WO2021187207A1 - Illuminating device - Google Patents

Illuminating device Download PDF

Info

Publication number
WO2021187207A1
WO2021187207A1 PCT/JP2021/009092 JP2021009092W WO2021187207A1 WO 2021187207 A1 WO2021187207 A1 WO 2021187207A1 JP 2021009092 W JP2021009092 W JP 2021009092W WO 2021187207 A1 WO2021187207 A1 WO 2021187207A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength conversion
lighting device
conversion layer
region
Prior art date
Application number
PCT/JP2021/009092
Other languages
French (fr)
Japanese (ja)
Inventor
佑樹 前田
Original Assignee
ソニーグループ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーグループ株式会社 filed Critical ソニーグループ株式会社
Publication of WO2021187207A1 publication Critical patent/WO2021187207A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/15Thermal insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/54Cooling arrangements using thermoelectric means, e.g. Peltier elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/28Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings
    • F21V7/30Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by coatings the coatings comprising photoluminescent substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/38Combination of two or more photoluminescent elements of different materials

Definitions

  • the present disclosure relates to, for example, a lighting device using a phosphor or quantum dots as a light emitting material.
  • Patent Document 1 discloses a color-adjustable lighting assembly including a light emitting element, a luminescence layer, and a temperature control means.
  • the illumination device of the embodiment of the present disclosure is arranged on the light source unit, the temperature adjusting unit having one surface, and one surface side of the temperature adjusting unit, and absorbs the light emitted from the light source unit as excitation light.
  • the light emitted from the light source unit and the light of the first wavelength are arranged between the first wavelength conversion layer that emits the light of the first wavelength band and the first wavelength conversion layer of the temperature adjusting unit. It absorbs at least one of the above as excitation light, emits light in a second wavelength band different from that in the first wavelength band, and has a second temperature sensitivity higher than that of the first wavelength conversion layer. It is provided with a wavelength conversion layer of.
  • the temperature of the second wavelength conversion layer having higher temperature sensitivity is adjusted among the first wavelength conversion layer and the second wavelength conversion layer having different temperature sensitivities and emission wavelengths from each other. By providing it on the part side, the wavelength of the output light is actively changed.
  • Third embodiment (example in which the temperature control unit and the internal space are further divided into a plurality of regions) 4.
  • Fourth embodiment (example in which a temperature control region and a constant temperature region are provided in the temperature control unit) 5.
  • Fifth Embodiment (Other Examples of Optical Systems) 6.
  • Sixth Embodiment (Other Examples of Optical Systems) 7.
  • Seventh Embodiment (an example of an optical system constituting natural light illumination) 8.
  • Eighth Embodiment (Other Examples of Optical Systems Constituting Natural Light Illumination) 9.
  • Ninth Embodiment (Example of an optical system constituting blue separation illumination) 10.
  • Tenth Embodiment (An example of a transmission type wavelength conversion element) 11.
  • Eleventh embodiment (another example of a transmission type wavelength conversion element) 12.
  • 12th Embodiment (Example of color adjustment system)
  • FIG. 1 schematically shows an example of a cross-sectional configuration of a wavelength conversion element 10 constituting a lighting device (see lighting devices 1 and 3) according to the first embodiment of the present disclosure.
  • FIG. 2 schematically shows an example of the planar configuration of the wavelength conversion element 10 shown in FIG. 1, and FIG. 1 shows a cross section taken along line II shown in FIG.
  • the wavelength conversion element 10 is used as a light source of the lighting device 1 described later.
  • the wavelength conversion element 10 has a temperature adjusting unit 11, a quantum dot layer 12, and a phosphor layer 13, and the quantum dot layer 12 and the phosphor layer 13 are laminated in this order from the temperature adjusting unit 11 side. ing.
  • the temperature adjusting unit 11 corresponds to a specific example of the "temperature adjusting unit” of the present disclosure.
  • the quantum dot layer 12 corresponds to a specific example of the "second wavelength conversion layer” of the present disclosure
  • the phosphor layer 13 corresponds to a specific example of the "first wavelength conversion layer” of the present disclosure.
  • the wavelength conversion element 10 further includes a light distribution control structure 14 having a parabolic surface (surface 14S1) on the upper surface (surface 11S1) of the temperature adjusting unit 11, for example, with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11.
  • a light distribution control structure 14 having a parabolic surface (surface 14S1) on the upper surface (surface 11S1) of the temperature adjusting unit 11, for example, with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11.
  • the lower surface (surface 14S2) of the light distribution control structure 14 facing the upper surface (surface 11S1) of the temperature adjusting unit 11 is partially open, and the upper surface (surface 11S1) of the temperature adjusting unit 11 is exposed.
  • a reflective film 15 is formed on the upper surface (surface 11S1) of the exposed temperature adjusting unit 11 and the paraboloid surface (surface 14S1) of the light distribution control structure 14, and the quantum dot layer 12 and the phosphor layer 13 are formed.
  • the light distribution control structure 14 corresponds to a specific example of the "light distribution control structure" of the present disclosure
  • a parabolic surface (surface 14S1) corresponds to a specific example of the "light distribution control surface” of the present disclosure. ..
  • the wavelength conversion element 10 further has a dichroic mirror 16 above the upper surface (surface 11S1) of the temperature adjusting unit 11.
  • the dichroic mirror 16 is connected to, for example, the peripheral edge of the light distribution control structure 14, and the upper surface (surface 16S1) of the dichroic mirror 16 is an entrance / exit surface of the excitation light EL and the respective color lights Lr, Ly, Lg, and Lb. (Surface S1). That is, the wavelength conversion element 10 has, for example, a closed internal space A composed of a temperature adjusting unit 11, a light distribution control structure 14, and a dichroic mirror 16, and the quantum dot layer 12 and the phosphor layer 13 are formed. , It is formed in this internal space A.
  • the dichroic mirror 16 corresponds to a specific example of the "color separation unit" of the present disclosure.
  • the wavelength conversion element 10 further has a heat insulating portion 17 that further divides the internal space A and the temperature adjusting portion 11 into a plurality of (for example, two) regions (first region A and second region B).
  • a heat insulating portion 17 that further divides the internal space A and the temperature adjusting portion 11 into a plurality of (for example, two) regions (first region A and second region B).
  • the temperature adjusting unit 11 is for adjusting the temperature of the quantum dot layer 12, and has, for example, a plate-like shape having an upper surface (surface 11S1) and a lower surface (surface 11S2).
  • a Perche element or a heater can be used as the temperature adjusting unit 11, for example, a Perche element or a heater.
  • the quantum dot layer 12 is formed, for example, by including a plurality of quantum dots as a light emitting material, and is excited by an excitation light EL or light emitted from a phosphor layer 13 described later (for example, yellow light Ly). Therefore, it emits light in a wavelength band different from the wavelength band of the excitation light EL.
  • the quantum dot layer 12 can be formed, for example, by dispersing a plurality of quantum dots in a resin binder or an inorganic glass binder having light transmittance.
  • the quantum dot layer 12 for example, ceramics obtained by firing a plurality of quantum dots can be used.
  • Quantum dots are generally semiconductor nanoparticles having a particle size of several nm.
  • the quantum dot layer 12 can be formed by including one type or two or more types of quantum dots made of the above materials. For example, by mixing and using a plurality of types of quantum dots having a narrow wavelength width, it is possible to obtain a broad wavelength from the quantum dot layer 12.
  • the film thickness of the quantum dot layer 12 is, for example, 100 nm or more and 300 ⁇ m or less.
  • the internal space A and the temperature adjusting unit 11 are divided into two regions, a first region A and a second region B.
  • the quantum dot layer 12A and the quantum dot layer 12B provided in the first region A and the second region B, respectively, are formed so as to emit light having wavelength bands different from each other, for example.
  • the quantum dot layer 12A is excited by, for example, blue light (excitation light EL) emitted from the light source unit 21 (see FIG. 3), and emits light (red light Lr) in a wavelength band corresponding to, for example, red.
  • it is formed by including a plurality of types of quantum dots.
  • the quantum dot layer 12B is excited by, for example, blue light (excitation light EL) emitted from the light source unit 21, and emits light (green light Lg) in a wavelength band corresponding to, for example, green. It is formed including dots.
  • excitation light EL excitation light
  • green light Lg green light Lg
  • red light Lr and green light Lg correspond to a specific example of "light in the second wavelength band" of the present disclosure.
  • the light emitting material forming the quantum dot layer 12 may have a higher temperature sensitivity than the phosphor particles constituting the phosphor layer 13 described later, in other words, a material having a high temperature dependence, and other than the quantum dots.
  • an organic dye or an inorganic phosphor can be used as a light emitting material.
  • the phosphor layer 13 contains, for example, a plurality of phosphor particles as a light emitting material, and is excited by the excitation light EL to emit light in a wavelength band different from the wavelength band of the excitation light EL.
  • a so-called ceramic phosphor can be used.
  • the phosphor layer 13 can be formed, for example, by dispersing a plurality of phosphor particles in a light-transmitting resin binder or an inorganic glass binder, similarly to the quantum dot layer 12.
  • the phosphor particles include Ce: YAG (yttrium aluminum garnet) -based material, Ce: LuAG-based material, Eu: SCASN-based material, and Eu: SiAlON-based material. Similar to the quantum dot layer 12, the phosphor layer 13 can be formed by containing one or more types of phosphor particles made of the above materials. The film thickness of the phosphor layer 13 is, for example, 10 ⁇ m or more and 300 ⁇ m or less.
  • the phosphor layer 13 is provided in the first region A and the second region B, respectively, like the quantum dot layer 12.
  • the phosphor layer 13A and the phosphor layer 13 provided in the first region A and the second region B, respectively, are formed so as to emit light having the same wavelength band as each other, for example.
  • the phosphor layer 13A and the phosphor layer 13B are each excited by, for example, blue light (excitation light EL) emitted from the light source unit 21, and for example, light in a wavelength band corresponding to yellow (yellow light Ly). It is formed to contain phosphor particles that emit light. This yellow light corresponds to a specific example of "light in the first wavelength band" of the present disclosure.
  • the phosphor layer 13A and the phosphor layer 13 provided in the first region A and the second region B, respectively, may be formed so as to emit light having different wavelength bands from each other. Further, as long as the phosphor layer 13 has a structure having a lower temperature sensitivity than the quantum dot layer 12, the light emitting material constituting the phosphor layer 13 is not necessarily limited to the phosphor particles. In other words, the light emitting material constituting the phosphor layer 13 may have a lower temperature dependence than the light emitting material forming the quantum dot layer 12. That is, the phosphor layer 13 may use, for example, an organic dye or quantum dots in addition to the phosphor particles, depending on the combination with the light emitting material constituting the quantum dot layer 12.
  • the light distribution control structure 14 transmits light (each color light Lr, Lg, Ly) emitted from the quantum dot layer 12 and the phosphor layer 13 and the quantum dot layer 12 and the phosphor layer 13 and is used as blue light Lb, for example. This is for controlling the light distribution direction of some of the excitation light ELs to improve the light extraction efficiency.
  • the light distribution control structure 14 is arranged, for example, on the upper surface (surface 11S1) of the temperature adjusting unit 11. As described above, the light distribution control structure 14 has a parabolic surface (surface 14S1) with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11, and is also on the bottom of the parabolic surface (surface 14S1). It has an opening 14H.
  • the quantum dot layer 12 and the phosphor layer 13 are formed along the parabolic surface (plane 14S1) of the light distribution control structure 14 and the upper surface (plane 11S1) of the temperature adjusting unit 11 exposed in the opening 14H. That is, the temperature of a part of the quantum dot layer 12 is controlled via the light distribution control structure 14. As a result, the light distribution directions of the colored lights Lr, Lg, Ly and a part of the excitation light EL (hereinafter, simply referred to as blue light Lb) emitted from the quantum dot layer 12 and the phosphor layer 13 are controlled, and the quantum is also controlled.
  • the film formation area of the dot layer 12 is expanded, and the temperature of the quantum dot layer 12 can be effectively controlled.
  • the light distribution control structure 14 is preferably formed using a material having excellent thermal conductivity. Examples of such a material include copper (Cu), aluminum (Al), molybdenum (Mo), and alloys containing any of the above.
  • the light distribution control structure 14 can be formed of, for example, ceramics using aluminum nitride (AlN) or silicon carbide (SiC).
  • the parabolic surface (surface 14S1) of the light distribution control structure 14 may be a linear inclined surface in addition to the curved surface as shown in FIG. Further, the paraboloid surface (surface 14S1) may be, for example, a rough surface. As a result, the contact area between the quantum dots constituting the quantum dot layer 12 and the paraboloid surface (plane 14S1) becomes large, and the temperature of the quantum dot layer 12 can be controlled more effectively.
  • the reflective film 15 is for efficiently reflecting each color light Lr, Lg, Ly and blue light Lb emitted from the quantum dot layer 12 and the phosphor layer 13 on the parabolic surface (plane 14S1) of the light distribution control structure 14. It is a thing.
  • the reflective film 15 is formed so as to extend over, for example, the parabolic surface (surface 14S1) of the light distribution control structure 14 and the upper surface (surface 11S1) of the temperature adjusting unit 11 exposed in the opening 14H of the light distribution control structure 14. .
  • As the reflective film 15, for example, a silver brightening film, an aluminum brightening film, a dielectric multilayer film, or a barium sulfate mixed film can be used.
  • the polyreflecting film is a metal film on which a dielectric film is laminated.
  • the reflective film 15 can be omitted when the upper surface (surface 11S1) of the temperature adjusting unit 11 and the parabolic surface (surface 14S1) of the light distribution control structure have sufficient light reflectivity.
  • the dichroic mirror 16 selectively reflects a part or all of the light in a predetermined wavelength band and transmits the light in the other wavelength band. In the present embodiment, for example, one of the excitation light ELs. Those that reflect the part as blue light Lb are used.
  • the dichroic mirror 16 has a function as a mirror by using a light-transmitting member such as glass or a sapphire substrate as a base material and forming a dielectric multilayer film on one surface of the base material, for example. It is a sapphire. As described above, the dichroic mirror 16 is connected to, for example, a flat peripheral edge of the light distribution control structure 14, so that the internal space A is sealed on the parabolic surface (surface 14S1) side of the light distribution control structure 14.
  • the quantum dot layer 12 and the phosphor layer 13 are hermetically sealed in the internal space A by the dichroic mirror 16. Thereby, the reliability of the light emitting material (for example, quantum dots and phosphor particles) contained in the quantum dot layer 12 and the phosphor layer 13 can be improved.
  • the light emitting material for example, quantum dots and phosphor particles
  • the dichroic mirror 16 and the light distribution control structure 14 may be physically connected by using an adhesive, or may be mechanically connected by packing or the like.
  • the dichroic mirror 16 includes a part of the excitation light EL incident on the upper surface (surface 16S1) and the colored lights Lr, Lg, emitted from the quantum dot layer 12 and the phosphor layer 13 incident on the lower surface (surface 16S2).
  • the portion through which Ly and the blue light Lb are transmitted may be formed by other members.
  • the portion around the light transmitting portion, for example, connected to the light distribution control structure 14, may be formed by the same member as the light distribution control structure 14.
  • the heat insulating portion 17 is for suppressing heat transfer between the first region A and the second region B. Specifically, the heat insulating portion 17 penetrates between the first region A and the second region B, between the upper surface (surface 11S1) and the lower surface (surface 11S2) of the temperature adjusting unit 11, and at the same time.
  • the internal space A is divided into a space A1 and a space A2, and is formed so as to penetrate between the upper surface (surface 16S1) and the lower surface (surface 16S2) of the dichroic mirror 16.
  • the heat insulating portion 17 is preferably formed by using a material having low thermal conductivity and light transmittance so that color mixing occurs between the first region A and the second region B.
  • a glass substrate or a sapphire substrate, or a transparent plate to which a light diffusion function is added can be used.
  • the heat insulating portion 17 may be formed of, for example, an air layer.
  • the excitation light EL emitted from the light source unit 21 first enters the dichroic mirror 16. A part of the excitation light EL incident on the dichroic mirror 16 is reflected and used as blue light Lb, and the rest is transmitted through the dichroic mirror 16 and incident on the phosphor layers 13 (13A, 13B). Part or all of the excitation light EL incident on the phosphor layer 13 (13A, 13B) is absorbed by the phosphor layer 13 (13A, 13B) to excite the phosphor particles. As a result, the phosphor layer 13 (13A, 13B) emits yellow light Ly. At this time, the phosphor layer 13A and the phosphor layer 13B are excited at the same time, and the ratio of the excitation light amount can be adjusted by the excitation light intensity distribution and the excitation position with respect to the desired emission spectrum.
  • the excitation light EL that was not absorbed by the phosphor layer 13 (13A, 13B) passes through the phosphor layer 13 (13A, 13B) and is incident on the quantum dot layer 12 (12A, 12B). Part or all of the excitation light EL incident on the quantum dot layer 12 (12A, 12B) is absorbed by the quantum dot layer 12 (12A, 12B) to excite the quantum dots. Further, the yellow light Ly emitted from the phosphor layer 13 (13A, 13B) to the quantum dot layer 12 (12A, 12B) side is absorbed by the quantum dot layer 12 (12A, 12B) to excite the quantum dots. That is, a part of the yellow light Ly is used as the excitation light of the quantum dots.
  • the quantum dot layer 12A emits red light Lr
  • the quantum dot layer 12B emits green light Lg.
  • the amounts of red light Lr and green light Lg emitted from the quantum dot layer 12A and the quantum dot layer 12B can be adjusted.
  • the red light Lr and green light Lg emitted to the temperature control unit 11 side by the quantum dot layer 12 (12A, 12B) and the yellow light Ly not absorbed by the quantum dot layer 12 (12A, 12B) are reflected, for example, respectively. Together with the yellow light Ly, the red light Lr, and the green light Lg that are reflected by the film 15 and emitted to the dichroic mirror 16 side, they pass through the dichroic mirror 16 and are emitted toward the optical system 20 described later.
  • the excitation light EL that was not absorbed by the quantum dot layer 12 (12A, 12B) is reflected by, for example, the reflective film 15, and is absorbed again by the quantum dot layer 12 (12A, 12B) and the phosphor layer 13 (13A, 13B). At the same time, it passes through the dichroic mirror 16 and is taken out from the wavelength conversion element 10.
  • the extracted excitation light EL is emitted as blue light Lb together with the excitation light EL reflected by the dichroic mirror 16 toward the optical system 20 described later together with the yellow light Ly, the red light Lr, and the green light Lg.
  • FIG. 3 shows, for example, an example of the configuration of the optical system of the lighting device 1 capable of uniform illumination.
  • the lighting device 1 includes a wavelength conversion element 10, an optical system 20, and an illumination optical system 30.
  • the optical system 20 dims the blue laser LB (blue light Lb) emitted from the light source unit 21, the red light Lr, the yellow light Ly, and the green light Lg emitted from the wavelength conversion element 10, for example. It has a lens 22, a retardation plate 23, and a polarized dichroic mirror 24.
  • each member constituting the optical system 20 the lens 22, the retardation plate 23, and the polarizing dichroic mirror 24 are emitted from the wavelength conversion element 10 in this order from the wavelength conversion element 10 side (each color light Lr, Ly, Lg). , Lb) are arranged on the optical path.
  • the light source unit 21 is arranged at a position orthogonal to the optical path of the light emitted from the wavelength conversion element 10 and facing one light incident surface of the polarized dichroic mirror 24.
  • the illumination optical system 30 has, for example, a fly-eye lens 31.
  • the light source unit 21 has a light emitting element that emits light having a predetermined wavelength.
  • a semiconductor laser (LD) that oscillates blue light having a wavelength of 445 nm or 455 nm is used, and for example, a linearly polarized (S-polarized) blue laser LB is emitted from the light source unit 21.
  • LD semiconductor laser
  • the light source unit 21 is composed of a semiconductor laser
  • one semiconductor laser may be used to obtain an excitation light EL having a predetermined output, but the emitted light from a plurality of semiconductor lasers may be combined to obtain a predetermined output.
  • the configuration may be such that the excitation light EL of the output is obtained.
  • the wavelength band of the excitation light EL is not limited to the above numerical value, and any wavelength can be used as long as it is within the wavelength band of light called blue light.
  • the lens 22 converts the light (each color light Lr, Ly, Lg, Lb) emitted from the wavelength conversion element 10 into parallel light, and emits the parallel light toward the retardation plate 23. Further, the lens 22 focuses the blue laser LB emitted from the retardation plate 23 to a predetermined spot diameter, and emits the condensed blue laser LB toward the wavelength conversion element 10.
  • the lens 22 may be composed of, for example, one collimated lens, or may be configured to convert incident light into parallel light by using a plurality of lenses.
  • the phase difference plate 23 is for adjusting the balance of the blue laser LB emitted from the light source unit 21 as the excitation light EL and the blue light Lb.
  • the retardation plate 23 is ⁇ / 4 (90) with respect to the incident light. It is formed by using a ⁇ / 4 wave plate that emits light with a phase difference of °).
  • the ⁇ / 4 wave plate converts linearly polarized light into circularly polarized light when the incident light is linearly polarized light, and converts circularly polarized light into linearly polarized light when the incident light is circularly polarized light.
  • the retardation plate 23 converts the linearly polarized excitation light EL emitted from the polarized dichroic mirror 24 into circularly polarized light, and the circularly polarized excitation light included in the light emitted from the wavelength conversion element 10.
  • the component blue light Lb is converted into linearly polarized light.
  • the polarized dichroic mirror 24 separates the incident light based on the wavelength band and the polarized light component. Specifically, the blue laser LB incident from the light source unit 21 is reflected and guided to the wavelength conversion element 10, and among the colored lights Lr, Ly, Lg, and Lb incident from the wavelength conversion element 10, for example, the S polarization component. Is configured to reflect and transmit the P-polarized light component. As a result, the polarized dichroic mirror 24 emits red light Lr, yellow light Ly, green light Lg, and blue light Lb having a uniform polarization component toward the fly-eye lens 31.
  • the fly-eye lens 31 homogenizes the red light Lr, the yellow light Ly, the green light Lg, and the blue light Lb emitted from the polarized dichroic mirror 24 to homogenize the illuminance distribution of the illumination light emitted from the illumination device 1. It is intended.
  • the red light Lr, yellow light Ly, green light Lg, and blue light Lb emitted from the polarized dichroic mirror 24 are divided into a plurality of light beams by the microlens of the first fly-eye lens 31A, and then the second fly-eye. An image is formed on each of the corresponding microlenses of the lens 31B.
  • Each of the microlenses of the second fly-eye lens 31B functions as a secondary light source. As a result, a plurality of parallel lights having the same brightness are emitted from the illuminating device 1.
  • the lighting device 1 of the present embodiment includes a temperature adjusting unit 11, a first wavelength conversion layer (phosphor layer 13) and a second wavelength conversion layer (quantum dot layer 12) having different temperature sensitivities and emission wavelengths from each other.
  • the quantum dot layer 12 having a higher temperature sensitivity and the phosphor layer 13 having a lower temperature sensitivity than the quantum dot layer 12 were laminated in this order from the temperature adjusting unit 11 side. This makes it possible to actively change the wavelength of the output light. This will be described below.
  • LEDs light emitting diodes
  • a lighting device capable of increasing brightness and adjusting color can be realized by arranging a plurality of LEDs, but the reflection optical system is used to make the illumination light uniform, and the pseudo-sunlight illumination makes it infinite. It becomes large because it performs. Further, since high-precision reflection is required, the number of parts tends to increase and the weight tends to increase.
  • the light emitting portion can be made smaller, so that the optical system can be made smaller.
  • adjustment of color has been an issue.
  • FIG. 4 shows the temperature sensitivity of the phosphor particles and the quantum dots. From FIG. 4, the relative brightness maintenance rate with respect to the temperature of the phosphor particles is almost constant regardless of the temperature, whereas the relative brightness maintenance rate of the quantum dots decreases by about 20% when the temperature rises by, for example, about 50 ° C. You can see that it does. As described above, by providing the quantum dot layer 12 on the temperature adjusting unit 11 side using the quantum dots having high temperature dependence, it is possible to actively change the wavelength of the output light. In addition, when used in combination with the phosphor layer 13, a broad emission spectrum can be obtained.
  • the lighting device 1 of the present embodiment can provide a lighting device capable of efficiently performing color adjustment.
  • the lighting device 1 of the present embodiment it is possible to reduce the size and weight of the entire lighting device as compared with the lighting device using the LED. Further, in the lighting device 1 of the present embodiment, it is possible to realize higher brightness as compared with the lighting device using the LED. Furthermore, in the lighting device 1 of the present embodiment, the wavelength conversion element 10 constituting the light source unit has a smaller light emission size than the case where the LED is used as the light source, so that the coupling efficiency with the waveguide optical system is improved. It becomes possible to make it. Therefore, it is possible to provide a smaller and higher-luminance lighting device.
  • the temperature control unit 11 is used to control the temperature of the quantum dot layer 12, it is possible to realize a wavelength conversion element capable of performing color adjustment without rotation. Become. This makes it possible to reduce the size and weight of the illuminating device 1 as compared with the case where a so-called phosphor wheel, which is a rotary wavelength conversion element, is used.
  • the quantum dots included in the quantum dot layer 12 are less likely to be directly excited by the excitation light EL. Therefore, the quantum dots are less likely to deteriorate, and the reliability can be improved.
  • a structure has been proposed in which the temperature of the luminescence layer is adjusted by using a temperature control means such as a Perche element.
  • the quantum dots have a particle size of several nm, so that the scattering effect on the emitted light is small and the quantum dots cannot be taken out from the luminescence layer.
  • the light distribution control has a parabolic surface (surface 14S1) on the upper surface (surface 11S1) of the temperature adjusting unit 11 with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11, for example.
  • the structure 14 was arranged so that the quantum dot layer 12 was formed along the paraboloid (plane 14S1). As a result, the light (red light Lr, green light Lg) emitted from the quantum dot layer 12 can be effectively taken out of the layer. Therefore, it is possible to improve the efficiency of light utilization.
  • the quantum dot layer 12 is formed along the radial surface (surface 14S1), the quantum dots are formed on a flat surface such as the upper surface (surface 11S1) of the temperature adjusting unit 11, for example.
  • the film formation area of the quantum dot layer 12 is increased, and the temperature control of the quantum dot layer 12 can be performed more efficiently. This makes it possible to change the wavelength of the output light more actively.
  • FIG. 5 schematically shows an example of the cross-sectional configuration of the wavelength conversion element 10A according to the second embodiment of the present disclosure.
  • the wavelength conversion element 10A is used, for example, as a light source of the above-mentioned lighting device 1 in the same manner as the wavelength conversion element 10 of the first embodiment.
  • the wavelength conversion element 10A of the present embodiment is different from the first embodiment in that a heat insulating portion 18 is provided between the quantum dot layer 12 and the phosphor layer 13.
  • the wavelength conversion element 10A includes a temperature adjusting unit 11, a quantum dot layer 12, a phosphor layer 13, a light distribution control structure 14, a reflecting film 15, a dichroic mirror 16, and heat insulating units 17 and 18. ing.
  • the quantum dot layer 12 is formed on the light emitting surface (surface 14S1) of the light distribution control structure 14 and the upper surface of the temperature adjusting unit 11 exposed in the opening 14H of the light distribution control structure 14 via the reflective film 15. It is formed along (surface 11S1).
  • the phosphor layer 13 is formed along the lower surface (surface 16S2) of the dichroic mirror 16, and a heat insulating portion 18 is provided between the quantum dot layer 12 and the phosphor layer 13.
  • the heat insulating portion 18 is for suppressing heat transfer between the quantum dot layer 12 and the phosphor layer 13. Like the heat insulating portion 17, the heat insulating portion 18 is formed by using a material having low thermal conductivity and having light transmittance so that color mixing occurs between the quantum dot layer 12 and the phosphor layer 13. Is preferable. As the heat insulating portion 18, for example, a glass substrate or a sapphire substrate, or a transparent plate to which a light diffusion function is added can also be used. In addition, the heat insulating portion 18 may be formed of, for example, an air layer.
  • the heat insulating portion 18 is provided between the quantum dot layer 12 and the phosphor layer 13, the quantum dot layer 12 and the phosphor layer 13 are combined. Heat transfer between them, for example, heat inflow from the phosphor layer 13 to the quantum dot layer 12 is reduced. Therefore, the temperature of the quantum dot layer 12 can be adjusted more smoothly, and it is possible to provide a lighting device capable of performing color adjustment more efficiently.
  • FIG. 6A schematically shows an example of the planar configuration of the wavelength conversion element 10B according to the third embodiment of the present disclosure.
  • FIG. 6B schematically shows another example of the planar configuration of the wavelength conversion element 10B according to the third embodiment of the present disclosure.
  • the internal space A and the temperature adjusting unit 11 are divided into two regions (first region A and second region B) by using the heat insulating portion 17, for example.
  • first region A, second region B, third region C, fourth region D Four as shown in FIG. 6A (first region A, second region B, third region C, fourth region D) or eight as shown in FIG. 6B (first region A, second region).
  • B, the third region C, the fourth region D, the fifth region E, the sixth region F, the seventh region G, and the eighth region H) may be divided.
  • the temperature of the quantum dot layer 12 may be adjusted by individually controlling each temperature adjusting unit 11 in the first region A to the eighth region H.
  • the first region A and the second region B, the third region C and the fourth region D, the fifth region E and the sixth region F, the seventh region G and the eighth region H, etc. are grouped by two regions.
  • the temperature of the quantum dot layer 12 may be adjusted by controlling the temperature adjusting unit 11 in each region.
  • Quantum dot layer 12A in each region (for example, 1st region A, 2nd region B, 3rd region C, 4th region D, 5th region E, 6th region F, 7th region G, 8th region H) , 12B, 12C, 12D, 12E, 12F, 12H are formed so as to emit light having wavelength bands different from each other, for example, in part or in whole.
  • Fluorescent layer 13A of each region (for example, 1st region A, 2nd region B, 3rd region C, 4th region D, 5th region E, 6th region F, 7th region G, 8th region H) , 13B, 13C, 13D, 13E, 13F, 13H are formed so as to emit light having the same wavelength band as each other, for example.
  • the phosphor layers 13A, 13B, 13C, 13D, 13E, 13F, 13H in each region are partially or completely different from each other, similarly to the quantum dot layers 12A, 12B, 12C, 12D, 12E, 12F, 12H. It may be formed so as to emit light in a wavelength band.
  • the number of divisions of the internal space A and the temperature adjusting unit 11 divided by the heat insulating unit 17 is increased.
  • it has the effect of enabling finer color adjustment.
  • the quantum dot layer 12 and the phosphor layer 13 are formed.
  • the deterioration rate of the light emitting material is different, it is possible to reduce an unintended change in the light emission spectrum by adjusting the light emission balance in each region.
  • FIG. 7 schematically shows an example of the planar configuration of the wavelength conversion element 10C according to the fourth embodiment of the present disclosure. Similar to the wavelength conversion element 10B shown in FIG. 6A, the wavelength conversion element 10C has the internal space A and the temperature adjusting unit 11 in four regions (first region A, second region B, first region A, second region B, first) using the heat insulating portion 17. The temperature of the first region A and the second region B, which are divided into three regions C and the fourth region D) and arranged in parallel in the X-axis direction, is the same as in the first embodiment and the like. The temperature control region X that can be adjusted is defined, and the third region C and the fourth region D are defined as a constant temperature region Y that is used in a constant temperature state.
  • the constant temperature region Y is for keeping the temperature of the quantum dot layer 12 placed above the temperature adjusting unit 11 constant by using, for example, latent heat cooling.
  • the constant temperature region Y can be formed, for example, by arranging an integrated heat spreader such as a vapor chamber in place of the Perche element or heater constituting the temperature adjusting unit 11.
  • a part of the plurality of regions is set as a constant temperature region for keeping the temperature of the quantum dot layer 12 constant.
  • two regions are temperature control regions X and the remaining two regions are constant temperature regions. I made it Y.
  • the temperature control region X it is possible to obtain a stable light output from the constant temperature region Y while changing the wavelength of the output light more actively, as in the first embodiment. .. Therefore, in addition to the effect of the above-described embodiment, it is possible to suppress power consumption while stably extracting light having a desired wavelength.
  • FIG. 8 shows an example of the configuration of the optical system of the lighting device 1A according to the fifth embodiment of the present disclosure.
  • the illumination device 1A of the present embodiment is different from the first embodiment in that the fly-eye lens 31 constituting the illumination optical system 30 is a diffuser plate 32.
  • the red light Lr, the yellow light Ly, the green light Lg, and the blue light Lb emitted from the polarized dichroic mirror 24 can be homogenized by the diffuser 32 as well.
  • fly-eye lens 31 composed of a pair of fly-eye lens pairs (first fly-eye lens 31A and second fly-eye lens 31B) is shown.
  • the same effect can be obtained by using a double-sided fly-eye lens.
  • the same effect as when the fly-eye lens 31 or the diffusion plate 32 is provided can be obtained, and the number of parts can be further reduced. It will be possible.
  • FIG. 9 shows an example of the configuration of the optical system 40 of the lighting device 1B according to the sixth embodiment of the present disclosure.
  • the balance used as the excitation light EL and the blue light Lb of the blue laser LB emitted from the light source unit 21 is arranged between the lens 22 and the polarized dichroic mirror 24.
  • An example of adjusting in No. 23 is shown, but the adjustment is not limited to this.
  • the retardation plate 41 is arranged between the light source unit 21 and the polarized dichroic mirror 24, and the excitation light of the blue laser LB emitted from the light source unit 21 before being incident on the polarized dichroic mirror 24 is provided. It differs from the first embodiment in that the balance used as EL and blue light Lb is adjusted.
  • the optical system 40 includes a lens 22, a polarized dichroic mirror 24, retardation plates 41 and 42, and a reflection mirror 43.
  • Each member constituting the optical system 40 is of light (each color light Lr, Ly, Lg, Lb) emitted from the wavelength conversion element 10 side in this order by the lens 22 and the polarizing dichroic mirror 24 from the wavelength conversion element 10 side. It is located on the optical path.
  • the light source unit 21 is arranged in a direction orthogonal to the optical path of the light emitted from the wavelength conversion element 10 and at a position facing one light incident surface of the polarized dichroic mirror 24, and is polarized with the light source unit 21.
  • a retardation plate 41 is arranged between the dichroic mirror 24 and the dichroic mirror 24.
  • the retardation plate 42 and the reflection mirror 43 are arranged in this order at positions of the polarized dichroic mirror 24 facing the incident surface opposite to the incident surface facing the light source unit 21.
  • the retardation plate 41 is, for example, a ⁇ / 2 wavelength plate, and emits light with a phase difference of ⁇ / 2 (180 °) with respect to the incident light.
  • the retardation plate 41 of the present embodiment is for adjusting the balance of the blue laser LB emitted from the light source unit 21 as the excitation light EL and the blue light Lb.
  • the retardation plate 42 is, for example, a ⁇ / 4 wavelength plate, and emits light with a phase difference of ⁇ / 4 (90 °) with respect to the incident light.
  • the reflection mirror 43 reflects the blue light Lb transmitted through the retardation plate 42 toward the retardation plate 42 again.
  • the lens 22, the polarized dichroic mirror 24, the retardation plates 41 and 42, and the reflection mirror 43 are used, and the retardation plate 41 emits light from the light source unit 21.
  • the balance of the excited light EL and the blue light Lb constituting the illumination light is adjusted, and the blue laser LB (blue light Lb) transmitted through the polarized dichroic mirror 24 is transmitted by the retardation plate 42 and the reflection mirror 43.
  • the light was made to enter the polarized dichroic mirror 24 again.
  • the lighting device 1B of the present embodiment it is possible to form a small and highly efficient white light source as in the first embodiment.
  • FIG. 10 shows an example of the configuration of the lighting device 2 according to the seventh embodiment of the present disclosure.
  • the illuminating device 2 of the present embodiment is used, for example, as natural light illumination, and a reflection mirror 51 and a light diffusing window are attached to the tip of the fly-eye lens 31 of the illuminating device 1 described in the first embodiment. 52 are arranged in this order.
  • the reflection mirror 51 is for reflecting the homogenized light L emitted from the fly-eye lens 31 toward the light diffusion window 52.
  • the number of reflection mirrors 51 is not limited to one, and two or more reflection mirrors 51 may be used. Further, by using a concave mirror as the reflection mirror 51, the optical distance can be shortened.
  • the light diffusion window 52 reproduces a deep blue sky.
  • the light diffusion window 52 is formed by using, for example, an acrylic plate containing nanoparticles such as titanium oxide (TiO 2 ), and the light L incident on the light diffusion window 52 is Rayleigh scattered by the nanoparticles and used as pseudo-natural light. It is emitted.
  • the reflection mirror 51 and the light diffusion window 52 are arranged at the tip of the fly-eye lens 31 of the lighting device 1 described in the first embodiment. Therefore, it is possible to reproduce a deep blue sky. Therefore, it is possible to reduce the size and weight as compared with the lighting device that illuminates the pseudo-sunlight using the above-mentioned LED.
  • the lighting device 2 of the present embodiment for example, it is possible to reproduce a change in the color of the sky with the passage of time.
  • FIG. 11 shows an example of the configuration of the lighting device 3 according to the eighth embodiment of the present disclosure.
  • the lighting device 3 of the present embodiment is used, for example, as natural light lighting, like the lighting device 2 of the seventh embodiment.
  • the lens 53 and the light diffusion window 54 are arranged in this order at the tip of the fly-eye lens 31 of the lighting device 1 described in the first embodiment.
  • the lens 53 is for condensing the homogenized light L emitted from the fly-eye lens 31 onto, for example, the incident surface 54S1 of the waveguide type light diffusion window 54.
  • the light diffusion window 54 is, for example, a waveguide type light diffusion window as described above.
  • an acrylic plate containing nanoparticles such as titanium oxide (TiO 2) is used. It is formed.
  • the lens 53 and the waveguide type light diffusion window 54 are attached to the tip of the fly-eye lens 31 of the illuminating device 1 described in the first embodiment. I tried to arrange them in order. This makes it possible to realize a lighting device capable of smaller natural light illumination as compared with the lighting device 2 in the seventh embodiment.
  • FIG. 12 shows an example of the configuration of the optical system 60 of the lighting device 4 according to the ninth embodiment of the present disclosure.
  • the optical system 60 of the present embodiment uses a retardation plate 61 having a function as a dichroic mirror on the light incident surface (for example, the surface 61S1) instead of the retardation plate 23 of the optical system 20 shown in FIG.
  • a retardation plate 61 having a function as a dichroic mirror on the light incident surface (for example, the surface 61S1) instead of the retardation plate 23 of the optical system 20 shown in FIG.
  • the retardation plate 61 has a function that the light incident surface (for example, the surface 61S1) selectively reflects light in a wavelength band corresponding to blue, for example, and transmits light in other wavelength bands. It is a surface to have.
  • the retardation plate 61 of the present embodiment is provided with a transmission region 61X having a high transmittance of blue light on a part (for example, a central portion) of the surface 61S1.
  • the blue laser LB emitted from the light source unit 21 the blue laser LB incident on other than the transmission region 61X is reflected as blue light Lb toward the polarized dichroic mirror 24, and the blue laser incident on the transmission region 61X.
  • the LB is emitted toward the wavelength conversion element 10 as the excitation light EL. Further, the colored lights Lr, Ly, Lg, and Lb emitted from the wavelength conversion element 10 are emitted toward the polarized dichroic mirror 24 through the transmission region 61X of the retardation plate 61.
  • the light incident surface (for example, the surface 61S1) has a function as a dichroic mirror between the lens 22 and the polarized dichroic mirror 24, and one of the surfaces 61S1.
  • a retardation plate 61 having a transmission region 61X is arranged in the portion. This makes it possible to produce light containing white light Lw as part of the blue light Lb. By causing this light to enter the illumination optical system of the illumination devices 2 and 3 according to the seventh and eighth embodiments, sunlight can be expressed in a deep blue sky. Therefore, it is possible to realize the lighting device 4 capable of natural light illumination having higher reality.
  • FIG. 14 schematically shows an example of the cross-sectional configuration of the wavelength conversion element 70A according to the tenth embodiment of the present disclosure.
  • the wavelength conversion element 70A excites each color light Lr, Ly, Lg emitted in the quantum dot layer 12 and the phosphor layer 13 and the excitation light EL (blue light Lb) transmitted through the quantum dot layer 12 and the phosphor layer 13. It is a so-called transmission type wavelength conversion element that is taken out from the side opposite to the incident direction of the optical EL.
  • the wavelength conversion element 70A includes, for example, the temperature adjusting unit 11, the quantum dot layer 12, the phosphor layer 13, the light distribution control structure 14, and the reflection, similarly to the wavelength conversion element 10A of the second embodiment. It has a film 15, a dichroic mirror 16, and heat insulating portions 17 and 18.
  • the light transmitting unit 71 is provided at a position corresponding to the opening 14H of the light distribution control structure 14 of the temperature adjusting unit 11.
  • a glass substrate for example, soda glass, quartz, sapphire glass, crystal, or the like can be used.
  • the temperature adjusting unit 11 transmits the excitation light EL (blue light Lb) transmitted through the quantum dot layer 12 and the phosphor layer 13 as well as the colored lights Lr, Ly, Lg emitted in the quantum dot layer 12 and the phosphor layer 13. It is possible to take out from the lower surface (surface 11S2) side of the.
  • FIG. 15 schematically shows an example of the cross-sectional configuration of the wavelength conversion element 70B according to the eleventh embodiment of the present disclosure.
  • the wavelength conversion element 70B is the same as the wavelength conversion element 70A of the tenth embodiment, in which the colored lights Lr, Ly, Lg and the quantum dot layer 12 and the phosphor emitted in the quantum dot layer 12 and the phosphor layer 13 are emitted.
  • This is a so-called transmission type wavelength conversion element that extracts the excitation light EL (blue light Lb) transmitted through the layer 13 from the side opposite to the incident direction of the excitation light EL.
  • the wavelength conversion element 70B of the present embodiment has a light distribution control structure 74A having a parabolic surface (surface 74S1) with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11 and the lower surface (surface 16S2) of the dichroic mirror 16.
  • the quantum dot layer 12 is arranged along the paraboloid surface (plane 74S1) of the light distribution control structure 74A.
  • the phosphor layer 13 is formed along the paraboloid (plane 74S2) of the optical control structure 74B.
  • Reflective films 15 are formed on the paraboloid surface (surface 74S1) of the light distribution control structure 74A and the paraboloid surface (surface 74S2) of the light distribution control structure 74B, respectively.
  • the wavelength conversion element 70A or the wavelength conversion element 70B in the lighting device for example, the lighting device 1 of the present disclosure, for example, the excitation light EL and the light emitted to the dichroic mirror 16 side (red light Lr, The polarized dichroic mirror 24 that separates the yellow light Ly and the green light Lg) becomes unnecessary. Therefore, in addition to the effect of the first embodiment, it is possible to reduce the size of the entire lighting device.
  • the color adjustment system 100 includes a light source device 110, a sensor unit 120, a control unit 130, and an adjustment unit 140.
  • FIG. 17 shows an example of the configuration of the color adjustment system 100.
  • the light source device 110 corresponds to, for example, an optical system 20 including the above-mentioned wavelength conversion element (for example, wavelength conversion element 10) and the light source unit 21.
  • the light source device 110 may include an illumination optical system 30 such as a fly-eye lens 31.
  • the sensor unit 120 has, for example, a function of acquiring information on the emission spectrum of the light emitted from the light source device 110 or the amount of light having a specific wavelength. For example, the sensor unit 120 senses all wavelengths or specific wavelengths in the visible light region, and outputs information indicating the sensing result to the control unit 130.
  • the sensor unit 120 transfers light L including the colored lights Lr, Ly, Lg emitted from the wavelength conversion element 10 and the blue laser LB (blue light Lb) emitted from the light source unit 21 to, for example, the illumination optical system 30. It can be installed on the surface of the reflection mirror 25 for guiding, for example, on the surface opposite to the reflection surface.
  • the control unit 130 functions as an arithmetic processing unit and a control device, and controls the operation of the adjustment unit 140 (specifically, the temperature adjustment unit 11).
  • the control unit 130 is composed of, for example, a CPU (Central Processing Unit) or a microprocessor.
  • the adjusting unit 140 corresponds to, for example, the temperature adjusting unit 11 of the wavelength conversion element 10.
  • the adjusting unit 140 may add an adjusting mechanism for adjusting the irradiation position of the excitation light EL on the wavelength conversion element 10, the rotation angle of the retardation plate 23, and the like.
  • the illuminating device for example, illuminating device 1 of the present disclosure
  • the color adjusting system 100 by using the color adjusting system 100, it is possible to adjust the light emitted from the wavelength conversion element 10 to a desired emission spectrum.
  • the color tone of the light emitted from the light source device 110 by adding a RAM (Random Access Memory) or the like that temporarily stores parameters and the like that change appropriately to the control unit 130 or by receiving a signal from the outside. Can be changed continuously or stepwise.
  • a RAM Random Access Memory
  • the present disclosure is not limited to the above embodiments and the like, and various modifications are possible.
  • the arrangement and number of components such as the optical system 20 and the illumination optical system 30 illustrated in the above-described embodiment are merely examples, and it is not necessary to include all the components, and other components. May be further provided.
  • the color adjustment system described as an application example of the lighting device (for example, the lighting device 1) of the above embodiment is an example, and is not limited to the above.
  • the lighting device of the present disclosure includes a headlamp of an automobile, a light source for lighting up, and a medical device. It can be applied to the light source unit.
  • the present technology can also have the following configurations.
  • the temperature adjusting unit sets the second wavelength conversion layer having higher temperature sensitivity among the first wavelength conversion layer and the second wavelength conversion layer having different temperature sensitivities and emission wavelengths from each other. It was installed on the side. This makes it possible to actively change the wavelength of the output light. Therefore, it is possible to provide a lighting device capable of efficiently performing color adjustment.
  • the first wavelength control unit is arranged between the temperature control unit and the first wavelength conversion layer, and absorbs at least one of the light emitted from the light source unit and the light in the first wavelength band as excitation light.
  • a lighting device including a second wavelength conversion layer that emits light in a second wavelength band different from the light in the wavelength band and has a higher temperature sensitivity than the first wavelength conversion layer. (2) It is arranged in at least a part between the temperature adjusting unit and the second wavelength conversion layer, controls the light distribution direction of the light in the first wavelength band and the light in the second wavelength band, and at the same time, controls the light distribution direction.
  • the lighting device according to (2) wherein the light distribution control structure has a light distribution control surface that is inclined with respect to the one surface of the temperature adjusting unit.
  • the second wavelength conversion layer is formed from the one surface of the temperature adjusting unit along the light distribution control surface.
  • the illuminating device according to (4) further comprising a light reflecting film between the one surface of the temperature adjusting unit, the light distribution control surface, and the second wavelength conversion layer.
  • a color separator is further provided above the first wavelength conversion layer.
  • an internal space composed of the temperature control section, the light distribution control structure, and the color separation section is formed.
  • the temperature adjusting unit has a plurality of regions including a first region and a second region on the one surface.
  • the second wavelength conversion layer provided in each of the first region and the second region emits light in wavelength bands different from each other as light in the second wavelength band (1).
  • (12) The lighting device according to (11), further comprising a second heat insulating portion that separates the first region and the second region.
  • the temperature adjusting unit has, as the plurality of regions, a constant temperature region that keeps the temperature of the second wavelength conversion layer constant and a temperature control region that can adjust the temperature of the second wavelength conversion layer.
  • the second wavelength conversion layer is formed to include a plurality of quantum dots.
  • the temperature adjusting unit is formed by using a Perche element or a heater.
  • the temperature adjusting unit is partially formed of a member having light transmittance.
  • a retardation plate is further arranged on the optical path of the light emitted from the first wavelength conversion layer and the second wavelength conversion layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)

Abstract

An illuminating device according to an embodiment of the present disclosure is provided with: a light source portion; a temperature adjusting portion having one surface; a first wavelength converting layer which is disposed on said one surface side of the temperature adjusting portion, and which absorbs light emitted from the light source portion as exciting light and emits light in a first wavelength band; and a second wavelength converting layer which is disposed between the temperature adjusting portion and the first wavelength converting layer, absorbs at least one of the light emitted from the light source portion and the light in the first wavelength band as exciting light and emits light in a second wavelength band different from the wavelength band of the light in the first wavelength band, and which has a temperature sensitivity higher than that of the first wavelength converting layer.

Description

照明装置Lighting device
 本開示は、例えば、発光材料として蛍光体や量子ドットを用いた照明装置に関する。 The present disclosure relates to, for example, a lighting device using a phosphor or quantum dots as a light emitting material.
 例えば、特許文献1では、発光素子、ルミネセンス層および温度制御手段を含む色調整可能照明アセンブリが開示されている。 For example, Patent Document 1 discloses a color-adjustable lighting assembly including a light emitting element, a luminescence layer, and a temperature control means.
特表2015-508558号公報Japanese Patent Application Laid-Open No. 2015-508558
 ところで、色調整が可能な照明装置では、色調整の効率化が求められている。 By the way, in a lighting device capable of color adjustment, it is required to improve the efficiency of color adjustment.
 よって、色調整を効率よく行うことが可能な照明装置を提供することが望ましい。 Therefore, it is desirable to provide a lighting device that can efficiently perform color adjustment.
 本開示の一実施形態の照明装置は、光源部と、一の面を有する温度調整部と、温度調整部の一の面側に配置され、光源部から出射された光を励起光として吸収して第1の波長帯域の光を出射する第1の波長変換層と、温度調整部の第1の波長変換層との間に配置され、光源部から出射された光および第1の波長の光の少なくとも一方を励起光として吸収して第1の波長帯域の光とは波長帯域の異なる第2の波長帯域の光を出射すると共に、第1の波長変換層よりも高い温度感度を有する第2の波長変換層とを備えたものである。 The illumination device of the embodiment of the present disclosure is arranged on the light source unit, the temperature adjusting unit having one surface, and one surface side of the temperature adjusting unit, and absorbs the light emitted from the light source unit as excitation light. The light emitted from the light source unit and the light of the first wavelength are arranged between the first wavelength conversion layer that emits the light of the first wavelength band and the first wavelength conversion layer of the temperature adjusting unit. It absorbs at least one of the above as excitation light, emits light in a second wavelength band different from that in the first wavelength band, and has a second temperature sensitivity higher than that of the first wavelength conversion layer. It is provided with a wavelength conversion layer of.
 本開示の一実施形態の照明装置では、互いに温度感度および出射波長の異なる第1の波長変換層および第2の波長変換層のうち、より高い温度感度を有する第2の波長変換層を温度調整部側に設けることにより、出力される光の波長をアクティブに変化させる。 In the lighting device of the embodiment of the present disclosure, the temperature of the second wavelength conversion layer having higher temperature sensitivity is adjusted among the first wavelength conversion layer and the second wavelength conversion layer having different temperature sensitivities and emission wavelengths from each other. By providing it on the part side, the wavelength of the output light is actively changed.
本開示の第1の実施の形態に係る照明装置を構成する波長変換素子の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the wavelength conversion element which comprises the lighting apparatus which concerns on 1st Embodiment of this disclosure. 図1に示した波長変換素子の平面模式図である。It is a plane schematic diagram of the wavelength conversion element shown in FIG. 本開示の第1の実施の形態に係る照明装置の光学系の構成の一例を表す概略図である。It is the schematic which shows an example of the structure of the optical system of the lighting apparatus which concerns on 1st Embodiment of this disclosure. 蛍光体粒子および量子ドットの温度感度を表す特性図である。It is a characteristic diagram which shows the temperature sensitivity of a phosphor particle and a quantum dot. 本開示の第2の実施の形態に係る波長変換素子の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the wavelength conversion element which concerns on 2nd Embodiment of this disclosure. 本開示の第3の実施の形態に係る波長変換素子の構成の一例を表す平面模式図である。It is a plan schematic diagram which shows an example of the structure of the wavelength conversion element which concerns on 3rd Embodiment of this disclosure. 本開示の第3の実施の形態に係る波長変換素子の構成の他の例を表す平面模式図である。It is a top view which shows the other example of the structure of the wavelength conversion element which concerns on 3rd Embodiment of this disclosure. 本開示の第4の実施の形態に係る波長変換素子の構成の一例を表す平面模式図である。It is a plan schematic diagram which shows an example of the structure of the wavelength conversion element which concerns on 4th Embodiment of this disclosure. 本開示の第5の実施の形態に係る照明装置の光学系の構成の一例を表す概略図である。It is the schematic which shows an example of the structure of the optical system of the lighting apparatus which concerns on 5th Embodiment of this disclosure. 本開示の第6の実施の形態に係る照明装置の光学系の構成の一例を表す概略図である。It is the schematic which shows an example of the structure of the optical system of the lighting apparatus which concerns on 6th Embodiment of this disclosure. 本開示の第7の実施の形態に係る照明装置の構成の一例を表す概略図である。It is the schematic which shows an example of the structure of the lighting apparatus which concerns on 7th Embodiment of this disclosure. 本開示の第8の実施の形態に係る照明装置の構成の一例を表す概略図である。It is the schematic which shows an example of the structure of the lighting apparatus which concerns on 8th Embodiment of this disclosure. 本開示の第9の実施の形態に係る照明装置の構成の一例を表す概略図である。It is the schematic which shows an example of the structure of the lighting apparatus which concerns on 9th Embodiment of this disclosure. 図12に示した位相差板の構成の一例を表す平面模式図である。It is a plane schematic diagram which shows an example of the structure of the retardation plate shown in FIG. 本開示の第10の実施の形態に係る照明装置を構成する波長変換素子の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the wavelength conversion element which comprises the lighting apparatus which concerns on 10th Embodiment of this disclosure. 本開示の第11の実施の形態に係る照明装置を構成する波長変換素子の構成の一例を表す断面模式図である。It is sectional drawing which shows an example of the structure of the wavelength conversion element which comprises the lighting apparatus which concerns on 11th Embodiment of this disclosure. 本開示の照明装置を用いた色調整システムの一例を表すブロック図である。It is a block diagram which shows an example of the color adjustment system using the lighting apparatus of this disclosure. 図16に示した色調整システムを備えた照明装置の概略図である。It is the schematic of the lighting apparatus provided with the color adjustment system shown in FIG.
 以下、本開示における実施の形態について、図面を参照して詳細に説明する。以下の説明は本開示の一具体例であって、本開示は以下の態様に限定されるものではない。また、本開示は、各図に示す各構成要素の配置や寸法、寸法比等についても、それらに限定されるものではない。なお、説明する順序は、下記の通りである。
 1.第1の実施の形態(量子ドット層と蛍光体層とを温度調整部側からこの順に積層した例)
   1-1.波長変換素子の構成
   1-2.照明装置の構成
   1-3.作用・効果
 2.第2の実施の形態(量子ドット層と蛍光体層との間に断熱部を設けた例)
 3.第3の実施の形態(温度調整部および内部空間をさらに複数の領域に分割した例)
 4.第4の実施の形態(温度調整部に温調領域と恒温領域とを設けた例)
 5.第5の実施の形態(光学系の他の例)
 6.第6の実施の形態(光学系の他の例)
 7.第7の実施の形態(自然光照明を構成する光学系の一例)
 8.第8の実施の形態(自然光照明を構成する光学系の他の例)
 9.第9の実施の形態(青色分離照明を構成する光学系の例)
 10.第10の実施の形態(透過型の波長変換素子の一例)
 11.第11の実施の形態(透過型の波長変換素子の他の例)
 12.第12の実施の形態(色調整システムの例)
Hereinafter, embodiments in the present disclosure will be described in detail with reference to the drawings. The following description is a specific example of the present disclosure, and the present disclosure is not limited to the following aspects. Further, the present disclosure is not limited to the arrangement, dimensions, dimensional ratio, etc. of each component shown in each figure. The order of explanation is as follows.
1. 1. The first embodiment (an example in which the quantum dot layer and the phosphor layer are laminated in this order from the temperature adjusting unit side).
1-1. Configuration of wavelength conversion element 1-2. Configuration of lighting equipment 1-3. Action / effect 2. Second embodiment (example in which a heat insulating portion is provided between the quantum dot layer and the phosphor layer)
3. 3. Third embodiment (example in which the temperature control unit and the internal space are further divided into a plurality of regions)
4. Fourth embodiment (example in which a temperature control region and a constant temperature region are provided in the temperature control unit)
5. Fifth Embodiment (Other Examples of Optical Systems)
6. Sixth Embodiment (Other Examples of Optical Systems)
7. Seventh Embodiment (an example of an optical system constituting natural light illumination)
8. Eighth Embodiment (Other Examples of Optical Systems Constituting Natural Light Illumination)
9. Ninth Embodiment (Example of an optical system constituting blue separation illumination)
10. Tenth Embodiment (An example of a transmission type wavelength conversion element)
11. Eleventh embodiment (another example of a transmission type wavelength conversion element)
12. 12th Embodiment (Example of color adjustment system)
<1.第1の実施の形態>
 図1は、本開示の第1の実施の形態に係る照明装置(照明装置1、図3参照)を構成する波長変換素子10の断面構成の一例を模式的に表したものである。図2は、図1に示した波長変換素子10の平面構成の一例を模式的に表したものであり、図1は、図2に示したI-I線における断面を表している。波長変換素子10は、後述する照明装置1の光源として用いられるものである。
<1. First Embodiment>
FIG. 1 schematically shows an example of a cross-sectional configuration of a wavelength conversion element 10 constituting a lighting device (see lighting devices 1 and 3) according to the first embodiment of the present disclosure. FIG. 2 schematically shows an example of the planar configuration of the wavelength conversion element 10 shown in FIG. 1, and FIG. 1 shows a cross section taken along line II shown in FIG. The wavelength conversion element 10 is used as a light source of the lighting device 1 described later.
(1-1.波長変換素子の構成)
 波長変換素子10は、温度調整部11と、量子ドット層12と、蛍光体層13とを有しており、量子ドット層12および蛍光体層13は、温度調整部11側からこの順に積層されている。この温度調整部11が、本開示の「温度調整部」の一具体例に相当する。量子ドット層12は、本開示の「第2の波長変換層」の一具体例に相当し、蛍光体層13は、本開示の「第1の波長変換層」の一具体例に相当する。
(1-1. Configuration of wavelength conversion element)
The wavelength conversion element 10 has a temperature adjusting unit 11, a quantum dot layer 12, and a phosphor layer 13, and the quantum dot layer 12 and the phosphor layer 13 are laminated in this order from the temperature adjusting unit 11 side. ing. The temperature adjusting unit 11 corresponds to a specific example of the "temperature adjusting unit" of the present disclosure. The quantum dot layer 12 corresponds to a specific example of the "second wavelength conversion layer" of the present disclosure, and the phosphor layer 13 corresponds to a specific example of the "first wavelength conversion layer" of the present disclosure.
 波長変換素子10は、さらに、温度調整部11の上面(面11S1)に、例えば、温度調整部11の上面(面11S1)に対して放物面(面14S1)を有する配光制御構造14を有している。温度調整部11の上面(面11S1)と対向する配光制御構造14の下面(面14S2)は、一部が開口しており、温度調整部11の上面(面11S1)が露出している。この露出した温度調整部11の上面(面11S1)および配光制御構造14の放物面(面14S1)には、例えば反射膜15が形成されており、量子ドット層12および蛍光体層13は、反射膜15を介して、温度調整部11の上面(面11S1)から配光制御構造14の放物面(面14S1)に沿って形成されている。この配光制御構造14が、本開示の「配光制御構造」の一具体例に相当し、放物面(面14S1)が、本開示の「配光制御面」の一具体例に相当する。 The wavelength conversion element 10 further includes a light distribution control structure 14 having a parabolic surface (surface 14S1) on the upper surface (surface 11S1) of the temperature adjusting unit 11, for example, with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11. Have. The lower surface (surface 14S2) of the light distribution control structure 14 facing the upper surface (surface 11S1) of the temperature adjusting unit 11 is partially open, and the upper surface (surface 11S1) of the temperature adjusting unit 11 is exposed. For example, a reflective film 15 is formed on the upper surface (surface 11S1) of the exposed temperature adjusting unit 11 and the paraboloid surface (surface 14S1) of the light distribution control structure 14, and the quantum dot layer 12 and the phosphor layer 13 are formed. , It is formed from the upper surface (surface 11S1) of the temperature adjusting unit 11 along the parabolic surface (surface 14S1) of the light distribution control structure 14 via the reflective film 15. The light distribution control structure 14 corresponds to a specific example of the "light distribution control structure" of the present disclosure, and a parabolic surface (surface 14S1) corresponds to a specific example of the "light distribution control surface" of the present disclosure. ..
 波長変換素子10は、さらに、温度調整部11の上面(面11S1)の上方にダイクロイックミラー16を有している。ダイクロイックミラー16は、例えば、配光制御構造14の周縁部と接続されており、このダイクロイックミラー16の上面(面16S1)が、励起光ELおよび各色光Lr,Ly,Lg,Lbの入出射面(面S1)となっている。即ち、波長変換素子10は、温度調整部11、配光制御構造14およびダイクロイックミラー16から構成される、例えば密閉された内部空間Aを有しており、量子ドット層12および蛍光体層13は、この内部空間A内に形成されている。このダイクロイックミラー16が、本開示の「色分離部」の一具体例に相当する。 The wavelength conversion element 10 further has a dichroic mirror 16 above the upper surface (surface 11S1) of the temperature adjusting unit 11. The dichroic mirror 16 is connected to, for example, the peripheral edge of the light distribution control structure 14, and the upper surface (surface 16S1) of the dichroic mirror 16 is an entrance / exit surface of the excitation light EL and the respective color lights Lr, Ly, Lg, and Lb. (Surface S1). That is, the wavelength conversion element 10 has, for example, a closed internal space A composed of a temperature adjusting unit 11, a light distribution control structure 14, and a dichroic mirror 16, and the quantum dot layer 12 and the phosphor layer 13 are formed. , It is formed in this internal space A. The dichroic mirror 16 corresponds to a specific example of the "color separation unit" of the present disclosure.
 波長変換素子10は、さらに内部空間Aおよび温度調整部11を複数(例えば、2つ)の領域(第1領域A,第2領域B)に分割する断熱部17を有している。これにより、第1領域Aおよび第2領域Bのそれぞれに設けられた量子ドット層12(12A,12B)の温度を独立して制御できるようになっている。 The wavelength conversion element 10 further has a heat insulating portion 17 that further divides the internal space A and the temperature adjusting portion 11 into a plurality of (for example, two) regions (first region A and second region B). As a result, the temperatures of the quantum dot layers 12 (12A, 12B) provided in each of the first region A and the second region B can be controlled independently.
 以下、各部の構成について詳細に説明する。 The configuration of each part will be explained in detail below.
 温度調整部11は、量子ドット層12の温度を調整するためのものであり、例えば、上面(面11S1)および下面(面11S2)を有する板状形状を有している。温度調整部11としては、例えば、ペルチェ素子やヒータを用いることができる。 The temperature adjusting unit 11 is for adjusting the temperature of the quantum dot layer 12, and has, for example, a plate-like shape having an upper surface (surface 11S1) and a lower surface (surface 11S2). As the temperature adjusting unit 11, for example, a Perche element or a heater can be used.
 量子ドット層12は、例えば、発光材料として複数の量子ドットを含んで形成されたものであり、励起光ELや、後述する蛍光体層13から出射された光(例えば、黄色光Ly)により励起されて、励起光ELの波長帯域とは異なる波長帯域の光を発するものである。量子ドット層12は、例えば、複数の量子ドットを、光透過性を有する樹脂バインダや無機ガラスバインダに分散させることで形成することができる。この他、量子ドット層12としては、例えば、複数の量子ドットを焼成することによって得られるセラミックスを用いることができる。量子ドットは、一般に数nmの粒径を有する半導体ナノ粒子である。量子ドットとしては、例えば、CdE(E=硫黄(S),セレン(Se),テルル(Te))系材料やInAs系材料あるいはInP系材料が挙げられる。量子ドット層12は、上記材料からなる量子ドットを、1種または2種以上含んで形成することができる。例えば、波長幅の狭い複数種類の量子ドットを混合して用いることにより、量子ドット層12からはブロードな波長を得ることが可能となる。量子ドット層12の膜厚は、例えば、100nm以上300μm以下である。 The quantum dot layer 12 is formed, for example, by including a plurality of quantum dots as a light emitting material, and is excited by an excitation light EL or light emitted from a phosphor layer 13 described later (for example, yellow light Ly). Therefore, it emits light in a wavelength band different from the wavelength band of the excitation light EL. The quantum dot layer 12 can be formed, for example, by dispersing a plurality of quantum dots in a resin binder or an inorganic glass binder having light transmittance. In addition, as the quantum dot layer 12, for example, ceramics obtained by firing a plurality of quantum dots can be used. Quantum dots are generally semiconductor nanoparticles having a particle size of several nm. Examples of the quantum dots include CdE (E = sulfur (S), selenium (Se), tellurium (Te)) materials, InAs materials, and InP materials. The quantum dot layer 12 can be formed by including one type or two or more types of quantum dots made of the above materials. For example, by mixing and using a plurality of types of quantum dots having a narrow wavelength width, it is possible to obtain a broad wavelength from the quantum dot layer 12. The film thickness of the quantum dot layer 12 is, for example, 100 nm or more and 300 μm or less.
 本実施の形態では、上記のように、内部空間Aおよび温度調整部11が第1領域Aおよび第2領域Bの2つの領域に分かれている。第1領域Aおよび第2領域Bにそれぞれ設けられる量子ドット層12Aおよび量子ドット層12Bは、例えば、互いに異なる波長帯域の光を発するように形成されている。例えば量子ドット層12Aは、光源部21(図3参照)から出射される、例えば青色光(励起光EL)により励起されて、例えば赤色に対応する波長帯域の光(赤色光Lr)を発する1または複数種類の量子ドットを含んで形成されている。例えば量子ドット層12Bは、光源部21から出射される、例えば青色光(励起光EL)により励起されて、例えば緑色に対応する波長帯域の光(緑色光Lg)を発する1または複数種類の量子ドットを含んで形成されている。これら赤色光Lrおよび緑色光Lgが、本開示の「第2の波長帯域の光」の一具体例に相当する。 In the present embodiment, as described above, the internal space A and the temperature adjusting unit 11 are divided into two regions, a first region A and a second region B. The quantum dot layer 12A and the quantum dot layer 12B provided in the first region A and the second region B, respectively, are formed so as to emit light having wavelength bands different from each other, for example. For example, the quantum dot layer 12A is excited by, for example, blue light (excitation light EL) emitted from the light source unit 21 (see FIG. 3), and emits light (red light Lr) in a wavelength band corresponding to, for example, red. Alternatively, it is formed by including a plurality of types of quantum dots. For example, the quantum dot layer 12B is excited by, for example, blue light (excitation light EL) emitted from the light source unit 21, and emits light (green light Lg) in a wavelength band corresponding to, for example, green. It is formed including dots. These red light Lr and green light Lg correspond to a specific example of "light in the second wavelength band" of the present disclosure.
 なお、量子ドット層12を形成する発光材料は、後述する蛍光体層13を構成する蛍光体粒子よりも温度感度が高い、換言すると、温度依存性が高いものであればよく、量子ドットの他に、例えば有機色素や無機蛍光体を発光材料として用いることができる。 The light emitting material forming the quantum dot layer 12 may have a higher temperature sensitivity than the phosphor particles constituting the phosphor layer 13 described later, in other words, a material having a high temperature dependence, and other than the quantum dots. In addition, for example, an organic dye or an inorganic phosphor can be used as a light emitting material.
 蛍光体層13は、例えば、発光材料として複数の蛍光体粒子を含むものであり、励起光ELによって励起されて、励起光ELの波長帯域とは異なる波長帯域の光を発するものである。蛍光体層13は、例えば、所謂セラミックス蛍光体を用いることができる。この他、蛍光体層13は、量子ドット層12と同様に、例えば、複数の蛍光体粒子を、光透過性を有する樹脂バインダや無機ガラスバインダに分散させることで形成することができる。蛍光体粒子として、例えばCe:YAG(イットリウム・アルミニウム・ガーネット)系材料、Ce:LuAG系材料、Eu:SCASN系材料、Eu:SiAlON系材料が挙げられる。蛍光体層13は、量子ドット層12と同様に、上記材料からなる蛍光体粒子を、1種または2種以上含んで形成することができる。蛍光体層13の膜厚は、例えば、10μm以上300μm以下である。 The phosphor layer 13 contains, for example, a plurality of phosphor particles as a light emitting material, and is excited by the excitation light EL to emit light in a wavelength band different from the wavelength band of the excitation light EL. For the phosphor layer 13, for example, a so-called ceramic phosphor can be used. In addition, the phosphor layer 13 can be formed, for example, by dispersing a plurality of phosphor particles in a light-transmitting resin binder or an inorganic glass binder, similarly to the quantum dot layer 12. Examples of the phosphor particles include Ce: YAG (yttrium aluminum garnet) -based material, Ce: LuAG-based material, Eu: SCASN-based material, and Eu: SiAlON-based material. Similar to the quantum dot layer 12, the phosphor layer 13 can be formed by containing one or more types of phosphor particles made of the above materials. The film thickness of the phosphor layer 13 is, for example, 10 μm or more and 300 μm or less.
 蛍光体層13は、量子ドット層12と同様に、第1領域Aおよび第2領域Bにそれぞれ設けられている。第1領域Aおよび第2領域Bにそれぞれ設けられた蛍光体層13Aおよび蛍光体層13は、例えば、互いに同じ波長帯域の光を発するように形成されている。例えば、蛍光体層13Aおよび蛍光体層13Bは、それぞれ、光源部21から出射される、例えば青色光(励起光EL)により励起されて、例えば黄色に対応する波長帯域の光(黄色光Ly)を発する蛍光体粒子を含んで形成されている。この黄色光が、本開示の「第1の波長帯域の光」の一具体例に相当する。 The phosphor layer 13 is provided in the first region A and the second region B, respectively, like the quantum dot layer 12. The phosphor layer 13A and the phosphor layer 13 provided in the first region A and the second region B, respectively, are formed so as to emit light having the same wavelength band as each other, for example. For example, the phosphor layer 13A and the phosphor layer 13B are each excited by, for example, blue light (excitation light EL) emitted from the light source unit 21, and for example, light in a wavelength band corresponding to yellow (yellow light Ly). It is formed to contain phosphor particles that emit light. This yellow light corresponds to a specific example of "light in the first wavelength band" of the present disclosure.
 なお、第1領域Aおよび第2領域Bにそれぞれ設けられた蛍光体層13Aおよび蛍光体層13は、互いに異なる波長帯域の光を発するように形成されていてもよい。また、蛍光体層13は、量子ドット層12よりも温度感度が低い構成であれば、蛍光体層13を構成する発光材料は、必ずしも蛍光体粒子に限定されるものではない。換言すると、蛍光体層13を構成する発光材料は、量子ドット層12を構成する発光材料よりも温度依存性の低いものであればよい。即ち、蛍光体層13は、量子ドット層12を構成する発光材料との組み合わせによっては、蛍光体粒子の他に、例えば有機色素や量子ドットを用いることができる。 The phosphor layer 13A and the phosphor layer 13 provided in the first region A and the second region B, respectively, may be formed so as to emit light having different wavelength bands from each other. Further, as long as the phosphor layer 13 has a structure having a lower temperature sensitivity than the quantum dot layer 12, the light emitting material constituting the phosphor layer 13 is not necessarily limited to the phosphor particles. In other words, the light emitting material constituting the phosphor layer 13 may have a lower temperature dependence than the light emitting material forming the quantum dot layer 12. That is, the phosphor layer 13 may use, for example, an organic dye or quantum dots in addition to the phosphor particles, depending on the combination with the light emitting material constituting the quantum dot layer 12.
 配光制御構造14は、例えば、量子ドット層12および蛍光体層13から発せられる光(各色光Lr,Lg,Ly)および量子ドット層12および蛍光体層13を透過し、青色光Lbとして用いられる一部の励起光ELの配光方向を制御して光の取り出し効率を向上させるためのものである。配光制御構造14は、例えば温度調整部11の上面(面11S1)に配置されている。配光制御構造14は、上記のように、温度調整部11の上面(面11S1)に対して放物面(面14S1)を有しており、また、放物面(面14S1)の底部に開口14Hを有している。量子ドット層12および蛍光体層13は、配光制御構造14の放物面(面14S1)および開口14H内に露出した温度調整部11の上面(面11S1)に沿って形成されている。即ち、量子ドット層12の一部は、配光制御構造14を介して温度制御されるようになっている。これにより、量子ドット層12および蛍光体層13から発せられる各色光Lr,Lg,Lyおよび一部の励起光EL(以下、単に青色光Lbとする)の配光方向が制御されると共に、量子ドット層12の成膜面積が拡大し、量子ドット層12の温度を効果的に制御することが可能となる。 The light distribution control structure 14 transmits light (each color light Lr, Lg, Ly) emitted from the quantum dot layer 12 and the phosphor layer 13 and the quantum dot layer 12 and the phosphor layer 13 and is used as blue light Lb, for example. This is for controlling the light distribution direction of some of the excitation light ELs to improve the light extraction efficiency. The light distribution control structure 14 is arranged, for example, on the upper surface (surface 11S1) of the temperature adjusting unit 11. As described above, the light distribution control structure 14 has a parabolic surface (surface 14S1) with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11, and is also on the bottom of the parabolic surface (surface 14S1). It has an opening 14H. The quantum dot layer 12 and the phosphor layer 13 are formed along the parabolic surface (plane 14S1) of the light distribution control structure 14 and the upper surface (plane 11S1) of the temperature adjusting unit 11 exposed in the opening 14H. That is, the temperature of a part of the quantum dot layer 12 is controlled via the light distribution control structure 14. As a result, the light distribution directions of the colored lights Lr, Lg, Ly and a part of the excitation light EL (hereinafter, simply referred to as blue light Lb) emitted from the quantum dot layer 12 and the phosphor layer 13 are controlled, and the quantum is also controlled. The film formation area of the dot layer 12 is expanded, and the temperature of the quantum dot layer 12 can be effectively controlled.
 配光制御構造14は、熱伝導性に優れた材料を用いて形成することが好ましい。このような材料としては、例えば、銅(Cu)、アルミニウム(Al)、モリブデン(Mo)または上記いずれかを含む合金が挙げられる。この他、配光制御構造14は、例えば、窒化アルミニウム(AlN)または炭化ケイ素(SiC)を用いたセラミックスによって形成することができる。 The light distribution control structure 14 is preferably formed using a material having excellent thermal conductivity. Examples of such a material include copper (Cu), aluminum (Al), molybdenum (Mo), and alloys containing any of the above. In addition, the light distribution control structure 14 can be formed of, for example, ceramics using aluminum nitride (AlN) or silicon carbide (SiC).
 配光制御構造14の放物面(面14S1)は、図1に示したような曲面の他に、直線状の傾斜面としてもよい。また、放物面(面14S1)は、例えば粗面としてもよい。これにより、量子ドット層12を構成する量子ドットと、放物面(面14S1)との接触面積が大きくなり、量子ドット層12の温度をさらに効果的に制御することが可能となる。 The parabolic surface (surface 14S1) of the light distribution control structure 14 may be a linear inclined surface in addition to the curved surface as shown in FIG. Further, the paraboloid surface (surface 14S1) may be, for example, a rough surface. As a result, the contact area between the quantum dots constituting the quantum dot layer 12 and the paraboloid surface (plane 14S1) becomes large, and the temperature of the quantum dot layer 12 can be controlled more effectively.
 反射膜15は、配光制御構造14の放物面(面14S1)において、量子ドット層12および蛍光体層13から発せられる各色光Lr,Lg,Lyおよび青色光Lbを効率よく反射するためのものである。反射膜15は、例えば、配光制御構造14の放物面(面14S1)および配光制御構造14の開口14H内に露出した温度調整部11の上面(面11S1)に延在形成されている。反射膜15としては、例えば、銀増反射膜、アルミ増反射膜、誘電体多層膜または硫酸バリウム混合膜を用いることができる。なお、増反射膜とは、金属膜に誘電体膜が積層されたものである。 The reflective film 15 is for efficiently reflecting each color light Lr, Lg, Ly and blue light Lb emitted from the quantum dot layer 12 and the phosphor layer 13 on the parabolic surface (plane 14S1) of the light distribution control structure 14. It is a thing. The reflective film 15 is formed so as to extend over, for example, the parabolic surface (surface 14S1) of the light distribution control structure 14 and the upper surface (surface 11S1) of the temperature adjusting unit 11 exposed in the opening 14H of the light distribution control structure 14. .. As the reflective film 15, for example, a silver brightening film, an aluminum brightening film, a dielectric multilayer film, or a barium sulfate mixed film can be used. The polyreflecting film is a metal film on which a dielectric film is laminated.
 なお、反射膜15は、温度調整部11の上面(面11S1)および配光制御構造の放物面(面14S1)が十分な光反射性を有する場合には、省略することができる。 The reflective film 15 can be omitted when the upper surface (surface 11S1) of the temperature adjusting unit 11 and the parabolic surface (surface 14S1) of the light distribution control structure have sufficient light reflectivity.
 ダイクロイックミラー16は、所定の波長帯域の光の一部または全部を選択的に反射し、それ以外の波長帯域の光を透過させるものであり、本実施の形態では、例えば、励起光ELの一部を青色光Lbとして反射するものが用いられている。ダイクロイックミラー16は、例えば、ガラスやサファイア基板等の光透過性を有する部材を基材として用い、その基材の、例えば1つの面に誘電体多層膜を形成することによってミラーとしての機能を持たせたものである。ダイクロイックミラー16は、上記のように、配光制御構造14の、例えば平坦な周縁部と接続することにより、配光制御構造14の放物面(面14S1)側に、密閉された内部空間Aを形成する。即ち、量子ドット層12および蛍光体層13は、ダイクロイックミラー16によって内部空間A内に密閉封止されている。これにより、量子ドット層12および蛍光体層13に含まれる発光材料(例えば、量子ドットおよび蛍光体粒子)の信頼性を向上させることができる。 The dichroic mirror 16 selectively reflects a part or all of the light in a predetermined wavelength band and transmits the light in the other wavelength band. In the present embodiment, for example, one of the excitation light ELs. Those that reflect the part as blue light Lb are used. The dichroic mirror 16 has a function as a mirror by using a light-transmitting member such as glass or a sapphire substrate as a base material and forming a dielectric multilayer film on one surface of the base material, for example. It is a sapphire. As described above, the dichroic mirror 16 is connected to, for example, a flat peripheral edge of the light distribution control structure 14, so that the internal space A is sealed on the parabolic surface (surface 14S1) side of the light distribution control structure 14. To form. That is, the quantum dot layer 12 and the phosphor layer 13 are hermetically sealed in the internal space A by the dichroic mirror 16. Thereby, the reliability of the light emitting material (for example, quantum dots and phosphor particles) contained in the quantum dot layer 12 and the phosphor layer 13 can be improved.
 なお、ダイクロイックミラー16と配光制御構造14との接続は、例えば、接着剤を用いて物理的に接続してもよいし、あるいは、パッキン等により機械的に接続するようにしてもよい。 The dichroic mirror 16 and the light distribution control structure 14 may be physically connected by using an adhesive, or may be mechanically connected by packing or the like.
 また、ダイクロイックミラー16は、上面(面16S1)に入射する励起光ELの一部や、下面(面16S2)に入射する、量子ドット層12および蛍光体層13から発せられる各色光Lr,Lg,Lyおよび青色光Lbが透過する部分(透光部)以外は、他の部材によって形成されていてもよい。例えば、透光部の周囲の、例えば配光制御構造14と接続される部分は、配光制御構造14と同じ部材によって形成されていてもよい。 Further, the dichroic mirror 16 includes a part of the excitation light EL incident on the upper surface (surface 16S1) and the colored lights Lr, Lg, emitted from the quantum dot layer 12 and the phosphor layer 13 incident on the lower surface (surface 16S2). Other than the portion through which Ly and the blue light Lb are transmitted (transmissive portion), it may be formed by other members. For example, the portion around the light transmitting portion, for example, connected to the light distribution control structure 14, may be formed by the same member as the light distribution control structure 14.
 断熱部17は、第1領域Aと第2領域Bとの間の熱移動を抑制するためのものである。具体的には、断熱部17は、例えば、第1領域Aと第2領域Bとの間で、温度調整部11の上面(面11S1)と下面(面11S2)との間を貫通すると共に、内部空間Aを空間A1および空間A2に分割し、さらにダイクロイックミラー16の上面(面16S1)と下面(面16S2)との間を貫通するように形成されている。断熱部17は、熱伝導性が低く、且つ、第1領域Aと第2領域Bとの間で混色が起こるように、光透過性を有する材料を用いて形成することが好ましい。断熱部17には、例えば、ガラス基板またはサファイア基板、あるいは、光拡散機能が付加された透明板を用いることができる。この他、断熱部17は、例えば空気層で形成するようにしてもよい。 The heat insulating portion 17 is for suppressing heat transfer between the first region A and the second region B. Specifically, the heat insulating portion 17 penetrates between the first region A and the second region B, between the upper surface (surface 11S1) and the lower surface (surface 11S2) of the temperature adjusting unit 11, and at the same time. The internal space A is divided into a space A1 and a space A2, and is formed so as to penetrate between the upper surface (surface 16S1) and the lower surface (surface 16S2) of the dichroic mirror 16. The heat insulating portion 17 is preferably formed by using a material having low thermal conductivity and light transmittance so that color mixing occurs between the first region A and the second region B. For the heat insulating portion 17, for example, a glass substrate or a sapphire substrate, or a transparent plate to which a light diffusion function is added can be used. In addition, the heat insulating portion 17 may be formed of, for example, an air layer.
 本実施の形態の波長変換素子10では、光源部21から出射された励起光ELは、まず、ダイクロイックミラー16に入射する。ダイクロイックミラー16に入射した励起光ELの一部は反射されて青色光Lbとして用いられ、残りはダイクロイックミラー16を透過して蛍光体層13(13A,13B)に入射する。蛍光体層13(13A,13B)に入射した励起光ELの一部または全部は、蛍光体層13(13A,13B)で吸収されて蛍光体粒子を励起させる。これにより、蛍光体層13(13A,13B)では、黄色光Lyが発せられる。このとき、蛍光体層13Aおよび蛍光体層13Bは同時に励起されるが、その励起光量の割合は、得たい発光スペクトルに対して励起光強度分布や励起位置で調整することができる。 In the wavelength conversion element 10 of the present embodiment, the excitation light EL emitted from the light source unit 21 first enters the dichroic mirror 16. A part of the excitation light EL incident on the dichroic mirror 16 is reflected and used as blue light Lb, and the rest is transmitted through the dichroic mirror 16 and incident on the phosphor layers 13 (13A, 13B). Part or all of the excitation light EL incident on the phosphor layer 13 (13A, 13B) is absorbed by the phosphor layer 13 (13A, 13B) to excite the phosphor particles. As a result, the phosphor layer 13 (13A, 13B) emits yellow light Ly. At this time, the phosphor layer 13A and the phosphor layer 13B are excited at the same time, and the ratio of the excitation light amount can be adjusted by the excitation light intensity distribution and the excitation position with respect to the desired emission spectrum.
 蛍光体層13(13A,13B)で吸収されなかった励起光ELは蛍光体層13(13A,13B)を透過して量子ドット層12(12A,12B)に入射する。量子ドット層12(12A,12B)に入射した励起光ELの一部または全部は、量子ドット層12(12A,12B)で吸収されて量子ドットを励起させる。また、蛍光体層13(13A,13B)で量子ドット層12(12A,12B)側に発せられた黄色光Lyは、量子ドット層12(12A,12B)で吸収されて量子ドットを励起させる。即ち、黄色光Lyの一部は、量子ドットの励起光として用いられる。これにより、量子ドット層12Aでは赤色光Lrが発せられ、量子ドット層12Bでは緑色光Lgが発せられる。このとき、温度調整部11で量子ドット層12A,12Bの温度を調整することにより、量子ドット層12Aおよび量子ドット層12Bから発せられる赤色光Lrおよび緑色光Lgの光量を調整することができる。 The excitation light EL that was not absorbed by the phosphor layer 13 (13A, 13B) passes through the phosphor layer 13 (13A, 13B) and is incident on the quantum dot layer 12 (12A, 12B). Part or all of the excitation light EL incident on the quantum dot layer 12 (12A, 12B) is absorbed by the quantum dot layer 12 (12A, 12B) to excite the quantum dots. Further, the yellow light Ly emitted from the phosphor layer 13 (13A, 13B) to the quantum dot layer 12 (12A, 12B) side is absorbed by the quantum dot layer 12 (12A, 12B) to excite the quantum dots. That is, a part of the yellow light Ly is used as the excitation light of the quantum dots. As a result, the quantum dot layer 12A emits red light Lr, and the quantum dot layer 12B emits green light Lg. At this time, by adjusting the temperatures of the quantum dot layers 12A and 12B by the temperature adjusting unit 11, the amounts of red light Lr and green light Lg emitted from the quantum dot layer 12A and the quantum dot layer 12B can be adjusted.
 量子ドット層12(12A,12B)で温度調整部11側に発せられた赤色光Lrおよび緑色光Lgならびに量子ドット層12(12A,12B)で吸収されなかった黄色光Lyは、それぞれ、例えば反射膜15において反射され、ダイクロイックミラー16側に発せられた黄色光Ly、赤色光Lrおよび緑色光Lgと共に、ダイクロイックミラー16を透過し、後述する光学系20に向けて出射される。量子ドット層12(12A,12B)で吸収されなかった励起光ELは、例えば反射膜15において反射され、再度量子ドット層12(12A,12B)および蛍光体層13(13A,13B)で吸収されつつ、ダイクロイックミラー16を透過し、波長変換素子10から取り出される。取り出された励起光ELは、ダイクロイックミラー16で反射された励起光ELと共に、青色光Lbとして、黄色光Ly、赤色光Lrおよび緑色光Lgと共に、後述する光学系20に向けて出射される。 The red light Lr and green light Lg emitted to the temperature control unit 11 side by the quantum dot layer 12 (12A, 12B) and the yellow light Ly not absorbed by the quantum dot layer 12 (12A, 12B) are reflected, for example, respectively. Together with the yellow light Ly, the red light Lr, and the green light Lg that are reflected by the film 15 and emitted to the dichroic mirror 16 side, they pass through the dichroic mirror 16 and are emitted toward the optical system 20 described later. The excitation light EL that was not absorbed by the quantum dot layer 12 (12A, 12B) is reflected by, for example, the reflective film 15, and is absorbed again by the quantum dot layer 12 (12A, 12B) and the phosphor layer 13 (13A, 13B). At the same time, it passes through the dichroic mirror 16 and is taken out from the wavelength conversion element 10. The extracted excitation light EL is emitted as blue light Lb together with the excitation light EL reflected by the dichroic mirror 16 toward the optical system 20 described later together with the yellow light Ly, the red light Lr, and the green light Lg.
(1-2.照明装置の構成)
 図3は、例えば、均質な照明が可能な照明装置1の光学系の構成の一例を表したものである。照明装置1は、波長変換素子10と、光学系20と、照明光学系30とを有している。光学系20は、光源部21から出射される青色レーザLB(青色光Lb)および波長変換素子10から出射される赤色光Lr,黄色光Ly,緑色光Lgを調光するものであり、例えば、レンズ22と、位相差板23と、偏光ダイクロイックミラー24とを有している。光学系20を構成する各部材は、波長変換素子10側から、レンズ22、位相差板23および偏光ダイクロイックミラー24がこの順に、波長変換素子10から出射される光(各色光Lr,Ly,Lg,Lb)の光路上に配置されている。光源部21は、波長変換素子10から出射される光の光路と直交する方向で、且つ、偏光ダイクロイックミラー24の1つの光入射面に対向する位置に配置されている。照明光学系30は、例えばフライアイレンズ31を有している。
(1-2. Configuration of lighting device)
FIG. 3 shows, for example, an example of the configuration of the optical system of the lighting device 1 capable of uniform illumination. The lighting device 1 includes a wavelength conversion element 10, an optical system 20, and an illumination optical system 30. The optical system 20 dims the blue laser LB (blue light Lb) emitted from the light source unit 21, the red light Lr, the yellow light Ly, and the green light Lg emitted from the wavelength conversion element 10, for example. It has a lens 22, a retardation plate 23, and a polarized dichroic mirror 24. In each member constituting the optical system 20, the lens 22, the retardation plate 23, and the polarizing dichroic mirror 24 are emitted from the wavelength conversion element 10 in this order from the wavelength conversion element 10 side (each color light Lr, Ly, Lg). , Lb) are arranged on the optical path. The light source unit 21 is arranged at a position orthogonal to the optical path of the light emitted from the wavelength conversion element 10 and facing one light incident surface of the polarized dichroic mirror 24. The illumination optical system 30 has, for example, a fly-eye lens 31.
 光源部21は、所定の波長の光を出射する発光素子を有している。発光素子は、例えば、波長445nmまたは455nmの青色光を発振する半導体レーザ(LD)が用いられており、光源部21からは、例えば直線偏光(S偏光)の青色レーザLBが出射される。 The light source unit 21 has a light emitting element that emits light having a predetermined wavelength. As the light emitting element, for example, a semiconductor laser (LD) that oscillates blue light having a wavelength of 445 nm or 455 nm is used, and for example, a linearly polarized (S-polarized) blue laser LB is emitted from the light source unit 21.
 なお、半導体レーザで光源部21を構成する場合には、1つの半導体レーザで所定の出力の励起光ELを得る構成としてもよいが、複数の半導体レーザからの出射光を合波して所定の出力の励起光ELを得る構成としてもよい。更に、励起光ELの波長帯域は、上記数値に限定されず、青色光と呼ばれる光の波長帯域内であれば任意の波長を用いることができる。 When the light source unit 21 is composed of a semiconductor laser, one semiconductor laser may be used to obtain an excitation light EL having a predetermined output, but the emitted light from a plurality of semiconductor lasers may be combined to obtain a predetermined output. The configuration may be such that the excitation light EL of the output is obtained. Further, the wavelength band of the excitation light EL is not limited to the above numerical value, and any wavelength can be used as long as it is within the wavelength band of light called blue light.
 レンズ22は、波長変換素子10から出射される光(各色光Lr,Ly,Lg,Lb)を平行光に変換し、その平行光を位相差板23に向けて出射するものである。また、レンズ22は、位相差板23から出射された青色レーザLBを所定のスポット径に集光し、集光された青色レーザLBを波長変換素子10に向けて出射するものである。なお、レンズ22は、例えば、1枚のコリメートレンズで構成してもよいし、複数のレンズを用いて入射光を平行光に変換する構成としてもよい。 The lens 22 converts the light (each color light Lr, Ly, Lg, Lb) emitted from the wavelength conversion element 10 into parallel light, and emits the parallel light toward the retardation plate 23. Further, the lens 22 focuses the blue laser LB emitted from the retardation plate 23 to a predetermined spot diameter, and emits the condensed blue laser LB toward the wavelength conversion element 10. The lens 22 may be composed of, for example, one collimated lens, or may be configured to convert incident light into parallel light by using a plurality of lenses.
 位相差板23は、光源部21から出射された青色レーザLBの、励起光ELおよび青色光Lbとして用いられるバランスを調整するためのものであり、例えば、入射光に対してλ/4(90°)の位相差を与えて出射するλ/4波長板を用いて形成されている。
λ/4波長板は、入射光が直線偏光の場合には直線偏光を円偏光に変換し、入射光が円偏光の場合には円偏光を直線偏光に変換するものである。本実施の形態では、位相差板23は、偏光ダイクロイックミラー24から出射された直線偏光の励起光ELを円偏光に変換し、波長変換素子10から出射される光に含まれる円偏光の励起光成分(青色光Lb)を直線偏光に変換する。
The phase difference plate 23 is for adjusting the balance of the blue laser LB emitted from the light source unit 21 as the excitation light EL and the blue light Lb. For example, the retardation plate 23 is λ / 4 (90) with respect to the incident light. It is formed by using a λ / 4 wave plate that emits light with a phase difference of °).
The λ / 4 wave plate converts linearly polarized light into circularly polarized light when the incident light is linearly polarized light, and converts circularly polarized light into linearly polarized light when the incident light is circularly polarized light. In the present embodiment, the retardation plate 23 converts the linearly polarized excitation light EL emitted from the polarized dichroic mirror 24 into circularly polarized light, and the circularly polarized excitation light included in the light emitted from the wavelength conversion element 10. The component (blue light Lb) is converted into linearly polarized light.
 偏光ダイクロイックミラー24は、入射光を波長帯域およびに偏光成分に基づいて分離するものである。具体的には、光源部21から入射した青色レーザLBを反射して波長変換素子10へ導くと共に、波長変換素子10から入射した各色光Lr,Ly,Lg,Lbのうち、例えば、S偏光成分を反射し、P偏光成分を透過するように構成されている。これにより、偏光ダイクロイックミラー24からは、偏光成分の揃った赤色光Lr,黄色光Ly,緑色光Lg,青色光Lbがフライアイレンズ31に向けて出射される。 The polarized dichroic mirror 24 separates the incident light based on the wavelength band and the polarized light component. Specifically, the blue laser LB incident from the light source unit 21 is reflected and guided to the wavelength conversion element 10, and among the colored lights Lr, Ly, Lg, and Lb incident from the wavelength conversion element 10, for example, the S polarization component. Is configured to reflect and transmit the P-polarized light component. As a result, the polarized dichroic mirror 24 emits red light Lr, yellow light Ly, green light Lg, and blue light Lb having a uniform polarization component toward the fly-eye lens 31.
 フライアイレンズ31は、偏光ダイクロイックミラー24から出射された赤色光Lr,黄色光Ly,緑色光Lg,青色光Lbを均質化して、照明装置1から出射される照明光の照度分布の均質化を図るものである。偏光ダイクロイックミラー24から出射された赤色光Lr,黄色光Ly,緑色光Lg,青色光Lbは、第1のフライアイレンズ31Aのマイクロレンズによって複数の光束に分割された後、第2のフライアイレンズ31Bの対応するマイクロレンズにそれぞれ結像される。第2のフライアイレンズ31Bのマイクロレンズは、それぞれが2次光源として機能する。これにより、輝度が揃った複数の平行光が照明装置1から出射されるようになる。 The fly-eye lens 31 homogenizes the red light Lr, the yellow light Ly, the green light Lg, and the blue light Lb emitted from the polarized dichroic mirror 24 to homogenize the illuminance distribution of the illumination light emitted from the illumination device 1. It is intended. The red light Lr, yellow light Ly, green light Lg, and blue light Lb emitted from the polarized dichroic mirror 24 are divided into a plurality of light beams by the microlens of the first fly-eye lens 31A, and then the second fly-eye. An image is formed on each of the corresponding microlenses of the lens 31B. Each of the microlenses of the second fly-eye lens 31B functions as a secondary light source. As a result, a plurality of parallel lights having the same brightness are emitted from the illuminating device 1.
(1-3.作用・効果)
 本実施の形態の照明装置1は、温度調整部11と、互いに温度感度および出射波長の異なる第1の波長変換層(蛍光体層13)および第2の波長変換層(量子ドット層12)とを用い、より高い温度感度を有する量子ドット層12および量子ドット層12よりも温度感度の低い蛍光体層13を、温度調整部11側からこの順に積層するようにした。これにより、出力される光の波長をアクティブに変化させることが可能となる。以下、これについて説明する。
(1-3. Action / effect)
The lighting device 1 of the present embodiment includes a temperature adjusting unit 11, a first wavelength conversion layer (phosphor layer 13) and a second wavelength conversion layer (quantum dot layer 12) having different temperature sensitivities and emission wavelengths from each other. The quantum dot layer 12 having a higher temperature sensitivity and the phosphor layer 13 having a lower temperature sensitivity than the quantum dot layer 12 were laminated in this order from the temperature adjusting unit 11 side. This makes it possible to actively change the wavelength of the output light. This will be described below.
 近年、照明分野では、発光ダイオード(LED)の導入が進められており、一部では、蛍光体を組み合わせた光源が開発されている。例えば、屋内において疑似太陽光を照明する照明装置では、高輝度化に加えて、色味の調整が求められている。 In recent years, the introduction of light emitting diodes (LEDs) has been promoted in the lighting field, and some light sources combined with phosphors have been developed. For example, in a lighting device that illuminates pseudo-sunlight indoors, it is required to adjust the color in addition to increasing the brightness.
 高輝度化および色味の調整が可能な照明装置は、LEDを複数並べることで実現することができるが、反射光学系を用いて照明光の均一化、また、疑似太陽光照明では無限遠化を行うため大型となる。また、高精度な反射が求められるため、部品点数が増加し、重量が増加する傾向にある。 A lighting device capable of increasing brightness and adjusting color can be realized by arranging a plurality of LEDs, but the reflection optical system is used to make the illumination light uniform, and the pseudo-sunlight illumination makes it infinite. It becomes large because it performs. Further, since high-precision reflection is required, the number of parts tends to increase and the weight tends to increase.
 一方で、蛍光体を光源として用いた場合、発光部を小さくすることができるため、光学系を小型化することができる。しかしながら、蛍光体を用いた光源では、色味の調整が課題となっていた。 On the other hand, when a phosphor is used as a light source, the light emitting portion can be made smaller, so that the optical system can be made smaller. However, in a light source using a phosphor, adjustment of color has been an issue.
 これに対して本実施の形態では、上記のように、温度調整部11と蛍光体層13との間に、蛍光体層13とは異なる波長帯域の光を出射すると共に、蛍光体層13よりも高い温度感度を有する量子ドット層12を配置するようにした。 On the other hand, in the present embodiment, as described above, light having a wavelength band different from that of the phosphor layer 13 is emitted between the temperature adjusting unit 11 and the phosphor layer 13, and the phosphor layer 13 emits light. The quantum dot layer 12 having high temperature sensitivity was arranged.
 図4は、蛍光体粒子および量子ドットの温度感度を表したものである。図4から、蛍光体粒子の温度に対する相対輝度維持率は、温度に関わらずほぼ一定であるのに対して、量子ドットは、例えば約50℃の温度上昇で相対輝度維持率が約20%低下することがわかる。このように、高い温度依存性を有する量子ドットを用いて量子ドット層12を温度調整部11側に設けることにより、出力される光の波長をアクティブに変化させることが可能となる。加えて、蛍光体層13と組み合わせて用いことにより、ブロードな発光スペクトルを得ることが可能となる。 FIG. 4 shows the temperature sensitivity of the phosphor particles and the quantum dots. From FIG. 4, the relative brightness maintenance rate with respect to the temperature of the phosphor particles is almost constant regardless of the temperature, whereas the relative brightness maintenance rate of the quantum dots decreases by about 20% when the temperature rises by, for example, about 50 ° C. You can see that it does. As described above, by providing the quantum dot layer 12 on the temperature adjusting unit 11 side using the quantum dots having high temperature dependence, it is possible to actively change the wavelength of the output light. In addition, when used in combination with the phosphor layer 13, a broad emission spectrum can be obtained.
 以上により、本実施の形態の照明装置1では、効率よく色調整を行うことが可能な照明装置を提供することが可能となる。 From the above, the lighting device 1 of the present embodiment can provide a lighting device capable of efficiently performing color adjustment.
 また、本実施の形態の照明装置1では、LEDを用いた照明装置と比較して、照明装置全体を小型化および軽量化することが可能となる。更に、本実施の形態の照明装置1では、LEDを用いた照明装置と比較して、高輝度化を実現することが可能となる。更にまた、本実施の形態の照明装置1において光源部を構成する波長変換素子10は、LEDを光源として用いた場合と比較して発光サイズが小さいため、導波光学系との結合効率を向上させることが可能となる。よって、より小型で高輝度な照明装置を提供することが可能となる。 Further, in the lighting device 1 of the present embodiment, it is possible to reduce the size and weight of the entire lighting device as compared with the lighting device using the LED. Further, in the lighting device 1 of the present embodiment, it is possible to realize higher brightness as compared with the lighting device using the LED. Furthermore, in the lighting device 1 of the present embodiment, the wavelength conversion element 10 constituting the light source unit has a smaller light emission size than the case where the LED is used as the light source, so that the coupling efficiency with the waveguide optical system is improved. It becomes possible to make it. Therefore, it is possible to provide a smaller and higher-luminance lighting device.
 更に、本実施の形態では、温度調整部11を用いて量子ドット層12の温度制御を行うようにしたので、非回転で色調整を行うことが可能な波長変換素子を実現することが可能となる。これにより、回転型の波長変換素子である所謂蛍光体ホイールを用いた場合と比較して、照明装置1を小型化および軽量化することが可能となる。 Further, in the present embodiment, since the temperature control unit 11 is used to control the temperature of the quantum dot layer 12, it is possible to realize a wavelength conversion element capable of performing color adjustment without rotation. Become. This makes it possible to reduce the size and weight of the illuminating device 1 as compared with the case where a so-called phosphor wheel, which is a rotary wavelength conversion element, is used.
 更にまた、本実施の形態では、量子ドット層12の上方に蛍光体層13を設けるようにしたので、量子ドット層12に含まれる量子ドットが、励起光ELによって直接励起されにくくなる。よって、量子ドットが劣化しにくくなり、信頼性を向上させることが可能となる。 Furthermore, in the present embodiment, since the phosphor layer 13 is provided above the quantum dot layer 12, the quantum dots included in the quantum dot layer 12 are less likely to be directly excited by the excitation light EL. Therefore, the quantum dots are less likely to deteriorate, and the reliability can be improved.
 また、蛍光体をレーザ励起する発光デバイスでは、前述したように、ペルチェ素子等の温度制御手段を用いてルミネセンス層の温度を調整する構造が提案されている。 Further, in a light emitting device that laser-excites a phosphor, as described above, a structure has been proposed in which the temperature of the luminescence layer is adjusted by using a temperature control means such as a Perche element.
 しかしながら、量子ドット層を用いてルミネセンス層を構成した場合、単純に温度調整を行うだけでは、十分な光の利用効率が得られないという課題がある。これは、量子ドットが数nmの粒径を有するため、発光した光に対する散乱効果が小さく、ルミネセンス層から取り出せないことが原因と考えられる。 However, when the luminescence layer is formed by using the quantum dot layer, there is a problem that sufficient light utilization efficiency cannot be obtained by simply adjusting the temperature. It is considered that this is because the quantum dots have a particle size of several nm, so that the scattering effect on the emitted light is small and the quantum dots cannot be taken out from the luminescence layer.
 これに対して、本実施の形態では、温度調整部11の上面(面11S1)に、例えば、温度調整部11の上面(面11S1)に対して放物面(面14S1)を有する配光制御構造14を配置し、放物面(面14S1)に沿って量子ドット層12を形成するようにした。これにより、量子ドット層12において発せられた光(赤色光Lr,緑色光Lg)を効果的に層外へ取り出すことが可能となる。よって、光の利用効率を向上させることが可能となる。 On the other hand, in the present embodiment, the light distribution control has a parabolic surface (surface 14S1) on the upper surface (surface 11S1) of the temperature adjusting unit 11 with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11, for example. The structure 14 was arranged so that the quantum dot layer 12 was formed along the paraboloid (plane 14S1). As a result, the light (red light Lr, green light Lg) emitted from the quantum dot layer 12 can be effectively taken out of the layer. Therefore, it is possible to improve the efficiency of light utilization.
 また、本実施の形態では、量子ドット層12を放物面(面14S1)に沿って形成するようにしたので、例えば、温度調整部11の上面(面11S1)のような平坦面に量子ドット層12を形成した場合と比較して、量子ドット層12の成膜面積が増加し、量子ドット層12の温度制御をより効率よく行うことが可能となる。これにより、出力される光の波長をよりアクティブに変化させることが可能となる。 Further, in the present embodiment, since the quantum dot layer 12 is formed along the radial surface (surface 14S1), the quantum dots are formed on a flat surface such as the upper surface (surface 11S1) of the temperature adjusting unit 11, for example. Compared with the case where the layer 12 is formed, the film formation area of the quantum dot layer 12 is increased, and the temperature control of the quantum dot layer 12 can be performed more efficiently. This makes it possible to change the wavelength of the output light more actively.
 次に、本開示の第2~第12の実施の形態について説明する。以下では、上記第1の実施の形態と同様の構成要素には同一の符号を付し、適宜その説明を省略する。 Next, the second to twelfth embodiments of the present disclosure will be described. In the following, the same components as those in the first embodiment will be designated by the same reference numerals, and the description thereof will be omitted as appropriate.
<2.第2の実施の形態>
 図5は、本開示の第2の実施の形態に係る波長変換素子10Aの断面構成の一例を模式的に表したものである。波長変換素子10Aは、上記第1の実施の形態の波長変換素子10と同様に、例えば、上述した照明装置1の光源として用いられるものである。本実施の形態の波長変換素子10Aは、量子ドット層12と蛍光体層13との間に断熱部18を設けた点が上記第1の実施の形態とは異なる。
<2. Second Embodiment>
FIG. 5 schematically shows an example of the cross-sectional configuration of the wavelength conversion element 10A according to the second embodiment of the present disclosure. The wavelength conversion element 10A is used, for example, as a light source of the above-mentioned lighting device 1 in the same manner as the wavelength conversion element 10 of the first embodiment. The wavelength conversion element 10A of the present embodiment is different from the first embodiment in that a heat insulating portion 18 is provided between the quantum dot layer 12 and the phosphor layer 13.
 波長変換素子10Aは、温度調整部11と、量子ドット層12と、蛍光体層13と、配光制御構造14と、反射膜15と、ダイクロイックミラー16と、断熱部17,18とを有している。本実施の形態では、量子ドット層12は、反射膜15を介して配光制御構造14の放物面(面14S1)および配光制御構造14の開口14H内に露出した温度調整部11の上面(面11S1)に沿って形成されている。蛍光体層13は、ダイクロイックミラー16の下面(面16S2)に沿って形成されており、量子ドット層12と蛍光体層13との間に、断熱部18が設けられている。 The wavelength conversion element 10A includes a temperature adjusting unit 11, a quantum dot layer 12, a phosphor layer 13, a light distribution control structure 14, a reflecting film 15, a dichroic mirror 16, and heat insulating units 17 and 18. ing. In the present embodiment, the quantum dot layer 12 is formed on the light emitting surface (surface 14S1) of the light distribution control structure 14 and the upper surface of the temperature adjusting unit 11 exposed in the opening 14H of the light distribution control structure 14 via the reflective film 15. It is formed along (surface 11S1). The phosphor layer 13 is formed along the lower surface (surface 16S2) of the dichroic mirror 16, and a heat insulating portion 18 is provided between the quantum dot layer 12 and the phosphor layer 13.
 断熱部18は、量子ドット層12と蛍光体層13との間の熱移動を抑制するためのものである。断熱部18は、断熱部17と同様に、熱伝導性が低く、且つ、量子ドット層12と蛍光体層13との間で混色が起こるように、光透過性を有する材料を用いて形成することが好ましい。断熱部18としては、例えばガラス基板またはサファイア基板、あるいは、光拡散機能が付加された透明板をも用いることができる。この他、断熱部18は、例えば空気層で形成するようにしてもよい。 The heat insulating portion 18 is for suppressing heat transfer between the quantum dot layer 12 and the phosphor layer 13. Like the heat insulating portion 17, the heat insulating portion 18 is formed by using a material having low thermal conductivity and having light transmittance so that color mixing occurs between the quantum dot layer 12 and the phosphor layer 13. Is preferable. As the heat insulating portion 18, for example, a glass substrate or a sapphire substrate, or a transparent plate to which a light diffusion function is added can also be used. In addition, the heat insulating portion 18 may be formed of, for example, an air layer.
 以上のように、本実施の形態の波長変換素子10Aでは、量子ドット層12と蛍光体層13との間に断熱部18を設けるようにしたので、量子ドット層12と蛍光体層13との間の熱移動、例えば、蛍光体層13から量子ドット層12への熱流入が低減される。よって、量子ドット層12の温度調整をよりスムーズに行うことが可能となり、さらに効率よく色調整を行うことが可能な照明装置を提供することが可能となる。 As described above, in the wavelength conversion element 10A of the present embodiment, since the heat insulating portion 18 is provided between the quantum dot layer 12 and the phosphor layer 13, the quantum dot layer 12 and the phosphor layer 13 are combined. Heat transfer between them, for example, heat inflow from the phosphor layer 13 to the quantum dot layer 12 is reduced. Therefore, the temperature of the quantum dot layer 12 can be adjusted more smoothly, and it is possible to provide a lighting device capable of performing color adjustment more efficiently.
<3.第3の実施の形態>
 図6Aは、本開示の第3の実施の形態に係る波長変換素子10Bの平面構成の一例を模式的に表したものである。図6Bは、本開示の第3の実施の形態に係る波長変換素子10Bの平面構成の他の例を模式的に表したものである。上記第1の実施の形態では、内部空間Aおよび温度調整部11を、断熱部17を用いて2つの領域(第1領域A,第2領域B)に分割した例を示したが、例えば、図6Aに示したように4つ(第1領域A,第2領域B,第3領域C,第4領域D)あるいは、図6Bに示したように8つ(第1領域A,第2領域B,第3領域C,第4領域D,第5領域E,第6領域F,第7領域G,第8領域H)に分割するようにしてもよい。
<3. Third Embodiment>
FIG. 6A schematically shows an example of the planar configuration of the wavelength conversion element 10B according to the third embodiment of the present disclosure. FIG. 6B schematically shows another example of the planar configuration of the wavelength conversion element 10B according to the third embodiment of the present disclosure. In the first embodiment, the internal space A and the temperature adjusting unit 11 are divided into two regions (first region A and second region B) by using the heat insulating portion 17, for example. Four as shown in FIG. 6A (first region A, second region B, third region C, fourth region D) or eight as shown in FIG. 6B (first region A, second region). B, the third region C, the fourth region D, the fifth region E, the sixth region F, the seventh region G, and the eighth region H) may be divided.
 この際、例えば、図6Bに示した波長変換素子10Bでは、第1領域A~第8領域Hの各温度調整部11を個別に制御して量子ドット層12の温度を調整してもよい。あるいは、第1領域Aと第2領域B、第3領域Cと第4領域D、第5領域Eと第6領域F、第7領域Gと第8領域H等、例えば2つの領域ごとにまとめて各領域の温度調整部11を制御して量子ドット層12の温度を調整するようにしてもよい。 At this time, for example, in the wavelength conversion element 10B shown in FIG. 6B, the temperature of the quantum dot layer 12 may be adjusted by individually controlling each temperature adjusting unit 11 in the first region A to the eighth region H. Alternatively, the first region A and the second region B, the third region C and the fourth region D, the fifth region E and the sixth region F, the seventh region G and the eighth region H, etc., for example, are grouped by two regions. The temperature of the quantum dot layer 12 may be adjusted by controlling the temperature adjusting unit 11 in each region.
 各領域(例えば、第1領域A,第2領域B,第3領域C,第4領域D,第5領域E,第6領域F,第7領域G,第8領域H)の量子ドット層12A,12B,12C,12D,12E,12F,12Hは、例えば、一部または全部が互いに異なる波長帯域の光を発するように形成されている。各領域(例えば、第1領域A,第2領域B,第3領域C,第4領域D,第5領域E,第6領域F,第7領域G,第8領域H)の蛍光体層13A,13B,13C,13D,13E,13F,13Hは、例えば、互いに同じ波長帯域の光を発するように形成されている。 Quantum dot layer 12A in each region (for example, 1st region A, 2nd region B, 3rd region C, 4th region D, 5th region E, 6th region F, 7th region G, 8th region H) , 12B, 12C, 12D, 12E, 12F, 12H are formed so as to emit light having wavelength bands different from each other, for example, in part or in whole. Fluorescent layer 13A of each region (for example, 1st region A, 2nd region B, 3rd region C, 4th region D, 5th region E, 6th region F, 7th region G, 8th region H) , 13B, 13C, 13D, 13E, 13F, 13H are formed so as to emit light having the same wavelength band as each other, for example.
 なお、各領域の蛍光体層13A,13B,13C,13D,13E,13F,13Hは、量子ドット層12A,12B,12C,12D,12E,12F,12Hと同様に、一部または全部が互いに異なる波長帯域の光を発するように形成されていてもよい。 The phosphor layers 13A, 13B, 13C, 13D, 13E, 13F, 13H in each region are partially or completely different from each other, similarly to the quantum dot layers 12A, 12B, 12C, 12D, 12E, 12F, 12H. It may be formed so as to emit light in a wavelength band.
 以上のように、本実施の形態の波長変換素子10Bおよびこれを備えた照明装置では、断熱部17によって分割される内部空間Aおよび温度調整部11の分割数を増やすようにしたので、上記第1の実施の形態の効果に加えて、より細かい色調整が可能となるという効果を奏する。 As described above, in the wavelength conversion element 10B of the present embodiment and the lighting device provided with the wavelength conversion element 10B, the number of divisions of the internal space A and the temperature adjusting unit 11 divided by the heat insulating unit 17 is increased. In addition to the effect of the first embodiment, it has the effect of enabling finer color adjustment.
 また、本実施の形態の波長変換素子10Bでは、断熱部17によって分割される内部空間Aおよび温度調整部11の分割数を増やすようにしたので、量子ドット層12や蛍光体層13を構成する発光材料の劣化速度が異なる場合、各領域の発光のバランスを調整することにより、意図しない発光スペクトルの変化を低減することが可能となる。 Further, in the wavelength conversion element 10B of the present embodiment, since the number of divisions of the internal space A and the temperature adjusting unit 11 divided by the heat insulating portion 17 is increased, the quantum dot layer 12 and the phosphor layer 13 are formed. When the deterioration rate of the light emitting material is different, it is possible to reduce an unintended change in the light emission spectrum by adjusting the light emission balance in each region.
<4.第4の実施の形態>
 図7は、本開示の第4の実施の形態に係る波長変換素子10Cの平面構成の一例を模式的に表したものである。波長変換素子10Cは、図6Aに示した波長変換素子10Bと同様に、内部空間Aおよび温度調整部11を、断熱部17を用いて4つの領域(第1領域A,第2領域B,第3領域C,第4領域D)に分割し、このうち、例えば、X軸方向に並列配置された第1領域Aおよび第2領域Bを、上記第1の実施の形態等と同様に、温度調整が可能な温調領域Xとし、第3領域Cおよび第4領域Dを恒温状態で用いる恒温領域Yとしたものである。
<4. Fourth Embodiment>
FIG. 7 schematically shows an example of the planar configuration of the wavelength conversion element 10C according to the fourth embodiment of the present disclosure. Similar to the wavelength conversion element 10B shown in FIG. 6A, the wavelength conversion element 10C has the internal space A and the temperature adjusting unit 11 in four regions (first region A, second region B, first region A, second region B, first) using the heat insulating portion 17. The temperature of the first region A and the second region B, which are divided into three regions C and the fourth region D) and arranged in parallel in the X-axis direction, is the same as in the first embodiment and the like. The temperature control region X that can be adjusted is defined, and the third region C and the fourth region D are defined as a constant temperature region Y that is used in a constant temperature state.
 恒温領域Yは、例えば、潜熱冷却を利用することで、温度調整部11の上方に掲載された量子ドット層12の温度を一定に保つためのものである。恒温領域Yは、例えば、温度調整部11を構成するペルチェ素子やヒータに代えて、ベイパーチャンバ等のインテグレーテッドヒートスプレッダを配置することで形成することができる。 The constant temperature region Y is for keeping the temperature of the quantum dot layer 12 placed above the temperature adjusting unit 11 constant by using, for example, latent heat cooling. The constant temperature region Y can be formed, for example, by arranging an integrated heat spreader such as a vapor chamber in place of the Perche element or heater constituting the temperature adjusting unit 11.
 以上のように、本実施の形態の波長変換素子10Cおよびこれを備えた照明装置では、複数の領域のうち一部の領域を、量子ドット層12の温度を一定に保つ恒温領域とした。具体的には、例えば4つに分割された第1領域A,第2領域B,第3領域C,第4領域Dのうち、2つの領域を温調領域X、残り2つの領域を恒温領域Yとするようにした。これにより、温調領域Xでは、上記第1の実施の形態と同様に、出力される光の波長をよりアクティブに変化させつつ、恒温領域Yからは安定した光出力を得ることが可能となる。よって、上記実施の形態の効果に加えて、所望の波長の光を安定的に取り出しつつ、消費電力を抑制することが可能となるという効果を奏する。 As described above, in the wavelength conversion element 10C of the present embodiment and the lighting device provided with the wavelength conversion element 10C, a part of the plurality of regions is set as a constant temperature region for keeping the temperature of the quantum dot layer 12 constant. Specifically, for example, of the first region A, the second region B, the third region C, and the fourth region D divided into four, two regions are temperature control regions X and the remaining two regions are constant temperature regions. I made it Y. As a result, in the temperature control region X, it is possible to obtain a stable light output from the constant temperature region Y while changing the wavelength of the output light more actively, as in the first embodiment. .. Therefore, in addition to the effect of the above-described embodiment, it is possible to suppress power consumption while stably extracting light having a desired wavelength.
<5.第5の実施の形態>
 図8は、本開示の第5の実施の形態に係る照明装置1Aの光学系の構成の一例を表したものである。本実施の形態の照明装置1Aでは、照明光学系30を構成するフライアイレンズ31を拡散板32とした点が上記第1の実施の形態とは異なる。
<5. Fifth Embodiment>
FIG. 8 shows an example of the configuration of the optical system of the lighting device 1A according to the fifth embodiment of the present disclosure. The illumination device 1A of the present embodiment is different from the first embodiment in that the fly-eye lens 31 constituting the illumination optical system 30 is a diffuser plate 32.
 このように、偏光ダイクロイックミラー24から出射された赤色光Lr,黄色光Ly,緑色光Lg,青色光Lbは、拡散板32によっても均質化することができる。 As described above, the red light Lr, the yellow light Ly, the green light Lg, and the blue light Lb emitted from the polarized dichroic mirror 24 can be homogenized by the diffuser 32 as well.
 また、上記第1の実施の形態では、一対のフライアイレンズペア(第1のフライアイレンズ31Aおよび第2のフライアイレンズ31B)からなるフライアイレンズ31を用いた例を示したが、所謂両面フライアイレンズを用いても同様の効果を得ることができる。更に、例えば、ダイクロイックミラー16の片面、または両面を拡散面とすることにより、フライアイレンズ31や拡散板32を設けた場合と同様の効果を得ることができ、さらに部品点数を削減することが可能となる。 Further, in the first embodiment described above, an example using a fly-eye lens 31 composed of a pair of fly-eye lens pairs (first fly-eye lens 31A and second fly-eye lens 31B) is shown. The same effect can be obtained by using a double-sided fly-eye lens. Further, for example, by using one side or both sides of the dichroic mirror 16 as the diffusion surface, the same effect as when the fly-eye lens 31 or the diffusion plate 32 is provided can be obtained, and the number of parts can be further reduced. It will be possible.
<6.第6の実施の形態>
 図9は、本開示の第6の実施の形態に係る照明装置1Bの光学系40の構成の一例を表したものである。上記第1の実施の形態では、光源部21から出射される青色レーザLBの、励起光ELおよび青色光Lbとして用いられるバランスを、レンズ22と偏光ダイクロイックミラー24との間に配置した位相差板23で調整する例を示したがこれに限らない。本実施の形態では、位相差板41を光源部21と偏光ダイクロイックミラー24との間に配置し、偏光ダイクロイックミラー24に入射する前に、光源部21から出射される青色レーザLBの、励起光ELおよび青色光Lbとして用いられるバランスを調整するようにした点が、上記第1の実施の形態とは異なる。
<6. 6th Embodiment>
FIG. 9 shows an example of the configuration of the optical system 40 of the lighting device 1B according to the sixth embodiment of the present disclosure. In the first embodiment, the balance used as the excitation light EL and the blue light Lb of the blue laser LB emitted from the light source unit 21 is arranged between the lens 22 and the polarized dichroic mirror 24. An example of adjusting in No. 23 is shown, but the adjustment is not limited to this. In the present embodiment, the retardation plate 41 is arranged between the light source unit 21 and the polarized dichroic mirror 24, and the excitation light of the blue laser LB emitted from the light source unit 21 before being incident on the polarized dichroic mirror 24 is provided. It differs from the first embodiment in that the balance used as EL and blue light Lb is adjusted.
 光学系40は、レンズ22と、偏光ダイクロイックミラー24と、位相差板41,42と、反射ミラー43とを有している。光学系40を構成する各部材は、波長変換素子10側から、レンズ22および偏光ダイクロイックミラー24がこの順に、波長変換素子10側から出射される光(各色光Lr,Ly,Lg,Lb)の光路上に配置されている。光源部21は、波長変換素子10から出射される光の光路と直交する方向で、且つ、偏光ダイクロイックミラー24の1つの光入射面に対向する位置に配置されており、この光源部21と偏光ダイクロイックミラー24との間に位相差板41が配置されている。位相差板42および反射ミラー43は、偏光ダイクロイックミラー24の、光源部21と対向する入射面とは反対側の入射面と対向する位置に、この順に配置されている。 The optical system 40 includes a lens 22, a polarized dichroic mirror 24, retardation plates 41 and 42, and a reflection mirror 43. Each member constituting the optical system 40 is of light (each color light Lr, Ly, Lg, Lb) emitted from the wavelength conversion element 10 side in this order by the lens 22 and the polarizing dichroic mirror 24 from the wavelength conversion element 10 side. It is located on the optical path. The light source unit 21 is arranged in a direction orthogonal to the optical path of the light emitted from the wavelength conversion element 10 and at a position facing one light incident surface of the polarized dichroic mirror 24, and is polarized with the light source unit 21. A retardation plate 41 is arranged between the dichroic mirror 24 and the dichroic mirror 24. The retardation plate 42 and the reflection mirror 43 are arranged in this order at positions of the polarized dichroic mirror 24 facing the incident surface opposite to the incident surface facing the light source unit 21.
 位相差板41は、例えばλ/2波長板であり、入射光に対してλ/2(180°)の位相差を与えて出射するものである。本実施の形態の位相差板41は、光源部21から出射された青色レーザLBの、励起光ELおよび青色光Lbとして用いられるバランスを調整するためのものである。位相差板42は、例えばλ/4波長板であり、入射光に対してλ/4(90°)の位相差を与えて出射するものである。反射ミラー43は、位相差板42を透過した青色光Lbを再度位相差板42に向け反射するものである。 The retardation plate 41 is, for example, a λ / 2 wavelength plate, and emits light with a phase difference of λ / 2 (180 °) with respect to the incident light. The retardation plate 41 of the present embodiment is for adjusting the balance of the blue laser LB emitted from the light source unit 21 as the excitation light EL and the blue light Lb. The retardation plate 42 is, for example, a λ / 4 wavelength plate, and emits light with a phase difference of λ / 4 (90 °) with respect to the incident light. The reflection mirror 43 reflects the blue light Lb transmitted through the retardation plate 42 toward the retardation plate 42 again.
 以上のように、本実施の形態の光学系40では、レンズ22と、偏光ダイクロイックミラー24と、位相差板41,42と、反射ミラー43とを用い、位相差板41において光源部21から出射された光の励起光ELおよび照明光を構成する青色光Lbとしてのバランスを調整し、位相差板42および反射ミラー43によって、偏光ダイクロイックミラー24を透過した青色レーザLB(青色光Lb)を、再度偏光ダイクロイックミラー24に入射させるようにした。これにより、本実施の形態の照明装置1Bでは、上記第1の実施の形態と同様に、小型で高効率が白色光源を構成することが可能となる。 As described above, in the optical system 40 of the present embodiment, the lens 22, the polarized dichroic mirror 24, the retardation plates 41 and 42, and the reflection mirror 43 are used, and the retardation plate 41 emits light from the light source unit 21. The balance of the excited light EL and the blue light Lb constituting the illumination light is adjusted, and the blue laser LB (blue light Lb) transmitted through the polarized dichroic mirror 24 is transmitted by the retardation plate 42 and the reflection mirror 43. The light was made to enter the polarized dichroic mirror 24 again. As a result, in the lighting device 1B of the present embodiment, it is possible to form a small and highly efficient white light source as in the first embodiment.
<7.第7の実施の形態>
 図10は、本開示の第7の実施の形態に係る照明装置2の構成の一例を表したものである。本実施の形態の照明装置2は、例えば、自然光照明として用いられるものであり、上記第1の実施の形態において説明した照明装置1のフライアイレンズ31の先に、反射ミラー51および光拡散窓52をこの順に配置したものである。
<7. Seventh Embodiment>
FIG. 10 shows an example of the configuration of the lighting device 2 according to the seventh embodiment of the present disclosure. The illuminating device 2 of the present embodiment is used, for example, as natural light illumination, and a reflection mirror 51 and a light diffusing window are attached to the tip of the fly-eye lens 31 of the illuminating device 1 described in the first embodiment. 52 are arranged in this order.
 反射ミラー51は、フライアイレンズ31から出射された均質化された光Lを光拡散窓52に向けて反射するためのものである。反射ミラー51は、1枚に限らず、2枚以上用いてもよい。また、反射ミラー51として凹面ミラーを用いることにより、光学距離を短縮することができる。 The reflection mirror 51 is for reflecting the homogenized light L emitted from the fly-eye lens 31 toward the light diffusion window 52. The number of reflection mirrors 51 is not limited to one, and two or more reflection mirrors 51 may be used. Further, by using a concave mirror as the reflection mirror 51, the optical distance can be shortened.
 光拡散窓52は、奥行きのある青空を再現するものである。光拡散窓52は、例えば、酸化チタン(TiO2)等のナノ粒子を含むアクリル板を用いて形成されており、光拡散窓52に入射した光Lはナノ粒子によるレイリー散乱され、疑似自然光として出射される。 The light diffusion window 52 reproduces a deep blue sky. The light diffusion window 52 is formed by using, for example, an acrylic plate containing nanoparticles such as titanium oxide (TiO 2 ), and the light L incident on the light diffusion window 52 is Rayleigh scattered by the nanoparticles and used as pseudo-natural light. It is emitted.
 以上のように、本実施の形態の照明装置2では、上記第1の実施の形態において説明した照明装置1のフライアイレンズ31の先に、反射ミラー51および光拡散窓52を配置するようにしたので、奥行きのある青空を再現することが可能となる。よって、前述したLEDを用いて疑似太陽光を照明する照明装置と比較して、小型化および軽量化することが可能となる。 As described above, in the lighting device 2 of the present embodiment, the reflection mirror 51 and the light diffusion window 52 are arranged at the tip of the fly-eye lens 31 of the lighting device 1 described in the first embodiment. Therefore, it is possible to reproduce a deep blue sky. Therefore, it is possible to reduce the size and weight as compared with the lighting device that illuminates the pseudo-sunlight using the above-mentioned LED.
 また、本実施の形態の照明装置2では、例えば、時間経過による空の色味の変化を再現することができる。 Further, in the lighting device 2 of the present embodiment, for example, it is possible to reproduce a change in the color of the sky with the passage of time.
<8.第8の実施の形態>
 図11は、本開示の第8の実施の形態に係る照明装置3の構成の一例を表したものである。本実施の形態の照明装置3は、上記第7の実施の形態における照明装置2と同様に、例えば、自然光照明として用いられるものである。本実施の形態の照明装置3は、上記第1の実施の形態において説明した照明装置1のフライアイレンズ31の先に、レンズ53および光拡散窓54をこの順に配置したものである。
<8. Eighth Embodiment>
FIG. 11 shows an example of the configuration of the lighting device 3 according to the eighth embodiment of the present disclosure. The lighting device 3 of the present embodiment is used, for example, as natural light lighting, like the lighting device 2 of the seventh embodiment. In the lighting device 3 of the present embodiment, the lens 53 and the light diffusion window 54 are arranged in this order at the tip of the fly-eye lens 31 of the lighting device 1 described in the first embodiment.
 レンズ53は、フライアイレンズ31から出射された均質化された光Lを、例えば導波路型の光拡散窓54の入射面54S1に集光させるためのものである。 The lens 53 is for condensing the homogenized light L emitted from the fly-eye lens 31 onto, for example, the incident surface 54S1 of the waveguide type light diffusion window 54.
 光拡散窓54は、例えば、上記のように、導波路型の光拡散窓であり、例えば、光拡散窓52と同様に、酸化チタン(TiO2)等のナノ粒子を含むアクリル板を用いて形成されている。 The light diffusion window 54 is, for example, a waveguide type light diffusion window as described above. For example, like the light diffusion window 52, an acrylic plate containing nanoparticles such as titanium oxide (TiO 2) is used. It is formed.
 以上のように、本実施の形態の照明装置3では、上記第1の実施の形態において説明した照明装置1のフライアイレンズ31の先に、レンズ53および導波路型の光拡散窓54をこの順に配置するようにした。これにより、上記第7の実施の形態における照明装置2と比較して、より小型な自然光照明が可能な照明装置を実現することが可能となる。 As described above, in the illuminating device 3 of the present embodiment, the lens 53 and the waveguide type light diffusion window 54 are attached to the tip of the fly-eye lens 31 of the illuminating device 1 described in the first embodiment. I tried to arrange them in order. This makes it possible to realize a lighting device capable of smaller natural light illumination as compared with the lighting device 2 in the seventh embodiment.
<9.第9の実施の形態>
 図12は、本開示の第9の実施の形態に係る照明装置4の光学系60の構成の一例を表したものである。本実施の形態の光学系60は、図3に示した光学系20の位相差板23に変えて、光入射面(例えば、面61S1)にダイクロイックミラーとしての機能を有する位相差板61を用いたものであり、上記第7,第8の実施の形態における照明装置2,3の照明光学系と組み合わせることにより、奥行きのある青空に太陽光を表現することが可能となる。
<9. Ninth Embodiment>
FIG. 12 shows an example of the configuration of the optical system 60 of the lighting device 4 according to the ninth embodiment of the present disclosure. The optical system 60 of the present embodiment uses a retardation plate 61 having a function as a dichroic mirror on the light incident surface (for example, the surface 61S1) instead of the retardation plate 23 of the optical system 20 shown in FIG. By combining with the illumination optical systems of the illumination devices 2 and 3 in the 7th and 8th embodiments, it is possible to express sunlight in a deep blue sky.
 位相差板61は、上記のように、光入射面(例えば、面61S1)が、例えば青色に対応する波長帯域の光を選択的に反射し、それ以外の波長帯域の光を透過させる機能を有する面となっている。但し、本実施の形態の位相差板61は、例えば図13に示したように、面61S1の一部(例えば中央部分)に青色光の透過率が高い透過領域61Xが設けられている。これにより、光源部21から出射された青色レーザLBのうち、透過領域61X以外に入射した青色レーザLBは、青色光Lbとして偏光ダイクロイックミラー24に向けて反射され、透過領域61Xに入射した青色レーザLBは、励起光ELとして波長変換素子10に向けて出射される。更に、波長変換素子10から出射された各色光Lr,Ly,Lg,Lbは、位相差板61の透過領域61Xを通って偏光ダイクロイックミラー24に向けて出射されるようになる。 As described above, the retardation plate 61 has a function that the light incident surface (for example, the surface 61S1) selectively reflects light in a wavelength band corresponding to blue, for example, and transmits light in other wavelength bands. It is a surface to have. However, as shown in FIG. 13, for example, the retardation plate 61 of the present embodiment is provided with a transmission region 61X having a high transmittance of blue light on a part (for example, a central portion) of the surface 61S1. As a result, of the blue laser LB emitted from the light source unit 21, the blue laser LB incident on other than the transmission region 61X is reflected as blue light Lb toward the polarized dichroic mirror 24, and the blue laser incident on the transmission region 61X. The LB is emitted toward the wavelength conversion element 10 as the excitation light EL. Further, the colored lights Lr, Ly, Lg, and Lb emitted from the wavelength conversion element 10 are emitted toward the polarized dichroic mirror 24 through the transmission region 61X of the retardation plate 61.
 以上のように、本実施の形態の照明装置4では、レンズ22と偏光ダイクロイックミラー24との間に、光入射面(例えば、面61S1)がダイクロイックミラーとしての機能を有すると共に、面61S1の一部に透過領域61Xを有する位相差板61を配置するようにした。これにより、青色光Lbの一部に白色光Lwを含む光を作製することが可能となる。この光を、上記第7,第8の実施の形態における照明装置2,3の照明光学系に入射させることにより、奥行きのある青空に太陽光が表現されるようになる。よって、より高いリアリティを有する自然光照明が可能な照明装置4を実現することが可能となる。 As described above, in the illumination device 4 of the present embodiment, the light incident surface (for example, the surface 61S1) has a function as a dichroic mirror between the lens 22 and the polarized dichroic mirror 24, and one of the surfaces 61S1. A retardation plate 61 having a transmission region 61X is arranged in the portion. This makes it possible to produce light containing white light Lw as part of the blue light Lb. By causing this light to enter the illumination optical system of the illumination devices 2 and 3 according to the seventh and eighth embodiments, sunlight can be expressed in a deep blue sky. Therefore, it is possible to realize the lighting device 4 capable of natural light illumination having higher reality.
<10.第10の実施の形態>
 図14は、本開示の第10の実施の形態に係る波長変換素子70Aの断面構成の一例を模式的に表したものである。波長変換素子70Aは、量子ドット層12および蛍光体層13において発せられた各色光Lr,Ly,Lgおよび量子ドット層12および蛍光体層13を透過した励起光EL(青色光Lb)を、励起光ELの入射方向とは反対側から取り出す、所謂透過型の波長変換素子である。
<10. Tenth Embodiment>
FIG. 14 schematically shows an example of the cross-sectional configuration of the wavelength conversion element 70A according to the tenth embodiment of the present disclosure. The wavelength conversion element 70A excites each color light Lr, Ly, Lg emitted in the quantum dot layer 12 and the phosphor layer 13 and the excitation light EL (blue light Lb) transmitted through the quantum dot layer 12 and the phosphor layer 13. It is a so-called transmission type wavelength conversion element that is taken out from the side opposite to the incident direction of the optical EL.
 波長変換素子70Aは、例えば、上記第2の実施の形態の波長変換素子10Aと同様に、温度調整部11と、量子ドット層12と、蛍光体層13と、配光制御構造14と、反射膜15と、ダイクロイックミラー16と、断熱部17,18とを有している。本実施の形態では、温度調整部11の、配光制御構造14の開口14Hに対応する位置に、透光部71が設けられている。透光部71は、例えば、ガラス基板の他、例えばソーダガラス、石英、サファイアガラスおよび水晶等を用いることができる。 The wavelength conversion element 70A includes, for example, the temperature adjusting unit 11, the quantum dot layer 12, the phosphor layer 13, the light distribution control structure 14, and the reflection, similarly to the wavelength conversion element 10A of the second embodiment. It has a film 15, a dichroic mirror 16, and heat insulating portions 17 and 18. In the present embodiment, the light transmitting unit 71 is provided at a position corresponding to the opening 14H of the light distribution control structure 14 of the temperature adjusting unit 11. For the light transmitting portion 71, for example, in addition to a glass substrate, for example, soda glass, quartz, sapphire glass, crystal, or the like can be used.
 これにより、量子ドット層12および蛍光体層13において発せられた各色光Lr,Ly,Lgおよび量子ドット層12および蛍光体層13を透過した励起光EL(青色光Lb)を、温度調整部11の下面(面11S2)側から取り出すことが可能となる。 As a result, the temperature adjusting unit 11 transmits the excitation light EL (blue light Lb) transmitted through the quantum dot layer 12 and the phosphor layer 13 as well as the colored lights Lr, Ly, Lg emitted in the quantum dot layer 12 and the phosphor layer 13. It is possible to take out from the lower surface (surface 11S2) side of the.
<11.第11の実施の形態>
 図15は、本開示の第11の実施の形態に係る波長変換素子70Bの断面構成の一例を模式的に表したものである。波長変換素子70Bは、上記第10の実施の形態の波長変換素子70Aと同様に、量子ドット層12および蛍光体層13において発せられた各色光Lr,Ly,Lgおよび量子ドット層12および蛍光体層13を透過した励起光EL(青色光Lb)を、励起光ELの入射方向とは反対側から取り出す、所謂透過型の波長変換素子である。
<11. Eleventh Embodiment>
FIG. 15 schematically shows an example of the cross-sectional configuration of the wavelength conversion element 70B according to the eleventh embodiment of the present disclosure. The wavelength conversion element 70B is the same as the wavelength conversion element 70A of the tenth embodiment, in which the colored lights Lr, Ly, Lg and the quantum dot layer 12 and the phosphor emitted in the quantum dot layer 12 and the phosphor layer 13 are emitted. This is a so-called transmission type wavelength conversion element that extracts the excitation light EL (blue light Lb) transmitted through the layer 13 from the side opposite to the incident direction of the excitation light EL.
 本実施の形態の波長変換素子70Bは、温度調整部11の上面(面11S1)に対して放物面(面74S1)を有する配光制御構造74Aおよびダイクロイックミラー16の下面(面16S2)に対して放物面(面74S2)を有する配光制御構造74Bから構成される配光制御構造74を用い、配光制御構造74Aの放物面(面74S1)に沿って量子ドット層12を、配光制御構造74Bの放物面(面74S2)に沿って蛍光体層13を形成するようにした。配光制御構造74Aの放物面(面74S1)および配光制御構造74Bの放物面(面74S2)には、それぞれ、反射膜15が形成されている。 The wavelength conversion element 70B of the present embodiment has a light distribution control structure 74A having a parabolic surface (surface 74S1) with respect to the upper surface (surface 11S1) of the temperature adjusting unit 11 and the lower surface (surface 16S2) of the dichroic mirror 16. Using the light distribution control structure 74 composed of the light distribution control structure 74B having a paraboloid surface (plane 74S2), the quantum dot layer 12 is arranged along the paraboloid surface (plane 74S1) of the light distribution control structure 74A. The phosphor layer 13 is formed along the paraboloid (plane 74S2) of the optical control structure 74B. Reflective films 15 are formed on the paraboloid surface (surface 74S1) of the light distribution control structure 74A and the paraboloid surface (surface 74S2) of the light distribution control structure 74B, respectively.
 これにより、量子ドット層12および蛍光体層13において、ダイクロイックミラー16側に発せられた各色光Lr,Ly,Lgが配光制御構造74Bの放物面(面74S2)で反射されるようになる。よって、上記波長変換素子70Aと比較して、各色光Lr,Ly,Lg,Lbをより効率よく取り出すことが可能となる。 As a result, in the quantum dot layer 12 and the phosphor layer 13, the colored lights Lr, Ly, and Lg emitted to the dichroic mirror 16 side are reflected by the paraboloid (plane 74S2) of the light distribution control structure 74B. .. Therefore, as compared with the wavelength conversion element 70A, each color light Lr, Ly, Lg, and Lb can be extracted more efficiently.
 以上、波長変換素子70Aまたは波長変換素子70Bを、本開示の照明装置(例えば、照明装置1)に用いることにより、例えば、励起光ELとダイクロイックミラー16側に発せられた光(赤色光Lr,黄色光Ly,緑色光Lg)とを分離する偏光ダイクロイックミラー24が不要となる。よって、上記第1の実施の形態の効果に加えて、照明装置全体をより小型化することが可能となるという効果を奏する。 As described above, by using the wavelength conversion element 70A or the wavelength conversion element 70B in the lighting device (for example, the lighting device 1) of the present disclosure, for example, the excitation light EL and the light emitted to the dichroic mirror 16 side (red light Lr, The polarized dichroic mirror 24 that separates the yellow light Ly and the green light Lg) becomes unnecessary. Therefore, in addition to the effect of the first embodiment, it is possible to reduce the size of the entire lighting device.
<12.第12の実施の形態>
 本開示の照明装置(例えば、照明装置1)において、量子ドット層12の温度を制御するには、例えば、図16に示したような色調整システム100を構成することが好ましい。この色調整システム100は、光源装置110と、センサ部120と、制御部130と、調整部140とを備えている。図17は、色調整システム100の構成の一例を表したものである。
<12. 12th Embodiment>
In the lighting device of the present disclosure (for example, the lighting device 1), in order to control the temperature of the quantum dot layer 12, for example, it is preferable to configure the color adjustment system 100 as shown in FIG. The color adjustment system 100 includes a light source device 110, a sensor unit 120, a control unit 130, and an adjustment unit 140. FIG. 17 shows an example of the configuration of the color adjustment system 100.
 光源装置110は、例えば、上述した波長変換素子(例えば、波長変換素子10)および光源部21を含む光学系20に相当する。この他、光源装置110には、例えばフライアイレンズ31等の照明光学系30を含めてもよい。 The light source device 110 corresponds to, for example, an optical system 20 including the above-mentioned wavelength conversion element (for example, wavelength conversion element 10) and the light source unit 21. In addition, the light source device 110 may include an illumination optical system 30 such as a fly-eye lens 31.
 センサ部120は、例えば、光源装置110から出射される光の発光スペクトルまたは特定の波長の光量に関する情報を取得する機能を有するものである。例えば、センサ部120では、可視光領域の全波長または特定の波長をセンシングし、そのセンシング結果を示す情報を制御部130に出力する。センサ部120は、例えば、波長変換素子10から出射された各色光Lr,Ly,Lgおよび光源部21から出射された青色レーザLB(青色光Lb)を含む光Lを、例えば照明光学系30へ導くための反射ミラー25の、例えば反射面とは反対側の面に設置することができる。 The sensor unit 120 has, for example, a function of acquiring information on the emission spectrum of the light emitted from the light source device 110 or the amount of light having a specific wavelength. For example, the sensor unit 120 senses all wavelengths or specific wavelengths in the visible light region, and outputs information indicating the sensing result to the control unit 130. The sensor unit 120 transfers light L including the colored lights Lr, Ly, Lg emitted from the wavelength conversion element 10 and the blue laser LB (blue light Lb) emitted from the light source unit 21 to, for example, the illumination optical system 30. It can be installed on the surface of the reflection mirror 25 for guiding, for example, on the surface opposite to the reflection surface.
 制御部130は、演算処理装置および制御装置として機能し、調整部140(具体的には、温度調整部11)の動作を制御するものである。制御部130は、例えばCPU(Central Processing Unit)またはマイクロプロセッサにより構成されている。 The control unit 130 functions as an arithmetic processing unit and a control device, and controls the operation of the adjustment unit 140 (specifically, the temperature adjustment unit 11). The control unit 130 is composed of, for example, a CPU (Central Processing Unit) or a microprocessor.
 調整部140は、例えば波長変換素子10の温度調整部11に相当する。この他、調整部140は、波長変換素子10への励起光ELの照射位置や、位相差板23の回転角度等を調整する調整機構等を追加してもよい。位相差板23の回転角度を変えることで、偏光ダイクロイックミラー24に戻る青色光Lbの偏光状態を変えることができ、結果として偏光ダイクロイックミラー24を通過して光源装置110から出射される青色の光量を変化させることが可能となる。 The adjusting unit 140 corresponds to, for example, the temperature adjusting unit 11 of the wavelength conversion element 10. In addition, the adjusting unit 140 may add an adjusting mechanism for adjusting the irradiation position of the excitation light EL on the wavelength conversion element 10, the rotation angle of the retardation plate 23, and the like. By changing the rotation angle of the retardation plate 23, the polarization state of the blue light Lb returning to the polarized dichroic mirror 24 can be changed, and as a result, the amount of blue light emitted from the light source device 110 through the polarized dichroic mirror 24. Can be changed.
 本開示の照明装置(例えば、照明装置1)では、色調整システム100を用いることにより、波長変換素子10から出射される光を、所望の発光スペクトルに調整することが可能となる。 In the illuminating device (for example, illuminating device 1) of the present disclosure, by using the color adjusting system 100, it is possible to adjust the light emitted from the wavelength conversion element 10 to a desired emission spectrum.
 また、例えば、制御部130に、適宜変化するパラメータ等を一時記憶するRAM(Random Access Memory)等を追加したり、外部からの信号を受信することにより、光源装置110から出射される光の色調を、連続的または段階的に変化させることができるようになる。 Further, for example, the color tone of the light emitted from the light source device 110 by adding a RAM (Random Access Memory) or the like that temporarily stores parameters and the like that change appropriately to the control unit 130 or by receiving a signal from the outside. Can be changed continuously or stepwise.
 以上、第1~第12の実施の形態を挙げて説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。例えば、上記実施の形態等において例示した光学系20や照明光学系30等の構成要素の配置および数等は、あくまでも一例であり、全ての構成要素を備える必要はなく、また、他の構成要素をさらに備えていてもよい。 Although the first to twelfth embodiments have been described above, the present disclosure is not limited to the above embodiments and the like, and various modifications are possible. For example, the arrangement and number of components such as the optical system 20 and the illumination optical system 30 illustrated in the above-described embodiment are merely examples, and it is not necessary to include all the components, and other components. May be further provided.
 更に、上記実施の形態等の照明装置(例えば、照明装置1)の適用例として説明した色調整システムは一例であり、上述のものに限定されるものではない。 Further, the color adjustment system described as an application example of the lighting device (for example, the lighting device 1) of the above embodiment is an example, and is not limited to the above.
 更に、上記実施の形態等の照明装置(例えば、照明装置1)の適用例として自然光照明を挙げたが、本開示の照明装置は、自動車のヘッドランプやライトアップ用の光源、さらに医療用の光源部に適用することが可能である。 Further, although natural light illumination has been mentioned as an application example of the lighting device (for example, lighting device 1) of the above-described embodiment, the lighting device of the present disclosure includes a headlamp of an automobile, a light source for lighting up, and a medical device. It can be applied to the light source unit.
 なお、本明細書中に記載された効果はあくまで例示であってその記載に限定されるものではなく、他の効果があってもよい。 It should be noted that the effects described in the present specification are merely examples and are not limited to the description, and other effects may be obtained.
 本技術は以下のような構成を取ることも可能である。以下の構成の本技術によれば、互いに温度感度および出射波長の異なる第1の波長変換層および第2の波長変換層のうち、より高い温度感度を有する第2の波長変換層を温度調整部側に設けるようにした。これにより、出力される光の波長をアクティブに変化させることができるようになる。よって、色調整を効率よく行うことが可能な照明装置を提供することが可能となる。
(1)
 光源部と、
 一の面を有する温度調整部と、
 前記温度調整部の前記一の面側に配置され、前記光源部から出射された光を励起光として吸収して第1の波長帯域の光を出射する第1の波長変換層と、
 前記温度調整部の前記第1の波長変換層との間に配置され、前記光源部から出射された光および前記第1の波長帯域の光の少なくとも一方を励起光として吸収して前記第1の波長帯域の光とは波長帯域の異なる第2の波長帯域の光を出射すると共に、前記第1の波長変換層よりも高い温度感度を有する第2の波長変換層と
 を備えた照明装置。
(2)
 前記温度調整部と、前記第2の波長変換層との間の少なくとも一部に配置され、前記第1の波長帯域の光および前記第2の波長帯域の光の配光方向を制御すると共に、熱伝導性を有する配光制御構造をさらに有する、前記(1)に記載の照明装置。
(3)
 前記配光制御構造は、前記温度調整部の前記一の面に対して傾きを有する配光制御面を有している、前記(2)に記載の照明装置。
(4)
 前記第2の波長変換層は、前記温度調整部の前記一の面から前記配光制御面に沿って形成されている、前記(3)に記載の照明装置。
(5)
 前記温度調整部の前記一の面および前記配光制御面と前記第2の波長変換層との間に光反射膜をさらに有する、前記(4)に記載の照明装置。
(6)
 前記第1の波長変換層の上方に色分離部をさらに有する、前記(1)乃至(5)のうちのいずれか1つに記載の照明装置。
(7)
 前記第1の波長変換層の上方に色分離部をさらに有し、
 前記配光制御構造の周縁部と前記色分離部とを物理的または機械的に接続することにより、前記温度調整部、前記配光制御構造および前記色分離部によって構成される内部空間を形成している、前記(2)乃至(6)のうちのいずれか1つに記載の照明装置。
(8)
 前記第1の波長変換層および前記第2の波長変換層は、前記内部空間に形成されている、前記(7)に記載の照明装置。
(9)
 前記第1の波長変換層は、前記色分離部に沿って形成されている、前記(6)乃至(8)のうちのいずれか1つに記載の照明装置。
(10)
 前記第1の波長変換層と前記第2の波長変換層との間に第1の断熱部をさらに有する、前記(1)乃至(9)のうちのいずれか1つに記載の照明装置。
(11)
 前記温度調整部は、前記一の面に第1の領域および第2の領域を含む複数の領域を有し、
 前記第1の領域および前記第2の領域のそれぞれに設けられた前記第2の波長変換層は、前記第2の波長帯域の光として、互いに異なる波長帯域の光を出射する、前記(1)乃至(10)のうちのいずれか1つに記載の照明装置。
(12)
 前記第1の領域と前記第2の領域とを分離する第2の断熱部をさらに有する、前記(11)に記載の照明装置。
(13)
 前記温度調整部は、前記複数の領域として、前記第2の波長変換層の温度を一定に保つ恒温領域と、前記第2の波長変換層の温度を調整可能な温調領域とを有する、前記(11)または(12)に記載の照明装置。
(14)
 前記第1の波長変換層は、複数の蛍光体粒子を含んで形成されている、前記(1)乃至(13)のうちのいずれか1つに記載の照明装置。
(15)
 前記第2の波長変換層は、複数の量子ドットを含んで形成されている、前記(1)乃至(14)のうちのいずれか1つに記載の照明装置。
(16)
 前記温度調整部は、ペルチェ素子またはヒータを用いて形成されている、前記(1)乃至(15)のうちのいずれか1つに記載の照明装置。
(17)
 前記温度調整部は一部が光透過性を有する部材によって形成されている、前記(1)乃至(16)のうちのいずれか1つに記載の照明装置。
(18)
 前記第1の波長変換層および前記第2の波長変換層から出射される光の光路上に、位相差板がさらに配置されている、前記(1)乃至(17)のうちのいずれか1つに記載の照明装置。
(19)
 前記第1の波長変換層および前記第2の波長変換層から出射される光の光路上に、色偏光分離素子がさらに配置されている、前記(1)乃至(18)のうちのいずれか1つに記載の照明装置。
(20)
 前記第1の波長変換層および前記第2の波長変換層から出射される光の光路上に、フライアイレンズまたは拡散板がさらに配置されている、前記(1)乃至(19)のうちのいずれか1つに記載の照明装置。
The present technology can also have the following configurations. According to the present technology having the following configuration, the temperature adjusting unit sets the second wavelength conversion layer having higher temperature sensitivity among the first wavelength conversion layer and the second wavelength conversion layer having different temperature sensitivities and emission wavelengths from each other. It was installed on the side. This makes it possible to actively change the wavelength of the output light. Therefore, it is possible to provide a lighting device capable of efficiently performing color adjustment.
(1)
Light source and
A temperature control unit with one surface and
A first wavelength conversion layer arranged on the one surface side of the temperature adjusting unit, absorbing light emitted from the light source unit as excitation light, and emitting light in the first wavelength band.
The first wavelength control unit is arranged between the temperature control unit and the first wavelength conversion layer, and absorbs at least one of the light emitted from the light source unit and the light in the first wavelength band as excitation light. A lighting device including a second wavelength conversion layer that emits light in a second wavelength band different from the light in the wavelength band and has a higher temperature sensitivity than the first wavelength conversion layer.
(2)
It is arranged in at least a part between the temperature adjusting unit and the second wavelength conversion layer, controls the light distribution direction of the light in the first wavelength band and the light in the second wavelength band, and at the same time, controls the light distribution direction. The lighting device according to (1) above, further comprising a light distribution control structure having thermal conductivity.
(3)
The lighting device according to (2), wherein the light distribution control structure has a light distribution control surface that is inclined with respect to the one surface of the temperature adjusting unit.
(4)
The lighting device according to (3), wherein the second wavelength conversion layer is formed from the one surface of the temperature adjusting unit along the light distribution control surface.
(5)
The illuminating device according to (4), further comprising a light reflecting film between the one surface of the temperature adjusting unit, the light distribution control surface, and the second wavelength conversion layer.
(6)
The illuminating device according to any one of (1) to (5) above, further comprising a color separation portion above the first wavelength conversion layer.
(7)
A color separator is further provided above the first wavelength conversion layer.
By physically or mechanically connecting the peripheral edge portion of the light distribution control structure and the color separation section, an internal space composed of the temperature control section, the light distribution control structure, and the color separation section is formed. The lighting device according to any one of (2) to (6) above.
(8)
The lighting device according to (7), wherein the first wavelength conversion layer and the second wavelength conversion layer are formed in the internal space.
(9)
The illuminating device according to any one of (6) to (8) above, wherein the first wavelength conversion layer is formed along the color separation portion.
(10)
The illuminating device according to any one of (1) to (9), further comprising a first heat insulating portion between the first wavelength conversion layer and the second wavelength conversion layer.
(11)
The temperature adjusting unit has a plurality of regions including a first region and a second region on the one surface.
The second wavelength conversion layer provided in each of the first region and the second region emits light in wavelength bands different from each other as light in the second wavelength band (1). The lighting device according to any one of (10) to (10).
(12)
The lighting device according to (11), further comprising a second heat insulating portion that separates the first region and the second region.
(13)
The temperature adjusting unit has, as the plurality of regions, a constant temperature region that keeps the temperature of the second wavelength conversion layer constant and a temperature control region that can adjust the temperature of the second wavelength conversion layer. The lighting device according to (11) or (12).
(14)
The lighting device according to any one of (1) to (13) above, wherein the first wavelength conversion layer is formed to include a plurality of phosphor particles.
(15)
The lighting device according to any one of (1) to (14) above, wherein the second wavelength conversion layer is formed to include a plurality of quantum dots.
(16)
The lighting device according to any one of (1) to (15) above, wherein the temperature adjusting unit is formed by using a Perche element or a heater.
(17)
The lighting device according to any one of (1) to (16) above, wherein the temperature adjusting unit is partially formed of a member having light transmittance.
(18)
Any one of (1) to (17) above, wherein a retardation plate is further arranged on the optical path of the light emitted from the first wavelength conversion layer and the second wavelength conversion layer. The lighting device described in.
(19)
Any one of (1) to (18) above, wherein a color polarization separating element is further arranged on the optical path of the light emitted from the first wavelength conversion layer and the second wavelength conversion layer. The lighting device described in 1.
(20)
Any of the above (1) to (19), wherein the fly-eye lens or the diffuser is further arranged on the optical path of the light emitted from the first wavelength conversion layer and the second wavelength conversion layer. The lighting device according to one.
 本出願は、日本国特許庁において2020年3月16日に出願された日本特許出願番号2020-045295号を基礎として優先権を主張するものであり、この出願の全ての内容を参照によって本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2020-545295 filed at the Japan Patent Office on March 16, 2020, and this application is made by referring to all the contents of this application. Invite to.
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。 One of ordinary skill in the art can conceive of various modifications, combinations, sub-combinations, and changes, depending on design requirements and other factors, which are included in the appended claims and their equivalents. It is understood that it is something to be done.

Claims (20)

  1.  光源部と、
     一の面を有する温度調整部と、
     前記温度調整部の前記一の面側に配置され、前記光源部から出射された光を励起光として吸収して第1の波長帯域の光を出射する第1の波長変換層と、
     前記温度調整部の前記第1の波長変換層との間に配置され、前記光源部から出射された光および前記第1の波長帯域の光の少なくとも一方を励起光として吸収して前記第1の波長帯域の光とは波長帯域の異なる第2の波長帯域の光を出射すると共に、前記第1の波長変換層よりも高い温度感度を有する第2の波長変換層と
     を備えた照明装置。
    Light source and
    A temperature control unit with one surface and
    A first wavelength conversion layer arranged on the one surface side of the temperature adjusting unit, absorbing light emitted from the light source unit as excitation light, and emitting light in the first wavelength band.
    The first wavelength control unit is arranged between the temperature control unit and the first wavelength conversion layer, and absorbs at least one of the light emitted from the light source unit and the light in the first wavelength band as excitation light. A lighting device including a second wavelength conversion layer that emits light in a second wavelength band different from the light in the wavelength band and has a higher temperature sensitivity than the first wavelength conversion layer.
  2.  前記温度調整部と、前記第2の波長変換層との間の少なくとも一部に配置され、前記第1の波長帯域の光および前記第2の波長帯域の光の配光方向を制御すると共に、熱伝導性を有する配光制御構造をさらに有する、請求項1に記載の照明装置。 It is arranged in at least a part between the temperature adjusting unit and the second wavelength conversion layer, controls the light distribution direction of the light in the first wavelength band and the light in the second wavelength band, and at the same time, controls the light distribution direction. The lighting device according to claim 1, further comprising a light distribution control structure having thermal conductivity.
  3.  前記配光制御構造は、前記温度調整部の前記一の面に対して傾きを有する配光制御面を有している、請求項2に記載の照明装置。 The lighting device according to claim 2, wherein the light distribution control structure has a light distribution control surface that is inclined with respect to the one surface of the temperature adjusting unit.
  4.  前記第2の波長変換層は、前記温度調整部の前記一の面から前記配光制御面に沿って形成されている、請求項3に記載の照明装置。 The lighting device according to claim 3, wherein the second wavelength conversion layer is formed from the one surface of the temperature adjusting unit along the light distribution control surface.
  5.  前記温度調整部の前記一の面および前記配光制御面と前記第2の波長変換層との間に光反射膜をさらに有する、請求項4に記載の照明装置。 The lighting device according to claim 4, further comprising a light reflecting film between the one surface of the temperature adjusting unit, the light distribution control surface, and the second wavelength conversion layer.
  6.  前記第1の波長変換層の上方に色分離部をさらに有する、請求項1に記載の照明装置。 The lighting device according to claim 1, further comprising a color separation unit above the first wavelength conversion layer.
  7.  前記第1の波長変換層の上方に色分離部をさらに有し、
     前記配光制御構造の周縁部と前記色分離部とを物理的または機械的に接続することにより、前記温度調整部、前記配光制御構造および前記色分離部によって構成される内部空間を形成している、請求項2に記載の照明装置。
    A color separator is further provided above the first wavelength conversion layer.
    By physically or mechanically connecting the peripheral portion of the light distribution control structure and the color separation portion, an internal space composed of the temperature adjusting portion, the light distribution control structure, and the color separation portion is formed. The lighting device according to claim 2.
  8.  前記第1の波長変換層および前記第2の波長変換層は、前記内部空間に形成されている、請求項7に記載の照明装置。 The lighting device according to claim 7, wherein the first wavelength conversion layer and the second wavelength conversion layer are formed in the internal space.
  9.  前記第1の波長変換層は、前記色分離部に沿って形成されている、請求項6に記載の照明装置。 The lighting device according to claim 6, wherein the first wavelength conversion layer is formed along the color separation portion.
  10.  前記第1の波長変換層と前記第2の波長変換層との間に第1の断熱部をさらに有する、請求項1に記載の照明装置。 The lighting device according to claim 1, further comprising a first heat insulating portion between the first wavelength conversion layer and the second wavelength conversion layer.
  11.  前記温度調整部は、前記一の面に第1の領域および第2の領域を含む複数の領域を有し、
     前記第1の領域および前記第2の領域のそれぞれに設けられた前記第2の波長変換層は、前記第2の波長帯域の光として、互いに異なる波長帯域の光を出射する、請求項1に記載の照明装置。
    The temperature adjusting unit has a plurality of regions including a first region and a second region on the one surface.
    According to claim 1, the second wavelength conversion layer provided in each of the first region and the second region emits light in different wavelength bands as light in the second wavelength band. The lighting device described.
  12.  前記第1の領域と前記第2の領域とを分離する第2の断熱部をさらに有する、請求項11に記載の照明装置。 The lighting device according to claim 11, further comprising a second heat insulating portion that separates the first region and the second region.
  13.  前記温度調整部は、前記複数の領域として、前記第2の波長変換層の温度を一定に保つ恒温領域と、前記第2の波長変換層の温度を調整可能な温調領域とを有する、請求項11に記載の照明装置。 The temperature adjusting unit has, as the plurality of regions, a constant temperature region that keeps the temperature of the second wavelength conversion layer constant and a temperature control region that can adjust the temperature of the second wavelength conversion layer. Item 11. The lighting device according to item 11.
  14.  前記第1の波長変換層は、複数の蛍光体粒子を含んで形成されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the first wavelength conversion layer is formed by including a plurality of phosphor particles.
  15.  前記第2の波長変換層は、複数の量子ドットを含んで形成されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the second wavelength conversion layer is formed to include a plurality of quantum dots.
  16.  前記温度調整部は、ペルチェ素子またはヒータを用いて形成されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the temperature adjusting unit is formed by using a Perche element or a heater.
  17.  前記温度調整部は一部が光透過性を有する部材によって形成されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the temperature adjusting unit is partially formed of a member having light transmission.
  18.  前記第1の波長変換層および前記第2の波長変換層から出射される光の光路上に、位相差板がさらに配置されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein a retardation plate is further arranged on the optical path of the light emitted from the first wavelength conversion layer and the second wavelength conversion layer.
  19.  前記第1の波長変換層および前記第2の波長変換層から出射される光の光路上に、色偏光分離素子がさらに配置されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein a color polarization separating element is further arranged on the optical path of the light emitted from the first wavelength conversion layer and the second wavelength conversion layer.
  20.  前記第1の波長変換層および前記第2の波長変換層から出射される光の光路上に、フライアイレンズまたは拡散板がさらに配置されている、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein a fly-eye lens or a diffuser is further arranged on the optical path of the light emitted from the first wavelength conversion layer and the second wavelength conversion layer.
PCT/JP2021/009092 2020-03-16 2021-03-08 Illuminating device WO2021187207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020045295 2020-03-16
JP2020-045295 2020-03-16

Publications (1)

Publication Number Publication Date
WO2021187207A1 true WO2021187207A1 (en) 2021-09-23

Family

ID=77771260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009092 WO2021187207A1 (en) 2020-03-16 2021-03-08 Illuminating device

Country Status (1)

Country Link
WO (1) WO2021187207A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134619A (en) * 2009-12-25 2011-07-07 Stanley Electric Co Ltd Light source device and lighting system
JP2013026161A (en) * 2011-07-25 2013-02-04 Sharp Corp Light source device, lighting device, vehicular headlight, and vehicle
JP2013093268A (en) * 2011-10-27 2013-05-16 Ushio Inc Wavelength conversion type light source device
JP2014519710A (en) * 2011-06-10 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Fluorescent improved light source and luminaire for providing a visible pattern
JP2016145936A (en) * 2015-02-09 2016-08-12 セイコーエプソン株式会社 Illumination device and projector
WO2017056470A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Wavelength conversion element and light emitting device
WO2019230935A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011134619A (en) * 2009-12-25 2011-07-07 Stanley Electric Co Ltd Light source device and lighting system
JP2014519710A (en) * 2011-06-10 2014-08-14 コーニンクレッカ フィリップス エヌ ヴェ Fluorescent improved light source and luminaire for providing a visible pattern
JP2013026161A (en) * 2011-07-25 2013-02-04 Sharp Corp Light source device, lighting device, vehicular headlight, and vehicle
JP2013093268A (en) * 2011-10-27 2013-05-16 Ushio Inc Wavelength conversion type light source device
JP2016145936A (en) * 2015-02-09 2016-08-12 セイコーエプソン株式会社 Illumination device and projector
WO2017056470A1 (en) * 2015-09-29 2017-04-06 パナソニックIpマネジメント株式会社 Wavelength conversion element and light emitting device
WO2019230935A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element, light source device, vehicle headlamp, display device, light source module, and projection device

Similar Documents

Publication Publication Date Title
JP5985091B1 (en) Light emitting element
US7501749B2 (en) Vehicle lamp using emitting device for suppressing color tone difference according to illumination conditions
WO2019097817A1 (en) Fluorescent light source device
TWI710802B (en) An optical device for producing high brightness light
JP5743548B2 (en) Lighting device
JP6347050B2 (en) Solid state light source device
JP6323020B2 (en) Light source device and projector
RU2721996C2 (en) High brightness light emitting device
JP6737265B2 (en) Light conversion device, light source device, and projector
US20170052362A1 (en) Phosphor wheel and wavelength converting device applying the same
JP2008108553A (en) Light-emitting device
KR102361693B1 (en) Lighting system
CN108427241B (en) Light source device and projector
JP2017009823A (en) Wavelength conversion element, light source device, and projector
JP2018169427A (en) Light source device and projector
JP6394076B2 (en) Light source device and projector
RU2689122C1 (en) Light-emitting device
WO2021187207A1 (en) Illuminating device
WO2021065434A1 (en) Wavelength conversion element
JP2019028120A (en) Illumination device and projector
TWI673519B (en) Optical wavelength conversion module and illumination module
CN112859499B (en) Light source device and projector
CN112130407B (en) Wavelength conversion element, light source device, and projector
CN114217499A (en) Wavelength conversion device and projection system
CN117287663A (en) High-display-index laser lighting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP