WO2021186599A1 - Ablation system - Google Patents

Ablation system Download PDF

Info

Publication number
WO2021186599A1
WO2021186599A1 PCT/JP2020/011876 JP2020011876W WO2021186599A1 WO 2021186599 A1 WO2021186599 A1 WO 2021186599A1 JP 2020011876 W JP2020011876 W JP 2020011876W WO 2021186599 A1 WO2021186599 A1 WO 2021186599A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
value
control unit
liquid
power supply
Prior art date
Application number
PCT/JP2020/011876
Other languages
French (fr)
Japanese (ja)
Inventor
卓也 平尾
久生 宮本
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to PCT/JP2020/011876 priority Critical patent/WO2021186599A1/en
Priority to JP2022508691A priority patent/JP7352011B2/en
Priority to TW110108850A priority patent/TW202139936A/en
Publication of WO2021186599A1 publication Critical patent/WO2021186599A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to an ablation system including an ablation catheter for performing ablation (cauterization) and a power supply device for supplying electric power for performing ablation.
  • an ablation system that ablates such an affected area has been proposed (for example, Patent Document 1). reference).
  • the ablation system includes an ablation catheter and a power supply that supplies power to perform the ablation.
  • the ablation system includes an ablation catheter having an electrode, a power supply unit for supplying electric power for ablation between the electrode and the counter electrode plate, and a power supply operation in the power supply unit. It is provided with a first control unit for controlling the above and a power supply device including the first control unit. At the time of ablation, when the increase value per unit time in the impedance between the electrode and the counter electrode plate becomes equal to or higher than the first threshold value, the first control unit determines the power supply value. Decrease.
  • the first control unit reduces the power supply value for performing the ablation. As a result, the excessive increase in impedance during ablation is prevented, and the power is efficiently supplied to the target of ablation.
  • the impedance rises per unit time after the lapse of the first standby time after the first control unit gives an instruction to lower the power supply value.
  • the next determination process regarding whether or not the value is equal to or greater than the first threshold value may be started. In this case, since such a next determination process is not started in the stage before the elapse of the first standby time, an excessive decrease in the power supply value is prevented, and the power is supplied more efficiently. As a result, the efficiency during ablation is further improved.
  • the ablation catheter is provided with an irrigation mechanism for flowing out a predetermined liquid, and a liquid supply device for supplying the liquid to the ablation catheter is provided.
  • a second control unit that controls the liquid supply operation in this liquid supply device may be further provided. Then, when the flow rate of the liquid flowing out from the irrigation mechanism is less than the upper limit value during ablation using the irrigation mechanism, the second control unit raises the impedance per unit time. May increase the flow rate of the liquid when is greater than or equal to the second threshold.
  • the flow rate of the liquid is increased by the second control unit, so that the excessive increase in the impedance at the time of ablation is prevented, and the object to be ablated is subjected to. Therefore, electric power is supplied more efficiently. As a result, the efficiency during ablation is further improved.
  • the first control unit determines that the increase value of the impedance per unit time is the second.
  • the power supply value may be lowered.
  • the power supply value is lowered, so that the excessive increase in the impedance at the time of ablation is caused. It will be prevented. As a result, electric power is more efficiently supplied to the target of ablation, and as a result, the efficiency at the time of ablation is further improved.
  • the increase value of the impedance per unit time becomes equal to or higher than the second threshold value.
  • the next determination process as to whether or not the item may be started may be started.
  • the effect of the increase in the liquid flow rate on the impedance generally differs depending on the type of the affected area. Therefore, the second standby time is appropriately set according to the liquid flow rate. By doing so, the efficiency at the time of ablation will be further improved.
  • the second control unit may be provided in the power supply device.
  • the power and the power and the liquid can be controlled.
  • Each of the liquid supply operations can be performed more efficiently. As a result, electric power is more efficiently supplied to the target of ablation, and as a result, the efficiency at the time of ablation is further improved.
  • the ablation system when the integrated value of the power supply values from the start of ablation to the present time becomes equal to or higher than the third threshold value in the first control unit. , The ablation may be automatically terminated by automatically stopping the power supply.
  • the integrated value (joule amount) of the power supply value becomes excessive, the power supply is automatically stopped and the ablation is automatically terminated. Therefore, the target of ablation is On the other hand, electric power will be supplied more efficiently. As a result, the efficiency during ablation is further improved.
  • the target of the ablation includes, for example, an affected area having a tumor in the patient's body.
  • the power supply value is decreased. Therefore, the above-mentioned electric power can be efficiently supplied to the target of ablation. Therefore, it is possible to improve the efficiency at the time of ablation.
  • FIG. 1 is a schematic block diagram showing an overall configuration example of the ablation system 5 according to the embodiment of the present invention.
  • this ablation system 5 is a system used when treating an affected part 90 in the body of a patient 9, and a predetermined ablation is performed on such an affected part 90.
  • the affected area 90 include an affected area having a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
  • the ablation system 5 includes an ablation catheter 1, a liquid supply device 2, and a power supply device 3. Further, in the ablation using the ablation system 5, for example, the counter electrode plate 4 shown in FIG. 1 is also appropriately used.
  • the ablation catheter 1 is an electrode catheter that is inserted into the body of a patient 9 through a blood vessel, for example, and ablates the affected portion 90 to treat an arrhythmia or the like.
  • the ablation catheter 1 also has an irrigation mechanism that flushes (sprays) a predetermined irrigation liquid L (for example, physiological saline or the like) from the distal end side at the time of such ablation.
  • a predetermined irrigation liquid L for example, physiological saline or the like
  • the ablation system 5 is an ablation system with such an irrigation mechanism.
  • a liquid L is supplied to the inside of such an ablation catheter 1 from a liquid supply device 2 described later, and circulates and flows (see FIG. 1).
  • FIG. 2 schematically shows a detailed configuration example of the ablation catheter 1.
  • the ablation catheter 1 includes a catheter shaft 11 (catheter tube) as a catheter body (long portion) and a handle 12 attached to the proximal end side of the catheter shaft 11.
  • the catheter shaft 11 has a flexible tubular structure (tubular member) and has a shape extending along its own axial direction (Z-axis direction). Further, the catheter shaft 11 has a so-called single lumen structure in which one lumen (pore, through hole) is formed so as to extend along its own axial direction, or a plurality (for example, four). It has a so-called multi-lumen structure in which lumens are formed. In the catheter shaft 11, both a region having a single lumen structure and a region having a multi-lumen structure may be provided. Various thin wires (conductors, operating wires, etc.) (not shown) are inserted into such lumens in a state of being electrically insulated from each other.
  • the lumen for flowing the liquid L for irrigation described above is formed so as to extend along the axial direction. ing. Then, such a liquid L is discharged (injected) from the vicinity of the tip of the catheter shaft 11 (see FIG. 2).
  • Such a catheter shaft 11 is made of, for example, a synthetic resin such as polyolefin, polyamide, polyether polyamide, or polyurethane.
  • the axial length of the catheter shaft 11 is about 500 to 1200 mm (for example, 1170 mm), and the outer diameter of the catheter shaft 11 (outer diameter of the XY cross section) is about 0.6 to 3 mm (for example, 1170 mm). For example, 2.0 mm).
  • a plurality of ring-shaped electrodes 111 made of a metal ring and one tip tip 110 are spaced apart from each other at a predetermined distance. Is placed. Specifically, each of the plurality of electrodes 111 is fixedly arranged in the middle portion (near the central region) of the tip flexible portion 11A, while the tip tip 110 is fixedly arranged on the most advanced side of the tip flexible portion 11A. ing. It should be noted that these electrodes 111 are electrically connected to the handle 12 described later via a plurality of conducting wires (not shown) inserted into the lumen of the catheter shaft 11 described above.
  • Each of such electrodes 111 is made of a metal material having good electrical conductivity, such as aluminum (Al), copper (Cu), SUS, gold (Au), and platinum (Pt). Further, the tip tip 110 is made of, for example, the same metal material as each electrode 111, and is also made of a resin material such as silicone rubber resin or polyurethane.
  • each electrode 111 is made of platinum or an alloy thereof.
  • the outer diameter of each electrode 111 and the tip 110 is not particularly limited, but it is desirable that the outer diameter is about the same as the outer diameter of the catheter shaft 11 described above.
  • the handle 12 is a portion to be grasped (grasped) by an operator (doctor) when using the ablation catheter 1. As shown in FIG. 2, the handle 12 has a handle body 121 mounted on the proximal end side of the catheter shaft 11 and a rotation operation unit 122.
  • the handle body 121 corresponds to a portion (grip portion) actually gripped by the operator, and has a shape extending along the axial direction (Z-axis direction) thereof.
  • a handle body 121 is made of, for example, a synthetic resin such as polycarbonate or acrylonitrile-butadiene-styrene copolymer (ABS).
  • the rotation operation unit 122 is a portion used in a deflection operation for bending the vicinity of the tip of the catheter shaft 11 (tip flexible portion 11A) together with the above-mentioned operation wire (pair of operation wires). Specifically, the rotation operation unit 122 is operated (rotation operation) during such a deflection operation. As shown in FIG. 2, such a rotation operation unit 122 includes a rotation plate 41.
  • the rotating plate 41 is a member rotatably mounted on the handle body 121 about a rotating axis (Y-axis direction) perpendicular to the longitudinal direction (Z-axis direction).
  • the rotating plate 41 corresponds to a portion actually operated by the operator during the above-mentioned rotation operation, and has a substantially disk-shaped shape. Specifically, in this example, as shown by the arrows d1a and d1b in FIG. 2, the operation of rotating the rotating plate 41 in both directions in the ZX plane with respect to the handle body 121 (the above-mentioned rotating shaft is rotated). Rotation operation centered on rotation) is possible.
  • a pair of knobs 41a and 41b are provided integrally with the rotating plate 41 on the side surface of the rotating plate 41.
  • the knobs 41a and 41b are arranged at positions that are point-symmetrical to each other with the rotation axis of the rotating plate 41 as the center.
  • Each of these knobs 41a and 41b corresponds to a portion operated (pushed) by, for example, a finger of one hand when the operator rotates the rotating plate 41.
  • the rotating plate 41 is made of, for example, the same material (synthetic resin or the like) as the handle body 121 described above.
  • the liquid supply device 2 is a device that supplies the liquid L for irrigation described above to the ablation catheter 1, and has a liquid supply unit 21 as shown in FIG.
  • the liquid supply unit 21 supplies the above-mentioned liquid L to the ablation catheter 1 at any time according to the control by the control signal CTL2 described later. Specifically, for example, as shown in FIG. 1, the liquid supply unit 21 causes the liquid L to circulate between the inside of the liquid supply device 2 and the inside of the ablation catheter 1 (in a predetermined flow path). Then, the liquid L is supplied. Further, as will be described in detail later, such a liquid L supply operation is executed or stopped according to the control by the control signal CTL2 described above.
  • the liquid supply unit 21 includes, for example, a liquid pump, a resin tube, and the like.
  • the power supply device 3 has a power Pout (for example, radio frequency (RF)) for performing ablation between the ablation catheter 1 (the electrode 111 described above) and the counter electrode plate 4 described later. It is a device that supplies electric power) and controls the supply operation of the liquid L in the liquid supply device 2. As shown in FIG. 1, the power supply device 3 has an input unit 31, a power supply unit 32, a control unit 33, and a display unit 34.
  • RF radio frequency
  • the input unit 31 is a part for inputting various set values described later and an instruction signal (operation signal Sm) for instructing a predetermined operation.
  • Such an operation signal Sm is input from the input unit 31 in response to an operation by an operator (for example, an engineer or the like) of the power supply device 3.
  • these various set values are not input according to the operation by the operator, but may be set in advance in the power supply device 3 at the time of shipment of the product, for example.
  • the set value input by the input unit 31 is supplied to the control unit 33, which will be described later.
  • such an input unit 31 is configured by using, for example, a predetermined dial, button, touch panel, or the like.
  • the power supply unit 32 is a portion that supplies the above-mentioned electric power Pout between the ablation catheter 1 (electrode 111) and the counter electrode plate 4 described later according to the control signal CTL1 described later.
  • a power supply unit 32 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like).
  • the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
  • the control unit 33 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured by using, for example, a microcomputer or the like. Specifically, the control unit 33 first has a function (power supply control function) of controlling the power supply operation of the power supply unit 32 by using the control signal CTL1. Further, the control unit 33 has a function (liquid supply control function) of controlling the supply operation of the liquid L in the liquid supply device 2 (liquid supply unit 21) by using the control signal CTL2.
  • control unit 33 corresponds to a specific example of the "first control unit” and the “second control unit” in the present invention.
  • the temperature information It measured by the ablation catheter 1 (temperature sensor such as a thermoelectric pair arranged corresponding to each electrode 111) is supplied to such a control unit 33 at any time (FIG. FIG. 1). Further, the control unit 33 is provided with a measured value of the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4 described later from the power supply unit 32 at any time (see FIG. 1). ).
  • control unit 33 Details of the control operation and the like in the control unit 33, including the power supply control function and the liquid supply control function described above, will be described later (FIGS. 3 and 4).
  • the display unit 34 is a part (monitor) that displays various information and outputs it to the outside.
  • Examples of the information to be displayed include the above-mentioned various set values input from the input unit 31, various parameters supplied from the control unit 33, temperature information It supplied from the ablation catheter 1, and the like.
  • the information to be displayed is not limited to these information, and other information may be displayed instead or by adding other information.
  • Such a display unit 34 is configured by using a display by various methods (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
  • the counter electrode plate 4 is used in a state of being attached to the body surface of the patient 9 at the time of ablation. Details will be described later, but at the time of ablation, high-frequency energization (power Pout is supplied) is performed between the ablation catheter 1 (electrode 111) and the counter electrode plate 4. Further, as will be described in detail later, at the time of such ablation, the impedance Z described above is measured at any time, and the measured impedance Z is supplied from the power supply unit 32 to the control unit 33 in the power supply device 3. (See Fig. 1).
  • the shape of the catheter shaft 11 near the tip changes in both directions in response to the rotation operation of the rotating plate 41 by the operator.
  • the rotating plate 41 when the rotating plate 41 is rotated in the direction of the arrow d1b (counterclockwise) in FIG. 2 by the operator operating the knob 41b, the result is as follows. That is, in the catheter shaft 11, the other of the pair of operating wires described above is pulled toward the proximal end side. Then, the vicinity of the tip of the catheter shaft 11 is curved along the direction indicated by the arrow d2b in FIG.
  • the operator can swing and deflect the catheter shaft 11.
  • the handle body 121 By rotating the handle body 121 about an axis (in the XY plane), for example, the direction of the bending direction near the tip of the catheter shaft 11 can be oriented while the catheter shaft 11 is inserted into the patient 9. , Can be set freely.
  • the ablation catheter 1 is provided with a deflection mechanism for deflecting the tip flexible portion 11A, the catheter shaft 11 is inserted while changing the shape of the vicinity of the tip (tip flexible portion 11A). can do.
  • the liquid supply device 2 (liquid supply unit 21) makes a circulation between the inside of the liquid supply device 2 and the inside of the ablation catheter 1 with respect to the ablation catheter 1.
  • Liquid L for irrigation is supplied (see FIG. 1).
  • the power supply device 3 controls the supply operation of the liquid L in such a liquid supply device 2 by using the control signal CTL2.
  • the liquid L for irrigation is discharged from the vicinity of the tip of the ablation catheter 1 (see FIG. 2).
  • the temperature of the treated area is prevented from rising too much and causing damage or thrombi sticking to the treated area (improving blood retention).
  • FIG. 3 is a flow chart showing an example of ablation processing operation in the ablation system 5 of the present embodiment.
  • FIG. 4 schematically shows an example of time changes of various parameters (power Pout and impedance Z described above) during the ablation processing operation shown in FIG.
  • the horizontal axis indicates the time t, and the electric power Pout 101 according to the comparative example described later is also shown.
  • the liquid supply device 2 starts supplying the liquid L for irrigation to the ablation catheter 1, and the liquid is supplied from the vicinity of the tip of the ablation catheter 1.
  • the outflow of L is started (step S100 in FIG. 3).
  • Lmin 0.2 [mL / min]
  • the start of supply of the liquid L at such a lower limit value Lmin is, for example, a timing before the ablation catheter 1 is inserted into the body of the patient 9. This is to prevent the formation of a thrombus when the ablation catheter 1 is inserted into the body of the patient 9.
  • step S101 various parameters at the time of supplying the power Pout are set (step S101).
  • the rising speed Vp of the power Pout, the maximum value Pmax of the power Pout, and the threshold value Pith for the integrated value Pi (joule amount) of the supply value of the power Pout, which will be described later, are the operations of the power supply device 3, respectively. It is input from the input unit 31 and supplied to the control unit 33 in response to an operation by a person.
  • the setting values of these various parameters the following values can be mentioned.
  • step S102 various parameters when the power Pout is lowered, which will be described later, are set (step S102).
  • the threshold value ⁇ Zth1 for the impedance increase value ⁇ Z described later and the power decrease amount ⁇ P described later are each input from the input unit 31 according to the operation by the operator of the power supply device 3, and the control unit 33. Is supplied to.
  • the setting values of these various parameters the following values can be mentioned.
  • ⁇ ⁇ Zth1 10 [ ⁇ ]
  • ⁇ ⁇ P 2 [W]
  • the setting values of various parameters when the power Pout is supplied or when the power Pout is lowered are not input according to the operation by the operator, for example, at the time of shipment of the product. May be set in advance in the power supply device 3.
  • various parameters should be set when the power Pout is supplied or when the power Pout is lowered at any timing before or after the ablation catheter 1 is inserted into the body of the patient 9. You may.
  • the above-mentioned threshold value Pith corresponds to a specific example of the "third threshold value” in the present invention. Further, the above-mentioned threshold value ⁇ Zth1 corresponds to a specific example of the “first threshold value” in the present invention.
  • Step S103 the power supply Pout from the power supply device 3 (power supply unit 32) is started to be supplied between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4, so that the ablation to the affected area 90 is started.
  • the start of this ablation is executed by inputting the operation signal Sm from the input unit 31 and supplying it to the control unit 33 in response to the operation by the operator of the power supply device 3. That is, in this example, the ablation is manually initiated.
  • the power Pout increases at the ascending speed Vp set in step S101 from the start of ablation (timing t0), and the power Pout increases in step S101.
  • the maximum value Pmax set in is reached.
  • the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4 gradually decreases, as shown by the broken line arrow in FIG. 4, for example. ..
  • the impedance Z of the human body is, for example, about 100 [ ⁇ ], but as the ablation progresses with the supply of electric power Pout, the vicinity of the affected area 90 Impedance Z gradually decreases as the temperature rises. Then, after the timing when the power Pout reaches the maximum value Pmax, the impedance Z starts to rise (see, for example, the broken line arrow in FIG. 4), although the details will be described later.
  • the impedance Z is before the power Pout reaches the maximum value Pmax. Will start to rise, and the above-mentioned impedance rise value ⁇ Z may exceed the threshold value ⁇ Zth1.
  • the control unit 33 changes the flow rate of the liquid L for irrigation using the control signal CTL2 described above (step S104). Specifically, the control unit 33 instructs the ablation catheter 1 to increase the flow rate of the liquid L discharged from the irrigation mechanism from the lower limit value Lmin set in step S100 to L0 (> Lmin). conduct.
  • the flow rate (L0) of the liquid L at this time includes, for example, 0.4 [mL / min] or 0.5 [mL / min].
  • the control unit 33 determines whether or not the integrated value (joule amount) Pi of the power Pout supply value from the start of ablation to the present time is equal to or greater than the threshold value Pith set in step S101 (Pi ⁇ ). (Whether or not the psi is satisfied) is determined (step S105). Specifically, in the example of FIG. 4, the integrated value Pi of the power Pout supply value from the start of ablation (timing t0) to the present time (for example, timing t1) (integrated value shown by hatching in FIG. 4). (Corresponding to) is determined as to whether or not it is equal to or higher than the threshold value Pith.
  • the control unit 33 when it is determined that the integrated value Pi of the supply value of the power Pout is equal to or higher than the threshold value Pith (Satisfying Pi ⁇ Pith) (step S105: Y), the control unit 33 then controls the following. I do. That is, in this case, the control unit 33 automatically stops (completely stops) the supply of the power Pout from the power supply unit 32 to automatically end the ablation and set the flow rate of the liquid L to the above-mentioned lower limit. The value is returned to Lmin (step S111). Specifically, the control unit 33 automatically stops the supply of the power Pout by using the control signal CTL1 described above. As a result, the ablation for the affected area 90 is automatically terminated by the control unit 33.
  • control unit 33 uses the control signal CTL2 described above to instruct the flow rate of the liquid L to return to the lower limit value Lmin.
  • the outflow of the liquid L from the vicinity of the tip of the ablation catheter 1 also returns to the lower limit value Lmin.
  • the series of processes shown in FIG. 3 (example of ablation processing operation according to the present embodiment) is completed.
  • step S105: N when it is determined that the integrated value Pi of the supply value of the power Pout is less than the threshold value Pith (Pi ⁇ Pith is not satisfied) (step S105: N), the result is as follows. That is, the control unit 33 first determines whether or not the predetermined waiting time ⁇ t1 is in progress (whether or not the waiting time ⁇ t1 has not elapsed) (step S106). Here, if it is determined that the waiting time ⁇ t1 is in progress (the waiting time ⁇ t1 has not elapsed) (step S106: Y), the process returns to step S105 described above. On the other hand, if it is determined that the waiting time ⁇ t1 is not in progress (the waiting time ⁇ t1 has elapsed) (step S106: N), the process proceeds to step S107 described below.
  • such a waiting time ⁇ t1 corresponds to a specific example of the “first waiting time” in the present invention.
  • the value of the waiting time ⁇ t1 is, for example, 0 seconds ⁇ t1 ⁇ 4 seconds (preferably 0.5 seconds ⁇ ⁇ t1 ⁇ 3 seconds), and as an example, it is 3 seconds.
  • the control unit 33 acquires the measurement information of the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4, and the increase value (impedance increase) per unit time at this impedance Z.
  • the control unit 33 determines whether or not the impedance rise value ⁇ Z calculated in this way is equal to or greater than the threshold value ⁇ Zth1 set in step S102 (whether or not ⁇ Z ⁇ ⁇ Zth1 is satisfied). (Step S108).
  • the process returns to step S105 described above.
  • step S108 when it is determined that the impedance increase value ⁇ Z is equal to or greater than the threshold value ⁇ Zth1 (satisfying ⁇ Z ⁇ ⁇ Zth1) (step S108: Y), the control unit 33 uses the control signal CTL1 described above to power Pout. (Step S109). Specifically, the control unit 33 instructs the power Pout to be reduced by the amount of the power reduction amount ⁇ P set in step S102 (see the broken line arrow in FIG. 4).
  • control unit 33 resets the past value (Zp) corresponding to the above-mentioned minimum value in the impedance Z described in step S107 (step S110).
  • the execution frequency of the decrease instruction (step S108) with respect to the supply value of the power Pout immediately after the elapse of the standby time ⁇ t1 described above is suppressed. After that, the process returns to step S105 described above.
  • the control for lowering the supply value of the electric power Pout is performed a plurality of times so that the rise in the impedance Z is suppressed and then the impedance Z starts to fall and converges. It has become. At the same time, the power Pout gradually decreases and then converges.
  • the increase value (impedance increase value ⁇ Z) per unit time in the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4 becomes the threshold value ⁇ Zth1 or more. In that case, it becomes as follows. That is, the control unit 33 in the power supply device 3 reduces the supply value of the power Pout for performing ablation.
  • the impedance Z is prevented from being excessively increased during the ablation, and the electric power Pout is efficiently supplied to the ablation target (for example, the affected part 90 having the tumor in the body of the patient 9).
  • the electric power Pout is efficiently supplied.
  • the burning heat at the time of ablation is generally gradually transmitted from the surface of the affected part 90 to the deep part (deep position).
  • the tissue coagulates burns, loses water, etc.
  • the impedance Z becomes high. It may rise too much.
  • the power Pout at the time of ablation is locally concentrated in the place where the impedance Z is high (the supply efficiency of the power Pout decreases), and cauterization to the deep part. Becomes difficult. As a result, effective ablation becomes difficult, and the efficiency of ablation may decrease.
  • the impedance Z is prevented from being excessively increased during ablation. Therefore, for example, the energy at the time of ablation is applied to the affected portion 90 as described above. It will be possible to supply efficiently.
  • cauterization to a local and deep position is realized while preventing, for example, popping and carbonization (burning). Therefore, in the present embodiment, it is possible to improve the efficiency at the time of ablation. Further, in the present embodiment, by realizing local and deep cauterization while preventing popping, carbonization, etc., it is possible to achieve both shortening of the procedure time and reduction of damage to the human body. It will be possible.
  • the above-mentioned value of the impedance Z of the human body (about 100 [ ⁇ ]) varies depending on the individual, for example, by appropriately adjusting the above-mentioned set value (threshold value Zth1 or the like), the cauterization size at the time of ablation It is also possible to reduce the variation in the variability and provide appropriate treatment according to individual differences.
  • the impedance increase value ⁇ Z is performed by the control unit 33. Since the next determination process (the process of the next step S108) regarding whether or not the threshold value is equal to or greater than the threshold value ⁇ Zth1 is started, the result is as follows. That is, since such a next determination process is not started in the stage before the elapse of the waiting time ⁇ t1, for example, within the period of the waiting time ⁇ t1 shown in FIG. 4 (the period of timings t2 to t3, t4 to t5).
  • the instruction for lowering the supply value of the electric power Pout is not executed again, and the excessive decrease in the supply value of the electric power Pout is prevented.
  • the decrease in impedance Z generally has a time lag with respect to the decrease in power Pout
  • the power Pout is supplied by providing the standby time ⁇ t1 before the start of the next determination process described above. It is possible to prevent an excessive decrease in the value. In this way, as a result of the electric power Pout being more efficiently supplied to the target of the ablation described above, the efficiency at the time of ablation can be further improved.
  • the response speed when the impedance Z decreases depends on the amount of water in the affected area 90, blood pressure, blood flow, etc., for example, by providing a waiting time ⁇ t1 suitable for such a response speed, It is also possible to shorten the treatment time during ablation.
  • the control unit 33 supplies the power Pout.
  • the ablation is automatically terminated, so it becomes as follows. That is, when such an amount of joules becomes excessive, the supply of the power Pout is automatically stopped and the ablation is also automatically terminated. Therefore, the power Pout is further increased with respect to the target of the ablation described above. It will be supplied efficiently. As a result, the efficiency during ablation can be further improved.
  • FIG. 5 is a flow chart showing an example of ablation processing operation in the ablation system 5 of the modified example.
  • the processing of the portion added from the processing described in the embodiment is shown as steps S200, S202 to S204, and is shown in FIG.
  • the process in which the part of step S106 is replaced is shown as step S201.
  • the description of the processing steps S100 to S105, S107 to S111
  • steps S100 to S105, S107 to S111 common to the case of the embodiment will be omitted as appropriate.
  • step S200 the threshold value ⁇ Zth2 for the impedance rise value ⁇ Z described above and the upper limit value Lmax of the flow rate of the liquid L described later are each input from the input unit 31 according to the operation by the operator of the power supply device 3. , Is supplied to the control unit 33.
  • the above-mentioned threshold value ⁇ Zth2 is set to a value smaller than the above-mentioned threshold value ⁇ Zth1 ( ⁇ Zth2 ⁇ Zth1), and corresponds to a specific example of the “second threshold value” in the present invention. ..
  • the threshold value ⁇ Zth1 is set to a value larger than the threshold value ⁇ Zth2.
  • the above-mentioned upper limit value Lmax is set to a value larger than the flow rate L0 (> Lmin) of the liquid L set in step S104 (Lmax> L0).
  • the set values of various parameters when the flow rate of the liquid L is increased are not input according to the operation by the operator, but are set in advance in the power supply device 3, for example, at the time of shipment of the product. You may do so. Further, the setting of various parameters when the flow rate of the liquid L is increased may be set at any timing before or after the ablation catheter 1 is inserted into the body of the patient 9.
  • ⁇ ⁇ Zth2 5 [ ⁇ ]
  • ⁇ Lmax 0.5 [mL / min]
  • step S201 the control unit 33 determines whether or not the above-mentioned waiting time ⁇ t1 or the predetermined waiting time ⁇ t2 is in progress (whether or not the waiting time ⁇ t1 or the waiting time ⁇ t2 has elapsed). conduct.
  • step S201: Y it is determined that the waiting time ⁇ t1 or the waiting time ⁇ t2 is in progress (the waiting time ⁇ t1 or the waiting time ⁇ t2 has not elapsed) (step S201: Y), the above-mentioned step S105 Will return to.
  • step S201: N if it is determined that the waiting time ⁇ t1 or the waiting time ⁇ t2 is not in progress (the waiting time ⁇ t1 or the waiting time ⁇ t2 has elapsed) (step S201: N), the process proceeds to step S107 described above. become.
  • Such a standby time ⁇ t2 corresponds to a specific example of the “second standby time” in the present invention.
  • the value of the waiting time ⁇ t2 is, for example, 0 seconds ⁇ t2 ⁇ 4 seconds (preferably 0.5 seconds ⁇ ⁇ t2 ⁇ 3 seconds), and as an example, it is 3 seconds.
  • the waiting time ⁇ t2 and the waiting time ⁇ t1 described in the embodiment may have different values.
  • step S107 process of acquiring measurement information of impedance Z and calculating impedance rise value ⁇ Z
  • step S108 process of acquiring measurement information of impedance Z and calculating impedance rise value ⁇ Z
  • the process proceeds to the above-mentioned step S108, which is described above.
  • a determination is made as to whether or not the impedance rise value ⁇ Z is equal to or greater than the threshold value ⁇ Zth1.
  • step S202: N when it is determined that the flow rate of such a liquid L has not reached the upper limit value Lmax (L ⁇ Lmax) (step S202: N), the process proceeds to steps S203 and S204 described below. It will be.
  • the control unit 33 determines whether or not the impedance increase value ⁇ Z calculated in step S107 described above is equal to or greater than the threshold value ⁇ Zth2 set in step S200 (whether or not ⁇ Z ⁇ ⁇ Zth2 is satisfied). Is determined (step S203).
  • the process returns to step S105 described above.
  • step S203 when it is determined that the impedance increase value ⁇ Z is equal to or greater than the threshold value ⁇ Zth2 (satisfying ⁇ Z ⁇ ⁇ Zth2) (step S203: Y), the control unit 33 uses the control signal CTL2 described above to use the liquid L. (Step S204). Specifically, the control unit 33 gives an instruction so that the flow rate of the liquid L flowing out from the irrigation mechanism in the ablation catheter 1 increases to, for example, the upper limit value Lmax set in step S200. Further, the control unit 33 may instruct the flow rate of the liquid L to increase by, for example, a preset flow rate increase amount ⁇ L. After that, the process returns to step S110 described above, and after the past value (Zp) corresponding to the minimum value described above in impedance Z is reset, the process returns to step S105 described above.
  • the control unit 33 gives an instruction so that the flow rate of the liquid L flowing out from the irrigation mechanism in the ablation catheter 1 increases to, for example, the upper limit value Lmax set in
  • the control unit 33 increases the flow rate of the liquid L, so that the result is as follows. That is, in the above-mentioned predetermined case, the flow rate of the liquid L is increased to prevent an excessive increase in the impedance Z at the time of ablation, and the electric power Pout is more efficiently supplied to the target of the ablation described above. Will be done. As a result, in this modified example, the efficiency at the time of ablation can be further improved.
  • the impedance increase value ⁇ Z becomes the threshold value ⁇ Zth1 (> ⁇ Zth2) or more. Since the control unit 33 reduces the supply value of the power Pout, the result is as follows. That is, when the flow rate of the liquid L reaches the upper limit value Lmax, instead of increasing the flow rate of the liquid L, the supply value of the electric power Pout is lowered, so that the impedance Z excessively rises at the time of ablation. It will be prevented. As a result, the electric power Pout is more efficiently supplied to the target of the above-mentioned vibration, and as a result, the efficiency at the time of ablation can be further improved.
  • the impedance increase value ⁇ Z is the threshold value in the control unit 33 after the elapse of the predetermined waiting time ⁇ t2 (step S106; N) after the instruction to increase the flow rate of the liquid L (step S204) is given. Since the next determination process (the process of the next step S203) regarding whether or not the value is ⁇ Zth2 or more is started, the result is as follows. That is, since the effect of the increase in the flow rate of the liquid L on the impedance Z generally differs depending on the type of the affected area 90 (type of organ, etc.), the above-mentioned waiting time ⁇ t2 is set according to the flow rate of the liquid L. By setting appropriately, it is possible to further improve the efficiency at the time of ablation.
  • control unit having the liquid supply control function described above is provided in the power supply device 3 (as one function of the control unit 33), so that the result is as follows. That is, since both the function of controlling the supply operation of the electric power Pout and the function of controlling the supply operation of the liquid L are provided in the power supply device 3 (control unit 33), the electric power Pout and the liquid L Each supply operation can be performed more efficiently. As a result, the electric power Pout is more efficiently supplied to the target of the ablation described above, and as a result, the efficiency at the time of ablation can be further improved.
  • each member described in the above-described embodiment and the like are not limited, and other materials may be used.
  • the configuration of the ablation catheter 1 has been specifically described, but it is not always necessary to include all the members, and other members may be further provided.
  • a leaf spring that can be deformed in the bending direction may be provided as a swinging member inside the catheter shaft 11.
  • the configuration (arrangement, shape, number, etc.) of each electrode on the catheter shaft 11 is not limited to that described in the above embodiment.
  • the configuration of the handle 12 (handle main body 121 and rotation operation unit 122) has been specifically described and described, but it is not always necessary to include all the members, and other members may be provided. Further may be provided.
  • the shape of the catheter shaft 11 near the tip is not limited to that described in the above embodiment.
  • an ablation catheter of a type (bidirection type) in which the shape near the tip of the catheter shaft 11 changes in both directions according to the operation of the rotating plate 41 has been described as an example.
  • an ablation catheter of a type (single direction type) in which the shape near the tip of the catheter shaft 11 changes in one direction according to the operation of the rotating plate 41 may be used.
  • only one (one) operation wire described above is provided.
  • the shape of the catheter shaft 11 near the tip may be a fixed type ablation catheter. In this case, the above-mentioned operation wire, rotating plate 41, and the like are not required.
  • the block configurations of the liquid supply device 2 and the power supply device 3 have been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like. Other blocks may be further provided.
  • the ablation system 5 as a whole may further include other devices in addition to the devices described in the above-described embodiment and the like.
  • the case where the "second control unit" in the present invention is provided in the power supply device 3 (as a function of the control unit 33) has been described as an example. However, it is not limited to this example.
  • this "second control unit” is provided outside the power supply device 3 (for example, inside the liquid supply device 2, or inside another device different from the power supply device 3 and the liquid supply device 2). You may want to be there.
  • the input unit 31 provided inside the power supply device 3 is also outside the power supply device 3 ("second control unit”). It may be provided in a device provided with “2 control units”).
  • the control unit 33 corresponding to the "first control unit” in the present invention provides information such as the impedance Z described above. As it is, it is output to the "second control unit” located outside the power supply device 3, and various arithmetic processes, control processes, and the like are performed in this "second control unit".
  • the control operation (ablation processing operation) in the control unit 33 including the power supply control function and the liquid supply control function has been specifically described.
  • the control method (ablation method) in the power supply control function, the liquid supply control function, and the like is not limited to the methods described in the above-described embodiment and the like.
  • the impedance rise value ⁇ Z exceeds the threshold value ⁇ Zth1 in any case, including the case where the impedance Z starts to rise before the power Pout reaches the maximum value Pmax. In that case, for example, the following may be performed.
  • the electric power Pout is controlled to decrease and the flow rate of the liquid L is increased, and the electric power Pout reaches the maximum value Pmax even before the electric power Pout reaches the maximum value Pmax.
  • the rise of Pout may be stopped. Further, for example, after the control of the decrease of the electric power Pout and the control of the increase of the flow rate of the liquid L are started, the increase of the electric power Pout may be stopped.
  • the series of processes described in the above-described embodiment or the like may be performed by hardware (circuit) or software (program).
  • the software is composed of a group of programs for executing each function by a computer.
  • Each program may be used by being preliminarily incorporated in the computer, for example, or may be installed and used in the computer from a network or a recording medium.
  • the target of ablation is an affected part having a tumor in the patient's body
  • the ablation is not limited to this example. That is, the catheter system of the present invention can be applied even when the target of ablation is another part (organ, body tissue, etc.) in the patient's body.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is an ablation system capable of improving the efficiency of ablation. An ablation system 5 is provided with: an ablation catheter 1 having an electrode 111; and a power supply device 3 having a power supply unit 32 for supplying electric power Pout for performing ablation between the electrode 111 and a counter electrode plate 4, and a first control unit (control unit 33) for controlling the operation of supply of electric power Pout by the power supply unit 32. When a rising value (impedance rising value ΔZ) per unit time of the impedance Z between the electrode 111 and the counter electrode plate 4 becomes a first threshold value (ΔZth1) or more during ablation, the first control unit reduces the value of electric power Pout supply.

Description

アブレーションシステムAblation system
 本発明は、アブレーション(焼灼)を行うためのアブレーションカテーテルと、アブレーションを行うための電力を供給する電源装置と、を備えたアブレーションシステムに関する。 The present invention relates to an ablation system including an ablation catheter for performing ablation (cauterization) and a power supply device for supplying electric power for performing ablation.
 患者体内の患部(例えば癌などの腫瘍を有する患部)を治療するための医療機器の1つとして、そのような患部に対してアブレーションを行う、アブレーションシステムが提案されている(例えば、特許文献1参照)。このアブレーションシステムは、アブレーションカテーテルと、アブレーションを行うための電力を供給する電源装置と、を備えている。 As one of the medical devices for treating an affected area in a patient's body (for example, an affected area having a tumor such as cancer), an ablation system that ablates such an affected area has been proposed (for example, Patent Document 1). reference). The ablation system includes an ablation catheter and a power supply that supplies power to perform the ablation.
特開2017-213444号公報Japanese Unexamined Patent Publication No. 2017-213444
 ところで、このようなアブレーションシステムでは一般に、アブレーションの際の効率を向上させることが求められている。アブレーションの際の効率を向上させることが可能なアブレーションシステムを提供することが望ましい。 By the way, in such an ablation system, it is generally required to improve the efficiency at the time of ablation. It is desirable to provide an ablation system that can improve the efficiency of ablation.
 本発明の一実施の形態に係るアブレーションシステムは、電極を有するアブレーションカテーテルと、上記電極と対極板との間にアブレーションを行うための電力を供給する電源部と、この電源部における電力の供給動作を制御する第1の制御部と、を有する電源装置と、を備えたものである。上記第1の制御部は、アブレーションの際に、上記電極と上記対極板との間のインピーダンスにおける単位時間当たりの上昇値が、第1の閾値以上となった場合には、電力の供給値を低下させる。 The ablation system according to the embodiment of the present invention includes an ablation catheter having an electrode, a power supply unit for supplying electric power for ablation between the electrode and the counter electrode plate, and a power supply operation in the power supply unit. It is provided with a first control unit for controlling the above and a power supply device including the first control unit. At the time of ablation, when the increase value per unit time in the impedance between the electrode and the counter electrode plate becomes equal to or higher than the first threshold value, the first control unit determines the power supply value. Decrease.
 本発明の一実施の形態に係るアブレーションシステムでは、上記アブレーションの際に、アブレーションカテーテルの電極と対極板との間のインピーダンスにおける単位時間当たりの上昇値が、第1の閾値以上となった場合には、上記第1の制御部によって、上記アブレーションを行うための電力の供給値が、低下させられる。これにより、アブレーションの際における上記インピーダンスの過剰な上昇が防止され、アブレーションの対象に対して、上記電力が効率良く供給されるようになる。 In the ablation system according to the embodiment of the present invention, when the increase value per unit time in the impedance between the electrode of the ablation catheter and the counter electrode plate becomes equal to or higher than the first threshold value during the ablation. The first control unit reduces the power supply value for performing the ablation. As a result, the excessive increase in impedance during ablation is prevented, and the power is efficiently supplied to the target of ablation.
 本発明の一実施の形態に係るアブレーションシステムでは、上記第1の制御部が、電力の供給値を低下させる指示を行ってから第1の待機時間の経過後に、上記インピーダンスにおける単位時間当たりの上昇値が上記第1の閾値以上になっているのか否かについての、次回の判定処理を開始するようにしてもよい。このようにした場合、上記第1の待機時間の経過前の段階では、そのような次の判定処理が開始されないことから、電力の供給値における過剰な低下が防止され、電力が更に効率良く供給される結果、アブレーションの際の効率も更に向上する。 In the ablation system according to the embodiment of the present invention, the impedance rises per unit time after the lapse of the first standby time after the first control unit gives an instruction to lower the power supply value. The next determination process regarding whether or not the value is equal to or greater than the first threshold value may be started. In this case, since such a next determination process is not started in the stage before the elapse of the first standby time, an excessive decrease in the power supply value is prevented, and the power is supplied more efficiently. As a result, the efficiency during ablation is further improved.
 ここで、本発明の一実施の形態に係るアブレーションシステムでは、所定の液体を流し出す灌注機構を、上記アブレーションカテーテルに設けるようにすると共に、このアブレーションカテーテルに対して液体を供給する液体供給装置と、この液体供給装置における液体の供給動作を制御する第2の制御部と、を更に備えているようにしてもよい。そして、上記灌注機構を用いたアブレーションの際に、この灌注機構から流し出される液体の流量が上限値未満である場合には、上記第2の制御部が、上記インピーダンスにおける単位時間当たりの上昇値が第2の閾値以上となった場合に、液体の流量を増加させるようにしてもよい。このようにした場合、上記した所定の場合には、上記第2の制御部によって液体の流量が増加させられることで、アブレーションの際における上記インピーダンスの過剰な上昇が防止され、アブレーションの対象に対して、電力が更に効率良く供給される。その結果、アブレーションの際の効率も更に向上する。 Here, in the ablation system according to the embodiment of the present invention, the ablation catheter is provided with an irrigation mechanism for flowing out a predetermined liquid, and a liquid supply device for supplying the liquid to the ablation catheter is provided. , A second control unit that controls the liquid supply operation in this liquid supply device may be further provided. Then, when the flow rate of the liquid flowing out from the irrigation mechanism is less than the upper limit value during ablation using the irrigation mechanism, the second control unit raises the impedance per unit time. May increase the flow rate of the liquid when is greater than or equal to the second threshold. In this case, in the above-mentioned predetermined case, the flow rate of the liquid is increased by the second control unit, so that the excessive increase in the impedance at the time of ablation is prevented, and the object to be ablated is subjected to. Therefore, electric power is supplied more efficiently. As a result, the efficiency during ablation is further improved.
 この場合において、上記灌注機構を用いたアブレーションの際に、液体の流量が上記上限値に到達した場合には、上記第1の制御部が、上記インピーダンスにおける単位時間当たりの上昇値が上記第2の閾値よりも大きな値に設定されている、上記第1の閾値以上となった場合に、電力の供給値を低下させるようにしてもよい。このようにした場合、液体の流量が上限値に送達した場合には、液体の流量を増加させる代わりに、電力の供給値を低下させることで、アブレーションの際における上記インピーダンスの過剰な上昇が、防止されることになる。これにより、アブレーションの対象に対して、電力がより一層効率良く供給される結果、アブレーションの際の効率も、より一層向上する。 In this case, when the flow rate of the liquid reaches the upper limit value during ablation using the irrigation mechanism, the first control unit determines that the increase value of the impedance per unit time is the second. When the value becomes greater than or equal to the first threshold value set to a value larger than the threshold value of, the power supply value may be lowered. In this case, when the flow rate of the liquid is delivered to the upper limit value, instead of increasing the flow rate of the liquid, the power supply value is lowered, so that the excessive increase in the impedance at the time of ablation is caused. It will be prevented. As a result, electric power is more efficiently supplied to the target of ablation, and as a result, the efficiency at the time of ablation is further improved.
 また、上記第2の制御部は、液体の流量を増加させる指示を行ってから第2の待機時間の経過後に、上記インピーダンスにおける単位時間当たりの上昇値が上記第2の閾値以上になっているのか否かについての、次回の判定処理を開始するようにしてもよい。このようにした場合、液体の流量が増加したことによる上記インピーダンスへの影響は、一般に、患部の種類に応じて異なることから、液体の流量に応じて、上記第2の待機時間を適切に設定することで、アブレーションの際の効率が、より一層向上することになる。 Further, after the second standby time elapses after the second control unit gives an instruction to increase the flow rate of the liquid, the increase value of the impedance per unit time becomes equal to or higher than the second threshold value. The next determination process as to whether or not the item may be started may be started. In this case, the effect of the increase in the liquid flow rate on the impedance generally differs depending on the type of the affected area. Therefore, the second standby time is appropriately set according to the liquid flow rate. By doing so, the efficiency at the time of ablation will be further improved.
 更に、上記第2の制御部が、上記電源装置内に設けられているようにしてもよい。このようにした場合、電力の供給動作を制御する上記第1の制御部と、液体の供給動作を制御する上記第2の制御部との双方が、電源装置内に設けられることから、電力および液体の供給動作がそれぞれ、より効率的に実行できるようになる。その結果、アブレーションの対象に対して、電力がより一層効率良く供給される結果、アブレーションの際の効率も、より一層向上する。 Further, the second control unit may be provided in the power supply device. In this case, since both the first control unit that controls the power supply operation and the second control unit that controls the liquid supply operation are provided in the power supply device, the power and the power and the liquid can be controlled. Each of the liquid supply operations can be performed more efficiently. As a result, electric power is more efficiently supplied to the target of ablation, and as a result, the efficiency at the time of ablation is further improved.
 また、本発明の一実施の形態に係るアブレーションシステムでは、上記第1の制御部が、アブレーションの開始時から現時点までの電力の供給値の積算値が第3の閾値以上となった場合には、電力の供給を自動的に停止させることにより、アブレーションを自動的に終了させるようにしてもよい。このようにした場合、上記電力の供給値の積算値(ジュール量)が過剰となった場合に、電力の供給が自動的に停止され、アブレーションも自動的に終了させられることから、アブレーションの対象に対して、電力が更に効率良く供給されることになる。その結果、アブレーションの際の効率も、更に向上する。 Further, in the ablation system according to the embodiment of the present invention, when the integrated value of the power supply values from the start of ablation to the present time becomes equal to or higher than the third threshold value in the first control unit. , The ablation may be automatically terminated by automatically stopping the power supply. In this case, when the integrated value (joule amount) of the power supply value becomes excessive, the power supply is automatically stopped and the ablation is automatically terminated. Therefore, the target of ablation is On the other hand, electric power will be supplied more efficiently. As a result, the efficiency during ablation is further improved.
 なお、上記アブレーションの対象としては、例えば、患者体内における腫瘍を有する患部が挙げられる。 The target of the ablation includes, for example, an affected area having a tumor in the patient's body.
 本発明の一実施の形態に係るアブレーションシステムによれば、上記アブレーションの際に、上記インピーダンスにおける単位時間当たりの上昇値が第1の閾値以上となった場合には、上記電力の供給値を低下させるようにしたので、アブレーションの対象に対して、上記電力を効率良く供給することができる。よって、アブレーションの際の効率を向上させることが可能となる。 According to the ablation system according to the embodiment of the present invention, when the increase value of the impedance per unit time becomes equal to or more than the first threshold value during the ablation, the power supply value is decreased. Therefore, the above-mentioned electric power can be efficiently supplied to the target of ablation. Therefore, it is possible to improve the efficiency at the time of ablation.
本発明の一実施の形態に係るアブレーションシステムの全体構成例を模式的に表すブロック図である。It is a block diagram which shows typically the whole structure example of the ablation system which concerns on one Embodiment of this invention. 図1に示したアブレーションカテーテルの詳細構成例を表す模式図である。It is a schematic diagram which shows the detailed configuration example of the ablation catheter shown in FIG. 実施の形態に係るアブレーションの処理動作例を表す流れ図である。It is a flow chart which shows the processing operation example of ablation which concerns on embodiment. 図3に示したアブレーションの処理動作時における各種パラメータの時間変化例を表す模式図である。It is a schematic diagram which shows the time change example of various parameters at the time of the processing operation of ablation shown in FIG. 変形例に係るアブレーションの処理動作例を表す流れ図である。It is a flow chart which shows the processing operation example of ablation which concerns on the modification.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(アブレーションのための電力の供給動作を制御する場合の例)
2.変形例(灌注機構から流し出される液体の供給動作も、更に制御する場合の例)
3.その他の変形例
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The explanation will be given in the following order.
1. 1. Embodiment (Example in the case of controlling the power supply operation for ablation)
2. Modification example (example when the supply operation of the liquid discharged from the irrigation mechanism is also further controlled)
3. 3. Other variants
<1.実施の形態>
[構成]
 図1は、本発明の一実施の形態に係るアブレーションシステム5の全体構成例を、模式的にブロック図で表したものである。このアブレーションシステム5は、例えば図1に示したように、患者9の体内における患部90を治療する際に用いられるシステムであり、そのような患部90に対して所定のアブレーションを行うようになっている。なお、上記した患部90としては、例えば、癌(肝癌,肺癌,乳癌,腎臓癌,甲状腺癌など)等の腫瘍を有する患部が挙げられる。
<1. Embodiment>
[composition]
FIG. 1 is a schematic block diagram showing an overall configuration example of the ablation system 5 according to the embodiment of the present invention. As shown in FIG. 1, for example, this ablation system 5 is a system used when treating an affected part 90 in the body of a patient 9, and a predetermined ablation is performed on such an affected part 90. There is. Examples of the affected area 90 include an affected area having a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
 アブレーションシステム5は、図1に示したように、アブレーションカテーテル1、液体供給装置2および電源装置3を備えている。また、このアブレーションシステム5を用いたアブレーションの際には、例えば図1に示した対極板4も、適宜使用されるようになっている。 As shown in FIG. 1, the ablation system 5 includes an ablation catheter 1, a liquid supply device 2, and a power supply device 3. Further, in the ablation using the ablation system 5, for example, the counter electrode plate 4 shown in FIG. 1 is also appropriately used.
(A.アブレーションカテーテル1)
 アブレーションカテーテル1は、例えば血管を通して患者9の体内に挿入され、患部90をアブレーションすることで不整脈等の治療を行うための電極カテーテルである。アブレーションカテーテル1はまた、そのようなアブレーションの際に、所定の灌注用の液体L(例えば、生理食塩水等)を先端側から流し出す(噴射させる)、灌注機構を有している。換言すると、アブレーションシステム5は、そのような灌注機構付きのアブレーションシステムとなっている。なお、このようなアブレーションカテーテル1の内部には、後述する液体供給装置2から液体Lが供給され、循環して流れるようになっている(図1参照)。
(A. Ablation Catheter 1)
The ablation catheter 1 is an electrode catheter that is inserted into the body of a patient 9 through a blood vessel, for example, and ablates the affected portion 90 to treat an arrhythmia or the like. The ablation catheter 1 also has an irrigation mechanism that flushes (sprays) a predetermined irrigation liquid L (for example, physiological saline or the like) from the distal end side at the time of such ablation. In other words, the ablation system 5 is an ablation system with such an irrigation mechanism. A liquid L is supplied to the inside of such an ablation catheter 1 from a liquid supply device 2 described later, and circulates and flows (see FIG. 1).
 図2は、アブレーションカテーテル1の詳細構成例を、模式的に表したものである。このアブレーションカテーテル1は、カテーテル本体(長尺部分)としてのカテーテルシャフト11(カテーテルチューブ)と、このカテーテルシャフト11の基端側に装着されたハンドル12とを備えている。 FIG. 2 schematically shows a detailed configuration example of the ablation catheter 1. The ablation catheter 1 includes a catheter shaft 11 (catheter tube) as a catheter body (long portion) and a handle 12 attached to the proximal end side of the catheter shaft 11.
(カテーテルシャフト11)
 カテーテルシャフト11は、可撓性を有する管状構造(管状部材)からなり、自身の軸方向(Z軸方向)に沿って延伸する形状となっている。また、カテーテルシャフト11は、自身の軸方向に沿って延在するように内部に1つのルーメン(細孔,貫通孔)が形成された、いわゆるシングルルーメン構造、あるいは、複数(例えば4つ)のルーメンが形成された、いわゆるマルチルーメン構造を有している。なお、カテーテルシャフト11の内部において、シングルルーメン構造からなる領域と、マルチルーメン構造からなる領域と、の双方が設けられていてもよい。このようなルーメンには、図示しない各種の細線(導線や操作用ワイヤ等)がそれぞれ、互いに電気的に絶縁された状態で挿通されている。
(Catheter shaft 11)
The catheter shaft 11 has a flexible tubular structure (tubular member) and has a shape extending along its own axial direction (Z-axis direction). Further, the catheter shaft 11 has a so-called single lumen structure in which one lumen (pore, through hole) is formed so as to extend along its own axial direction, or a plurality (for example, four). It has a so-called multi-lumen structure in which lumens are formed. In the catheter shaft 11, both a region having a single lumen structure and a region having a multi-lumen structure may be provided. Various thin wires (conductors, operating wires, etc.) (not shown) are inserted into such lumens in a state of being electrically insulated from each other.
 また、カテーテルシャフト11の内部には、そのような各種の細線を挿通させるためのルーメンに加え、上記した灌注用の液体Lを流すためのルーメンが、軸方向に沿って延伸するように形成されている。そして、このカテーテルシャフト11の先端付近から、そのような液体Lが流し出される(噴射される)ようになっている(図2参照) Further, inside the catheter shaft 11, in addition to the lumen for inserting such various fine wires, the lumen for flowing the liquid L for irrigation described above is formed so as to extend along the axial direction. ing. Then, such a liquid L is discharged (injected) from the vicinity of the tip of the catheter shaft 11 (see FIG. 2).
 このようなカテーテルシャフト11は、例えば、ポリオレフィン、ポリアミド、ポリエーテルポリアミド、ポリウレタン等の合成樹脂により構成されている。また、カテーテルシャフト11の軸方向の長さは、約500~1200mm程度(例えば1170mm)であり、カテーテルシャフト11の外径(X-Y断面の外径)は、約0.6~3mm程度(例えば2.0mm)である。 Such a catheter shaft 11 is made of, for example, a synthetic resin such as polyolefin, polyamide, polyether polyamide, or polyurethane. The axial length of the catheter shaft 11 is about 500 to 1200 mm (for example, 1170 mm), and the outer diameter of the catheter shaft 11 (outer diameter of the XY cross section) is about 0.6 to 3 mm (for example, 1170 mm). For example, 2.0 mm).
 また、図2に示したように、カテーテルシャフト11の先端付近(先端可撓部11A)には、金属リングからなる複数のリング状の電極111と、1つの先端チップ110とが、所定の間隔をおいて配置されている。具体的には、複数の電極111はそれぞれ、先端可撓部11Aの途中部分(中央領域付近)に固定配置される一方、先端チップ110は、先端可撓部11Aの最先端側に固定配置されている。なお、これらの電極111は、前述したカテーテルシャフト11のルーメン内に挿通された複数の導線(図示せず)を介して、後述するハンドル12と電気的に接続されるようになっている。 Further, as shown in FIG. 2, in the vicinity of the tip of the catheter shaft 11 (tip flexible portion 11A), a plurality of ring-shaped electrodes 111 made of a metal ring and one tip tip 110 are spaced apart from each other at a predetermined distance. Is placed. Specifically, each of the plurality of electrodes 111 is fixedly arranged in the middle portion (near the central region) of the tip flexible portion 11A, while the tip tip 110 is fixedly arranged on the most advanced side of the tip flexible portion 11A. ing. It should be noted that these electrodes 111 are electrically connected to the handle 12 described later via a plurality of conducting wires (not shown) inserted into the lumen of the catheter shaft 11 described above.
 このような電極111はそれぞれ、例えば、アルミニウム(Al)、銅(Cu)、SUS、金(Au)、白金(Pt)等の、電気伝導性の良好な金属材料により構成されている。また、先端チップ110は、例えば各電極111と同様の金属材料により構成されているほか、例えばシリコーンゴム樹脂やポリウレタン等の、樹脂材料により構成されている。 Each of such electrodes 111 is made of a metal material having good electrical conductivity, such as aluminum (Al), copper (Cu), SUS, gold (Au), and platinum (Pt). Further, the tip tip 110 is made of, for example, the same metal material as each electrode 111, and is also made of a resin material such as silicone rubber resin or polyurethane.
 なお、アブレーションカテーテル1の使用時におけるX線に対する造影性を良好にするためには、各電極111は、白金またはその合金により構成されていることが好ましい。また、各電極111および先端チップ110の外径は、特には限定されないが、上記したカテーテルシャフト11の外径と同程度であることが望ましい。 In order to improve the contrast with respect to X-rays when the ablation catheter 1 is used, it is preferable that each electrode 111 is made of platinum or an alloy thereof. The outer diameter of each electrode 111 and the tip 110 is not particularly limited, but it is desirable that the outer diameter is about the same as the outer diameter of the catheter shaft 11 described above.
(ハンドル12)
 ハンドル12は、アブレーションカテーテル1の使用時に操作者(医師)が掴む(握る)部分である。このハンドル12は、図2に示したように、カテーテルシャフト11の基端側に装着されたハンドル本体121と、回転操作部122とを有している。
(Handle 12)
The handle 12 is a portion to be grasped (grasped) by an operator (doctor) when using the ablation catheter 1. As shown in FIG. 2, the handle 12 has a handle body 121 mounted on the proximal end side of the catheter shaft 11 and a rotation operation unit 122.
 ハンドル本体121は、操作者が実際に握る部分(把持部)に相当し、その軸方向(Z軸方向)に沿って延びる形状となっている。このようなハンドル本体121は、例えば、ポリカーボネート、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)等の合成樹脂により構成されている。 The handle body 121 corresponds to a portion (grip portion) actually gripped by the operator, and has a shape extending along the axial direction (Z-axis direction) thereof. Such a handle body 121 is made of, for example, a synthetic resin such as polycarbonate or acrylonitrile-butadiene-styrene copolymer (ABS).
 回転操作部122は、前述した操作用ワイヤ(一対の操作用ワイヤ)とともに、カテーテルシャフト11の先端付近(先端可撓部11A)を撓ませる偏向動作の際に用いられる部分である。具体的には、このような偏向動作の際に、回転操作部122が操作(回転操作)されるようになっている。このような回転操作部122は、図2に示したように、回転板41を含んで構成されている。 The rotation operation unit 122 is a portion used in a deflection operation for bending the vicinity of the tip of the catheter shaft 11 (tip flexible portion 11A) together with the above-mentioned operation wire (pair of operation wires). Specifically, the rotation operation unit 122 is operated (rotation operation) during such a deflection operation. As shown in FIG. 2, such a rotation operation unit 122 includes a rotation plate 41.
 回転板41は、ハンドル本体121に対し、その長手方向(Z軸方向)に垂直な回転軸(Y軸方向)を中心として、回転自在に装着された部材である。この回転板41は、前述した回転操作の際に操作者が実際に操作を行う部分に相当し、略円盤状の形状からなる。具体的には、この例では図2中の矢印d1a,d1bで示したように、ハンドル本体121に対し、回転板41をZ-X平面内で双方向に回転させる操作(上記した回転軸を回転中心とした回転操作)が可能となっている。 The rotating plate 41 is a member rotatably mounted on the handle body 121 about a rotating axis (Y-axis direction) perpendicular to the longitudinal direction (Z-axis direction). The rotating plate 41 corresponds to a portion actually operated by the operator during the above-mentioned rotation operation, and has a substantially disk-shaped shape. Specifically, in this example, as shown by the arrows d1a and d1b in FIG. 2, the operation of rotating the rotating plate 41 in both directions in the ZX plane with respect to the handle body 121 (the above-mentioned rotating shaft is rotated). Rotation operation centered on rotation) is possible.
 この回転板41の側面には、一対の摘み41a,41bが、回転板41と一体的に設けられている。この例では図2に示したように、回転板41の回転軸を中心として、摘み41aと摘み41bとが互いに点対称となる位置に配置されている。これらの摘み41a,41bはそれぞれ、操作者が回転板41を回転操作させる際に、例えば片手の指で操作される(押される)部分に相当する。なお、このような回転板41は、例えば前述したハンドル本体121と同様の材料(合成樹脂等)により構成されている。 A pair of knobs 41a and 41b are provided integrally with the rotating plate 41 on the side surface of the rotating plate 41. In this example, as shown in FIG. 2, the knobs 41a and 41b are arranged at positions that are point-symmetrical to each other with the rotation axis of the rotating plate 41 as the center. Each of these knobs 41a and 41b corresponds to a portion operated (pushed) by, for example, a finger of one hand when the operator rotates the rotating plate 41. The rotating plate 41 is made of, for example, the same material (synthetic resin or the like) as the handle body 121 described above.
(B.液体供給装置2)
 液体供給装置2は、アブレーションカテーテル1に対して前述した灌注用の液体Lを供給する装置であり、図1に示したように、液体供給部21を有している。
(B. Liquid supply device 2)
The liquid supply device 2 is a device that supplies the liquid L for irrigation described above to the ablation catheter 1, and has a liquid supply unit 21 as shown in FIG.
 液体供給部21は、後述する制御信号CTL2による制御に従って、上記した液体Lをアブレーションカテーテル1に対して随時供給するものである。具体的には、例えば図1に示したように、液体供給部21は、液体供給装置2の内部とアブレーションカテーテル1の内部との間(所定の流路内)を液体Lが循環するようにして、液体Lの供給動作を行う。また、詳細は後述するが、上記した制御信号CTL2による制御に従って、このような液体Lの供給動作が実行されたり、停止されたりするようになっている。なお、このような液体供給部21は、例えば、液体ポンプや樹脂チューブ等を含んで構成されている。 The liquid supply unit 21 supplies the above-mentioned liquid L to the ablation catheter 1 at any time according to the control by the control signal CTL2 described later. Specifically, for example, as shown in FIG. 1, the liquid supply unit 21 causes the liquid L to circulate between the inside of the liquid supply device 2 and the inside of the ablation catheter 1 (in a predetermined flow path). Then, the liquid L is supplied. Further, as will be described in detail later, such a liquid L supply operation is executed or stopped according to the control by the control signal CTL2 described above. The liquid supply unit 21 includes, for example, a liquid pump, a resin tube, and the like.
(C.電源装置3)
 電源装置3は、図1に示したように、アブレーションカテーテル1(前述した電極111)と後述する対極板4との間に、アブレーションを行うための電力Pout(例えば高周波(RF;Radio Frequency)の電力)を供給すると共に、液体供給装置2における液体Lの供給動作を制御する装置である。この電源装置3は、図1に示したように、入力部31、電源部32、制御部33および表示部34を有している。
(C. Power supply unit 3)
As shown in FIG. 1, the power supply device 3 has a power Pout (for example, radio frequency (RF)) for performing ablation between the ablation catheter 1 (the electrode 111 described above) and the counter electrode plate 4 described later. It is a device that supplies electric power) and controls the supply operation of the liquid L in the liquid supply device 2. As shown in FIG. 1, the power supply device 3 has an input unit 31, a power supply unit 32, a control unit 33, and a display unit 34.
 入力部31は、後述する各種の設定値や、所定の動作を指示するための指示信号(操作信号Sm)を入力する部分である。このような操作信号Smは、電源装置3の操作者(例えば技師等)による操作に応じて、入力部31から入力されるようになっている。ただし、これらの各種の設定値が、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、入力部31により入力された設定値は、後述する制御部33へ供給されるようになっている。なお、このような入力部31は、例えば所定のダイヤルやボタン、タッチパネル等を用いて構成されている。 The input unit 31 is a part for inputting various set values described later and an instruction signal (operation signal Sm) for instructing a predetermined operation. Such an operation signal Sm is input from the input unit 31 in response to an operation by an operator (for example, an engineer or the like) of the power supply device 3. However, these various set values are not input according to the operation by the operator, but may be set in advance in the power supply device 3 at the time of shipment of the product, for example. Further, the set value input by the input unit 31 is supplied to the control unit 33, which will be described later. It should be noted that such an input unit 31 is configured by using, for example, a predetermined dial, button, touch panel, or the like.
 電源部32は、後述する制御信号CTL1に従って、アブレーションカテーテル1(電極111)と後述する対極板4との間に、上記した電力Poutを供給する部分である。このような電源部32は、所定の電源回路(例えばスイッチングレギュレータ等)を用いて構成されている。なお、電力Poutが高周波電力からなる場合、その周波数は、例えば450kHz~550kHz程度(例えば500kHz)である。 The power supply unit 32 is a portion that supplies the above-mentioned electric power Pout between the ablation catheter 1 (electrode 111) and the counter electrode plate 4 described later according to the control signal CTL1 described later. Such a power supply unit 32 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like). When the power Pout is composed of high frequency power, the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
 制御部33は、電源装置3全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を用いて構成されている。具体的には、制御部33は、まず、制御信号CTL1を用いて、電源部32における電力Poutの供給動作を制御する機能(電力供給制御機能)を有している。また、制御部33は、制御信号CTL2を用いて、液体供給装置2(液体供給部21)における液体Lの供給動作を制御する機能(液体供給制御機能)を有している。 The control unit 33 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured by using, for example, a microcomputer or the like. Specifically, the control unit 33 first has a function (power supply control function) of controlling the power supply operation of the power supply unit 32 by using the control signal CTL1. Further, the control unit 33 has a function (liquid supply control function) of controlling the supply operation of the liquid L in the liquid supply device 2 (liquid supply unit 21) by using the control signal CTL2.
 なお、この制御部33は、本発明における「第1の制御部」および「第2の制御部」の一具体例に対応している。 Note that the control unit 33 corresponds to a specific example of the "first control unit" and the "second control unit" in the present invention.
 このような制御部33にはまた、アブレーションカテーテル1(各電極111に対応して配置された熱電対等の温度センサ)において測定された温度情報Itが、随時供給されるようになっている(図1参照)。また、この制御部33には、アブレーションカテーテル1の電極111と後述する対極板4との間におけるインピーダンスZについての測定値が、電源部32から随時供給されるようになっている(図1参照)。 Further, the temperature information It measured by the ablation catheter 1 (temperature sensor such as a thermoelectric pair arranged corresponding to each electrode 111) is supplied to such a control unit 33 at any time (FIG. FIG. 1). Further, the control unit 33 is provided with a measured value of the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4 described later from the power supply unit 32 at any time (see FIG. 1). ).
 なお、上記した電力供給制御機能および液体供給制御機能を含め、制御部33における制御動作等の詳細については、後述する(図3,図4)。 Details of the control operation and the like in the control unit 33, including the power supply control function and the liquid supply control function described above, will be described later (FIGS. 3 and 4).
 表示部34は、各種の情報を表示して外部へと出力する部分(モニター)である。表示対象の情報としては、例えば、入力部31から入力される前述の各種の設定値や、制御部33から供給される各種パラメータ、アブレーションカテーテル1から供給される温度情報Itなどが挙げられる。ただし、表示対象の情報としてはこれらの情報には限られず、他の情報を代わりに、あるいは他の情報を加えて表示するようにしてもよい。このような表示部34は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。 The display unit 34 is a part (monitor) that displays various information and outputs it to the outside. Examples of the information to be displayed include the above-mentioned various set values input from the input unit 31, various parameters supplied from the control unit 33, temperature information It supplied from the ablation catheter 1, and the like. However, the information to be displayed is not limited to these information, and other information may be displayed instead or by adding other information. Such a display unit 34 is configured by using a display by various methods (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
(D.対極板4)
 対極板4は、例えば図1に示したように、アブレーションの際に患者9の体表に装着された状態で用いられるものである。詳細は後述するが、アブレーションの際に、アブレーションカテーテル1(電極111)とこの対極板4との間で、高周波通電がなされる(電力Poutが供給される)ようになっている。また、詳細は後述するが、このようなアブレーションの際に、上記したインピーダンスZが随時測定され、測定されたインピーダンスZが、電源装置3内において電源部32から制御部33へと供給されるようになっている(図1参照)。
(D. Counter electrode plate 4)
As shown in FIG. 1, for example, the counter electrode plate 4 is used in a state of being attached to the body surface of the patient 9 at the time of ablation. Details will be described later, but at the time of ablation, high-frequency energization (power Pout is supplied) is performed between the ablation catheter 1 (electrode 111) and the counter electrode plate 4. Further, as will be described in detail later, at the time of such ablation, the impedance Z described above is measured at any time, and the measured impedance Z is supplied from the power supply unit 32 to the control unit 33 in the power supply device 3. (See Fig. 1).
[動作および作用・効果]
(A.基本動作)
 このアブレーションシステム5では、例えば癌等の腫瘍を有する患部90を治療する際に、そのような患部90に対して所定のアブレーションが行われる(図1参照)。このようなアブレーションでは、まず、例えば図1中の矢印P1で示したように、アブレーションカテーテル1におけるカテーテルシャフト11が、例えば血管を通して患者9の体内に挿入される。そして、このアブレーションカテーテル1における先端付近(先端可撓部11A)の電極111と対極板4との間に、電源装置3(電源部32)から電力Pout(例えば高周波電力)が供給されることで、患部90に対して、ジュール発熱によるアブレーションが行われる。
[Operation and action / effect]
(A. Basic operation)
In this ablation system 5, when treating an affected area 90 having a tumor such as cancer, a predetermined ablation is performed on such an affected area 90 (see FIG. 1). In such ablation, first, as shown by an arrow P1 in FIG. 1, for example, the catheter shaft 11 in the ablation catheter 1 is inserted into the body of the patient 9 through, for example, a blood vessel. Then, power Pout (for example, high frequency power) is supplied from the power supply device 3 (power supply unit 32) between the electrode 111 near the tip end (tip flexible portion 11A) of the ablation catheter 1 and the counter electrode plate 4. , The affected area 90 is ablated by Joule fever.
 このとき、アブレーションカテーテル1では、操作者による回転板41の回転操作に応じて、カテーテルシャフト11における先端付近(先端可撓部11A)の形状が、両方向に変化する。 At this time, in the ablation catheter 1, the shape of the catheter shaft 11 near the tip (tip flexible portion 11A) changes in both directions in response to the rotation operation of the rotating plate 41 by the operator.
 具体的には、例えば、操作者がハンドル12を片手で掴み、その片手の指で摘み41aを操作することによって、回転板41を図2中の矢印d1a方向(右回り)に回転させた場合、以下のようになる。すなわち、カテーテルシャフト11内で、前述した一対の操作用ワイヤのうちの一方が、基端側へ引っ張られる。すると、このカテーテルシャフト11の先端付近が、図2中の矢印d2aで示した方向に沿って、湾曲する(撓む)。 Specifically, for example, when the operator grabs the handle 12 with one hand and operates the picking 41a with the fingers of the one hand to rotate the rotating plate 41 in the direction of the arrow d1a (clockwise) in FIG. , It becomes as follows. That is, in the catheter shaft 11, one of the pair of operating wires described above is pulled toward the proximal end side. Then, the vicinity of the tip of the catheter shaft 11 is curved (flexed) along the direction indicated by the arrow d2a in FIG.
 また、例えば、操作者が摘み41bを操作することによって、回転板41を図2中の矢印d1b方向(左回り)に回転させた場合、以下のようになる。すなわち、カテーテルシャフト11内で、前述した一対の操作用ワイヤのうちの他方が、基端側へ引っ張られる。すると、このカテーテルシャフト11の先端付近が、図2中の矢印d2bで示した方向に沿って、湾曲する。 Further, for example, when the rotating plate 41 is rotated in the direction of the arrow d1b (counterclockwise) in FIG. 2 by the operator operating the knob 41b, the result is as follows. That is, in the catheter shaft 11, the other of the pair of operating wires described above is pulled toward the proximal end side. Then, the vicinity of the tip of the catheter shaft 11 is curved along the direction indicated by the arrow d2b in FIG.
 このようにして操作者が回転板41を回転操作することで、カテーテルシャフト11の首振り偏向動作を行うことができる。なお、ハンドル本体121を軸回りに(XY平面内で)回転させることで、例えば、カテーテルシャフト11が患者9の体内に挿入された状態のまま、カテーテルシャフト11の先端付近の湾曲方向の向きを、自由に設定することができる。このようにしてアブレーションカテーテル1では、先端可撓部11Aを偏向させるための偏向機構が設けられているため、カテーテルシャフト11をその先端付近(先端可撓部11A)の形状を変化させながら、挿入することができる。 By rotating the rotating plate 41 in this way, the operator can swing and deflect the catheter shaft 11. By rotating the handle body 121 about an axis (in the XY plane), for example, the direction of the bending direction near the tip of the catheter shaft 11 can be oriented while the catheter shaft 11 is inserted into the patient 9. , Can be set freely. In this way, since the ablation catheter 1 is provided with a deflection mechanism for deflecting the tip flexible portion 11A, the catheter shaft 11 is inserted while changing the shape of the vicinity of the tip (tip flexible portion 11A). can do.
 また、このようなアブレーションの際には、液体供給装置2の内部とアブレーションカテーテル1の内部との間を循環するようにして、液体供給装置2(液体供給部21)からアブレーションカテーテル1に対し、灌注用の液体Lが供給される(図1参照)。また、電源装置3(制御部33)は、制御信号CTL2を用いて、そのような液体供給装置2における液体Lの供給動作を制御する。これにより、アブレーションカテーテル1における先端付近から、灌注用の液体Lが流し出される(図2参照)。その結果、アブレーションの際に、処置部分の温度が上昇しすぎて損傷が起こったり、処置部分に血栓がこびりついたりすることが、防止される(血液滞留が改善される)。 Further, at the time of such ablation, the liquid supply device 2 (liquid supply unit 21) makes a circulation between the inside of the liquid supply device 2 and the inside of the ablation catheter 1 with respect to the ablation catheter 1. Liquid L for irrigation is supplied (see FIG. 1). Further, the power supply device 3 (control unit 33) controls the supply operation of the liquid L in such a liquid supply device 2 by using the control signal CTL2. As a result, the liquid L for irrigation is discharged from the vicinity of the tip of the ablation catheter 1 (see FIG. 2). As a result, during ablation, the temperature of the treated area is prevented from rising too much and causing damage or thrombi sticking to the treated area (improving blood retention).
(B.アブレーションの処理動作)
 また、本実施の形態のアブレーションシステム5では、以下詳述する手法で、アブレーションの処理動作を行うようにしている。
(B. Ablation processing operation)
Further, in the ablation system 5 of the present embodiment, the ablation processing operation is performed by the method described in detail below.
 図3は、本実施の形態のアブレーションシステム5におけるアブレーションの処理動作例を、流れ図で表したものである。また、図4は、図3に示したアブレーションの処理動作時における、各種パラメータ(前述した電力PoutおよびインピーダンスZ)の時間変化例を、模式的に表したものである。なお、この図4において、横軸は時間tを示していると共に、後述する比較例に係る電力Pout101についても、併せて図示している。 FIG. 3 is a flow chart showing an example of ablation processing operation in the ablation system 5 of the present embodiment. Further, FIG. 4 schematically shows an example of time changes of various parameters (power Pout and impedance Z described above) during the ablation processing operation shown in FIG. In FIG. 4, the horizontal axis indicates the time t, and the electric power Pout 101 according to the comparative example described later is also shown.
 この本実施の形態のアブレーションでは、まず、液体供給装置2(液体供給部21)からアブレーションカテーテル1に対して、灌注用の液体Lの供給が開始され、このアブレーションカテーテル1の先端付近から、液体Lの流出が開始される(図3のステップS100)。具体的には、この際の液体Lの流量(下限値Lmin)としては、例えば、Lmin=0.2[mL/min]が挙げられる。なお、このような下限値Lminでの液体Lの供給開始は、例えば、アブレーションカテーテル1を患者9の体内に挿入する前のタイミングとするのが望ましい。これは、アブレーションカテーテル1を患者9の体内に挿入する際における、血栓の発生を防止するためである。 In the ablation of the present embodiment, first, the liquid supply device 2 (liquid supply unit 21) starts supplying the liquid L for irrigation to the ablation catheter 1, and the liquid is supplied from the vicinity of the tip of the ablation catheter 1. The outflow of L is started (step S100 in FIG. 3). Specifically, as the flow rate of the liquid L (lower limit value Lmin) at this time, for example, Lmin = 0.2 [mL / min] can be mentioned. It is desirable that the start of supply of the liquid L at such a lower limit value Lmin is, for example, a timing before the ablation catheter 1 is inserted into the body of the patient 9. This is to prevent the formation of a thrombus when the ablation catheter 1 is inserted into the body of the patient 9.
 次に、電力Poutの供給時の各種パラメータが、設定される(ステップS101)。具体的には、例えば、電力Poutの上昇速度Vp、電力Poutの最大値Pmax、および、後述する電力Poutの供給値の積算値Pi(ジュール量)についての閾値Pithがそれぞれ、電源装置3の操作者による操作に応じて入力部31から入力され、制御部33へと供給される。なお、これらの各種パラメータの設定値としては、一例として、以下の値が挙げられる。
・Vp=2[W]/5[s]=0.4[W/s]
・Pmax=20[W]
・Pith=7000[J]
Next, various parameters at the time of supplying the power Pout are set (step S101). Specifically, for example, the rising speed Vp of the power Pout, the maximum value Pmax of the power Pout, and the threshold value Pith for the integrated value Pi (joule amount) of the supply value of the power Pout, which will be described later, are the operations of the power supply device 3, respectively. It is input from the input unit 31 and supplied to the control unit 33 in response to an operation by a person. As an example of the setting values of these various parameters, the following values can be mentioned.
-Vp = 2 [W] / 5 [s] = 0.4 [W / s]
・ Pmax = 20 [W]
・ Pith = 7000 [J]
 続いて、後述する電力Poutの低下時の各種パラメータが、設定される(ステップS102)。具体的には、例えば、後述するインピーダンス上昇値ΔZについての閾値ΔZth1、および、後述する電力低下量ΔPがそれぞれ、電源装置3の操作者による操作に応じて入力部31から入力され、制御部33へと供給される。なお、これらの各種パラメータの設定値としては、一例として、以下の値が挙げられる。
・ΔZth1=10[Ω]
・ΔP=2[W]
Subsequently, various parameters when the power Pout is lowered, which will be described later, are set (step S102). Specifically, for example, the threshold value ΔZth1 for the impedance increase value ΔZ described later and the power decrease amount ΔP described later are each input from the input unit 31 according to the operation by the operator of the power supply device 3, and the control unit 33. Is supplied to. As an example of the setting values of these various parameters, the following values can be mentioned.
・ ΔZth1 = 10 [Ω]
・ ΔP = 2 [W]
 ちなみに、前述したように、このような電力Poutの供給時や電力Poutの低下時における各種パラメータの設定値は、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、このような電力Poutの供給時や電力Poutの低下時における各種パラメータの設定は、アブレーションカテーテル1を患者9の体内に挿入する前、あるいは、挿入した後の、いずれのタイミングで行うようにしてもよい。 By the way, as described above, the setting values of various parameters when the power Pout is supplied or when the power Pout is lowered are not input according to the operation by the operator, for example, at the time of shipment of the product. May be set in advance in the power supply device 3. In addition, various parameters should be set when the power Pout is supplied or when the power Pout is lowered at any timing before or after the ablation catheter 1 is inserted into the body of the patient 9. You may.
 なお、上記した閾値Pithは、本発明における「第3の閾値」の一具体例に対応している。また、上記した閾値ΔZth1は、本発明における「第1の閾値」の一具体例に対応している。 The above-mentioned threshold value Pith corresponds to a specific example of the "third threshold value" in the present invention. Further, the above-mentioned threshold value ΔZth1 corresponds to a specific example of the “first threshold value” in the present invention.
 次に、アブレーションカテーテル1の電極111と対極板4との間に対して、電源装置3(電源部32)からの電力Poutの供給が開始されることで、患部90に対するアブレーションが開始される(ステップS103)。具体的には、このアブレーションの開始は、電源装置3の操作者による操作に応じて、操作信号Smが入力部31から入力されて制御部33へと供給されることで、実行される。すなわち、この例では、アブレーションが手動で開始されるようになっている。 Next, the power supply Pout from the power supply device 3 (power supply unit 32) is started to be supplied between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4, so that the ablation to the affected area 90 is started ( Step S103). Specifically, the start of this ablation is executed by inputting the operation signal Sm from the input unit 31 and supplying it to the control unit 33 in response to the operation by the operator of the power supply device 3. That is, in this example, the ablation is manually initiated.
 これにより、例えば図4中の破線の矢印で示したように、アブレーションの開始時(タイミングt0)から、ステップS101にて設定された上昇速度Vpにて、電力Poutが上昇していき、ステップS101にて設定された最大値Pmaxへと到達することになる。また、このような電力Poutの上昇に伴い、例えば図4中の破線の矢印で示したように、アブレーションカテーテル1の電極111と対極板4との間におけるインピーダンスZが、徐々に減少していく。具体的には、患部90に対するアブレーションの開始当初では、このような人体のインピーダンスZは、例えば100[Ω]程度であるが、電力Poutの供給に伴ってアブレーションが進んでいくと、患部90付近の温度上昇に伴い、インピーダンスZが徐々に減少していく。そして、電力Poutが最大値Pmaxへと到達したタイミング付近の後は、詳細は後述するが、このインピーダンスZが上昇に転じることとなる(例えば図4中の破線の矢印参照)。ただし、例えば、最大値Pmaxが極端に大きい場合や、上昇速度Vpが極端に遅い場合などには、図4に示した例とは異なり、電力Poutが最大値Pmaxへと到達する前にインピーダンスZが上昇に転じ、上記したインピーダンス上昇値ΔZが閾値ΔZth1を超える場合が、有り得る。 As a result, for example, as shown by the broken line arrow in FIG. 4, the power Pout increases at the ascending speed Vp set in step S101 from the start of ablation (timing t0), and the power Pout increases in step S101. The maximum value Pmax set in is reached. Further, as the power Pout increases, the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4 gradually decreases, as shown by the broken line arrow in FIG. 4, for example. .. Specifically, at the beginning of ablation for the affected area 90, the impedance Z of the human body is, for example, about 100 [Ω], but as the ablation progresses with the supply of electric power Pout, the vicinity of the affected area 90 Impedance Z gradually decreases as the temperature rises. Then, after the timing when the power Pout reaches the maximum value Pmax, the impedance Z starts to rise (see, for example, the broken line arrow in FIG. 4), although the details will be described later. However, for example, when the maximum value Pmax is extremely large or when the rising speed Vp is extremely slow, unlike the example shown in FIG. 4, the impedance Z is before the power Pout reaches the maximum value Pmax. Will start to rise, and the above-mentioned impedance rise value ΔZ may exceed the threshold value ΔZth1.
 続いて、制御部33は、前述した制御信号CTL2を用いて、灌注用の液体Lの流量を変更する(ステップS104)。具体的には、制御部33は、アブレーションカテーテル1における灌注機構から流し出される液体Lの流量が、ステップS100にて設定された下限値LminからL0(>Lmin)まで増加するように、指示を行う。なお、この際の液体Lの流量(L0)としては、例えば、0.4[mL/min]または0.5[mL/min]等が挙げられる。 Subsequently, the control unit 33 changes the flow rate of the liquid L for irrigation using the control signal CTL2 described above (step S104). Specifically, the control unit 33 instructs the ablation catheter 1 to increase the flow rate of the liquid L discharged from the irrigation mechanism from the lower limit value Lmin set in step S100 to L0 (> Lmin). conduct. The flow rate (L0) of the liquid L at this time includes, for example, 0.4 [mL / min] or 0.5 [mL / min].
 次に、制御部33は、アブレーションの開始時から現時点までの、電力Poutの供給値の積算値(ジュール量)Piが、ステップS101にて設定された閾値Pith以上であるのか否か(Pi≧Pithを満たすのか否か)について、判定を行う(ステップS105)。具体的には、図4の例では、アブレーションの開始時(タイミングt0)から現時点(例えばタイミングt1)までの、電力Poutの供給値の積算値Pi(図4中にハッチングにて示した積分値に相当)が、閾値Pith以上であるのか否かについて、判定される。 Next, the control unit 33 determines whether or not the integrated value (joule amount) Pi of the power Pout supply value from the start of ablation to the present time is equal to or greater than the threshold value Pith set in step S101 (Pi ≧). (Whether or not the psi is satisfied) is determined (step S105). Specifically, in the example of FIG. 4, the integrated value Pi of the power Pout supply value from the start of ablation (timing t0) to the present time (for example, timing t1) (integrated value shown by hatching in FIG. 4). (Corresponding to) is determined as to whether or not it is equal to or higher than the threshold value Pith.
 ここで、電力Poutの供給値の積算値Piが、閾値Pith以上である(Pi≧Pithを満たす)と判定された場合には(ステップS105:Y)、次に制御部33は、以下の制御を行う。すなわち、この場合に制御部33は、電源部32からの電力Poutの供給を自動的に停止(完全停止)させることで、アブレーションを自動的に終了させると共に、液体Lの流量を、前述した下限値Lminへと戻すようにする(ステップS111)。具体的には、制御部33は、前述した制御信号CTL1を用いて、電力Poutの供給を自動的に停止させる。これにより、患部90に対するアブレーションが、制御部33によって自動的に終了させられることになる。また、制御部33は、前述した制御信号CTL2を用いて、液体Lの流量が下限値Lminへと戻るように、指示を行う。これにより、アブレーションカテーテル1の先端付近からの液体Lの流出も、下限値Lminへと戻ることになる。この場合には、以上で、図3に示した一連の処理(本実施の形態のアブレーションの処理動作例)が、終了となる。 Here, when it is determined that the integrated value Pi of the supply value of the power Pout is equal to or higher than the threshold value Pith (Satisfying Pi ≧ Pith) (step S105: Y), the control unit 33 then controls the following. I do. That is, in this case, the control unit 33 automatically stops (completely stops) the supply of the power Pout from the power supply unit 32 to automatically end the ablation and set the flow rate of the liquid L to the above-mentioned lower limit. The value is returned to Lmin (step S111). Specifically, the control unit 33 automatically stops the supply of the power Pout by using the control signal CTL1 described above. As a result, the ablation for the affected area 90 is automatically terminated by the control unit 33. Further, the control unit 33 uses the control signal CTL2 described above to instruct the flow rate of the liquid L to return to the lower limit value Lmin. As a result, the outflow of the liquid L from the vicinity of the tip of the ablation catheter 1 also returns to the lower limit value Lmin. In this case, the series of processes shown in FIG. 3 (example of ablation processing operation according to the present embodiment) is completed.
 一方、電力Poutの供給値の積算値Piが、閾値Pith未満である(Pi≧Pithを満たさない)と判定された場合(ステップS105:N)、以下のようになる。すなわち、制御部33は、まず、所定の待機時間Δt1の期間中であるのか否か(待機時間Δt1が経過していないのか否か)について、判定を行う(ステップS106)。ここで、このような待機時間Δt1の期間中である(待機時間Δt1が経過していない)と判定された場合には(ステップS106:Y)、上記したステップS105へと戻ることになる。一方、待機時間Δt1の期間中ではない(待機時間Δt1が経過している)と判定された場合には(ステップS106:N)、以下説明するステップS107へと進むことになる。 On the other hand, when it is determined that the integrated value Pi of the supply value of the power Pout is less than the threshold value Pith (Pi ≧ Pith is not satisfied) (step S105: N), the result is as follows. That is, the control unit 33 first determines whether or not the predetermined waiting time Δt1 is in progress (whether or not the waiting time Δt1 has not elapsed) (step S106). Here, if it is determined that the waiting time Δt1 is in progress (the waiting time Δt1 has not elapsed) (step S106: Y), the process returns to step S105 described above. On the other hand, if it is determined that the waiting time Δt1 is not in progress (the waiting time Δt1 has elapsed) (step S106: N), the process proceeds to step S107 described below.
 ここで、このような待機時間Δt1は、本発明における「第1の待機時間」の一具体例に対応している。なお、この待機時間Δt1の値は、例えば、0秒間<Δt1≦4秒間(好ましくは、0.5秒間≦Δt1≦3秒間)であり、一例としては、3秒間である。 Here, such a waiting time Δt1 corresponds to a specific example of the “first waiting time” in the present invention. The value of the waiting time Δt1 is, for example, 0 seconds <Δt1 ≦ 4 seconds (preferably 0.5 seconds ≦ Δt1 ≦ 3 seconds), and as an example, it is 3 seconds.
 次に、上記したステップS107では、制御部33は、アブレーションカテーテル1の電極111と対極板4との間におけるインピーダンスZの測定情報を取得し、このインピーダンスZにおける単位時間当たりの上昇値(インピーダンス上昇値ΔZ)を算出する。具体的には、まず、電源部32によって、そのようなインピーダンスZの測定が行われ、制御部33は、そのような測定により得られた、インピーダンスZの測定情報を取得するようになっている。また、このようなインピーダンス上昇値ΔZは、インピーダンスZにおける現在値(Zn)から、現在から上記した単位時間(例えば1分間)の分だけ前までの期間におけるインピーダンスZの最小値に対応する過去値(Zp)を差し引くことで、算出されるようになっている(ΔZ=Zn-Zp)。 Next, in step S107 described above, the control unit 33 acquires the measurement information of the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4, and the increase value (impedance increase) per unit time at this impedance Z. Value ΔZ) is calculated. Specifically, first, the power supply unit 32 measures such impedance Z, and the control unit 33 acquires the measurement information of impedance Z obtained by such measurement. .. Further, such an impedance increase value ΔZ is a past value corresponding to the minimum value of impedance Z in the period from the present value (Zn) in impedance Z to the above-mentioned unit time (for example, 1 minute) from the present. It is calculated by subtracting (Zp) (ΔZ = Zn—Zp).
 次いで、制御部33は、このようにして算出されたインピーダンス上昇値ΔZが、ステップS102にて設定された閾値ΔZth1以上であるのか否か(ΔZ≧ΔZth1を満たすのか否か)について、判定を行う(ステップS108)。ここで、インピーダンス上昇値ΔZが、閾値ΔZth1未満である(ΔZ≧ΔZth1を満たさない)と判定された場合(ステップS108:N)、前述したステップS105へと戻ることになる。 Next, the control unit 33 determines whether or not the impedance rise value ΔZ calculated in this way is equal to or greater than the threshold value ΔZth1 set in step S102 (whether or not ΔZ ≧ ΔZth1 is satisfied). (Step S108). Here, when it is determined that the impedance increase value ΔZ is less than the threshold value ΔZth1 (does not satisfy ΔZ ≧ ΔZth1) (step S108: N), the process returns to step S105 described above.
 一方、インピーダンス上昇値ΔZが、閾値ΔZth1以上である(ΔZ≧ΔZth1を満たす)と判定された場合には(ステップS108:Y)、制御部33は、前述した制御信号CTL1を用いて、電力Poutを低下させる(ステップS109)。具体的には、制御部33は、ステップS102にて設定された電力低下量ΔPの分だけ、電力Poutが低下するように指示する(図4中の破線の矢印参照)。 On the other hand, when it is determined that the impedance increase value ΔZ is equal to or greater than the threshold value ΔZth1 (satisfying ΔZ ≧ ΔZth1) (step S108: Y), the control unit 33 uses the control signal CTL1 described above to power Pout. (Step S109). Specifically, the control unit 33 instructs the power Pout to be reduced by the amount of the power reduction amount ΔP set in step S102 (see the broken line arrow in FIG. 4).
 続いて、制御部33は、ステップS107にて説明した、インピーダンスZにおける上記した最小値に対応する過去値(Zp)を、リセットする(ステップS110)。これにより、前述した待機時間Δt1の経過直後における、電力Poutの供給値に対する低下指示(ステップS108)の実行頻度が、抑制されることになる。なお、その後は、前述したステップS105へと戻ることになる。 Subsequently, the control unit 33 resets the past value (Zp) corresponding to the above-mentioned minimum value in the impedance Z described in step S107 (step S110). As a result, the execution frequency of the decrease instruction (step S108) with respect to the supply value of the power Pout immediately after the elapse of the standby time Δt1 described above is suppressed. After that, the process returns to step S105 described above.
 このようにして、例えば図4の例では、複数回に亘る、電力Poutの供給値を低下させる制御が行われることで、インピーダンスZの上昇が抑えられた後、下降に転じて収束するようになっている。また、それとともに、電力Poutも徐々に低下していった後、収束することとなる。 In this way, for example, in the example of FIG. 4, the control for lowering the supply value of the electric power Pout is performed a plurality of times so that the rise in the impedance Z is suppressed and then the impedance Z starts to fall and converges. It has become. At the same time, the power Pout gradually decreases and then converges.
(C.作用・効果)
 以上のようにして、本実施の形態のアブレーションシステム5では、例えば、以下のような作用および効果が得られる。
(C. Action / effect)
As described above, in the ablation system 5 of the present embodiment, for example, the following actions and effects can be obtained.
 まず、本実施の形態では、アブレーションの際に、アブレーションカテーテル1の電極111と対極板4との間のインピーダンスZにおける、単位時間当たりの上昇値(インピーダンス上昇値ΔZ)が、閾値ΔZth1以上となった場合には、以下のようになる。すなわち、電源装置3内の制御部33によって、アブレーションを行うための電力Poutの供給値が、低下させられる。 First, in the present embodiment, at the time of ablation, the increase value (impedance increase value ΔZ) per unit time in the impedance Z between the electrode 111 of the ablation catheter 1 and the counter electrode plate 4 becomes the threshold value ΔZth1 or more. In that case, it becomes as follows. That is, the control unit 33 in the power supply device 3 reduces the supply value of the power Pout for performing ablation.
 これにより本実施の形態では、アブレーションの際におけるインピーダンスZの過剰な上昇が防止され、アブレーションの対象(例えば、患者9の体内における腫瘍を有する患部90)に対して、電力Poutが効率良く供給されるようになる。つまり、例えば図4中に示した、比較例に係る電力Pout101の場合(最大値Pmaxへの到達後には、この最大値Pmaxを維持するような場合)等と比べ、本実施の形態では、電力Poutが効率的に供給される。 Thereby, in the present embodiment, the impedance Z is prevented from being excessively increased during the ablation, and the electric power Pout is efficiently supplied to the ablation target (for example, the affected part 90 having the tumor in the body of the patient 9). Become so. That is, as compared with, for example, the case of the electric power Pout101 according to the comparative example shown in FIG. 4 (the case where the maximum value Pmax is maintained after reaching the maximum value Pmax), in the present embodiment, the electric power Pout is efficiently supplied.
 具体的には、まず、アブレーションの際の焼灼熱は、一般に、患部90の表面から深部(深い位置)へと、徐々に伝わっていく。この際に、電力Poutが大き過ぎると、深部へと焼灼熱が伝わる前に、アブレーションカテーテル1との接触箇所において組織の凝固(焦げ付いたり、水分が無くなったりすること等)が進み、インピーダンスZが上昇し過ぎてしまうおそれがある。そして、このようにしてインピーダンスZが上昇し過ぎてしまうと、アブレーションの際の電力Poutが、インピーダンスZが高い箇所に局所的に集中し(電力Poutの供給効率が低下し)、深部までの焼灼が困難となってしまう。その結果、効果的なアブレーションが困難となり、アブレーションの際の効率が低下してしまうおそれがある。 Specifically, first, the burning heat at the time of ablation is generally gradually transmitted from the surface of the affected part 90 to the deep part (deep position). At this time, if the power Pout is too large, the tissue coagulates (burns, loses water, etc.) at the contact point with the ablation catheter 1 before the scorching heat is transmitted to the deep part, and the impedance Z becomes high. It may rise too much. When the impedance Z rises too much in this way, the power Pout at the time of ablation is locally concentrated in the place where the impedance Z is high (the supply efficiency of the power Pout decreases), and cauterization to the deep part. Becomes difficult. As a result, effective ablation becomes difficult, and the efficiency of ablation may decrease.
 これに対して本実施の形態では、上記したようにして、アブレーションの際におけるインピーダンスZの過剰な上昇が防止されることから、例えば上記したような患部90に対して、アブレーションの際のエネルギーを効率良く供給できるようになる。その結果、本実施の形態では、例えばポップや炭化(焦げ付き)等を防止しつつ、局所的かつ深い位置までの焼灼が実現される。よって、本実施の形態では、アブレーションの際の効率を、向上させることが可能となる。また、本実施の形態では、ポップや炭化等を防止しつつ、局所的かつ深い位置までの焼灼を実現することで、手技時間の短縮と、人体へのダメージの軽減とを、両立させることも可能となる。更に、前述した人体のインピーダンスZの値(100[Ω]程度)には、個人によるばらつきがあるものの、例えば上記した設定値(閾値Zth1等)を適宜調整することで、アブレーションの際における焼灼サイズのばらつきを低減し、個人差に対応した適切な治療を行うことも可能となる。 On the other hand, in the present embodiment, as described above, the impedance Z is prevented from being excessively increased during ablation. Therefore, for example, the energy at the time of ablation is applied to the affected portion 90 as described above. It will be possible to supply efficiently. As a result, in the present embodiment, cauterization to a local and deep position is realized while preventing, for example, popping and carbonization (burning). Therefore, in the present embodiment, it is possible to improve the efficiency at the time of ablation. Further, in the present embodiment, by realizing local and deep cauterization while preventing popping, carbonization, etc., it is possible to achieve both shortening of the procedure time and reduction of damage to the human body. It will be possible. Further, although the above-mentioned value of the impedance Z of the human body (about 100 [Ω]) varies depending on the individual, for example, by appropriately adjusting the above-mentioned set value (threshold value Zth1 or the like), the cauterization size at the time of ablation It is also possible to reduce the variation in the variability and provide appropriate treatment according to individual differences.
 また、本実施の形態では、電力Poutの供給値を低下させる指示(ステップS109)を行ってから所定の待機時間Δt1の経過後(ステップS106:N)に、制御部33において、インピーダンス上昇値ΔZが閾値ΔZth1以上になっているのか否かについての次回の判定処理(次回のステップS108の処理)を開始するようにしたので、以下のようになる。すなわち、この待機時間Δt1の経過前の段階では、そのような次の判定処理が開始されないことから、例えば図4中に示した待機時間Δt1の期間内(タイミングt2~t3,t4~t5の期間内など)においては、電力Poutの供給値に対する再度の低下指示が実行されず、電力Poutの供給値における過剰な低下が、防止されることになる。ここで、インピーダンスZの低下は、一般的に、電力Poutの低下に対してタイムラグがあることから、上記した次回の判定処理の開始前に待機時間Δt1を設けておくことで、電力Poutの供給値における過剰な低下を防止できるのである。このようにして、上記したアブレーションの対象に対して、電力Poutが更に効率良く供給される結果、アブレーションの際の効率も、更に向上させることが可能となる。また、患部90における水分量や、血圧や血流などに応じて、インピーダンスZが低下する際の応答速度が変わることから、例えば、そのような応答速度に適した待機時間Δt1を設けることで、アブレーションの際の処置の時間を、短縮化することも可能となる。 Further, in the present embodiment, after the predetermined standby time Δt1 has elapsed (step S106: N) after the instruction to decrease the supply value of the electric power Pout (step S109) is given, the impedance increase value ΔZ is performed by the control unit 33. Since the next determination process (the process of the next step S108) regarding whether or not the threshold value is equal to or greater than the threshold value ΔZth1 is started, the result is as follows. That is, since such a next determination process is not started in the stage before the elapse of the waiting time Δt1, for example, within the period of the waiting time Δt1 shown in FIG. 4 (the period of timings t2 to t3, t4 to t5). In the case of (such as), the instruction for lowering the supply value of the electric power Pout is not executed again, and the excessive decrease in the supply value of the electric power Pout is prevented. Here, since the decrease in impedance Z generally has a time lag with respect to the decrease in power Pout, the power Pout is supplied by providing the standby time Δt1 before the start of the next determination process described above. It is possible to prevent an excessive decrease in the value. In this way, as a result of the electric power Pout being more efficiently supplied to the target of the ablation described above, the efficiency at the time of ablation can be further improved. Further, since the response speed when the impedance Z decreases depends on the amount of water in the affected area 90, blood pressure, blood flow, etc., for example, by providing a waiting time Δt1 suitable for such a response speed, It is also possible to shorten the treatment time during ablation.
 更に、本実施の形態では、アブレーションの開始時から現時点までの電力Poutの供給値の積算値Pi(ジュール量)が、閾値Pith以上となった場合には、制御部33によって電力Poutの供給を自動的に停止させることにより、アブレーションを自動的に終了させるようにしたので、以下のようになる。すなわち、そのようなジュール量が過剰となった場合に、電力Poutの供給が自動的に停止され、アブレーションも自動的に終了させられることから、上記したアブレーションの対象に対して、電力Poutが更に効率良く供給されることになる。その結果、アブレーションの際の効率も、更に向上させることが可能となる。また、前述した各種パラメータが設定(初期設定)されて、アブレーションが開始された後は、自動的な制御となることから、手技の効率化や短縮化を図ることができ、人体への負荷を軽減することも可能となる。更に、前述した比較例に係る電力Pout101の場合等では、電力Poutおよび焼灼時間を指定してアブレーションを行うことから、上記した積算値Pi(ジュール量)が把握しにくいという問題があるが、本実施の形態では、そのような問題の発生を回避することも可能となる。 Further, in the present embodiment, when the integrated value Pi (joule amount) of the power Pout supply value from the start of ablation to the present time is equal to or higher than the threshold value Pith, the control unit 33 supplies the power Pout. By automatically stopping it, the ablation is automatically terminated, so it becomes as follows. That is, when such an amount of joules becomes excessive, the supply of the power Pout is automatically stopped and the ablation is also automatically terminated. Therefore, the power Pout is further increased with respect to the target of the ablation described above. It will be supplied efficiently. As a result, the efficiency during ablation can be further improved. In addition, after the above-mentioned various parameters are set (initial setting) and ablation is started, automatic control is performed, so that the efficiency and shortening of the procedure can be achieved and the load on the human body is increased. It is also possible to reduce it. Further, in the case of the electric power Pout 101 according to the above-mentioned comparative example, since the ablation is performed by designating the electric power Pout and the cauterization time, there is a problem that it is difficult to grasp the above-mentioned integrated value Pi (joule amount). In the embodiment, it is also possible to avoid the occurrence of such a problem.
<2.変形例>
 続いて、上記実施の形態の変形例について説明する。なお、以下では、実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
<2. Modification example>
Subsequently, a modified example of the above-described embodiment will be described. In the following, the same components as those in the embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
[アブレーションの処理動作]
 図5は、変形例のアブレーションシステム5におけるアブレーションの処理動作例を、流れ図で表したものである。この図5では、実施の形態で説明した処理(図3中のステップS100~S105,S107~S111)から追加した部分の処理を、ステップS200,S202~S204として示していると共に、図3中のステップS106の部分を置き換えた処理を、ステップS201として示している。なお、以下では、実施の形態の場合と共通する処理(ステップS100~S105,S107~S111)の部分については、適宜説明を省略する。
[Ablation processing operation]
FIG. 5 is a flow chart showing an example of ablation processing operation in the ablation system 5 of the modified example. In FIG. 5, the processing of the portion added from the processing described in the embodiment (steps S100 to S105, S107 to S111 in FIG. 3) is shown as steps S200, S202 to S204, and is shown in FIG. The process in which the part of step S106 is replaced is shown as step S201. In the following, the description of the processing (steps S100 to S105, S107 to S111) common to the case of the embodiment will be omitted as appropriate.
 この本変形例のアブレーションでは、実施の形態で説明した、電力供給時および電力低下時の各種パラメータの設定(図5のステップS101,S102)の後、後述する液体Lの流量増加時の各種パラメータが、設定される(ステップS200)。具体的には、例えば、前述したインピーダンス上昇値ΔZについての閾値ΔZth2、および、後述する液体Lの流量の上限値Lmaxがそれぞれ、電源装置3の操作者による操作に応じて入力部31から入力され、制御部33へと供給される。 In the ablation of this modified example, after setting various parameters at the time of power supply and at the time of power reduction (steps S101 and S102 in FIG. 5) described in the embodiment, various parameters at the time of increasing the flow rate of the liquid L, which will be described later. Is set (step S200). Specifically, for example, the threshold value ΔZth2 for the impedance rise value ΔZ described above and the upper limit value Lmax of the flow rate of the liquid L described later are each input from the input unit 31 according to the operation by the operator of the power supply device 3. , Is supplied to the control unit 33.
 ここで、上記した閾値ΔZth2は、前述した閾値ΔZth1よりも小さな値に設定されるようになっており(ΔZth2<ΔZth1)、本発明における「第2の閾値」の一具体例に対応している。逆に言うと、閾値ΔZth1は、閾値ΔZth2よりも大きな値に設定されることになる。また、上記した上限値Lmaxは、ステップS104にて設定される液体Lの流量L0(>Lmin)よりも、大きな値に設定されることになる(Lmax>L0)。 Here, the above-mentioned threshold value ΔZth2 is set to a value smaller than the above-mentioned threshold value ΔZth1 (ΔZth2 <ΔZth1), and corresponds to a specific example of the “second threshold value” in the present invention. .. Conversely, the threshold value ΔZth1 is set to a value larger than the threshold value ΔZth2. Further, the above-mentioned upper limit value Lmax is set to a value larger than the flow rate L0 (> Lmin) of the liquid L set in step S104 (Lmax> L0).
 ちなみに、このような液体Lの流量増加時における各種パラメータの設定値についても、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、このような液体Lの流量増加時における各種パラメータの設定についても、アブレーションカテーテル1を患者9の体内に挿入する前、あるいは、挿入した後の、いずれのタイミングで行うようにしてもよい。 By the way, the set values of various parameters when the flow rate of the liquid L is increased are not input according to the operation by the operator, but are set in advance in the power supply device 3, for example, at the time of shipment of the product. You may do so. Further, the setting of various parameters when the flow rate of the liquid L is increased may be set at any timing before or after the ablation catheter 1 is inserted into the body of the patient 9.
 なお、これらの各種パラメータの設定値としては、一例として、以下の値が挙げられる。
・ΔZth2=5[Ω]
・Lmax=0.5[mL/min]
As an example of the setting values of these various parameters, the following values can be mentioned.
・ ΔZth2 = 5 [Ω]
・ Lmax = 0.5 [mL / min]
 ここで、本変形例のアブレーションでは、実施の形態で説明したステップS106(図3参照)の代わりに、以下のステップS201が設けられている。このステップS201では、制御部33は、前述した待機時間Δt1または所定の待機時間Δt2の期間中であるのか否か(待機時間Δt1または待機時間Δt2が経過していないのか否か)について、判定を行う。ここで、このような待機時間Δt1または待機時間Δt2の期間中である(待機時間Δt1または待機時間Δt2が経過していない)と判定された場合には(ステップS201:Y)、前述したステップS105へと戻ることになる。一方、待機時間Δt1または待機時間Δt2の期間中ではない(待機時間Δt1または待機時間Δt2が経過している)と判定された場合には(ステップS201:N)、前述したステップS107へと進むことになる。 Here, in the ablation of this modification, the following step S201 is provided instead of step S106 (see FIG. 3) described in the embodiment. In this step S201, the control unit 33 determines whether or not the above-mentioned waiting time Δt1 or the predetermined waiting time Δt2 is in progress (whether or not the waiting time Δt1 or the waiting time Δt2 has elapsed). conduct. Here, if it is determined that the waiting time Δt1 or the waiting time Δt2 is in progress (the waiting time Δt1 or the waiting time Δt2 has not elapsed) (step S201: Y), the above-mentioned step S105 Will return to. On the other hand, if it is determined that the waiting time Δt1 or the waiting time Δt2 is not in progress (the waiting time Δt1 or the waiting time Δt2 has elapsed) (step S201: N), the process proceeds to step S107 described above. become.
 このような待機時間Δt2は、本発明における「第2の待機時間」の一具体例に対応している。この待機時間Δt2の値は、例えば、0秒間<Δt2≦4秒間(好ましくは、0.5秒間≦Δt2≦3秒間)であり、一例としては、3秒間である。ただし、この待機時間Δt2と、実施の形態で説明した待機時間Δt1とは、互いに異なる値であってもよい。 Such a standby time Δt2 corresponds to a specific example of the “second standby time” in the present invention. The value of the waiting time Δt2 is, for example, 0 seconds <Δt2 ≦ 4 seconds (preferably 0.5 seconds ≦ Δt2 ≦ 3 seconds), and as an example, it is 3 seconds. However, the waiting time Δt2 and the waiting time Δt1 described in the embodiment may have different values.
 また、本変形例のアブレーションでは、実施の形態で説明したステップS107(インピーダンスZの測定情報を取得し、インピーダンス上昇値ΔZを算出する処理)の後、実施の形態で説明したステップS108へと進む前に、以下の処理が行われる。 Further, in the ablation of this modification, after step S107 (process of acquiring measurement information of impedance Z and calculating impedance rise value ΔZ) described in the embodiment, the process proceeds to step S108 described in the embodiment. Before that, the following processing is performed.
 すなわち、まず、制御部33は、アブレーションカテーテル1における灌注機構から流し出される液体Lの流量が、ステップS200にて設定された上限値Lmaxまで到達したのか否か(L=Lmaxとなったのか否か)について、判定を行う(ステップS202)。ここで、そのような液体Lの流量が、上限値Lmaxまで到達した(L=Lmaxとなった)と判定された場合には(ステップS202:Y)、前述したステップS108へと進み、前述したインピーダンス上昇値ΔZが閾値ΔZth1以上であるのか否かについて、判定が行われることになる。 That is, first, the control unit 33 determines whether or not the flow rate of the liquid L flowing out from the irrigation mechanism in the ablation catheter 1 has reached the upper limit value Lmax set in step S200 (whether or not L = Lmax). Is determined (step S202). Here, when it is determined that the flow rate of such a liquid L has reached the upper limit value Lmax (L = Lmax) (step S202: Y), the process proceeds to the above-mentioned step S108, which is described above. A determination is made as to whether or not the impedance rise value ΔZ is equal to or greater than the threshold value ΔZth1.
 一方、そのような液体Lの流量が、上限値Lmaxまで到達していない(L<Lmaxである)と判定された場合には(ステップS202:N)、以下説明するステップS203,S204へと進むことになる。 On the other hand, when it is determined that the flow rate of such a liquid L has not reached the upper limit value Lmax (L <Lmax) (step S202: N), the process proceeds to steps S203 and S204 described below. It will be.
 具体的には、まず、制御部33は、前述したステップS107にて算出されたインピーダンス上昇値ΔZが、ステップS200にて設定された閾値ΔZth2以上であるのか否か(ΔZ≧ΔZth2を満たすのか否か)について、判定を行う(ステップS203)。ここで、インピーダンス上昇値ΔZが、閾値ΔZth2未満である(ΔZ≧ΔZth2を満たさない)と判定された場合(ステップS203:N)、前述したステップS105へと戻ることになる。 Specifically, first, the control unit 33 determines whether or not the impedance increase value ΔZ calculated in step S107 described above is equal to or greater than the threshold value ΔZth2 set in step S200 (whether or not ΔZ ≧ ΔZth2 is satisfied). Is determined (step S203). Here, when it is determined that the impedance increase value ΔZ is less than the threshold value ΔZth2 (does not satisfy ΔZ ≧ ΔZth2) (step S203: N), the process returns to step S105 described above.
 一方、インピーダンス上昇値ΔZが、閾値ΔZth2以上である(ΔZ≧ΔZth2を満たす)と判定された場合には(ステップS203:Y)、制御部33は、前述した制御信号CTL2を用いて、液体Lの流量を増加させる(ステップS204)。具体的には、制御部33は、アブレーションカテーテル1における灌注機構から流し出される液体Lの流量が、例えば、ステップS200にて設定された上限値Lmaxまで増加するように、指示を行う。また、制御部33は、例えば、予め設定された流量増加量ΔLの分だけ、液体Lの流量が増加するように指示してもよい。なお、その後は、前述したステップS110へと戻り、インピーダンスZにおける前述した最小値に対応する過去値(Zp)が、リセットされた後、前述したステップS105へと戻ることになる。 On the other hand, when it is determined that the impedance increase value ΔZ is equal to or greater than the threshold value ΔZth2 (satisfying ΔZ ≧ ΔZth2) (step S203: Y), the control unit 33 uses the control signal CTL2 described above to use the liquid L. (Step S204). Specifically, the control unit 33 gives an instruction so that the flow rate of the liquid L flowing out from the irrigation mechanism in the ablation catheter 1 increases to, for example, the upper limit value Lmax set in step S200. Further, the control unit 33 may instruct the flow rate of the liquid L to increase by, for example, a preset flow rate increase amount ΔL. After that, the process returns to step S110 described above, and after the past value (Zp) corresponding to the minimum value described above in impedance Z is reset, the process returns to step S105 described above.
 以上で、図5に示した一連の処理(本変形例のアブレーションの処理動作例)が、終了となる。 This completes the series of processes shown in FIG. 5 (example of ablation processing operation in this modified example).
[作用・効果]
 このようにして本変形例では、上記実施の形態で説明した作用および効果に加え、例えば、以下のような作用および効果が得られる。
[Action / Effect]
In this way, in this modification, in addition to the actions and effects described in the above-described embodiment, for example, the following actions and effects can be obtained.
 まず、本変形例では、灌注機構を用いたアブレーションの際に、この灌注機構から流し出される液体Lの流量が上限値Lmax未満である場合には、インピーダンス上昇値ΔZが閾値ΔZth2以上となった場合に、制御部33によって液体Lの流量を増加させるようにしたので、以下のようになる。すなわち、上記した所定の場合には液体Lの流量が増加させられることで、アブレーションの際におけるインピーダンスZの過剰な上昇が防止され、前述したアブレーションの対象に対して、電力Poutが更に効率良く供給されるようになる。その結果、本変形例では、アブレーションの際の効率も、更に向上させることが可能となる。 First, in this modification, when the flow rate of the liquid L flowing out from the irrigation mechanism is less than the upper limit value Lmax during ablation using the irrigation mechanism, the impedance increase value ΔZ becomes the threshold value ΔZth2 or more. In this case, the control unit 33 increases the flow rate of the liquid L, so that the result is as follows. That is, in the above-mentioned predetermined case, the flow rate of the liquid L is increased to prevent an excessive increase in the impedance Z at the time of ablation, and the electric power Pout is more efficiently supplied to the target of the ablation described above. Will be done. As a result, in this modified example, the efficiency at the time of ablation can be further improved.
 また、本変形例では、灌注機構を用いたアブレーションの際に、液体Lの流量が上限値Lmaxに到達した場合には、インピーダンス上昇値ΔZが閾値ΔZth1(>ΔZth2)以上となった場合に、制御部33によって電力Poutの供給値を低下させるようにしたので、以下のようになる。すなわち、液体Lの流量が上限値Lmaxに送達した場合には、液体Lの流量を増加させる代わりに、電力Poutの供給値を低下させることで、アブレーションの際におけるインピーダンスZの過剰な上昇が、防止されることになる。これにより、前述したブレーションの対象に対して、電力Poutがより一層効率良く供給される結果、アブレーションの際の効率も、より一層向上させることが可能となる。 Further, in this modification, when the flow rate of the liquid L reaches the upper limit value Lmax during ablation using the irrigation mechanism, the impedance increase value ΔZ becomes the threshold value ΔZth1 (> ΔZth2) or more. Since the control unit 33 reduces the supply value of the power Pout, the result is as follows. That is, when the flow rate of the liquid L reaches the upper limit value Lmax, instead of increasing the flow rate of the liquid L, the supply value of the electric power Pout is lowered, so that the impedance Z excessively rises at the time of ablation. It will be prevented. As a result, the electric power Pout is more efficiently supplied to the target of the above-mentioned vibration, and as a result, the efficiency at the time of ablation can be further improved.
 更に、本変形例では、液体Lの流量を増加させる指示(ステップS204)を行ってから所定の待機時間Δt2の経過後(ステップS106;N)に、制御部33において、インピーダンス上昇値ΔZが閾値ΔZth2以上になっているのか否かについての次回の判定処理(次回のステップS203の処理)を開始するようにしたので、以下のようになる。すなわち、液体Lの流量が増加したことによるインピーダンスZへの影響は、一般に、患部90の種類(臓器の種類等)に応じて異なることから、液体Lの流量に応じて上記した待機時間Δt2を適切に設定することで、アブレーションの際の効率を、より一層向上させることが可能となる。 Further, in this modification, the impedance increase value ΔZ is the threshold value in the control unit 33 after the elapse of the predetermined waiting time Δt2 (step S106; N) after the instruction to increase the flow rate of the liquid L (step S204) is given. Since the next determination process (the process of the next step S203) regarding whether or not the value is ΔZth2 or more is started, the result is as follows. That is, since the effect of the increase in the flow rate of the liquid L on the impedance Z generally differs depending on the type of the affected area 90 (type of organ, etc.), the above-mentioned waiting time Δt2 is set according to the flow rate of the liquid L. By setting appropriately, it is possible to further improve the efficiency at the time of ablation.
 加えて、本変形例では、前述した液体供給制御機能を有する制御部が、電源装置3内に(制御部33の一機能として)設けられているようにしたので、以下のようになる。すなわち、電力Poutの供給動作を制御する機能と、液体Lの供給動作を制御する機能との双方が、電源装置3内(制御部33)に設けられていることから、電力Poutおよび液体Lの供給動作がそれぞれ、より効率的に実行できるようになる。これにより、前述したアブレーションの対象に対して、電力Poutがより一層効率良く供給される結果、アブレーションの際の効率も、より一層向上させることが可能となる。 In addition, in this modification, the control unit having the liquid supply control function described above is provided in the power supply device 3 (as one function of the control unit 33), so that the result is as follows. That is, since both the function of controlling the supply operation of the electric power Pout and the function of controlling the supply operation of the liquid L are provided in the power supply device 3 (control unit 33), the electric power Pout and the liquid L Each supply operation can be performed more efficiently. As a result, the electric power Pout is more efficiently supplied to the target of the ablation described above, and as a result, the efficiency at the time of ablation can be further improved.
<3.その他の変形例>
 以上、実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等には限定されず、種々の変形が可能である。
<3. Other variants>
Although the present invention has been described above with reference to embodiments and modifications, the present invention is not limited to these embodiments and the like, and various modifications are possible.
 例えば、上記実施の形態等において説明した各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態等では、アブレーションカテーテル1の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。具体的には、例えばカテーテルシャフト11の内部に、首振り部材として、撓み方向に変形可能な板バネが設けられているようにしてもよい。また、カテーテルシャフト11における各電極の構成(配置や形状、個数等)は、上記実施の形態で挙げたものには限られない。 For example, the material and the like of each member described in the above-described embodiment and the like are not limited, and other materials may be used. Further, in the above-described embodiment and the like, the configuration of the ablation catheter 1 has been specifically described, but it is not always necessary to include all the members, and other members may be further provided. Specifically, for example, a leaf spring that can be deformed in the bending direction may be provided as a swinging member inside the catheter shaft 11. Further, the configuration (arrangement, shape, number, etc.) of each electrode on the catheter shaft 11 is not limited to that described in the above embodiment.
 また、上記実施の形態等では、ハンドル12(ハンドル本体121および回転操作部122)の構成についても具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。 Further, in the above-described embodiment and the like, the configuration of the handle 12 (handle main body 121 and rotation operation unit 122) has been specifically described and described, but it is not always necessary to include all the members, and other members may be provided. Further may be provided.
 更に、カテーテルシャフト11における先端付近の形状の態様は、上記実施の形態等で説明したものには限られない。具体的には、上記実施の形態等では、カテーテルシャフト11における先端付近の形状が回転板41の操作に応じて両方向に変化するタイプ(バイディレクションタイプ)のアブレーションカテーテルを例に挙げて説明したが、これには限られない。すなわち、例えば、カテーテルシャフト11における先端付近の形状が、回転板41の操作に応じて片方向に変化するタイプ(シングルディレクションタイプ)のアブレーションカテーテルであってもよい。この場合、前述した操作用ワイヤを、1本(1つ)だけ設けることとなる。また、カテーテルシャフト11における先端付近の形状が、固定となっているタイプのアブレーションカテーテルであってもよい。この場合には、前述した操作用ワイヤや回転板41等が、不要となる。 Further, the shape of the catheter shaft 11 near the tip is not limited to that described in the above embodiment. Specifically, in the above-described embodiment and the like, an ablation catheter of a type (bidirection type) in which the shape near the tip of the catheter shaft 11 changes in both directions according to the operation of the rotating plate 41 has been described as an example. , Not limited to this. That is, for example, an ablation catheter of a type (single direction type) in which the shape near the tip of the catheter shaft 11 changes in one direction according to the operation of the rotating plate 41 may be used. In this case, only one (one) operation wire described above is provided. Further, the shape of the catheter shaft 11 near the tip may be a fixed type ablation catheter. In this case, the above-mentioned operation wire, rotating plate 41, and the like are not required.
 加えて、上記実施の形態等で説明した各種パラメータの値や範囲、大小関係等についても、上記実施の形態等で説明したものには限られず、他の値や範囲、大小関係等であってもよい。 In addition, the values, ranges, magnitude relationships, etc. of the various parameters described in the above-described embodiment are not limited to those described in the above-described embodiments, but are other values, ranges, magnitude relationships, etc. May be good.
 また、上記実施の形態等では、液体供給装置2および電源装置3のブロック構成を具体的に挙げて説明したが、上記実施の形態等で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。更に、アブレーションシステム5全体としても、上記実施の形態等で説明した各装置に加えて、他の装置を更に備えていてもよい。具体的には、上記実施の形態等では、本発明における「第2の制御部」が、電源装置3内に(制御部33の一機能として)設けられている場合を例に挙げて説明したが、この例には限られない。すなわち、例えば、この「第2の制御部」が、電源装置3の外部(例えば、液体供給装置2内や、電源装置3および液体供給装置2とは異なる別の装置内など)に設けられているようにしてもよい。また、この「第2の制御部」が電源装置3の外部に設けられている場合には、例えば、電源装置3内に設けられている入力部31についても、電源装置3の外部(「第2の制御部」が設けられている装置内など)に設けられているようにしてもよい。なお、例えば、この「第2の制御部」を液体供給装置2内に設ける場合には、本発明における「第1の制御部」に対応する制御部33は、前述したインピーダンスZなどの情報を、そのまま、電源装置3の外部に位置する「第2の制御部」に対して出力し、この「第2の制御部」において各種の演算処理や制御処理等を行うこととなる。 Further, in the above-described embodiment and the like, the block configurations of the liquid supply device 2 and the power supply device 3 have been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like. Other blocks may be further provided. Further, the ablation system 5 as a whole may further include other devices in addition to the devices described in the above-described embodiment and the like. Specifically, in the above-described embodiment and the like, the case where the "second control unit" in the present invention is provided in the power supply device 3 (as a function of the control unit 33) has been described as an example. However, it is not limited to this example. That is, for example, this "second control unit" is provided outside the power supply device 3 (for example, inside the liquid supply device 2, or inside another device different from the power supply device 3 and the liquid supply device 2). You may want to be there. When the "second control unit" is provided outside the power supply device 3, for example, the input unit 31 provided inside the power supply device 3 is also outside the power supply device 3 ("second control unit"). It may be provided in a device provided with "2 control units"). For example, when the "second control unit" is provided in the liquid supply device 2, the control unit 33 corresponding to the "first control unit" in the present invention provides information such as the impedance Z described above. As it is, it is output to the "second control unit" located outside the power supply device 3, and various arithmetic processes, control processes, and the like are performed in this "second control unit".
 更に、上記実施の形態等では、電力供給制御機能および液体供給制御機能を含む制御部33における制御動作(アブレーションの処理動作)について、具体的に説明した。しかしながら、これらの電力供給制御機能および液体供給制御機能等における制御手法(アブレーションの手法)については、上記実施の形態等で挙げた手法には限られない。具体的には、例えば前述したように、電力Poutが最大値Pmaxへと到達する前にインピーダンスZが上昇に転じるような場合を含む、いかなる場合においても、インピーダンス上昇値ΔZが閾値ΔZth1を超えた場合には、例えば、以下のようにすればよい。すなわち、実施の形態等で説明した各種手法にて、電力Poutが低下したり、液体Lの流量が増加したりするように制御すると共に、電力Poutが最大値Pmaxへと到達する前でも、電力Poutの上昇は停止させるようにすればよい。また、例えば、このような電力Poutの低下制御や、液体Lの流量の増加制御が開始した後は、電力Poutの上昇は停止させるようにすればよい。 Further, in the above-described embodiment and the like, the control operation (ablation processing operation) in the control unit 33 including the power supply control function and the liquid supply control function has been specifically described. However, the control method (ablation method) in the power supply control function, the liquid supply control function, and the like is not limited to the methods described in the above-described embodiment and the like. Specifically, for example, as described above, the impedance rise value ΔZ exceeds the threshold value ΔZth1 in any case, including the case where the impedance Z starts to rise before the power Pout reaches the maximum value Pmax. In that case, for example, the following may be performed. That is, by various methods described in the embodiments and the like, the electric power Pout is controlled to decrease and the flow rate of the liquid L is increased, and the electric power Pout reaches the maximum value Pmax even before the electric power Pout reaches the maximum value Pmax. The rise of Pout may be stopped. Further, for example, after the control of the decrease of the electric power Pout and the control of the increase of the flow rate of the liquid L are started, the increase of the electric power Pout may be stopped.
 また、上記実施の形態等で説明した一連の処理は、ハードウェア(回路)で行われるようにしてもよいし、ソフトウェア(プログラム)で行われるようにしてもよい。ソフトウェアで行われるようにした場合、そのソフトウェアは、各機能をコンピュータにより実行させるためのプログラム群で構成される。各プログラムは、例えば、上記コンピュータに予め組み込まれて用いられてもよいし、ネットワークや記録媒体から上記コンピュータにインストールして用いられてもよい。 Further, the series of processes described in the above-described embodiment or the like may be performed by hardware (circuit) or software (program). When it is done by software, the software is composed of a group of programs for executing each function by a computer. Each program may be used by being preliminarily incorporated in the computer, for example, or may be installed and used in the computer from a network or a recording medium.
 また、上記実施の形態等では、アブレーションの対象が、患者体内における腫瘍を有する患部である場合を例に挙げて説明したが、この例には限られない。すなわち、アブレーションの対象が、患者体内の他の部位(臓器や体組織など)である場合についても、本発明のカテーテルシステムを適用することが可能である。 Further, in the above-described embodiment and the like, the case where the target of ablation is an affected part having a tumor in the patient's body has been described as an example, but the ablation is not limited to this example. That is, the catheter system of the present invention can be applied even when the target of ablation is another part (organ, body tissue, etc.) in the patient's body.
 更に、これまでに説明した各種の例を、任意の組み合わせで適用させるようにしてもよい。 Furthermore, the various examples described so far may be applied in any combination.

Claims (8)

  1.  電極を有するアブレーションカテーテルと、
     前記電極と対極板との間にアブレーションを行うための電力を供給する電源部と、前記電源部における前記電力の供給動作を制御する第1の制御部と、を有する電源装置と
     を備え、
     前記第1の制御部は、
     前記アブレーションの際に、前記電極と前記対極板との間のインピーダンスにおける単位時間当たりの上昇値が、第1の閾値以上となった場合には、
     前記電力の供給値を低下させる
     アブレーションシステム。
    With an ablation catheter with electrodes,
    A power supply device including a power supply unit for supplying electric power for ablation between the electrode and the counter electrode plate and a first control unit for controlling the power supply operation in the power supply unit is provided.
    The first control unit
    When the increase value per unit time in the impedance between the electrode and the counter electrode plate becomes equal to or higher than the first threshold value during the ablation,
    An ablation system that reduces the power supply value.
  2.  前記第1の制御部は、
     前記電力の供給値を低下させる指示を行ってから、第1の待機時間の経過後に、
     前記インピーダンスにおける単位時間当たりの上昇値が前記第1の閾値以上になっているのか否かについての、次回の判定処理を開始する
     請求項1に記載のアブレーションシステム。
    The first control unit
    After the first standby time has elapsed since the instruction to lower the power supply value has been given,
    The ablation system according to claim 1, wherein the next determination process for whether or not the increase value of the impedance per unit time is equal to or higher than the first threshold value is started.
  3.  前記アブレーションカテーテルが、所定の液体を流し出す灌注機構を有しており、
     前記アブレーションカテーテルに対して前記液体を供給する液体供給装置と、
     前記液体供給装置における前記液体の供給動作を制御する第2の制御部と
     を更に備え、
     前記灌注機構を用いた前記アブレーションの際に、
     前記灌注機構から流し出される前記液体の流量が、上限値未満である場合には、
     前記第2の制御部は、
     前記インピーダンスにおける単位時間当たりの上昇値が、第2の閾値以上となった場合に、
     前記液体の流量を増加させる
     請求項1または請求項2に記載のアブレーションシステム。
    The ablation catheter has an irrigation mechanism for flushing a predetermined liquid.
    A liquid supply device that supplies the liquid to the ablation catheter,
    Further, a second control unit for controlling the liquid supply operation in the liquid supply device is provided.
    During the ablation using the irrigation mechanism
    When the flow rate of the liquid discharged from the irrigation mechanism is less than the upper limit value,
    The second control unit
    When the increase value per unit time in the impedance becomes equal to or higher than the second threshold value,
    The ablation system according to claim 1 or 2, wherein the flow rate of the liquid is increased.
  4.  前記灌注機構を用いた前記アブレーションの際に、
     前記液体の流量が前記上限値に到達した場合には、
     前記第1の制御部は、
     前記インピーダンスにおける単位時間当たりの上昇値が、前記第2の閾値よりも大きな値に設定されている、前記第1の閾値以上となった場合に、
     前記電力の供給値を低下させる
     請求項3に記載のアブレーションシステム。
    During the ablation using the irrigation mechanism
    When the flow rate of the liquid reaches the upper limit value,
    The first control unit
    When the increase value per unit time in the impedance becomes equal to or higher than the first threshold value set to a value larger than the second threshold value.
    The ablation system according to claim 3, wherein the power supply value is reduced.
  5.  前記第2の制御部は、
     前記液体の流量を増加させる指示を行ってから、第2の待機時間の経過後に、
     前記インピーダンスにおける単位時間当たりの上昇値が前記第2の閾値以上になっているのか否かについての、次回の判定処理を開始する
     請求項3または請求項4に記載のアブレーションシステム。
    The second control unit
    After the second standby time has elapsed since the instruction to increase the flow rate of the liquid was given,
    The ablation system according to claim 3 or 4, wherein the next determination process for whether or not the increase value per unit time in the impedance is equal to or higher than the second threshold value is started.
  6.  前記第2の制御部が、前記電源装置内に設けられている
     請求項3ないし請求項5のいずれか1項に記載のアブレーションシステム。
    The ablation system according to any one of claims 3 to 5, wherein the second control unit is provided in the power supply device.
  7.  前記第1の制御部は、
     前記アブレーションの開始時から現時点までの、前記電力の供給値の積算値が、第3の閾値以上となった場合には、
     前記電力の供給を自動的に停止させることにより、前記アブレーションを自動的に終了させる
     請求項1ないし請求項6のいずれか1項に記載のアブレーションシステム。
    The first control unit
    When the integrated value of the power supply value from the start of the ablation to the present time is equal to or higher than the third threshold value,
    The ablation system according to any one of claims 1 to 6, wherein the ablation is automatically terminated by automatically stopping the supply of electric power.
  8.  前記アブレーションの対象が、患者体内における腫瘍を有する患部である
     請求項1ないし請求項7のいずれか1項に記載のアブレーションシステム。
    The ablation system according to any one of claims 1 to 7, wherein the target of the ablation is an affected area having a tumor in the patient's body.
PCT/JP2020/011876 2020-03-18 2020-03-18 Ablation system WO2021186599A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/011876 WO2021186599A1 (en) 2020-03-18 2020-03-18 Ablation system
JP2022508691A JP7352011B2 (en) 2020-03-18 2020-03-18 Ablation control system
TW110108850A TW202139936A (en) 2020-03-18 2021-03-12 Ablation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/011876 WO2021186599A1 (en) 2020-03-18 2020-03-18 Ablation system

Publications (1)

Publication Number Publication Date
WO2021186599A1 true WO2021186599A1 (en) 2021-09-23

Family

ID=77771002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/011876 WO2021186599A1 (en) 2020-03-18 2020-03-18 Ablation system

Country Status (3)

Country Link
JP (1) JP7352011B2 (en)
TW (1) TW202139936A (en)
WO (1) WO2021186599A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000107197A (en) * 1998-09-30 2000-04-18 Olympus Optical Co Ltd Electric operating apparatus
JP2004008583A (en) * 2002-06-07 2004-01-15 Aloka Co Ltd Electrosurgical instrument
US20040092926A1 (en) * 1998-07-07 2004-05-13 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
JP2013544133A (en) * 2010-10-25 2013-12-12 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ Catheter apparatus having a multi-electrode array for renal neuromodulation and related systems and methods
WO2016076365A1 (en) * 2014-11-14 2016-05-19 オリンパス株式会社 High-frequency control unit and high-frequency treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040092926A1 (en) * 1998-07-07 2004-05-13 Medtronic, Inc. Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue
JP2000107197A (en) * 1998-09-30 2000-04-18 Olympus Optical Co Ltd Electric operating apparatus
JP2004008583A (en) * 2002-06-07 2004-01-15 Aloka Co Ltd Electrosurgical instrument
JP2013544133A (en) * 2010-10-25 2013-12-12 メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ Catheter apparatus having a multi-electrode array for renal neuromodulation and related systems and methods
WO2016076365A1 (en) * 2014-11-14 2016-05-19 オリンパス株式会社 High-frequency control unit and high-frequency treatment system

Also Published As

Publication number Publication date
JP7352011B2 (en) 2023-09-27
TW202139936A (en) 2021-11-01
JPWO2021186599A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
US5971980A (en) System for controlling the energy delivered to a patient for ablation
JP6074051B2 (en) Intravascular neuromodulation system and medical device
EP2145596B1 (en) Catheter with perforated tip
JP4890674B2 (en) Sheath used for ultrasonic elements
CA2723038C (en) Catheter with helical electrode
CN107019554B (en) Temperature controlled short duration ablation
CN106994043B (en) Temperature controlled short duration ablation
CN106994044B (en) Temperature controlled short duration ablation
JP2012517864A (en) Apparatus and method for supplying fluid to an electrophysiological device
CN107019553B (en) Temperature controlled short duration ablation
JP6853145B2 (en) Ablation system
CN113081239B (en) Cage electrode catheter and ablation device comprising same
CN114305665A (en) Split-capsule electrode catheter and ablation device comprising same
JP5737765B2 (en) Catheter system
WO2021186599A1 (en) Ablation system
JP5757586B2 (en) Catheter system
CN107440785A (en) A kind of absorption type ablation catheter and ablating device
EP3733101A1 (en) Temperature controlled short duration ablation with resistive heating
WO2020174650A1 (en) Catheter system
WO2020174651A1 (en) Catheter system
JP7414860B2 (en) Electromedical device control system and method for controlling the electromedical device system
GB2347084A (en) Ablation lead with screw tip
JP7455610B2 (en) Energy-guided radiofrequency (RF) ablation
JP6608260B2 (en) Catheter system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508691

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926217

Country of ref document: EP

Kind code of ref document: A1