WO2021189664A1 - 一种紫外皮秒激光加工装置 - Google Patents

一种紫外皮秒激光加工装置 Download PDF

Info

Publication number
WO2021189664A1
WO2021189664A1 PCT/CN2020/094578 CN2020094578W WO2021189664A1 WO 2021189664 A1 WO2021189664 A1 WO 2021189664A1 CN 2020094578 W CN2020094578 W CN 2020094578W WO 2021189664 A1 WO2021189664 A1 WO 2021189664A1
Authority
WO
WIPO (PCT)
Prior art keywords
bottom plate
picosecond laser
laser
reflector
laser processing
Prior art date
Application number
PCT/CN2020/094578
Other languages
English (en)
French (fr)
Inventor
赵全忠
张学聪
付强
Original Assignee
南京萃智激光应用技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京萃智激光应用技术研究院有限公司 filed Critical 南京萃智激光应用技术研究院有限公司
Publication of WO2021189664A1 publication Critical patent/WO2021189664A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/04Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups for holding or positioning work

Definitions

  • the utility model relates to an ultraviolet picosecond laser processing device, which belongs to the technical field of laser precision processing and manufacturing.
  • PBO fiber is a synthetic fiber with high strength, high modulus, low density, excellent thermal stability and chemical stability. It is known as the "21st century super fiber" and is used as a resin-based composite material for fiber reinforcement. Because of its lightweight and high-strength mechanical properties, good anti-ballistic protection characteristics, and ability to work stably at high temperatures, it has been widely used in aerospace, weaponry and other cutting-edge technology fields. At present, its processing methods are still dominated by traditional mechanical processing and direct textile molding. It is difficult to meet the increasing requirements of assembly accuracy. Tool wear, fiber damage, matrix structure stress damage and poor processing flexibility will also occur during the machining process. And other problems, laser processing is expected to overcome the above problems. Laser processing is the use of a focused high-energy density laser beam to irradiate materials to rapidly melt, vaporize or chemically degrade, thereby achieving material separation and achieving processing purposes.
  • Ultraviolet picosecond lasers have gained more attention due to their high precision and minimal heat-affected zone advantages. Because they are basically photochemical ablation, but also can be focused to the smallest spot size through diffraction. Infrared picosecond lasers usually provide greater output power, which leads to higher processing speeds. The two complement each other and provide more flexible options for the needs of different processing objects. Compared with traditional mechanical processing, the advantages of laser processing PBO fiber reinforced composite materials are obvious: stress-free processing, less damage to the material structure, low residual stress; no tool wear, low processing cost; laser focusing spot up to micron level, fine processing The degree is greatly improved; the processing flexibility is good, and the laser beam can be controlled by the scanning galvanometer to process any shape. According to actual needs, it is a beneficial attempt to process PBO fiber-reinforced composite materials with laser. However, the current UV picosecond processing technology is not very mature yet and needs further improvement.
  • the utility model provides an ultraviolet picosecond laser processing device, which aims to process PBO fiber-reinforced composite materials with high quality and reduce excessive thermal damage caused by laser processing To improve the processing efficiency and processing flexibility of PBO fiber-reinforced composite materials.
  • An ultraviolet picosecond laser processing device including an ultraviolet picosecond laser, characterized in that it also includes an adjustable leveling fixture, an XY moving platform, and a first reflector sequentially arranged on the output light path of the ultraviolet picosecond laser Mirror, polarizer, second mirror, beam expander, flat-top beam shaper, third mirror, fourth mirror, beam combiner, CCD lens, aperture diaphragm and scanning galvanometer module;
  • the leveling fixture includes a bottom plate, a supporting block with an inverted T-shaped longitudinal section installed on the bottom plate, and a compression block installed on the supporting block, and the bottom plate is fixedly installed on the XY mobile platform.
  • the bottom plate and the supporting block are both L-shaped structures, the two ends and right angles of the bottom plate and the supporting block are provided with threaded holes, and studs are screwed into the threaded holes.
  • through holes are respectively opened on both sides and at right angles of the contact surface of the bottom plate and the support block, and grooves are respectively provided in the through holes, and tension springs are provided in the through holes, and the tension The two ends of the spring are respectively clamped in the grooves.
  • the compression block is installed at a right-angle position of the L-shaped structure of the supporting block by a fastener, and the longitudinal section thereof is an L-shaped structure.
  • the Z-axis movement system includes a vertical linear motor module and a beam that can be moved up and down driven by the linear motor module, the fourth reflector, the beam combiner, and the aperture stop
  • the scanning galvanometer module and the scanning galvanometer module are sequentially arranged on the beam from left to right, the beam combiner is placed behind the fourth mirror at an upward angle of 45°, and the CCD lens is placed directly above the beam combiner.
  • the flat-top beam shaper is arranged at the output end of the beam expander, and the laser beam is shaped into a flat-top beam by the flat-top beam shaper, and then enters the Z axis through the third and fourth mirrors.
  • Mobile system; the third mirror, the fourth mirror and the plane are all set at 45°.
  • the X-Y mobile platform is a breadboard fixed on two sets of servo motor modules that can move in the X direction and the Y direction.
  • the combination of the scanning galvanometer module and the X-Y mobile platform breaks through the limit of the scanning galvanometer size, realizes the division processing, and expands the processing size of the material.
  • the application of scanning galvanometer can also realize ultra-fast laser scanning speed and complex scanning path, greatly improving laser processing speed and processing flexibility.
  • PBO fiber-reinforced composite material has anisotropic characteristics.
  • the scanning galvanometer is used to achieve multi-channel filling and fast scanning. Setting different laser parameters and scanning strategies at different scanning times is beneficial to maintain the uniformity of the overall quality of the PBO fiber reinforced composite and the balance of the processing speed.
  • the three adjustment knobs designed for the leveling fixture can adjust the focal plane of the laser and the surface of the material to be processed according to the surface characteristics of the PBO fiber reinforced material to keep as much as possible to coincide with the surface of the material to be processed, thereby increasing the laser utilization rate and improving the quality of laser processing.
  • the lower part of the adjustable leveling fixture can be suspended in the air, which can make the material fall quickly when it is completely penetrated or separate from the laser focus in time to avoid material damage caused by over-processing.
  • Fig. 1 is a schematic diagram of the structure of the processing device in the embodiment of the present utility model.
  • Figure 2 is a schematic diagram of the Z-axis system structure in the embodiment of the utility model.
  • Fig. 3 is a schematic diagram of the structure of the leveling clamp in the embodiment of the present invention.
  • Figure 4 is a schematic view of the through hole of the contact surface between the bottom plate and the supporting block in the embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the material to be processed clamped by the leveling clamp in the embodiment of the present invention.
  • this embodiment provides an ultraviolet picosecond laser processing device of PBO fiber reinforced composite material, which includes an ultraviolet picosecond laser 1, a first mirror 2, a polarizer 3, and a second mirror 4.
  • the leveling clamp 14 includes a bottom plate 14-1, a support block 14-2 with an inverted T-shaped longitudinal section mounted on the bottom plate, and a compression block 14-3 mounted on the support block.
  • the bottom plate is fixed Installed on the XY mobile platform 15.
  • the bottom plate 14-1 and the supporting block 14-2 are both L-shaped structures.
  • the bottom plate and the support block adjust the height of the support block through three rotatable studs 14-4 arranged at the two ends and right angles of the L-shaped structure.
  • the two ends and right angles of the contact surface between the bottom plate and the support block are respectively provided with three through holes A, B, and C.
  • the through holes are provided with grooves, and the through holes are respectively provided with tension springs and two The end is clamped in the groove to realize an elastic connection between the bottom plate and the supporting block, and the bottom plate and the supporting block are closely attached by the restoring force of the tension spring, and there is no gap between the bottom plate and the supporting block at this time. Rotate the stud into the threaded hole until the head of the stud bears against the bottom plate.
  • the bottom plate and the support block When the screw is rotated again, the bottom plate and the support block will be separated and a gap will be generated. Adjust the height of the support block by adjusting the size of the gap.
  • the structure of the extension spring is a conventional design, and will not be described in detail in this embodiment.
  • the compression block 14-3 is installed and locked to the right-angle position of the L-shaped structure of the support block 14-2 by screws, and the longitudinal section of the compression block is also an L-shaped structure.
  • the Z-axis movement system includes a vertical linear motor module 17 and a beam 16 that can be moved up and down driven by the linear motor module.
  • the fourth mirror, beam combiner, aperture diaphragm and scanning galvanometer module are moved from the left. They are sequentially arranged on the beam to the right, the beam combiner is placed behind the fourth mirror at an upward angle of 45°, and the CCD lens is placed directly above the beam combiner.
  • the flat-top beam shaper is arranged at the output end of the beam expander, and the laser beam is shaped into a flat-top beam by the flat-top beam shaper, and then enters the Z-axis moving system through the third and fourth mirrors;
  • the third mirror, the fourth mirror and the plane are all set at 45°.
  • the X-Y mobile platform is a breadboard fixed on two sets of servo motor modules that can move in the X direction and the Y direction.
  • the entire laser processing device combines the scanning galvanometer module with the X-Y mobile platform, which can break through the limit of the scanning galvanometer size, realize segmentation processing, and increase the processing size of the material.
  • the application of the scanning galvanometer can also realize ultra-fast laser scanning speed and complex scanning path, which greatly improves the laser processing speed while improving the flexibility of laser processing.
  • the laser pulse energy distribution is more uniform, and the energy distribution on the falling edge of the pulse is less, which can significantly improve the material quality of the cutting edge.
  • the combination of the flat-top laser and the Z-axis system makes the flat-top beam good cutting quality can penetrate the entire material thickness direction, which not only makes the laser energy utilization rate higher, and the processing speed increases, but also reduces the heat caused by the scattering loss of the pulse energy. Expansion improves the quality of laser processing.
  • the PBO fiber reinforced composite material 13 is placed on the X-Y mobile platform 15 with an adjustable leveling fixture 14 which is manually adjusted by 3 knobs.
  • Fix a point on one corner of the material use the CCD to focus the laser focus on the upper surface of the material, change the observation point at another corner, turn the screw top post to adjust the gap size in three directions to focus the laser on the second point, in turn Determine the four vertices so that the upper surface of the material is level with the laser focal plane.
  • the material to be processed is naturally suspended underneath. When the material is completely penetrated, it can be quickly dropped or separated from the laser focus in time to avoid material damage caused by over-processing.
  • the UV picosecond laser processing process of the PBO fiber reinforced composite material in this embodiment is: fix the PBO fiber reinforced composite material 13 on the XY moving platform 15 with an adjustable leveling clamp 14, and first use the low power mode of the CCD lens 10 to coarsely adjust The laser is focused near the upper surface of the PBO fiber-reinforced composite material 13, and then a high-power mode is used to accurately focus the laser focus on the upper surface of the material.
  • the 4 edge vertices of the material to be processed are selected, and the laser focus plane is as close as possible to the upper surface of the material by adjusting the 3 adjustment knobs of the clamp 14.
  • the computer system externally triggers the ultraviolet picosecond laser 1 to emit the laser.
  • the laser beam enters the polarizer 3 through the first reflector 2.
  • the polarization direction of the laser can be changed according to the processing form.
  • the focal point After the laser is focused, the focal point has a very high power density, which reacts with the epoxy resin matrix and the PBO fiber in the PBO fiber reinforced composite material 13 respectively.
  • the picosecond laser has a picosecond pulse width. This time interval is much shorter than the time for electrons to transfer heat to the crystal lattice. When the heat is transferred to the crystal lattice, the laser action has ended, which can minimize heat accumulation. And thermal ablation to achieve "cold working".
  • Ultraviolet laser has high single-photon energy, which can directly break the C-C single bond in the resin matrix and PBO fiber to achieve photochemical removal, thereby reducing the thermal damage of laser processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种紫外皮秒激光加工装置,包括紫外皮秒激光器(1)、可调平夹具(14)、X-Y移动平台(15)以及依次布置在紫外皮秒激光器的输出光路上的第一反射镜(2)、偏振器(3)、第二反射镜(4)、扩束镜(5)、平顶光束整形器(6)、第三反射镜(7)、第四反射镜(8)、合束镜(9)、CCD镜头(10)、孔径光阑(11)和扫描振镜模组(12);可调平夹具(14)包括底板(14-1)、安装于底板上的纵截面为倒T形的支撑块(14-2)以及安装于支撑块上的压紧块(14-3),底板固定安装于X-Y移动平台上。通过将扫描振镜模组和X-Y移动平台相结合,突破了扫描振镜幅面限制,实现分割加工,拓展了材料的加工尺寸。扫描振镜的应用还可以实现超快的激光扫描速度和复杂的扫描路径,大大提高激光加工速度和加工柔性。

Description

一种紫外皮秒激光加工装置 技术领域
本实用新型涉及一种紫外皮秒激光加工装置,属于激光精密加工制造技术领域。
背景技术
PBO纤维是一种具有高强度、高模量、低密度、优异的热稳定性和化学稳定性的合成纤维,被誉为“21世纪超级纤维”,以其作为纤维增强相的树脂基复合材料,由于其轻质高强的力学性能,抗弹防护特性好,能在高温下稳定工作等特点,在航空航天、武器装备和其它尖端科技领域取得了广泛应用。目前其加工方式仍然以传统的机械加工和直接纺织成型为主,难以满足越来越高的装配精度要求,在机械加工过程中还会出现刀具磨损、纤维损伤、基体结构应力破坏以及加工柔性差等问题,激光加工有望克服以上问题。激光加工是利用聚焦的高能量密度激光束照射材料,使其迅速熔化、汽化或化学降解,从而实现材料分离,达到加工目的。
紫外皮秒激光器凭借其高精度和最小热影响区的优点而获得更多的关注。因为它们基本都是光化学烧蚀,而且还可以通过衍射聚焦到最小的光斑尺寸。而红外皮秒激光器通常会提供更大的输出功率,从而带来更高的处理速度,两者相互补充,为不同加工对象的需求提供了更灵活的选择。与传统机械加工相比,采用激光加工PBO纤维增强复合材料优势明显:无应力加工,对材料结构破坏小,残余应力小;没有刀具磨损,加工成本低廉;激光聚焦光斑可达微米级别,加工精细程度大幅提高;加工柔性好,可通过扫描振镜控制激光束加工任意形状。根据实际需要,用激光加工PBO纤维增强复合材料是一种有益的尝试。但是,目前的紫外皮秒加工技术还不是很成熟,有待进一步的改进提高。
实用新型内容
实用新型目的:针对现有技术中存在的问题与不足,本实用新型提供提供一种紫外皮秒激光加工装置,旨在高质量地加工PBO纤维增强复合材料,降低激光加工产生的热损伤过大等问题,提高PBO纤维增强复合材料的加工效率和加工柔性。
技术方案:一种紫外皮秒激光加工装置,包括紫外皮秒激光器,其特征在于:还包括可调平夹具、X-Y移动平台以及依次布置在所述紫外皮秒激光器的输出光路上的第一反射镜、偏振器、第二反射镜、扩束镜、平顶光束整形器、第三反射镜、第四反射镜、合束镜、CCD镜头、孔径光阑和扫描振镜模组;所述可调平夹具包括底板、安装于底板上的纵截面为倒T形的支撑块以及安装于所述支撑 块上的压紧块,所述底板固定安装于X-Y移动平台上。
本实用新型进一步限定的技术方案为:所述底板和支撑块均为L形结构,所述底板和支撑块的两端和直角处设有螺纹孔,螺纹孔内旋接有螺柱。
作为优选,在所述底板和支撑块接触面的两侧和直角处分别开设有通孔,所述通孔内分别设有凹槽,所述通孔内设有拉伸弹簧,所述拉伸弹簧的两端分别卡在所述凹槽内。
作为优选,所述压紧块通过紧固件安装于所述支撑块的L形结构直角位置,且其纵截面为L形结构。
作为优选,还包括Z轴移动***,所述Z轴移动***包括立式直线电机模组和由直线电机模组驱动可上下移动的横梁,所述第四反射镜、合束镜、孔径光阑和扫描振镜模组从左至右依次安置于所述横梁上,所述合束镜向上呈45°置于第四反射镜之后,所述CCD镜头安置在合束镜正上方。
作为优选,所述平顶光束整形器设置于所述扩束镜的输出端,激光束经所述平顶光束整形器被整形成平顶光束后经过第三反射镜、第四反射镜进入Z轴移动***;所述第三反射镜、第四反射镜与平面均呈45°设置。
作为优选,所述X-Y移动平台为一块固定在可沿X方向和Y方向移动的两组伺服电机模组上的面包板。
有益效果:与现有技术相比,本实用新型具有以下优点:
1)将扫描振镜模组和X-Y移动平台相结合,突破了扫描振镜幅面限制,实现分割加工,拓展了材料的加工尺寸。扫描振镜的应用还可以实现超快的激光扫描速度和复杂的扫描路径,大大提高激光加工速度和加工柔性。
2)PBO纤维增强复合材料具有各向异性特征,激光扫描方向与复合材料中的纤维排布方向不同时,加工质量和加工效果都有显著不同,利用扫描振镜实现多道填充快速扫描,在不同扫描时刻设置不同的激光参数和扫描策略有利于保持PBO纤维增强复合材料的整体质量统一和加工速度均衡。
3)在装置中加入平顶光束整形器,将高斯光束整形成平顶光束,使脉冲能量分布更均匀,显著降低由于高斯脉冲大于材料损伤阈值的多余能量和高斯脉冲的下降沿的过剩能量对材料造成的热损伤。它与Z轴***的结合,使得激光焦平面可以随待加工表面的下移而下移,贯穿整个材料厚度,降低材料加工锥角,提高了加工质量和加工效率。
4)可调平夹具设计的三个调节旋钮,可以根据PBO纤维增强材料表面特征调整激光焦平面与材料待加工表面保持尽可能地重合,提高激光利用率,改善激光加工质量。可调平夹具下方悬空,可以使材料被完全穿透时快速掉下或者与激 光焦点及时分离,避免过加工引起的材料损伤。
附图说明
图1是本实用新型实施例中加工装置结构示意图。
图2是本实用新型实施例中Z轴***结构示意图。
图3是本实用新型实施例中可调平夹具的结构示意图。
图4为本实用新型实施例中底板和支撑块的接触面通孔示意图。
图5是本实用新型实施例中可调平夹具夹持待加工材料示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本实用新型。
如图1-5所示,本实施例提供一种PBO纤维增强复合材料的紫外皮秒激光加工装置,包括紫外皮秒激光器1、第一反射镜2、偏振器3、第二反射镜4、扩束镜5、平顶光束整形器6、第三反射镜7、第四反射镜8、合束镜9、CCD镜头10、孔径光阑11、扫描振镜模组12(包栝扫描振镜和平场透镜)、可调平夹具14和X-Y移动平台15。
所述可调平夹具14包括底板14-1、安装于底板上的纵截面为倒T形的支撑块14-2以及安装于所述支撑块上的压紧块14-3,所述底板固定安装于X-Y移动平台15上。底板14-1和支撑块14-2均为L形结构。
所述底板和支撑块通过设置在L形结构的两端和直角处的三个可旋动的螺柱14-4调节支撑块高度。作为优选,底板和支撑块接触面的两端和直角处分别设有A、B、C三个通孔,通孔设有凹槽,通孔内分别设置有拉伸弹簧,拉伸弹簧的两端卡在凹槽内从而对底板和支撑块实现弹性连接,借助拉伸弹簧的回复力使底板和支撑块紧密贴合,此时底板和支撑块之间没有缝隙。将螺柱旋转进螺纹孔至螺柱的头部顶住底板,再次旋转螺钉时就会将底板和支撑块分离并产生间隙,通过调整间隙的大小来调节支撑块升起的高度。拉伸弹簧的结构设置属于常规设计,在此实施例中就不做赘述。
所述压紧块14-3通过螺钉安装锁紧于所述支撑块14-2的L形结构直角位置,压紧块的纵截面也为L形结构。
所述Z轴移动***包括立式直线电机模组17和由直线电机模组驱动可上下移动的横梁16,所述第四反射镜、合束镜、孔径光阑和扫描振镜模组从左至右依次安置于所述横梁上,所述合束镜向上呈45°置于第四反射镜之后,所述CCD镜头安置在合束镜正上方。
所述平顶光束整形器设置于所述扩束镜的输出端,激光束经平顶光束整形器 被整形成平顶光束后经过第三反射镜、第四反射镜进入Z轴移动***;所述第三反射镜、第四反射镜与平面均呈45°设置。
所述X-Y移动平台为一块固定在可沿X方向和Y方向移动的两组伺服电机模组上的面包板。
整套激光加工装置将扫描振镜模组和X-Y移动平台结合在一起,可以突破扫描振镜幅面限制,实现分割加工,增大了材料的可加工尺寸。另外,扫描振镜的应用还可以实现超快的激光扫描速度和复杂的扫描路径,在大大提高激光加工速度的同时提高激光加工柔性。
高斯光束经过光束整形器整形成平顶光束后,激光脉冲能量分布更均匀,脉冲下降沿的能量分布更少,可以明显改善切割边缘的材料质量。平顶激光与Z轴***的组合,使得平顶光束良好的切割质量可以贯穿整个材料厚度方向,不仅使激光能量利用率更高,加工速度得以提升,还减少了脉冲能量的散射损耗引起的热扩张,改善了激光加工质量。
PBO纤维增强复合材料13用可调平夹具14安置在X-Y移动平台15上,可调平夹具通过3个旋钮手动调节,
将待加工材料平放在倒T支撑块的内沿上,用压紧块压紧材料,再用螺钉将压紧块和支撑块锁紧,达到使材料固定在可调平夹具上的目的。在材料的一角上固定一点,通过CCD使激光焦点聚焦在材料的上表面,换另一个角的观察点,旋动螺钉顶柱调节三个方向的空隙大小使激光聚焦在第二个点,依次确定四个顶点,使材料上表面与激光焦平面水平。待加工材料下方自然悬空。可以使材料被完全穿透时快速掉下或者与激光焦点及时分离,避免过加工引起的材料损伤。
本实施例中PBO纤维增强复合材料的紫外皮秒激光加工工艺为:用可调平夹具14将PBO纤维增强复合材料13固定在X-Y移动平台15上,先用CCD镜头10的低倍模式粗调激光聚焦在PBO纤维增强复合材料13的上表面附近,然后使用高倍模式使激光焦点精确聚焦在材料上表面。按照此方法选取材料待加工区域的4个边缘顶点,通过调节夹具14的3个调节旋钮使激光聚焦平面与材料上表面尽可能重合。
通过计算机软件设置激光脉冲重复频率为、平均功率、扫描速度、扫描路径、扫描次数及Z轴***的位移参数等,开启并调试好平顶激光整形器6。计算机***外部触发紫外皮秒激光器1使激光出射,激光束经第一反射镜2入射至偏振器3,可根据加工形式改变激光偏振方向,激光从偏振器3出射后被第二反射镜4反射进入扩束镜5进行扩束准直,增大激光束直径,降低光束发散角,扩束后的激光进入平顶光束整形器6,将高斯光束整形成平顶光束,再经过一对平行放置 的45°反射镜后进入孔径光阑11滤除杂散光。接着,激光束进入扫描振镜模组12完成激光的路径折射和聚焦,高能量密度的激光焦点在PBO纤维增强复合材料上表面完成计算机软件指定的扫描动作实现激光加工。当第一层表面加工完成后,激光器停止出光,Z轴***整体向下进给指定距离,此时激光器再次出射激光,重复上述动作。
激光聚焦后焦点处具有非常高的功率密度,分别与PBO纤维增强复合材料13中的环氧树脂基体和PBO纤维发生反应,当激光功率密度达到材料损伤阈值时,材料开始熔化、汽化或化学分解而被去除。皮秒激光由于其具有皮秒级的脉冲宽度,这个时间间隔比电子将热量传递到晶格的时间短得多,当热量被传递到晶格时激光作用已经结束,可以最大限度地减少热累积和热烧蚀,实现“冷加工”。紫外激光具有较高的单光子能量,可以直接打断树脂基体和PBO纤维中的C-C单键实现光化学去除,从而减少了激光加工热损伤。
以上所述仅是本实用新型的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本实用新型原理的前提下,还可以作出若干改进,这些改进也应视为本实用新型的保护范围。

Claims (7)

  1. 一种紫外皮秒激光加工装置,包括紫外皮秒激光器(1),其特征在于:还包括可调平夹具(14)、X-Y移动平台(15)以及依次布置在所述紫外皮秒激光器的输出光路上的第一反射镜(2)、偏振器(3)、第二反射镜(4)、扩束镜(5)、平顶光束整形器(6)、第三反射镜(7)、第四反射镜(8)、合束镜(9)、CCD镜头(10)、孔径光阑(11)和扫描振镜模组(12);所述可调平夹具(14)包括底板(14-1)、安装于底板上的纵截面为倒T形的支撑块(14-2)以及安装于所述支撑块上的压紧块(14-3),所述底板固定安装于X-Y移动平台上。
  2. 根据权利要求1所述的紫外皮秒激光加工装置,其特征在于:所述底板(14-1)和支撑块(14-2)均为L形结构,所述底板和支撑块的两端和直角处设有螺纹孔,螺纹孔内旋接有螺柱。
  3. 根据权利要求2所述的紫外皮秒激光加工装置,其特征在于:在所述底板和支撑块接触面的两侧和直角处分别开设有通孔,所述通孔内分别设有凹槽,所述通孔内设有拉伸弹簧,所述拉伸弹簧的两端分别卡在所述凹槽内。
  4. 根据权利要求3所述的紫外皮秒激光加工装置,其特征在于:所述压紧块(14-3)通过紧固件安装于所述支撑块(14-2)的L形结构直角位置,且其纵截面为L形结构。
  5. 根据权利要求4所述的紫外皮秒激光加工装置,其特征在于:还包括Z轴移动***,所述Z轴移动***包括立式直线电机模组(17)和由直线电机模组驱动可上下移动的横梁(16),所述第四反射镜、合束镜、孔径光阑和扫描振镜模组从左至右依次安置于所述横梁上,所述合束镜向上呈45°置于第四反射镜之后,所述CCD镜头安置在合束镜正上方。
  6. 根据权利要求5所述的紫外皮秒激光加工装置,其特征在于:所述平顶光束整形器设置于所述扩束镜的输出端,激光束经所述平顶光束整形器被整形成平顶光束后经过第三反射镜、第四反射镜进入Z轴移动***;所述第三反射镜、第四反射镜与平面均呈45°设置。
  7. 根据权利要求6所述的紫外皮秒激光加工装置,其特征在于:所述X-Y移动平台为一块固定在可沿X方向和Y方向移动的两组伺服电机模组上的面包板。
PCT/CN2020/094578 2020-03-23 2020-06-05 一种紫外皮秒激光加工装置 WO2021189664A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020372555.X 2020-03-23
CN202020372555.XU CN211991452U (zh) 2020-03-23 2020-03-23 一种紫外皮秒激光加工装置

Publications (1)

Publication Number Publication Date
WO2021189664A1 true WO2021189664A1 (zh) 2021-09-30

Family

ID=73431422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094578 WO2021189664A1 (zh) 2020-03-23 2020-06-05 一种紫外皮秒激光加工装置

Country Status (2)

Country Link
CN (1) CN211991452U (zh)
WO (1) WO2021189664A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828928A (zh) * 2021-10-13 2021-12-24 浙江师范大学 一种多台并行光伏增效微纳结构加工装置及方法
CN114453740A (zh) * 2022-02-25 2022-05-10 中国人民解放军国防科技大学 一种基于激光熔接的石英谐振子的装配装置及方法
CN114769840A (zh) * 2022-03-23 2022-07-22 重庆大学 一种双激光砂带协同加工设备
CN116460422A (zh) * 2023-04-07 2023-07-21 珠海市申科谱工业科技有限公司 一种mems芯片悬臂激光切割工艺
CN117381212A (zh) * 2023-11-23 2024-01-12 江阴创可激光技术有限公司 一种双激光器出光的激光加工装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112756938B (zh) * 2021-01-20 2022-05-06 深圳市鑫镭创科自动化科技有限公司 基于手机软件控制的双光束激光拆屏方法及装置
CN113732513B (zh) * 2021-09-26 2023-03-14 中国人民解放军陆军装甲兵学院 一种树脂基复合材料表面激光预处理的方法及装置
CN114012268B (zh) * 2021-10-13 2023-06-16 浙江师范大学 一种光伏增效微结构紫外激光加工装置及方法
CN115395347A (zh) * 2022-05-23 2022-11-25 深圳市海目星激光智能装备股份有限公司 激光光束的处理方法、激光掺杂方法以及激光掺杂设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828788A (en) * 1972-08-31 1974-08-13 M Krasnov Laser opthalmoscope
DD223096A1 (de) * 1983-12-29 1985-06-05 Tur H Matern Dresden Betr Ultr Verfahren und vorrichtung zum laserschweissen von implantierbaren titankapseln
CN2470043Y (zh) * 2001-04-09 2002-01-09 南京富瑞德无机材料总公司铂制品分公司 通用型铂金漏板嘴板激光自动焊夹具
CN102266942A (zh) * 2011-07-15 2011-12-07 华中科技大学 直接制造大型零部件的选区激光熔化快速成型设备
CN104308497A (zh) * 2014-09-28 2015-01-28 成都市翻鑫家科技有限公司 一种夹具快速调平的定位压装机
CN109175728A (zh) * 2018-09-30 2019-01-11 大族激光科技产业集团股份有限公司 一种用于激光切割低温共烧陶瓷的装置及方法
CN109746580A (zh) * 2019-03-04 2019-05-14 四川舸越科技有限责任公司 一种橡胶膜片的精密切割方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3828788A (en) * 1972-08-31 1974-08-13 M Krasnov Laser opthalmoscope
DD223096A1 (de) * 1983-12-29 1985-06-05 Tur H Matern Dresden Betr Ultr Verfahren und vorrichtung zum laserschweissen von implantierbaren titankapseln
CN2470043Y (zh) * 2001-04-09 2002-01-09 南京富瑞德无机材料总公司铂制品分公司 通用型铂金漏板嘴板激光自动焊夹具
CN102266942A (zh) * 2011-07-15 2011-12-07 华中科技大学 直接制造大型零部件的选区激光熔化快速成型设备
CN104308497A (zh) * 2014-09-28 2015-01-28 成都市翻鑫家科技有限公司 一种夹具快速调平的定位压装机
CN109175728A (zh) * 2018-09-30 2019-01-11 大族激光科技产业集团股份有限公司 一种用于激光切割低温共烧陶瓷的装置及方法
CN109746580A (zh) * 2019-03-04 2019-05-14 四川舸越科技有限责任公司 一种橡胶膜片的精密切割方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113828928A (zh) * 2021-10-13 2021-12-24 浙江师范大学 一种多台并行光伏增效微纳结构加工装置及方法
CN114453740A (zh) * 2022-02-25 2022-05-10 中国人民解放军国防科技大学 一种基于激光熔接的石英谐振子的装配装置及方法
CN114453740B (zh) * 2022-02-25 2023-10-17 中国人民解放军国防科技大学 一种基于激光熔接的石英谐振子的装配装置及方法
CN114769840A (zh) * 2022-03-23 2022-07-22 重庆大学 一种双激光砂带协同加工设备
CN116460422A (zh) * 2023-04-07 2023-07-21 珠海市申科谱工业科技有限公司 一种mems芯片悬臂激光切割工艺
CN117381212A (zh) * 2023-11-23 2024-01-12 江阴创可激光技术有限公司 一种双激光器出光的激光加工装置
CN117381212B (zh) * 2023-11-23 2024-05-10 江阴创可激光技术有限公司 一种双激光器出光的激光加工装置

Also Published As

Publication number Publication date
CN211991452U (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2021189664A1 (zh) 一种紫外皮秒激光加工装置
WO2020211750A1 (zh) 一种基于空间光束整形的飞秒激光加工阵列微孔的***
CN111347571A (zh) 用于光学硬脆材料的激光辅助低损伤切削加工***及方法
CN103658993B (zh) 基于电子动态调控的晶硅表面飞秒激光选择性烧蚀方法
CN111069770A (zh) 一种光路分光单元及其同轴送丝熔覆头
CN1665637A (zh) 具有两个旋转三棱镜的光束成型单元和具有一个这种光束成型单元并用于引入光线能量到一个由弱吸收材料构成的工件中的装置
CN109570781A (zh) 一种微孔阵列加工装置及方法
CN111716004B (zh) 陶瓷基复合材料的飞秒-纳秒超脉冲激光平整加工***
CN108890138A (zh) 一种用于陶瓷基复合材料的超快激光抛光加工方法
CN105033250B (zh) 一种同轴双光束激光预热成形缓冷应力缓释装置及方法
CN110681992A (zh) 一种可调变的宽带激光加工光学***及加工方法
CN210967462U (zh) 一种可调变的宽带激光加工光学***
CN104690432A (zh) 一种精密激光切割及微孔加工装置
CN107065215B (zh) 可扩展阵列光纤输出激光器
CN112643100A (zh) 适用于难加工材料的匀场激光辅助铣削加工装置和方法
CN110658631B (zh) 一种基于各向异性双光子吸收效应的光束整形装置
CN111098043A (zh) 水导激光加工装置和加工***
US20230364705A1 (en) Device and method for separating a material
CN112846538A (zh) 一种太阳能电池片低损切割装置及方法
CN111331263A (zh) 一种皮秒激光精确制备涡轮叶片冷却孔的装置及方法
CN112846536A (zh) 一种太阳能电池片激光低损切割装置及方法
CN116571872A (zh) 一种“五+n”维激光扫描加工***及方法
CN109604837A (zh) 一种无锥度激光加工方法及加工装置
CN103848392A (zh) 一种微结构周期可控的大面积黑硅的制造方法
CN115365639A (zh) 一种基于超声振动辅助飞秒激光加工C/SiC复合材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20927646

Country of ref document: EP

Kind code of ref document: A1