WO2021185288A1 - 电机控制***和车辆 - Google Patents

电机控制***和车辆 Download PDF

Info

Publication number
WO2021185288A1
WO2021185288A1 PCT/CN2021/081357 CN2021081357W WO2021185288A1 WO 2021185288 A1 WO2021185288 A1 WO 2021185288A1 CN 2021081357 W CN2021081357 W CN 2021081357W WO 2021185288 A1 WO2021185288 A1 WO 2021185288A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
unit
drive
signal
motor control
Prior art date
Application number
PCT/CN2021/081357
Other languages
English (en)
French (fr)
Inventor
徐鲁辉
喻轶龙
杜智勇
齐阿喜
杨广明
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP21771816.2A priority Critical patent/EP4113772A4/en
Priority to JP2022555927A priority patent/JP2023518401A/ja
Priority to KR1020227033818A priority patent/KR20220146613A/ko
Publication of WO2021185288A1 publication Critical patent/WO2021185288A1/zh
Priority to US17/943,878 priority patent/US20230006437A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0822Integrated protection, motor control centres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • H02H7/0844Fail safe control, e.g. by comparing control signal and controlled current, isolating motor on commutation error
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/09Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against over-voltage; against reduction of voltage; against phase interruption
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/021Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order
    • H02H3/023Details concerning the disconnection itself, e.g. at a particular instant, particularly at zero value of current, disconnection in a predetermined order by short-circuiting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to the field of vehicle technology, in particular to a motor control system and a vehicle including the motor control system.
  • the power source of pure electric vehicles is basically motor driven, and hybrid vehicles also have motor drive systems.
  • Motor drive control not only considers functional performance in the vehicle application field, but also considers safety and reliability to avoid unexpected conditions.
  • In the motor controller design process there are generally many schemes that consider function and performance, and the safety design of the motor controller is not sufficient.
  • the present invention aims to solve one of the technical problems in the related art at least to a certain extent.
  • an object of the present invention is to provide a motor control system, which can improve the safety of motor control.
  • the motor control system of the embodiment of the first aspect of the present invention includes: a main control unit, a power supply unit, and a drive unit, wherein the main control unit is used to obtain motor sampling data and power supply from the drive unit Signal, generating a motor control signal based on the sampled data, and outputting a safety enable signal when it is determined that the motor drive is abnormal based on the sampled data or the power supply of the drive unit is abnormal based on the power supply signal; the power supply unit uses When supplying power to the main control unit and monitoring the state of the main control unit, when the main control unit is abnormal or the main control unit is abnormal, a safety cut-off signal is output; the driving unit is used to drive the motor according to the motor control signal, and Switch to a safe path when receiving any one of the safety enable signal and the safety cut-off signal.
  • the motor drive and the power supply of the drive unit are monitored through the main control unit, and the state of the main control unit is monitored through the power supply unit, that is, multiple monitoring mechanisms are set up, and the drive unit is receiving When either the safety cut-off signal or the safety enable signal is signaled, it will switch to the safe path, that is, multiple safe cut-off paths are added.
  • the motor When the motor is driven abnormally, the motor can be kept in a safe state, thereby improving the safety level of motor control.
  • the vehicle of the embodiment of the second aspect of the present invention includes a motor and the motor control system, and the motor control system is used to drive and control the motor.
  • the safety level of motor control can be improved, and the safety can be improved.
  • Fig. 1 is a schematic diagram of a topological structure of a motor control system in the prior art
  • Figure 2 is a schematic diagram of the topology of a motor control system according to an embodiment of the present invention.
  • Fig. 3 is a flowchart of controlling the drive unit to switch to a safe path according to an embodiment of the present invention
  • Figure 1 is a schematic diagram of a typical topology of a motor drive system in the prior art.
  • the motor control system needs to consider system integration reliability and system safety.
  • FIG. 2 is a schematic diagram of the topology structure of a motor control system according to an embodiment of the present invention.
  • the motor control system 1 of the embodiment of the present invention includes a main control unit 10, a power supply unit 20 and a driving unit 30.
  • step S2 judge whether it meets ⁇ motor speed-preset speed ⁇ set speed difference, or ⁇ bus voltage-preset voltage ⁇ set voltage difference. If yes, go to step S3, otherwise go to step S4.
  • step S4 judge whether the fault signal is a three-phase upper bridge arm circuit, if yes, go to step S5, otherwise go to step S6.
  • the main control unit 10 monitors the power supply of the drive unit 30.
  • the main control unit 10 controls all the six drive power units of the drive unit 30 to turn off, so that the motor enters a safe state.
  • the main control unit 10 may adopt multi-chip processing or multi-core processing to realize the monitoring of signals and control targets and various diagnoses, and provide more comprehensive and reliable control of the motor.
  • the main control unit 10 includes multiple control subunits, and the multiple control subunits are multiple control cores or multiple processing chips.
  • the multiple control subunits include at least a main function subunit 11 and a monitoring subunit 12, where the main function subunit 11 is used to obtain motor sampling data such as three-phase currents Ia, Ib. , Ic, voltage Udc, angle data, and generate a motor control signal according to the motor sampling data.
  • the drive unit 30 can drive the motor according to the motor control signal; specifically, the main function subunit 11 mainly completes torque control and failure Management and other content, such as inputting process data to the monitoring subunit 12 at the same time.
  • the monitoring subunit 12 is used to perform information diagnosis and generate diagnostic information, and obtain process data of the main function subunit 11 to monitor the state of the main function subunit, that is, to perform control flow monitoring. Specifically, as shown in FIG. 4, the monitoring subunit 12 mainly completes functions such as torque monitoring, fault diagnosis, signal diagnosis, communication diagnosis, and output diagnosis.
  • the sampled data may include motor angle data
  • the multiple control sub-units further include a first co-processing sub-unit 13, which is used to resolve and decode the motor angle data to obtain motor control.
  • the required angle, and the motor angle data is transmitted to the main function subunit 11.
  • the first co-processing subunit 13 mainly completes resolver decoding, outputs the excitation signal exc to the resolver sensor, and then demodulates the sin/cos signal of the resolver sensor to obtain The angle required for motor control.
  • the second co-processing subunit 14 includes a fast protection module 141 and a control signal processing module 142.
  • the fast protection module 141 is used to determine the driving state of the motor according to the sampled data, for example, to determine the drive according to the sampled current, voltage, resolver signal, etc. In the event of a fault, perform rapid shutdown and other processing to make the motor in a safe state when a fault occurs.
  • the control signal processing module 142 is used to take the motor control signal of the main function subunit 11 as the final motor control signal when the motor is driving normally, and control the operation of the motor according to the motor control signal PWM0 of the main function subunit 11, for example, output PWM ⁇ 3_T to To the three-phase upper bridge arm circuit, and output PWM ⁇ 3_B to the three-phase lower bridge arm circuit.
  • the motor safety control signal PWM1 of the monitoring subunit 12 is used as the final motor control signal, and the driving unit 30 is further controlled to switch to the safe path according to the sampled data.
  • the fast protection module 141 performs fast shutdown and other processing by sampling the current, voltage, resolver and other fault information obtained, so that the motor is in a safe state when a fault occurs.
  • Control signal processing module 142 synthesis Data_PWM1 and the processing information of the fast protection module 141 process the final output PWM_out waveform, and control the drive unit 30 to switch to a safe path according to the bus voltage sampling or the motor speed in the event of a fault.
  • Fig. 5 is a flowchart of the PWM waveform processing process performed by the control signal processing module 141 according to an embodiment of the present invention, including the following steps.
  • step S12 Diagnose whether there is a motor drive abnormal signal, if yes, go to step S14, otherwise go to step S13.
  • step S17 Determine whether the fault signal is a three-phase upper bridge arm circuit, if yes, go to step S18, otherwise go to step S19.
  • the main control unit 10 monitors the main function subunit 11 through the monitoring subunit 12 by using multiple control cores or multi-processing chips, and controls the main function subunit 11 through the second co-processing subunit 14
  • the function is optimized, that is, the control function is optimized and integrated, which is conducive to improving the safety level.
  • each power unit of the drive unit 30 can be independently powered.
  • the motor control system 1 includes two drive power supplies, and the two drive power supplies are the three-phase power supply of the drive unit 30.
  • the upper bridge arm circuit 31 and the three-phase lower bridge arm circuit are powered by a power supply of 32 Vcc; or, the motor control system 1 includes six drive power sources, and the six 1 drive power sources are the three-phase upper bridge arm circuit and the three-phase drive unit 30 respectively.
  • the six-way drive power unit of the lower bridge arm circuit supplies power. So as to realize the independent power supply of the power supply.
  • the motor control system 1 of the embodiment of the present invention adds a more complete diagnosis mechanism, through multi-layer monitoring processing, while optimizing and integrating the control function, adding a multi-layer power cut-off path to the motor control system 1.
  • the use of an independent power supply system, signal monitoring and control target monitoring, so as to ensure the safety of power output, can make the electronic control system more reliable, can significantly improve the safety level of motor control, and thus ensure the safe operation of the vehicle.
  • Fig. 6 is a block diagram of a vehicle according to an embodiment of the present invention.
  • a vehicle 100 according to an embodiment of the present invention includes a motor 2 and the motor control system 1 of the above embodiment.
  • the motor control system 1 controls the motor 2
  • the structure and safety design of the motor control system 1 can refer to the description of the above embodiment.
  • the safety level of the control of the motor 2 can be improved, and the safety can be improved.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more, unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the “on” or “under” of the first feature on the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the “above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Electric Motors In General (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

一种电机控制***和车辆,其中,该电机控制***(1)包括主控单元(10)、电源单元(20)和驱动单元(30),其中,所述主控单元(10),用于获取电机采样数据和所述驱动单元(30)的供电信号,根据所述采样数据生成电机控制信号,并在根据所述采样数据确定电机驱动异常或者根据所述供电信号确定所述驱动单元(30)供电异常时,输出安全使能信号;所述电源单元(20),用于为所述主控单元(10)供电并监控所述主控单元(10)状态,在自身异常或所述主控单元(10)异常时,输出安全切断信号;所述驱动单元(30),用于根据电机控制信号驱动电机,并在接收到所述安全使能信号和所述安全切断信号中的任一信号时均切换至安全路径。

Description

电机控制***和车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2020年3月17日提交的、发明名称为“电机控制***和车辆”的、中国专利申请号“202010188480.4”的优先权。
技术领域
本发明涉及车辆技术领域,尤其是涉及一种电机控制***和包括该电机控制***的车辆。
背景技术
目前,电动车辆的发展越来越快,纯电动车的动力源基本上都是电机驱动,混动车辆也是存在电机驱动***。电机驱动的控制在车辆应用领域不仅考虑功能性能,更多的考虑安全性和可靠性,避免非预期的状态出现。在电机控制器设计过程中,一般考虑功能和性能的方案较多,对电机控制器的安全性的设计并不充分。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的一个目的在于提出一种电机控制***,该电机控制***可以提高电机控制的安全性。
本发明另一个目的在于提出一种包括所述电机控制***的车辆。
为了达到上述目的,本发明第一方面实施例的电机控制***包括:包括主控单元、电源单元和驱动单元,其中,所述主控单元,用于获取电机采样数据和所述驱动单元的供电信号,根据所述采样数据生成电机控制信号,并在根据所述采样数据确定电机驱动异常或者根据所述供电信号确定所述驱动单元供电异常时,输出安全使能信号;所述电源单元,用于为所述主控单元供电并监控所述主控单元状态,在自身异常或所述主控单元异常时,输出安全切断信号;所述驱动单元,用于根据电机控制信号驱动电机,并在接收到所述安全使能信号和所述安全切断信号中的任一信号时均切换至安全路径。
根据本发明实施例的电机控制***,通过主控单元对电机驱动和驱动单元的供电进行监控,以及通过电源单元对主控单元状态进行监控,即设置多种监控机制,以及驱动单元在接收到安全切断信号和安全使能信号任一信号时,都会切换至安全路径,即增加多条安全切断路径,在电机驱动异常时,可以使得电机处于安全状态,从而可以提高电机控制的安 全等级。
为了达到上述目的,本发明第二方面实施例的车辆,包括电机和所述的电机控制***,所述电机控制***用于对所述电机进行驱动控制。
根据本发明实施例的车辆,通过采用上面实施例的电机控制***,可以提高电机控制的安全等级,提高安全性。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是现有技术的一种电机控制***拓扑结构的示意图;
图2是根据本发明的一个实施例的电机控制***拓扑结构的示意图;
图3是根据本发明的一个实施例的控制驱动单元切换至安全路径的流程图;
图4是根据本发明的一个实施例的主控单元内部结构的示意图;
图5是根据本发明的一个实施例的控制信号处理及控制驱动单元切换至安全路径的流程图;
图6是根据本发明的一个实施例的车辆的框图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
图1是现有技术的一种典型的电机驱动***拓扑结构的示意图。在电动车辆的应用场景中,电机控制***需要考虑***集成可靠性和***安全性,但是,如图1所示的传统方案中,缺少对控制信号的监控、缺少对安全目标的跟踪监控以及缺少设计过程中可靠的关断路径、功能独立性划分不合理等,导致传统的电机控制***在电动车辆上的应用达不到更高的安全等级。
下面参考图2-图5描述根据本发明实施例的电机控制***。
图2是根据本发明的一个实施例的电机控制***拓扑结构的示意图,如图2所示,本发明实施例的电机控制***1包括主控单元10、电源单元20和驱动单元30。
主控单元10用于获取电机采样数据和驱动单元30的供电信号,根据采样数据生成电机 控制信号,并在根据采样数据确定电机驱动异常或者根据供电信号确定驱动单元30供电异常时,输出安全使能信号。
其中,采样数据可以包括电流采样、电压采样和电机角度数据等。主控单元10根据采样数据进行扭矩监控,判断电机是否按照安全目标扭矩运行,如果两者不相符则认为电机驱动异常,则输出安全使能信号例如dis/en_able信号给驱动单元30。以及主控单元10也对驱动单元30的供电进行监控,在供电异常时例如供电过高时,也会发出安全使能信号给驱动单元30。
电源单元20用于为主控单元10供电例如为主控单元10的低压部分提供Vcc,并监控主控单元10状态,电源单元20与主控单元10可以通过SPI(Serial Peripheral Interface,串行外设接口)进行通信。电源单元20在自身异常或主控单元10异常时,输出安全切断信号例如FS_signal给驱动单元30。具体地,如图1所示,电源单元20可以为主控单元10的低压供电提供独立的供电域,同时可以通过信号DS_signal对主控单元10进行监控,如果主控单元10出现故障,电源单元20可通过FS_signal信号发出安全切断信号至驱动单元30。
驱动单元30用于根据电机控制信号驱动电机,并在接收到安全使能信号和安全切断信号中的任一信号时均切换至安全路径。其中,驱动单元30的供电电源部分受主控单元10监控,一旦出现供电异常,主控单元10会切断驱动单元30的供电,同时将驱动单元30切换至安全路径。驱动单元30包括三相上桥臂电路31和三相下桥臂电路32,在切换至安全路径时,可以停止输出驱动信号,即六路功率单元例如IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)关断,或者其中的三相桥臂短路处理,从而,可以在驱动异常时,使得电机处于安全状态。
根据本发明实施例的电机控制***1,通过主控单元10对电机驱动和驱动单元30的供电进行监控,以及通过电源单元20对主控单元10状态进行监控,即设置多种监控机制,以及驱动单元30在接收到安全切断信号和安全使能信号任一信号时,都会切换至安全路径,即增加多条安全切断路径,在电机驱动异常时,可以使得电机处于安全状态,从而可以提高电机控制的安全等级。
在一些实施例中,采样数据可以包括电机转速和母线电压中的至少一种,主控单元10在电机驱动异常时,根据采样数据控制驱动单元30切换至安全路径;其中,在电机转速与预设转速的差值绝对值小于设定转速差值时,或者,在母线电压与预设电压的差值绝对值小于设定电压差值时,控制驱动单元30的六路驱动功率单元全部关断。
或者,在电机转速与预设转速的差值绝对值大于等于设定转速差值时,或者,在母线电压与预设电压的差值绝对值小于等于设定电压差值时,进一步判断是否为驱动单元30的三 相上桥臂电路故障,如果是,则控制三相上桥臂电路31短路,如果否,则控制驱动单元的三相下桥臂电路32短路。
具体地,驱动单元30可以由主控单元10和电源单元20进行控制。在正常控制状态下,主控单元10使能驱动单元30,驱动单元30接受主控单元10的PWM信号,对功率单元即三相上桥臂电路31和三相下桥臂电路32进行驱动。当主控单元10发现异常后,可以发出dis/en_able信号,将驱动单元30切换至安全路径。此时根据母线电压采样或电机转速判断,是进入六路驱动单元可靠关断IGBT还是三相主动短路状态。
如图3所示为根据本发明的一个实施例的主控单元控制驱动单元进入安全路径的流程图,具体包括如下步骤S1-S6。
S1,发送dis/enable信号,进入故障模式。
S2,判断是否满足∣电机转速-预设转速∣<设定转速差值,或者∣母线电压-预设电压∣<设定电压差值。如果是,则进入步骤S3,否则进入步骤S4。
S3,控制驱动单元的六路驱动模块关闭处理,发出报警。
S4,判断故障信号是否为三相上桥臂电路,如果是,进入步骤S5,否则进入步骤S6。
S5,驱动单元的三相下桥臂电路短路,并发出报警。
S6,驱动单元的三相上桥臂电路短路,并发出报警。
同时,主控单元10对驱动单元30的供电进行监控,主控单元10在驱动单元30供电异常时,控制驱动单元30的六路驱动功率单元全部关断,以使得电机进入安全状态。
同时,电源单元20接收主控单元10发送的状态信息例如通过Ds_signal信号对主控单元10进行监控,电源单元20在自身异常或主控单元10异常时,控制驱动单元30的六路驱动功率单元全部关断,从而使得电机进入安全状态。
因此,本发明实施例的电机控制***1,通过主控单元10和电源单元20实现多路监控,并且在驱动异常时,使得电机进入安全状态。
在本发明实施例中,主控单元10可以采用多芯片处理也可以采用多核处理,实现对信号、控制目标的监控以及各种诊断,提供对电机更加全面可靠的控制。在实施例中,主控单元10包括多个控制子单元,多个控制子单元为多个控制核或者多个处理芯片。
进一步地,如图2或图4所示,多个控制子单元至少包括主功能子单元11和监控子单元12,其中,主功能子单元11用于获取电机采样数据例如三相电流Ia、Ib、Ic和电压Udc、角度数据,并根据电机采样数据生成电机控制信号,在正常驱动时,驱动单元30可以根据该电机控制信号驱动电机;具体地,主功能子单元11主要完成扭矩控制、故障管理等内容,例如同时将过程数据输入到监控子单元12。监控子单元12用于进行信息诊断并生成诊断信息,并获取主功能子单元11的过程数据,以监控主功能子单元状态,即进行控制流监控。 具体地,如图4所示,监控子单元12主要完成扭矩监控、故障诊断、信号诊断、通讯诊断、输出诊断等功能。
以主控单元10采用多个控制核为例说明,主控单元10包含至少两个控制核,一个用来负责完成主功能,例如可以称之为主功能核(主功能子单元11),在正常驱动时,主功能核根据采样数据生成电机控制信号,以控制驱动单元30,一个用来负责对控制目标进行监控,例如可以称之为锁步监控核(监控子单元12),该控制核优先具有锁步功能,锁步监控核同时对主功能核中所需的信号进行监控。
在实施例中,采样数据可以包括电机角度数据,多个控制子单元还包括第一协处理子单元13,第一协助处理子单元13用于对电机角度数据进行旋变解码,以获得电机控制所需角度,并将电机角度数据传输给主功能子单元11。具体地,如图2或4所示,第一协处理子单元13主要完成旋变解码,将励磁信号exc输出至旋变传感器,然后将旋变传感器的sin/cos信号进行解调处理,获得电机控制所需的角度。
在实施例中,监控子单元12还用于根据诊断信息、控制使能与否的信息、可使电机处于安全状态的控制信息生成电机安全控制信号;多个控制子单元还包括第二协处理子单元14,第二协处理子单元14用于根据采样数据确定电机驱动状态,并根据主功能子单元11输出的电机控制信号、监控子单元12输出的电机安全控制信号以及电机驱动状态输出最终电机控制信号。
进一步地,第二协处理子单元14包括快速保护模块141和控制信号处理模块142,快速保护模块141用于根据采样数据确定电机驱动状态,例如根据采样的电流、电压、旋变信号等确定驱动故障时,进行快速关断等处理,以使电机在发生故障时处于安全状态。控制信号处理模块142用于在电机驱动正常时,将主功能子单元11的电机控制信号作为最终电机控制信号,根据主功能子单元11的电机控制信号PWM0控制电机运行,例如输出PWM×3_T给到三相上桥臂电路,以及输出PWM×3_B给到三相下桥臂电路。或者,在电机驱动异常时,将监控子单元12的电机安全控制信号PWM1作为最终电机控制信号,并进一步地根据采样数据控制驱动单元30切换至安全路径。
具体地,如图4所示,第二协处理子单元14主要完成最终电机控制信号例如PWM的处理。主功能子单元11通过输入的电流信号、电压信号和位置信号,通过电机控制算法计算获得正常控制所需要的PWM,例如输出
Figure PCTCN2021081357-appb-000001
监控子单元12根据诊断信息、输出的PWM使能与否的信息和可使电机处于安全状态的PWM信息输出PWM1,即在存在故障且使能输出控制信号时,监控子单元12输出安全控制信号,也就是可以使得电机安全运行的Data_PWM1信号。快速保护模块141通过采样获得的电流,电压,旋变等故障信息,进行快速关断等处理,以使电机在发生故障时,处于安全状态。控制信号处理模块142综合
Figure PCTCN2021081357-appb-000002
Data_PWM1和快速保护模块141的处理信息,对最终输出PWM_out波形进行处理,并在故障时根据母线电压采样或电机转速控制驱动单元30切换至安全路径。
如图5所示为根据本发明的一个实施例的控制信号处理模块141进行PWM波形处理过程的流程图,包括以下步骤。
S11,接收到
Figure PCTCN2021081357-appb-000003
Data_PWM1、电流电压快速处理信号。
S12,诊断是否有电机驱动异常信号,如果是,进入步骤S14,否则进入步骤S13。
S13,PWM_out=
Figure PCTCN2021081357-appb-000004
电机正常控制状态。
S14,PWM_out=
Figure PCTCN2021081357-appb-000005
使电机处于安全状态。
S15,判断是否满足∣电机转速-预设转速∣<设定转速差值,或者∣母线电压-预设电压∣<设定电压差值。如果是,则进入步骤S16,否则进入步骤S17。
S16,控制驱动单元的六路驱动模块关闭处理,发出报警。
S17,判断故障信号是否为三相上桥臂电路,如果是,进入步骤S18,否则进入步骤S19。
S18,驱动单元的三相下桥臂电路短路,并发出报警。
S19,驱动单元的三相上桥臂电路短路,并发出报警。
本发明实施例的电机控制***1,主控单元10通过采用多个控制核或多处理芯片,通过监控子单元12对主功能子单元11进行监控,以及通过第二协处理子单元14对控制功能进行优化,即优化和集成了控制功能,利于提高安全等级。
进一步地,如图2所示,在实施例中,驱动单元30的各路功率单元可以进行独立供电,例如电机控制***1包括两个驱动电源,两个驱动电源分别为驱动单元30的三相上桥臂电路31和三相下桥臂电路供电32供电Vcc;或者,电机控制***1包括六个驱动电源,六个1驱动电源分别为1驱动单元30的三相上桥臂电路和三相下桥臂电路的六路驱动功率单元供电。从而实现电源的独立供电。
概括来说,本发明实施例的电机控制***1,增加了更完善的诊断机制,通过多层监控处理,同时优化和集成了控制功能,增加了多层对电机控制***1的动力切断路径,以及采用独立的供电***、对信号的监控和控制目标的监控,从而保证动力输出的安全性,可以使电控***更为可靠,可以明显提高电机控制的安全等级,进而保障车辆的安全运行。
基于上面实施例的电机控制***,下面参照附图描述根据本发明第二方面实施例的车辆。
图6为根据本发明的一个实施例的车辆的框图,如图6所示,本发明实施例的车辆100包括电机2和上面实施例的电机控制***1,电机控制***1对电机2进行控制,以提车辆的安全等级,电机控制***1的结构和安全设计可以参照上面实施例的说明。
根据本发明实施例的车辆100,通过采用上面实施例的电机控制***1,可以提高电机 2控制的安全等级,提高安全性。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种电机控制***,其特征在于,包括主控单元、电源单元和驱动单元,其中,
    所述主控单元,用于获取电机采样数据和所述驱动单元的供电信号,根据所述采样数据生成电机控制信号,并在根据所述采样数据确定电机驱动异常或者根据所述供电信号确定所述驱动单元供电异常时,输出安全使能信号;
    所述电源单元,用于为所述主控单元供电并监控所述主控单元状态,在自身异常或所述主控单元异常时,输出安全切断信号;
    所述驱动单元,用于根据电机控制信号驱动电机,并在接收到所述安全使能信号和所述安全切断信号中的任一信号时切换至安全路径。
  2. 根据权利要求1所述的电机控制***,其特征在于,所述采样数据可以包括电机转速和母线电压中的至少一种,
    所述主控单元在电机驱动异常时,根据采样数据控制驱动单元切换至安全路径,其中,在电机转速与预设转速的差值绝对值小于设定转速差值时,或者,在母线电压与预设电压的差值绝对值小于设定电压差值时,控制驱动单元的六路驱动功率单元全部关断。
  3. 根据权利要求1或2所述的电机控制***,其特征在于,
    所述主控单元在所述驱动单元供电异常时,控制所述驱动单元的六路驱动功率单元全部关断;
    所述电源单元在自身异常或所述主控单元异常时,控制所述驱动单元的六路驱动功率单元全部关断。
  4. 根据权利要求1-3中任一项所述的电机控制***,其特征在于,所述主控单元包括多个控制子单元,多个所述控制子单元为多个控制核或者多个处理芯片。
  5. 根据权利要求4所述的电机控制***,其特征在于,多个所述控制子单元至少包括:
    主功能子单元,用于获取电机采样数据,并根据所述电机采样数据生成所述电机控制信号;
    监控子单元,用于进行信息诊断并生成诊断信息,并获取所述主功能子单元的过程数据,以监控所述主功能子单元状态。
  6. 根据权利要求5所述的电机控制***,其特征在于,
    所述采样数据包括电机角度数据;
    多个所述控制子单元还包括第一协处理子单元,所述第一协助处理子单元用于对所述电机角度数据进行旋变解码,以获得电机控制所需角度。
  7. 根据权利要求6所述的电机控制***,其特征在于,
    所述监控子单元,还用于根据诊断信息、控制使能与否的信息、可使电机处于安全状态的控制信息生成电机安全控制信号;
    多个所述控制子单元还包括第二协处理子单元,所述第二协处理子单元用于根据所述采样数据确定电机驱动状态,并根据所述主功能子单元输出的电机控制信号、所述监控子单元输出的电机安全控制信号以及电机驱动状态输出最终电机控制信号。
  8. 根据权利要求7所述的电机控制***,其特征在于,所述第二协助处理子单元包括:
    快速保护模块,用于根据所述采样数据确定所述电机驱动状态;
    控制信号处理模块,用于在电机驱动正常时,将所述主功能子单元的电机控制信号作为所述最终电机控制信号,根据所述主功能子单元的电机控制信号控制电机运行,或者,在电机驱动异常时,将所述监控子单元的电机安全控制信号作为所述最终电机控制信号,并根据所述采样数据控制所述驱动单元切换至安全路径。
  9. 根据权利要求1-8中任一项所述的电机控制***,其特征在于,
    所述电机控制***包括两个驱动电源,两个所述驱动电源分别为所述驱动单元的三相上桥臂电路和三相下桥臂电路供电;
    或者,所述电机控制***包括六个驱动电源,六个所述驱动电源分别为所述驱动单元的三相上桥臂电路和三相下桥臂电路的六路驱动功率单元供电。
  10. 一种车辆,其特征在于,包括电机和权利要求1-9任一项所述的电机控制***,所述电机控制***用于对所述电机进行驱动控制。
PCT/CN2021/081357 2020-03-17 2021-03-17 电机控制***和车辆 WO2021185288A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21771816.2A EP4113772A4 (en) 2020-03-17 2021-03-17 ENGINE CONTROL SYSTEM AND VEHICLE
JP2022555927A JP2023518401A (ja) 2020-03-17 2021-03-17 モータ制御システム及び車両
KR1020227033818A KR20220146613A (ko) 2020-03-17 2021-03-17 모터 제어 시스템 및 차량
US17/943,878 US20230006437A1 (en) 2020-03-17 2022-09-13 Motor control system and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010188480.4 2020-03-17
CN202010188480.4A CN113422347B (zh) 2020-03-17 2020-03-17 电机控制***和车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/943,878 Continuation US20230006437A1 (en) 2020-03-17 2022-09-13 Motor control system and vehicle

Publications (1)

Publication Number Publication Date
WO2021185288A1 true WO2021185288A1 (zh) 2021-09-23

Family

ID=77711580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081357 WO2021185288A1 (zh) 2020-03-17 2021-03-17 电机控制***和车辆

Country Status (6)

Country Link
US (1) US20230006437A1 (zh)
EP (1) EP4113772A4 (zh)
JP (1) JP2023518401A (zh)
KR (1) KR20220146613A (zh)
CN (1) CN113422347B (zh)
WO (1) WO2021185288A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162071A (zh) * 2021-12-02 2022-03-11 臻驱科技(上海)有限公司 电机控制器的内部供电架构、方法及电动车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114670639B (zh) * 2022-01-05 2024-06-25 北京新能源汽车股份有限公司 一种纯电动汽车主动短路控制架构、控制方法和***

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130170B2 (en) * 2004-02-25 2006-10-31 Siemens Energy & Automation, Inc. System and method for fault contactor detection
CN101483404A (zh) * 2008-01-11 2009-07-15 深圳市迈科盛电源技术有限公司 智能型电机控制器
CN201976054U (zh) * 2010-12-29 2011-09-14 万奥普(北京)石油工程技术开发研究院有限公司 方波和正弦波电机控制***
CN110808571A (zh) * 2019-10-15 2020-02-18 南京越博电驱动***有限公司 电动汽车及其电机控制***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0004062B1 (pt) * 2000-09-08 2015-10-13 Brasil Compressores Sa método de controle de motor elétrico, sistema de controle de motor elétrico e motor elétrico
CN201022185Y (zh) * 2006-12-15 2008-02-13 比亚迪股份有限公司 电机控制器
DE102011081173A1 (de) * 2011-08-18 2013-02-21 Robert Bosch Gmbh Betriebszustandsschaltung für Wechselrichter und Verfahren zum Einstellen von Betriebszuständen eines Wechselrichters
CN103050944B (zh) * 2012-11-02 2015-04-22 深圳市航盛电子股份有限公司 一种电动汽车牵引电机控制器
JP2017169336A (ja) * 2016-03-15 2017-09-21 オムロン株式会社 モータ制御装置
CN106208884B (zh) * 2016-08-31 2018-07-17 南京康尼电子科技有限公司 一种用于伺服驱动器的转矩安全关断***及方法
CN108696226B (zh) * 2018-06-01 2020-07-07 阳光电源股份有限公司 一种电机控制器
JP7398620B2 (ja) * 2018-06-15 2023-12-15 パナソニックIpマネジメント株式会社 遮断回路診断装置
CN209949004U (zh) * 2019-06-04 2020-01-14 苏州汇川联合动力***有限公司 电机驱动***、电机驱动器及电动汽车
CN110356250B (zh) * 2019-07-25 2021-06-29 北京智行者科技有限公司 无人驾驶车辆的电机控制方法和***
CN110768213A (zh) * 2019-11-18 2020-02-07 上海威迈斯电源有限公司 电动汽车电机***三相主动短路的控制电路及控制方法
CN113315091B (zh) * 2020-02-26 2023-07-11 比亚迪股份有限公司 电机控制***和车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7130170B2 (en) * 2004-02-25 2006-10-31 Siemens Energy & Automation, Inc. System and method for fault contactor detection
CN101483404A (zh) * 2008-01-11 2009-07-15 深圳市迈科盛电源技术有限公司 智能型电机控制器
CN201976054U (zh) * 2010-12-29 2011-09-14 万奥普(北京)石油工程技术开发研究院有限公司 方波和正弦波电机控制***
CN110808571A (zh) * 2019-10-15 2020-02-18 南京越博电驱动***有限公司 电动汽车及其电机控制***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162071A (zh) * 2021-12-02 2022-03-11 臻驱科技(上海)有限公司 电机控制器的内部供电架构、方法及电动车辆
CN114162071B (zh) * 2021-12-02 2024-05-24 臻驱科技(上海)有限公司 电机控制器的内部供电架构、方法及电动车辆

Also Published As

Publication number Publication date
EP4113772A1 (en) 2023-01-04
KR20220146613A (ko) 2022-11-01
CN113422347A (zh) 2021-09-21
CN113422347B (zh) 2023-03-14
US20230006437A1 (en) 2023-01-05
JP2023518401A (ja) 2023-05-01
EP4113772A4 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
WO2021185288A1 (zh) 电机控制***和车辆
JP7427809B2 (ja) 冗長電子制御システムおよびデバイス
JP4337884B2 (ja) インバータ制御装置
WO2021170047A1 (zh) 电机控制***和车辆
BRPI0923687A2 (pt) sistema de controle de motor elétrico
US11973368B2 (en) Control apparatus of power converter
JP6026899B2 (ja) モータ制御システム
EP3618259A1 (en) Circuit for actively performing short-circuit and motor controller
WO2021261265A1 (ja) 電力変換器の制御回路
JPH0894695A (ja) 半導体パワースイッチシステム
JP2020078107A (ja) モータ制御装置
JP2023511516A (ja) モータ制御システム及びモータ制御装置
JP2015089292A (ja) 負荷駆動装置
WO2021136279A1 (zh) 电机控制***和具有其的车辆
WO2021182013A1 (ja) 電力変換器の制御回路
JP6686963B2 (ja) 回転電機制御装置及び制御システム
JP7196870B2 (ja) 電力変換器の制御回路
WO2023119410A1 (ja) モータ制御装置および電動パワーステアリング装置
JP7298501B2 (ja) 電力変換器の制御回路
JP2018057224A (ja) モータ駆動装置
JP2020164125A (ja) 電子制御装置、電動パワーステアリング用電子制御装置および電動パワーステアリングシステム
CN117302341A (zh) 电动助力转向***及诊断保护方法
JP2020167831A (ja) モータ制御装置
JP2021129399A (ja) 電力変換器の制御回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555927

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033818

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021771816

Country of ref document: EP

Effective date: 20220930

NENP Non-entry into the national phase

Ref country code: DE