WO2021189809A1 - 送风***、蜗壳及空调 - Google Patents

送风***、蜗壳及空调 Download PDF

Info

Publication number
WO2021189809A1
WO2021189809A1 PCT/CN2020/120236 CN2020120236W WO2021189809A1 WO 2021189809 A1 WO2021189809 A1 WO 2021189809A1 CN 2020120236 W CN2020120236 W CN 2020120236W WO 2021189809 A1 WO2021189809 A1 WO 2021189809A1
Authority
WO
WIPO (PCT)
Prior art keywords
volute
outlet
air
supply system
air supply
Prior art date
Application number
PCT/CN2020/120236
Other languages
English (en)
French (fr)
Inventor
王千千
鞠翔宇
冯青龙
何振健
潘龙腾
林金煌
刘德茂
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2021189809A1 publication Critical patent/WO2021189809A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4246Fan casings comprising more than one outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • F24F1/0014Indoor units, e.g. fan coil units characterised by air outlets having two or more outlet openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise

Definitions

  • This application relates to the technical field of air conditioners, and more specifically, to an air supply system, a volute and an air conditioner.
  • This application claims the priority of the patent application filed to the State Intellectual Property Office of China on March 26, 2020 with the application number 202010225410.1 and the invention title of "Air Supply System and Air Conditioning Including the Air Supply System”.
  • the purpose of this application is to provide an air supply system and an air conditioner including the air supply system, so as to solve the problem of the large number of distributed air supply air conditioners in the prior art, high production cost, low production efficiency, and the same air volume up and down. Unable to provide the problem of different air volume ratios.
  • An air supply system includes a fan and a volute for placing the fan, wherein the volute is provided with at least two first volute outlets and second volute outlets with different air outlet directions,
  • the volute includes a first curved section and a second curved section that are arranged oppositely to form a volute cavity capable of accommodating the fan; the length L1 of the first curved section is greater than or equal to that of the second curved section Length L2, and the width W1 of the first volute outlet is greater than or equal to the width W2 of the second volute outlet, so that the air volume of the first volute outlet is greater than or equal to the second volute outlet The outlet air volume; or, the length L2 of the second curve segment is greater than or equal to the length L1 of the first curve segment, and the width W2 of the second volute outlet is greater than or equal to the first volute The width W1 of the outlet is such that the air output of the second volute outlet is greater than or equal to the air output of the first volute outlet.
  • the volute further includes a first diffuser cavity provided at the outlet of the first volute, and the first diffuser cavity includes a first diffuser connected to the first end of the first curved section.
  • a straight line segment and a second straight line segment connected to the first end of the second curve segment, the first straight line segment and the second straight line segment are formed to communicate with the outlet of the first volute.
  • the width of the first air duct gradually increases along the direction of the outlet of the first volute and the width of the first air duct.
  • the volute further includes a second diffuser cavity provided at the outlet of the second volute, and the second diffuser cavity includes a second diffuser connected to the second end of the first curved section.
  • Three straight line segments and a fourth straight line segment connected to the second end of the second curved segment, the third straight line segment and the fourth straight line segment form a connection with the outlet of the second volute
  • the width of the second air duct gradually increases along the direction of the outlet of the second volute and the width of the second air duct.
  • the first end of the second straight section and the second curved section are connected by a first volute tongue.
  • the third straight section and the second end of the first curved section are connected by a second volute tongue.
  • the first curve segment and/or the second curve segment are logarithmic spiral curves.
  • the angle ⁇ 1 between the first straight line segment and the vertical direction is 0°-20°, and/or the angle ⁇ 2 between the second straight line segment and the vertical direction is 20°- 60 degrees.
  • the angle ⁇ 1 between the third straight line segment and the vertical direction is 20°-60°, and/or the angle ⁇ 2 between the fourth straight line segment and the vertical direction is 0°- 20 degrees.
  • the length L1 of the first curve segment is 200 mm-600 mm
  • the length L2 of the second curve segment is 200 mm-600 mm
  • the first volute outlet is 50 mm-200 mm
  • the width W2 of the second volute outlet is 50 mm-200 mm.
  • the first volute tongue is arc-shaped and has a radius R1 of 5 mm-20 mm.
  • the second volute tongue has a circular arc shape and a radius R2 of 5 mm to 20 mm.
  • it further comprises a first wind deflector movably arranged in the first air duct and capable of blocking or opening the outlet of the first volute, and/or movably arranged in the second air duct , A second wind deflector capable of shielding or opening the outlet of the second volute.
  • the first wind deflector is movably arranged at an end of the first air duct close to the outlet of the first volute, or an end of the first air duct far away from the outlet of the first volute, Or the middle position of the first air duct; and/or the second wind baffle is movably arranged at an end of the second air duct close to the outlet of the second volute, or the second wind An end of the duct away from the outlet of the second volute, or the middle position of the second air duct.
  • the application also provides an air conditioner, including the air supply system as described in any one of the above items.
  • an air supply system includes a fan and a volute for placing the fan.
  • the volute is provided with at least two first volute outlets and second volute outlets with different air outlet directions.
  • the casing includes a first curve section and a second curve section arranged opposite to each other to form a volute cavity capable of accommodating the fan; the length L1 of the first curve section is greater than or equal to the length L2 of the second curve section, and the first volute outlet
  • the width W1 of the second volute outlet is greater than or equal to the width W2 of the second volute outlet, so that the air volume of the first volute outlet is greater than or equal to the air volume of the second volute outlet; or, the length L2 of the second curve segment is greater than or It is equal to the length L1 of the first curve segment, and the width W2 of the second volute outlet is greater than or equal to the width W1 of the first volute outlet, so that the air volume of the second volute outlet is greater than or equal to that of the first volute outlet
  • This configuration realizes the distributed air supply effect of one fan with multiple outlets, and reduces the number of fans in traditional distributed air supply air conditioners.
  • the number of fans is reduced from multiple fans to one fan.
  • the number of fans is small, the production cost is low, and the production efficiency is low.
  • the demand under the mode greatly meets the needs of consumers for various air outlet modes, greatly improves the penetration rate of distributed air supply technology in the market, and solves the large number of distributed air supply air conditioning fans in the existing technology.
  • the production cost is high, the production efficiency is low, and the air volume of the upper and lower air outlets is the same, and the problem of different air volume ratios cannot be provided.
  • Fig. 1 is a first structural diagram of the air supply system in an embodiment of the application
  • Figure 2 is a second structural diagram of the air supply system in an embodiment of the application.
  • Figure 3 is the third structural schematic diagram of the air supply system in the embodiment of the application.
  • Figure 4 is a fourth structural diagram of the air supply system in an embodiment of the application.
  • Figure 5 is a schematic diagram of the structure of the volute in an embodiment of the application.
  • the air supply system provided in this embodiment includes a fan 1 and a volute for placing the fan 1.
  • the volute is provided with at least two first volute outlets 2 and a second volute with different air outlet directions.
  • the fan 1 can use a centrifugal fan to provide the power source for the entire air supply system.
  • the air flows into the volute after the blades do work.
  • the volute converts part of the dynamic pressure of the gas into static pressure and guides the gas leaving the blades.
  • the first volute outlet 2 sends air upwards
  • the second volute outlet 3 sends air downwards.
  • the arrows in FIG. 1 respectively indicate the air outlet directions of the two volute outlets, so that up and down distributed air supply can be realized.
  • the volute includes a first curved section 4 and a second curved section 5 arranged opposite to each other to form a double-opening volute cavity 6 capable of accommodating the fan 1.
  • the length L1 of the first curve section 4 is greater than or equal to the length L2 of the second curve section 5, and the width W1 of the first volute exit 2 is greater than or equal to the width W2 of the second volute exit 3, that is, L1 ⁇ L2 and W1 ⁇ W2 makes the air output of the first volute outlet 2 greater than or equal to the air output of the second volute outlet 3.
  • the length L2 of the second curve section 5 is greater than or equal to the length L1 of the first curve section 4, and the width W2 of the second volute outlet 3 is greater than or equal to the width W1 of the first volute outlet 2, that is, L2 ⁇ L1 and W2 ⁇ W1, so that the air output of the second volute outlet 3 is greater than or equal to the air output of the first volute outlet 2.
  • the width W2 of the second volute outlet 3 is greater than or equal to the width W1 of the first volute outlet 2, that is, L2 ⁇ L1 and W2 ⁇ W1, so that the air output of the second volute outlet 3 is greater than or equal to the air output of the first volute outlet 2.
  • the width W of the volute outlet mentioned in the text refers to the shortest distance between the volute tongue and the diffuser section
  • the width W1 of the first volute outlet 2 refers to the difference between B2C2 and D1E1
  • the width W2 of the second volute exit 3 refers to the shortest distance between B1C1 and D2E2.
  • the contour lines of each component are collectively called the air duct profile.
  • This configuration realizes the distributed air supply effect of one fan with multiple outlets, and reduces the number of fans in traditional distributed air supply air conditioners.
  • the number of fans is reduced from multiple fans to one fan.
  • the number of fans is small, the production cost is low, and the production efficiency is low.
  • the length L1 of the first curve segment 4 is 200 mm-600 mm
  • the length L2 of the second curve segment 5 is 200 mm- on the basis of satisfying the above-mentioned corresponding proportional relationship.
  • 600 mm and/or, the width W1 of the first volute outlet 2 is 50 mm-200 mm
  • the width W2 of the second volute outlet 3 is 50 mm-200 mm.
  • the first curve segment 4 and/or the second curve segment 5 are logarithmic spiral curves.
  • C1D1 is the first curve section 4
  • C2D2 is the second curve section 5
  • the cavity between C1D1 and C2D2 is the volute cavity 6.
  • C1D1 is a part of a logarithmic spiral drawn based on the diameter d1, and the starting position of the spiral is F1.
  • C2D2 is a part of a logarithmic spiral drawn based on the diameter d2, and the starting position of the spiral is F2.
  • the centers of the two base circles with diameters d1 and d2 are O1 and O2, respectively, and O1 and O2 may be the same or different.
  • first curve segment 4 and the second curve segment 5 can also be similar lines other than the logarithmic spiral, that is, the volute profile recognized in the fan industry, such as the square method.
  • the volute further includes a first diffuser cavity provided at the outlet 2 of the first volute, and the first diffuser cavity includes a first straight section connected to the first end of the first curved section 4 7 and a second straight section 8 connected to the first end of the second curved section 5, a first air duct 9 connected with the first volute outlet 2 is formed between the first straight section 7 and the second straight section 8 , And along the outlet direction of the first volute outlet 2, the width of the first air duct 9 gradually increases.
  • D1E1 is the first straight section 7
  • A2B2 is the second straight section 8
  • a first air duct 9 is formed between D1E1 and A2B2.
  • the width of the first air duct mentioned in the text refers to the position of the air supply system as shown in Figure 1, and the left and right directions in the figure refer to the width direction, namely D1E1
  • the distance between A2B2 and A2B2 is the width of the first air duct.
  • the first diffuser cavity forms an upper diffuser cavity, which further converts the dynamic pressure of the gas flowing out of the double-opening volute cavity into static pressure and rectifies it to reduce the vortex loss of the internal airflow.
  • the angle ⁇ 1 between the first straight line segment 7 and the vertical direction is 0°-20°
  • the angle ⁇ 2 between the second straight line segment 8 and the vertical direction is 0°-20° It is 20 degrees to 60 degrees, which can ensure that the width of the first air duct 9 gradually increases, and the formed air duct is beneficial to improve the air conditioning performance.
  • the first end of the second straight section 8 and the second curved section 5 are connected by a first volute tongue 13.
  • the volute tongue can be used to prevent a small amount of gas from circulating in the volute and reduce airflow noise.
  • B2C2 is the first volute tongue 13.
  • the first volute tongue 13 is arc-shaped, and its radius R1 is 5 mm-20 mm. The shape of the volute tongue formed at this time is beneficial to reduce the noise generated by the air conditioner.
  • the volute further includes a second diffuser cavity provided at the outlet 3 of the second volute, and the second diffuser cavity includes a third straight line section connected to the second end of the first curved section 4 10 and a fourth straight section 11 connected to the second end of the second curved section 5, a second air duct 12 connected with the second volute outlet 3 is formed between the third straight section 10 and the fourth straight section 11 , And along the outlet direction of the second volute outlet 3, the width of the second air duct 12 gradually increases.
  • A1B1 is the third straight section 10
  • D2E2 is the fourth straight section 11
  • a second air duct 12 is formed between A1B1 and D2E2.
  • the "width" of the second air duct mentioned in the text refers to the position of the air supply system as shown in Figure 1, and the left and right directions in the figure refer to the width direction, namely A1B1
  • the distance between D2E2 and D2E2 is the width of the second air duct.
  • the second diffuser cavity forms the lower diffuser cavity, which is mainly used for rectification and reduces the vortex loss of the internal airflow.
  • the airflow direction inside the air duct is closely related to the diffuser section, and its shape has a great influence on the air volume and noise of the whole machine.
  • the included angle ⁇ 1 between the third straight line segment 10 and the vertical direction is 20 degrees to 60 degrees, and/or the included angle ⁇ 2 between the fourth straight line segment 11 and the vertical direction It is 0°-20°, which can ensure that the width of the second air duct 12 gradually increases, and the formed air duct is conducive to improving the overall performance of the air conditioner and reducing noise.
  • the second end of the third straight section 10 and the first curved section 4 are connected by a second volute tongue 14.
  • B1C1 is the second volute tongue 14.
  • the second volute tongue 14 is arc-shaped, and its radius R2 is 5 mm-20 mm.
  • the volute tongue is used to prevent a small amount of gas from circulating in the volute.
  • the influence of the tip radius of the volute tongue on the noise of the air conditioner cannot be ignored.
  • the influence of the change of the radius of the volute tongue on the maximum amount of noise is about 6dB.
  • the air supply system further includes a first wind deflector movably arranged in the first air duct 9 and capable of blocking or opening the first volute outlet 2, and/or, movably arranged in the first volute outlet 2.
  • the second wind baffle 15 of the second volute outlet 3 can be blocked or opened. That is to say, in the air supply system as shown in Fig. 1, the first wind deflector can be separately provided, or the second wind deflector 15 can be separately provided to block one of the outlets. In this case, double air outlets can be realized. Switch between air outlet mode and single air outlet mode.
  • the first wind deflector and the second wind deflector 15 are provided at the same time, and at this time, the switching of the dual air outlet mode, the single upper air outlet mode and the single lower air outlet mode can be realized.
  • the windshield structure has various design forms, and there is no specific limitation here, as long as the above-mentioned use requirements are met.
  • the wind deflector shown in Fig. 1 is in an open state, and the wind deflector shown in Figs. 2-4 is in a closed state.
  • the air outlet mode of the upper and lower air outlets can be realized at the same time, and the air outlet mode of a single air outlet can also be realized, which greatly meets the needs of consumers for various air outlet modes.
  • the second wind deflector 15 When the second wind deflector 15 is separately provided, as shown in Fig. 2, the second wind deflector 15 is in a closed state, and the air is sucked from the air inlet side, passes through the blades, and then flows into the volute cavity 6, and then passes through the first wind.
  • the duct 9 guides the air to the upper air outlet of the air conditioner.
  • the air conditioner is in the single air outlet mode, that is, the single upper air outlet mode, which is more suitable for the air conditioning cooling mode.
  • the second wind deflector 15 As shown in Figure 1, the second wind deflector 15 is in an open state. At this time, the second wind deflector 15 is located on the fourth straight section 11, that is, on the D2E2 side.
  • the air is guided to the upper and lower air outlets of the air conditioner through the first air channel 9 and the second air channel 12 respectively.
  • the air conditioner is in the dual air outlet mode, which is used for cooling and heating of the air conditioner. Can be used at any time.
  • the air conditioner When the first wind deflector is separately provided, and the first wind deflector is in a closed state, the air conditioner is in a single outlet air outlet mode, that is, a single air outlet mode, which is more suitable for air conditioning heating mode. When the first wind baffle is in the open state, the air conditioner is in the dual air outlet mode, which can be used in both cooling and heating of the air conditioner.
  • first wind baffle and the second wind baffle 15 are set at the same time, when cooling, it is better to turn on the dual air outlet mode or the single top air outlet mode; when heating, turn on the dual air outlet mode or single air outlet mode.
  • the lower air outlet has a better air outlet mode.
  • the first wind deflector is movably arranged at an end of the first air duct 9 close to the first volute outlet 2, or an end of the first air duct 9 away from the first volute outlet 2, Or the middle position of the first air duct 9.
  • the second wind deflector 15 is movably arranged at the end of the second air duct 12 close to the second volute outlet 3; or as shown in FIG. 3, the second wind deflector 15 may It is movably arranged at an end of the second air duct 12 away from the second volute outlet 3; or as shown in FIG. 4, the second wind deflector 15 is movably arranged at the middle position of the second air duct 12. That is to say, the position of the wind deflector can be at the volute tongue, the middle part of each diffuser cavity, and the bottom position of each diffuser cavity.
  • the setting is flexible, and the appropriate design position can be selected according to the actual use.
  • This embodiment also provides an air conditioner, including the air supply system described above.
  • This setting provides a single-fan multi-outlet air duct system, which is different from the traditional multi-fan combined system, and can adjust the air volume ratio of different air outlets to meet the needs of different air outlet scenarios and improve the air conditioning performance.
  • Comfort meets the needs of various industries under dual air outlets and different air outlet ratio modes, greatly meets the needs of consumers for various air outlet modes, and solves the large number of existing distributed air-conditioning fans ,
  • the production cost is high, the production efficiency is low, and the upper and lower air volumes are the same, which cannot provide different air volume ratios.
  • the derivation process of this beneficial effect is roughly similar to the derivation process of the above-mentioned beneficial effect of the air supply system, so it will not be repeated here.
  • the air supply system includes a fan 1 and a volute for placing the fan 1, and the fan 1 is For centrifugal fans, the volute is provided with at least two first volute outlets 2 and second volute outlets 3 with different air outlet directions.
  • the first volute outlet 2 sends air upwards
  • the second volute outlet 3 sends air downwards.
  • the volute includes a first curved section 4 and a second curved section 5 arranged opposite to each other to form a double-opening volute cavity 6 capable of accommodating the fan 1.
  • the first curved section 4 and the second curved section 5 are logarithmic spiral curves.
  • the volute further includes a first diffuser cavity arranged at the outlet 2 of the first volute and a second diffuser cavity arranged at the outlet 3 of the second volute.
  • the first diffuser cavity includes a first straight section 7 connected with the first end of the first curved section 4 and a second straight section 8 connected with the first end of the second curved section 5, the first straight section 7
  • a first air duct 9 communicating with the first volute outlet 2 is formed between the second straight line segment 8 and the width of the first air duct 9 gradually increases along the direction of the air from the first volute outlet 2.
  • the angle ⁇ 1 between the first straight line segment 7 and the vertical direction is 0°-20°
  • the angle ⁇ 2 between the second straight line segment 8 and the vertical direction is 20°-60°.
  • the first end of the second straight section 8 and the second curved section 5 is connected by a first volute tongue 13, the first volute tongue 13 is arc-shaped and has a radius R1 of 5 mm-20 mm.
  • the second diffuser cavity includes a third straight section 10 connected with the second end of the first curved section 4, and a fourth straight section 11 connected with the second end of the second curved section 5, and the third straight section 10
  • a second air duct 12 communicating with the second volute outlet 3 is formed between the fourth straight line section 11 and the width of the second air duct 12 gradually increases along the direction of the air from the second volute outlet 3.
  • the angle ⁇ 1 between the third straight line section 10 and the vertical direction is 20 degrees to 60 degrees
  • the angle ⁇ 2 between the fourth straight line section 11 and the vertical direction is 0 degrees to 20 degrees.
  • the third straight line section 10 and the second end of the first curved section 4 are connected by a second volute tongue 14, the second volute tongue 14 is arc-shaped and has a radius R2 of 5 mm-20 mm.
  • the length of the first curved section 4 is L1
  • the length of the second curved section 5 is L2
  • the width of the first volute outlet 2 is W1
  • the width of the second volute outlet 3 is W2.
  • L1 ⁇ L2 and W1 ⁇ W2 can make the air output of the first volute outlet 2 greater than or equal to the air output of the second volute outlet 3, which can be applied to scenarios with high requirements for refrigeration and the cooling and heating effects of the whole machine .
  • L2 ⁇ L1 and W2 ⁇ W1 can make the air output of the second volute outlet 3 greater than or equal to the air output of the first volute outlet 2, which can be applied to higher heating requirements or other specific needs The resulting scene.
  • the length L1 of the first curve section 4 and the length L2 of the second curve section 5 are 200 mm-600 mm
  • the width W1 of the first volute exit 2 and the width W1 of the second volute exit 3 The width W2 is 50 mm-200 mm.
  • the air supply system further includes a first wind deflector movably arranged in the first air duct 9 and capable of shielding or opening the first volute outlet 2, and/or, movably arranged on the first volute outlet 2.
  • the second wind baffle 15 of the second volute outlet 3 can be blocked or opened.
  • the first wind deflector is movably arranged at an end of the first air duct 9 close to the first volute outlet 2, or an end of the first air duct 9 away from the first volute outlet 2, or the middle position of the first air duct 9
  • the second wind deflector 15 is movably arranged at the end of the second air duct 12 close to the second volute outlet 3, or the end of the second air duct 12 away from the second volute outlet 3, or the second The middle position of the air duct 12.
  • this embodiment provides a dual air outlet single centrifugal fan air supply system, which is mainly composed of a centrifugal fan system, a double-opening volute cavity, a first diffuser cavity and a second diffuser cavity, each composed of Part of the contour line is collectively referred to as the air duct type line.
  • This system is different from the traditional multi-fan combined system.
  • a dual air outlet single centrifugal fan air supply system can realize the air outlet mode of the upper and lower air outlets at the same time, and can also realize the air outlet mode of a single air outlet, which reduces
  • the number of fans with traditional distributed air supply technology has been reduced from multiple fans to one fan. The number of fans is small, the production cost is low, and the production efficiency is high.
  • the adjustment of the air duct profile can realize the ratio of the different air volumes of the upper and lower air outlets, which is more flexible.
  • This technology effectively improves the market penetration rate of distributed air supply technology, and solves the problem of the large number of distributed air-conditioning fans in the prior art, high production cost, low production efficiency, and the same upper and lower air volume, which cannot provide different The problem of air volume ratio.
  • the air supply system provided in this embodiment is not limited to being applied to industries such as air conditioners and ventilators, and can also be applied to other fields.
  • This technology can be applied to different air outlet scenarios, and can even meet the needs of various industries in dual air outlets and various air outlet ratio modes, which greatly meets the needs of consumers for various air outlet modes. Greatly increase the penetration rate of distributed air supply technology.
  • a volute is provided, the volute structure includes a volute body, a plurality of volute outlets are opened in the circumferential direction of the volute body, and at least one volute of the plurality of volute outlets
  • the air outlet direction of the outlet is set differently from that of the other volute outlets, and the air volume of at least one volute outlet among the plurality of volute outlets is set differently from the air volume of the remaining volute outlets.
  • the outlet is divided into a plurality of volute side plate sections along the circumferential direction of the volute body. At least one of the volute side plate sections of the plurality of volute side plate sections has a profile length along the circumferential direction of the volute body and the rest of the volute body. The profile length of the shell side plate section along the radial direction of the volute body is set differently.
  • the plurality of volute outlets includes a first volute outlet 2 and a second volute outlet 3, and the profile of the side plate sections of the plurality of volutes includes a first curved section 4 and a second curved section 5 arranged oppositely.
  • the curve segment 4 is a logarithmic spiral curve
  • the second curve segment 5 is a logarithmic spiral curve.
  • the volute further includes a second diffuser cavity provided at the outlet 3 of the second volute.
  • the second diffuser cavity includes a third straight section 10 connected to the second end of the first curved section 4 and a second curved section.
  • the angle ⁇ 1 between the vertical direction and the vertical direction is 0 degrees to 20 degrees.
  • the angle ⁇ 2 between the second straight line segment 8 and the vertical direction is 20 degrees to 60 degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种送风***、蜗壳及空调,送风***包括风机(1)和蜗壳,蜗壳设有至少两个出风方向不同的第一蜗壳出口(2)和第二蜗壳出口(3),蜗壳包括相对设置的第一曲线段(4)和第二曲线段(5)、以形成蜗壳型腔(6)。第一曲线段(4)长度L1大于或等于第二曲线段(5)长度L2,且第一蜗壳出口(2)宽度W1大于或等于第二蜗壳出口(3)宽度W2,可使第一蜗壳出口(2)出风风量大于或等于第二蜗壳出口(3)出风风量;反之可使第二蜗壳出口(3)出风风量大于或等于第一蜗壳出口(2)出风风量。

Description

送风***、蜗壳及空调 技术领域
本申请涉及空调技术领域,更具体地说,涉及一种送风***、蜗壳及空调。本申请要求于2020年3月26日提交至中国国家知识产权局、申请号为202010225410.1、发明名称为“送风***及包括该送风***的空调”的专利申请的优先权。
背景技术
由于热空气上浮和冷空气下沉的物理特性,往往要求分布式送风空调在“制热/制冷”模式下,实现“地毯式制热/沐浴式制冷”的功能,以提高人体舒适度。在现有技术中,有的空调是通过多个离心风机组合实现上下分布式送风,但是其风机数量多,使得产品成本过高,生产效率低,只能应用在高端机型中,难以在市场上广泛普及。有的空调虽然减少了风机使用数量,但是在制冷、制热模式下,上下出风口的出风风量相同,出风效果一样,无法提供不同的风量配比,不能满足消费者对不同出风场景的需求。因此,如何解决现有技术中分布式送风空调风机数量多,生产成本高,生产效率低,以及上下出风风量相同,无法提供不同风量配比的问题,成为本领域技术人员所要解决的重要技术问题。
发明内容
本申请的目的在于提供一种送风***及包括该送风***的空调,以解决现有技术中分布式送风空调风机数量多,生产成本高,生产效率低,以及上下出风风量相同,无法提供不同风量配比的问题。
本申请的目的是通过以下技术方案实现的:
本申请提供的一种送风***,包括一个风机和用于放置所述风机的蜗壳, 所述蜗壳设有至少两个出风方向不同的第一蜗壳出口和第二蜗壳出口,所述蜗壳包括相对设置的第一曲线段和第二曲线段、以形成能够容纳所述风机的蜗壳型腔;所述第一曲线段的长度L1大于或等于所述第二曲线段的长度L2,且所述第一蜗壳出口的宽度W1大于或等于所述第二蜗壳出口的宽度W2,以使所述第一蜗壳出口的出风风量大于或等于所述第二蜗壳出口的出风风量;或者,所述第二曲线段的长度L2大于或等于所述第一曲线段的长度L1,且所述第二蜗壳出口的宽度W2大于或等于所述第一蜗壳出口的宽度W1,以使所述第二蜗壳出口的出风风量大于或等于所述第一蜗壳出口的出风风量。
优选地,所述蜗壳还包括设置在所述第一蜗壳出口的第一扩压腔体,所述第一扩压腔体包括与所述第一曲线段的第一端相连接的第一直线段和与所述第二曲线段的第一端相连接的第二直线段,所述第一直线段与所述第二直线段之间形成与所述第一蜗壳出口相连通的第一风道,且沿所述第一蜗壳出口的出风方向、所述第一风道的宽度逐渐增大。
优选地,所述蜗壳还包括设置在所述第二蜗壳出口的第二扩压腔体,所述第二扩压腔体包括与所述第一曲线段的第二端相连接的第三直线段和与所述第二曲线段的第二端相连接的第四直线段,所述第三直线段与所述第四直线段之间形成与所述第二蜗壳出口相连通的第二风道,且沿所述第二蜗壳出口的出风方向、所述第二风道的宽度逐渐增大。
优选地,所述第二直线段与所述第二曲线段的第一端通过第一蜗舌相连接。
优选地,所述第三直线段与所述第一曲线段的第二端通过第二蜗舌相连接。
优选地,所述第一曲线段和/或所述第二曲线段为对数螺旋曲线。
优选地,所述第一直线段与竖直方向之间的夹角α1为0度-20度,和/或,所述第二直线段与竖直方向之间的夹角α2为20度-60度。
优选地,所述第三直线段与竖直方向之间的夹角β1为20度-60度,和/或,所述第四直线段与竖直方向之间的夹角β2为0度-20度。
优选地,所述第一曲线段的长度L1为200毫米-600毫米,和/或,所述第二曲线段的长度L2为200毫米-600毫米,和/或,所述第一蜗壳出口的宽度W1 为50毫米-200毫米,和/或,所述第二蜗壳出口的宽度W2为50毫米-200毫米。
优选地,所述第一蜗舌为圆弧形且半径R1为5毫米-20毫米。
优选地,所述第二蜗舌为圆弧形且半径R2为5毫米-20毫米。
优选地,还包括可移动地设置在所述第一风道内、能够遮挡或打开所述第一蜗壳出口的第一挡风板,和/或,可移动地设置在所述第二风道内、能够遮挡或打开所述第二蜗壳出口的第二挡风板。
优选地,所述第一挡风板可移动地设置在所述第一风道靠近所述第一蜗壳出口的一端,或所述第一风道远离所述第一蜗壳出口的一端,或所述第一风道的中部位置;和/或,所述第二挡风板可移动地设置在所述第二风道靠近所述第二蜗壳出口的一端,或所述第二风道远离所述第二蜗壳出口的一端,或所述第二风道的中部位置。
本申请还提供了一种空调,包括如上任一项所述的送风***。
本申请提供的技术方案中,一种送风***包括一个风机和用于放置风机的蜗壳,蜗壳设有至少两个出风方向不同的第一蜗壳出口和第二蜗壳出口,蜗壳包括相对设置的第一曲线段和第二曲线段、以形成能够容纳风机的蜗壳型腔;第一曲线段的长度L1大于或等于第二曲线段的长度L2,且第一蜗壳出口的宽度W1大于或等于第二蜗壳出口的宽度W2,以使第一蜗壳出口的出风风量大于或等于第二蜗壳出口的出风风量;或者,第二曲线段的长度L2大于或等于第一曲线段的长度L1,且第二蜗壳出口的宽度W2大于或等于第一蜗壳出口的宽度W1,以使第二蜗壳出口的出风风量大于或等于第一蜗壳出口的出风风量。如此设置,实现了一个风机多个风口出风的分布式送风效果,降低了传统分布式送风空调的风机数量,由多个风机减少到一个风机,风机数量少,生产成本低,生产效率高,通过对不同风口出风做功的风道型线的设计,调配不同风口的出风比例,可以应用到不同的出风场景下,满足各行业在双出风口出风及不同出风配比模式下的需求,极大地满足了消费者对各种出风模式的需求,大大提高了分布式送风技术在市场上的普及率,解决了现有技术中分布式送风空调风机数量多,生产成本高,生产效率低,以及上下出风风量相同,无法提供不同风 量配比的问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例中送风***的结构示意图一;
图2为本申请实施例中送风***的结构示意图二;
图3为本申请实施例中送风***的结构示意图三;
图4为本申请实施例中送风***的结构示意图四;
图5为本申请实施例中蜗壳的结构示意图。
图1-图5中:
1-风机;2-第一蜗壳出口;3-第二蜗壳出口;4-第一曲线段;5-第二曲线段;6-蜗壳型腔;7-第一直线段;8-第二直线段;9-第一风道;10-第三直线段;11-第四直线段;12-第二风道;13-第一蜗舌;14-第二蜗舌;15-第二挡风板。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将对本申请的技术方案进行详细的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所得到的所有其它实施方式,都属于本申请所保护的范围。
以下,结合附图对实施例作详细说明。此外,下面所示的实施例不对权利要求所记载的发明的内容起任何限定作用。另外,下面实施例所表示的构成的全部内容不限于作为权利要求所记载的发明的解决方案所必需的。
请参考附图1-5,本实施例提供的送风***包括一个风机1和用于放置风机1的蜗壳,蜗壳设有至少两个出风方向不同的第一蜗壳出口2和第二蜗壳出 口3。其中,风机1可采用离心风机,为整个送风***提供动力源,空气经过风叶做功后汇入蜗壳中,蜗壳将气体的一部分动压转化为静压并将离开风叶的气体导向两个出风口。第一蜗壳出口2向上送风,第二蜗壳出口3向下送风,图1中各箭头分别标示出两个蜗壳出口的出风方向,这样可实现上下分布式送风。如图1所示,蜗壳包括相对设置的第一曲线段4和第二曲线段5,以形成能够容纳风机1的双开口蜗壳型腔6。第一曲线段4的长度L1大于或等于第二曲线段5的长度L2,且第一蜗壳出口2的宽度W1大于或等于第二蜗壳出口3的宽度W2,即L1≥L2且W1≥W2,使得第一蜗壳出口2的出风风量大于或等于第二蜗壳出口3的出风风量,此时可应用于对制冷及整机的冷暖效果要求较高的场景。或者,第二曲线段5的长度L2大于或等于第一曲线段4的长度L1,且第二蜗壳出口3的宽度W2大于或等于第一蜗壳出口2的宽度W1,即L2≥L1且W2≥W1,使得第二蜗壳出口3的出风风量大于或等于第一蜗壳出口2的出风风量,此时可应用于对制热要求较高或者有其他特定需求所致的场景。需要说明的是,如图1所示,文中提到的蜗壳出口的宽度W是指蜗舌与扩压段之间的最短距离,则第一蜗壳出口2宽度W1是指B2C2与D1E1之间的最短距离,第二蜗壳出口3宽度W2是指B1C1与D2E2之间的最短距离。在送风***中,各组成部分的轮廓线统称为风道型线。
如此设置,实现了一个风机多个风口出风的分布式送风效果,降低了传统分布式送风空调的风机数量,由多个风机减少到一个风机,风机数量少,生产成本低,生产效率高,通过对不同风口出风做功的风道型线的设计,调节蜗壳各部分的参数值,设计出不同的蜗壳型线,调配不同风口的出风风量比例,灵活性更高,以满足不同的出风场景的需求,提高空调的舒适性,满足各行业在双出风口出风及不同出风配比模式下的需求,极大地满足了消费者对各种出风模式的需求,大大提高了分布式送风技术在市场上的普及率,解决了现有技术中分布式送风空调风机数量多,生产成本高,生产效率低,以及上下出风风量相同,无法提供不同风量配比的问题。
于本申请的具体实施例中,在满足上述相应比例关系的基础上,第一曲线 段4的长度L1为200毫米-600毫米,和/或,第二曲线段5的长度L2为200毫米-600毫米,和/或,第一蜗壳出口2的宽度W1为50毫米-200毫米,和/或,第二蜗壳出口3的宽度W2为50毫米-200毫米。这样设置,蜗壳的大小形状设计合理,满足了不同类型的空调特性。
如图5所示,第一曲线段4和/或第二曲线段5为对数螺旋曲线。图5中C1D1为第一曲线段4,C2D2为第二曲线段5,C1D1和C2D2之间的腔体为蜗壳型腔6。C1D1是由直径d1为基准绘制的对数螺旋线的一部分,螺旋线的起始位置为F1。C2D2是由直径d2为基准绘制的对数螺旋线的一部分,螺旋线的起始位置为F2。直径为d1和d2的两个基圆的圆心分别为O1和O2,O1和O2可以为相同点、也可以为不同点。当然在其他实施例中,第一曲线段4和第二曲线段5也可以为除对数螺旋线以外的相似型线,即指风机行业内认知范围的蜗壳型线,如用正方形法绘制的型线,或不等距方形绘制的型线。
在本实施例中,蜗壳还包括设置在第一蜗壳出口2的第一扩压腔体,第一扩压腔体包括与第一曲线段4的第一端相连接的第一直线段7和与第二曲线段5的第一端相连接的第二直线段8,第一直线段7与第二直线段8之间形成与第一蜗壳出口2相连通的第一风道9,且沿第一蜗壳出口2的出风方向、第一风道9的宽度逐渐增大。如图5所示,D1E1为第一直线段7,A2B2为第二直线段8,D1E1和A2B2之间形成第一风道9。需要说明的是,文中提到的第一风道的“宽度”是指如图1所示的送风***的摆放状态时之所指,图中左右方向即为所指宽度方向,即D1E1和A2B2之间的距离为第一风道的宽度。这样设计,第一扩压腔体形成上扩压段腔,将从双开口蜗壳腔体流出的气体的动压进一步转化为静压并进行整流,减少内部气流涡流损失。
具体地,如图1所示,第一直线段7与竖直方向之间的夹角α1为0度-20度,和/或,第二直线段8与竖直方向之间的夹角α2为20度-60度,这样可保证第一风道9的宽度逐渐增大,所形成的风道有利于提高空调性能。
如图5所示,第二直线段8与第二曲线段5的第一端通过第一蜗舌13相连接,蜗舌可用来防止少部分气体在蜗壳内循环流动,降低气流噪声。图中B2C2 为第一蜗舌13,第一蜗舌13为圆弧形,且其半径R1为5毫米-20毫米,此时形成的蜗舌形状有利于降低空调产生的噪音。
在本实施例中,蜗壳还包括设置在第二蜗壳出口3的第二扩压腔体,第二扩压腔体包括与第一曲线段4的第二端相连接的第三直线段10和与第二曲线段5的第二端相连接的第四直线段11,第三直线段10与第四直线段11之间形成与第二蜗壳出口3相连通的第二风道12,且沿第二蜗壳出口3的出风方向、第二风道12的宽度逐渐增大。如图5所示,A1B1为第三直线段10,D2E2为第四直线段11,A1B1和D2E2之间形成第二风道12。需要说明的是,文中提到的第二风道的“宽度”是指如图1所示的送风***的摆放状态时之所指,图中左右方向即为所指宽度方向,即A1B1和D2E2之间的距离为第二风道的宽度。这样设置,第二扩压腔体形成下扩压段腔,主要用于整流,减少内部气流涡流损失。风道内部气流走向与扩压段密切相关,其形状对整机风量和噪音都有较大影响。
具体地,如图1所示,第三直线段10与竖直方向之间的夹角β1为20度-60度,和/或,第四直线段11与竖直方向之间的夹角β2为0度-20度,这样可保证第二风道12的宽度逐渐增大,所形成的风道有利于提高空调整体性能,降低噪声。
如图5所示,第三直线段10与第一曲线段4的第二端通过第二蜗舌14相连接。图中B1C1为第二蜗舌14,第二蜗舌14为圆弧形,且其半径R2为5毫米-20毫米。蜗舌的设置用于防止少部分气体在蜗壳内循环流动。蜗舌尖端半径的大小对空调噪声的影响不能忽视,理论上,蜗舌半径大小的变化对最大噪声量的影响大约相差6dB。
在本实施例中,送风***还包括可移动地设置在第一风道9内、能够遮挡或打开第一蜗壳出口2的第一挡风板,和/或,可移动地设置在第二风道12内、能够遮挡或打开第二蜗壳出口3的第二挡风板15。也就是说,在如图1所示的送风***中,可单独设置第一挡风板,或者单独设置第二挡风板15,用于堵住其中一个出口,此时可实现双出风口出风模式和单出风口出风模式的切换。或者,同时设置第一挡风板和第二挡风板15,此时可实现双出风口出风模式、单 上出风口出风模式和单下出风口出风模式的切换。挡风板结构的设计形式多样,此处不作具体限定,满足上述使用要求即可。图1所示挡风板为打开状态,图2-4中所示挡风板为闭合状态。如此设计,通过挡风板的设置可以实现上下两个风口同时出风的出风模式,也可以实现单个风口出风的出风模式,极大地满足了消费者对各种出风模式的需求。
当单独设置第二挡风板15,如图2所示,第二挡风板15处于闭合状态,空气从进风侧吸入经过风叶做功后汇入蜗壳型腔6,再通过第一风道9将空气导至空调整机的上出风口,此时空调处于单出风口出风模式即单上出风模式,该模式较适用于空调制冷模式下。如图1所示,第二挡风板15处于打开状态,此时第二挡风板15位于第四直线段11即D2E2侧,空气从进风侧吸入经过风叶做功后汇入蜗壳型腔6,再通过第一风道9、第二风道12将空气分别导至空调整机的上、下出风口,此时空调处于双出风口出风模式,该模式在空调制冷、制热时均可使用。
当单独设置第一挡风板,第一挡风板处于闭合状态,此时空调处于单出风口出风模式即单下出风模式,该模式较适用于空调制热模式下。当第一挡风板处于打开状态,此时空调处于双出风口出风模式,该模式在空调制冷、制热时均可使用。
当同时设置第一挡风板和第二挡风板15,制冷时,开启双出风口出风模式或单上出风口出风模式较优;制热时,开启双出风口出风模式或单下出风口出风模式较优。
在本实施例的优选方案中,第一挡风板可移动地设置在第一风道9靠近第一蜗壳出口2的一端、或第一风道9远离第一蜗壳出口2的一端、或第一风道9的中部位置。和/或:如图2所示,第二挡风板15可移动地设置在第二风道12靠近第二蜗壳出口3的一端;或如图3所示,第二挡风板15可移动地设置在第二风道12远离第二蜗壳出口3的一端;或如图4所示,第二挡风板15可移动地设置在第二风道12的中部位置。也就是说,挡风板的位置可以处于蜗舌处、各扩压腔体的中段部位、各扩压腔体的底部位置,设置灵活,可根据实际 使用情况选择合适的设计位置。
本实施例还提供了一种空调,包括如上描述的送风***。如此设置,提供了一种单风机多出风口风道***,有别于传统的多风机组合***,且可调配不同风口的出风风量比例,以满足不同的出风场景的需求,提高空调的舒适性,满足各行业在双出风口出风及不同出风配比模式下的需求,极大地满足了消费者对各种出风模式的需求,解决了现有分布式送风空调风机数量多,生产成本高,生产效率低,以及上下出风风量相同,无法提供不同风量配比的问题。该有益效果的推导过程和上述送风***的有益效果的推导过程大致类似,故在此不再赘述。
需要说明的是,上述各个实施例中的不同功能的装置或部件可以进行结合,比如,本实施例的优选方案中送风***包括一个风机1和用于放置风机1的蜗壳,风机1为离心风机,蜗壳设有至少两个出风方向不同的第一蜗壳出口2和第二蜗壳出口3,第一蜗壳出口2向上送风,第二蜗壳出口3向下送风。蜗壳包括相对设置的第一曲线段4和第二曲线段5,以形成能够容纳风机1的双开口蜗壳型腔6,第一曲线段4和第二曲线段5为对数螺旋曲线。蜗壳还包括设置在第一蜗壳出口2的第一扩压腔体和设置在第二蜗壳出口3的第二扩压腔体。第一扩压腔体包括与第一曲线段4的第一端相连接的第一直线段7和与第二曲线段5的第一端相连接的第二直线段8,第一直线段7与第二直线段8之间形成与第一蜗壳出口2相连通的第一风道9,且沿第一蜗壳出口2的出风方向、第一风道9的宽度逐渐增大。第一直线段7与竖直方向之间的夹角α1为0度-20度,第二直线段8与竖直方向之间的夹角α2为20度-60度。第二直线段8与第二曲线段5的第一端通过第一蜗舌13相连接,第一蜗舌13为圆弧形且半径R1为5毫米-20毫米。第二扩压腔体包括与第一曲线段4的第二端相连接的第三直线段10和与第二曲线段5的第二端相连接的第四直线段11,第三直线段10与第四直线段11之间形成与第二蜗壳出口3相连通的第二风道12,且沿第二蜗壳出口3的出风方向、第二风道12的宽度逐渐增大。第三直线段10与竖直方向之间的夹角β1为20度-60度,第四直线段11与竖直方向之间的夹角 β2为0度-20度。第三直线段10与第一曲线段4的第二端通过第二蜗舌14相连接,第二蜗舌14为圆弧形且半径R2为5毫米-20毫米。
为了满足不同空调的舒适性,往往对两个蜗壳出口的风量有相同或不同要求,这就要在设计时可以为两风口提供不同的风量配比。具体地,第一曲线段4的长度为L1,第二曲线段5的长度为L2,第一蜗壳出口2的宽度为W1,第二蜗壳出口3的宽度为W2。L1≥L2且W1≥W2,可使得第一蜗壳出口2的出风风量大于或等于第二蜗壳出口3的出风风量,能够应用于对制冷及整机的冷暖效果要求较高的场景。或者,L2≥L1且W2≥W1,可使得第二蜗壳出口3的出风风量大于或等于第一蜗壳出口2的出风风量,能够应用于对制热要求较高或者有其他特定需求所致的场景。在满足上述比例关系的基础上,第一曲线段4的长度L1和第二曲线段5的长度L2为200毫米-600毫米,第一蜗壳出口2的宽度W1和第二蜗壳出口3的宽度W2为50毫米-200毫米。
在该实施例中,送风***还包括可移动地设置在第一风道9内、能够遮挡或打开第一蜗壳出口2的第一挡风板,和/或,可移动地设置在第二风道12内、能够遮挡或打开第二蜗壳出口3的第二挡风板15。第一挡风板可移动地设置在第一风道9靠近第一蜗壳出口2的一端,或第一风道9远离第一蜗壳出口2的一端,或第一风道9的中部位置;和/或,第二挡风板15可移动地设置在第二风道12靠近第二蜗壳出口3的一端,或第二风道12远离第二蜗壳出口3的一端,或第二风道12的中部位置。
如此设置,本实施例提供了一种双出风口单离心风机送风***,主要由离心风机***、双开口蜗壳型腔、第一扩压腔体和第二扩压腔体组成,各组成部分的轮廓线统称为风道型线。该***有别于传统的多风机组合***,通过一个双出风口单离心风机送风***来实现上下两个风口同时出风的出风模式,也可以实现单个风口出风的出风模式,降低了传统分布式送风技术的风机数量,由多个风机减少到一个风机,风机数量少,生产成本低,生产效率高,由于成本大大降低,可广泛应用于中低端机型中,通过对风道型线的调节,可以实现上下两个风口不同风量的配比,灵活性更高。该技术有效提高了分布式送风技术 在市场上的普及率,解决了现有技术中分布式送风空调风机数量多,生产成本高,生产效率低,以及上下出风风量相同,无法提供不同风量配比的问题。
当然本实施例中提供的送风***不仅限于应用在空调、通风机等行业,也可以应用于其他领域内。该技术可以应用到不同的出风场景下,甚至可以满足各行业在双出风口出风及各种出风配比模式下的需求,极大地满足了消费者对各种出风模式的需求,大大提高了分布式送风技术的普及率。
根据本申请的另一个实施例,提供了一种蜗壳,该蜗壳结构包括蜗壳本体,蜗壳本体的周向上开有多个蜗壳出口,多个蜗壳出口中的至少一个蜗壳出口的出风方向与其余的蜗壳出口的出风方向不同地设置,多个蜗壳出口中至少一个蜗壳出口的出风量与其余的蜗壳出口的出风量不同地设置,多个蜗壳出口沿蜗壳本体的周向分隔成多个蜗壳侧板段,多个蜗壳侧板段中至少一个蜗壳侧板段的沿蜗壳本体的周向方向的型线长度与其余的蜗壳侧板段的沿蜗壳本体的径向方向的型线长度不同地设置。
其中,多个蜗壳出口包括第一蜗壳出口2和第二蜗壳出口3,多个蜗壳侧板段的型线包括相对设置的第一曲线段4和第二曲线段5,第一曲线段4为对数螺旋曲线,第二曲线段5为对数螺旋曲线。蜗壳还包括设置在第二蜗壳出口3的第二扩压腔体,第二扩压腔体包括与第一曲线段4的第二端相连接的第三直线段10和与第二曲线段5的第二端相连接的第四直线段11,第三直线段10与第四直线段11之间形成与第二蜗壳出口3相连通的第二风道12,第一直线段7与竖直方向之间的夹角α1为0度至20度。第二直线段8与竖直方向之间的夹角α2为20度至60度。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (26)

  1. 一种送风***,其特征在于,包括一个风机(1)和用于放置所述风机(1)的蜗壳,所述蜗壳设有至少两个出风方向不同的第一蜗壳出口(2)和第二蜗壳出口(3),所述蜗壳包括相对设置的第一曲线段(4)和第二曲线段(5)、以形成能够容纳所述风机(1)的蜗壳型腔(6);所述第一曲线段(4)的长度L1大于或等于所述第二曲线段(5)的长度L2,且所述第一蜗壳出口(2)的宽度W1大于或等于所述第二蜗壳出口(3)的宽度W2,以使所述第一蜗壳出口(2)的出风风量大于或等于所述第二蜗壳出口(3)的出风风量;或者,所述第二曲线段(5)的长度L2大于或等于所述第一曲线段(4)的长度L1,且所述第二蜗壳出口(3)的宽度W2大于或等于所述第一蜗壳出口(2)的宽度W1,以使所述第二蜗壳出口(3)的出风风量大于或等于所述第一蜗壳出口(2)的出风风量。
  2. 如权利要求1所述的送风***,其特征在于,所述蜗壳还包括设置在所述第一蜗壳出口(2)的第一扩压腔体,所述第一扩压腔体包括与所述第一曲线段(4)的第一端相连接的第一直线段(7)和与所述第二曲线段(5)的第一端相连接的第二直线段(8),所述第一直线段(7)与所述第二直线段(8)之间形成与所述第一蜗壳出口(2)相连通的第一风道(9),且沿所述第一蜗壳出口(2)的出风方向、所述第一风道(9)的宽度逐渐增大。
  3. 如权利要求2所述的送风***,其特征在于,所述蜗壳还包括设置在所述第二蜗壳出口(3)的第二扩压腔体,所述第二扩压腔体包括与所述第一曲线段(4)的第二端相连接的第三直线段(10)和与所述第二曲线段(5)的第二端相连接的第四直线段(11),所述第三直线段(10)与所述第四直线段(11)之间形成与所述第二蜗壳出口(3)相连通的第二风道(12),且沿所述第二蜗壳出口(3)的出风方向、所述第二风道(12)的宽度逐渐增大。
  4. 如权利要求2所述的送风***,其特征在于,所述第二直线段(8)与 所述第二曲线段(5)的第一端通过第一蜗舌(13)相连接。
  5. 如权利要求3所述的送风***,其特征在于,所述第三直线段(10)与所述第一曲线段(4)的第二端通过第二蜗舌(14)相连接。
  6. 如权利要求1所述的送风***,其特征在于,所述第一曲线段(4)为对数螺旋曲线。
  7. 如权利要求1或6所述的送风***,其特征在于,所述第二曲线段(5)为对数螺旋曲线。
  8. 如权利要求2所述的送风***,其特征在于,所述第一直线段(7)与竖直方向之间的夹角α1为0度至20度。
  9. 如权利要求2或8所述的送风***,其特征在于,所述第二直线段(8)与竖直方向之间的夹角α2为20度至60度。
  10. 如权利要求3所述的送风***,其特征在于,所述第三直线段(10)与竖直方向之间的夹角β1为20度至60度。
  11. 如权利要求3或10所述的送风***,其特征在于,所述第四直线段(11)与竖直方向之间的夹角β2为0度至20度。
  12. 如权利要求1所述的送风***,其特征在于,所述第一曲线段(4)的长度L1为200毫米至600毫米。
  13. 如权利要求1或12所述的送风***,其特征在于,所述第二曲线段(5)的长度L2为200毫米至600毫米。
  14. 如权利要求13所述的送风***,其特征在于,所述第一蜗壳出口(2)的宽度W1为50毫米至200毫米。
  15. 如权利要求14所述的送风***,所述第二蜗壳出口(3)的宽度W2为50毫米至200毫米。
  16. 如权利要求4所述的送风***,其特征在于,所述第一蜗舌(13)为 圆弧形且半径R1为5毫米-20毫米。
  17. 如权利要求5所述的送风***,其特征在于,所述第二蜗舌(14)为圆弧形且半径R2为5毫米-20毫米。
  18. 如权利要求3所述的送风***,其特征在于,还包括可移动地设置在所述第一风道(9)内、能够遮挡或打开所述第一蜗壳出口(2)的第一挡风板。
  19. 如权利要求3或18所述的送风***,其特征在于,可移动地设置在所述第二风道(12)内、能够遮挡或打开所述第二蜗壳出口(3)的第二挡风板(15)。
  20. 如权利要求19所述的送风***,其特征在于,所述第一挡风板可移动地设置在所述第一风道(9)靠近所述第一蜗壳出口(2)的一端,或所述第一风道(9)远离所述第一蜗壳出口(2)的一端,或所述第一风道(9)的中部位置。
  21. 如权利要求20所述的送风***,其特征在于,所述第二挡风板(15)可移动地设置在所述第二风道(12)靠近所述第二蜗壳出口(3)的一端,或所述第二风道(12)远离所述第二蜗壳出口(3)的一端,或所述第二风道(12)的中部位置。
  22. 一种蜗壳,其特征在于,包括蜗壳本体,所述蜗壳本体的周向上开有多个蜗壳出口,多个所述蜗壳出口中的至少一个所述蜗壳出口的出风方向与其余的所述蜗壳出口的出风方向不同地设置,多个所述蜗壳出口中至少一个所述蜗壳出口的出风量与其余的所述蜗壳出口的出风量不同地设置,多个所述蜗壳出口沿所述蜗壳本体的周向分隔成多个蜗壳侧板段,多个所述蜗壳侧板段中至少一个所述蜗壳侧板段的沿所述蜗壳本体的周向方向的型线长度与其余的所述蜗壳侧板段的沿所述蜗壳本体的径向方向的型线长度不同地设置。
  23. 如权利要求22所述的蜗壳,其特征在于,多个所述蜗壳出口包括第一蜗壳出口(2)和第二蜗壳出口(3),多个所述蜗壳侧板段的型线包括相对设置的第一曲线段(4)和第二曲线段(5),所述第一曲线段(4)为对数螺旋曲线,所述第二曲线段(5)为对数螺旋曲线。
  24. 如权利要求23所述的蜗壳,其特征在于,所述蜗壳还包括设置在所述第二蜗壳出口(3)的第二扩压腔体,所述第二扩压腔体包括与所述第一曲线段(4)的第二端相连接的第三直线段(10)和与所述第二曲线段(5)的第二端相连接的第四直线段(11),所述第三直线段(10)与所述第四直线段(11)之间形成与所述第二蜗壳出口(3)相连通的第二风道(12),所述第一直线段(7)与竖直方向之间的夹角α1为0度至20度。
  25. 如权利要求24所述的蜗壳,其特征在于,所述第二直线段(8)与竖直方向之间的夹角α2为20度至60度。
  26. 一种空调,其特征在于,包括如权利要求1-21任一项所述的送风***。
PCT/CN2020/120236 2020-03-26 2020-10-10 送风***、蜗壳及空调 WO2021189809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010225410.1A CN111306103A (zh) 2020-03-26 2020-03-26 送风***及包括该送风***的空调
CN202010225410.1 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021189809A1 true WO2021189809A1 (zh) 2021-09-30

Family

ID=71158989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120236 WO2021189809A1 (zh) 2020-03-26 2020-10-10 送风***、蜗壳及空调

Country Status (2)

Country Link
CN (1) CN111306103A (zh)
WO (1) WO2021189809A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114110772A (zh) * 2021-11-29 2022-03-01 Tcl空调器(中山)有限公司 新风模块、空调室内机以及空调器
CN114909337A (zh) * 2022-05-31 2022-08-16 广东美的制冷设备有限公司 风机组件、风管机、空调器及出风控制方法
CN115978769A (zh) * 2022-12-21 2023-04-18 珠海格力电器股份有限公司 一种风道结构及具有其的空调

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111306103A (zh) * 2020-03-26 2020-06-19 珠海格力电器股份有限公司 送风***及包括该送风***的空调
CN111852912B (zh) * 2020-07-17 2021-12-07 青岛海信日立空调***有限公司 风机盘管
CN112432355B (zh) * 2020-12-03 2022-06-28 珠海格力电器股份有限公司 蜗壳组件、送风组件和空调***

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566896A (zh) * 2014-12-22 2015-04-29 宁波奥克斯空调有限公司 一种送风装置及其空调器
CN104930790A (zh) * 2015-06-24 2015-09-23 合肥华凌股份有限公司 风冷冰箱的机壳、风冷冰箱和风道设计方法
CN204716621U (zh) * 2015-05-29 2015-10-21 合肥美的电冰箱有限公司 用于冰箱的蜗壳和风机以及具有该风机的冰箱
KR20170057028A (ko) * 2015-11-16 2017-05-24 코웨이 주식회사 송풍장치 및 이를 포함하는 공기청정기
CN109931294A (zh) * 2017-12-18 2019-06-25 现代自动车株式会社 双涡旋式双向鼓风机
CN111306103A (zh) * 2020-03-26 2020-06-19 珠海格力电器股份有限公司 送风***及包括该送风***的空调
CN111396365A (zh) * 2020-03-16 2020-07-10 珠海格力电器股份有限公司 出风结构、空调器
CN111412544A (zh) * 2020-03-09 2020-07-14 珠海格力电器股份有限公司 出风结构、空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104566896A (zh) * 2014-12-22 2015-04-29 宁波奥克斯空调有限公司 一种送风装置及其空调器
CN204716621U (zh) * 2015-05-29 2015-10-21 合肥美的电冰箱有限公司 用于冰箱的蜗壳和风机以及具有该风机的冰箱
CN104930790A (zh) * 2015-06-24 2015-09-23 合肥华凌股份有限公司 风冷冰箱的机壳、风冷冰箱和风道设计方法
KR20170057028A (ko) * 2015-11-16 2017-05-24 코웨이 주식회사 송풍장치 및 이를 포함하는 공기청정기
CN109931294A (zh) * 2017-12-18 2019-06-25 现代自动车株式会社 双涡旋式双向鼓风机
CN111412544A (zh) * 2020-03-09 2020-07-14 珠海格力电器股份有限公司 出风结构、空调器
CN111396365A (zh) * 2020-03-16 2020-07-10 珠海格力电器股份有限公司 出风结构、空调器
CN111306103A (zh) * 2020-03-26 2020-06-19 珠海格力电器股份有限公司 送风***及包括该送风***的空调

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114110772A (zh) * 2021-11-29 2022-03-01 Tcl空调器(中山)有限公司 新风模块、空调室内机以及空调器
CN114909337A (zh) * 2022-05-31 2022-08-16 广东美的制冷设备有限公司 风机组件、风管机、空调器及出风控制方法
CN115978769A (zh) * 2022-12-21 2023-04-18 珠海格力电器股份有限公司 一种风道结构及具有其的空调

Also Published As

Publication number Publication date
CN111306103A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2021189809A1 (zh) 送风***、蜗壳及空调
KR20180056615A (ko) 공기조화기의 실내기 및 공기조화기의 제어방법
CN108644905B (zh) 出风风道结构和空调器
WO2017198068A1 (zh) 空调器、风机***及其风道部件
WO2016058379A1 (zh) 用于离心式压缩机的蜗壳结构、离心式压缩机及制冷设备
CN106321520A (zh) 导流圈结构、轴流风机及空调器
EP3135918B1 (en) Centrifugal fan
WO2015192493A1 (zh) 空调室内机
CN109469645B (zh) 一种离心风机蜗壳
CN105091090B (zh) 空气调节器
WO2024125413A1 (zh) 立式空调室内机
CN110671746A (zh) 风道结构、室内机及空调器
WO2016095838A1 (zh) 风机外壳
WO2023236680A1 (zh) 风道组件、贯流风机及空气调节设备
CN210399169U (zh) 柜式空调室内机
WO2023226399A1 (zh) 混流风机以及风管机
CN210122958U (zh) 一种离心风机及电器
WO2019029418A1 (zh) 壁挂式空调器室内机
CN216244623U (zh) 导流圈及空调器
CN110185640B (zh) 离心风机、家用电器
WO2017206643A1 (zh) 一种送风***及应用其的室内机和空调
CN105091088B (zh) 一种具有送风装置的空调室内机
CN209013343U (zh) 风机装置及设有其的空调室内机
WO2017049447A1 (zh) 一种空调混合出风室内机
CN210509738U (zh) 风道组件及具有其的空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927029

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927029

Country of ref document: EP

Kind code of ref document: A1