施工隧道上方管网密集,其中污水顶进涵直径1200mm,与施工隧道右线最小竖向净距1.6m,施工安全风险极大。
盾构近距离上跨既有线下穿污水顶进涵施工前利用MIDAS GTS NX软件配合FLAC3D先行数值模拟优化掘进方案,确定受力不利部位,施工过程中除上述盾构参数控制外,通过在建隧道内反压钢棒Φ=100mm,长度1m的钢棒压重控制既有线上浮,根据既有线内隧道及轨道的自动化监测和施工监测数据建立实时动态调整盾构参数体系,第一时间调整参数以适应实际情况,并适当进行二次注浆加强控制效果。在建隧道右线用了11日完成上穿既有线,在建隧道左线用了11日完成上穿既有线。
1施工工艺流程
掘进前有限元分析→试验段掘进→优化施工参数→盾构穿越施工→隧道堆载压重→既有隧道自动化加监测→二次注浆→稳定后卸载→完成穿越。
2操作要点
2.1盾构施工参数控制
施工参数可根据“慢慢地推,分小段推;慢慢地转,均匀地转;顶住正面,调整压力;封住盾尾,合理注浆”的微扰动控制技术,并结合具体情况来进行优化设置。根据风险分析,正面压力过大或过小均不宜。因此,根据隧道不同埋深,正面压力应维持在0.9~1.1bar左右,并保持压力波动小于0.1bar,以保证切口前方土体稳定。推进速度应控制在≦40mm/min,按每段20~30cm进行推进;以缩小施工相关信息反馈的时间间隔,及时对参数进行优化调整。在慢推的基础上保证慢纠盾构姿态,盾构轴线水平向和垂直向偏角控制在0.5‰~1‰以内,即水平和垂直向差值需控制在4.25~8.5mm以内。同步注浆浆液采用高密度浆液,稠度为9~10,注浆量为5m 3,以提高对盾构周围土体的填充和加固效果。
1、开挖面土压力动态控制
为保证地面沉降,保持开挖面稳定是前提条件,而开挖面的稳定又是靠土舱内泥土压力与掌子面土压力平衡来实现的。因此,开挖面土压动态控制管理是盾构施工技术的核心之一,在施工过程中要通过保持开挖土量与排土量的平衡来维持开挖面的土压稳定。
1)开挖面土压值控制
合理设定土压力是目标土压力管理的重要内容。本工程目标土压力设定的基本原则是: 保证开挖面的土体稳定,尽量减少掘进对周围土体的干扰。土舱内土压力的确定方法,一般按“静止土压+水压+预留压力”来计算。
2)开挖面土压平衡的保持
为控制开挖面的稳定,必须做好目标土压力值的动态管理,使地层水土压力P和密封舱内泥土压力P0保持动态平衡。这种平衡,通过调节与控制螺旋输送机的排土量来实现。
如图9所示,开挖面土压力的大小及其变化幅度是开挖面稳定的重要因素。
为实现螺旋输送机正常排土,保证开挖面的土体平衡,目标土压力值的管理还涉及到加泥量、千斤顶推进速度、切削刀盘转速控制等。因此,目标工作压力的管理实际上是一项综合管理技术。经过上述土压力调整,实现土压力的稳定。
3)开挖土量的管理
开挖土量与排土量是否平衡对开挖面土压力有比较大的影响,在施工中,通过对开挖土量和排土量的实际测量,得出开挖土量、排土量与土压力的关系;若开挖土量大于排土量,则土压力有升高的趋势;若开挖土量小于排土量,则土压力有降低的趋势。
实际施工过程中,应参考理论土压力和土体的实际强度设定土压力,拟定土压力设定为0.9~1.1bar,施工过程中应根据掘进速度、出土量、地面监测结果以及对地铁4号线的监测结果适时调整土舱压力,避免加固土体因挤压以及土体超挖失稳造成地面***和过大沉降,保证既有线稳定,应严格控制土舱压力,避免土压剧烈波动,每环掘进土压波动范围应控制在0.1bar以内。图3为推力与推进速度施工参数图。
2、同步注浆
1)浆液配比
盾构穿越时的同步注浆需要保证以下性能:①浆液充填性好,保证盾构机通过后的沉降能够得到有效控制;②浆液初凝时间适当,早期强度高,浆液硬化后体积收缩率小;③浆液稠度合适,过稠容易造成管路堵塞,过稀容易造成管片上浮。
同步注浆的材料配比为每1m 3浆液中包含:水泥200-220kg,粉煤灰300-350kg,砂700-800kg,膨润土100-150kg,水400-450kg,浆液初凝时间为6-7h。
2)注浆量计算
通常可按下式估算:Q=Vα式中,V为理论空隙量,α为充填系数。
盾构机刀盘直径取6.46m,而预制钢筋混凝土管片外径为6.2m,充填系数取1.5~2.0,则理论上每掘进一环,盾构掘削土体形成空间与管片外壁之间空隙的理论体积为:
V=π×(3.232-3.12)×1.2=3.102m3。
Q=Vα=4.65~6.20m3。
同步注浆应通过控制注浆压力和注浆量双重标准确定,具体注浆参数待试验段施工完成根据地面沉降情况酌情调整;
3)注浆量控制
在本次穿越过程中,注浆压力控制在0.15~0.25Mpa,注浆时以压力控制为主,注浆量控制为辅的方针。将穿越前约50m地层为试验段,在掘进过程中结合监测数据,确保稳定推进。
4)注浆关键技术的控制
注浆操作是盾构施工中的一个关键工序,在施工中加强注浆管理,严格按照“确保注浆压力,兼顾注浆量”的双重保障原则。注浆操作由专人完成,在每环掘进完成后必须对注浆量进行记录,当发现注浆量变化较大时,应认真分析其原因,通过加大注浆压力等方法补注,当同步注浆无法满足沉降要求时,必需及时进行二次(多次)补浆。图4为同步注浆施工参数表。
2.2管片螺栓紧固
螺栓紧固为管片螺栓连接质量控制要点,其紧固扭矩应符合设计要求。每环管片拼装过程中,随管片定位的同时用螺栓连接,并对螺栓进行初紧。待掘进下一环后,管片脱出盾尾,已具备拧紧螺栓的工作面,此时应对该环螺栓进行再次拧紧。后续盾构掘进时,在每环管片拼装之前,对相邻已拼装成环的3环范围内连接螺栓进行全面检查并复紧。
2.3二次注浆
如图1所示,二次补偿注浆利用管片的吊装孔开口后进行补浆,采用水泥浆、水玻璃浆双液注浆,弥补壁后浆液的填充不实的空隙,减小因同步注浆不饱满产生的沉降,为满足既有线沉降要求,施工中要求每环进行二次补浆,补浆位置为隧道管片上部。为防止掘进后的后期沉降,在管片脱出盾尾后5环,立即对管片后的建筑孔隙进行二次注浆。
1、浆液配比
二次注浆拟采用双液浆。
A液水泥浆,水:水泥=1:1(质量比)
B液水玻璃溶液,水:水玻璃=2:1(体积比)
A:B=1:1(体积比)
壁后补压浆的压浆量按照施工监测数据而定。
2、注浆压力
因上穿段埋深较浅,二次注浆压力控制在0.2~0.3Mpa之间,采用少注、勤注原则,注浆时密切注意管片的变化,以压力为主控制。密切关注地表监测数据,及时调整。
2.4隧道内压重措施
当盾构穿越既有线,在在建隧道内采用堆载压重的方法。压重范围从隧道与既有线穿越范围内前后各10环的影响区域。现场采用Φ=100mm,长度1m的钢棒压重。每环共压重78根钢棒,共计4.8t,如图2所示。
通过在在建隧道中压重的方法,既能够有效控制下部既有线隧道的上浮,同时能够控制在建隧道的上浮,进而减小上部管线的沉降。
2.5隧道自动化监测
1、监测点布置
利用地铁既有线隧道内的控制点在盾构上穿既有线时对其隧道进行自动化监测。既有地铁线左线(下行)k05+133.5~k05+231.8,右线(上行)k05+179.9~k05+250.4,1断面/3环。穿越段上下行共计布设46个监测断面。每个隧道监测断面共布设4个棱镜,包含一组水平收敛监测点,一组道床差异沉降监测点(选取其中一个点作为道床沉降及水平位移监测点。如图5所示。
2、测量方法
自动化监测***一般由传感器、数据采集单元、计算机、信息管理软件及通讯网络构成。各种测量控制单元(DAU)对所辖的仪器按照监控主机的命令设定的时间自动测量,并转换为数字量,暂存于DAU中,并根据监控主机的命令向主机传送所测数据;监控主机根据一定的判据对实测数据进行检查和在线监控,并向管理主机传送经过检验的数据入库;管理主机主要是对存储的数据进行处理和分析,并向各级主管部门发送有关安全方面的信息。
由于既有地铁线已经开始运营,施工时隧道内设置有控制点,监测时采用其控制点的三维坐标对其进行自动化实时监测。当施工线内盾构盾头距既有线隧道5米~盾尾距隧道5米时进行自动化实时监测,上行线1号机监测4号线正影响区域左右各10环,每3环一个断面为S349至S379,共计11个断面。下行线1号机实时监测断面范围为X367至X400,共计12个断面。自动化实时监测仅对上述范围内道床沉降进行监测。
3、监测成果
既有线自动化监测结果,最大道床沉降为1.8mm,最大水平位移为0.8mm,相对于数值计算结果7.17mm有明显的效果。截止目前最大累计沉降变化量为SCJ346:+1.4mm,最大累计水平位移为XSP397:-1.0mm,最大累计水平收敛为SSL590:+0.9mm,最大累计轨间高差 为SCY361:+0.9mm。如图6为各监测项目数据分析图,图7为上行线隧道道床沉降分布曲线图,图8为下行线隧道道床沉降分布曲线图。
本发明所述的方法施工后对既有线及管线、地表进行监测,各项监测数据稳定,均在规范允许范围内。以申请人承建的该工程为例,本发明所属的方法带来以下效益:
1经济效益
通过控制盾构施工参数、隧道内堆载压重、隧道内自动化监测等技术措施,既有效抑制既有线的上浮,同时使管线及地表沉降均在可控范围内,确保了运营隧道与管线的稳定安全。与同条件盾构施工比较,节约了盾构二次注浆及沉降处理大量的人力、物力、财力及工期的投入,该工程直接经济效益300万元,经济效益显著。
2社会效益
通过控制盾构施工参数、隧道内堆载压重、隧道内自动化监测等技术措施,既有效抑制既有线的上浮,同时使管线及地表沉降均在可控范围内,确保了运营隧道与管线的稳定安全,为以后类似施工条件下的盾构掘进施工积累经验,推广应用前景十分广阔,社会效益明显。
3节能、环保效益
通过控制盾构施工参数、隧道内堆载压重、隧道内自动化监测等技术措施,既有效抑制既有线的上浮,同时使管线及地表沉降均在可控范围内,确保了运营隧道与管线的稳定安全,避免了盾构施工过程中对周边环境污染破坏,极大降低了对周边群众生产生活造成的影响,取得了较好的环保、节能效益。

Claims (9)

  1. 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,施工前先行数值模拟优化掘进方案,确定受力不利部位,施工过程中根据方案控制盾构参数,并通过在建隧道内反压堆载压重控制既有线上浮,根据既有线内隧道及轨道的自动化监测和施工监测数据建立实时动态调整盾构参数体系,调整盾构参数,所述的堆载压重的压重范围为在建隧道与既有线穿越范围内以及在建隧道与既有线穿越范围的前后各10环的影响区域内,采用Φ=100mm、长度1m的钢棒压重;每环共压重4.5-5t。
  2. 根据权利要求1所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,具体包括以下部分:
    S1)施工前利用MIDAS GTS NX软件配合FLAC3D先行数值模拟优化掘进方案,确定受力不利部位;
    S2)盾构穿越施工,穿越前沿盾构方向45m-60m地层为试验段;
    S3)盾构穿越施工,盾构穿越施工过程中包括:
    1)开挖面土压控制;施工过程中,土压力设定为0.9~1.1bar之间,每环掘进土压波动范围控制在0.1bar以内;
    2)盾构推力控制;推进速度≦40mm/min,按每段20~30cm进行推进;盾构轴线水平向和垂直向偏角控制在1‰以内,即水平和垂直向差值需控制在8.5mm以内;
    3)同步注浆,同步注浆的材料配比为每1m 3浆液中包含:水泥200-220kg,粉煤灰300-350kg,砂700-800kg,膨润土100-150kg,水400-450kg,浆液初凝时间为6-7h;
    同步注浆中同时控制注浆压力和注浆量,确保注浆压力,兼顾注浆量,注浆压力控制在0.15~0.25Mpa之间;
    4)隧道自动化监测,依托既有线内隧道及轨道的自动化监测和施工监测数据建立实时动态调整盾构参数体系。
  3. 根据权利要求2所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,步骤S3中所述的土压控制的方法为:
    采用“静止土压+水压+预留压力”计算土舱内土压力;通过调节与控制螺旋输送机的排土量实现地层水土压力P和密封舱内泥土压力P0保持动态平衡;以及控制加泥量、千斤顶推进速度、切削刀盘转速;通过对开挖土量和排土量的实际测量,得出开挖土量、排土量与土压力的关系;若开挖土量大于排土量,则土压力有升高的趋势;若开挖土量小于排土量,则土压力有降低的趋势。
  4. 根据权利要求2所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方 法,其特征在于,步骤S3中所述的注浆量计算按下式计算:Q=Vα,式中V为理论空隙量,α为充填系数,Q为注浆量;充填系数取1.5~2.0,V=π×(R1-R2)×1.2,式中R1为盾构机刀盘半径,R2为预制钢筋混凝土管片半径。
  5. 根据权利要求2所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,步骤S3中当同步注浆无法满足沉降要求时,及时进行二次或二次以上补偿注浆;二次补偿注浆利用管片的吊装孔开口进行补浆,采用水泥浆加水玻璃浆双液注浆,弥补壁后浆液的填充不实的空隙,为防止掘进后的后期沉降,在管片脱出盾尾后5环,对管片后的建筑孔隙进行二次注浆。
  6. 根据权利要求5所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,二次补偿注浆中,水泥浆组分的质量配比为,水:水泥=1:1;水玻璃浆组分的体积配比为,水:水玻璃=2:1;水泥浆与水玻璃浆的体积比为1:1;二次注浆压力控制在0.2~0.3Mpa之间。
  7. 根据权利要求2所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,步骤S3中所述的隧道自动化监测监测点布置方法为:
    在在建隧道与既有线前后穿越节点之间,每3环为一个隧道监测断面;每个隧道监测断面共布设4个棱镜,包含一组水平收敛监测点,一组道床差异沉降监测点,选取其中一个点作为道床沉降及水平位移监测点。
  8. 根据权利要求2所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,步骤S3中所述的隧道自动化监测的测量方法为:
    自动化监测***包括传感器、数据采集单元、计算机、信息管理软件及通讯网络;各种测量控制单元DAU对所辖的仪器按照监控主机的命令设定的时间自动测量,并转换为数字量,暂存于测量控制单元DAU中,并根据监控主机的命令向主机传送所测数据;监控主机对实测数据进行检查和在线监控,并向管理主机传送经过检验的数据入库;管理主机对存储的数据进行处理和分析,并向各级主管部门发送影响施工安全的信息。
  9. 根据权利要求8所述的一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法,其特征在于,监测时采用既有线隧道内设置有的控制点的三维坐标对其进行自动化实时监测,当在建隧道盾构盾头距既有隧道5米时进行自动化实时监测、盾尾距既有隧道5米时结束自动化实时监测;上行线1号机监测既有线隧道正影响区域左右各10环,每3环为一个监测断面;下行线1号机监测既有线隧道正影响区域左右各10环,每3环为一个监测断面;自动化实时监测仅对在建隧道与既有隧道穿越段和穿越段两侧5米的范围内道床沉降进行监测。
PCT/CN2020/120433 2020-03-25 2020-10-12 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法 WO2021189813A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/148,034 US20210301660A1 (en) 2020-03-25 2021-01-13 Construction method for making water-rich sand layer shield over cross existing line and underneath cross sewage push pipe at close range

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010215957.3 2020-03-25
CN202010215957.3A CN111396063B (zh) 2020-03-25 2020-03-25 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/148,034 Continuation US20210301660A1 (en) 2020-03-25 2021-01-13 Construction method for making water-rich sand layer shield over cross existing line and underneath cross sewage push pipe at close range

Publications (1)

Publication Number Publication Date
WO2021189813A1 true WO2021189813A1 (zh) 2021-09-30

Family

ID=71436578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120433 WO2021189813A1 (zh) 2020-03-25 2020-10-12 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法

Country Status (2)

Country Link
CN (1) CN111396063B (zh)
WO (1) WO2021189813A1 (zh)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113738383A (zh) * 2021-10-18 2021-12-03 中铁隆工程集团有限公司 一种盾构端头加固方法
CN113969536A (zh) * 2021-10-11 2022-01-25 陕西聚博德新材料科技有限公司 一种隧道路基翻浆病害整治方法
CN114002076A (zh) * 2021-11-02 2022-02-01 中交四航局第七工程有限公司 一种拉顶管施工的室内试验模拟装置及方法
CN114033389A (zh) * 2021-10-28 2022-02-11 中国建筑土木建设有限公司 跨越既有铁路的山地城市隧道施工方法
CN114033391A (zh) * 2021-11-15 2022-02-11 中铁北京工程局集团城市轨道交通工程有限公司 一种富水砂层盾构下穿高速公路高架桥施工及监测方法
CN114046767A (zh) * 2021-11-10 2022-02-15 同济大学 一种基于管片任意两点的盾构隧道接头变形分析方法
CN114086995A (zh) * 2021-11-18 2022-02-25 中铁建大桥工程局集团第六工程有限公司 一种富水隧道中袖阀管注浆快速止水方法
CN114180930A (zh) * 2021-12-31 2022-03-15 中国海洋大学 高水压超大直径水下盾构隧道双液注浆浆液及工艺与应用
CN114183152A (zh) * 2021-12-07 2022-03-15 中铁隧道局集团有限公司 一种小半径多曲线地铁盾构施工中盾构姿态的控制方法
CN114198108A (zh) * 2021-12-21 2022-03-18 中铁一局集团有限公司 一种富水砂层中盾构下穿既有车站围护结构破除清障方法
CN114417454A (zh) * 2021-12-17 2022-04-29 中铁十五局集团有限公司 基于不同开挖路径的叠交隧道深层土***移场预测方法
CN114457850A (zh) * 2022-03-11 2022-05-10 浙江交工集团股份有限公司 明挖隧道上跨既有地铁交叉段抗浮体系的施工方法
CN114527039A (zh) * 2022-01-17 2022-05-24 哈尔滨工业大学 一种模块化袖阀管注浆模拟试验***及方法
CN114593927A (zh) * 2022-03-01 2022-06-07 中交隧道工程局有限公司 一种利用中间风井进行盾构隧道原型试验的方法
CN114776311A (zh) * 2022-04-21 2022-07-22 中铁四局集团第四工程有限公司 一种地铁停车场出入场线下穿建筑物盾构施工方法
CN114943106A (zh) * 2022-02-28 2022-08-26 粤水电轨道交通建设有限公司 一种盾构区间管片模型快速建立方法
CN115030733A (zh) * 2022-06-17 2022-09-09 中建三局第三建设工程有限责任公司 一种防止地层土量损失或地表沉降的注浆方法
CN115075832A (zh) * 2022-07-08 2022-09-20 中建海峡建设发展有限公司 一种盾构机脱困施工方法
CN115288143A (zh) * 2022-07-19 2022-11-04 中国建筑第八工程局有限公司 在既有隧道周围施工基坑时限制既有隧道变形的注浆方法
CN115468785A (zh) * 2022-02-28 2022-12-13 中国地质大学(武汉) 一种模拟曲线顶管受力特性的试验装置
CN115618534A (zh) * 2022-09-07 2023-01-17 浙江大学 一种基于双层优化模型的集中供热隧道规划设计方法
CN115929326A (zh) * 2023-01-29 2023-04-07 北京城建轨道交通建设工程有限公司 用于穿越富水断层破碎带隧道的加固施工方法
CN116522741A (zh) * 2023-07-04 2023-08-01 湖南大学 用于囊袋注浆引起的软黏土地层盾构隧道抬升量预测方法
CN117828904A (zh) * 2024-03-05 2024-04-05 深圳大学 用于超大直径泥水盾构穿越孤石地层的刀盘受力计算方法
CN117972833A (zh) * 2024-01-11 2024-05-03 北京杜普信科技有限公司 一种注浆控制方法、***、终端及存储介质

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111396063B (zh) * 2020-03-25 2021-05-28 中铁三局集团有限公司 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法
CN113374496B (zh) * 2021-06-23 2024-07-19 上海隧道工程有限公司 上穿越隧道结构及施工方法
CN113818904B (zh) * 2021-09-22 2023-01-31 济南轨道交通集团有限公司 一种穿越既有污水管渗漏区的顶管施工方法
CN114876471B (zh) * 2022-07-05 2022-09-09 中铁四局集团有限公司北京分公司 用于无水砂层中的顶管施工方法
CN115263349B (zh) * 2022-08-17 2024-06-21 湖北工业大学 一种下层隧道施工主动补偿上穿运营隧道变形的施工方法
CN115754223B (zh) * 2022-10-13 2024-06-21 中国科学院武汉岩土力学研究所 考虑大埋深、高水压的盾构隧道壁后注浆试验装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206697A (ja) * 2002-01-15 2003-07-25 Kajima Corp 地下構造物の構築工法
CN1932244A (zh) * 2006-09-28 2007-03-21 上海隧道工程股份有限公司 双圆盾构近距离穿越建筑物或构筑物的施工方法
CN101182772A (zh) * 2007-11-20 2008-05-21 中铁二局股份有限公司 两线立交小半径、浅覆土、大纵坡复杂线型盾构施工方法
CN102312673A (zh) * 2010-07-09 2012-01-11 上海市基础工程有限公司 复杂工况条件下盾构近距离穿越已运营地铁隧道施工方法
CN104265307A (zh) * 2014-08-19 2015-01-07 山东大学 软硬不均地层土压平衡盾构隧道下穿铁路既有线施工方法
CN109779639A (zh) * 2019-01-03 2019-05-21 上海隧道工程有限公司 适用于砂性地层盾构上穿既有大直径隧道的抗浮控制方法
CN110230499A (zh) * 2019-07-19 2019-09-13 中铁第六勘察设计院集团有限公司 富水软土地区盾构近穿运营隧道主动保护结构及施工方法
CN111396063A (zh) * 2020-03-25 2020-07-10 中铁三局集团有限公司 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215969A (zh) * 2008-01-17 2008-07-09 上海交通大学 大直径盾构近距离下穿小直径地铁隧道的变形控制方法
CN101761237B (zh) * 2009-12-24 2011-06-01 上海隧道工程股份有限公司 盾构隧道近距离穿越建筑物变形控制的隔离桩施工方法
CN108590683B (zh) * 2018-04-04 2020-04-17 中铁二十五局集团第五工程有限公司 一种富水流塑地层盾构隧道下穿铁路框架桥施工方法
CN108763752B (zh) * 2018-05-28 2022-06-17 中铁十六局集团北京轨道交通工程建设有限公司 一种盾构隧道下穿水道确定施工掘进参数的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206697A (ja) * 2002-01-15 2003-07-25 Kajima Corp 地下構造物の構築工法
CN1932244A (zh) * 2006-09-28 2007-03-21 上海隧道工程股份有限公司 双圆盾构近距离穿越建筑物或构筑物的施工方法
CN101182772A (zh) * 2007-11-20 2008-05-21 中铁二局股份有限公司 两线立交小半径、浅覆土、大纵坡复杂线型盾构施工方法
CN102312673A (zh) * 2010-07-09 2012-01-11 上海市基础工程有限公司 复杂工况条件下盾构近距离穿越已运营地铁隧道施工方法
CN104265307A (zh) * 2014-08-19 2015-01-07 山东大学 软硬不均地层土压平衡盾构隧道下穿铁路既有线施工方法
CN109779639A (zh) * 2019-01-03 2019-05-21 上海隧道工程有限公司 适用于砂性地层盾构上穿既有大直径隧道的抗浮控制方法
CN110230499A (zh) * 2019-07-19 2019-09-13 中铁第六勘察设计院集团有限公司 富水软土地区盾构近穿运营隧道主动保护结构及施工方法
CN111396063A (zh) * 2020-03-25 2020-07-10 中铁三局集团有限公司 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO JIAN-HUI: "Construction technology of subway tunnel with soft soil layer shield", CONSTRUCTION MECHANIZATION, no. 12, 15 December 2019 (2019-12-15), pages 55 - 58, XP055853685, ISSN: 1001-1366 *

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113969536A (zh) * 2021-10-11 2022-01-25 陕西聚博德新材料科技有限公司 一种隧道路基翻浆病害整治方法
CN113738383A (zh) * 2021-10-18 2021-12-03 中铁隆工程集团有限公司 一种盾构端头加固方法
CN114033389A (zh) * 2021-10-28 2022-02-11 中国建筑土木建设有限公司 跨越既有铁路的山地城市隧道施工方法
CN114002076A (zh) * 2021-11-02 2022-02-01 中交四航局第七工程有限公司 一种拉顶管施工的室内试验模拟装置及方法
CN114046767A (zh) * 2021-11-10 2022-02-15 同济大学 一种基于管片任意两点的盾构隧道接头变形分析方法
CN114033391B (zh) * 2021-11-15 2023-09-01 中铁北京工程局集团城市轨道交通工程有限公司 一种富水砂层盾构下穿高速公路高架桥施工及监测方法
CN114033391A (zh) * 2021-11-15 2022-02-11 中铁北京工程局集团城市轨道交通工程有限公司 一种富水砂层盾构下穿高速公路高架桥施工及监测方法
CN114086995A (zh) * 2021-11-18 2022-02-25 中铁建大桥工程局集团第六工程有限公司 一种富水隧道中袖阀管注浆快速止水方法
CN114086995B (zh) * 2021-11-18 2023-07-04 中铁建大桥工程局集团第六工程有限公司 一种富水隧道中袖阀管注浆快速止水方法
CN114183152A (zh) * 2021-12-07 2022-03-15 中铁隧道局集团有限公司 一种小半径多曲线地铁盾构施工中盾构姿态的控制方法
CN114183152B (zh) * 2021-12-07 2023-09-12 中铁隧道局集团有限公司 一种小半径多曲线地铁盾构施工中盾构姿态的控制方法
CN114417454A (zh) * 2021-12-17 2022-04-29 中铁十五局集团有限公司 基于不同开挖路径的叠交隧道深层土***移场预测方法
CN114417454B (zh) * 2021-12-17 2024-04-02 中铁十五局集团有限公司 基于不同开挖路径的叠交隧道深层土***移场预测方法
CN114198108A (zh) * 2021-12-21 2022-03-18 中铁一局集团有限公司 一种富水砂层中盾构下穿既有车站围护结构破除清障方法
CN114180930A (zh) * 2021-12-31 2022-03-15 中国海洋大学 高水压超大直径水下盾构隧道双液注浆浆液及工艺与应用
CN114527039A (zh) * 2022-01-17 2022-05-24 哈尔滨工业大学 一种模块化袖阀管注浆模拟试验***及方法
CN114943106A (zh) * 2022-02-28 2022-08-26 粤水电轨道交通建设有限公司 一种盾构区间管片模型快速建立方法
CN115468785B (zh) * 2022-02-28 2024-04-16 中国地质大学(武汉) 一种模拟曲线顶管受力特性的试验装置
CN114943106B (zh) * 2022-02-28 2024-04-02 粤水电轨道交通建设有限公司 一种盾构区间管片模型快速建立方法
CN115468785A (zh) * 2022-02-28 2022-12-13 中国地质大学(武汉) 一种模拟曲线顶管受力特性的试验装置
CN114593927B (zh) * 2022-03-01 2024-01-26 中交隧道工程局有限公司 一种利用中间风井进行盾构隧道原型试验的方法
CN114593927A (zh) * 2022-03-01 2022-06-07 中交隧道工程局有限公司 一种利用中间风井进行盾构隧道原型试验的方法
CN114457850A (zh) * 2022-03-11 2022-05-10 浙江交工集团股份有限公司 明挖隧道上跨既有地铁交叉段抗浮体系的施工方法
CN114776311A (zh) * 2022-04-21 2022-07-22 中铁四局集团第四工程有限公司 一种地铁停车场出入场线下穿建筑物盾构施工方法
CN115030733A (zh) * 2022-06-17 2022-09-09 中建三局第三建设工程有限责任公司 一种防止地层土量损失或地表沉降的注浆方法
CN115075832A (zh) * 2022-07-08 2022-09-20 中建海峡建设发展有限公司 一种盾构机脱困施工方法
CN115288143A (zh) * 2022-07-19 2022-11-04 中国建筑第八工程局有限公司 在既有隧道周围施工基坑时限制既有隧道变形的注浆方法
CN115618534B (zh) * 2022-09-07 2023-09-01 浙江大学 一种基于双层优化模型的集中供热隧道规划设计方法
CN115618534A (zh) * 2022-09-07 2023-01-17 浙江大学 一种基于双层优化模型的集中供热隧道规划设计方法
CN115929326A (zh) * 2023-01-29 2023-04-07 北京城建轨道交通建设工程有限公司 用于穿越富水断层破碎带隧道的加固施工方法
CN116522741B (zh) * 2023-07-04 2023-09-05 湖南大学 用于囊袋注浆引起的软黏土地层盾构隧道抬升量预测方法
CN116522741A (zh) * 2023-07-04 2023-08-01 湖南大学 用于囊袋注浆引起的软黏土地层盾构隧道抬升量预测方法
CN117972833A (zh) * 2024-01-11 2024-05-03 北京杜普信科技有限公司 一种注浆控制方法、***、终端及存储介质
CN117828904A (zh) * 2024-03-05 2024-04-05 深圳大学 用于超大直径泥水盾构穿越孤石地层的刀盘受力计算方法
CN117828904B (zh) * 2024-03-05 2024-05-28 深圳大学 用于超大直径泥水盾构穿越孤石地层的刀盘受力计算方法

Also Published As

Publication number Publication date
CN111396063B (zh) 2021-05-28
CN111396063A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
WO2021189813A1 (zh) 一种富水砂层盾构近距离上跨既有线下穿污水顶管的施工方法
US20210301660A1 (en) Construction method for making water-rich sand layer shield over cross existing line and underneath cross sewage push pipe at close range
Jin et al. An in-tunnel grouting protection method for excavating twin tunnels beneath an existing tunnel
CN100501124C (zh) 地铁盾构区间隧道联络通道的施工方法
CN105804758B (zh) 浅覆土大断面小间距的矩形顶管上跨地铁隧道施工方法
US11453992B2 (en) Pile foundation bearing platform settlement, reinforcement, lift-up and leveling structure, and construction method thereof
CN102277898B (zh) 排水管顶进施工方法
CN102080548B (zh) 盾构隧道穿越机场跑道的施工方法
CN1215276C (zh) 土压平衡矩形顶管施工工艺
CN110230499A (zh) 富水软土地区盾构近穿运营隧道主动保护结构及施工方法
CN104912562A (zh) 一种盾构下穿既有运营隧道变形控制的施工方法
CN109798396A (zh) 一种复杂地层的长距离大口径混凝土管人工顶进工艺
CN105089680A (zh) 一种沿空留巷轻质高强混凝土砌块墙体及其施工工艺
Mei et al. Experimental study of the comprehensive technology of grouting and suspension under an operating railway in the cobble stratum
CN111156010A (zh) 膨胀土地层盾构穿越既有火车站房的施工方法
CN109386293A (zh) 超大断面矩形顶管密封式接收施工方法
CN115853538A (zh) 一种富水砂质粉土及淤泥质黏土地层榫卯型管片隧道成型方法
He et al. Research on spatiotemporal evolution law of surrounding rock fractures and hierarchical collaborative control technology in high-stress soft rock roadway: A case study
CN115438415B (zh) 一种盾构上跨高压输油管线施工方法
CN108798704B (zh) 一种适用于地下工程施工的岩层主动托换方法
Li et al. Investigation of the first quasi-rectangular metro tunnel constructed by the 0-θ method
CN215169989U (zh) 冻结法加固60米级超长距离联络通道的冻结体系
CN112983433A (zh) 一种使用盾构机侧穿高压塔群施工工法
CN111911169A (zh) 一种既有铁路线路下浅埋深隧道施工方法及结构
CN212671786U (zh) 一种既有铁路线路下浅埋深隧道施工结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927706

Country of ref document: EP

Kind code of ref document: A1