WO2021189644A1 - 定焦镜头 - Google Patents

定焦镜头 Download PDF

Info

Publication number
WO2021189644A1
WO2021189644A1 PCT/CN2020/093688 CN2020093688W WO2021189644A1 WO 2021189644 A1 WO2021189644 A1 WO 2021189644A1 CN 2020093688 W CN2020093688 W CN 2020093688W WO 2021189644 A1 WO2021189644 A1 WO 2021189644A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
fixed
focal length
convex
fixed focus
Prior art date
Application number
PCT/CN2020/093688
Other languages
English (en)
French (fr)
Inventor
王丹艺
张磊
米士隆
何剑炜
Original Assignee
东莞市宇瞳光学科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市宇瞳光学科技股份有限公司 filed Critical 东莞市宇瞳光学科技股份有限公司
Publication of WO2021189644A1 publication Critical patent/WO2021189644A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • This application relates to lens technology, for example, to a fixed focus lens.
  • This application provides a fixed-focus lens, which has a simple structure and can reduce the cost of the lens while ensuring the imaging quality of the lens, ensuring that the lens is used in an environment of -40-80°C with a resolution to meet the imaging requirements, and ensuring that the lens is in a night environment Under the imaging capability, the consistency of image quality under different conditions can be achieved.
  • the embodiment of the present application provides a fixed focus lens, including a first lens, a second lens, a third lens, and a fourth lens that are sequentially arranged along the direction of the object surface pointing to the image surface;
  • the first lens is a convex-concave negative power lens
  • the second lens is a double-convex positive power lens
  • the third lens is a double-convex positive power lens
  • the fourth lens is a concave-convex negative lens.
  • the first lens, the third lens and the fourth lens are all plastic aspheric lenses
  • the second lens is a glass spherical lens.
  • both surfaces of the plastic aspheric lens are aspherical.
  • the focal length of the first lens is f1
  • the focal length of the second lens is f2
  • the focal length of the third lens is f3
  • the focal length of the fourth lens is f4
  • the first lens and The combined focal length of the second lens is f12
  • the combined focal length of the third lens and the fourth lens is f34;
  • the focal length of the optical system of the fixed focus lens is f;
  • the refractive index of the second lens is Nd2, the Abbe number of the second lens is Vd2, the refractive index of the third lens is Nd3, and the Abbe number of the third lens is Vd3,
  • the refractive index of the fourth lens is Nd4, and the Abbe number of the fourth lens is Vd4;
  • the total system length of the fixed focus lens is TTL, and the focal length of the optical system of the fixed focus lens is f; 4.2 ⁇ TTL/f ⁇ 6.5.
  • it further includes a diaphragm, and the diaphragm is located between the first lens and the second lens.
  • it further includes a flat-plate filter, and the flat-plate filter is located on a side of the fourth lens away from the third lens.
  • FIG. 1 is a schematic structural diagram of a fixed-focus lens provided by an embodiment of the application
  • Fig. 2 is a schematic diagram of spherical aberration of the fixed focus lens shown in Fig. 1;
  • Fig. 3 is a schematic diagram of field curvature of the fixed focus lens shown in Fig. 1;
  • FIG. 4 is a schematic diagram of distortion of the fixed focus lens shown in FIG. 1;
  • FIG. 5 is a schematic structural diagram of another fixed-focus lens provided by an embodiment of the application.
  • Fig. 6 is a schematic diagram of spherical aberration of the fixed focus lens shown in Fig. 5;
  • FIG. 7 is a schematic diagram of field curvature of the fixed focus lens shown in FIG. 5;
  • FIG. 8 is a schematic diagram of distortion of the fixed focus lens shown in FIG. 5.
  • FIG. 1 is a schematic structural diagram of a fixed-focus lens provided by an embodiment of the application.
  • the fixed-focus lens includes a first lens 1, a second lens 2, and a third lens arranged in order along the object plane OB pointing to the image plane IM.
  • the first lens 1 is a convex-concave negative power lens
  • the second lens 2 is a double-convex positive power lens
  • the third lens 3 is a double-convex positive power lens
  • the fourth lens 4 is a concave-convex negative power lens.
  • the first lens 1 has negative refractive power
  • the second lens 2 has positive refractive power
  • the third lens 3 has positive refractive power
  • the fourth lens 4 has negative refractive power.
  • the first lens 1 is a convex-concave lens
  • the front surface of the first lens 1 is convex toward the object plane OB
  • the rear surface of the first lens 1 is convex toward the object plane OB.
  • the second lens 2 is a biconvex lens
  • the front surface of the second lens 2 is convex toward the object plane OB
  • the rear surface of the second lens 2 is convex toward the image plane IM.
  • the third lens 3 is a biconvex lens, the front surface of the third lens 3 is convex toward the object plane OB, and the rear surface of the third lens 3 is convex toward the image plane IM.
  • the fourth lens 4 is a meniscus lens, the front surface of the fourth lens 4 is convex toward the image surface IM, and the rear surface of the fourth lens 4 is convex toward the image surface IM.
  • the first lens 1, the third lens 3, and the fourth lens 4 are all plastic aspheric lenses, and the plastic aspheric lens refers to an aspheric lens made of plastic materials.
  • the second lens 2 is a glass spherical lens, which refers to a spherical lens made of glass material.
  • the fixed focus lens provided by the embodiment of the application adopts four lenses, a glass spherical lens and three plastic aspheric lenses form a mixed optical structure.
  • the plastic aspheric lens has lower cost and more Small weight.
  • the glass spherical lens has a small deformation at different temperatures.
  • a glass spherical lens and three plastic aspherical lenses form a mixed optical structure, which ensures the normal operation of the fixed-focus lens in a large temperature range (for example, -40°C-+80°C).
  • the first lens 1 is a convex-concave negative-power lens, which plays a role in collecting light for a large field of view optical system;
  • the second lens 2 is a double-convex positive-power lens, which is used to bear the larger power of the system At the same time, it plays the role of correcting field curvature;
  • the third lens 3 adopts a double convex positive power lens to change the propagation direction of the optical path, effectively reducing the chief ray angle (CRA) of the system;
  • the fourth lens 4 The concave-convex negative power lens is mainly used to correct the residual aberrations after the light passes through the first three lenses.
  • the third lens 3 and the fourth lens 4 adopt a combination of positive and negative refractive powers to effectively compensate the system's off-axis aberration while correcting the system's spherical aberration.
  • the F number of the optical system of the fixed-focus lens provided by the embodiment of the application is less than 2.4, and the image surface of 1/2.7" supports a field of view angle of 80°-120°, for example, a field of view angle of 112°.
  • F The number is also called the aperture number, and the F number is the reciprocal of the relative aperture.
  • both surfaces of the plastic aspheric lens are aspheric surfaces. That is, the front and rear surfaces of the first lens 1, the third lens 3, and the fourth lens 4 are all aspherical.
  • the focal length of the first lens 1 is f1
  • the focal length of the second lens 2 is f2
  • the focal length of the third lens 3 is f3
  • the focal length of the fourth lens 4 is f4
  • the combined focal length of the second lens 2 is f12
  • the combined focal length of the third lens 3 and the fourth lens 4 is f34.
  • the focal length of the optical system of the fixed-focus lens is f. 4.5 ⁇ f12/f ⁇ 6.8, 1.8 ⁇ f34/f ⁇ 3.5.
  • the focal length of the lens is determined by the structure of the front and rear surfaces of the lens.
  • the focal length of the lens reflects the overall situation of the combination of the front and rear surfaces of the lens, and is a structural parameter of the lens.
  • the refractive index of the second lens 2 is Nd2, the Abbe number of the second lens 2 is Vd2, the refractive index of the third lens 3 is Nd3, and the Abbe number of the third lens 3 is Vd3,
  • the refractive index of the fourth lens 4 is Nd4, and the Abbe number of the fourth lens 4 is Vd4.
  • the absolute value of the refractive index difference between the third lens 3 and the fourth lens 4 is greater than 0.06 and less than 1.5, and the absolute value of the Abbe number difference between the third lens 3 and the fourth lens 4 is greater than 20 and less than 30, in order to correct the The system chromatic aberration of the focal lens.
  • the total system length of the fixed-focus lens is TTL
  • the focal length of the optical system of the fixed-focus lens is f, 4.2 ⁇ TTL/f ⁇ 6.5. That is, the ratio of the total system length of the fixed focus lens to the system focal length is greater than 4.2 and less than 6.5.
  • the miniaturization of the fixed focus lens is ensured by setting 4.2 ⁇ TTL/f ⁇ 6.5.
  • the fixed focus lens further includes an aperture 5, and the aperture 5 is located between the first lens 1 and the second lens 2.
  • the diaphragm 5 refers to an entity that restricts the light beam in the optical system.
  • the diaphragm 5 may be a perforated screen, for example. In other embodiments, the diaphragm 5 may also be located at other positions, and the embodiment of the present application does not limit the position of the diaphragm 5.
  • the fixed focus lens further includes a flat filter 6, and the flat filter 6 is located on the side of the fourth lens 4 away from the third lens 3.
  • the flat filter 6 includes a first filter and a second filter, and the first filter and the second filter can be switched by a specific mechanical structure.
  • the first filter filters out infrared light and passes visible light to achieve daytime picture shooting; at night, the second filter passes visible light and infrared light to achieve nighttime picture shooting.
  • the aperture F 2.3, that is, the F number is 2.3.
  • Table 1 A design value of fixed focus lens
  • Table 1 shows a design value of the fixed-focus lens, and the specific value can be adjusted according to product requirements, and is not a limitation of the embodiment of the present application.
  • the fixed focus lens shown in Table 1 may be as shown in FIG. 1.
  • a lens generally includes two surfaces, and each surface is a refractive surface.
  • the surface numbers in Table 1 are numbered according to the surface of each lens. Wherein, the surface number "S1" represents the front surface of the first lens 1, and the surface number "S2" represents the back surface of the first lens 1, and so on, and will not be repeated here.
  • the "diaphragm” in the "surface number” column indicates the plane where the diaphragm is located.
  • "PL" in the "surface type” column stands for plane.
  • the radius of curvature represents the degree of curvature of the lens surface.
  • a positive value of radius of curvature indicates that the center of curvature is on the side of the surface close to the image plane IM, and a negative value of radius of curvature indicates that the center of curvature is on the side of the surface away from the image plane IM.
  • the value in the "Thickness” column indicates the axial distance from the current surface to the next surface.
  • the “refractive index” column indicates the refractive index of the medium between the current surface and the next surface.
  • the space in the "refractive index” column is the refractive index of air, and the refractive index of air is 1.
  • the Abbe number represents the dispersion characteristics of light from the current surface to the next surface, and the space represents air at the current position.
  • the "k value” column shows the numerical value of the conic coefficient of the aspheric surface.
  • the surface of the aspheric lens satisfies the formula:
  • z is the axial vector height in the Z direction of the surface
  • r is the height of the aspheric surface
  • c is the curvature of the fitted spherical surface
  • c is the reciprocal of the radius of curvature
  • k is the conic coefficient
  • A, B, C, D, E , F is aspherical coefficients, for example, A, B, C, D, E, F are the fourth, sixth, eighth, tenth, twelfth, and fourteenth order coefficients of the aspheric polynomial.
  • Table 2 A design value of the aspheric coefficient of the lens in the fixed focus lens
  • Table 2 is a design value of the aspheric coefficient of the lens in the fixed-focus lens. The specific value can be adjusted according to product requirements and is not a limitation of the embodiment of the present application.
  • the fixed focus lens shown in Table 2 may be as shown in FIG. 1.
  • the "surface number” column in Table 2 has the same meaning as the "surface number” in Table 1.
  • the surface number "S1" also represents the front surface of the first lens 1.
  • "E” in the embodiment of the present application represents an index based on 10, for example, the value of -6.15E-03 is -0.00615.
  • Fig. 2 is a schematic diagram of the spherical aberration of the fixed focus lens shown in Fig. 1.
  • the spherical aberration is caused by the difference in light wave convergence ability between the center area and the edge area of the lens. Therefore, the light wave scattered by the same object point does not cross at one point after passing through the lens, but becomes a diffuse round spot on the image plane of the lens. It can be seen from FIG. 2 that the spherical aberration of the fixed-focus lens provided by the embodiment of the present application is relatively small.
  • Fig. 3 is a schematic diagram of field curvature of the fixed focus lens shown in Fig. 1.
  • field curvature is also called "field curvature”.
  • T stands for Meridian Field Music
  • S stands for Sagittal Field Music.
  • the field curvature curve shows the current focal plane or the distance from the image plane to the paraxial focal plane as a function of the field of view coordinates.
  • the meridian field curvature data is the distance from the currently determined focal plane to the paraxial focal plane measured along the Z axis.
  • the sagittal field curvature data measures the distance measured on a plane perpendicular to the meridian plane.
  • the baseline in the schematic diagram is on the optical axis, and the top of the curve represents the maximum field of view (angle or height). No unit is set on the vertical axis. This is because the curve is always normalized with the largest radial field of view. It can be seen from FIG. 3 that the fixed-focus lens provided by the embodiment of the present application has a relatively small curvature of field.
  • Fig. 4 is a schematic diagram of the distortion of the fixed focus lens shown in Fig. 1.
  • the curves of multiple wavelengths (0.486mm, 0.588mm, 0.656mm, 0.436mm and 0.850mm) overlap in Fig. 4.
  • lens distortion is actually the general term for the inherent perspective distortion of optical lenses, that is, distortion caused by perspective. This distortion is very detrimental to the image quality of the photo.
  • the purpose of photography is to reproduce, not Exaggeration, but because this is the inherent characteristic of the lens (convex lens converges light, concave lens diverges light), it cannot be eliminated but can only be improved.
  • the distortion of the fixed-focus lens provided by the embodiment of this application is nearly 40%.
  • the distortion is set to balance the focal length, the field of view and the size of the corresponding camera target surface.
  • the distortion caused by the distortion can be processed by post-image processing. Correction.
  • the fixed focus lens provided by the embodiment of the application adopts four lenses, a glass spherical lens and three plastic aspheric lenses form a mixed optical structure.
  • the plastic aspheric lens has lower cost and more Small weight.
  • the glass spherical lens has a small deformation at different temperatures.
  • a glass spherical lens and three plastic aspherical lenses form a mixed optical structure, which ensures the normal operation of the fixed-focus lens in a large temperature range (for example, -40°C-+80°C).
  • the embodiment of the present application also provides a description of the function of the lens in the fixed-focus lens, and a description of the function of the focal length satisfying the relational expression.
  • the advantage of using a convex-concave lens for the first lens 1 over a bi-concave lens is that the convex-concave lens is more conducive to the expansion of the optical system's field of view, that is, to expand the field of view of the fixed-focus lens, thereby helping to expand the application range of the fixed-focus lens.
  • the advantage of selecting a biconvex lens for the second lens 2 compared to using a concave-convex lens is that the biconvex lens is more conducive to taking on a larger optical power of the system, and is more conducive to reducing the impact of high and low temperatures on image quality.
  • the focal length of the first lens 1 is f1
  • the focal length of the second lens 2 is f2
  • the combined focal length of the first lens 1 and the second lens 2 is f12, when 0.05 ⁇ f1/f12 ⁇ 0.45, more It is conducive to the convergence of light, and at the same time it is more conducive to control the size of the distortion of the fixed focus lens.
  • the focal length of the second lens 2 is the ratio between f2 and the combined focal length f12 of the first lens 1 and the second lens 2, which controls the focal length of the second lens 2.
  • 0.12 ⁇ f2/f12 ⁇ 0.56 the first lens is increased.
  • the optical power of the two lenses 2 in the fixed focus lens also contributes to the correction of the spherical aberration of the fixed focus lens.
  • the focal length of the third lens 3 is f3, the focal length of the fourth lens 4 is f4, and the combined focal length of the third lens 3 and the fourth lens 4 is f34, 0.09 ⁇ f3/f34 ⁇ 0.51, which is more conducive to fixed focus correction
  • the spherical aberration, curvature of field and astigmatism of the lens improve the imaging quality of the fixed-focus lens.
  • 0.25 ⁇ f4/f34 ⁇ 0.75 it is more conducive to the correction of the axial aberration of the fixed-focus lens, while compensating the distortion data, and controlling the size of the imaging target surface.
  • the fourth lens 4 and the third lens 3 cooperate to correct the fixed-focus lens System color difference.
  • the focal length of the optical system of the fixed-focus lens is f, which satisfies: 4.5 ⁇ f12/f ⁇ 6.8; 1.8 ⁇ f34/f ⁇ 3.5. Since the first lens 1, the second lens 2, the third lens 3, and the fourth lens 4 are physically symmetrical about the central axis of the fixed focus lens, they satisfy 4.5 ⁇ f12/f ⁇ 6.8 and 1.8 ⁇ f34/f ⁇ When it is less than 3.5, it is more conducive to the correction of the vertical axis aberration of the fixed focus lens, where the vertical axis aberration includes the coma, curvature of field and astigmatism in the vertical direction.
  • FIG. 5 is a schematic structural diagram of another fixed-focus lens provided by an embodiment of the application.
  • the first lens 1 is a convex-concave negative power lens
  • the second lens 2 is a double-convex positive power lens
  • the third lens 3 is a double-convex positive power lens
  • the fourth lens 4 is a concave-convex negative power lens. That is, the first lens 1 has negative refractive power
  • the second lens 2 has positive refractive power
  • the third lens 3 has positive refractive power
  • the fourth lens 4 has negative refractive power.
  • the first lens 1 is a convex-concave lens, the front surface of the first lens 1 is convex toward the object plane OB, and the rear surface of the first lens 1 is convex toward the object plane OB.
  • the second lens 2 is a biconvex lens, the front surface of the second lens 2 is convex toward the object plane OB, and the rear surface of the second lens 2 is convex toward the image plane IM.
  • the third lens 3 is a biconvex lens, the front surface of the third lens 3 is convex toward the object plane OB, and the rear surface of the third lens 3 is convex toward the image plane IM.
  • the fourth lens 4 is a meniscus lens, the front surface of the fourth lens 4 is convex toward the image surface IM, and the rear surface of the fourth lens 4 is convex toward the image surface IM.
  • the first lens 1, the third lens 3, and the fourth lens 4 are all plastic aspheric lenses, and the plastic aspheric lens refers to an aspheric lens made of plastic materials.
  • the second lens 2 is a glass spherical lens, which refers to a spherical lens made of glass material.
  • the aperture F 2.25, that is, the F number is 2.25.
  • Table 3 shows another design value of the fixed-focus lens. The specific value can be adjusted according to product requirements and is not a limitation of the embodiment of the present application.
  • the fixed focus lens shown in Table 3 may be as shown in FIG. 5.
  • a lens generally includes two surfaces, and each surface is a refractive surface.
  • the surface numbers in Table 3 are numbered according to the surface of each lens.
  • the parameters with the same symbols in Table 3 and Table 1 have the same meaning and similarity, and will not be repeated here.
  • Table 4 is another design value of the aspheric coefficient of the lens in the fixed focus lens. The specific value can be adjusted according to product requirements, and is not a limitation of the embodiment of the present application.
  • the fixed focus lens shown in Table 4 may be as shown in FIG. 5.
  • the "surface number” column in Table 4 has the same meaning as the "surface number” in Table 3.
  • the surface number "S1" also represents the front surface of the first lens 1.
  • the parameters with the same symbols in Table 4 and Table 2 have the same meaning and similarity, and will not be repeated here.
  • FIG. 6 is a schematic diagram of the spherical aberration of the fixed-focus lens shown in FIG. 5. Referring to FIG. 6, the spherical aberration of the fixed-focus lens provided in the embodiment of the present application is relatively small.
  • FIG. 7 is a schematic diagram of field curvature of the fixed focus lens shown in FIG. 5.
  • the fixed focus lens provided by the embodiment of the present application has a relatively small field curvature.
  • FIG. 8 is a schematic diagram of the distortion of the fixed focus lens shown in FIG. 5.
  • the curves of multiple wavelengths (0.486 mm, 0.588 mm, 0.656 mm, 0.436 mm, and 0.850 mm) overlap in FIG. 8.
  • the distortion is set to balance the focal length, the field of view and the size of the corresponding camera target surface.
  • the distortion caused by the distortion can be processed by post-image processing. Correction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

一种定焦镜头,包括沿物面指向像面方向依次排列的第一透镜(1)、第二透镜(2)、第三透镜(3)及第四透镜(4);其中,第一透镜(1)为凸凹负光焦度透镜,第二透镜(2)为双凸正光焦度透镜,第三透镜(3)为双凸正光焦度透镜,第四透镜(4)为凹凸负光焦度透镜;第一透镜(1)、第三透镜(3)和第四透镜(4)均为塑胶非球面透镜;第二透镜(2)为玻璃球面透镜。该定焦镜头能在降低镜头成本的同时确保镜头的成像质量。

Description

定焦镜头
本申请要求申请日为2020年3月27日、申请号为202020418759.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及镜头技术,例如涉及一种定焦镜头。
背景技术
随着科技的不断发展,模具加工技术的不断提高,低成本,高质量的镜头成为安防行业发展的主要趋势。市面上已经推出的大多数安防镜头为了平衡高低温及红外光条件下的像质,不得不提高玻璃镜片的使用比例。然而,保证了像质的同时,镜头成本难以得到有效的控制,不利于促进安防镜头在市场上的使用。
发明内容
本申请提供了一种定焦镜头,定焦镜头结构简单,且降低镜头成本的同时能够确保镜头的成像质量,确保镜头在-40-80℃环境下使用解像力满足成像要求,保证镜头在夜间环境下的成像能力,实现像质在不同条件下的一致性。
本申请实施例提供一种定焦镜头,包括沿物面指向像面方向依次排列的第一透镜、第二透镜、第三透镜、第四透镜;
其中,所述第一透镜为凸凹负光焦度透镜,所述第二透镜为双凸正光焦度透镜,所述第三透镜为双凸正光焦度透镜,所述第四透镜为凹凸负光焦度透镜;
所述第一透镜、所述第三透镜和所述第四透镜均为塑胶非球面透镜;
所述第二透镜为玻璃球面透镜。
可选地,所述塑胶非球面透镜的两个表面均为非球面。
可选地,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第一透镜和所述第二透镜的组合焦距为f12,所述第三透镜与所述第四透镜的组合焦距为f34;
0.05<∣f1/f12∣<0.45;0.12<∣f2/f12∣<0.56;
0.09<∣f3/f34∣<0.51;0.25<∣f4/f34∣<0.75。
可选地,所述定焦镜头的光学***焦距为f;
4.5<∣f12/f∣<6.8;1.8<∣f34/f∣<3.5。
可选地,所述第二透镜的折射率为Nd2,所述第二透镜的阿贝数为Vd2,所述第三透镜的折射率为Nd3,所述第三透镜的阿贝数为Vd3,所述第四透镜的折射率为Nd4,所述第四透镜的阿贝数为Vd4;
1.43<Nd2<1.71;50<Vd2<82;
0.06<∣Nd4-Nd3∣<1.5;20<∣Vd4-Vd3∣<30。
可选地,所述定焦镜头的***总长为TTL,所述定焦镜头的光学***焦距为f;4.2<TTL/f<6.5。
可选地,还包括光阑,所述光阑位于所述第一透镜与所述第二透镜之间。
可选地,还包括平板滤光片,所述平板滤光片位于所述第四透镜远离所述第三透镜的一侧。
附图说明
图1为本申请一实施例提供的一种定焦镜头的结构示意图;
图2为图1中所示定焦镜头的球差示意图;
图3为图1中所示定焦镜头的场曲示意图;
图4为图1中所示定焦镜头的畸变示意图;
图5为本申请一实施例提供的另一种定焦镜头的结构示意图;
图6为图5中所示定焦镜头的球差示意图;
图7为图5中所示定焦镜头的场曲示意图;
图8为图5中所示定焦镜头的畸变示意图。
具体实施方式
图1为本申请实施例提供的一种定焦镜头的结构示意图,参考图1,定焦镜头包括沿物面OB指向像面IM方向依次排列的第一透镜1、第二透镜2、第三透镜3和第四透镜4。第一透镜1为凸凹负光焦度透镜,第二透镜2为双凸正光焦度透镜,第三透镜3为双凸正光焦度透镜,第四透镜4为凹凸负光焦度透镜。也就是说,第一透镜1具有负光焦度,第二透镜2具有正光焦度,第三透镜3具有正光焦度,第四透镜4具有负光焦度。第一透镜1为凸凹透镜,第一透镜1的前表面朝向物面OB凸起,第一透镜1的后表面朝向物面OB凸起。第二透镜2为双凸透镜,第二透 镜2的前表面朝向物面OB凸起,第二透镜2的后表面朝向像面IM凸起。第三透镜3为双凸透镜,第三透镜3的前表面朝向物面OB凸起,第三透镜3的后表面朝向像面IM凸起。第四透镜4为凹凸透镜,第四透镜4的前表面朝向像面IM凸起,第四透镜4的后表面朝向像面IM凸起。第一透镜1、第三透镜3和第四透镜4均为塑胶非球面透镜,塑胶非球面透镜指的是采用塑胶材料制作的非球面透镜。第二透镜2为玻璃球面透镜,玻璃球面透镜指的是采用玻璃材料制作的球面透镜。
本申请实施例提供的定焦镜头采用四个透镜,一个玻璃球面透镜与三个塑胶非球面透镜形成混合的光学结构,塑胶非球面透镜相对于玻璃球面透镜而言,具有更低的成本以及更小的重量。玻璃球面透镜在不同的温度下具有较小的形变。一个玻璃球面透镜与三个塑胶非球面透镜形成混合的光学结构,保证了定焦镜头在较大温差范围(例如-40℃-+80℃)下的正常工作。保证了日夜共焦,定焦镜头结构简单、降低镜头成本的同时确保镜头的成像质量,确保镜头-40℃-80℃环境下使用解像力满足成像要求,保证镜头在夜间环境下的成像能力,实现像质在不同条件下的一致性。
上述有益效果并非仅在“一个玻璃球面透镜与三个塑胶非球面透镜形成混合的光学结构”条件下实现的,而是还要结合第一透镜1、第二透镜2、第三透镜3、第四透镜4的光焦度、表面凹凸性,以及玻璃球面透镜的位置等因素共同实现的。可选地,第一透镜1为凸凹负光焦度透镜,对于大视场光学***起到收集光线的作用;第二透镜2采用双凸正光焦度透镜,用于承担***较大光焦度的同时起到校正场曲的作用;第三透镜3采用双凸正光焦度透镜,改变光路的传播方向,有效降低***主光线角(chief ray angle,简称为CRA)的大小;第四透镜4采用凹凸负光焦度透镜,主要是对光线经过前面三枚透镜后残余像差的校正。第三透镜3和第四透镜4采用正负光焦度相结合的方式,有效补偿***轴外像差的同时校正***球差。
示例性地,本申请实施例提供的定焦镜头的光学***F数小于2.4,1/2.7"的像面,支持视场角80°-120°,例如视场角为112°。其中,F数也叫做光圈数,F数为相对孔径的倒数。
可选地,参考图1,塑胶非球面透镜的两个表面均为非球面。也就是说,第一透镜1、第三透镜3和第四透镜4的前表面以及后表面均为非球面。
可选地,参考图1,第一透镜1的焦距为f1,第二透镜2的焦距为f2,第三透镜3的焦距为f3,第四透镜4的焦距为f4,第一透镜1和第二透镜2的组合焦距为 f12,第三透镜3与第四透镜4的组合焦距为f34。0.05<∣f1/f12∣<0.45,0.12<∣f2/f12∣<0.56,0.09<∣f3/f34∣<0.51,0.25<∣f4/f34∣<0.75。
可选地,参考图1,定焦镜头的光学***焦距为f。4.5<∣f12/f∣<6.8,1.8<∣f34/f∣<3.5。
光学设计中,透镜的焦距由透镜的前、后两个表面的结构决定,透镜的焦距反映了透镜的前、后两个表面组合后的整体情况,为透镜的一个结构参数。
可选地,参考图1,第二透镜2的折射率为Nd2,第二透镜2的阿贝数为Vd2,第三透镜3的折射率为Nd3,第三透镜3的阿贝数为Vd3,第四透镜4的折射率为Nd4,第四透镜4的阿贝数为Vd4。1.43<Nd2<1.71,50<Vd2<82。即,第二透镜2的折射率大于1.43且小于1.71,第二透镜2的阿贝数大于50且小于82。0.06<∣Nd4-Nd3∣<1.5,20<∣Vd4-Vd3∣<30。即,第三透镜3与第四透镜4的折射率差的绝对值大于0.06且小于1.5,第三透镜3与第四透镜4的阿贝数差的绝对值大于20且小于30,以校正定焦镜头的***色差。
可选地,参考图1,定焦镜头的***总长为TTL,定焦镜头的光学***焦距为f,4.2<TTL/f<6.5。即,定焦镜头的***总长与***焦距之比大于4.2且小于6.5。本申请实施例中,通过设置4.2<TTL/f<6.5保证了定焦镜头的小型化。
可选地,参考图1,定焦镜头还包括光阑5,光阑5位于第一透镜1与第二透镜2之间。光阑5是指在光学***中对光束起着限制作用的实体。光阑5例如可以为带孔屏。在其他实施方式中,光阑5还可以位于其他位置,本申请实施例对于光阑5的位置不做限定。
可选地,参考图1,定焦镜头还包括平板滤光片6,平板滤光片6位于第四透镜4远离第三透镜3的一侧。示例性地,平板滤光片6包括第一滤光片和第二滤光片,第一滤光片和第二滤光片可以通过特定的机械结构进行切换。在白天时,通过第一滤光片滤除掉红外光并通过可见光,以实现日间的画面拍摄;在夜晚时,第二滤光片通过可见光和红外光,以实现夜间的画面拍摄。
示例性地,在一实施方式中,第一透镜1、第二透镜2、第三透镜3和第四透镜4满足:f1=-5.11,f2=8.34,f12=17.76,f3=3.75,f4=-5.75,f34=9.23,f=3.89。∣f1/f12∣=0.288,∣f2/f12∣=0.469,∣f3/f34∣=0.407,
∣f4/f34∣=0.623,∣f12/f∣=4.57,∣f34/f∣=2.37。光圈F=2.3,即F数为2.3。视场角FOV=112°,光学***总长TTL=20.9mm。
表1定焦镜头的一种设计值
面序号 面型 曲率半径(mm) 厚度(mm) 折射率 阿贝数 K值
S1 非球面 6.565 1.352 1.535 55.7 1.079
S2 非球面 1.793 4.611     -3.979
光阑 PL   0.3      
S4 球面 8.056 3.047 1.516 64.2  
S5 球面 -8.056 2.67      
S6 非球面 5.345 2.324 1.535 55.7 2.468
S7 非球面 -2.735 0.177     -1.080
S8 非球面 -1.856 0.793 1.634 23.2 -0.777
S9 非球面 -4.406 4.300     -15.579
表1示出了定焦镜头的一种设计值,其具体数值大小可根据产品需求进行调节,并非对本申请实施例的限制。表1中示出的定焦镜头可以为图1中所示。一个透镜一般包括两个表面,每一个表面为一个折射面。表1中的面序号根据每个透镜的表面来进行编号。其中,面序号“S1”表示第一透镜1的前表面,面序号“S2”表示第一透镜1的后表面,依次类推,在此不再赘述。需要注意的是,“面序号”一栏中的“光阑”表示光阑所在平面。“面型”一栏中的“PL”代表平面。曲率半径代表镜片表面的弯曲程度,正的曲率半径值表示曲率中心在表面靠近像面IM一侧,负的曲率半径值代表曲率中心在表面远离像面IM一侧。“厚度”一栏中的数值表示当前表面到下一个表面的轴向距离。“折射率”一栏表示当前表面到下一个表面之间介质的折射率。“折射率”一栏中的空格为空气的折射率,空气的折射率为1。阿贝数代表当前表面到下一表面之间的材料对光线的色散特性,空格代表当前位置为空气。“k值”一栏示出了非球面的圆锥系数的数值大小。
可选地,非球面透镜的表面满足公式:
Figure PCTCN2020093688-appb-000001
其中,z为表面Z向的轴向矢高,r为非球面的高度,c为拟合球面的曲率,数值上c为曲率半径的倒数,k为圆锥系数,A,B,C,D,E,F为非球面系数,示例性地,A,B,C,D,E,F为非球面多项式的4阶、6阶、8阶、10阶、12阶和14阶项系数。
表2定焦镜头中透镜的非球面系数的一种设计值
面序号 A B C D E F
S1 -6.15E-03 -1.64E-04 5.73E-05 -5.57E-06 2.45E-07 -4.31E-09
S2 5.67E-02 -1.94E-02 5.10E-03 -8.48E-04 7.78E-05 -2.96E-06
S6 -1.98E-03 -6.71E-04 2.27E-04 -8.31E-05 1.68E-05 -1.50E-06
S7 9.30E-03 1.42E-03 -1.19E-03 2.60E-04 -2.44E-05 1.12E-06
S8 5.02E-02 -9.90E-03 1.50E-03 -1.53E-04 1.25E-05 -1.75E-07
S9 1.23E-02 -2.11E-03 1.94E-04 -2.82E-07 -2.36E-06 2.84E-07
表2为定焦镜头中透镜的非球面系数的一种设计值,其具体数值大小可根据产品需求进行调节,并非对本申请实施例的限制。表2中示出的定焦镜头可以为图1中所示。表2中“面序号”一栏与表1中“面序号”的含义相一致,例如面序号“S1”也表示第一透镜1的前表面。本申请实施例中的“E”表示以10为底的指数,例如-6.15E-03的数值大小为-0.00615。
图2为图1中所示定焦镜头的球差示意图,参考图2,球差是由于透镜中心区域和边缘区域对光波会聚能力不同而造成的。,因而由同一物点散射的光波经过透镜后不交在一点上,而是在透镜像平面上变成了一个漫射圆斑。由图2可见,本申请实施例提供的定焦镜头球差较小。
图3为图1中所示定焦镜头的场曲示意图,参考图3,场曲又称“像场弯曲”。当透镜存在场曲时,整个光束的交点不与理想像点重合,虽然在每个特定点都能得到清晰的像点,但整个像平面则是一个曲面。T代表子午场曲,S代表弧矢场曲。场曲曲线显示作为视场坐标函数的当前的焦平面或像平面到近轴焦面的距离,子午场曲数据是沿着Z轴测量的从当前所确定的聚焦面到近轴焦面的距离,并且是在子午(YZ面)上测量的。弧矢场曲数据测量的是在与子午面垂直的平面上测量的距离,示意图中的基线是在光轴上,曲线顶部代表最大视场(角度或高度),在纵轴上不设置单位,这是因为曲线总是用最大的径向视场来归一化的。由图3可见,本申请实施例提供的定焦镜头场曲较小。
图4为图1中所示定焦镜头的畸变示意图,参考图4,多个波长(0.486mm、0.588mm、0.656mm、0.436mm和0.850mm)的曲线在图4中发生了重合。一般来说,镜头畸变实际上是光学透镜固有的透视失真的总称,也就是因为透视原因造成的失真,这种失真对于照片的成像质量是非常不利的,毕竟摄影的目的是为了再现,而非夸张,但因为这是透镜的固有特性(凸透镜汇聚光线、凹透镜发散 光线),所以无法消除,只能改善。由图4可见,本申请实施例提供的定焦镜头畸变将近40%,这样设置畸变是为了平衡焦距,视场角及对应相机靶面的大小,畸变造成的形变可以通过后期图像处理对其进行校正。
本申请实施例提供的定焦镜头采用四个透镜,一个玻璃球面透镜与三个塑胶非球面透镜形成混合的光学结构,塑胶非球面透镜相对于玻璃球面透镜而言,具有更低的成本以及更小的重量。玻璃球面透镜在不同的温度下具有较小的形变。一个玻璃球面透镜与三个塑胶非球面透镜形成混合的光学结构,保证了定焦镜头在较大温差范围(例如-40℃-+80℃)下的正常工作。保证了日夜共焦,定焦镜头结构简单、降低镜头成本的同时确保镜头的成像质量,确保镜头-40℃-80℃环境下使用解像力满足成像要求,保证镜头在夜间环境下的成像能力,实现像质在不同条件下的一致性。
示例性地,本申请实施例还给出了定焦镜头中透镜的作用说明,以及焦距满足关系式的作用说明。
第一透镜1选用凸凹透镜相比于选用双凹透镜的好处在于,凸凹透镜更有利于光学***视场的扩大,即扩大定焦镜头的视场,从而有利于扩大定焦镜头的应用范围。第二透镜2选用双凸透镜相比于选用凹凸透镜的好处在于,双凸透镜更有利于承担***更大的光焦度,更有利于减少高低温对像质的影响。
可选地,第一透镜1的焦距为f1,第二透镜2的焦距为f2,第一透镜1和第二透镜2的组合焦距为f12,0.05<∣f1/f12∣<0.45时,更有利于光线的汇聚,同时更有利于控制定焦镜头的畸变的大小。第二透镜2的焦距为f2与第一透镜1和第二透镜2的组合焦距f12之间的比值控制了第二透镜2焦距的大小,0.12<∣f2/f12∣<0.56时,提高了第二透镜2在定焦镜头中的光焦度,同时有助于定焦镜头的球差的校正。
第三透镜3的焦距为f3,第四透镜4的焦距为f4,第三透镜3与第四透镜4的组合焦距为f34,0.09<∣f3/f34∣<0.51时,更有利于校正定焦镜头的球差、场曲及像散,提高定焦镜头的成像质量。0.25<∣f4/f34∣<0.75时,更有利于定焦镜头轴上像差的校正,同时补偿畸变数据,控制成像靶面大小,第四透镜4与第三透镜3配合校正定焦镜头的***色差。
定焦镜头的光学***焦距为f,满足:4.5<∣f12/f∣<6.8;1.8<∣f34/f∣<3.5。由于第一透镜1、第二透镜2与第三透镜3、第四透镜4在物理结构上关于定焦镜头中心轴对称,满足4.5<∣f12/f∣<6.8以及1.8<∣f34/f∣<3.5 时,更有利于定焦镜头的垂轴像差的校正,其中垂轴像差包括垂轴方向的彗差、场曲和像散。
图5为本申请实施例提供的另一种定焦镜头的结构示意图,参考图5,定焦镜头包括沿物面OB指向像面IM方向依次排列的第一透镜1、第二透镜2、第三透镜3和第四透镜4。第一透镜1为凸凹负光焦度透镜,第二透镜2为双凸正光焦度透镜,第三透镜3为双凸正光焦度透镜,第四透镜4为凹凸负光焦度透镜。也就是说,第一透镜1具有负光焦度,第二透镜2具有正光焦度,第三透镜3具有正光焦度,第四透镜4具有负光焦度。第一透镜1为凸凹透镜,第一透镜1的前表面朝向物面OB凸起,第一透镜1的后表面朝向物面OB凸起。第二透镜2为双凸透镜,第二透镜2的前表面朝向物面OB凸起,第二透镜2的后表面朝向像面IM凸起。第三透镜3为双凸透镜,第三透镜3的前表面朝向物面OB凸起,第三透镜3的后表面朝向像面IM凸起。第四透镜4为凹凸透镜,第四透镜4的前表面朝向像面IM凸起,第四透镜4的后表面朝向像面IM凸起。第一透镜1、第三透镜3和第四透镜4均为塑胶非球面透镜,塑胶非球面透镜指的是采用塑胶材料制作的非球面透镜。第二透镜2为玻璃球面透镜,玻璃球面透镜指的是采用玻璃材料制作的球面透镜。
示例性地,在另一可行的实施方式中,第一透镜1、第二透镜2、第三透镜3和第四透镜4满足:f1=-5.67,f2=9.18,f12=25.24,f3=3.58,f4=-5.96,f34=8.31,f=3.89。∣f1/f12∣=0.226,∣f2/f12∣=0.364,∣f3/f34∣=0.431,
∣f4/f34∣=0.717,∣f12/f∣=6.485,∣f34/f∣=2.13。光圈F=2.25,即F数为2.25。视场角FOV=112°,光学***总长TTL=20.2mm。
表3定焦镜头的另一种设计值
面序号 面型 曲率半径(mm) 厚度(mm) 折射率 阿贝数 K值
S1 非球面 6.111 1.0 1.535 55.7 1.079
S2 非球面 1.919 4.611     -3.979
光阑 PL   0.3      
S4 球面 8.989 2.80 1.516 64.2  
S5 球面 -8.989 2.29      
S6 非球面 6.142 2.381 1.535 55.7 2.468
S7 非球面 -2.407 0.184     -1.080
S8 非球面 -1.939 1.0 1.634 23.2 -0.777
S9 非球面 -4.780 4.300     -15.579
表3示出了定焦镜头的另一种设计值,其具体数值大小可根据产品需求进行调节,并非对本申请实施例的限制。表3中示出的定焦镜头可以为图5中所示。一个透镜一般包括两个表面,每一个表面为一个折射面。表3中的面序号根据每个透镜的表面来进行编号。表3与表1中相同符号的参数具有相同的含义类似,在此不再赘述。
表4定焦镜头中透镜的非球面系数的另一种设计值
面序号 A B C D E F
S1 -2.86E-03 -8.19E-04 8.81E-05 -5.81E-06 2.79E-07 -7.19E-09
S2 5.17E-02 -1.58E-02 4.16E-03 -8.91E-04 1.14E-04 -5.89E-06
S6 -1.18E-03 -5.64E-04 8.65E-05 2.09E-06 -6.40E-06 2.98E-07
S7 1.60E-02 -2.18E-03 -1.42E-04 8.20E-05 -1.04E-05 3.25E-07
S8 4.25E-02 -9.10E-03 1.54E-03 -1.60E-04 1.07E-05 -2.74E-07
S9 6.79E-03 -1.67E-03 2.19E-04 -5.79E-07 -2.89E-06 2.82E-07
表4为定焦镜头中透镜的非球面系数的另一种设计值,其具体数值大小可根据产品需求进行调节,并非对本申请实施例的限制。表4中示出的定焦镜头可以为图5中所示。表4中“面序号”一栏与表3中“面序号”的含义相一致,例如面序号“S1”也表示第一透镜1的前表面。表4与表2中相同符号的参数具有相同的含义类似,在此不再赘述。
图6为图5中所示定焦镜头的球差示意图,参考图6,本申请实施例提供的定焦镜头球差较小。
图7为图5中所示定焦镜头的场曲示意图,参考图7,本申请实施例提供的定焦镜头场曲较小。
图8为图5中所示定焦镜头的畸变示意图,参考图8,多个波长(0.486mm、0.588mm、0.656mm、0.436mm和0.850mm)的曲线在图8中发生了重合。由图8可见,本申请实施例提供的定焦镜头畸变将近40%,这样设置畸变是为了平衡焦距,视场角及对应相机靶面的大小,畸变造成的形变可以通过后期图像处理对其进行校正。

Claims (8)

  1. 一种定焦镜头,包括沿物面指向像面方向依次排列的第一透镜、第二透镜、第三透镜及第四透镜;
    其中,所述第一透镜为凸凹负光焦度透镜,所述第二透镜为双凸正光焦度透镜,所述第三透镜为双凸正光焦度透镜,所述第四透镜为凹凸负光焦度透镜;
    所述第一透镜、所述第三透镜和所述第四透镜均为塑胶非球面透镜;
    所述第二透镜为玻璃球面透镜。
  2. 根据权利要求1所述的定焦镜头,其中,所述塑胶非球面透镜的两个表面均为非球面。
  3. 根据权利要求1所述的定焦镜头,其中,所述第一透镜的焦距为f1,所述第二透镜的焦距为f2,所述第三透镜的焦距为f3,所述第四透镜的焦距为f4,所述第一透镜和所述第二透镜的组合焦距为f12,所述第三透镜与所述第四透镜的组合焦距为f34;
    0.05<∣f1/f12∣<0.45;0.12<∣f2/f12∣<0.56;
    0.09<∣f3/f34∣<0.51;0.25<∣f4/f34∣<0.75。
  4. 根据权利要求3所述的定焦镜头,其中,所述定焦镜头的光学***焦距为f;
    4.5<∣f12/f∣<6.8;1.8<∣f34/f∣<3.5。
  5. 根据权利要求1所述的定焦镜头,其中,所述第二透镜的折射率为Nd2,所述第二透镜的阿贝数为Vd2,所述第三透镜的折射率为Nd3,所述第三透镜的阿贝数为Vd3,所述第四透镜的折射率为Nd4,所述第四透镜的阿贝数为Vd4;
    1.43<Nd2<1.71;50<Vd2<82;
    0.06<∣Nd4-Nd3∣<1.5;20<∣Vd4-Vd3∣<30。
  6. 根据权利要求1所述的定焦镜头,其中,所述定焦镜头的***总长为TTL,所述定焦镜头的光学***焦距为f;4.2<TTL/f<6.5。
  7. 根据权利要求1所述的定焦镜头,还包括光阑,所述光阑位于所述第一透镜与所述第二透镜之间。
  8. 根据权利要求1所述的定焦镜头,还包括平板滤光片,所述平板滤光片位于所述第四透镜远离所述第三透镜的一侧。
PCT/CN2020/093688 2020-03-27 2020-06-01 定焦镜头 WO2021189644A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202020418759.2U CN211528807U (zh) 2020-03-27 2020-03-27 一种定焦镜头
CN202020418759.2 2020-03-27

Publications (1)

Publication Number Publication Date
WO2021189644A1 true WO2021189644A1 (zh) 2021-09-30

Family

ID=72460460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093688 WO2021189644A1 (zh) 2020-03-27 2020-06-01 定焦镜头

Country Status (2)

Country Link
CN (1) CN211528807U (zh)
WO (1) WO2021189644A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397750A (zh) * 2021-12-31 2022-04-26 东莞市长益光电股份有限公司 一种6mm日夜两用高清玻塑混合定焦镜头
CN115437126A (zh) * 2022-09-02 2022-12-06 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN115855447A (zh) * 2022-11-18 2023-03-28 茂莱(南京)仪器有限公司 一种检测大视场不同屈光度光波导ar眼镜的投影镜头

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113534414A (zh) * 2021-08-13 2021-10-22 舜宇光学(中山)有限公司 定焦镜头
CN114355559A (zh) * 2021-12-29 2022-04-15 福建福光股份有限公司 一种大孔径高解析力光学镜头

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103271A (ja) * 1991-10-03 1993-04-23 Olympus Optical Co Ltd 撮像装置
CN201133962Y (zh) * 2007-12-25 2008-10-15 叶明华 焦距为8.0mm的定焦镜头
CN201133961Y (zh) * 2007-12-25 2008-10-15 叶明华 焦距为6.0mm的定焦镜头
CN101443686A (zh) * 2006-05-08 2009-05-27 波士顿科技有限公司 用于医学成像设备的光学组件
CN103257433A (zh) * 2012-02-15 2013-08-21 大立光电股份有限公司 光学镜头***
CN104459959A (zh) * 2014-12-17 2015-03-25 福建福光数码科技有限公司 高分辨率3.6mm定焦微型镜头

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05103271A (ja) * 1991-10-03 1993-04-23 Olympus Optical Co Ltd 撮像装置
CN101443686A (zh) * 2006-05-08 2009-05-27 波士顿科技有限公司 用于医学成像设备的光学组件
CN201133962Y (zh) * 2007-12-25 2008-10-15 叶明华 焦距为8.0mm的定焦镜头
CN201133961Y (zh) * 2007-12-25 2008-10-15 叶明华 焦距为6.0mm的定焦镜头
CN103257433A (zh) * 2012-02-15 2013-08-21 大立光电股份有限公司 光学镜头***
CN104459959A (zh) * 2014-12-17 2015-03-25 福建福光数码科技有限公司 高分辨率3.6mm定焦微型镜头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397750A (zh) * 2021-12-31 2022-04-26 东莞市长益光电股份有限公司 一种6mm日夜两用高清玻塑混合定焦镜头
CN115437126A (zh) * 2022-09-02 2022-12-06 东莞市宇瞳光学科技股份有限公司 一种定焦镜头
CN115855447A (zh) * 2022-11-18 2023-03-28 茂莱(南京)仪器有限公司 一种检测大视场不同屈光度光波导ar眼镜的投影镜头
CN115855447B (zh) * 2022-11-18 2024-01-23 茂莱(南京)仪器有限公司 一种检测大视场不同屈光度光波导ar眼镜的投影镜头

Also Published As

Publication number Publication date
CN211528807U (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2021189644A1 (zh) 定焦镜头
WO2021057229A1 (zh) 光学成像镜头
CN109960006B (zh) 光学镜头
WO2021042954A1 (zh) 摄像镜头组
CN111983789A (zh) 一种鱼眼镜头
CN112859299A (zh) 定焦镜头
CN216013795U (zh) 一种定焦镜头
CN112327452B (zh) 一种超短4k黑光定焦镜头
CN209895076U (zh) 一种定焦镜头
CN214669831U (zh) 一种定焦镜头
CN215181166U (zh) 一种光学成像镜头
WO2018218856A1 (zh) 成像镜片组
CN213182174U (zh) 一种黑光镜头
CN111679414B (zh) 超广角无热化日夜两用镜头及其工作方法
CN111123488B (zh) 一种投影镜头
US3951524A (en) Projection lens system for motion picture projector
CN113189747A (zh) 一种定焦镜头
CN112305717A (zh) 一种定焦镜头
CN113156614A (zh) 一种光学成像***
CN212483965U (zh) 一种鱼眼镜头
WO2023160277A1 (zh) 定焦镜头
CN218848437U (zh) 一种定焦镜头
CN212905671U (zh) 一种日夜两用定焦镜头
CN220137476U (zh) 一种鱼眼镜头
CN219552750U (zh) 一种定焦镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20927364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 20/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20927364

Country of ref document: EP

Kind code of ref document: A1