WO2021189755A1 - 坡度点筛选方法、终端设备及介质和坡度计算方法及*** - Google Patents

坡度点筛选方法、终端设备及介质和坡度计算方法及*** Download PDF

Info

Publication number
WO2021189755A1
WO2021189755A1 PCT/CN2020/109684 CN2020109684W WO2021189755A1 WO 2021189755 A1 WO2021189755 A1 WO 2021189755A1 CN 2020109684 W CN2020109684 W CN 2020109684W WO 2021189755 A1 WO2021189755 A1 WO 2021189755A1
Authority
WO
WIPO (PCT)
Prior art keywords
slope
points
gradient
point
discrete
Prior art date
Application number
PCT/CN2020/109684
Other languages
English (en)
French (fr)
Inventor
涂岩恺
周贺杰
Original Assignee
厦门雅迅网络股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门雅迅网络股份有限公司 filed Critical 厦门雅迅网络股份有限公司
Priority to US17/795,826 priority Critical patent/US20230072145A1/en
Priority to EP20926456.3A priority patent/EP4130670A4/en
Publication of WO2021189755A1 publication Critical patent/WO2021189755A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3807Creation or updating of map data characterised by the type of data
    • G01C21/3815Road data
    • G01C21/3822Road feature data, e.g. slope data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Definitions

  • the invention relates to the field of slope calculation, in particular to a slope point screening method, terminal equipment, medium and slope calculation method and system.
  • Electronic horizon technology refers to relying on map data and the Global Positioning System (GPS) to provide vehicles with accurate information about the road ahead, so that the vehicle has the ability to predict the road conditions ahead, and helps the vehicle achieve predictive control to achieve safer and more secure Fuel saving and other effects.
  • GPS Global Positioning System
  • Gradient is one of the most important information of the road.
  • the vehicle can be controlled to accelerate and decelerate in advance to reduce energy consumption. It can also provide safe driving prompts or pre-open the retarder according to the long downhill road ahead.
  • ECUs Electronic Control Units
  • the ideal way is to use a special vehicle-mounted device with an electronic map to generate the front slope data, and then broadcast the data to other required electronic control terminals. Since the various electronic control terminals in the vehicle communicate through the CAN bus, the most ideal way is to send information to the electronic control terminals in a broadcast manner through the CAN bus.
  • the electronic map data is very huge, and the load of the CAN bus is limited, and the CAN bus capacity of general commercial vehicles is only 250-500kbps.
  • roads exist in point sets. If every point in the road ahead and the slope corresponding to that point are broadcast from the bus, it will greatly exceed the load capacity of the bus, resulting in bus congestion and signal failure. Delays, or even paralysis of the vehicle bus network. However, if the road gradient points are thinned at equal intervals, the details of the road gradient may not be reflected.
  • Another type of method regards the front gradient as a curve, and uses the method of control point fitting or spline curve to express. This type of method is more complicated in calculation and analysis, and is not suitable for vehicle electronic control terminals with limited resources.
  • the present invention proposes a gradient point screening method, terminal equipment, medium and gradient calculation method and system.
  • a method for screening gradient points based on electronic horizon data including the following steps:
  • the slope points whose first-order derivative with respect to the road offset value is greater than or equal to the derivative threshold are selected as the first-order slope points;
  • the second-level gradient points are filtered out according to the road offset value difference corresponding to two adjacent first-level gradient points, and the second-level gradient points are used as the filtered discrete gradient points .
  • the method includes: screening the first-level gradient points whose road offset value difference corresponding to two adjacent first-level gradient points is not a fixed offset interval as the second-level gradient point.
  • the method includes: forming a recursive interval of the first-level gradient points whose road offset value difference corresponding to two adjacent first-level gradient points is a fixed offset interval, and calculating the recursive interval The difference between the linear gradient value of the first-level gradient point and the actual gradient value is used to screen the second-level gradient point.
  • the first first-level gradient point and the last first-level gradient point in the recursive interval are set as the second Grade grade point.
  • the difference between the first-level gradient points in the recursive interval is greater than or equal to the difference threshold
  • the gradient point with the largest difference in the recursive interval is used as the dividing point
  • the recursive interval is divided into two Sub-recursive intervals, calculate the difference between the linear slope value of the first-level slope point in each sub-recursive interval and the actual slope value, when the difference between all the first-level slope points in the sub-recursive interval is less than the difference Threshold, set the first first-level gradient point and the last first-level gradient point in the sub-recursive interval as the second-level gradient point, when there is a difference between the first-level gradient point in the recursive interval When it is greater than or equal to the difference threshold, continue to split and recurse.
  • m represents the total number of gradient points in the recursive interval
  • y i represents linear gradient value of the i th gradient point
  • x i represents the i-th road gradient offset value corresponding to the point
  • s 1, s m each represent an actual value of the gradient and the gradient m-th point
  • o 1, o m respectively represents the road offset value corresponding to the 1st and mth gradient points.
  • the derivative threshold is less than 0.01.
  • the difference threshold is less than 0.1.
  • a terminal device includes a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • the processor executes the computer program, the computer Steps to filter the slope points of the horizon data.
  • a computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, it implements the step of selecting gradient points based on electronic horizon data in the first embodiment of the present invention.
  • a slope calculation method based on discrete slope points including:
  • the central control terminal collects the electronic horizon data, and after selecting all the slope points in the electronic horizon data as discrete slope points according to the slope point filtering method based on the electronic horizon data described in the first embodiment of the present invention, the discrete slope points are sent to each Electronic control terminal;
  • the electronic control terminal After receiving the discrete gradient points, the electronic control terminal recalculates the gradient values of the gradient points between adjacent discrete gradient points according to the gradient value of each discrete gradient point and the corresponding road offset value.
  • the calculation method for recalculating the slope value of the slope point between adjacent discrete slope points is: calculate the linear slope value of the slope point according to the linear relationship between the slope points between the adjacent discrete slope points, and take the linear slope value as The slope value of the slope point.
  • y represents a linear slope gradient value calculated to be the point
  • x denotes the road gradient is calculated to be an offset value corresponding to the point
  • s a, s b represent two discrete values of the actual gradient gradient adjacent dots
  • o a, o b Represents the road offset values corresponding to two adjacent discrete gradient points respectively.
  • a gradient calculation system based on discrete gradient points including a central control terminal and a plurality of electronic control terminals.
  • the central control terminal and each electronic control terminal include a memory, a processor, a data transmission module, and are stored in the memory
  • the processor in the central control terminal executes the computer program stored in its corresponding memory to implement the electronic horizon data based on the first embodiment of the present invention.
  • the slope point screening method of the electronic horizon screens all slope points in the electronic horizon data as discrete slope points, and then sends the discrete slope points to each electronic control terminal through the data transmission module;
  • the processor in the electronic control terminal executes the computer program stored in its corresponding memory, so as to realize that according to the gradient value of each discrete gradient point and the corresponding road Offset value, recalculate the slope value of the slope point between adjacent discrete slope points.
  • the invention adopts the above technical scheme, greatly simplifies the number of front road gradient points that need to be directly obtained, and maintains the original shape of the road gradient, has a simple processing process, requires less hardware resources, and is suitable for vehicle-mounted use.
  • FIG. 1 is a schematic diagram of electronic horizon data in the first embodiment of the present invention.
  • FIG. 2 shows a flowchart of this embodiment.
  • FIG. 1 it is a schematic diagram of the electronic horizon data, which contains the road offset value from the starting point of the road for each gradient point (such as P 1 , P 2 ) (represented by the value of the parameter offset in the figure) and Actual slope value (indicated by the value of parameter slp in the figure).
  • the slope of the road ahead broadcast by the existing electronic horizon system is a series of consecutive slope points with equal intervals (for example, 5 meters apart), that is, the difference of the road offset values between two adjacent slope points is equal.
  • the embodiment of the present invention provides a method for screening slope points based on electronic horizon data, which screens the existing continuous slope points with a fixed offset interval, which not only reduces the number and density of slope points, but also maintains more accuracy.
  • the shape of the original road slope is a series of consecutive slope points with equal intervals (for example, 5 meters apart), that is, the difference of the road offset values between two adjacent slope points is equal.
  • the embodiment of the present invention provides a method for screening slope points based on electronic horizon data, which screens the existing continuous slope points with a fixed offset interval, which not only reduces the number and density of slope points, but also maintains more accuracy.
  • the shape of the original road slope is a series of consecutive slope points with equal intervals (for example, 5 meters apart), that is, the difference of the road offset values
  • the method of this embodiment includes: filtering the first-order gradient points with respect to the road offset value from the electronic horizon data as the first-level gradient points; The relationship between the difference between the linear gradient value and the actual gradient value and the difference threshold between adjacent gradient points to select the second-level gradient points, and use the second-level gradient points as the filtered discrete gradient points.
  • the adjacent gradient points in the first-level gradient point means that after the first-level gradient points are sorted in the order of the magnitude of the corresponding road offset value, the gradient points with adjacent serial numbers are the adjacent gradient points.
  • the method for screening the first-level gradient points is: filtering the first-order gradient points in the electronic horizon data whose first-order derivative is greater than or equal to the derivative threshold as the first-level gradient points.
  • the derivative threshold value should be a minimum value, and the derivative threshold value is set to be less than 0.01 in this embodiment.
  • a gradient point smaller than the derivative threshold indicates that the road gradient corresponding to the gradient point has almost no change with respect to the road offset. Therefore, the gradient value corresponding to the gradient point can be represented by a fixed gradient value.
  • s i and s i-1 represent the actual gradient values of the i-th and i-1th gradient points, respectively
  • o i and o i-1 represent the road deviations of the i-th and i-1th gradient points, respectively.
  • Shift value the i-1th slope point is the adjacent slope point of the i-th slope point, that is, the road offset value difference corresponding to the i-th slope point is the slope point with a fixed offset interval L.
  • the principle of filtering the second-level gradient points is to filter the first-level gradient points whose road offset values corresponding to two adjacent first-level gradient points are not at a fixed offset interval as the second-level Gradient point.
  • the screening that is not a fixed offset interval is processed by forming a recursive interval, that is, the difference between the road offset values corresponding to two adjacent first-level gradient points is the first-level gradient point with a fixed offset interval to form a recursive interval Calculating the difference between the linear gradient value of the first-level gradient point and the actual gradient value in the recursive interval, and selecting the second-level gradient point.
  • the gradient point with the largest difference in the recursive interval is used as the dividing point, and the recursive interval is divided into two sub-recursive intervals Calculate the difference between the linear gradient value of the first-level gradient point in each sub-recursive interval and the actual gradient value, when the difference between all the first-level gradient points in the sub-recursive interval is less than the difference threshold , Set the first first-level gradient point and the last first-level gradient point in the sub-recursive interval as the second-level gradient point, and when the difference between the first-level gradient points in the recursive interval is greater than When it is equal to the difference threshold, continue the split and recursion.
  • S12 For each recursive interval, calculate the difference between the linear slope value of each slope point and the actual slope value. When the difference between all slope points in the recursive interval is less than the difference threshold, the first in the recursive interval The first and last gradient points are set as the second grade gradient points; otherwise, go to S13.
  • the corresponding road offset difference between the two is a fixed offset interval L (that is, the string of gradient points is in accordance with the fixed offset interval L Connected together)
  • the series of adjacent gradient points form a recursive interval, and re-sort according to the size of the corresponding road offset value difference.
  • the calculation formula of the linear slope value of each slope point in the recursive interval is:
  • m represents the total number of gradient points in the recursive interval
  • y i denotes the i th linear gradient slope value point
  • x i represents the i-th road gradient offset value corresponding to the point
  • s 1, s m each represent an actual value of the gradient and the gradient m-th point
  • o 1, o m represents the road offset value corresponding to the 1st and mth gradient points respectively.
  • the actual slope value is the value stored in the electronic horizon system.
  • the difference threshold is set to be less than 0.1.
  • the small difference indicates that the difference between the linear gradient value calculated by the linear relationship and the actual gradient value is small, and the actual gradient value of the gradient point can be approximately replaced by the linear gradient value.
  • the two recursive intervals that are split are [p m ,p k ] and [p k ,p m ] respectively.
  • This embodiment realizes that the continuous slope points are filtered into discrete slope points that can represent the original slope curve, and the discrete slope points are points with unequal intervals, which greatly reduces the number of points and provides for the recalculation of the slope. A strong support.
  • the present invention also provides a terminal device, including a memory, a processor, and a computer program stored in the memory and running on the processor.
  • the processor implements the first embodiment of the present invention when the computer program is executed. The steps of the above method.
  • the terminal device may be a computing device such as a vehicle-mounted computer and a cloud server.
  • the terminal device may include, but is not limited to, a processor and a memory.
  • the composition structure of the above terminal device is only an example of the terminal device, and does not constitute a limitation on the terminal device. It may include more or less components than the above, or a combination of certain components, or different components.
  • the terminal device may also include an input/output device, a network access device, a bus, etc., which are not limited in the embodiment of the present invention.
  • the so-called processor may be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the processor is the control center of the terminal device, and various interfaces and lines are used to connect various parts of the entire terminal device.
  • the memory may be used to store the computer program and/or module, and the processor implements the terminal by running or executing the computer program and/or module stored in the memory and calling data stored in the memory.
  • the memory may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of a mobile phone, and the like.
  • the memory can include high-speed random access memory, and can also include non-volatile memory, such as hard disks, memory, plug-in hard disks, smart media cards (SMC), and secure digital (SD) cards.
  • Flash Card at least one magnetic disk storage device, flash memory device, or other volatile solid-state storage device.
  • the present invention also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the steps of the above-mentioned method in Embodiment 1 of the present invention are implemented.
  • the integrated module/unit of the terminal device is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the present invention implements all or part of the processes in the above-mentioned embodiments and methods, and can also be completed by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, it can implement the steps of the foregoing method embodiments.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, recording medium, U disk, mobile hard disk, magnetic disk, optical disk, computer memory, read-only memory (ROM, ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), and software distribution media, etc.
  • the present invention also provides a slope calculation method based on discrete slope points, the method including:
  • the central control terminal collects the electronic horizon data, and after selecting all the slope points in the electronic horizon data as discrete slope points according to the slope point filtering method based on the electronic horizon data described in the first embodiment of the present invention, the discrete slope points are sent to each Electronic control terminal.
  • the electronic control terminal After receiving the discrete gradient points, the electronic control terminal recalculates the gradient values of the gradient points between adjacent discrete gradient points according to the gradient value of each discrete gradient point and the corresponding road offset value.
  • the calculation method of recalculating the slope value of the slope point between adjacent discrete slope points is: calculate the linear slope value of the slope point according to the linear relationship between the slope points between the adjacent discrete slope points, and use the linear slope value as the slope point Slope value.
  • y represents a linear slope gradient value calculated to be the point
  • x denotes the road gradient is calculated to be an offset value corresponding to the point
  • s a, s b represent two discrete values of the actual gradient gradient adjacent dots
  • o a, o b Represents the road offset values corresponding to two adjacent discrete gradient points respectively.
  • the vehicle can subtract the road offset value of a certain slope point from the current road offset value of the vehicle according to the current road offset value of the vehicle, that is, know how far away the certain slope point is and how much it is Degree slope.
  • the method of this embodiment greatly simplifies the number of front road gradient points that need to be directly obtained, and maintains the original shape of the road gradient, the processing process is simple, and the required hardware resources are small, and it is suitable for vehicle-mounted use.
  • the present invention also provides a gradient calculation system based on discrete gradient points, including a central control terminal and a plurality of electronic control terminals.
  • the central control terminal and each electronic control terminal include a memory, a processor, a data transmission module, and a storage A computer program in the memory that can be run on the processor.
  • the processor in the central control terminal executes the computer program stored in its corresponding memory to implement the electronic horizon data based on the first embodiment of the present invention.
  • the slope point screening method in the electronic horizon screens all slope points in the electronic horizon data as discrete slope points, and then sends the discrete slope points to each electronic control terminal through the data transmission module.
  • the processor in the electronic control terminal executes the computer program stored in its corresponding memory, so as to realize that according to the gradient value of each discrete gradient point and the corresponding road Offset value, recalculate the slope value of the slope point between adjacent discrete slope points.
  • the central control terminal may be a central control terminal on a vehicle, and the electronic control terminal may be other vehicle-mounted electronic control terminals that are connected to the central control terminal through a CAN bus to realize different functions.
  • Both the central control terminal and the electronic control terminal can include, but are not limited to, a processor and a memory.
  • the composition structure of the above-mentioned central control terminal and electronic control terminal is only an example of the central control terminal and the electronic control terminal, and does not constitute a limitation on the central control terminal and the electronic control terminal, and may include more than the above. Or fewer components, or a combination of some components, or different components.
  • the central control terminal and the electronic control terminal may also include input and output devices, network access devices, buses, etc. This is not done in the embodiment of the present invention. limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种坡度点筛选方法、终端设备及介质和坡度计算方法及***,坡度点筛选方法包括:从电子地平线数据中筛选出相对于道路偏移值的一阶导数大于或等于导数阈值的坡度点为第一级坡度点;从第一级坡度点中,根据相邻的两个第一级坡度点对应的道路偏移值差值筛选出第二级坡度点,将第二级坡度点作为筛选后的离散坡度点。坡度计算方法中根据各离散坡度点的坡度值和对应的道路偏移值,重新计算相邻离散坡度点之间的坡度点的坡度值。大大简化了需要直接获得的前方道路坡度点的数量,且保持了道路坡度的原始形态,处理过程简单。

Description

坡度点筛选方法、终端设备及介质和坡度计算方法及*** 技术领域
本发明涉及坡度计算领域,尤其涉及一种坡度点筛选方法、终端设备及介质和坡度计算方法及***。
背景技术
电子地平线技术是指依靠地图数据和全球定位***(Global Positioning System,GPS)为车辆提供前方道路的准确信息,使得车辆具有预测前方道路状况的能力,帮助车辆实现预见性控制,达到更安全、更节油等效果。
坡度是道路的最主要信息之一,根据前方坡度情况,可以控制车辆提前加减速降低能耗,还可以根据前方长下坡路况进行安全性的驾驶提示或预先开启缓速器等安全控制。
由于车上可能设置的涉及前方坡度控制的电子控制终端(Electronic Control Unit,ECU)的数量较多,因此不太可能在每一个电子控制终端上都单独安装一套地图数据。较为理想的方式,是由一个专门的带电子地图的车载设备来产生前方坡度数据,然后再把数据播发给其它需要的电子控制终端使用。由于车辆上,各电子控制终端之间都是通过CAN总线来通信的,因此最理想的方式是通过CAN总线以广播的方式将信息发送给各电子控制终端。
然而电子地图数据是十分庞大的,而CAN总线的负载有限,一般商用车的CAN总线容量仅为250~500kbps。在电子地图数据中道路是以点集方式存在的,如果将前方道路中每一个点,及该点对应的坡度都从总线播发出来,将大大超 过总线的负载能力,导致总线的拥堵和信号的延迟,甚至整车总线网络瘫痪。而如果对道路坡度点进行等间距的抽稀,则可能无法反应道路坡度的变化细节。另一类方法将前坡度当成曲线,采用控制点拟合或样条曲线的方法来表示,这类方法计算与解析较复杂,不适合资源有限的车载电子控制终端。
因此,有必须提出一种相对优化且简易的数据表示方法,保证前方坡度信息能够以比较小的数据量在车辆总线上播发,同时接收到数据的电子控制终端能较为简易且准确的重建出前方地理坡度信息。
发明内容
为了解决上述问题,本发明提出了一种坡度点筛选方法、终端设备及介质和坡度计算方法及***。
具体方案如下:
一种基于电子地平线数据的坡度点筛选方法,包括以下步骤:
从电子地平线数据中筛选出相对于道路偏移值的一阶导数大于或等于导数阈值的坡度点为第一级坡度点;
从所述第一级坡度点中,根据相邻的两个第一级坡度点对应的道路偏移值差值筛选出第二级坡度点,将第二级坡度点作为筛选后的离散坡度点。
进一步的,包括:将相邻的两个第一级坡度点对应的道路偏移值差值不为固定偏移间隔的所述第一级坡度点筛选为第二级坡度点。
进一步的,包括:将相邻的两个第一级坡度点对应的道路偏移值差值为固定偏移间隔的所述第一级坡度点组成递归区间,计算所述递归区间内的所述第一级坡度点的线性坡度值与实际坡度值的差值,筛选所述第二级坡度点。
进一步的,当所述递归区间内所有第一级坡度点的差值均小于差值阈值时,将该递归区间中第一个第一级坡度点和最后一个第一级坡度点设置为第二级坡度点。
进一步的,当所述递归区间内存在所述第一级坡度点的差值大于或等于差值阈值时,以该递归区间内差值最大的坡度点作为分界点,将递归区间拆分为两个子递归区间,计算每个子递归区间内的所述第一级坡度点的线性坡度值与实际坡度值的差值,当所述子递归区间内所有第一级坡度点的差值均小于差值阈值时,将该子递归区间中第一个第一级坡度点和最后一个第一级坡度点设置为第二级坡度点,当所述递归区间内存在所述第一级坡度点的差值大于或等于差值阈值时,继续拆分和递归。
进一步的,坡度点的线性坡度值的计算公式为:
Figure PCTCN2020109684-appb-000001
其中,下标i=1,2,...,m表示递归区间内各坡度点按照对应的道路偏移值的大小顺序排序后的序号,m表示递归区间内坡度点的总数,y i表示第i个坡度点的线性坡度值,x i表示第i个坡度点对应的道路偏移值,s 1、s m分别表示第1个和第m个坡度点的实际坡度值,o 1、o m分别表示第1个和第m个坡度点对应的道路偏移值。
进一步的,所述导数阈值小于0.01。
进一步的,所述差值阈值小于0.1。
一种终端设备,包括处理器、存储器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本发明实 施例一所述基于电子地平线数据的坡度点筛选的步骤。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例一所述基于电子地平线数据的坡度点筛选的步骤。
一种基于离散坡度点的坡度计算方法,包括:
中央控制终端采集电子地平线数据,并根据本发明实施例一所述的基于电子地平线数据的坡度点筛选方法将电子地平线数据中的所有坡度点筛选为离散坡度点后,将离散坡度点发送至各电子控制终端;
电子控制终端接收到离散坡度点后,根据各离散坡度点的坡度值和对应的道路偏移值,重新计算相邻离散坡度点之间的坡度点的坡度值。
进一步的,重新计算相邻离散坡度点之间的坡度点的坡度值的计算方法为:根据相邻离散坡度点之间各坡度点的线性关系计算坡度点的线性坡度值,将线性坡度值作为坡度点的坡度值。
进一步的,重新计算相邻离散坡度点之间的坡度点的线性坡度值的计算公式为:
Figure PCTCN2020109684-appb-000002
其中,y表示待计算坡度点的线性坡度值,x表示待计算坡度点对应的道路偏移值,s a、s b分别表示相邻两个离散坡度点的实际坡度值,o a、o b分别表示相邻两个离散坡度点对应的道路偏移值。
一种基于离散坡度点的坡度计算***,包括中央控制终端和多个电子控制终端,所述中央控制终端和每个电子控制终端均包括存储器、处理器、数据传 输模块以及存储在所述存储器中并可在所述处理器上运行的计算机程序;
所述中央控制终端通过其数据传输模块接收电子地平线数据后,通过中央控制终端内的处理器执行其对应的存储器中存储的计算机程序,以实现根据本发明实施例一所述的基于电子地平线数据的坡度点筛选方法将电子地平线数据中的所有坡度点筛选为离散坡度点,之后通过数据传输模块将离散坡度点发送至各电子控制终端;
所述电子控制终端通过其数据传输模块接收各离散坡度点后,通过电子控制终端内的处理器执行其对应的存储器中存储的计算机程序,以实现根据各离散坡度点的坡度值和对应的道路偏移值,重新计算相邻离散坡度点之间的坡度点的坡度值。
本发明采用如上技术方案,大大简化了需要直接获得的前方道路坡度点的数量,且保持了道路坡度的原始形态,处理过程简单,需要的硬件资源少,适合车载使用。
附图说明
图1所示为本发明实施例一中电子地平线数据的示意图。
图2所示为该实施例的流程图。
具体实施方式
为进一步说明各实施例,本发明提供有附图。这些附图为本发明揭露内容的一部分,其主要用以说明实施例,并可配合说明书的相关描述来解释实施例的运作原理。配合参考这些内容,本领域普通技术人员应能理解其他可能的实施方式以及本发明的优点。
现结合附图和具体实施方式对本发明进一步说明。
实施例一:
如图1所示,其为电子地平线数据的示意图,其内针对每个坡度点(如P 1、P 2)均包含与道路起点的道路偏移值(图中用参数offset的值表示)和实际坡度值(图中用参数slp的值表示)。
现有的电子地平线***播发的前方道路坡度为一串连续等间隔(如间隔为5米)的坡度点,即相邻两个坡度点之间的道路偏移值的差值相等。本发明实施例提供了一种基于电子地平线数据的坡度点筛选方法,针对现有的具有固定偏移间隔的连续的坡度点进行筛选,既减少坡度点的数量和密度,又能较准确的保持原始道路坡度的形态。
如图2所示,本实施例方法包括:从电子地平线数据中筛选出相对于道路偏移值的一阶导数大于或等于导数阈值的坡度点为第一级坡度点;根据第一级坡度点中相邻坡度点之间的线性坡度值与实际坡度值的差值与差值阈值的大小关系筛选出第二级坡度点,将第二级坡度点作为筛选后的离散坡度点。
需要说明的是,第一级坡度点中相邻坡度点是指将第一级坡度点按照对应的道路偏移值的大小顺序进行排序后,序号相邻的坡度点为相邻坡度点。
(1)第一级坡度点的筛选方法为:筛选电子地平线数据中的坡度点中的一阶导数大于或等于导数阈值的坡度点为第一级坡度点。
所述导数阈值应为一个极小值,该实施例中设定导数阈值小于0.01。小于导数阈值的坡度点说明该坡度点对应的道路坡度相对于道路偏移几乎没有变化,因此,该坡度点对应的坡度值可以使用一个固定坡度值表示。
该实施例中第i个坡度点P i相对于道路偏移值的一阶导数D i的计算公式为:
D i=(s i-s i-1)/(o i-o i-1)
其中,s i、s i-1分别表示第i个和第i-1个坡度点的实际坡度值,o i、o i-1分别表示第i个和第i-1个坡度点的道路偏移值,第i-1个坡度点为第i个坡度点的相邻坡度点,即与第i个坡度点对应的道路偏移值差值为固定偏移间隔L的坡度点。
(2)第二级坡度点的筛选原理为将相邻的两个第一级坡度点对应的道路偏移值差值不为固定偏移间隔的所述第一级坡度点筛选为第二级坡度点。
不为固定偏移间隔的筛选通过组成递归区间进行处理,即将相邻的两个第一级坡度点对应的道路偏移值差值为固定偏移间隔的所述第一级坡度点组成递归区间,计算所述递归区间内的所述第一级坡度点的线性坡度值与实际坡度值的差值,筛选所述第二级坡度点。
当所述递归区间内存在所述第一级坡度点的差值大于或等于差值阈值时,以该递归区间内差值最大的坡度点作为分界点,将递归区间拆分为两个子递归区间,计算所述每个子递归区间内的所述第一级坡度点的线性坡度值与实际坡度值的差值,当所述子递归区间内所有第一级坡度点的差值均小于差值阈值时,将该子递归区间中第一个第一级坡度点和最后一个第一级坡度点设置为第二级坡度点,当所述递归区间内存在所述第一级坡度点的差值大于或等于差值阈值时,继续所述拆分和递归。
该实施例中的具体的筛选过程包括以下步骤:
S11:针对所有第一级坡度点,判断是否存在相邻两坡度点对应的道路偏移值差值为固定偏移间隔的坡度点,如果存在,将所有相邻两坡度点对应的道路偏移值差值为固定偏移间隔的坡度点组成递归区间,将所有与其他任意第一级 坡度点对应的道路偏移值差值均不为固定偏移间隔的坡度点设置为第二级坡度点,进入S12;否则,将所有第一级坡度点均设置为第二级坡度点。
S12:针对每个递归区间,计算其内各坡度点的线性坡度值与实际坡度值的差值,当该递归区间内所有坡度点的差值均小于差值阈值时,将该递归区间中第一个和最后一个坡度点设置为第二级坡度点;否则,进入S13。
如一串相邻的坡度点p 1,p 2,...,p m,两两之间对应的道路偏移值差值为固定偏移间隔L(即该串坡度点按照固定偏移间隔L连在一起),将该串相邻的坡度点组成递归区间,按照对应的道路偏移值差值的大小进行重新排序。则该递归区间内各坡度点的线性坡度值的计算公式为:
Figure PCTCN2020109684-appb-000003
其中,下标i=1,2,...,m表示递归区间内各坡度点按照对应的道路偏移值的大小顺序排序后的序号,m表示该递归区间内坡度点的总数,y i表示第i个坡度点的线性坡度值,x i表示第i个坡度点对应的道路偏移值,s 1、s m分别表示第1个和第m个坡度点的实际坡度值,o 1、o m分别表示第1个和第m个坡度点对应的道路偏移值。
所述实际坡度值为电子地平线***中存储的值。
该实施例中设置差值阈值小于0.1,差值较小说明通过线性关系计算的线性坡度值与实际坡度值的差异小,该坡度点的实际坡度值可以用线性坡度值近似替代。
S13:以该递归区间内差值最大的坡度点作为分界点,将递归区间拆分为两个递归区间,返回S12,直到所有递归区间均处理完毕。
如递归区间中差值最大的点为p k,则拆分的两个递归区间分别为[p m,p k]、[p k,p m]。
本实施例实现了将连续的坡度点筛选为能够表示原有坡度曲线的离散坡度点,且该离散坡度点为不等间隔的点,大大减少了点的数量,为后面坡度的重新计算工作提供了有力支持。
实施例二:
本发明还提供一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本发明实施例一上述方法的步骤。
进一步地,作为一个可执行方案,所述终端设备可以是车载电脑、云端服务器等计算设备。所述终端设备可包括,但不仅限于,处理器、存储器。本领域技术人员可以理解,上述终端设备的组成结构仅仅是终端设备的示例,并不构成对终端设备的限定,可以包括比上述更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备还可以包括输入输出设备、网络接入设备、总线等,本发明实施例对此不做限定。
进一步地,作为一个可执行方案,所称处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器是所述终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分。
所述存储器可用于存储所述计算机程序和/或模块,所述处理器通过运行或执行存储在所述存储器内的计算机程序和/或模块,以及调用存储在存储器内的数据,实现所述终端设备的各种功能。所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据手机的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
本发明还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现本发明实施例一上述方法的步骤。
所述终端设备集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)以及软件分发介 质等。
实施例三:
本发明还提供了一种基于离散坡度点的坡度计算方法,所述方法包括:
中央控制终端采集电子地平线数据,并根据本发明实施例一所述的基于电子地平线数据的坡度点筛选方法将电子地平线数据中的所有坡度点筛选为离散坡度点后,将离散坡度点发送至各电子控制终端。
电子控制终端接收到离散坡度点后,根据各离散坡度点的坡度值和对应的道路偏移值,重新计算相邻离散坡度点之间的坡度点的坡度值。
重新计算相邻离散坡度点之间的坡度点的坡度值的计算方法为:根据相邻离散坡度点之间各坡度点的线性关系计算坡度点的线性坡度值,将线性坡度值作为坡度点的坡度值。
重新计算相邻离散坡度点之间的坡度点的线性坡度值的计算公式为:
Figure PCTCN2020109684-appb-000004
其中,y表示待计算坡度点的线性坡度值,x表示待计算坡度点对应的道路偏移值,s a、s b分别表示相邻两个离散坡度点的实际坡度值,o a、o b分别表示相邻两个离散坡度点对应的道路偏移值。
在实际行驶过程中,车辆根据当前自身的道路偏移值,可将某坡度点的道路偏移值与车辆当前自身得道路偏移值相减,即得知某坡度点距离多远,是多少度坡。
本实施例方法大大简化了需要直接获得的前方道路坡度点的数量,且保持了道路坡度的原始形态,处理过程简单,需要的硬件资源少,适合车载使用。
实施例四:
本发明还提供一种基于离散坡度点的坡度计算***,包括中央控制终端和多个电子控制终端,所述中央控制终端和每个电子控制终端均包括存储器、处理器、数据传输模块以及存储在所述存储器中并可在所述处理器上运行的计算机程序。
所述中央控制终端通过其数据传输模块接收电子地平线数据后,通过中央控制终端内的处理器执行其对应的存储器中存储的计算机程序,以实现根据本发明实施例一所述的基于电子地平线数据的坡度点筛选方法将电子地平线数据中的所有坡度点筛选为离散坡度点,之后通过数据传输模块将离散坡度点发送至各电子控制终端。
所述电子控制终端通过其数据传输模块接收各离散坡度点后,通过电子控制终端内的处理器执行其对应的存储器中存储的计算机程序,以实现根据各离散坡度点的坡度值和对应的道路偏移值,重新计算相邻离散坡度点之间的坡度点的坡度值。
进一步地,作为一个可执行方案,所述中央控制终端可以为车辆上的中央控制终端,所述电子控制终端可以为与中央控制终端通过CAN总线连接,实现不同功能的其他车载电子控制终端。所述中央控制终端和电子控制终端均可包括但不仅限于,处理器、存储器。本领域技术人员可以理解,上述中央控制终端和电子控制终端的组成结构仅仅是中央控制终端和电子控制终端的示例,并不构成对中央控制终端和电子控制终端的限定,可以包括比上述更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述中央控制终端和电子控制终端还可以包括输入输出设备、网络接入设备、总线等,本发明实施例对此 不做限定。
尽管结合优选实施方案具体展示和介绍了本发明,但所属领域的技术人员应该明白,在不脱离所附权利要求书所限定的本发明的精神和范围内,在形式上和细节上可以对本发明做出各种变化,均为本发明的保护范围。

Claims (16)

  1. 一种基于电子地平线数据的坡度点筛选方法,其特征在于,包括以下步骤:
    从电子地平线数据中筛选出相对于道路偏移值的一阶导数大于或等于导数阈值的坡度点为第一级坡度点;
    从所述第一级坡度点中,根据相邻的两个第一级坡度点对应的道路偏移值差值筛选出第二级坡度点,将第二级坡度点作为筛选后的离散坡度点。
  2. 根据权利要求1所述的基于电子地平线数据的坡度点筛选方法,其特征在于,包括:将相邻的两个第一级坡度点对应的道路偏移值差值不为固定偏移间隔的所述第一级坡度点筛选为第二级坡度点。
  3. 根据权利要求1所述的基于电子地平线数据的坡度点筛选方法,其特征在于,包括:将相邻的两个第一级坡度点对应的道路偏移值差值为固定偏移间隔的所述第一级坡度点组成递归区间,计算所述递归区间内的所述第一级坡度点的线性坡度值与实际坡度值的差值,筛选所述第二级坡度点。
  4. 根据权利要求3所述的基于电子地平线数据的坡度点筛选方法,其特征在于,当所述递归区间内所有第一级坡度点的差值均小于差值阈值时,将该递归区间中第一个第一级坡度点和最后一个第一级坡度点设置为第二级坡度点。
  5. 根据权利要求3所述的基于电子地平线数据的坡度点筛选方法,其特征在于,当所述递归区间内存在所述第一级坡度点的差值大于或等于差值阈值时,以该递归区间内差值最大的坡度点作为分界点,将递归区间拆分为两个子递归区间,计算每个子递归区间内的所述第一级坡度点的线性坡度值与实际坡度值的差值,当所述子递归区间内所有第一级坡度点的差值均小于差值阈值时,将该子递归区间中第一个第一级坡度点和最后一个第一级坡度点设置为第二级坡度点,当所述递归区间内存在所述第一级坡度点的差值大于或等于差值阈值时, 继续拆分和递归。
  6. 根据权利要求3-5中任一所述的基于电子地平线数据的坡度点筛选方法,其特征在于:坡度点的线性坡度值的计算公式为:
    Figure PCTCN2020109684-appb-100001
    其中,下标i=1,2,...,m表示递归区间内各坡度点按照对应的道路偏移值的大小顺序排序后的序号,m表示递归区间内坡度点的总数,y i表示第i个坡度点的线性坡度值,x i表示第i个坡度点对应的道路偏移值,s 1、s m分别表示第1个和第m个坡度点的实际坡度值,o 1、o m分别表示第1个和第m个坡度点对应的道路偏移值。
  7. 根据权利要求1-5任一所述的基于电子地平线数据的坡度点筛选方法,其特征在于:所述导数阈值小于0.01。
  8. 根据权利要求1-5任一所述的基于电子地平线数据的坡度点筛选方法,其特征在于:所述差值阈值小于0.1。
  9. 一种终端设备,其特征在于:包括处理器、存储器以及存储在所述存储器中并在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如权利要求1~8中任一所述方法的步骤。
  10. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于:所述计算机程序被处理器执行时实现如权利要求1~8中任一所述方法的步骤。
  11. 一种基于离散坡度点的坡度计算方法,其特征在于,包括:
    中央控制终端采集电子地平线数据,并根据权利要求1~8中任一所述的基 于电子地平线数据的坡度点筛选方法将电子地平线数据中的所有坡度点筛选为离散坡度点后,将离散坡度点发送至各电子控制终端;
    电子控制终端接收到离散坡度点后,根据各离散坡度点的坡度值和对应的道路偏移值,重新计算相邻离散坡度点之间的坡度点的坡度值。
  12. 根据权利要求11所述的基于离散坡度点的坡度计算方法,其特征在于:重新计算相邻离散坡度点之间的坡度点的坡度值的计算方法为:根据相邻离散坡度点之间各坡度点的线性关系计算坡度点的线性坡度值,将线性坡度值作为坡度点的坡度值。
  13. 根据权利要求12所述的基于离散坡度点的坡度计算方法,其特征在于:重新计算相邻离散坡度点之间的坡度点的线性坡度值的计算公式为:
    Figure PCTCN2020109684-appb-100002
    其中,y表示待计算坡度点的线性坡度值,x表示待计算坡度点对应的道路偏移值,s a、s b分别表示相邻两个离散坡度点的实际坡度值,o a、o b分别表示相邻两个离散坡度点对应的道路偏移值。
  14. 一种基于离散坡度点的坡度计算***,其特征在于:包括中央控制终端和多个电子控制终端,所述中央控制终端和每个电子控制终端均包括存储器、处理器、数据传输模块以及存储在所述存储器中并可在所述处理器上运行的计算机程序;
    所述中央控制终端通过其数据传输模块接收电子地平线数据后,通过中央控制终端内的处理器执行其对应的存储器中存储的计算机程序,以实现根据权利要求1~8中任一所述的基于电子地平线数据的坡度点筛选方法将电子地平线 数据中的所有坡度点筛选为离散坡度点,之后通过数据传输模块将离散坡度点发送至各电子控制终端;
    所述电子控制终端通过其数据传输模块接收各离散坡度点后,通过电子控制终端内的处理器执行其对应的存储器中存储的计算机程序,以实现根据各离散坡度点的坡度值和对应的道路偏移值,重新计算相邻离散坡度点之间的坡度点的坡度值。
  15. 根据权利要求14所述的基于离散坡度点的坡度计算***,其特征在于:重新计算相邻离散坡度点之间的坡度点的坡度值的计算方法为:根据相邻离散坡度点之间各坡度点的线性关系计算坡度点的线性坡度值,将线性坡度值作为坡度点的坡度值。
  16. 根据权利要求15所述的基于离散坡度点的坡度计算***,其特征在于:重新计算相邻离散坡度点之间的坡度点的线性坡度值的计算公式为:
    Figure PCTCN2020109684-appb-100003
    其中,y表示待计算坡度点的线性坡度值,x表示待计算坡度点对应的道路偏移值,s a、s b分别表示相邻两个离散坡度点的实际坡度值,o a、o b分别表示相邻两个离散坡度点对应的道路偏移值。
PCT/CN2020/109684 2020-03-24 2020-08-18 坡度点筛选方法、终端设备及介质和坡度计算方法及*** WO2021189755A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/795,826 US20230072145A1 (en) 2020-03-24 2020-08-18 Method, terminal device and medium for screening gradient points, method and system for calculating gradient
EP20926456.3A EP4130670A4 (en) 2020-03-24 2020-08-18 SLOPE POINT SCREENING METHOD, TERMINAL DEVICE, MEDIUM AND SLOPE CALCULATION METHOD AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010211479.9A CN113447031A (zh) 2020-03-24 2020-03-24 坡度点筛选方法、终端设备及介质和坡度计算方法及***
CN202010211479.9 2020-03-24

Publications (1)

Publication Number Publication Date
WO2021189755A1 true WO2021189755A1 (zh) 2021-09-30

Family

ID=77806352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109684 WO2021189755A1 (zh) 2020-03-24 2020-08-18 坡度点筛选方法、终端设备及介质和坡度计算方法及***

Country Status (4)

Country Link
US (1) US20230072145A1 (zh)
EP (1) EP4130670A4 (zh)
CN (1) CN113447031A (zh)
WO (1) WO2021189755A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141011B (zh) * 2021-11-23 2022-09-27 北京安融畅信息技术有限公司 一种陡坡及连续下坡路段识别方法以及安全隐患排查方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546207B2 (ja) * 2004-09-29 2010-09-15 Necパーソナルプロダクツ株式会社 動画編集装置、プログラム、および動画編集方法
CN103823854A (zh) * 2014-02-19 2014-05-28 厦门雅迅网络股份有限公司 一种基于陆地边界线索引减少导航终端电子地图数据量的方法
CN103839228A (zh) * 2012-11-23 2014-06-04 厦门雅迅网络股份有限公司 一种基于矢量地图数据抽稀与平滑处理的方法
CN104036688A (zh) * 2014-05-27 2014-09-10 厦门雅迅网络股份有限公司 基于地图载负量动态筛选电子地图点状要素的方法
CN104797483A (zh) * 2012-11-15 2015-07-22 罗伯特·博世有限公司 使用高度数据的自动驾驶辅助
CN105677899A (zh) * 2016-02-04 2016-06-15 东南大学 一种包含道路行进方向的增强型矢量数字地图制作方法
CN109029387A (zh) * 2018-09-01 2018-12-18 哈尔滨工程大学 一种波束内拟合多波束测深算法
CN110893853A (zh) * 2018-08-23 2020-03-20 厦门雅迅网络股份有限公司 一种基于前方坡度信息的车辆控制方法以及***

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10042815B2 (en) * 2012-08-31 2018-08-07 Ford Global Technologies, Llc Road gradient estimation arbitration
US9342881B1 (en) * 2013-12-31 2016-05-17 Given Imaging Ltd. System and method for automatic detection of in vivo polyps in video sequences
GB2552501B (en) * 2016-07-26 2019-03-06 Jaguar Land Rover Ltd Apparatus and method for thermal control
EP3385673B1 (de) * 2017-04-07 2023-07-05 Continental Automotive Technologies GmbH Verfahren und einrichtung zur reduktion von zwischenpunkten in einem streckenzug
CN107564061B (zh) * 2017-08-11 2020-11-20 浙江大学 一种基于图像梯度联合优化的双目视觉里程计算方法
DE102018005869A1 (de) * 2018-07-25 2020-01-30 Zf Active Safety Gmbh System zur Erstellung eines Umgebungsmodells eines Fahrzeugs
KR20190117419A (ko) * 2019-09-27 2019-10-16 엘지전자 주식회사 자율주행 차량의 컨텐츠 제공 방법 및 이를 위한 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4546207B2 (ja) * 2004-09-29 2010-09-15 Necパーソナルプロダクツ株式会社 動画編集装置、プログラム、および動画編集方法
CN104797483A (zh) * 2012-11-15 2015-07-22 罗伯特·博世有限公司 使用高度数据的自动驾驶辅助
CN103839228A (zh) * 2012-11-23 2014-06-04 厦门雅迅网络股份有限公司 一种基于矢量地图数据抽稀与平滑处理的方法
CN103823854A (zh) * 2014-02-19 2014-05-28 厦门雅迅网络股份有限公司 一种基于陆地边界线索引减少导航终端电子地图数据量的方法
CN104036688A (zh) * 2014-05-27 2014-09-10 厦门雅迅网络股份有限公司 基于地图载负量动态筛选电子地图点状要素的方法
CN105677899A (zh) * 2016-02-04 2016-06-15 东南大学 一种包含道路行进方向的增强型矢量数字地图制作方法
CN110893853A (zh) * 2018-08-23 2020-03-20 厦门雅迅网络股份有限公司 一种基于前方坡度信息的车辆控制方法以及***
CN109029387A (zh) * 2018-09-01 2018-12-18 哈尔滨工程大学 一种波束内拟合多波束测深算法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4130670A4 *

Also Published As

Publication number Publication date
US20230072145A1 (en) 2023-03-09
CN113447031A (zh) 2021-09-28
EP4130670A1 (en) 2023-02-08
EP4130670A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
JP2022507077A (ja) 区画線属性検出方法、装置、電子機器及び可読記憶媒体
US20220214182A1 (en) Method, system, terminal, and storage medium for rapid generation of reference lines
US11460307B2 (en) System and method for processing vehicle event data for journey analysis
CN111881243B (zh) 一种出租车轨迹热点区域分析方法及***
TW202016873A (zh) 使用軌跡資料優化scats自適應信號系統的系統
WO2021189755A1 (zh) 坡度点筛选方法、终端设备及介质和坡度计算方法及***
JP6234636B1 (ja) 燃費推定システム、燃費推定方法および燃費推定プログラム
JP2021532449A (ja) 車線属性検出
KR20210090249A (ko) 이미지 처리 방법, 장치, 차량 탑재 연산 플랫폼, 전자 디바이스 및 시스템
EP3955599A1 (en) System and method for processing vehicle event data for journey analysis
US11514062B2 (en) Feature value generation device, feature value generation method, and feature value generation program
CN116481560B (zh) 车辆行驶里程的计算方法、装置、终端及存储介质
CN111121803B (zh) 获取道路常用停靠点的方法及装置
CN110489396B (zh) 一种用户界面数据隔离方法及装置
CN112304281A (zh) 一种道路坡度测量方法、终端设备及存储介质
JP6214826B1 (ja) 燃費推定システム、燃費推定方法および燃費推定プログラム
JP6214827B1 (ja) 燃費推定システム、燃費推定方法および燃費推定プログラム
CN112885097B (zh) 一种基于跨点位的路侧融合管理方法及***
CN116238497B (zh) 车辆限速控制方法、电子设备、存储介质及车辆
US20220144281A1 (en) System and method for parking tracking using vehicle event data
CN116955329A (zh) 一种车道连通的检查方法、装置及电子设备
CN118297258A (zh) 交通违章事件检测的评价方法、装置、设备及存储介质
CN118279503A (zh) 高精地图高程标注方法、装置、设备、存储介质及车辆
CN118280136A (zh) 一种干线的单向绿波控制方法和装置
CN115683143A (zh) 一种高精度导航方法及装置、电子设备、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020926456

Country of ref document: EP

Effective date: 20221024