WO2021187166A1 - 回転機 - Google Patents

回転機 Download PDF

Info

Publication number
WO2021187166A1
WO2021187166A1 PCT/JP2021/008710 JP2021008710W WO2021187166A1 WO 2021187166 A1 WO2021187166 A1 WO 2021187166A1 JP 2021008710 W JP2021008710 W JP 2021008710W WO 2021187166 A1 WO2021187166 A1 WO 2021187166A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotation axis
oil passage
stator
circumferential direction
Prior art date
Application number
PCT/JP2021/008710
Other languages
English (en)
French (fr)
Inventor
洋平 ▲高▼橋
好晴 内藤
貴彦 大石
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to JP2021518216A priority Critical patent/JP6912028B1/ja
Publication of WO2021187166A1 publication Critical patent/WO2021187166A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil

Definitions

  • the present invention relates to a rotating machine.
  • a stator core and a stator having a winding wound around the stator core, a rotor arranged in a hollow of the stator in a mode of rotating around a rotation axis, a housing for accommodating the stator and the rotor, and an oil pump.
  • Rotating machines equipped with and are known.
  • the motor as a rotating machine described in Patent Document 1 includes a stator, a rotor, a housing, and an oil pump.
  • the housing of the motor includes two outlets arranged radially outside the stator as discharge ports for discharging the oil sent from the oil pump.
  • One of the spouts ejects oil toward one end of the coil as a winding wound around the stator in the direction of the rotor rotation axis.
  • the other one of the spouts ejects oil toward the other end of the coil in the direction of the rotor rotation axis.
  • the stator in which oil is ejected to each of both ends of the coil is cooled.
  • the present invention has been made in view of the above background, and an object of the present invention is to provide a rotating machine capable of improving the cooling uniformity of the stator in the circumferential direction.
  • One aspect of the present invention includes a stator core, a stator having a winding wound around the stator core, a rotor arranged in a hollow of the stator in a mode of rotating about a rotation axis, the stator, and the above.
  • a rotary machine including at least two discharge ports for individually discharging oil toward each of the other end portions, wherein the housing is arranged outside the stator in the radial direction and in the direction of the rotation axis.
  • a third oil passage extending in the circumferential direction is provided, and one end of the first oil passage in the direction of the rotation axis and a central portion of the second oil passage in the circumferential direction communicate with each other.
  • the other end of the first oil passage in the direction of the rotation axis and the central portion of the third oil passage in the circumferential direction communicate with each other, and the second oil passage and the third oil passage Each of them is characterized by including a plurality of the discharge ports arranged in the circumferential direction.
  • FIG. 1 It is sectional drawing which shows the stator and the rotor of the motor system which concerns on embodiment. It is a perspective view which shows the motor system. It is a vertical sectional view of the motor system. It is a perspective view which shows the upper part of the motor system from one side in the direction of the rotation axis. It is an enlarged perspective view which shows the 2nd oil passage provided in the motor housing of the motor system, and the periphery thereof enlarged. It is a perspective view which shows the upper part of the motor system with the inverter removed from the other side in the direction of the rotation axis. It is an enlarged perspective view which shows the 3rd oil passage provided in the same housing and its surroundings in an enlarged manner.
  • FIG. 1 is a cross-sectional view showing a stator 5 and a rotor 7 of a motor system according to an embodiment.
  • the stator 5 includes a cylindrical stator core 5a and a flat wire coil 5b that is a winding wound around the stator core 5a.
  • the rotor 7 is arranged in the hollow of the stator core 5a, and includes a rotor core 7a and a plurality of permanent magnets 7b embedded in the rotor core 7a in a manner arranged in the circumferential direction about the rotation axis L of the rotor 7.
  • hatching to be attached to the cross section of the flat wire coil 5b is omitted.
  • FIG. 2 is a perspective view showing the motor system 1 according to the embodiment.
  • the motor cover which will be described later, is omitted in order to visualize the internal configuration of the motor unit 2.
  • the motor system 1 includes a motor unit 2 which is a rotary machine, an inverter 50, an electric oil pump 80, and an oil cooler 90.
  • the motor unit 2 includes a rotatable shaft 6.
  • the shaft 6 is rotatably supported around the rotation axis L indicated by the alternate long and short dash line in the drawing.
  • the rotor 7 rotates integrally with the shaft 6.
  • the extending direction of the rotation axis L is an example of the rotation axis direction in the present invention.
  • the arrow A direction in FIG. 2 is an example of one side in the direction of the rotation axis.
  • the arrow B direction in FIG. 2 is an example of the other side in the rotation axis direction.
  • the motor unit 2 which is a rotating machine is composed of an IPM (Interior Permanent Magnet) motor, and includes a motor housing 3, a stator 5, a rotor 7, and the like in addition to the shaft 6.
  • the motor housing 3 is provided with a cylindrical hollow.
  • the above-mentioned hollow has openings at each end on the side in the direction of arrow A (one side in the direction of the rotation axis) and the end on the side in the direction of arrow B (the other side in the direction of the rotation axis).
  • the opening at the end on the side of the arrow A is closed by a motor cover (not shown). Further, the opening at the end on the arrow B direction side is closed by the inverter housing 55 described later.
  • One side of the inverter housing 55 in the direction of the rotation axis accommodates the ball bearing 8 and the like of the motor unit 2, and therefore also serves as the motor housing.
  • the motor housing 3 accommodates the stator 5, the shaft 6, and the rotor 7 in a cylindrical hollow.
  • the shaft 6 and the rotor 7 are arranged in the hollow of the cylindrical stator core 5a.
  • one end of the shaft 6 in the rotation axis direction protrudes from one end of the stator core 5a in the longitudinal direction
  • the other end of the shaft 6 in the rotation axis direction protrudes from the other end of the stator core 5a in the longitudinal direction.
  • the motor system 1 is designed on the premise that the oil storage unit 3a is arranged in a posture facing downward in the vertical direction (hereinafter referred to as a normal posture).
  • a normal posture a posture facing downward in the vertical direction
  • the lower portion in the vertical direction is referred to as the lower portion
  • the upper portion is referred to as the upper portion with respect to the motor system 1, the motor housing 3, and the inverter housing 55 described later. ..
  • a certain amount of oil is stored in the internal space of the motor housing 3 and the internal space on one side of the inverter housing 55 in the direction of the rotation axis.
  • the oil stored on one side of the motor housing 3 and the inverter housing 55 in the rotation axis direction flows into the oil storage portion 3a by gravity and is stored.
  • FIG. 3 is a vertical cross-sectional view of the motor system 1. Also in FIG. 3, the motor cover that closes the opening in the direction of arrow A in the motor housing 3 is not shown.
  • the circumferential direction centered on the rotation axis L is simply referred to as a circumferential direction.
  • the radial direction centered on the rotation axis L is simply referred to as the radial direction.
  • the shaft 6 is fitted into a through hole provided in the center of the rotor core 7a.
  • Each of the arrow A direction side (one side) and the arrow B direction side (the other side) of the shaft 6 is rotatably supported by the ball bearing 8.
  • the motor unit 2 and the inverter 50 are adjacent to each other in the direction of the rotation axis.
  • the inverter 50 supplies electric power of a three-phase power supply to the motor unit 2 at a frequency based on the command according to a command sent from a higher-level device such as an ECU (Engine Control Unit) of the vehicle.
  • the inverter 50 including the inverter cover 51, the control board 52, and the inverter housing 55 is arranged on the opposite side (arrow B direction side) of the motor unit 2 in the direction of the rotation axis.
  • Each of the inverter cover 51 and the inverter housing 55 is a cast product having a hollow structure.
  • the inverter housing 55 includes a partition wall 55a on one side in the direction of the rotation axis (the side in the direction of arrow A).
  • the partition wall 55a closes the opening on the other side (arrow B direction side) of the motor housing 3 in the direction of the rotation axis, and separates the motor unit 2 from the inverter 50.
  • the control board 52 is arranged in the hollow on the other side of the inverter housing 55 in the direction of the rotation axis.
  • the other side of the inverter housing 55 in the direction of the rotation axis is open toward the other side. This opening is closed by the inverter cover 51.
  • the motor housing 3 includes a first oil passage 3b for distributing oil.
  • the first oil passage 3b is arranged outside the stator 5 in the radial direction and extends in the rotation axis direction of the rotor 7.
  • the mode extending in the rotation axis direction includes a mode extending strictly along the rotation axis direction and a mode extending in a direction inclined to less than 45 [°] from the rotation axis direction.
  • FIG. 4 is a perspective view showing the upper part of the motor system 1 from one side in the direction of the rotation axis.
  • the motor housing 3 is provided with a second oil passage 3c leading to the first oil passage 3b at an end on one side (arrow A direction side) in the direction of the rotation axis.
  • the second oil passage 3c shown in FIGS. 3 and 4 has an opening on one side (arrow A direction side) in the direction of the rotation axis, and this opening is closed by a motor cover (not shown).
  • FIG. 5 is an enlarged perspective view showing the second oil passage 3c and its surroundings in an enlarged manner.
  • the second oil passage 3c includes a discharge port 3c1.
  • the discharge port 3c1 of the second oil passage 3c is a region of the stator 5 opposite to the region facing the oil storage portion (3a in FIG. 3) (the region facing downward in the normal posture). Discharge toward (the area facing upward in the normal posture).
  • the discharge port 3c1 of the second oil passage 3c is located above the stator 5, and the oil is discharged toward the stator 5 located below.
  • FIG. 6 is a perspective view showing the upper part of the motor system 1 with the inverter (50 in FIG. 3) removed from the other side in the direction of the rotation axis.
  • the motor housing 3 includes a third oil passage 3d leading to the first oil passage 3b at the end on the other side (arrow B direction side) in the direction of the rotation axis.
  • the third oil passage 3d shown in FIG. 6 has an opening on the other side (arrow B direction side) in the direction of the rotation axis, and this opening is closed by the inverter housing (55 in FIG. 3).
  • FIG. 7 is an enlarged perspective view showing the third oil passage 3d and its surroundings in an enlarged manner.
  • Oil flows into the third oil passage 3d via the first oil passage 3b.
  • the third oil passage 3d includes a discharge port 3d1.
  • the discharge port 3d1 of the third oil passage 3d is a region of the stator 5 opposite to the region facing the oil storage portion (3a in FIG. 3) (the region facing downward in the normal posture). Discharge toward (the area facing upward in the normal posture).
  • the discharge port 3d1 of the third oil passage 3d is located above the stator 5, and the oil is discharged toward the stator 5 located below.
  • the cooling uniformity of the stator 5 in the rotation axis direction can be improved as compared with the configuration in which the discharge port is provided in only one region in the rotation axis direction of the motor housing 3.
  • the discharge port 3c1 of the second oil passage 3c discharges oil toward the end of the flat wire coil 5b of the stator 5 on one side (arrow A direction side) in the direction of the rotation axis. Is placed in. Further, the discharge port 3d1 of the third oil passage 3d is arranged so as to discharge oil toward the other end (arrow B direction side) of the flat wire coil 5b of the stator 5 in the direction of the rotation axis.
  • the flat wire coil 5b made of a metal material having high thermal conductivity is arranged over the entire area in the rotation axis direction of the stator 5.
  • the discharge port 3c1 of the second oil passage 3c discharges oil toward one end of the flat wire coil 5b, and the discharge port 3d1 of the third oil passage 3d faces the other end of the flat wire coil 5b.
  • the heat of the stator 5 is efficiently and uniformly conducted to the oil in the direction of the rotation axis. Therefore, according to the motor system 1, the cooling uniformity of the stator 5 in the direction of the rotation axis can be improved more satisfactorily.
  • FIG. 8 is a perspective view showing the motor housing 3, the oil cooler 90, and the electric oil pump 80 from the other side in the direction of the rotation axis.
  • the motor housing 3 includes a discharge port 3c1 in a region on one side (arrow A direction side) in the direction of the rotation axis.
  • the motor housing 3 includes a discharge port 3d1 in a region on the other side (arrow B direction side) in the direction of the rotation axis.
  • the motor housing 3 also includes a discharge port 3b1 in a central region in the direction of the rotation axis.
  • the motor housing 3 is provided with discharge ports (3b1, 3c1, 3d1) in each of the one-sided region, the other-side region, and the central region in the direction of the rotation axis.
  • Each of the two discharge ports 3c1 arranged in the central region in the rotation axis direction leads to the central region in the rotation axis direction in the first oil passage (3b) and faces the center in the rotation axis direction of the stator (5). And discharge the oil.
  • the cooling uniformity of the stator 5 in the rotation axis direction can be further improved by providing the discharge port 3b1 in the central region in the rotation axis direction.
  • the second oil passage 3c shown in FIG. 5 extends in the circumferential direction, and the central portion in the circumferential direction communicates with one end (the end in the arrow A direction) of the first oil passage 3b in the rotation axis direction.
  • the mode extending in the circumferential direction includes a mode extending with a curvature centered on the rotation axis L and a mode extending in an arc shape with a curvature centered at a position deviated from the rotation axis L.
  • the second oil passage 3c includes five discharge ports 3c1 arranged in the circumferential direction.
  • the five discharge ports 3c1 of the second oil passage 3c discharge oil toward different regions in the circumferential direction of the stator (5 in FIG. 2).
  • the third oil passage 3d extends in the circumferential direction, and the central portion in the circumferential direction communicates with the other end (the end in the arrow B direction) of the first oil passage 3b in the rotation axis direction. Further, the third oil passage 3d includes five discharge ports 3d1 arranged in the circumferential direction. The five discharge ports 3d1 of the third oil passage 3d discharge oil toward different regions in the circumferential direction of the stator (5 in FIG. 2).
  • the five discharge ports 3c1 of the second oil passage 3c discharge oil toward different regions in the circumferential direction in the stator (5 in FIG. 2), and the five discharge ports 3d1 of the third oil passage 3d , The oil is discharged toward different regions in the circumferential direction of the stator. According to the motor system 1 having such a configuration, it is possible to improve the cooling uniformity of the stator in the circumferential direction.
  • the oil pressure gradually decreases from the center side to the end side in the circumferential direction, so the amount of oil discharged from the discharge port 3c1 toward the end side from the center side. Tends to decrease. Therefore, in the second oil passage 3c, the diameter of the discharge port 3c1 is different depending on the position in the circumferential direction. Specifically, of the five discharge ports 3c1 in the second oil passage 3c, the diameter of the discharge port 3c1 located at the center in the circumferential direction is the smallest. Further, the diameters of the two discharge ports 3c1 adjacent to each other on both sides in the circumferential direction with respect to the central discharge port 3c1 are larger than the diameter of the central discharge port 3c1.
  • the diameters of the discharge ports 3c1 located at both ends in the circumferential direction are larger than the diameters of the two discharge ports 3c1 described above. That is, the diameter of the discharge port 3c1 gradually increases in the order of arrangement from the discharge port 3c1 located at the center in the circumferential direction to the discharge port 3c1 located at the end in the circumferential direction. As a result, the discharge amount at each of the five discharge ports 3c1 can be made uniform.
  • the diameter of the discharge port 3d1 gradually increases in the order of arrangement from the discharge port 3d1 located at the center in the circumferential direction to the discharge port 3d1 located at the end in the circumferential direction. As a result, the discharge amount at each of the five discharge ports 3d1 can be made uniform.
  • FIG. 9 is a perspective view showing the motor housing 3, the oil cooler 90, and the electric oil pump 80 on the other side in the direction of the rotation axis and from an angle different from that in FIG.
  • a fourth oil passage 3e leading to the oil storage portion 3a is provided in the lower portion of the motor housing 3.
  • FIG. 10 shows a fracture surface of the motor housing 3, the oil cooler 90, and the electric oil pump 80 cut at the positions of the suction portion 80a and the discharge portion 80b in the rotation axis direction of the electric oil pump 80 on one side in the rotation axis direction. It is a cross-sectional view shown from. In FIG. 10, the internal structures of the oil cooler 90 and the electric oil pump 80 are not shown.
  • the fourth oil passage 3e shown in FIG. 9 leads to the suction portion 80a of the electric oil pump 80 as shown in FIG. Further, the motor housing 3 includes a fifth oil passage 3f that leads from the discharge portion 80b of the electric oil pump 80 to the inflow portion 90a of the oil cooler 90.
  • FIG. 11 is a cross-sectional view showing a fracture surface of the motor housing 3, the oil cooler 90, and the electric oil pump 80 at the position of the outflow portion 90b in the rotation axis direction of the oil cooler 90 from one side in the rotation axis direction.
  • the motor housing 3 includes a sixth oil passage 3g leading from the outflow portion 90b of the oil cooler 90 to the central portion in the first oil passage 3b in the direction of the rotation axis.
  • the motor housing 3 extends from the oil storage portion 3a through the electric oil pump 80 and the oil cooler 90 to the respective discharge ports (3c1, 3b1, 3d1). It is equipped with all the oil flow paths. According to the motor system 1 having such a configuration, the oil can be circulated without providing a pipe for forming a circulation path for circulating the oil in the oil cooler 90 and in the motor unit 2 outside the motor. The productivity of the motor system 1 can be improved.
  • the oil stored in the oil storage unit 3a is sucked into the fourth oil passage 3e through the opening of the fourth oil passage 3e shown in FIG. 9 by the suction force of the electric oil pump 80, and then is shown in FIG. It is sucked into the suction portion 80a of the electric oil pump 80. After that, the oil is discharged from the discharge portion 80b of the electric oil pump 80, moves in the fifth oil passage 3f from the lower part to the upper part of the motor housing 3, and enters the oil cooler 90 through the inflow portion 90a of the oil cooler 90. Inflow.
  • the oil cooler 90 includes a refrigerant passage (not shown) and an oil flow path adjacent to the refrigerant passage in the housing. Refrigerants such as coolant sent from the outside pass through the refrigerant path.
  • the oil that has flowed into the oil cooler 90 is cooled by heat exchange with the refrigerant in the refrigerant path in the process of flowing through the oil flow path.
  • the cooled oil flows out from the outflow portion 90b of the oil cooler 90 and flows into the sixth oil passage 3g, as shown in FIG. 11, and then from the sixth oil passage 3g in the direction of the rotation axis of the first oil passage 3b. It flows into the central part of.
  • the oil that has flowed into the central portion of the first oil passage 3b in the direction of the rotation axis is divided into oil that flows along the first path, oil that flows along the second path, and oil that flows along the third path.
  • the oil flowing along the first path is discharged from the discharge port 3b1 leading to the center of the first oil passage 3b in the rotation axis direction, and adheres to the center of the outer peripheral surface of the stator 5 in the rotation axis direction.
  • the oil flowing along the second oil passage flows through the first oil passage 3b from the other side to one side (from the B side to the A side) along the rotation axis direction, and then passes through the second oil passage 3c. It is discharged from the discharge port 3c1 via.
  • the above-mentioned oil adheres to one side end portion (end portion on the arrow A direction side) of the flat wire coil 5b of the stator 5 in the rotation axis direction.
  • the oil flowing along the third oil passage flows through the first oil passage 3b from one side to the other side (from A side to AB) along the rotation axis direction, and then passes through the third oil passage 3d. Discharge from the discharge port 3d1.
  • the above-mentioned oil adheres to the other side end portion (end portion on the arrow B direction side) of the flat wire coil 5b of the stator 5 in the rotation axis direction.
  • the present invention may be applied to a generator (dynamo) as a rotating machine.
  • the present invention is not limited to the above-described embodiment, and a configuration different from the embodiment may be adopted within the range to which the configuration of the present invention can be applied.
  • the present invention exerts a peculiar action and effect for each aspect described below.
  • the first aspect is centered on a stator core (for example, a stator core 5a), a stator (for example, a stator 5) having a winding (for example, a flat wire coil 5b) wound around the stator core, and a rotation axis (for example, a rotation axis L).
  • a rotor for example, a rotor 7) arranged in the hollow of the stator, a housing for accommodating the stator and the rotor (for example, a motor housing 3), and an oil pump (for example, an electric oil pump) are provided.
  • the housing is arranged outside the stator in the radial direction about the rotation axis, and oil is applied to each of one end and the other end of the winding in the rotation axis direction.
  • a rotary machine for example, a motor unit 2 having at least two discharge ports (for example, discharge ports 3c1 and 3d1) for individually discharging, wherein the housing is arranged outside the stator in the radial direction and the rotation is performed.
  • a first oil passage extending in the axial direction for example, the first oil passage 3b
  • a second oil passage for example, a second oil passage
  • An oil passage 3c) and a third oil passage (for example, a third oil passage 3d) arranged in a region on the other side of the rotation axis direction and extending in the circumferential direction are provided, and the rotation axis direction in the first oil passage.
  • the one-sided end and the circumferential central portion of the second oil passage communicate with each other, and the other end of the first oil passage in the rotation axis direction and the third oil passage.
  • the second oil passage and the third oil passage each include a plurality of the discharge ports arranged in the circumferential direction so as to communicate with each other.
  • the plurality of discharge ports of the second oil passage discharge oil toward different regions in the circumferential direction of the stator, and the plurality of discharge ports of the third oil passage are mutually circumferentially oriented in the stator. Discharge oil to different areas. According to such a configuration, the cooling uniformity of the stator in the circumferential direction can be improved.
  • the second aspect comprises the configuration of the first aspect, wherein the housing communicates with a central region of the first oil passage in the direction of the rotation axis and discharges oil toward the center of the stator in the direction of the rotation axis. It is a rotating machine characterized by having a discharge port.
  • the cooling uniformity of the stator in the direction of the rotation axis can be further improved.
  • the third aspect comprises the configuration of the first aspect or the second aspect, and in each of the second oil passage and the third oil passage, the discharge port located at the center of the circumferential direction among the plurality of discharge ports.
  • the rotary machine is characterized in that the diameter of the discharge port gradually increases in the order of arrangement from the outlet to the discharge port located at the end in the circumferential direction.
  • the cooling uniformity of the stator in the circumferential direction is achieved by making the oil discharge amount uniform for each of the plurality of discharge ports of the second oil passage and the plurality of discharge ports of the third oil passage. Can be improved better.
  • the fourth aspect includes the configuration of any one of the first to third aspects and an oil cooler, and the housing has an oil storage portion for storing oil and an oil cooler for cooling the oil (for example, an oil cooler 90). And the oil from the fourth oil passage (for example, the fourth oil passage 3e) leading from the oil storage portion to the suction portion (for example, the suction portion 80a) of the oil pump and the discharge portion (for example, the discharge portion 80b) of the oil pump.
  • the fifth oil passage (for example, the fifth oil passage 3f) leading to the inflow portion (for example, the inflow portion 90a) of the cooler and the outflow portion (for example, the outflow portion 90b) of the oil cooler in the direction of the rotation axis in the first oil passage.
  • a sixth oil passage (for example, a sixth oil passage 3g) leading to a central portion is provided, and the oil storage portion is arranged in a region of the housing opposite to the first oil passage in the circumferential direction. It is a rotating machine.
  • the fourth aspect it is possible to circulate the oil without providing a pipe for forming a circulation path for circulating the oil inside the oil cooler and inside the rotating machine, and thus the production of the rotating machine.
  • the sex can be improved.
  • the oil discharged from the downwardly facing discharge port is sprayed onto the stator located below the discharge port, and then on the surface of the stator. Can be moved downward in the direction of gravity to efficiently cool the stator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】ステータの周方向の冷却均一性を向上させることができるモータシステムを提供する。 【解決手段】回転軸線方向に延びる第1油路3bと、第1油路3bの回転軸線方向の一端に連通する第2油路3cと、第1油路3bの他端に連通する第3油路とを備える。第2油路3c及び第3油路のそれぞれは、回転軸線を中心とする周方向に延び、周方向における中央部を第1油路3bに連通させる。また、第2油路3c及び第3油路のそれぞれは、周方向に並ぶ複数の吐出口(例えば3c1)を備える。

Description

回転機
 本発明は、回転機に関する。
 従来、ステータコア、及びステータコアに巻かれた巻線を具備するステータと、回転軸線を中心にして回転する態様でステータの中空内に配置されるロータと、ステータ及びロータを収容するハウジングと、オイルポンプとを備える回転機が知られている。
 例えば、特許文献1に記載の回転機としてのモータは、ステータ、ロータ、ハウジング、及びオイルポンプを備える。モータのハウジングは、オイルポンプから送られてくるオイルを吐出する吐出口として、ステータよりも径方向の外側に配置された2つの噴出口を備える。噴出口の1つは、ステータに巻かれた巻線としてのコイルにおけるロータ回転軸線方向の一方側の端部に向けてオイルを噴出する。噴出口の他の1つは、コイルにおけるロータ回転軸線方向の他方側の端部に向けてオイルを噴出する。コイルの両端部のそれぞれにオイルを噴出されたステータは、冷却される。
特開2014-30284号公報
 かかる構成のモータでは、ロータ回転軸線を中心とした周方向においてステータを均一に冷却することが困難になるおそれがある。
 本発明は、以上の背景に鑑みてなされたものであり、その目的とするところは、周方向におけるステータの冷却均一性を向上させることができる回転機を提供することである。
 本発明の一態様は、ステータコア、及び前記ステータコアに巻かれた巻線を具備するステータと、回転軸線を中心にして回転する態様で前記ステータの中空内に配置されるロータと、前記ステータ及び前記ロータを収容するハウジングと、オイルポンプとを備え、前記ハウジングが、前記ステータよりも前記回転軸線を中心にした径方向の外側に配置され、前記巻線の回転軸線方向における一方側の端部、他方側の端部のそれぞれに向けてオイルを個別に吐出する少なくとも2つの吐出口を備える回転機であって、前記ハウジングが、前記ステータよりも前記径方向の外側に配置され、前記回転軸線方向に延びる第1油路と、前記回転軸線方向の一方側の領域に配置され、前記回転軸線を中心とする周方向に延びる第2油路と、前記回転軸線方向の他方側の領域に配置され、前記周方向に延びる第3油路とを備え、前記第1油路における前記回転軸線方向の一方側の端部と、前記第2油路における前記周方向の中央部とが、互いに連通し、前記第1油路における前記回転軸線方向の他方側の端部と、前記第3油路における前記周方向の中央部とが、互いに連通し、前記第2油路及び前記第3油路のそれぞれが、前記周方向に並ぶ複数の前記吐出口を備えることを特徴とするものである。
 本発明によれば、周方向におけるステータの冷却均一性を向上させることができるという優れた効果がある。
実施形態に係るモータシステムのステータ及びロータを示す横断面図である。 同モータシステムを示す斜視図である。 同モータシステムの縦断面図である。 同モータシステムの上部を回転軸線方向の一方側から示す斜視図である。 同モータシステムのモータハウジングに設けられた第2油路及びその周囲を拡大して示す拡大斜視図である。 インバータを取り外した状態の同モータシステムの上部を回転軸線方向の他方側から示す斜視図である。 同ハウジングに設けられた第3油路及びその周囲を拡大して示す拡大斜視図である。 同モータシステムのモータハウジング、オイルクーラ、及び電動オイルポンプを、回転軸線方向の他方側から示す斜視図である。 同モータハウジング、同オイルクーラ、及び同電動オイルポンプを、回転軸線方向の他方側であって、且つ図8とは異なるアングルから示す斜視図である。 同モータハウジング、同オイルクーラ、及び同電動オイルポンプを、電動オイルポンプの回転軸線方向における吸入部及び吐出部の位置で破断した破断面を、回転軸線方向の一方側から示す横断面図である。 同モータハウジング、同オイルクーラ、及び同電動オイルポンプを、同オイルクーラの回転軸線方向における流出部の位置で破断した破断面を、回転軸線方向の一方側から示す横断面図である。
 以下、各図を用いて、本発明を適用した回転機システムとしてのモータシステムの一実施形態について説明する。
 図1は、実施形態に係るモータシステムのステータ5及びロータ7を示す横断面図である。ステータ5は、円筒状のステータコア5aと、ステータコア5aに巻かれた巻線たる平角線コイル5bとを備える。ロータ7は、ステータコア5aの中空内に配置され、ロータコア7aと、ロータ7の回転軸線Lを中心とする周方向に並ぶ態様でロータコア7aに埋め込まれた複数の永久磁石7bとを備える。なお、図1においては、平角線コイル5bの横断面に付されるべきハッチングが省略されている。
 図2は、実施形態に係るモータシステム1を示す斜視図である。なお、図2においては、モータ部2の内部構成を可視化するために、後述のモータカバーの図示が省略されている。モータシステム1は、回転機たるモータ部2と、インバータ50と、電動オイルポンプ80と、オイルクーラ90とを備える。
 モータ部2は、回転可能なシャフト6を備える。シャフト6は、図中において一点鎖線で示される回転軸線Lを中心にして回転可能に支持される。ロータ7は、シャフト6と一体的に回転する。回転軸線Lの延在方向は、本発明における回転軸線方向の一例である。図2における矢印A方向は、回転軸線方向における一方側の一例である。また、図2における矢印B方向は、回転軸線方向における他方側の一例である。
 回転機たるモータ部2は、IPM(Interior Permanent Magnet)モータからなり、シャフト6の他に、モータハウジング3、ステータ5、ロータ7等を備える。モータハウジング3には、円柱状の中空が設けられている。前述の中空は、矢印A方向側(回転軸線方向の一方側)の端と、矢印B方向側(回転軸線方向の他方側)の端とのそれぞれに、開口を備える。矢印A方向側の端の開口は、不図示のモータカバーによって塞がれる。また、矢印B方向側の端の開口は、後述のインバータハウジング55によって塞がれる。
 インバータハウジング55の回転軸線方向の一方側は、モータ部2のボールベアリング8等を収容することから、モータハウジングを兼ねている。
 モータハウジング3は、円柱状の中空内に、ステータ5、シャフト6、及びロータ7を収容する。シャフト6及びロータ7は、円筒状のステータコア5aの中空内に配置される。但し、シャフト6の回転軸線方向の一端部は、ステータコア5aの長手方向の一端から突出し、シャフト6の回転軸線方向の他端部は、ステータコア5aの長手方向の他端から突出する。
 モータハウジング3、及びインバータハウジング55の回転軸線方向における一方側は、オイルを貯留するオイル貯留部3aを内部に備える。モータシステム1は、オイル貯留部3aを鉛直方向下方側に向ける姿勢(以下、正規姿勢と言う)で配置されることを前提にした設計がなされている。以下、正規姿勢で配置されたモータシステム1における、モータシステム1、モータハウジング3、及び後述のインバータハウジング55について、鉛直方向の下側になる部分を下部と言い、上側になる部分を上部と言う。
 モータハウジング3の内部空間、及びインバータハウジング55の回転軸線方向の一方側の内部空間には、一定量のオイルが収容される。正規姿勢で配置されたモータシステム1において、モータハウジング3、及びインバータハウジング55の回転軸線方向の一方側に収容されるオイルは、重力によってオイル貯留部3a内に流れ込んで貯留される。
 図3は、モータシステム1の縦断面図である。図3においても、モータハウジング3における図中矢印A方向側の開口を塞ぐモータカバーの図示が省略されている。以下、回転軸線Lを中心とする周方向を単に周方向と言う。また、回転軸線Lを中心とする径方向を単に径方向と言う。
 シャフト6は、ロータコア7aの中心に設けられた貫通穴に嵌め込まれる。シャフト6における矢印A方向側(一方側)、及び矢印B方向側(他方側)のそれぞれは、ボールベアリング8によって回転可能に支持される。
 モータ部2と、インバータ50とは、互いに回転軸線方向に隣接する。インバータ50は、車両のECU(Engine Control Unit)等の上位装置から送られてくる指令に従って、モータ部2に三相電源の電力を指令に基づく周波数で供給するものである。インバータカバー51、制御基板52、及びインバータハウジング55を備えるインバータ50は、回転軸線方向において、モータ部2よりも他方側(矢印B方向側)に配置される。
 インバータカバー51及びインバータハウジング55のそれぞれは、中空構造の鋳造品からなる。インバータハウジング55は、回転軸線方向の一方側(矢印A方向側)に、隔壁55aを備える。この隔壁55aは、モータハウジング3の回転軸線方向の他方側(矢印B方向側)の開口を塞ぎ、モータ部2とインバータ50とを隔てる。
 インバータハウジング55の回転軸線方向の他方側の中空内には、制御基板52が配置される。インバータハウジング55の回転軸線方向の他方側は、他方側に向けて開口している。この開口は、インバータカバー51によって塞がれる。
 モータハウジング3は、オイルを流通させるための第1油路3bを備える。第1油路3bは、ステータ5よりも径方向の外側に配置され、ロータ7の回転軸線方向に延びる。なお、本発明において、回転軸線方向に延びる態様は、厳密に回転軸線方向に沿って延びる態様の他、回転軸線方向から45〔°〕未満に傾いた方向に延びる態様も含む。
 図4は、モータシステム1の上部を回転軸線方向の一方側から示す斜視図である。モータハウジング3は、回転軸線方向の一方側(矢印A方向側)の端部に、第1油路3bに通じる第2油路3cを備える。図3、図4に示される第2油路3cは、回転軸線方向の一方側(矢印A方向側)の端が開口しているが、この開口は、不図示のモータカバーによって塞がれる。
 図5は、第2油路3c及びその周囲を拡大して示す拡大斜視図である。第1油路3bには、オイル貯留部(図3の3a)及び電動オイルポンプ(図2の80)を経由した後のオイルが流入する。また、第2油路3cには、第1油路3bを経由した後のオイルが流入する。第2油路3cは、吐出口3c1を備える。図4において、第2油路3cの吐出口3c1は、オイルを、ステータ5における、オイル貯留部(図3の3a)との対向領域(正規姿勢で下方を向く領域)とは反対側の領域(正規姿勢で上方を向く領域)に向けて吐出する。正規姿勢で設置されたモータシステム1においては、第2油路3cの吐出口3c1がステータ5よりも上方に位置し、オイルを下方に位置するステータ5に向けて吐出する。
 図6は、インバータ(図3の50)を取り外した状態のモータシステム1の上部を回転軸線方向の他方側から示す斜視図である。モータハウジング3は、回転軸線方向の他方側(矢印B方向側)の端部に、第1油路3bに通じる第3油路3dを備える。図6に示される第3油路3dは、回転軸線方向の他方側(矢印B方向側)の端が開口しているが、この開口は、インバータハウジング(図3の55)によって塞がれる。
 図7は、第3油路3d及びその周囲を拡大して示す拡大斜視図である。第3油路3dには、第1油路3bを経由したオイルが流入する。第3油路3dは、吐出口3d1を備える。図6において、第3油路3dの吐出口3d1は、オイルを、ステータ5における、オイル貯留部(図3の3a)との対向領域(正規姿勢で下方を向く領域)とは反対側の領域(正規姿勢で上方を向く領域)に向けて吐出する。正規姿勢で設置されたモータシステム1においては、第3油路3dの吐出口3d1がステータ5よりも上方に位置し、オイルを下方に位置するステータ5に向けて吐出する。
 かかる構成のモータシステム1によれば、モータハウジング3の回転軸線方向における1つの領域だけに吐出口を備える構成に比べて、回転軸線方向におけるステータ5の冷却均一性を向上させることができる。
 図3に示されるように、第2油路3cの吐出口3c1は、ステータ5の平角線コイル5bにおける回転軸線方向の一方側(矢印A方向側)の端部に向けてオイルを吐出するように配置される。また、第3油路3dの吐出口3d1は、ステータ5の平角線コイル5bにおける回転軸線方向の他方側(矢印B方向側)の端部に向けてオイルを吐出するように配置される。熱伝導率の高い金属材料からなる平角線コイル5bは、ステータ5の回転軸線方向の全域に渡って配置される。第2油路3cの吐出口3c1が平角線コイル5bの一方側の端部に向けてオイルを吐出し、第3油路3dの吐出口3d1が平角線コイル5bの他方側の端部に向けてオイルを吐出することで、回転軸線方向において、ステータ5の熱を効率よく均一にオイルに伝導させる。よって、モータシステム1によれば、回転軸線方向におけるステータ5の冷却均一性をより良好に向上させることができる。
 図8は、モータハウジング3、オイルクーラ90、及び電動オイルポンプ80を、回転軸線方向の他方側から示す斜視図である。上述したように、モータハウジング3は、回転軸線方向の一方側(矢印A方向側)の領域に吐出口3c1を備える。また、モータハウジング3は、回転軸線方向の他方側(矢印B方向側)の領域に吐出口3d1を備える。加えて、モータハウジング3は、回転軸線方向の中央の領域にも吐出口3b1を備える。つまり、モータハウジング3は、回転軸線方向において、一方側の領域、他方側の領域、及び中央の領域のそれぞれに、吐出口(3b1、3c1、3d1)を備える。回転軸線方向の中央の領域に配置された2つの吐出口3c1のそれぞれは、第1油路(3b)における回転軸線方向の中央の領域に通じ、ステータ(5)の回転軸線方向の中央に向けてオイルを吐出する。かかる構成のモータシステム1によれば、回転軸線方向の中央の領域にも吐出口3b1を備えることで、回転軸線方向におけるステータ5の冷却均一性を更に向上させることができる。
 図5に示される第2油路3cは、周方向に延び、周方向の中央部を第1油路3bにおける回転軸線方向の一端(矢印A方向の端)に連通させる。なお、本発明において、周方向に延びる態様は、回転軸線Lを中心にした曲率で延びる態様の他、回転軸線Lとはずれた位置を中心にした曲率で円弧状に延びる態様も含む。
 第2油路3cは、周方向に並ぶ5つの吐出口3c1を備える。第2油路3cの5つの吐出口3c1は、互いにステータ(図2の5)における周方向の異なる領域に向けてオイルを吐出する。
 図7に示されるように、第3油路3dは、周方向に延び、周方向の中央部を第1油路3bにおける回転軸線方向の他端(矢印B方向の端)に連通させる。また、第3油路3dは、周方向に並ぶ5つの吐出口3d1を備える。第3油路3dの5つの吐出口3d1は、互いにステータ(図2の5)における周方向の異なる領域に向けてオイルを吐出する。
 つまり、第2油路3cの5つの吐出口3c1は、互いにステータ(図2の5)における周方向の異なる領域に向けてオイルを吐出し、且つ第3油路3dの5つの吐出口3d1は、互いにステータにおける周方向の異なる領域に向けてオイルを吐出する。かかる構成のモータシステム1によれば、周方向におけるステータの冷却均一性を向上させることができる。
 図5に示される第2油路3c内においては、周方向の中央側から端側に向けて徐々に油圧が低下するため、中央側から端側に向かうにつれて、吐出口3c1からのオイル吐出量が低下する傾向にある。そこで、第2油路3cにおいては、周方向の位置に応じて吐出口3c1の径が異なっている。具体的には、第2油路3cにおける5つの吐出口3c1のうち、周方向の中央に位置する吐出口3c1の径は、最も小さい。また、中央の吐出口3c1に対して周方向の両側でそれぞれ隣り合う2つの吐出口3c1の径は、中央の吐出口3c1の径よりも大きい。また、周方向の両端にそれぞれ位置する吐出口3c1の径は、前述の2つの吐出口3c1の径よりも大きい。つまり、周方向の中央に位置する吐出口3c1から周方向の端に位置する吐出口3c1までの並び順に、吐出口3c1の径が徐々に大きくなる。これにより、5つの吐出口3c1のそれぞれにおける吐出量の均一化が図られる。
 図7に示される第3油路3dにおいても、周方向の中央に位置する吐出口3d1から周方向の端に位置する吐出口3d1までの並び順に、吐出口3d1の径が徐々に大きくなる。これにより、5つの吐出口3d1のそれぞれにおける吐出量の均一化が図られる。
 モータシステム1によれば、第2油路3c、第3油路3dのそれぞれにおいて、5つの吐出口(3c1、3d1)のそれぞれにおけるオイル吐出量の均一化を図ることで、周方向におけるステータ(図2の5)の冷却均一性をより良好に向上させることができる。
 図9は、モータハウジング3、オイルクーラ90、及び電動オイルポンプ80を、回転軸線方向の他方側であって、且つ図8とは異なるアングルから示す斜視図である。モータハウジング3の下部には、オイル貯留部3aに通じる第4油路3eが設けられる。
 図10は、モータハウジング3、オイルクーラ90、及び電動オイルポンプ80を、電動オイルポンプ80の回転軸線方向における吸入部80a及び吐出部80bの位置で破断した破断面を、回転軸線方向の一方側から示す横断面図である。なお、図10においては、オイルクーラ90及び電動オイルポンプ80の内部構造の図示が省略されている。
 図9に示される第4油路3eは、図10に示されるように、電動オイルポンプ80の吸入部80aに通じる。また、モータハウジング3は、電動オイルポンプ80の吐出部80bからオイルクーラ90の流入部90aへ通じる第5油路3fを備える。
 図11は、モータハウジング3、オイルクーラ90、及び電動オイルポンプ80を、オイルクーラ90の回転軸線方向における流出部90bの位置で破断した破断面を、回転軸線方向の一方側から示す横断面図である。図示のように、モータハウジング3は、オイルクーラ90の流出部90bから第1油路3bにおける回転軸線方向の中央部へ通じる第6油路3gを備える。
 図9~図11を用いて説明したように、モータハウジング3は、オイル貯留部3aから、電動オイルポンプ80と、オイルクーラ90とを経て、各吐出口(3c1、3b1、3d1)に至るまでのオイルの流路を全て備える。かかる構成のモータシステム1によれば、オイルをオイルクーラ90内とモータ部2内とで循環させる循環路を構成するための配管をモータ外に設けることなく、オイルを循環させることが可能なので、モータシステム1の生産性を向上させることができる。
 オイル貯留部3aに貯留されたオイルは、電動オイルポンプ80の吸引力により、図9に示される第4油路3eの開口を通じて第4油路3e内に吸引された後、図10に示される電動オイルポンプ80の吸入部80aに吸入される。その後、オイルは、電動オイルポンプ80の吐出部80bから吐出されて第5油路3f内をモータハウジング3の下部から上部に向けて移動し、オイルクーラ90の流入部90aを通じてオイルクーラ90内に流入する。
 オイルクーラ90は、不図示の冷媒路と、冷媒路に隣接するオイル流路とを筐体内に備える。冷媒路には、外部から送られてくるクーラント等の冷媒が通る。オイルクーラ90内に流入したオイルは、オイル流路を流れる過程で、冷媒路内の冷媒との熱交換によって冷却される。冷却後のオイルは、図11に示される、オイルクーラ90の流出部90bから流出して第6油路3g内に流入した後、第6油路3gから、第1油路3bの回転軸線方向の中央部に流入する。
 第1油路3bの回転軸線方向の中央部に流入したオイルは、第1経路に沿って流れるオイルと、第2経路に沿って流れるオイルと、第3経路に沿って流れるオイルとに分かれる。第1経路に沿って流れるオイルは、第1油路3bの回転軸線方向の中央に通じる吐出口3b1から吐出して、ステータ5の外周面上部における回転軸線方向の中央に付着する。また、第2経路に沿って流れるオイルは、第1油路3b内を回転軸線方向に沿って他方側から一方側(B側からA側)に向けて流れた後、第2油路3cを経由して吐出口3c1から吐出する。そして、前述のオイルは、ステータ5の平角線コイル5bの回転軸線方向における一方側端部(矢印A方向側の端部)に付着する。第3経路に沿って流れるオイルは、第1油路3b内を回転軸線方向に沿って一方側から他方側(A側からAB)に向けて流れた後、第3油路3dを経由して吐出口3d1から吐出する。そして、前述のオイルは、ステータ5の平角線コイル5bの回転軸線方向における他方側端部(矢印B方向側の端部)に付着する。
 本発明を回転機としてのモータ部2に適用した例について説明したが、本発明を回転機としての発電機(ダイナモ)に適用してもよい。
 本発明は上述の実施形態に限られず、本発明の構成を適用し得る範囲内で、実施形態とは異なる構成を採用することもできる。本発明は、以下に説明する態様毎に特有の作用効果を奏する。
〔第1態様〕
 第1態様は、ステータコア(例えばステータコア5a)、及び前記ステータコアに巻かれた巻線(例えば平角線コイル5b)を具備するステータ(例えばステータ5)と、回転軸線(例えば回転軸線L)を中心にして回転する態様で前記ステータの中空内に配置されるロータ(例えばロータ7)と、前記ステータ及び前記ロータを収容するハウジング(例えばモータハウジング3)と、オイルポンプ(例えば電動オイルポンプ)とを備え、前記ハウジングが、前記ステータよりも前記回転軸線を中心にした径方向の外側に配置され、前記巻線の回転軸線方向における一方側の端部、他方側の端部のそれぞれに向けてオイルを個別に吐出する少なくとも2つの吐出口(例えば吐出口3c1、3d1)を備える回転機(例えばモータ部2)であって、前記ハウジングが、前記ステータよりも前記径方向の外側に配置され、前記回転軸線方向に延びる第1油路(例えば第1油路3b)と、前記回転軸線方向の一方側の領域に配置され、前記回転軸線を中心とする周方向に延びる第2油路(例えば第2油路3c)と、前記回転軸線方向の他方側の領域に配置され、前記周方向に延びる第3油路(例えば第3油路3d)とを備え、前記第1油路における前記回転軸線方向の一方側の端部と、前記第2油路における前記周方向の中央部とが、互いに連通し、前記第1油路における前記回転軸線方向の他方側の端部と、前記第3油路における前記周方向の中央部とが、互いに連通し、前記第2油路及び前記第3油路のそれぞれが、前記周方向に並ぶ複数の前記吐出口を備えることを特徴とするものである。
 第1態様において、第2油路の複数の吐出口は、互いにステータにおける周方向の異なる領域に向けてオイルを吐出し、且つ第3油路の複数の吐出口は、互いにステータにおける周方向の異なる領域に向けてオイルを吐出する。かかる構成によれば、周方向におけるステータの冷却均一性を向上させることができる。
〔第2態様〕
 第2態様は、第1態様の構成を備え、前記ハウジングが、前記第1油路における前記回転軸線方向の中央の領域に通じ、前記ステータの前記回転軸線方向の中央に向けてオイルを吐出する吐出口を備えることを特徴とする回転機である。
 第2態様によれば、ハウジングにおける回転軸線方向の中央の領域にも吐出口を備えることで、回転軸線方向におけるステータの冷却均一性を更に向上させることができる。
〔第3態様〕
 第3態様は、第1態様又は第2態様の構成を備え、前記第2油路及び前記第3油路のそれぞれにおいて、複数の前記吐出口のうち、前記周方向の中央に位置する前記吐出口から周方向の端に位置する吐出口までの並び順に、前記吐出口の径が徐々に大きくなることを特徴とする回転機である。
 第3態様によれば、第2油路の複数の吐出口、及び第3油路の複数の吐出口のそれぞれについて、オイル吐出量の均一化を図ることで、周方向におけるステータの冷却均一性をより良好に向上させることができる。
〔第4態様〕
 第4態様は、第1態様~第3態様の何れかの構成と、オイルクーラとを備え、前記ハウジングが、オイルを貯留するオイル貯留部と、オイルを冷却するオイルクーラ(例えばオイルクーラ90)と、前記オイル貯留部から前記オイルポンプの吸入部(例えば吸入部80a)へ通じる第4油路(例えば第4油路3e)と、前記オイルポンプの吐出部(例えば吐出部80b)から前記オイルクーラの流入部(例えば流入部90a)へ通じる第5油路(例えば第5油路3f)と、前記オイルクーラの流出部(例えば流出部90b)から前記第1油路における前記回転軸線方向の中央部へ通じる第6油路(例えば第6油路3g)とを備え、前記オイル貯留部が、前記ハウジングにおける前記第1油路とは周方向の反対側の領域に配置されることを特徴とする回転機である。
 第4態様によれば、オイルをオイルクーラ内と回転機内とで循環させる循環路を構成するための配管を回転機の外部に設けることなく、オイルを循環させることが可能なので、回転機の生産性を向上させることができる。更には、第4態様によれば、正規姿勢で設置された回転機において、下方を向く吐出口から吐出したオイルを、吐出口よりも下方に位置するステータに噴き付けた後、ステータの表面上を重力方向下方に向けて移動させて、ステータを効率よく冷却することができる。
 本発明は、2020年3月18日に出願された日本特許出願である特願2020-047409号に基づく優先権を主張し、当該日本特許出願に記載されたすべての記載内容を援用する。
  1:モータシステム(回転機システム)、  2:モータ部(回転機)、  3:モータハウジング(ハウジングの一部)、  、3a:オイル貯留部、  3b:第1油路、  3b1:吐出口、  3c:第2油路、  3c1:吐出口、  3d:第3油路、  3d1:吐出口、  3e:第4油路、  3f:第5油路、  3g:第6油路、  5:ステータ、  5a:ステータコア、  5b:平角線コイル(巻線)、  6:シャフト、  7:ロータ、  7a:ロータコア、  7b:永久磁石、  55:インバータハウジング(ハウジングの一部)、  80:電動オイルポンプ、  80a:吸入部、  80b:吐出部、  90:オイルクーラ、  90a:流入部、  90b:流出部

 

Claims (4)

  1.  ステータコア、及び前記ステータコアに巻かれた巻線を具備するステータと、回転軸線を中心にして回転する態様で前記ステータの中空内に配置されるロータと、前記ステータ及び前記ロータを収容するハウジングと、オイルポンプとを備え、
     前記ハウジングが、前記ステータよりも前記回転軸線を中心にした径方向の外側に配置され、前記巻線の回転軸線方向における一方側の端部、他方側の端部のそれぞれに向けてオイルを個別に吐出する少なくとも2つの吐出口を備える回転機であって、
     前記ハウジングが、
      前記ステータよりも前記径方向の外側に配置され、前記回転軸線方向に延びる第1油路と、
      前記回転軸線方向の一方側の領域に配置され、前記回転軸線を中心とする周方向に延びる第2油路と、
      前記回転軸線方向の他方側の領域に配置され、前記周方向に延びる第3油路とを備え、
     前記第1油路における前記回転軸線方向の一方側の端部と、前記第2油路における前記周方向の中央部とが、互いに連通し、
     前記第1油路における前記回転軸線方向の他方側の端部と、前記第3油路における前記周方向の中央部とが、互いに連通し、
     前記第2油路及び前記第3油路のそれぞれが、前記周方向に並ぶ複数の前記吐出口を備える
     ことを特徴とする回転機。
  2.  前記ハウジングが、前記第1油路における前記回転軸線方向の中央の領域に通じ、前記ステータの前記回転軸線方向の中央に向けてオイルを吐出する吐出口を備える
     ことを特徴とする請求項1に記載の回転機。
  3.  前記第2油路及び前記第3油路のそれぞれにおいて、複数の前記吐出口のうち、前記周方向の中央に位置する前記吐出口から周方向の端に位置する吐出口までの並び順に、前記吐出口の径が徐々に大きくなる
     ことを特徴とする請求項1又は2に記載の回転機。
  4.  オイルを冷却するオイルクーラを備え、
     前記ハウジングが、オイルを貯留するオイル貯留部と、前記オイル貯留部から前記オイルポンプの吸入部へ通じる第4油路と、前記オイルポンプの吐出部から前記オイルクーラの流入部へ通じる第5油路と、前記オイルクーラの流出部から前記第1油路における前記回転軸線方向の中央部へ通じる第6油路とを備え、
     前記オイル貯留部が、前記ハウジングにおける前記第1油路とは前記周方向の反対側の領域に配置される
     ことを特徴とする請求項1乃至3の何れか1項に記載の回転機。

     
PCT/JP2021/008710 2020-03-18 2021-03-05 回転機 WO2021187166A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021518216A JP6912028B1 (ja) 2020-03-18 2021-03-05 回転機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020047409 2020-03-18
JP2020-047409 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021187166A1 true WO2021187166A1 (ja) 2021-09-23

Family

ID=77771805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008710 WO2021187166A1 (ja) 2020-03-18 2021-03-05 回転機

Country Status (1)

Country Link
WO (1) WO2021187166A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341908A (ja) * 1999-05-31 2000-12-08 Meidensha Corp 回転電機
JP2002084714A (ja) * 2000-09-06 2002-03-22 Meidensha Corp 高速回転電機
JP2008312364A (ja) * 2007-06-15 2008-12-25 Meidensha Corp 電動車両の冷却システム
JP2010104191A (ja) * 2008-10-27 2010-05-06 Nippon Steel Corp 軸受油の漏れ防止機構を備えた軸受装置
JP2011135698A (ja) * 2009-12-24 2011-07-07 Nippon Soken Inc 回転電機
WO2018030324A1 (ja) * 2016-08-09 2018-02-15 日本電産株式会社 駆動装置
JP2019161764A (ja) * 2018-03-09 2019-09-19 株式会社明電舎 回転電機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000341908A (ja) * 1999-05-31 2000-12-08 Meidensha Corp 回転電機
JP2002084714A (ja) * 2000-09-06 2002-03-22 Meidensha Corp 高速回転電機
JP2008312364A (ja) * 2007-06-15 2008-12-25 Meidensha Corp 電動車両の冷却システム
JP2010104191A (ja) * 2008-10-27 2010-05-06 Nippon Steel Corp 軸受油の漏れ防止機構を備えた軸受装置
JP2011135698A (ja) * 2009-12-24 2011-07-07 Nippon Soken Inc 回転電機
WO2018030324A1 (ja) * 2016-08-09 2018-02-15 日本電産株式会社 駆動装置
JP2019161764A (ja) * 2018-03-09 2019-09-19 株式会社明電舎 回転電機

Similar Documents

Publication Publication Date Title
KR102061991B1 (ko) 냉각 매체 분배 요소를 구비하는 조립된 중공 로터 샤프트
CN103620918B (zh) 旋转电机的冷却结构
US8138640B2 (en) Rotating electric machine and cooling system for the rotating electric machine
US8232691B2 (en) Stator
US11469644B2 (en) Multipart rotor shaft for an electric machine
KR101114713B1 (ko) 전동기 및 이의 냉각유닛
JP2013132151A (ja) 回転電機及び回転電機冷却システム
US10447115B2 (en) Rotary electric machine and driving system
US20190115805A1 (en) Wound rotor motor for vehicle
US11070099B2 (en) Cooling structure of stator of rotating electrical machine
JP2015104214A (ja) 回転電機
CN106849434A (zh) 转子、液体冷却的电机以及车辆
CN109936232A (zh) 汽车、电机及其定子组件和分流机构
WO2017082023A1 (ja) 回転電機
JP2008029150A (ja) 全閉形電動機
JP2007089255A (ja) 回転電機
WO2021187166A1 (ja) 回転機
JP6912028B1 (ja) 回転機
JP2012244659A (ja) 回転電機のステータ構造
CN111162633A (zh) 电机转子及汽车
JP2021151055A (ja) 回転機
WO2016079806A1 (ja) 回転電機
JP7363625B2 (ja) 回転機
JP2020014332A (ja) ステータ冷却構造
US10291104B2 (en) Apparatus for cooling an electric rotating machine

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021518216

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771907

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21771907

Country of ref document: EP

Kind code of ref document: A1