WO2021185211A1 - 数据传输的方法和装置 - Google Patents

数据传输的方法和装置 Download PDF

Info

Publication number
WO2021185211A1
WO2021185211A1 PCT/CN2021/080836 CN2021080836W WO2021185211A1 WO 2021185211 A1 WO2021185211 A1 WO 2021185211A1 CN 2021080836 W CN2021080836 W CN 2021080836W WO 2021185211 A1 WO2021185211 A1 WO 2021185211A1
Authority
WO
WIPO (PCT)
Prior art keywords
link
field
tid
size
service
Prior art date
Application number
PCT/CN2021/080836
Other languages
English (en)
French (fr)
Inventor
淦明
黄国刚
梁丹丹
于健
李云波
郭宇宸
狐梦实
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020227035839A priority Critical patent/KR20220154213A/ko
Priority to EP21771321.3A priority patent/EP4114076A4/en
Priority to BR112022018493A priority patent/BR112022018493A2/pt
Priority to AU2021238794A priority patent/AU2021238794B2/en
Publication of WO2021185211A1 publication Critical patent/WO2021185211A1/zh
Priority to US17/946,924 priority patent/US20230013454A1/en
Priority to AU2024203800A priority patent/AU2024203800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and more specifically, to methods and devices for data transmission.
  • WLAN Wireless local area network
  • the Institute of Electrical and Electronics Engineers (IEEE) 802.11ax standard is based on the existing orthogonal frequency division multiplexing (OFDM) technology.
  • OFDMA orthogonal frequency division multiple access
  • OFDMA technology supports multiple nodes to send and receive data at the same time.
  • a buffer status report (BSR) can be used. The mechanism assists the access point (AP) to perform uplink OFDMA scheduling.
  • EEE 802.11ax The working frequency range of the equipment in IEEE 802.11ax extends from 2.4GHz, 5GHz to 2.4GHz, 5GHz and 6GHz. Due to the increasing demands of users for the quality of communication services, the IEEE 802.11ax standard has been unable to meet user needs in terms of large throughput, low jitter, and low latency. Therefore, there is an urgent need to develop next-generation IEEE technologies, such as EEE 802.11 be standard. Among them, EEE 802.11be standard is called extremely high throughput (EHT) standard. Devices in IEEE 802.11be can reduce service transmission delay through multi-link (ML) cooperation.
  • EHT extremely high throughput
  • This application provides a data transmission method and device, in order to improve the performance of the ML equipment scheduling station by introducing the BSR mechanism in the ML cooperation mode.
  • a data transmission method is provided.
  • the data transmission method can be executed by a multi-link sending end, or it can also be executed by a chip or a circuit provided in the multi-link sending end. Not limited.
  • the foregoing multi-link sending end may be a multi-link station (station, STA) or a multi-link AP or other multi-link devices.
  • the method of data transmission includes:
  • the multi-link sender determines the buffer status report BSR signaling, and the BSR signaling is used by the multi-link receiver to schedule the stations of the multi-link sender on one link or multiple links;
  • the link sending end sends the BSR signaling to the multi-link receiving end on one or more links.
  • the multi-link sending end sends BSR signaling to the multi-link receiving end, so that the multi-link receiving end can connect the multi-link sending end on a link or on the basis of the BSR signaling.
  • the scheduling of sites is performed on multiple links, so as to improve the performance of ML equipment scheduling sites based on the BSR mechanism in the multi-link cooperation mode.
  • the method further includes: the multi-link sending end sends a request message to the multi-link receiving end; the multi-link sending end receives from the multi-link The response message of the receiving end; where the request message and the response message are used to negotiate and establish a mapping relationship between the service type and the link TID-To-Link.
  • the TID-To-Link mapping relationship can also be obtained through negotiation with the multi-link receiver
  • the TID-To-Link mapping relationship can determine the size of service buffers on different links, so that the multi-link sender can more accurately determine the BSR signaling that needs to be sent based on the TID-To-Link mapping relationship.
  • the BSR signaling includes all the queue size fields of the transmission link, the scale factor field of the transmission link, the TID field, the queue size field, and the first scale factor field.
  • all the queue size fields of the transmission link indicate the size of the first buffer service on the link that sends the BSR signaling
  • the scale factor field of the transmission link indicates the unit of the size of the first buffer service
  • the TID field Indicate the reported first service type
  • the queue size field indicates the size of the second cache service corresponding to the first service type
  • the first scale factor field indicates the unit of the second cache service size.
  • the above transmission link indicates the link for transmitting BSR signaling, that is, when the BSR signaling format includes all the queue size fields of the transmission link, the scale factor field of the transmission link, the TID field, the queue size field, and the second
  • the multilink receiving end can schedule the stations on the transmission link for the multilink sending end based on the BSR signaling.
  • the BSR signaling includes one of the first TID field, the first queue size field, the second TID field, the second queue size field, and the second scale factor field.
  • the first TID field indicates the reported second service type
  • the first queue size field indicates the size of the third cache service corresponding to the second service type
  • the second TID field indicates the reported third service type and second queue size.
  • the field indicates the size of the fourth cache service corresponding to the third service type
  • the second scale factor field indicates the unit of the size of the third cache service and the size of the fourth cache service.
  • the multilink receiving end receives the BSR signaling After that, based on the BSR signaling, the multi-link sending end can perform station scheduling on the link corresponding to the first TID and the link corresponding to the second TID.
  • the BSR signaling includes a third TID field, a third queue size field, a third scale factor field, a fourth TID field, and a fourth queue size field.
  • the third TID field indicates the reported fourth service type
  • the third queue size field indicates the size of the fifth cache service corresponding to the fourth service type
  • the fourth TID field indicates the reported fifth service type and fourth queue.
  • the size field indicates the size of the sixth cache service corresponding to the fifth service type
  • the third scale factor field indicates the unit of the fifth cache service size
  • the third scale factor field and the scale factor difference field indicate the sixth The unit of cache business size.
  • the multi-link receiver After receiving the BSR signaling, based on the BSR signaling, the multi-link sending end can perform station scheduling on the link corresponding to the third TID and the link corresponding to the fourth TID.
  • the request message and/or the response message include control information and mapping information
  • the control information is used to determine the establishment of the mapping relationship
  • the mapping information is used to indicate The mapping relationship
  • the above request message for negotiating the establishment of the TID-To-Link mapping relationship and the response message include control information and mapping information, so that the multi-link sender and the multi-link receiver can succeed based on the request message and the response message. Establish the TID-To-Link mapping relationship.
  • the value of the control information includes at least one of the following: 0, 1, 2, 3, 4, 5, or 6, wherein the request message includes the control When the value of the information is 0, it identifies that the sender requests to establish the mapping relationship, and when the value of the control information included in the request message is 1, it identifies that the sender requests the establishment of the mapping relationship and provides the suggested mapping relationship, the request message When the value included in the control information is 2, it indicates that the sender requests to establish the mapping relationship and provides the required mapping relationship.
  • the value of the control information included in the response message is 3, it indicates that the receiver accepts the sender’s sending
  • the value of the request for establishing the mapping relationship and the control information included in the response message is 4, it indicates that the mapping relationship suggested by the receiving end is different from the mapping relationship suggested or required by the sending end, and the response message includes the control information
  • the value of is 5
  • the mapping relationship that identifies the requirement of the receiving end is different from the mapping relationship of the suggestion or requirement of the sending end
  • the value of the control information included in the response message is 6, which indicates that the receiving end refuses the sending end to send The request to establish the mapping relationship.
  • the aforementioned control information may be 1-bit information, which can save signaling overhead.
  • the mapping information includes N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiments of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps, and the multi-link sender And the multi-link receiving end determines the TID-To-Link mapping relationship based on the N link identification bitmaps.
  • the mapping information includes a control field and N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiment of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps and control fields, multi-link
  • the channel sending end and the multi-link receiving end determine the TID-To-Link mapping relationship based on the N link identification bitmaps and control fields.
  • the request message includes a request management frame, and the response message includes a response management frame; or, the request message includes an ADDBA request frame, and the response message includes an ADDBA response frame.
  • the data transmission method provided in the embodiment of the present application is used to negotiate the establishment of the TID-To-Link mapping relationship.
  • the request message and the response message can reuse the signaling in the existing process, thereby saving signaling overhead.
  • the method before the multi-link sending end sends the BSR signaling to the multi-link receiving end on one or more links, the method further includes: The multi-link sending end receives trigger information from the multi-link receiving end, and the trigger information is used to trigger the multi-link sending end to send the BSR signaling on one or more links.
  • the multi-link sending end sends the BSR signaling to the multi-link receiving end, which may be based on the trigger information of the multi-link receiving end to passively decide to send the BSR signaling.
  • the receiving end of the road provides the initiative.
  • the multi-link sending end sending the BSR signaling to the multi-link receiving end on one or more links includes:
  • the multi-link sending end sends a quality of service QoS data packet to the multi-link receiving end, and the media access control MAC header of the QoS data packet carries the BSR signaling.
  • the multi-link sender sends the BSR signaling to the multi-link receiver.
  • the BSR signaling may be carried in the MAC header of the QoS data packet to complete the transmission, providing a concise The way to send BSR signaling.
  • the QoS control field of the QoS data packet further includes buffer status indication information, and the buffer status indication information is used to indicate the size of the buffer service of the multi-link sender .
  • the foregoing QoS data packet carrying BSR signaling may also carry buffer status indication information indicating the size of the buffer service of the sending end, so that the multi-link receiving end can learn the size of the service locally buffered by the multi-link sending end.
  • the buffer status indication information includes 1 bit of the TID field in the QoS control field and 8 bits of the queue size field in the QoS control field.
  • the foregoing buffer status indication information can be implemented by multiplexing the fields in the existing QoS data packet, thereby saving signaling overhead.
  • the data transmission method can be executed by the multi-link receiving end, or it can also be executed by a chip or circuit provided in the multi-link receiving end. This is not limited.
  • the aforementioned second device may be a multi-link STA or a multi-link AP or other multi-link devices.
  • the method of data transmission includes:
  • the multi-link receiving end receives buffer status report BSR signaling from the multi-link sending end on one or more links;
  • the multi-link receiving end schedules the stations of the multi-link sending end on one or more links according to the BSR signaling.
  • the multi-link sending end sends BSR signaling to the multi-link receiving end, so that the multi-link receiving end can connect the multi-link sending end on a link or on the basis of the BSR signaling.
  • the scheduling of sites is performed on multiple links, so as to improve the performance of ML equipment scheduling sites based on the BSR mechanism in the multi-link cooperation mode.
  • the method further includes: the multi-link receiving end receives a request message from the multi-link sending end; the multi-link receiving end sends to the multi-link The terminal sends a response message; where the request message and the response message are used to negotiate and establish a mapping relationship between the service type and the link TID-To-Link.
  • the TID-To-Link mapping relationship can also be obtained through negotiation with the multi-link receiver
  • the TID-To-Link mapping relationship can determine the size of service buffers on different links, so that the multi-link sender can more accurately determine the BSR signaling that needs to be sent based on the TID-To-Link mapping relationship.
  • the BSR signaling includes all the queue size fields of the transmission link, the scale factor field of the transmission link, the TID field, the queue size field, and the first scale factor field.
  • all the queue size fields of the transmission link indicate the size of the first buffer service on the link that sends the BSR signaling
  • the scale factor field of the transmission link indicates the unit of the size of the first buffer service
  • the TID field Indicate the reported first service type
  • the queue size field indicates the size of the second cache service corresponding to the first service type
  • the first scale factor field indicates the unit of the second cache service size.
  • the above transmission link indicates the link for transmitting BSR signaling, that is, when the BSR signaling format includes all the queue size fields of the transmission link, the scale factor field of the transmission link, the TID field, the queue size field, and the second
  • the multilink receiving end after receiving the BSR signaling, can perform site user scheduling on the transmission link for the multilink sending end based on the BSR signaling.
  • the BSR signaling includes one of the first TID field, the first queue size field, the second TID field, the second queue size field, and the second scale factor field.
  • the first TID field indicates the reported second service type
  • the first queue size field indicates the size of the third cache service corresponding to the second service type
  • the second TID field indicates the reported third service type and second queue size.
  • the field indicates the size of the fourth cache service corresponding to the third service type
  • the second scale factor field indicates the unit of the size of the third cache service and the size of the fourth cache service.
  • the multilink receiving end receives the BSR signaling After that, based on the BSR signaling, the multi-link sending end can perform station scheduling on the link corresponding to the first TID and the link corresponding to the second TID.
  • the BSR signaling includes a third TID field, a third queue size field, a third scale factor field, a fourth TID field, and a fourth queue size field.
  • the third TID field indicates the reported fourth service type
  • the third queue size field indicates the size of the fifth cache service corresponding to the fourth service type
  • the fourth TID field indicates the reported fifth service type and fourth queue.
  • the size field indicates the size of the sixth cache service corresponding to the fifth service type
  • the third scale factor field indicates the unit of the fifth cache service size
  • the third scale factor field and the scale factor difference field indicate the sixth The unit of cache business size.
  • the multi-link receiver After receiving the BSR signaling, based on the BSR signaling, the multi-link sending end can perform station scheduling on the link corresponding to the third TID and the link corresponding to the fourth TID.
  • the request message and/or the response message includes control information and mapping information
  • the control information is used to determine the establishment of the mapping relationship
  • the mapping information is used to indicate The mapping relationship
  • the above request message for negotiating the establishment of the TID-To-Link mapping relationship and the response message include control information and mapping information, so that the multi-link sender and the multi-link receiver can succeed based on the request message and the response message. Establish the TID-To-Link mapping relationship.
  • the value of the control information includes at least one of the following: 0, 1, 2, 3, 4, 5, or 6, wherein the request message includes the control When the value of the information is 0, it identifies that the sender requests to establish the mapping relationship, and when the value of the control information included in the request message is 1, it identifies that the sender requests the establishment of the mapping relationship and provides the suggested mapping relationship, the request message When the value included in the control information is 2, it indicates that the sender requests to establish the mapping relationship and provides the required mapping relationship.
  • the value of the control information included in the response message is 3, it indicates that the receiver accepts the sender’s sending
  • the value of the request for establishing the mapping relationship and the control information included in the response message is 4, it indicates that the mapping relationship suggested by the receiving end is different from the mapping relationship suggested or required by the sending end, and the response message includes the control information
  • the value of is 5
  • the mapping relationship that identifies the requirement of the receiving end is different from the mapping relationship of the suggestion or requirement of the sending end
  • the value of the control information included in the response message is 6, which indicates that the receiving end refuses the sending end to send The request to establish the mapping relationship.
  • the aforementioned control information may be 1-bit information, which can save signaling overhead.
  • the mapping information includes N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiments of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps, and the multi-link sender And the multi-link receiving end determines the TID-To-Link mapping relationship based on the N link identification bitmaps.
  • the mapping information includes a control field and N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiment of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps and control fields, multi-link
  • the channel sending end and the multi-link receiving end determine the TID-To-Link mapping relationship based on the N link identification bitmaps and control fields.
  • the request message includes a request management frame, and the response message includes a response management frame; or, the request message includes an ADDBA request frame, and the response message includes an ADDBA response frame.
  • the request message and the response message for negotiating the establishment of the TID-To-Link mapping relationship can reuse the signaling in the existing process, thereby saving signaling overhead.
  • the method before the multi-link receiving end receives the BSR signaling from the multi-link sending end on one or more links, the method further includes:
  • the multi-link receiving end sends trigger information to the multi-link sending end, where the trigger information is used to trigger the multi-link sending end to send the BSR signaling on one or more links.
  • the multi-link sending end sends the BSR signaling to the multi-link receiving end, which may be based on the trigger information of the multi-link receiving end to passively decide to send the BSR signaling.
  • the receiving end of the road provides the initiative.
  • the multi-link receiving end receiving the BSR signaling from the multi-link sending end on one or more links includes:
  • the multi-link receiving end receives the quality of service QoS data packet from the multi-link sending end on one or more links, and the media access control MAC header of the QoS data packet carries the BSR signaling.
  • the multi-link sender sends the BSR signaling to the multi-link receiver.
  • the BSR signaling may be carried in the MAC header of the QoS data packet to complete the transmission, providing a concise The way to send BSR signaling.
  • the QoS control field of the QoS data packet further includes buffer status indication information, and the buffer status indication information is used to indicate the size of the buffer service of the multilink sender .
  • the foregoing QoS data packet carrying BSR signaling may also carry buffer status indication information indicating the size of the buffer service of the sending end, so that the multi-link receiving end can learn the size of the service locally buffered by the multi-link sending end.
  • the buffer status indication information includes 1 bit of the TID field in the QoS control field and 8 bits of the queue size field in the QoS control field.
  • the foregoing buffer status indication information can be implemented by multiplexing the fields in the existing QoS data packet, thereby saving signaling overhead.
  • a data transmission method is provided.
  • the data transmission method can be executed by the multi-link sending end, or it can also be executed by a chip or circuit set in the multi-link sending end. Not limited.
  • the foregoing multi-link sending end may be a multi-link STA or a multi-link AP or other multi-link devices.
  • the method of data transmission includes:
  • the multi-link sending end sends a request message to the multi-link receiving end
  • the multi-link sending end receives the response message from the multi-link receiving end
  • the request message and the response message are used to negotiate and establish a mapping relationship between the service type and the link TID-To-Link.
  • the TID-To-Link mapping relationship can be obtained through negotiation with the multi-link receiver.
  • the TID -To-Link mapping relationship can determine the size of the service buffer on different links, so that the multi-link sender can more accurately determine the BSR signaling that needs to be sent based on the TID-To-Link mapping relationship.
  • the method further includes: the multi-link sending end determines a buffer status report BSR signaling, and the BSR signaling is used to indicate that the multi-link receiving end is Or scheduling of the stations of the multi-link sending end on multiple links; the multi-link sending end sends the BSR signaling to the multi-link receiving end on one or more links.
  • the multi-link sending end sends BSR signaling to the multi-link receiving end, so that the multi-link receiving end can connect the multi-link sending end on a link or on the basis of the BSR signaling.
  • the scheduling of sites is performed on multiple links, so as to improve the performance of ML equipment scheduling sites based on the BSR mechanism in the multi-link cooperation mode.
  • the format of the BSR signaling involved in the third aspect is the same as the format of the BSR signaling involved in the above-mentioned first aspect, and will not be repeated here.
  • the request message and/or the response message include control information and mapping information
  • the control information is used to determine the establishment of the mapping relationship
  • the mapping information is used to indicate The mapping relationship
  • the above request message for negotiating the establishment of the TID-To-Link mapping relationship and the response message include control information and mapping information, so that the multi-link sender and the multi-link receiver can succeed based on the request message and the response message. Establish the TID-To-Link mapping relationship.
  • the mapping information includes N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiments of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps, and the multi-link sender And the multi-link receiving end determines the TID-To-Link mapping relationship based on the N link identification bitmaps.
  • the mapping information includes a control field and N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiment of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps and control fields, multi-link
  • the channel sending end and the multi-link receiving end determine the TID-To-Link mapping relationship based on the N link identification bitmaps and control fields.
  • the request message includes a request management frame, and the response message includes a response management frame; or, the request message includes an ADDBA request frame, and the response message includes an ADDBA response frame.
  • the request message and the response message for negotiating the establishment of the TID-To-Link mapping relationship can reuse the signaling in the existing process, thereby saving signaling overhead.
  • the method before the multilink sender sends the BSR signaling to the multilink receiver on one or more links, the method further includes: The multi-link sending end receives trigger information from the multi-link receiving end, and the trigger information is used to trigger the multi-link sending end to send the BSR signaling on one or more links.
  • the multi-link sending end sends the BSR signaling to the multi-link receiving end, which may be based on the trigger information of the multi-link receiving end to passively decide to send the BSR signaling.
  • the receiving end of the road provides the initiative.
  • the multi-link sending end sending the BSR signaling to the multi-link receiving end on one or more links includes:
  • the multi-link sending end sends a quality of service QoS data packet to the multi-link receiving end, and the media access control MAC header of the QoS data packet carries the BSR signaling.
  • the multi-link sender sends the BSR signaling to the multi-link receiver.
  • the BSR signaling may be carried in the MAC header of the QoS data packet to complete the transmission, providing a concise The way to send BSR signaling.
  • the QoS control field of the QoS data packet further includes buffer status indication information, and the buffer status indication information is used to indicate the size of the buffer service of the multi-link sender .
  • the foregoing QoS data packet carrying BSR signaling may also carry buffer status indication information indicating the size of the buffer service of the sending end, so that the multi-link receiving end can learn the size of the service locally buffered by the multi-link sending end.
  • the buffer status indication information includes 1 bit of the TID field in the QoS control field and 8 bits of the queue size field in the QoS control field.
  • the foregoing buffer status indication information can be implemented by multiplexing the fields in the existing QoS data packet, thereby saving signaling overhead.
  • the data transmission method can be executed by the multi-link receiving end, or it can also be executed by a chip or circuit provided in the multi-link receiving end. This is not limited.
  • the aforementioned second device may be a multi-link STA or a multi-link AP or other multi-link devices.
  • the method of data transmission includes:
  • the multi-link receiving end receives the request message from the multi-link sending end; the multi-link receiving end sends a response message to the multi-link sending end; wherein the request message and the response message are used to negotiate the establishment of the service type and Link TID-To-Link mapping relationship.
  • the TID-To-Link mapping relationship can be obtained through negotiation with the multi-link receiver.
  • the TID -To-Link mapping relationship can determine the size of the service buffer on different links, so that the multi-link sender can more accurately determine the BSR signaling that needs to be sent based on the TID-To-Link mapping relationship.
  • the method further includes: the multi-link receiving end receives buffer status report BSR signaling from the multi-link sending end on one or more links;
  • the multi-link receiving end schedules the stations of the multi-link sending end on one or more links according to the BSR signaling.
  • the multi-link sending end sends BSR signaling to the multi-link receiving end, so that the multi-link receiving end can communicate with the multi-link sending end in one line based on the BSR signaling.
  • Site scheduling is performed on a link or multiple links, so as to improve the performance of the ML equipment scheduling site based on the BSR mechanism in the multi-link cooperation mode.
  • the format of the BSR signaling involved in the fourth aspect is the same as the format of the BSR signaling involved in the second aspect described above, and will not be repeated here.
  • the request message and/or the response message include control information and mapping information
  • the control information is used to determine the establishment of the mapping relationship
  • the mapping information is used to indicate The mapping relationship
  • the above request message for negotiating the establishment of the TID-To-Link mapping relationship and the response message include control information and mapping information, so that the multi-link sender and the multi-link receiver can succeed based on the request message and the response message. Establish the TID-To-Link mapping relationship.
  • the mapping information includes N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiments of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps, and the multi-link sender And the multi-link receiving end determines the TID-To-Link mapping relationship based on the N link identification bitmaps.
  • the mapping information includes a control field and N link identification bitmaps, where N is a positive integer.
  • the data transmission method provided in the embodiment of the present application is used to negotiate the request message for establishing the TID-To-Link mapping relationship and the mapping information included in the response message may be N link identification bitmaps and control fields, multi-link
  • the channel sending end and the multi-link receiving end determine the TID-To-Link mapping relationship based on the N link identification bitmaps and control fields.
  • the request message includes a request management frame, and the response message includes a response management frame; or, the request message includes an ADDBA request frame, and the response message includes an ADDBA response frame.
  • the request message and the response message for negotiating the establishment of the TID-To-Link mapping relationship can reuse the signaling in the existing process, thereby saving signaling overhead.
  • the method before the multi-link receiving end receives the BSR signaling from the multi-link sending end on one or more links, the method further includes:
  • the multi-link receiving end sends trigger information to the multi-link sending end, where the trigger information is used to trigger the multi-link sending end to send the BSR signaling on one or more links.
  • the multi-link sending end sends the BSR signaling to the multi-link receiving end, which may be based on the trigger information of the multi-link receiving end to passively decide to send the BSR signaling.
  • the receiving end of the road provides the initiative.
  • the multi-link receiving end receiving the BSR signaling from the multi-link sending end on one or more links includes:
  • the multi-link receiving end receives the quality of service QoS data packet from the multi-link sending end on one or more links, and the media access control MAC header of the QoS data packet carries the BSR signaling.
  • the multi-link sender sends the BSR signaling to the multi-link receiver.
  • the BSR signaling may be carried in the MAC header of the QoS data packet to complete the transmission, providing a concise The way to send BSR signaling.
  • the QoS control field of the QoS data packet further includes buffer status indication information, and the buffer status indication information is used to indicate the size of the buffer service of the multi-link sender .
  • the foregoing QoS data packet carrying BSR signaling may also carry buffer status indication information indicating the size of the buffer service of the sending end, so that the multi-link receiving end can learn the size of the service locally buffered by the multi-link sending end.
  • the buffer status indication information includes 1 bit of the TID field in the QoS control field and 8 bits of the queue size field in the QoS control field.
  • the foregoing buffer status indication information can be implemented by multiplexing the fields in the existing QoS data packet, thereby saving signaling overhead.
  • a data transmission device is provided, and the device is configured to execute the methods provided in the first aspect and the third aspect.
  • the device may include a module for executing the first aspect and the third aspect, and any one of the possible implementation manners of the first aspect and the third aspect.
  • a data transmission device is provided, and the device is configured to execute the methods provided in the second and fourth aspects above.
  • the apparatus may include a module for executing the second aspect and the fourth aspect, and any one of the possible implementation manners of the second aspect and the fourth aspect.
  • a data transmission device including a processor.
  • the processor is coupled with the memory and can be used to execute instructions in the memory to implement the method in any one of the foregoing first aspect and third aspect, and any one of the first aspect and third aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is an access point.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in an access point.
  • the communication interface may be an input/output interface.
  • the device is a station.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a site.
  • the communication interface may be an input/output interface.
  • the device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a data transmission device including a processor.
  • the processor is coupled to the memory and can be used to execute instructions in the memory to implement the method in any one of the foregoing second aspect and fourth aspect, and any one of the second aspect and fourth aspect.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is an access point.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in an access point.
  • the communication interface may be an input/output interface.
  • the device is a station.
  • the communication interface may be a transceiver, or an input/output interface.
  • the device is a chip configured in a site.
  • the communication interface may be an input/output interface.
  • the device is a chip or a chip system.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • a computer-readable storage medium on which a computer program is stored.
  • the apparatus realizes any of the first and third aspects, as well as any of the first and third aspects.
  • a computer-readable storage medium on which a computer program is stored.
  • the apparatus realizes the second aspect and the fourth aspect, and any of the second and fourth aspects.
  • An eleventh aspect provides a computer program product containing instructions that, when executed by a computer, enable a device to implement the first aspect and the third aspect, and the method provided in any one of the first aspect and the third aspect. .
  • a twelfth aspect provides a computer program product containing instructions that, when executed by a computer, cause the device to implement the second aspect and the fourth aspect, and the method provided in any one of the second and fourth aspects. .
  • a communication system including the aforementioned access point and station.
  • FIG. 1 is a schematic diagram of a communication system applicable to the method of the embodiment of the present application
  • FIG. 2 is an internal structure diagram of an access point applicable to an embodiment of the present application
  • Figure 3 is a diagram of the internal structure of a site suitable for an embodiment of the present application.
  • FIG. 4 is a structural diagram of an AP and STA provided by an embodiment of the present application.
  • FIG. 5 shows a schematic diagram of establishing a link between a multi-link AP and a multi-link STA
  • Figure 6 is a schematic diagram of a format of BSR information
  • FIG. 7 is a schematic flowchart of a data transmission method 700 provided by an embodiment of the present application.
  • FIG. 8 are schematic diagrams of the format of BSR information provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a data packet provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a block confirmation parameter set field
  • FIG. 11 is a schematic diagram of an ADDBA extension element provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 13 is another schematic block diagram of a data transmission device provided by an embodiment of the present application.
  • FIG. 14 is another schematic block diagram of a data transmission device provided by an embodiment of the present application.
  • WLAN communication system global system of mobile communication (GSM) system, code division multiple access (CDMA) system, broadband Code division multiple access (wideband code division multiple access, WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) ) System, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), worldwide interoperability for microwave access (WiMAX) communication system, fifth generation (5th) generation, 5G) system, new radio (NR) or future communication system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband Code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • the following uses a WLAN system as an example to describe the application scenarios of the embodiments of the present application and the methods of the embodiments of the present application.
  • the embodiments of the present application may be applied to WLANs, and the embodiments of the present application may be applicable to any one of the IEEE 802.11 series protocols currently adopted by the WLAN.
  • the WLAN may include one or more basic service sets (BSS), and the network nodes of the BSS include APs and STAs.
  • BSS basic service sets
  • Each BSS may contain one AP and multiple STAs associated with the AP.
  • the sending end and/or receiving end in the embodiments of the present application may be a user station (STA) in a WLAN, and the user station may also be called a system, a subscriber unit, an access terminal, a mobile station, a mobile station, a remote station, a remote terminal, Mobile equipment, user terminals, terminals, wireless communication equipment, user agents, user equipment, or user equipment (UE).
  • the STA can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), and a wireless local area network (such as Wi-Fi) communication-enabled handheld devices, wearable devices, computing devices, or other processing devices connected to wireless modems.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Wi-Fi wireless local area network
  • the sending end and/or receiving end in the embodiment of the present application can also be an AP in a WLAN.
  • the AP can be used to communicate with the access terminal through a wireless local area network, and transmit data from the access terminal to the network side, or transfer data from the access terminal to the network side. The data on the network side is transmitted to the access terminal.
  • the scenario system shown in Figure 1 may be a WLAN system.
  • the WLAN system in Figure 1 may include one or more APs and one or more STAs.
  • Figure 1 uses one AP (the AP shown in Figure 1) and three Take the communication between STAs (STA#1, STA#2, and STA#3 shown in Fig. 1) as an example.
  • the uplink transmission modes between AP and STA include but are not limited to orthogonal frequency-division multiple access (OFDMA) mode, multi-site channel multiple input multiple output (mulit-user multiple input multiple output, MU -MIMO) method, or hybrid transmission method of OFDMA and MU-MIMO, or single-user multiple-input multiple-output (SU-MIMO) technology.
  • OFDMA orthogonal frequency-division multiple access
  • MU -MIMO multi-site channel multiple input multiple output
  • SU-MIMO single-user multiple-input multiple-output
  • AP is also called wireless access point or hotspot.
  • APs are the access points for mobile users to enter the wired network. They are mainly deployed in homes, buildings, and campuses, and they can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a wireless fidelity (wireless fidelity, WiFi) chip.
  • the AP may be a device supporting multiple WLAN standards such as 802.11.
  • Figure 2 shows the internal structure of the AP, where the AP can be multi-antenna or single-antenna.
  • the AP includes a physical layer (PHY) processing circuit and a media access control (media access control, MAC) processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can be used to process physical layer signals. Process the MAC layer signal.
  • STA products are usually terminal products that support the 802.11 series of standards, such as mobile phones, laptops, etc.
  • Figure 3 shows the structure of a single antenna STA.
  • STAs can also be multi-antenna, and can be two The device above the antenna.
  • the STA may include a PHY processing circuit and a MAC processing circuit.
  • the physical layer processing circuit may be used to process physical layer signals
  • the MAC layer processing circuit may be used to process MAC layer signals.
  • Figures 2 and 3 are only simple schematic diagrams, which do not constitute any limitation to the scope of protection of this application.
  • the internal structure can also be in the form shown in Figure 4.
  • Figure 4 is a structural diagram of an AP and STA provided by an embodiment of the present application.
  • the internal structural diagram of the AP and STA shown in Figure 4 wherein the AP and/or STA antennas can be configured with multiple antennas.
  • the internal structure is not limited in this application and will not be repeated here.
  • OFDMA technology is developed on the basis of OFDM technology.
  • OFDMA technology is a combination of OFDM technology and frequency division multiple access (FDMA) technology, which is suitable for multi-user access. Because of its simple implementation and high spectrum utilization, it has been adopted by international standards such as LTE and 5G.
  • OFDMA technology divides the physical channel into multiple resource blocks. Each resource block includes multiple subcarriers (subchannels). Each user can occupy one resource block for data transmission. Therefore, multiple users can transmit in parallel, reducing multi-user competition. Access time overhead and collision probability. In OFDMA technology, because the sub-carriers overlap each other, the spectrum utilization rate is greatly improved.
  • the Federal Communications Commission opened a new free frequency band 5925-7125MHz.
  • the free frequency band is referred to as 6GHz, so I am a IEEE 802.11ax standard worker
  • the frequency range of the equipment in IEEE 802.11ax is expanded from 2.4GHz, 5GHz to 2.4GHz, 5GHz and 6GHz.
  • the IEEE 802.11ax standard Due to the increasing demand of users for communication service quality, the IEEE 802.11ax standard has been unable to meet user needs in terms of large throughput, low jitter, and low latency. Therefore, there is an urgent need to develop next-generation IEEE technologies, such as the IEEE 802.11be standard. .
  • the equipment in the IEEE 802.11 next-generation standard needs to be forward compatible, that is, compatible with the IEEE 802.11ax standard and previous standards, the equipment in the IEEE 802.11 next-generation standard will also support the working frequency band of the equipment in the IEEE 802.11ax, for example, IEEE Devices in the 802.11 next-generation standard will support frequency bands such as 2.4GHz, 5GHz and 6GHz.
  • the channel can be divided according to the newly opened free 6GHz frequency band, so that the supportable bandwidth can exceed the maximum bandwidth supported by 5GHz of 160MHz (such as 320MHz).
  • the peak value can be increased through multiple channel cooperation. Throughput, reduce the delay of service transmission; in addition to the ultra-large bandwidth, the equipment in the IEEE 802.11ax next-generation standard can also increase the peak throughput through the cooperation of multiple frequency bands (2.4GHz, 5GHz and 6GHz).
  • This application will Multi-frequency bands or multi-channels are collectively referred to as multi-link.
  • Multi-link device MLD
  • next-generation IEEE 802.11 standard station device that supports multiple links at the same time is referred to as a multi-link device.
  • two multi-link devices respectively include multiple STAs, where each STA in one multi-link device can establish a link with one STA in the other multi-link device for communication; or,
  • two multi-link devices respectively include multiple APs, where each AP in one multi-link device can establish a link with an AP in another multi-link device for communication; or,
  • one of the two multi-link devices includes multiple STAs, and the other multi-link device includes multiple APs.
  • each STA in one multi-link device can be multiple An AP in the link device establishes a link for communication.
  • the frequency bands that the multi-link device works are all or part of the frequency bands of 1GHz, 2.4GHz, 5GHz, 6GHz and high frequency 60GHz.
  • Figure 5 shows a schematic diagram of a multi-link AP and a multi-link STA establishing a link.
  • the multi-link AP includes N AP entities (AP#1, AP#2, and AP#N as shown in Figure 5)
  • the multi-link STA includes N STA entities (such as In the STA#1, STA#2, and STA#N shown in FIG. 5, the MAC layer can be shared among N STA entities.
  • AP#1 in the multi-link AP and STA#1 in the multi-link STA realize communication through a link (link #1 as shown in FIG. 5);
  • AP#2 in the multi-link AP and STA#1 in the multi-link AP STA#2 in the multi-link STA realizes communication through a link (link #2 as shown in Figure 5);
  • AP#N in the multi-link AP and STA#N in the multi-link STA pass through the link ( Link #N) shown in Fig. 5 realizes communication.
  • each multiple link establishes a different BSS, and only one link can be connected to the BSS to which the link belongs at a time. Communication within the site.
  • the equipment in the IEEE 802.11 next-generation standard can also use multi-link cooperation technology to aggregate discontinuous multiple links to form an ultra-large bandwidth.
  • multi-link cooperation technology can also use multi-link cooperation technology to send data packets of the same service to the same site at the same time.
  • the IEEE 802.11ax next-generation standard needs to define a TID-to-Link mapping mechanism to indicate one or more TIDs (in IEEE In 802.11ax, there are a total of 8 types of services transmitted based on enhanced distributed channel access (EDCA)), which links are respectively mapped for transmission.
  • EDCA enhanced distributed channel access
  • each TID is allowed to be transmitted on any link, but after the multi-link STA and the multi-link AP negotiate the TID-to-Link mapping, each TID is only allowed in the one or Transmission on multiple links.
  • OFDMA technology is introduced in IEEE 802.11ax.
  • STAs need to report uplink services to APs, so as to help APs correctly allocate resource block sizes when scheduling uplink OFMDA transmissions.
  • the uplink service reporting mechanism specified in the existing protocol is the high throughput control of the STA in the MAC header when sending quality of service (QoS) data frames (the QoS data frames involved in this application include QoS null data frames)
  • the (high put control, HT-control) field carries BSR signaling, where the HT-control field is 4 bytes, and the 4 bytes carry 2-bit indication information, which is used to indicate that HT-control is high-throughput (High Throughput, HT) control signaling is still very high throughput (VHT) control signaling, or high efficiency (HE) control signaling.
  • each type of control information is composed of a 4-bit control ID, control information, and 0 or more padding bits.
  • the control identifier is used to identify the type of control signaling, and the control identifier is followed by corresponding control information.
  • This application involves uplink buffer status report control information.
  • the value of the control identifier of the BSR information is 3, and the control information of the BSR information contains 26 bits, as shown in Figure 6, which is a format of BSR signaling.
  • the BSR information includes access category identification (ACI) bitmap (ACI bitmap) field, TID difference (delta TID) field, and high priority ACI (ACI high) Fields, scaling factor (scaling factor) fields, high priority queue size (queue size high) fields, and all queue size (queue size all) fields, among which the queues involved in this application are understood to be buffers.
  • ACI access category identification
  • ACI bitmap ACI bitmap
  • TID difference delta TID
  • ACI bitmap field is used to indicate which access categories (AC) have cache services
  • the ACI bitmap field and the delta TID field are used to jointly indicate how many TIDs have cache services
  • the ACI high field is used to indicate which AC is the one with the highest priority for this cache status report
  • the scaling factor field is used to indicate the unit of the queue size (for example, 16 bytes, 256 bytes, 2048 bytes and 32768 bytes);
  • the queue size high field is used to indicate the size of the cache service on the AC corresponding to the high priority ACI in the cache status report;
  • the queue size all field is used to indicate the total size of the cache services on all ACs in the cache status report.
  • the calculation method of the size of the cache service is:
  • the size of the cache service (the value of the queue size field + 1) * the value of the scale factor field (Equation 1)
  • the value of the queue size field includes the value of the queue size high field mentioned above, or the value of the queue size all field.
  • the calculated value is the size of the cache service on the AC corresponding to the high-priority ACI; when the value of the queue size field in Formula 1 is queue size
  • the calculated value is the total size of the cache service on all ACs.
  • queue size field is equal to 254, it indicates that the size of the corresponding cache service is greater than 254*scale factor, and if the queue size field is equal to 255, it indicates that the size of the corresponding cache service is unknown.
  • the buffer status reporting mechanism of IEEE 802.11ax is based on AC reporting.
  • a multi-link AP cannot judge the business size of a multi-link STA on each link based on the service of a certain AC. Therefore, uplink multi-site scheduling cannot be performed efficiently.
  • used to indicate can include both used for direct indication and used for indirect indication.
  • the indication information may directly indicate A or indirectly indicate A, but it does not mean that A must be carried in the indication information.
  • the information indicated by the instruction information is called the information to be indicated.
  • the information to be indicated can be directly indicated, such as the information to be indicated or the information to be indicated. Indicates the index of the information, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance. For example, it is also possible to realize the indication of specific information by means of a pre-arranged order (for example, stipulated in an agreement) of various information, so as to reduce the indication overhead to a certain extent. At the same time, it can also identify the common parts of each information and give unified instructions, so as to reduce the instruction overhead caused by separately indicating the same information.
  • the first, second, and various digital numbers (for example, "#1", “#2”, etc.) shown in this application are only for convenience of description, and are used for distinguishing objects, and are not used to limit the text. Apply for the scope of the embodiment. For example, distinguish different information, or distinguish different STAs, etc. It is not used to describe a specific order or sequence. It should be understood that the objects described in this way can be interchanged under appropriate circumstances, so as to be able to describe solutions other than the embodiments of the present application.
  • preset may include indication by device signaling or pre-defined, for example, protocol definition.
  • pre-defined can be implemented by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the device (for example, including sites and access points). This application does not make any specific implementation methods. limited. For example, pre-defined can refer to the definition in the agreement.
  • the "saving" referred to in the embodiments of the present application may refer to storing in one or more memories.
  • the one or more memories may be provided separately, or integrated in an encoder or decoder, a processor, or a communication device.
  • the one or more memories may also be partly provided separately, and partly integrated in a decoder, a processor, or a communication device.
  • the type of the memory can be any form of storage medium, which is not limited in this application.
  • protocol can refer to standard protocols in the communication field, for example, it can include LTE protocol, NR protocol, WLAN protocol, and related protocols used in future communication systems, which are not limited in this application. .
  • this application proposes a data transmission method, which can be applied to the cache status reporting mechanism of multi-link devices.
  • STA can be the sender and AP can be the receiver
  • AP can be the sender and STA can be the receiver
  • other transmission scenarios for example, data between AP and AP
  • one AP can be used as the sender and the other AP can be used as the receiver
  • another example is the uplink transmission between STA and STA, where one STA can be used as the sender and the other STA can be used as the receiver. Therefore, the following describes the embodiments of the present application according to the sending end device and the receiving end device.
  • the embodiments shown below do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the present application, as long as the program that records the code of the method provided in the embodiments of the present application can be executed according to the present application.
  • the method provided in the embodiment only needs to communicate.
  • the execution subject of the method provided in the embodiment of the present application may be the receiving end device or the sending end device, or the receiving end device or the sending end device can call and execute the program. functional module.
  • the interaction between the sending end device and the receiving end device is taken as an example to describe in detail the data transmission method provided in the embodiment of this application.
  • the sending end device and the receiving end device involved in the embodiment of this application are many Link devices, wherein the data transmission mode between multi-link devices is shown in Figure 5, which will not be repeated here.
  • FIG. 7 is a schematic flowchart of a data transmission method 700 provided by an embodiment of the present application.
  • the method 700 shown in FIG. 7 may include some or all of the following steps.
  • the multi-link sender determines the BSR signaling.
  • the BSR signaling is used to instruct the multi-link receiving end to schedule the stations of the multi-link sending end on one or more links. For example, OFDMA scheduling.
  • the multi-link receiving end performs site scheduling based on BSR signaling. You can refer to the BSR signaling reported by the multi-link receiving end based on the multi-link sending end in the existing protocol. The way to conduct user sites.
  • the difference between the multi-link receiving end performing site scheduling in the embodiment of this application and the existing receiving end performing site scheduling is that the multi-link receiving end in the embodiment of this application can send multiple links on one or more links.
  • the site at the end is scheduled, and the scheduling on each link can refer to the site scheduling specified in the existing protocol.
  • the multi-link sending end can determine the format of the BSR signaling sent to the multi-link receiving end based on the size of the local buffer service and the mapping relationship between the multi-link and the TID.
  • FIG. 8 is a schematic diagram of the BSR signaling provided in the embodiment of the present application.
  • the BSR signaling includes all queue size fields of the transmission link, the scale factor field of the transmission link, the TID field, the queue size field, and the first ratio.
  • One or more of the factor fields The following briefly introduces the purpose of each field included in the BSR signaling shown in Figure 8(a):
  • All the queue size fields of the transmission link are used to indicate the size of the first buffer service on the link where the BSR signaling is sent.
  • the calculation method of the size of the first buffer cache service on the link is:
  • the size of the first buffer buffer service (the value of all queue size fields of the transmission link + 1) * the value of the scale factor field of the transmission link (Equation 2)
  • the scale factor field of the transmission link is used to indicate the unit of the size of the first buffer service indicated by the size of all queues of the transmission link (for example, 16 bytes, 256 bytes, 2048 bytes and 32768 bytes);
  • the TID field indicates the first service type currently reported
  • the queue size indicates the size of the second buffer service corresponding to the first service type indicated by the TID field in the buffer service at the sending end.
  • the calculation method of the size of the second cache service corresponding to the first service type is:
  • the size of the second cache service (the value of the queue size field + 1) * the value of the first scale factor field (Equation 3)
  • the value of the first ratio factor field is used as the unit of the size of the second buffer service indicated by the queue size (for example, 16 bytes, 256 bytes, 2048 bytes and 32768 bytes).
  • Q_T represents the value of all queue size fields of the transmission link
  • q_T represents the number of bits of all queue size fields of the transmission link
  • Q_TID represents the value of the queue size field
  • q_TID represents the number of bits of the queue size field.
  • the number of bits occupied by each field included in the BSR signaling in Figure 8(a) is just an example, and does not constitute any limitation to the protection scope of this application.
  • the number of bits occupied by each field included in the BSR signaling can also be Other values.
  • all the queue size fields of the transmission link included in the BSR signaling in Figure 8(a) can occupy 9 bits or 11 bits, and the number of bits occupied by each field can represent the value of each field, and the specific number is not limited. , I will not illustrate them one by one here.
  • the BSR signaling includes the first TID field (the TID#1 field shown in Figure 8(b)) and the first queue size field ( The queue #1 size field shown in Figure 8(b)), the TID#2 field, the second queue size field (the queue #2 size field shown in Figure 8(b)) and the second scale factor field One or more.
  • TID#1 field indicates the second service type currently reported
  • the queue #1 size field indicates the size of the third buffer service corresponding to the second service type indicated by the TID#1 field in the buffer at the sending end.
  • the calculation method of the size of the third cache service corresponding to the second service type is:
  • the size of the third cache service (the value of the queue #1 size field + 1) * the value of the second scale factor field (Equation 4)
  • TID#2 field indicates the currently reported third service type
  • the queue #2 size field indicates the size of the fourth buffer service corresponding to the third service type indicated by the TID#2 field in the buffer of the sender.
  • the calculation method of the size of the fourth cache service corresponding to the third service type is:
  • the size of the fourth cache service (the value of the queue #2 size field + 1) * the value of the second scale factor field (Equation 5)
  • the value of the second scale factor field is used to indicate the unit of the size of the third cache service and the size of the fourth cache service (for example, 16 bytes, 256 bytes, 2048 bytes and 32768 bytes).
  • Q_1 represents the value of the queue #1 size field
  • q_1 represents the number of bits in the queue #1 size field
  • Q_2 represents the value of the queue #2 size field
  • q_2 represents the number of bits in the queue #2 size field.
  • the number of bits occupied by each field included in the BSR signaling in Figure 8(b) is just an example, and does not constitute any limitation to the protection scope of this application.
  • the number of bits occupied by each field included in the BSR signaling can also be Other values.
  • the queue #1 size field included in the BSR signaling in Figure 8(b) can occupy less than or greater than 9 bits, and the number of bits occupied by each field can represent the value of each field.
  • the specific number is not limited, and it is not here. Illustrate one by one.
  • the BSR signaling includes a third TID field (TID#1 field as shown in Figure 8(c)) and a third queue size field ( Queue #1 size field as shown in Figure 8(c)), the third scale factor field, the fourth TID field (TID#2 field as shown in Figure 8(c)), and the fourth queue size field (as shown in Figure 8(c)).
  • TID#1 field As shown in Figure 8(c)
  • Queue #1 size field as shown in Figure 8(c)
  • the fourth TID field TID#2 field as shown in Figure 8(c)
  • the fourth queue size field as shown in Figure 8(c)
  • TID#1 field indicates the fourth service type currently reported
  • the queue #1 size field indicates the size of the fifth buffer service corresponding to the fourth service type indicated by the TID#1 field in the buffer of the sender.
  • the calculation method of the size of the fifth cache service corresponding to the fourth service type is:
  • the size of the fifth cache service (the value of the queue #1 size field + 1) * the value of the scale factor field (Equation 6)
  • the value of the third scale factor field is used to indicate the unit of the size of the fifth cache service indicated by the queue #1 size field (for example, 16 bytes, 256 bytes, 2048 bytes, and 32768 bytes).
  • the TID#2 field indicates the fifth service type currently reported
  • the queue #2 size field indicates the size of the sixth buffer service corresponding to the fifth service type indicated by the TID#2 field in the buffer of the sender.
  • the calculation method of the size of the sixth cache service corresponding to the fifth service type is:
  • the size of the sixth cache service (the value of the queue #2 size field + 1) * the value of the scale factor field (Equation 7)
  • the size of the sixth cache service (queue #2 size field value + 1) * greater than the scale factor field value (Equation 8)
  • the scale factor difference field and the third scale factor field jointly indicate the unit of the size of the sixth buffer service indicated by the queue #2 size field.
  • the scale factor difference field when the scale factor difference field is set to the first value (such as 0), the unit of the size of the sixth cache service indicated by the queue #2 size field is indicated by the scale factor field, which corresponds to the calculation method of Equation 7;
  • the scale factor difference field is set to the second value (such as 1), the unit of the size of the sixth buffer service indicated by the queue #2 size field is the next larger value in the unit indicated by the scale factor, which corresponds to the above formula 8 Calculation.
  • queue #2 size field indicates that the specific calculation method for the size of the buffer service corresponding to the service type indicated by the TID#2 field in the sender buffer may be other calculation methods, which will not be repeated here.
  • the format of the BSR signaling determined by the multi-link sender in the embodiment of the present application may include one or more signaling fields mentioned in each of the above three modes.
  • the format of the BSR signaling determined by the multi-link sender in the embodiment of the present application may also be a combination of one or more signaling fields in the above three modes.
  • multi-link sender needs to refer to the mapping relationship between TID and multi-link (TID-To-Link) when determining the BSR signaling format. Based on the mapping relationship, it is known on which link the buffer services indicated by different TIDs are sent respectively.
  • mapping relationship between the TID and the multi-link obtained by the multi-link sending end can be determined through negotiation with the receiving end:
  • the multi-link sender sends a request message to the multi-link receiver.
  • the request message is used to request negotiation of the TID-To-Link mapping relationship.
  • the multi-link receiver sends a response message to the multi-link sender.
  • the response message is used to Respond to the negotiation of the TID-To-Link mapping relationship.
  • the method shown in FIG. 7 further includes S711, the sending end sends a request message to the receiving end; S712, the receiving end sends a response message to the sending end.
  • the request message is a request management frame
  • the response message is a response management frame.
  • the multi-link sender after the multi-link sender sends a request management frame to the multi-link receiver, it will receive the acknowledgement (ACK) frame returned by the multi-link receiver, and the multi-link receiver sends the multi-link
  • the sender After the sender sends the response management frame, it will receive the ACK frame returned by the multi-link sender.
  • the sender and receiver complete the negotiation of the TID-To-Link mapping relationship.
  • the TID-to-Link mapping negotiation can also be placed in the block confirmation establishment dialog, the request message is an ADDBA request frame, and the response message is an ADDBA response frame.
  • block confirmation is not required, or a single MAC protocol data unit (MAC protocol data unit, MPDU) for each TID under the confirmation protocol is not established for transmission on all links, and all links are multi-chain The link being established.
  • MPDU MAC protocol data unit
  • the request message and the response message are other frames, such as management frames, which are used to negotiate the TID-To-Link mapping relationship.
  • the TID-To-Link mapping relationship between the TID and the multi-link that the multi-link sender learns can be known through protocol pre-definition, and the multi-link sender and the multi-link receiver do not need to be determined through the above-mentioned negotiation process. Mapping relations.
  • the following mainly takes the request message as the request management frame and the response message as the response management frame as examples to illustrate the multi-link sender and
  • the multi-link receiver negotiates the TID-To-Link mapping relationship.
  • the aforementioned request management frame and response management frame respectively carry information related to the TID-To-Link mapping relationship between the TID and the multi-link, where the information related to the TID-To-Link mapping relationship includes control information And one or more mapping information, where the control information is used to control how to establish the TID-To-Link mapping relationship, and the mapping information is used to indicate the TID-To-Link mapping relationship.
  • the control information includes at least one of the following possibilities:
  • the value of the TID-to-Link mapping control information field carried in the request management frame is 0, which identifies the request TID-to-Link mapping between the request TID and the multi-link.
  • This control information field is used for Request to establish TID-to-Link mapping.
  • the mapping information can be "empty" or a special value (for example, 0);
  • the request management frame carries the TID-to-Link mapping control information field with a value of 1, which identifies the suggested TID-to-Link mapping between the TID and the multi-link.
  • This control information field is used What kind of mapping relationship is suggested by Yu?
  • the second possible multi-link sender request to establish a TID-to-Link mapping relationship, and provide a suggested TID-to-Link mapping relationship if the suggested TID-to-Link mapping relationship is not met, then TID-to-Link The negotiation establishment of the mapping relationship is still accepted;
  • the request management frame carries the TID-to-Link mapping control information field with a value of 2, which identifies the demand TID-to-Link mapping between the TID and the multi-link. This control information field is used It is required to establish a certain TID-to-Link mapping relationship. In the possible three multi-link senders, request to establish the TID-to-Link mapping relationship and provide the required TID-to-Link mapping relationship. If the required TID-to-Link mapping relationship is not met, then TID-to-Link The negotiation establishment of the mapping relationship is not accepted;
  • the response management frame carries the TID-to-Link mapping control information field with a value of 3, which identifies the acceptance TID-to-Link mapping (accept TID-to-Link mapping) established between the TID and the multi-link.
  • This control information field is used To accept the establishment of TID-to-Link mapping relationship.
  • the multi-link receiving end accepts the request to establish the TID-to-link mapping relationship sent by the multi-link sending end, but the TID-to-link mapping information is sent by the multi-link receiving end, that is to say for response management Carried in the frame;
  • the response management frame carries the TID-to-Link mapping control information field with a value of 4, which identifies the alternative TID-to-Link mapping (alternateTID-to-Link mapping) established between the replacement TID and the multi-link.
  • This control information field is used for Replace the TID-to-Link mapping relationship.
  • the TID-to-link mapping relationship suggested by the multi-link receiving end is different from the recommended TID-to-link mapping relationship sent by the multi-link transmitting end or the required TID-to-link mapping relationship;
  • the response management frame carries the TID-to-Link mapping control information field with a value of 5, which identifies the mapping between the command TID and the multi-link (dictateTID-to-Link mapping).
  • This control information field is used for Indicates TID-to-Link mapping.
  • the TID-to-link mapping relationship required by the multi-link receiver is different from the recommended TID-to-link mapping relationship or the required TID-to-link mapping relationship sent by the multi-link transmitter;
  • the value of the field carrying TID-to-Link mapping control information in the response management frame is 6, which indicates the rejection of TID-to-Link mapping (reject TID-to-Link mapping).
  • This control field information is used for Refuse to establish TID-to-Link mapping relationship.
  • the multi-link receiving end rejects the request to establish a TID-to-link mapping sent by the multi-link sending end.
  • TID-to-Link mapping information includes the following possibilities:
  • the TID-to-Link mapping information includes N link identification bitmaps, where N is a positive integer. Among them, each link identification bitmap corresponds to a TID, the length of the link identification bitmap is fixed, and the bit with a value of 1 in the link identification bitmap indicates the TID corresponding to the link identification bitmap and the value of 1
  • the link identified by the position of the bit in the bitmap corresponds to the establishment of the TID-to-Link mapping.
  • the TID-to-Link mapping information includes 8 link identification bitmaps: 11000000 10000000 11100000 11000000 10100000 11000000 10000000 10000000.
  • 11000000 corresponds to TID#1, and the bit with a value of 1 in 11000000 is located in the first and second bits in the bitmap, indicating that TID#1 is mapped to link #1 and link #2;
  • TID#2 is mapped to link #1
  • TID#3 is mapped to link #1
  • link #2, link #3, and TID#4 are mapped to link #1, link #2
  • TID# 5 is mapped to link #1 and link #3
  • TID#6 is mapped to link #1 and link #2
  • TID#7 is mapped to link #1 and TID#8 is mapped to link #1.
  • the correspondence between the TID corresponding to each link identification bitmap and the link indicated by the position where the bit value is 1 in the link identification bitmap is just an example, and the protection of this application is only an example.
  • the range does not constitute any limitation. For example, it may also be to determine the position where the bit with the bit value of 0 is located, and to determine the link corresponding to the TID, which will not be repeated here.
  • the TID-to-Link mapping information includes a control field and N link identification bitmap fields, where N is a positive integer.
  • control field includes the number of TIDs that need to be mapped or the TID bitmap.
  • control field may also include the number of links, and the number of links may also be located in other positions of the multi-link establishment request frame and/or the multi-link establishment response frame, which is not limited in this application.
  • the field of the link identification bitmap field depends on the number of TIDs that need to be mapped or the number of TID bitmaps set to the first value (for example, the number of TID bitmaps set to 1).
  • the length of the link identification bitmap field can be determined by the number of links, or it can be a fixed length.
  • the TID to be mapped is not required, it is implicitly indicated that the TID can be transmitted on all links, where all links are the links established in the multi-link establishment process.
  • the link identification bitmap also needs to include the corresponding TID identification number; if the TID-to-Link mapping information includes the TID bitmap, the link identification bitmap It is not necessary to include the link identification number.
  • the TID bitmap is 11000000, the number of links is 3, and the two link identification bitmap fields are 110101 respectively, it indicates that TID#1 is mapped to link #1 and link #2, and TID#2 Mapped to link #1 and link #3, TID#3 to TID#8 are mapped to all links (link #1, link #2, and link #3).
  • the number of TIDs is 2, the number of links is 3, and the two link identification bitmap fields are TID 1 110 101, TID 2 101, and TID #1 and #2 also need to be indicated by a sequence.
  • 4-bit or 3-bit indication TID1 uses 0000, TID2 uses 0001, it means that TID#1 is mapped to link #1 and link #2, TID#2 is mapped to link #1 and link #3, TID#3 ⁇ TID#8 is mapped to all links (link #1, link #2, and link #3).
  • the length of the link identification bitmap field (not including the TID identification) is fixed, such as 8 bits
  • the TID bitmap is all the second value (for example, the TID bitmap is all set to 0), it indicates that all TIDs are mapped to all links respectively.
  • the TID-to-Link mapping information may also include multiple TID bitmaps and multiple link identifiers.
  • the number of TID bitmaps is equal to the number of links, and the bitmap of each TID is 8 bits.
  • Each TID bitmap indicates which TIDs are mapped to the corresponding link. For example, the number of links is 2, the two TID bitmaps are 11110000 00001111, and the two links are identified as link #2 and link #3.
  • the link identifier can be represented by multiple bits, which means that TID#1 to TID#4 are mapped to link #2, and TID#5 to TID#8 are mapped to link #3.
  • the TID-To-Link mapping relationship can be changed later.
  • the multi-link sender and the multi-link receiver can renegotiate the second TID-To-Link mapping relationship, for example Through other management frames, the first TID-To-Link mapping relationship and the second TID-To-Link mapping relationship may be different.
  • the multi-link sending end needs to send the BSR to the multi-link receiving end, that is, the method flow shown in FIG. 7 further includes S720.
  • the multi-link sending end sends the BSR to the multi-link receiving end.
  • the multi-link sending end sends the BSR signaling to the multi-link receiving end on one or more links.
  • the multi-link sending end may send a BSR to the multi-link receiving end by sending a data packet carrying the BSR to the multi-link receiving end, and the MAC header of the data packet carries the BSR.
  • the data packet may be a QoS data packet.
  • the QoS data packet involved in the embodiment of the present application includes a QoS Null data packet.
  • the multi-link sending end may actively send the BSR to the multi-link receiving end.
  • the MAC header of the data packet carries BSR signaling.
  • the multi-link sending end may be triggered to send the BSR to the multi-link receiving end.
  • the method flow shown in FIG. 7 further includes S721.
  • the multi-link receiving end sends trigger information to the multi-link sending end, and the trigger information is used to trigger the multi-link sending end to report the BSR.
  • the multi-link sender receives the BAR request frame sent by the multi-link receiver. For example, similar to the 802.11 BSR poll trigger frame, it responds to the BSR after a short interframe space (SIFS) time. Signaling.
  • SIFS short interframe space
  • the multi-link sender After the multi-link sender receives the trigger frame sent by the multi-link receiver, after a preset period of time, the multi-link sender sends a data packet to the multi-link receiver in the MAC header of the data packet. Carry BSR signaling.
  • the multi-link sending end needs to send the above-mentioned BSR signaling to the multi-link receiving end, and also needs to send the buffer status indication information to the multi-link sending end, that is, the above-mentioned data packet also includes the buffer status. Indication information, the buffer status indication information is used to indicate the buffer status of the multi-link sender.
  • FIG. 9 is a schematic diagram of a data packet provided by an embodiment of the present application.
  • it In addition to carrying BSR signaling in the HT-control field, it also carries buffer status indication information in the QoS control field.
  • the current QoS control fields include: TID field, end of service period (EOSP) field, ACK policy field, aggregated medium access control service data unit (A-MSDU) ) A present field, a scale factor field, and a queue size field.
  • EOSP end of service period
  • A-MSDU aggregated medium access control service data unit
  • the 1 high-order bit of the reused TID field is used to indicate the buffer size of the service indicated by the TID field together with the 8-bit queue size field.
  • This application also provides a method for expanding the bitmap of the block confirmation frame. The solution is described in detail below:
  • the sender and the receiver Before the sender sends a data packet, the sender and the receiver usually need to establish a block acknowledgment dialogue. After that, the sender can send multiple data packet aggregations. The receiving end will respond to the block acknowledgment (block Ack) when receiving multiple data packets aggregation ) Or multi-STA block Ack.
  • block Ack block acknowledgment
  • the block confirmation dialog is completed by the sender and receiver interacting to add a block acknowledgement (ADDBA) request frame and an ADDBA response frame.
  • ADDBA block acknowledgement
  • the sender sends an ADDBA request frame, and the receiver responds to the confirmation frame Ack; then the receiver replies ADDBA response frame, the receiving end responds to the confirmation frame Ack.
  • the sender and receiver After the sender and receiver have interacted with the ADDBA request frame and the ADDBA response frame, the sender maintains a sending window according to the content carried in the frame, and the receiving end maintains the receiving window (or called counter) according to the content carried in the ADDBA request frame and the ADDBA response frame. Sub-board) and a buffer reordering space.
  • the ADDBA request frame and the ADDBA response frame are a kind of function management frame, which contain the content shown in Table 2 and Table 3 respectively.
  • the specific meaning of the content included in the ADDBA request frame and the ADDBA response frame can refer to the 802.11-2016 standard protocol. This application will not go into details.
  • Block Ack Action block confirmation function Dialog Token token number 4 Block Ack Parameter Set Block Ack Parameter Set 5 Block Ack Timeout Value block confirms the downtime 6 Block Ack Starting Sequence Control Block Ack Start Sequence Control 7 GCR Group Address element (optional) Multicast address element, optional 8 Multi-band (optional), multi-band elements, optional appearance
  • the block confirmation parameter set field includes fields such as aggregate MAC protocol data unit (aggregate MAC protocol data unit, A-MSDU) support, block confirmation strategy, service type, and buffer size. As shown in FIG. 10, FIG. 10 is a schematic diagram of a block confirmation parameter set field.
  • a type of multi-link block confirmation session related functions can be added to the block confirmation function field, and the reserved value in the following table 4 is used to indicate the multi-link block confirmation request and the multi-link block confirmation Responding and multi-link quick confirmation dialog removal instructions.
  • FIG. 11 is a schematic diagram of an ADDBA extension element provided by an embodiment of the present application. It can be seen from Figure 11 that the ADDBA extension element uses 1 bit (No-fragmentation), 2 bits (HE fragmentation operation (HE fragmentation operation)), or 5 bits (reserved) joint block confirmation parameters
  • the 10-bit buffer size field in the set together indicates how many buffers there are on the TID indicated by the TID field in the block confirmation parameter set.
  • the size of each buffered service is equal to the number of maximum MSDUs; if the sender supports A-MSDU, the size of each service buffer is equal to the number of maximum A-MSDUs, where the added bit Bits are high bits, and the 10-bit buffer size field of the block confirmation parameter set field is 10 low bits, or the number of added bits can also be placed in other elements (such as new elements), and the number of bits can also be It is the number of other bits, such as 1 byte.
  • the embodiment of the present application provides a data transmission device.
  • the device is used to implement the steps or procedures corresponding to the multi-link receiving end in the foregoing method embodiment.
  • the device is used to implement the steps or procedures corresponding to the multi-link sending end in the foregoing method embodiment.
  • FIG. 12 is a schematic block diagram of a data transmission device provided by an embodiment of the present application.
  • the apparatus 1200 may include a communication unit 1210 and a processing unit 1220.
  • the communication unit 1210 can communicate with the outside, and the processing unit 1220 is used for data processing.
  • the communication unit 1210 may also be referred to as a communication interface or a transceiving unit.
  • the device 1200 can implement the steps or processes performed by the multi-link sending end corresponding to the above method embodiment, wherein the processing unit 1220 is configured to execute the multi-link method in the above method embodiment.
  • the communication unit 1210 is configured to perform operations related to the sending and receiving of the multi-link sending end in the above method embodiment.
  • the processing unit 1220 is configured to determine the buffer status report BSR signaling, where the BSR signaling is used to instruct the multi-link receiving end to schedule the station of the multi-link sending end on one or more links.
  • the communication unit 1210 is configured to send the BSR signaling to the multi-link receiving end on one or more links.
  • the multi-link sending end may be the multi-link STA shown in FIG. 5.
  • the processing unit 1220 may be the processing unit (eg, the processor) in STA#1 shown in FIG. 5, and the communication unit 1210 may be the processing unit shown in FIG.
  • the communication unit (e.g., transceiver) in STA#1 is shown; when the multi-link STA sends the BSR signaling through link #1 and link #2, the processing unit 1220 may be the STA shown in FIG.
  • the communication unit 1210 may represent the communication unit in STA#1 and STA#2 shown in FIG. Each link sends BSR signaling, and the processing unit 1220 and the communication unit 1210 may represent processing units and communication units in one or more other STAs, which will not be repeated here.
  • the communication unit 1210 is further configured to: send a request message to the multi-link receiving end, and receive a response message from the multi-link receiving end, where the request message and the response message are used to negotiate the establishment of a service type and Link TID-To-Link mapping relationship.
  • the communication unit 1210 before the communication unit 1210 sends the BSR signaling to the multi-link receiving end on one or more links, the communication unit 1210 is further configured to: receive trigger information from the multi-link receiving end, the The trigger information is used to trigger the multi-link sender to send the BSR signaling on one or more links.
  • the communication unit 1210 sending the BSR signaling to the multi-link receiving end on one or more links includes:
  • the communication unit 1210 sends a quality of service QoS data packet to the multi-link receiving end on one or more links, and the media access control MAC header of the QoS data packet carries the BSR signaling.
  • the above-mentioned communication unit 1210 can be divided into a receiving unit and a sending unit.
  • the receiving unit is used to perform the receiving-related operations of the multi-link sending end in the above method embodiment
  • the sending unit is used to perform the above method implementation.
  • the operation related to the transmission of the multi-link sender is used to perform the above method implementation.
  • the device 1200 can implement the steps or processes executed by the multi-link receiving end corresponding to the above method embodiment, wherein the communication unit 1210 is used to execute the above method embodiment.
  • the processing unit 1220 is configured to perform operations related to the processing of the receiving end of the multi-link in the above method embodiment.
  • the multi-link receiving end may be the multi-link AP shown in FIG. 5.
  • the processing unit 1220 may be the processing unit (for example, the processor) in AP#1 shown in FIG. 5, and the communication unit 1210 may be the one shown in FIG. 5.
  • the communication unit e.g., transceiver
  • the processing unit 1220 may be the AP shown in FIG.
  • the communication unit 1210 may represent the communication units in AP#1 and AP#2 shown in FIG. 5; or, the multi-link AP may also pass through other one or more Each link receives BSR signaling, and the processing unit 1220 and the communication unit 1210 may represent processing units and communication units in one or more other APs, which will not be repeated here.
  • the communication unit 1210 is configured to: receive buffer status report BSR signaling from the multi-link sender on one or more links.
  • the processing unit 1220 is configured to schedule the station of the multi-link sending end on one or more links according to the BSR signaling.
  • the communication unit 1210 is further configured to: receive a request message from the multi-link sender, and send a response message to the multi-link sender, where the request message and the response message are used to negotiate the establishment of a service type and Link TID-To-Link mapping relationship.
  • the communication unit 1210 before the communication unit 1210 receives the BSR signaling from the multi-link sender on one or more links, the communication unit 1210 is further configured to send trigger information to the multi-link sender.
  • the trigger information It is used to trigger the multi-link sender to send the BSR signaling on one or more links.
  • the communication unit 1210 receiving the BSR signaling from the multi-link sender on one or more links includes:
  • the communication unit 1210 receives the quality of service QoS data packet from the multi-link sender on one or more links, and the media access control MAC header of the QoS data packet carries the BSR signaling.
  • the above-mentioned communication unit 1210 can be divided into a receiving unit and a sending unit.
  • the receiving unit is used to perform the receiving-related operations of the multi-link receiving end in the above method embodiment
  • the sending unit is used to perform the above method implementation.
  • the multi-link receiving end sends related operations.
  • the device 1200 here is embodied in the form of a functional unit.
  • the term "unit” here can refer to application specific integrated circuits (ASICs), electronic circuits, processors used to execute one or more software or firmware programs (such as shared processors, proprietary processors, or groups). Processor, etc.) and memory, merged logic circuits, and/or other suitable components that support the described functions.
  • ASICs application specific integrated circuits
  • the apparatus 1200 may be specifically the multi-link transmitting end in the above-mentioned embodiment, and may be used to execute various processes and procedures corresponding to the multi-link transmitting end in the above-mentioned method embodiment.
  • the apparatus 1200 may be specifically the multi-link receiving end in the above-mentioned embodiment, and may be used to execute each process and/or step corresponding to the multi-link receiving end in the above-mentioned method embodiment. In order to avoid repetition, I won't repeat them here.
  • the apparatus 1200 of each of the foregoing solutions has the function of implementing the corresponding steps performed by the multi-link transmitting end in the foregoing method, or the apparatus 1200 of each of the foregoing solutions has the function of implementing corresponding steps performed by the multi-link receiving end of the foregoing method.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the communication unit can be replaced by a transceiver (for example, the sending unit in the communication unit can be replaced by a transmitter, and the receiving unit in the communication unit can be replaced by a receiver. Machine replacement), other units, such as processing units, etc., can be replaced by processors to perform the transceiver operations and related processing operations in each method embodiment respectively.
  • the aforementioned communication unit may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in FIG. 12 may be the receiving end or the transmitting end in the foregoing embodiment, or may be a chip or a chip system, such as a system on chip (SoC).
  • the communication unit may be an input/output circuit or a communication interface; the processing unit is a processor, microprocessor, or integrated circuit integrated on the chip. There is no limitation here.
  • FIG. 13 shows a data transmission apparatus 1300 provided by an embodiment of the present application.
  • the device 1300 includes a processor 1310 and a transceiver 1320.
  • the processor 1310 and the transceiver 1320 communicate with each other through an internal connection path, and the processor 1310 is used to execute instructions to control the transceiver 1320 to send signals and/or receive signals.
  • the device 1300 may further include a memory 1330, and the memory 1330 communicates with the processor 1310 and the transceiver 1320 through an internal connection path.
  • the memory 1330 is used to store instructions, and the processor 1310 can execute the instructions stored in the memory 1330.
  • the apparatus 1300 is configured to implement various processes and steps corresponding to the sending end in the foregoing method embodiment.
  • the apparatus 1300 is configured to implement various processes and steps corresponding to the receiving end in the foregoing method embodiments.
  • the apparatus 1300 may be specifically the transmitting end or the receiving end in the foregoing embodiment, or may be a chip or a chip system.
  • the transceiver 1320 may be the transceiver circuit of the chip, which is not limited here.
  • the apparatus 1300 may be used to execute various steps and/or processes corresponding to the sending end or the receiving end in the foregoing method embodiments.
  • the memory 1330 may include a read-only memory and a random access memory, and provide instructions and data to the processor. A part of the memory may also include a non-volatile random access memory.
  • the memory can also store device type information.
  • the processor 1310 may be used to execute instructions stored in the memory, and when the processor 1310 executes the instructions stored in the memory, the processor 1310 is used to execute the steps of the method embodiment corresponding to the sending end or the receiving end. And/or process.
  • each step of the above method can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components .
  • the processors in the embodiments of the present application may implement or execute the methods, steps, and logical block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic RAM
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM
  • FIG. 14 shows a data transmission device 1400 provided by an embodiment of the present application.
  • the device 1400 includes a processing circuit 1410 and a transceiver circuit 1420.
  • the processing circuit 1410 and the transceiver circuit 1420 communicate with each other through an internal connection path, and the processing circuit 1410 is used to execute instructions to control the transceiver circuit 1420 to send signals and/or receive signals.
  • the device 1400 may further include a storage medium 1430, and the storage medium 1430, the processing circuit 1410 and the transceiver circuit 1420 communicate with each other through an internal connection path.
  • the storage medium 1430 is used to store instructions, and the processing circuit 1410 can execute the instructions stored in the storage medium 1430.
  • the apparatus 1400 is configured to implement various processes and steps corresponding to the sending end in the foregoing method embodiment.
  • the apparatus 1400 is configured to implement various processes and steps corresponding to the receiving end in the foregoing method embodiment.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the embodiment shown in FIG. 7 In the method.
  • the present application also provides a computer-readable medium storing program code, which when the program code runs on a computer, causes the computer to execute the embodiment shown in FIG. 7 In the method.
  • the present application also provides a system, which includes the foregoing multi-link sending end and the multi-link receiving end.
  • the present application also provides a system, which includes one or more stations and one or more access points, where the stations and the access points are multi-link.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Communication Control (AREA)

Abstract

本申请提供了一种数据传输的方法和装置,能够在多链路ML合作方式下,引入缓存状态报告BSR机制提高ML设备调度站点的性能。该方法包括:多链路发送端确定发送给多链路接收端的BSR信令,该BSR信令能够使得多链路接收端在一条或者多条链路上对多链路发送端的站点进行调度,进一步地,多链路发送端在一条或多条链路上将该BSR信令发送给多链路发送端,完成在ML合作方式下,引入BSR机制。

Description

数据传输的方法和装置
本申请要求于2020年03月16日提交中国专利局、申请号为202010183125.8、申请名称为“数据传输的方法和装置备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及数据传输的方法和装置。
背景技术
随着移动互联网的发展和智能终端的普及,数据流量快速增长。无线局域网(wireless local area network,WLAN)技术凭借高速率和低成本方面的优势,成为主流的移动宽带接入技术之一。
为了大幅提升WLAN***中业务的传输速率,电气和电子工程师协会(institute of electrical and electronics engineers,IEEE)802.11ax标准在现有的正交频分复用(orthogonal frequency division multiplexing,OFDM)技术的基础上,进一步采用正交频分多址(orthogonal frequency division multiple access,OFDMA)技术,OFDMA技术支持多个节点同时发送和接收数据,IEEE 802.11ax标准中可以通过缓存状态报告(buffer status report,BSR)机制辅助接入点(access point,AP)进行上行OFDMA调度。
IEEE 802.11ax中的设备的工作的频段范围从2.4GHz,5GHz拓展到2.4GHz,5GHz和6GHz。由于用户对通信服务质量的需求越来越高,IEEE 802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户的需求,因此,迫切需要发展下一代IEEE技术,例如,EEE 802.11be标准,其中,EEE 802.11be标准被称为极高吞吐量(extremely high throughput,EHT)标准。IEEE 802.11be中的设备可以通过多链路(multi link,ML)合作方式降低业务传输时延。
然而,如何在ML合作方式下,引入BSR机制提高ML设备调度站点的性能成为亟待解决的问题。
发明内容
本申请提供一种数据传输的方法和装置,以期在ML合作方式下引入BSR机制提高ML设备调度站点的性能。
第一方面,提供了一种数据传输的方法,该数据传输的方法可以由多链路发送端执行,或者,也可以由设置于多链路发送端中的芯片或电路执行,本申请对此不作限定。
上述的多链路发送端可以是多链路站点(station,STA)或多链路AP或其他的多链路设备。
该数据传输的方法包括:
该多链路发送端确定缓存状态报告BSR信令,该BSR信令用于该多链路接收端在一条链路或多条链路上对该多链路发送端的站点进行的调度;该多链路发送端在一条或多条链路上向该多链路接收端发送该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送BSR信令,使得多链路接收端能够基于该BSR信令对多链路发送端在一条链路或多条链路上进行站点的调度,从而实现在多链路合作方式下基于BSR机制提高ML设备调度站点的性能。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:该多链路发送端向该多链路接收端发送请求消息;该多链路发送端接收来自该多链路接收端的响应消息;其中,该请求消息和该响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
进一步地,本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送BSR信令之前,还可以通过与该多链路接收端协商得到TID-To-Link映射关系,该TID-To-Link映射关系能够确定不同链路上业务缓存大小,从而使得多链路发送端基于该TID-To-Link映射关系更加准确地确定出需要发送的BSR信令。
结合第一方面,在第一方面的某些实现方式中,该BSR信令包括传输链路的所有队列大小字段、传输链路的比例因子字段、TID字段、队列大小字段和第一比例因子字段中的一个或者多个,
其中,该传输链路的所有队列大小字段指示发送该BSR信令的链路上的第一缓存业务的大小、该传输链路的比例因子字段指示该第一缓存业务大小的单位、该TID字段指示上报的第一业务类型、该队列大小字段指示该第一业务类型对应的第二缓存业务的大小、该第一比例因子字段指示该第二缓存业务大小的单位。
上述的传输链路指示传输BSR信令的链路,即当BSR信令格式中包括传输链路的所有队列大小字段、传输链路的比例因子字段、TID字段、队列大小字段和指示该第二缓存业务大小的单位的字段的情况下,多链路接收端接收到该BSR信令之后,能够基于该BSR信令对多链路发送端在该传输链路上进行站点的调度。
结合第一方面,在第一方面的某些实现方式中,该BSR信令包括第一TID字段、第一队列大小字段、第二TID字段、第二队列大小字段和第二比例因子字段中的一个或者多个,
其中,第一TID字段指示上报的第二业务类型、第一队列大小字段指示该第二业务类型对应的第三缓存业务的大小、第二TID字段指示上报的第三业务类型、第二队列大小字段指示该第三业务类型对应的第四缓存业务的大小、该第二比例因子字段指示该第三缓存业务大小和该第四缓存业务大小的单位。
上述的BSR信令格式中包括第一TID字段、第一队列大小字段、第二TID字段、第二队列大小字段和第二比例因子字段的情况下,多链路接收端接收到该BSR信令之后,能够基于该BSR信令对多链路发送端在第一TID对应的链路和第二TID对应的链路上进行站点的调度。
结合第一方面,在第一方面的某些实现方式中,该BSR信令包括包括第三TID字段、第三队列大小字段、第三比例因子字段、第四TID字段、第四队列大小字段和比例因子差值字段中的一个或者多个,
其中,该第三TID字段指示上报的第四业务类型、第三队列大小字段指示该第四业务 类型对应的第五缓存业务的大小、第四TID字段指示上报的第五业务类型、第四队列大小字段指示该第五业务类型对应的第六缓存业务的大小、该第三比例因子字段指示该第五缓存业务大小的单位、该第三比例因子字段和该比例因子差值字段指示该第六缓存业务大小的单位。
上述的BSR信令格式中包括第三TID字段、第三队列大小字段、第三比例因子字段、第四TID字段、第四队列大小字段和比例因子差值字段的情况下,多链路接收端接收到该BSR信令之后,能够基于该BSR信令对多链路发送端在第三TID对应的链路和第四TID对应的链路上进行站点的调度。
结合第一方面,在第一方面的某些实现方式中,该请求消息和/或该响应消息中包括控制信息和映射信息,该控制信息用于确定建立该映射关系,该映射信息用于指示该映射关系。
上述的用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括控制信息和映射信息,以实现多链路发送端和多链路接收端能够基于请求消息和该响应消息成功建立TID-To-Link映射关系。
结合第一方面,在第一方面的某些实现方式中,该控制信息的值包括以下至少一种:0、1、2、3、4、5或6,其中,该请求消息中包括该控制信息的值为0时,标识该发送端请求建立该映射关系、该请求消息中包括该控制信息的值为1时,标识该发送端请求建立该映射关系并提供建议的映射关系、该请求消息中包括该控制信息的值为2时,标识该发送端请求建立该映射关系并提供需求的映射关系、该响应消息中包括该控制信息的值为3时,标识该接收端接受该发送端发送的建立该映射关系请求、该响应消息中包括该控制信息的值为4时,标识该接收端建议的该映射关系与该发送端建议或需求的映射关系不同、该响应消息中包括该控制信息的值为5时,标识该接收端需求的该映射关系与该发送端建议或需求的映射关系不同、该响应消息中包括该控制信息的值为6时,标识该接收端拒绝该发送端发送的建立该映射关系请求。
上述的控制信息可以是1比特的信息,能够节省信令开销。
结合第一方面,在第一方面的某些实现方式中,该映射信息包括N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图,多链路发送端和多链路接收端基于该N个链路标识比特位图确定TID-To-Link映射关系。
结合第一方面,在第一方面的某些实现方式中,该映射信息包括控制字段和N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图和控制字段,多链路发送端和多链路接收端基于该N个链路标识比特位图和控制字段确定TID-To-Link映射关系。
结合第一方面,在第一方面的某些实现方式中,该请求消息包括请求管理帧,该响应消息包括响应管理帧;或者,该请求消息包括ADDBA请求帧,该响应消息包括ADDBA响应帧。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消 息和该响应消息可以复用现有流程中的信令,从而节省信令的开销。
结合第一方面,在第一方面的某些实现方式中,在该多链路发送端在一条或多条链路上向该多链路接收端发送该BSR信令之前,该方法还包括:该多链路发送端接收来自该多链路接收端的触发信息,该触发信息用于触发该多链路发送端在一条或多条链路上发送该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是基于多链路接收端的触发信息被动地决定发送该BSR信令,为多链路接收端提供主动权。
结合第一方面,在第一方面的某些实现方式中,该多链路发送端在一条或多条链路上向该多链路接收端发送该BSR信令包括:
该多链路发送端向该多链路接收端发送服务质量QoS数据包,该QoS数据包的媒体接入控制MAC头中携带该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是将该BSR信令携带在QoS数据包的MAC头中完成发送,提供简洁的发送BSR信令的方式。
结合第一方面,在第一方面的某些实现方式中,该QoS数据包的QoS控制字段中还包括缓存状态指示信息,该缓存状态指示信息用于指示该多链路发送端的缓存业务的大小。
上述的携带BSR信令的QoS数据包中还可以携带指示该发送端的缓存业务的大小的缓存状态指示信息,使得多链路接收端获知多链路发送端本地缓存的业务的大小。
结合第一方面,在第一方面的某些实现方式中,该缓存状态指示信息包括该QoS控制字段中TID字段的1比特和该QoS控制字段中队列大小字段的8比特。
上述的缓存状态指示信息可以通过复用现有的QoS数据包中的字段实现,从而节省信令的开销。
第二方面,提供了另一种数据传输的方法,该数据传输的方法可以由多链路接收端执行,或者,也可以由设置于多链路接收端中的芯片或电路执行,本申请对此不作限定。
上述的第二设备可以是多链路STA或多链路AP或其他的多链路设备。
该数据传输的方法包括:
该多链路接收端在一条或多条链路上接收来自该多链路发送端的缓存状态报告BSR信令;
该多链路接收端根据该BSR信令在一条或多条链路上对该多链路发送端的站点进行的调度。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送BSR信令,使得多链路接收端能够基于该BSR信令对多链路发送端在一条链路或多条链路上进行站点的调度,从而实现在多链路合作方式下基于BSR机制提高ML设备调度站点的性能。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:该多链路接收端接收来自该多链路发送端的请求消息;该多链路接收端向该多链路发送端发送响应消息;其中,该请求消息和该响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
进一步地,本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送 BSR信令之前,还可以通过与该多链路接收端协商得到TID-To-Link映射关系,该TID-To-Link映射关系能够确定不同链路上业务缓存大小,从而使得多链路发送端基于该TID-To-Link映射关系更加准确地确定出需要发送的BSR信令。
结合第二方面,在第二方面的某些实现方式中,该BSR信令包括传输链路的所有队列大小字段、传输链路的比例因子字段、TID字段、队列大小字段和第一比例因子字段中的一个或者多个,
其中,该传输链路的所有队列大小字段指示发送该BSR信令的链路上的第一缓存业务的大小、该传输链路的比例因子字段指示该第一缓存业务大小的单位、该TID字段指示上报的第一业务类型、该队列大小字段指示该第一业务类型对应的第二缓存业务的大小、该第一比例因子字段指示该第二缓存业务大小的单位。
上述的传输链路指示传输BSR信令的链路,即当BSR信令格式中包括传输链路的所有队列大小字段、传输链路的比例因子字段、TID字段、队列大小字段和指示该第二缓存业务大小的单位的字段的情况下,多链路接收端接收到该BSR信令之后,能够基于该BSR信令对多链路发送端在该传输链路上进行站点户的调度。
结合第二方面,在第二方面的某些实现方式中,该BSR信令包括第一TID字段、第一队列大小字段、第二TID字段、第二队列大小字段和第二比例因子字段中的一个或者多个,
其中,第一TID字段指示上报的第二业务类型、第一队列大小字段指示该第二业务类型对应的第三缓存业务的大小、第二TID字段指示上报的第三业务类型、第二队列大小字段指示该第三业务类型对应的第四缓存业务的大小、该第二比例因子字段指示该第三缓存业务大小和该第四缓存业务大小的单位。
上述的BSR信令格式中包括第一TID字段、第一队列大小字段、第二TID字段、第二队列大小字段和第二比例因子字段的情况下,多链路接收端接收到该BSR信令之后,能够基于该BSR信令对多链路发送端在第一TID对应的链路和第二TID对应的链路上进行站点的调度。
结合第二方面,在第二方面的某些实现方式中,该BSR信令包括包括第三TID字段、第三队列大小字段、第三比例因子字段、第四TID字段、第四队列大小字段和比例因子差值字段中的一个或者多个,
其中,该第三TID字段指示上报的第四业务类型、第三队列大小字段指示该第四业务类型对应的第五缓存业务的大小、第四TID字段指示上报的第五业务类型、第四队列大小字段指示该第五业务类型对应的第六缓存业务的大小、该第三比例因子字段指示该第五缓存业务大小的单位、该第三比例因子字段和该比例因子差值字段指示该第六缓存业务大小的单位。
上述的BSR信令格式中包括第三TID字段、第三队列大小字段、第三比例因子字段、第四TID字段、第四队列大小字段和比例因子差值字段的情况下,多链路接收端接收到该BSR信令之后,能够基于该BSR信令对多链路发送端在第三TID对应的链路和第四TID对应的链路上进行站点的调度。
结合第二方面,在第二方面的某些实现方式中,该请求消息和/或该响应消息中包括控制信息和映射信息,该控制信息用于确定建立该映射关系,该映射信息用于指示该映射 关系。
上述的用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括控制信息和映射信息,以实现多链路发送端和多链路接收端能够基于请求消息和该响应消息成功建立TID-To-Link映射关系。
结合第一方面,在第一方面的某些实现方式中,该控制信息的值包括以下至少一种:0、1、2、3、4、5或6,其中,该请求消息中包括该控制信息的值为0时,标识该发送端请求建立该映射关系、该请求消息中包括该控制信息的值为1时,标识该发送端请求建立该映射关系并提供建议的映射关系、该请求消息中包括该控制信息的值为2时,标识该发送端请求建立该映射关系并提供需求的映射关系、该响应消息中包括该控制信息的值为3时,标识该接收端接受该发送端发送的建立该映射关系请求、该响应消息中包括该控制信息的值为4时,标识该接收端建议的该映射关系与该发送端建议或需求的映射关系不同、该响应消息中包括该控制信息的值为5时,标识该接收端需求的该映射关系与该发送端建议或需求的映射关系不同、该响应消息中包括该控制信息的值为6时,标识该接收端拒绝该发送端发送的建立该映射关系请求。
上述的控制信息可以是1比特的信息,能够节省信令开销。
结合第二方面,在第二方面的某些实现方式中,该映射信息包括N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图,多链路发送端和多链路接收端基于该N个链路标识比特位图确定TID-To-Link映射关系。
结合第二方面,在第二方面的某些实现方式中,该映射信息包括控制字段和N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图和控制字段,多链路发送端和多链路接收端基于该N个链路标识比特位图和控制字段确定TID-To-Link映射关系。
结合第二方面,在第二方面的某些实现方式中,该请求消息包括请求管理帧,该响应消息包括响应管理帧;或者,该请求消息包括ADDBA请求帧,该响应消息包括ADDBA响应帧。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息可以复用现有流程中的信令,从而节省信令的开销。
结合第二方面,在第二方面的某些实现方式中,在该多链路接收端在一条或多条链路上接收来自该多链路发送端的该BSR信令之前,该方法还包括:
该多链路接收端向该多链路发送端发送触发信息,该触发信息用于触发该多链路发送端在一条或多条链路上发送该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是基于多链路接收端的触发信息被动地决定发送该BSR信令,为多链路接收端提供主动权。
结合第二方面,在第二方面的某些实现方式中,该多链路接收端在一条或多条链路上接收来自该多链路发送端的该BSR信令包括:
该多链路接收端在一条或多条链路上接收来自该多链路发送端的服务质量QoS数据包,该QoS数据包的媒体接入控制MAC头中携带该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是将该BSR信令携带在QoS数据包的MAC头中完成发送,提供简洁的发送BSR信令的方式。
结合第二方面,在第二方面的某些实现方式中,该QoS数据包的QoS控制字段中还包括缓存状态指示信息,该缓存状态指示信息用于指示该多链路发送端的缓存业务的大小。
上述的携带BSR信令的QoS数据包中还可以携带指示该发送端的缓存业务的大小的缓存状态指示信息,使得多链路接收端获知多链路发送端本地缓存的业务的大小。
结合第二方面,在第二方面的某些实现方式中,该缓存状态指示信息包括该QoS控制字段中TID字段的1比特和该QoS控制字段中队列大小字段的8比特。
上述的缓存状态指示信息可以通过复用现有的QoS数据包中的字段实现,从而节省信令的开销。
第三方面,提供了一种数据传输的方法,该数据传输的方法可以由多链路发送端执行,或者,也可以由设置于多链路发送端中的芯片或电路执行,本申请对此不作限定。
上述的多链路发送端可以是多链路STA或多链路AP或其他的多链路设备。
该数据传输的方法包括:
该多链路发送端向该多链路接收端发送请求消息;
该多链路发送端接收来自该多链路接收端的响应消息;
其中,该请求消息和该响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送BSR信令之前,还可以通过与该多链路接收端协商得到TID-To-Link映射关系,该TID-To-Link映射关系能够确定不同链路上业务缓存大小,从而使得多链路发送端基于该TID-To-Link映射关系更加准确地确定出需要发送的BSR信令。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:该多链路发送端确定缓存状态报告BSR信令,该BSR信令用于指示该多链路接收端在一条或多条链路上对该多链路发送端的站点进行的调度;该多链路发送端在一条或多条链路上向该多链路接收端发送该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送BSR信令,使得多链路接收端能够基于该BSR信令对多链路发送端在一条链路或多条链路上进行站点的调度,从而实现在多链路合作方式下基于BSR机制提高ML设备调度站点的性能。
具体地,第三方面中涉及的BSR信令的格式与上述的第一方面中涉及的BSR信令的格式相同,这里不再赘述。
结合第三方面,在第三方面的某些实现方式中,该请求消息和/或该响应消息中包括控制信息和映射信息,该控制信息用于确定建立该映射关系,该映射信息用于指示该映射关系。
上述的用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括控制信息和映射信息,以实现多链路发送端和多链路接收端能够基于请求消息和该响应消息成功建 立TID-To-Link映射关系。
结合第三方面,在第三方面的某些实现方式中,该映射信息包括N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图,多链路发送端和多链路接收端基于该N个链路标识比特位图确定TID-To-Link映射关系。
结合第三方面,在第三方面的某些实现方式中,该映射信息包括控制字段和N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图和控制字段,多链路发送端和多链路接收端基于该N个链路标识比特位图和控制字段确定TID-To-Link映射关系。
结合第三方面,在第三方面的某些实现方式中,该请求消息包括请求管理帧,该响应消息包括响应管理帧;或者,该请求消息包括ADDBA请求帧,该响应消息包括ADDBA响应帧。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息可以复用现有流程中的信令,从而节省信令的开销。
结合第三方面,在第三方面的某些实现方式中,在该多链路发送端在一条或多条链路上向该多链路接收端发送该BSR信令之前,该方法还包括:该多链路发送端接收来自该多链路接收端的触发信息,该触发信息用于触发该多链路发送端在一条或多条链路上发送该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是基于多链路接收端的触发信息被动地决定发送该BSR信令,为多链路接收端提供主动权。
结合第三方面,在第三方面的某些实现方式中,该多链路发送端在一条或多条链路上向该多链路接收端发送该BSR信令包括:
该多链路发送端向该多链路接收端发送服务质量QoS数据包,该QoS数据包的媒体接入控制MAC头中携带该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是将该BSR信令携带在QoS数据包的MAC头中完成发送,提供简洁的发送BSR信令的方式。
结合第三方面,在第三方面的某些实现方式中,该QoS数据包的QoS控制字段中还包括缓存状态指示信息,该缓存状态指示信息用于指示该多链路发送端的缓存业务的大小。
上述的携带BSR信令的QoS数据包中还可以携带指示该发送端的缓存业务的大小的缓存状态指示信息,使得多链路接收端获知多链路发送端本地缓存的业务的大小。
结合第三方面,在第三方面的某些实现方式中,该缓存状态指示信息包括该QoS控制字段中TID字段的1比特和该QoS控制字段中队列大小字段的8比特。
上述的缓存状态指示信息可以通过复用现有的QoS数据包中的字段实现,从而节省信令的开销。
第四方面,提供了另一种数据传输的方法,该数据传输的方法可以由多链路接收端执行,或者,也可以由设置于多链路接收端中的芯片或电路执行,本申请对此不作限定。
上述的第二设备可以是多链路STA或多链路AP或其他的多链路设备。
该数据传输的方法包括:
该多链路接收端接收来自该多链路发送端的请求消息;该多链路接收端向该多链路发送端发送响应消息;其中,该请求消息和该响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送BSR信令之前,还可以通过与该多链路接收端协商得到TID-To-Link映射关系,该TID-To-Link映射关系能够确定不同链路上业务缓存大小,从而使得多链路发送端基于该TID-To-Link映射关系更加准确地确定出需要发送的BSR信令。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:该多链路接收端在一条或多条链路上接收来自该多链路发送端的缓存状态报告BSR信令;
该多链路接收端根据该BSR信令在一条或多条链路上对该多链路发送端的站点进行调度。
进一步地,本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送BSR信令,使得多链路接收端能够基于该BSR信令对多链路发送端在一条链路或多条链路上进行站点的调度,从而实现在多链路合作方式下基于BSR机制提高ML设备调度站点的性能。
具体地,第四方面中涉及的BSR信令的格式与上述的第二方面中涉及的BSR信令的格式相同,这里不再赘述。
结合第四方面,在第四方面的某些实现方式中,该请求消息和/或该响应消息中包括控制信息和映射信息,该控制信息用于确定建立该映射关系,该映射信息用于指示该映射关系。
上述的用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括控制信息和映射信息,以实现多链路发送端和多链路接收端能够基于请求消息和该响应消息成功建立TID-To-Link映射关系。
结合第四方面,在第四方面的某些实现方式中,该映射信息包括N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图,多链路发送端和多链路接收端基于该N个链路标识比特位图确定TID-To-Link映射关系。
结合第四方面,在第四方面的某些实现方式中,该映射信息包括控制字段和N个链路标识比特位图,该N为正整数。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息中包括的映射信息可以是N个链路标识比特位图和控制字段,多链路发送端和多链路接收端基于该N个链路标识比特位图和控制字段确定TID-To-Link映射关系。
结合第四方面,在第四方面的某些实现方式中,该请求消息包括请求管理帧,该响应消息包括响应管理帧;或者,该请求消息包括ADDBA请求帧,该响应消息包括ADDBA 响应帧。
本申请实施例提供的数据传输的方法,用于协商建立TID-To-Link映射关系的请求消息和该响应消息可以复用现有流程中的信令,从而节省信令的开销。
结合第四方面,在第四方面的某些实现方式中,在该多链路接收端在一条或多条链路上接收来自该多链路发送端的该BSR信令之前,该方法还包括:
该多链路接收端向该多链路发送端发送触发信息,该触发信息用于触发该多链路发送端在一条或多条链路上发送该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是基于多链路接收端的触发信息被动地决定发送该BSR信令,为多链路接收端提供主动权。
结合第四方面,在第四方面的某些实现方式中,该多链路接收端在一条或多条链路上接收来自该多链路发送端的该BSR信令包括:
该多链路接收端在一条或多条链路上接收来自该多链路发送端的服务质量QoS数据包,该QoS数据包的媒体接入控制MAC头中携带该BSR信令。
本申请实施例提供的数据传输的方法,多链路发送端向多链路接收端发送该BSR信令,可以是将该BSR信令携带在QoS数据包的MAC头中完成发送,提供简洁的发送BSR信令的方式。
结合第四方面,在第四方面的某些实现方式中,该QoS数据包的QoS控制字段中还包括缓存状态指示信息,该缓存状态指示信息用于指示该多链路发送端的缓存业务的大小。
上述的携带BSR信令的QoS数据包中还可以携带指示该发送端的缓存业务的大小的缓存状态指示信息,使得多链路接收端获知多链路发送端本地缓存的业务的大小。
结合第四方面,在第四方面的某些实现方式中,该缓存状态指示信息包括该QoS控制字段中TID字段的1比特和该QoS控制字段中队列大小字段的8比特。
上述的缓存状态指示信息可以通过复用现有的QoS数据包中的字段实现,从而节省信令的开销。
第五方面,提供一种数据传输的装置,所述装置用于执行上述第一方面和第三方面提供的方法。具体地,所述装置可以包括用于执行第一方面和第三方面以及第一方面和第三方面任一种可能实现方式的模块。
第六方面,提供一种数据传输的装置,所述装置用于执行上述第二方面和第四方面提供的方法。具体地,所述装置可以包括用于执行第二方面和第四方面以及第二方面和第四方面任一种可能实现方式的模块。
第七方面,提供一种数据传输的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第一方面和第三方面以及第一方面和第三方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中 的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第八方面,提供一种数据传输的装置,包括处理器。该处理器与存储器耦合,可用于执行存储器中的指令,以实现上述第二方面和第四方面以及第二方面和第四方面任一种可能实现方式中的方法。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为接入点。当该装置为接入点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于接入点中的芯片。当该装置为配置于接入点中的芯片时,所述通信接口可以是输入/输出接口。
在一种实现方式中,该装置为站点。当该装置为站点时,所述通信接口可以是收发器,或,输入/输出接口。
在另一种实现方式中,该装置为配置于站点中的芯片。当该装置为配置于站点中的芯片时,所述通信接口可以是输入/输出接口。
在另一种实现方式中,该装置为芯片或芯片***。
可选地,所述收发器可以为收发电路。可选地,所述输入/输出接口可以为输入/输出电路。
第九方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第一方面和第三方面以及第一方面和第三方面任一种可能实现方式中的方法。
第十方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被装置执行时,使得所述装置实现第二方面和第四方面以及第二方面和第四方面任一种可能实现方式中的方法。
第十一方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第一方面和第三方面以及第一方面和第三方面任一种可能实现方式中提供的方法。
第十二方面,提供一种包含指令的计算机程序产品,所述指令被计算机执行时使得装置实现第二方面和第四方面以及第二方面和第四方面任一种可能实现方式中提供的方法。
第十三方面,提供一种通信***,包括如前所述的接入点和站点。
附图说明
图1是适用于本申请实施例的方法的通信***的示意图;
图2是适用于本申请实施例的接入点的内部结构图;
图3是适用于本申请实施例的站点的内部结构图;
图4是本申请实施例提供的一种AP和STA的结构图;
图5示出了一种多链路AP和多链路STA建立链路的示意图;
图6是一种BSR信息的格式示意图;
图7是本申请实施例提供的数据传输的方法700的示意性流程图;
图8中(a)-(c)是本申请实施例提供的BSR信息的格式示意图;
图9是本申请实施例提供的一种数据包示意图;
图10是一种块确认参数集字段示意图;
图11是本申请实施例提供的一种ADDBA拓展元素的示意图;
图12是本申请实施例提供的数据传输的装置的示意性框图;
图13是本申请实施例提供的数据传输的装置的另一示意性框图;
图14是本申请实施例提供的数据传输的装置的又一示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信***,例如:WLAN通信***,全球移动通讯(global system of mobile communication,GSM)***、码分多址(code division multiple access,CDMA)***、宽带码分多址(wideband code division multiple access,WCDMA)***、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)***、LTE频分双工(frequency division duplex,FDD)***、LTE时分双工(time division duplex,TDD)、通用移动通信***(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信***、第五代(5th generation,5G)***、新无线(new radio,NR)或未来通信***等。
以下作为示例性说明,以WLAN***为例,描述本申请实施例的应用场景以及本申请实施例的方法。
具体而言,本申请实施例可以应用于WLAN,并且本申请实施例可以适用于WLAN当前采用的IEEE 802.11系列协议中的任意一种协议。WLAN可以包括一个或多个基本服务集(basic service set,BSS),BSS的网络节点包括AP和STA。每个BSS可以包含一个AP和多个关联于该AP的STA。
本申请实施例中发送端和/或接收端可以是WLAN中用户站点(STA),该用户站点也可以称为***、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。该STA可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线局域网(例如Wi-Fi)通信功能的手持设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备。
另外,本申请实施例中的发送端和/或接收端也可以是WLAN中AP,AP可用于与接入终端通过无线局域网进行通信,并将接入终端的数据传输至网络侧,或将来自网络侧的数据传输至接入终端。
为便于理解本申请实施例,首先以图1中示出的通信***为例详细说明适用于本申请实施例的通信***。如图1所示的场景***可以是WLAN***,图1的WLAN***可以包括一个或者多个AP和一个或者多个STA,图1以一个AP(如图1中所示的AP)和三个STA(如图1中所示的STA#1、STA#2和STA#3)之间通信为例。
AP和STA之间可以通过各种标准进行无线通信。例如,AP和STA之间的上行传输方式包括但不限于正交频分多址(orthogonal frequency-division multiple access,OFDMA)方式,多站点信道多输入多输出(mulit-user multiple input multiple output,MU-MIMO)方式,或者OFDMA与MU-MIMO混合传输方式,或者单用户多入多出(single-user multiple-input multiple-output,SU-MIMO)技术。
其中,AP也称为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有无线保真(wireless fidelity,WiFi)芯片的终端设备或者网络设备。可选地,AP可以为支持802.11等多种WLAN制式的设备。
图2示出了AP的内部结构图,其中,AP可以是多天线的,也可以是单天线的。图2中,AP包括物理层(physical layer,PHY)处理电路和媒体接入控制(media access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
其中,STA产品通常为支持802.11系列标准的终端产品,如手机、笔记本电脑等,图3示出了单个天线的STA结构图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。图3中,STA可以包括PHY处理电路和MAC处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
需要说明的是,图2和图3只是简单的示意图,对本申请的保护范围不构成任何的限定,AP和STA的内部结构可以参考现有技术的介绍也可以参考未来技术发展之后的AP和STA的内部结构,还可以为图4所示的形式。图4是本申请实施例提供的一种AP和STA的结构图,另外图4所示的AP和STA的内部结构图,其中AP和/或STA的天线可以配置多根,对于AP和STA的内部结构本申请不做限定,也不再赘述。
为便于理解本申请实施例,对本申请实施例中涉及的几个基本概念做简单说明。应理解,下文中所介绍的基本概念是以WLAN协议中规定的基本概念为例进行简单说明,但并不限定本申请实施例只能够应用于WLAN***。因此,以WLAN***为例描述时出现的标准名称,都是功能性描述,具体名称并不限定,仅表示设备的功能,可以对应的扩展到其它***,比如NR或未来通信***中。
1、OFDMA技术。
为了大幅提升WLAN***的业务传输速率,IEEE 802.11ax标准在现有OFDM技术的基础上,进一步采用OFDMA技术。OFDMA技术是在OFDM技术的基础之上发展起来的,OFDMA技术是OFDM技术和频分多址(frequency division multiple access,FDMA)技术结合而成的一种适用于多用户接入的技术,该技术因为实现简单、频谱利用率高已经被LTE和5G等国际标准采纳。OFDMA技术将物理信道划分为多个资源块,每个资源块包括多个子载波(子信道),每个用户可以占用一个资源块进行数据传输,因此多个用户 可以并行传输,降低了多用户竞争接入的时间开销和冲突概率。在OFDMA技术中,因为子载波相互重叠,所以极大提高了频谱利用率。
2、6千兆赫兹(giga Hertz,GHz)。
在IEEE 802.11ax制定中的2017年,美国联邦通信委员会(federal communications commission,FCC)开放了一段新的免费频段5925-7125MHz,本申请中将该免费频段简称为6GHz,于是IEEE 802.11ax标准工作者在IEEE 802.11ax项目授权申请书(project authorization requests,PAR)中把IEEE 802.11ax中的设备工作的频段范围从2.4GHz,5GHz拓展到2.4GHz,5GHz和6GHz。
3、多链路。
由于用户对通信服务质量的需求越来越高,IEEE 802.11ax标准已经难以在大吞吐量、低抖动和低延迟等方面满足用户需求,因此迫切需要发展下一代IEEE技术,例如,IEEE 802.11be标准。
IEEE 802.11下一代标准中的设备由于需向前兼容,即兼容IEEE 802.11ax标准及之前的标准,因此IEEE 802.11下一代标准中的设备也会支持IEEE 802.11ax中的设备的工作频段,例如,IEEE 802.11下一代标准中的设备会支持2.4GHz,5GHz和6GHz等频段。
具体地,可以根据最新开放的免费的6GHz频段进行信道划分,使得可支持的带宽可以超过在5GHz支持的最大带宽160MHz(如320MHz),在同一频段上,可以通过多个信道合作等方式提高峰值吞吐量,降低业务传输的时延;除了通过超大带宽,IEEE 802.11ax下一代标准中的设备还可以通过多个频段(2.4GHz,5GHz和6GHz)合作等方式提高峰值吞吐量,本申请中将多频段或多信道统称为多链路。
4、多链路设备(multi link device,MLD)。
本申请实施例中将同时支持多条链路的下一代IEEE 802.11标准站设备称为多链路设备。
示例性地,两个多链路设备分别包括多个STA,其中,一个多链路设备中的每个STA可以与另外一个多链路设备中的一个STA建立一个链路进行通信;或者,
示例性地,两个多链路设备分别包括多个AP,其中,一个多链路设备中的每个AP可以与另外一个多链路设备中的一个AP建立一个链路进行通信;或者,
示例性地,两个多链路设备中的一个多链路设备包括多个STA,另一个多链路设备包括多个AP,其中,一个多链路设备中的每个STA可以与另外一个多链路设备中的一个AP建立一个链路进行通信。
多链路设备工作的频段为1GHz,2.4GHz,5GHz,6GHz以及高频60GHz中的全部或者一部分频段。图5示出了一种多链路AP和多链路STA建立链路的示意图。
从图5中可以看出,多链路AP中包括N个AP实体(如图5所示的AP#1、AP#2和AP#N),多链路STA中包括N个STA实体(如图5所示的STA#1、STA#2和STA#N),其中,N个STA实体之间可以共享MAC层。
进一步地,多链路AP中的AP#1和多链路STA中的STA#1通过链路(如图5所示的链路#1)实现通信;多链路AP中的AP#2和多链路STA中的STA#2通过链路(如图5所示的链路#2)实现通信;多链路AP中的AP#N和多链路STA中的STA#N通过链路(如图5所示的链路#N)实现通信。
需要说明的是,IEEE 802.11ax及之前标准中的虽然配置多链路,但通常来说,每个多链路建立不同的BSS,一个时刻只能在一个链路跟该链路所归属的BSS内的站点通信。IEEE 802.11下一代标准中的设备除了使用新频段6GHz的连续超大带宽,也可以使用多链路合作技术把不连续的多链路聚合起来形成超大带宽。多链路合作技术除了聚合更大的带宽,还可以使用多链路合作技术同时发送同业务的数据包给同一个站点。
5、TID-to-Link映射。
在多链路设备操作中,为了更好控制每条链路上的业务传输,IEEE 802.11ax下一代标准需要定义一种TID-to-Link映射机制,用来指示一个或多个TID(在IEEE 802.11ax中,基于增强的分布式通道访问(enhanced distributed channel access,EDCA)传输的业务总共有8种类型)分别映射到哪些链路上传输。默认情况下,每个TID都允许在任意一条的链路上传输,但是经过多链路STA和多链路AP协商TID-to-Link映射后,则每个TID只允许在映射到的一个或多个链路上传输。
6、缓存状态汇报机制。
由上述可知在IEEE 802.11ax中引进了OFDMA技术,为了辅助上行OFDMA调度,STA需汇报上行业务给AP,从而帮助AP在调度上行OFMDA传输时能够正确分配资源块大小。
现有协议中规定的上行业务汇报机制是STA通过在发送服务质量(quality of service,QoS)数据帧(本申请中涉及的QoS数据帧包括QoS空数据帧)时在MAC头中的高吞吐控制(high hroughput control,HT-control)字段携带BSR信令,其中,HT-control字段为4字节,该4字节中携带2比特的指示信息,该指示信息用来指示HT-control是高吞吐(high hroughput,HT)的控制信令,还是非常高吞吐量(very high throughput,VHT)的控制信令,或者还是高效率(high efficiency,HE)的控制信令。
示例性地,在HE的控制信令中,每种控制信息由4比特的控制标识符(control ID)、控制信息以及0比特或更多的填充比特组成。其中,控制标识符是用来标识控制信令的种类,控制标识符后面紧接着对应的控制信息。
本申请中涉及的是上行缓存状态汇报控制信息,BSR信息的控制标识符的值为3,BSR信息的控制信息包含26比特,具体如图6所示,图6是一种BSR信令的格式示意图,从图6中可以看出BSR信息中包括接入类型标识(access category identify,ACI)比特位图(ACI bitmap)字段、TID差值(delta TID)字段、高优先级ACI(ACI high)字段、比例因子(scaling factor)字段、高优先级队列大小(queue size high)字段以及所有队列大小(queue size all)字段,其中,本申请中涉及的队列理解为缓存。下面详细说明BSR信息中每个字段的功能:
1)ACI bitmap字段用于指示在哪些接入类型(access category,AC)上有缓存业务;
2)ACI bitmap字段和delta TID字段用于联合指示多少个TID上有缓存业务;
3)ACI high字段用于指示哪个AC是此次缓存状态汇报优先级高的AC;
4)scaling factor字段用于指示队列大小的单位(如,16字节,256字节,2048字节和32768字节);
5)queue size high字段用于指示此次缓存状态汇报中高优先级ACI对应的AC上的缓存业务的大小;
6)queue size all字段用于指示此次缓存状态汇报中所有AC上的缓存业务的总大小。
具体地,缓存业务的大小的计算方式为:
缓存业务的大小=(队列大小字段的值+1)*比例因子字段的值(式1)
其中,队列大小字段的值包括上述的queue size high字段的值,或queue size all字段的值。当式1中的队列大小字段的值为queue size high字段的值时,计算得到的为高优先级ACI对应的AC上的缓存业务的大小;当式1中的队列大小字段的值为queue size all字段的值时,计算得到的为所有AC上的缓存业务的总大小。
进一步地,如果队列大小字段等于254,则指示对应的缓存业务的大小大于254*比例因子,如果队列大小字段等与255,则指示对应的缓存业务的大小未知。
由上述可知,IEEE 802.11ax的缓存状态汇报机制是基于AC汇报的,在这种机制下多链路AP无法根据某个AC的上业务判断多链路STA在每一条链路上的业务大小,从而无法高效率进行上行多站点调度。
此外,为了便于理解本申请实施例,首先做出以下几点说明。
第一,在本申请中,“用于指示”可以包括用于直接指示和用于间接指示。当描述某一指示信息用于指示A时,可以包括该指示信息直接指示A或间接指示A,而并不代表该指示信息中一定携带有A。
将指示信息所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。同时,还可以识别各个信息的通用部分并统一指示,以降低单独指示同样的信息而带来的指示开销。
第二,在本申请中示出的第一、第二以及各种数字编号(例如,“#1”、“#2”等)仅为描述方便,用于区分的对象,并不用来限制本申请实施例的范围。例如,区分不同的信息,或区分不同的STA等。而不是用于描述特定的顺序或先后次序。应该理解这样描述的对象在适当情况下可以互换,以便能够描述本申请的实施例以外的方案。
第三,本申请实施例中,“预设的”可包括由设备信令指示或者预先定义,例如,协议定义。其中,“预先定义”可以通过在设备(例如,包括站点和接入点)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预先定义可以是指协议中定义的。
第四,本申请实施例中涉及的“保存”,可以是指的保存在一个或者多个存储器中。所述一个或者多个存储器,可以是单独的设置,也可以是集成在编码器或者译码器,处理器、或通信装置中。所述一个或者多个存储器,也可以是一部分单独设置,一部分集成在译码器、处理器、或通信装置中。存储器的类型可以是任意形式的存储介质,本申请并不对此限定。
第五,在本申请实施中,“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议、WLAN协议以及应用于未来的通信***中的相关协议,本申请对此不做限定。
第六,本申请实施例中,“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
上文中简单介绍了现有协议中规定的缓存状态汇报机制,并且指出现有的缓存状态汇报机制由于基于AC进行汇报不能很好的适用于多链路设备操作。为了解决现有的缓存状态汇报机制存在的缺陷,本申请提出一种数据传输的方法,能够适用于多链路设备的缓存状态汇报机制。
下面将结合附图详细说明本申请提供的技术方案。本申请实施例可以应用于多个不同的场景下,包括图1所示的场景,但并不限于该场景。示例性地,对于上行传输,STA可以作为发送端,AP可以作为接收端;对于下行传输,AP可以作为发送端,STA可以作为接收端;对于其他传输场景,例如,AP和AP之间的数据传输,其中一个AP可以作为发送端,另一个AP可以作为接收端;又例如,STA和STA之间的上行传输,其中一个STA可以作为发送端,另一个STA可以作为接收端。因此,下面按照发送端设备和接收端设备对本申请实施例进行描述。
应理解,下文示出的实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是接收端设备或发送端设备,或者,是接收端设备或发送端设备中能够调用程序并执行程序的功能模块。
以下,不失一般性,以发送端设备和接收端设备之间的交互为例详细说明本申请实施例提供的数据传输的方法,本申请实施例中涉及的发送端设备和接收端设备为多链路设备,其中,多链路设备之间的数据传输方式如图5中所示,这里不再赘述。
图7是本申请实施例提供的数据传输的方法700的示意性流程图。图7所示的方法700可以包括如下步骤中部分或全部步骤。
S710,多链路发送端确定BSR信令。
该BSR信令用于指示多链路接收端在一条或多条链路上对多链路发送端的站点进行调度。例如,OFDMA调度。
需要说明的是,本申请实施例中对于多链路接收端如何基于BSR信令进行站点调度并不限定,可以参考现有协议中多链路接收端基于多链路发送端上报的BSR信令进行用户站点的方式。本申请实施例中多链路接收端进行站点调度与现有中接收端进行站点调度不同的是,本申请实施例中多链路接收端可以在一条或多条链路上对多链路发送端的站点进行调度,每条链路上的调度可以参考现有协议规定的站点调度。
示例性地,多链路发送端能够基于本地缓存业务的大小以及多链路和TID之间的映射关系确定发送给多链路接收端的BSR信令的格式。
示例性地,本申请实施例中多链路发送端确定的BSR信令的格式如图8所示,图8是本申请实施例提供的BSR信令的示意图。
一种可能的实现方式,从图8(a)中可以看出,该BSR信令包括传输链路的所有队列大小字段、传输链路的比例因子字段、TID字段、队列大小字段和第一比例因子字段中的一个或者多个。下面简单介绍图8(a)中所示的BSR信令中包括的各个字段的用途:
1)传输链路的所有队列大小字段用于指示发送该BSR信令的链路上的第一缓存业务的大小。
具体地,该链路上第一缓缓存业务的大小的计算方式为:
第一缓缓存业务的大小=(传输链路的所有队列大小字段的值+1)*传输链路的比例因子字段的值(式2)
2)传输链路的比例因子字段用于指示传输链路的所有队列大小指示的第一缓缓存业务的大小的单位(如,16字节,256字节,2048字节和32768字节);
3)TID字段指示当前汇报的第一业务类型;
4)队列大小指示发送端缓存业务中包括TID字段指示的第一业务类型对应的第二缓存业务的大小。
具体地,该第一业务类型对应的第二缓存业务的大小的计算方式为:
第二缓存业务的大小=(队列大小字段的值+1)*第一比例因子字段的值(式3)
5)第一比列因子字段的值用于队列大小指示的第二缓存业务的大小的单位(如,16字节,256字节,2048字节和32768字节)。
可选地,如果Q_T=2 (q_T)-2,则指示上述的第一缓存业务的大小>(2 (q_T))*传输链路的字段的值比例因子,和/或,如果Q_TID=2 (q_TID)-2则指示第二缓存业务的大小>(2 (q_TID))*第一比列因子字段的值;
如果Q_T=2 (q_T)-1,则指示第一缓缓存业务的大小未知,和/或,如果Q_TID=2 (q_TID)-1则指示第二缓存业务的大小未知。
其中,Q_T表示传输链路的所有队列大小字段的值,q_T表示传输链路的所有队列大小字段的比特数,Q_TID表示队列大小字段的值,q_TID表示队列大小字段的比特数。
具体地,传输链路的所有队列大小字段能指示最大的第一缓存业务的大小=(2^10-2)*32768=1022*32768字节=33488896字节,队列大小字段能指示最大的第二缓存业务的大小=(2^9-2)*32768=510*32768字节=16711680字节,满足802.11be大吞吐量需求。
需要说明的是,图8(a)中的BSR信令包括的各个字段占用的比特数只是举例,对本申请的保护范围不构成任何的限定,BSR信令包括的各个字段占用的比特数还可以其他值。例如,图8(a)中的BSR信令包括的传输链路的所有队列大小字段可以占用9比特或者11比特,各个字段占用的比特数能够表示各个字段的值即可,具体数目不做限定,这里不一一举例说明。
另一种可能的实现方式,从图8(b)中可以看出,该BSR信令包括第一TID字段(如图8(b)所示的TID#1字段)、第一队列大小字段(如图8(b)所示的队列#1大小字段)、TID#2字段、第二队列大小字段(如图8(b)所示的队列#2大小字段)和第二比例因子字段中的一个或者多个。下面简单介绍该BSR信令中包括的各个字段的用途:
1)TID#1字段指示当前汇报的第二业务类型;
2)队列#1大小字段指示发送端缓存中包括TID#1字段指示的第二业务类型对应的第三缓存业务的大小。
具体地,该第二业务类型对应的第三缓存业务的大小的计算方式为:
第三缓存业务的大小=(队列#1大小字段的值+1)*第二比例因子字段的值(式4)
3)TID#2字段指示当前汇报的第三业务类型;
4)队列#2大小字段指示发送端缓存中包括TID#2字段指示的第三业务类型对应的第四缓存业务的大小。
具体地,该第三业务类型对应的第四缓存业务的大小的计算方式为:
第四缓存业务的大小=(队列#2大小字段的值+1)*第二比例因子字段的值(式5)
5)第二比例因子字段的值用于指示第三缓存业务的大小和第四缓存业务的大小的单位(如,16字节,256字节,2048字节和32768字节)。
可选地,如果Q_1=2 (q_1)-2,则指示上述的第三缓存业务的大小>(2 (q_1))*第二比例因子,和/或,如果Q_2=2 (q_2)-2,则指示上述的第四缓存业务的大小>(2 (q_2))*第二比例因子;
如果Q_1=2 (q_1)-1,则指示上述的第三缓存业务的大小未知,和/或,如果Q_2=2 (q_2)-2,则指示上述的第四缓存业务的大小未知
其中,Q_1表示队列#1大小字段的值,q_1表示队列#1大小字段的比特数,Q_2表示队列#2大小字段的值,q_2表示队列#2大小字段的比特数。
具体地,汇报的2个TID的队列大小字段能指示最大的缓存大小=510*32768字节=16711680字节,满足802.11be大吞吐量需求。
需要说明的是,图8(b)中的BSR信令包括的各个字段占用的比特数只是举例,对本申请的保护范围不构成任何的限定,BSR信令包括的各个字段占用的比特数还可以其他值。例如,图8(b)中的BSR信令包括的队列#1大小字段可以占用小于或者大于9比特,各个字段占用的比特数能够表示各个字段的值即可,具体数目不做限定,这里不一一举例说明。
又一种可能的实现方式,从图8(c)中可以看出,该BSR信令包括第三TID字段(如图8(c)所示的TID#1字段)、第三队列大小字段(如图8(c)所示的队列#1大小字段)、第三比例因子字段、第四TID字段(如图8(c)所示的TID#2字段)、第四队列大小字段(如图8(c)所示的队列#2大小字段)和比例因子差值字段中的一个或者多个。下面简单介绍该BSR信令中包括的各个字段的用途:
1)TID#1字段指示当前汇报的第四业务类型;
2)队列#1大小字段指示发送端缓存中包括TID#1字段指示的第四业务类型对应的第五缓存业务的大小。
具体地,该第四业务类型对应的第五缓存业务的大小的计算方式为:
第五缓存业务的大小=(队列#1大小字段的值+1)*比例因子字段的值(式6)
3)第三比例因子字段的值用于指示队列#1大小字段指示的第五缓存业务的大小的单位(如,16字节,256字节,2048字节和32768字节)。
4)TID#2字段指示当前汇报的第五业务类型;
5)队列#2大小字段指示发送端缓存中包括TID#2字段指示的第五业务类型对应的第六缓存业务的大小。
具体地,该第五业务类型对应的第六缓存业务的大小的计算方式为:
第六缓存业务的大小=(队列#2大小字段的值+1)*比例因子字段的值(式7)
或者
第六缓存业务的大小=(队列#2大小字段的值+1)*大于比例因子字段的值(式8)
6)比例因子差值字段和第三比例因子字段联合指示队列#2大小字段指示的第六缓存业务的大小的单位。
可选地,当比例因子差值字段置第一值(如0),则队列#2大小字段指示的第六缓存业务的大小的单位通过比例因子字段指示,对应于上述的式7计算方式;当比例因子差值字段置第二值(如1),则队列#2大小字段指示的第六缓存业务的大小的单位为比例因子指示的单位下一个更大的值,对应于上述的式8计算方式。
需要说明的是,上述的队列#2大小字段指示发送端缓存中包括TID#2字段指示的业务类型对应的缓存业务的大小的具体的计算方式可以是其他的计算方式,在此不再赘述。
另外,还需要说明的是,本申请实施例中多链路发送端确定的BSR信令的格式可以包括上述3种方式中每种里提到的一个或多个信令字段。
需要说明的是,本申请实施例中多链路发送端确定的BSR信令的格式还可以为上述3种方式中的一个或多个信令字段的组合。
上面结合图8详细介绍了几种BSR信令可能的形式,应理解多链路发送端确定BSR信令格式的时候需要参考TID与多链路之间的(TID-To-Link)映射关系,基于映射关系获知不同TID指示的缓存业务在分别在哪个链路上发送。
示例性地,本申请实施例中,多链路发送端获知TID与多链路之间的映射关系可以通过与接收端协商确定:
多链路发送端向多链路接收端发送请求消息,该请求消息用于请求协商TID-To-Link映射关系,多链路接收端向多链路发送端发送响应消息,该响应消息用于响应协商TID-To-Link映射关系。
即图7所示的方法还包括S711,发送端向接收端发送请求消息;S712,接收端向发送端发送响应消息。
作为一种可能的实现方式,请求消息为请求管理帧、响应消息为响应管理帧。在该实现方式下,多链路发送端向多链路接收端发送请求管理帧之后,会接收到多链路接收端返回的确认(acknowledge,ACK)帧、多链路接收端向多链路发送端发送响应管理帧之后,会接收到多链路发送端返回的ACK帧。在该过程中,发送端和接收端完成协商TID-To-Link映射关系。
作为另一种可能的实现方式,TID-to-Link映射协商也可以放在块确认建立对话中,请求消息为ADDBA请求帧、响应消息为ADDBA响应帧。在该实现方式下,不需要块确认,或者说没有建立确认协议下的每个TID的单个MAC协议数据单元(MAC protocol data unit,MPDU)在所有链路上传输,其中所有链路为多链路建立中的链路。
作为又一种可能的实现方式,请求消息和响应消息为其他帧,比如管理帧,用于协商TID-To-Link映射关系。
示例性地,多链路发送端获知TID与多链路之间的TID-To-Link映射关系可以通过协议预定义获知,多链路发送端和多链路接收端无需通过上述的协商过程确定映射关系。
为了与现有的多链路发送端和多链路接收端之间的信令交互相兼容,下面主要以请求消息为请求管理帧、响应消息为响应管理帧为例说明多链路发送端和多链路接收端协商TID-To-Link映射关系。
具体地,上述的请求管理帧和响应管理帧中分别携带有TID与多链路之间的 TID-To-Link映射关系相关的信息,其中,TID-To-Link映射关系相关的信息包括控制信息和一个或多个映射信息,其中,控制信息用于控制如何建立TID-To-Link映射关系,映射信息用于指示TID-To-Link映射关系。
控制信息包括以下可能中的至少一种:
可能一、请求管理帧中携带TID-to-Link映射控制信息字段值为0,标识请求TID与多链路之间的建立映射的(request TID-to-Link mapping),该控制信息字段用于请求建立TID-to-Link映射。在可能一中多链路发送端请求建立TID-to-Link映射,映射信息可以为“空”,或者为一个特殊值(如,0);
可能二、请求管理帧中携带携带TID-to-Link映射控制信息字段值为1,标识建议TID与多链路之间的建立映射的(suggest TID-to-Link mapping),该控制信息字段用于建议建立怎样的映射关系。在可能二中多链路发送端请求建立TID-to-Link映射关系,并提供建议的TID-to-Link映射关系,如果建议的TID-to-Link映射关系没有满足,则TID-to-Link映射关系协商建立仍被接受;
可能三、请求管理帧中携带携带TID-to-Link映射控制信息字段值为2,标识要求TID与多链路之间的建立映射的(demand TID-to-Link mapping),该控制信息字段用于要求建立某种TID-to-Link映射关系。在可能三中多链路发送端请求建立TID-to-Link映射关系,并提供需求的TID-to-Link映射关系,如果需求的TID-to-Link映射关系没有满足,则TID-to-Link映射关系协商建立不被接受;
可能四、响应管理帧中携带携带TID-to-Link映射控制信息字段值为3,标识接受TID与多链路之间的建立的映射(accept TID-to-Link mapping),该控制信息字段用于接受建立TID-to-Link映射关系。在可能四中多链路接收端接受多链路发送端发送的建立TID-to-link映射关系请求,但TID-to-link映射信息为多链路接收端发送的,也就是说为响应管理帧中携带的;
可能五、响应管理帧中携带携带TID-to-Link映射控制信息字段值为4,标识替换TID与多链路之间的建立的映射(alternateTID-to-Link mapping),该控制信息字段用于替换TID-to-Link映射关系。在可能五中多链路接收端建议的TID-to-link映射关系与多链路发送端发送的建议的TID-to-link映射关系或者需求的TID-to-link映射关系不同;
可能六、响应管理帧中携带携带TID-to-Link映射控制信息字段值为5,标识命令TID与多链路之间的建立的映射(dictateTID-to-Link mapping),该控制信息字段用于指示TID-to-Link映射。在可能六中多链路接收端需求的TID-to-link映射关系与多链路发送端发送的建议的TID-to-link映射关系或者需求的TID-to-link映射关系不同;
可能七、响应管理帧中携带携带TID-to-Link映射控制信息字段值为6,标识拒绝TID与多链路之间的建立映射(reject TID-to-Link mapping),该控制字段信息用于拒绝建立TID-to-Link映射关系。在可能七中多链路接收端拒绝多链路发送端发送的建立TID-to-link映射请求。
上述的可能一-可能七可以用下表1表示:
表1
Figure PCTCN2021080836-appb-000001
Figure PCTCN2021080836-appb-000002
进一步地,TID-to-Link映射信息包括以下几种可能:
可能一:
TID-to-Link映射信息包括N个链路标识比特位图,N为正整数。其中,每个链路标识比特位图对应一个TID,链路标识比特位图长度固定,链路标识比特位图中值为1的比特表示链路标识比特位图对应的TID和值为1的比特在比特位图中的位置标识的链路相对应,从而实现建立TID-to-Link映射。
例如,一共有8个TID,TID-to-Link映射信息包括8个链路标识比特位图分别为:11000000 10000000 11100000 11000000 10100000 11000000 10000000 10000000。其中,11000000对应TID#1,且11000000中值为1的比特位,位于比特位图中的第一和第二个比特位,则指示TID#1映射到链路#1和链路#2;同理,TID#2映射到链路#1、TID#3映射到链路#1,链路#2和链路#3、TID#4映射到链路#1和链路#2、TID#5映射到链路#1和链路#3,TID#6映射链路#1和链路#2、TID#7映射到链路#1、TID#8映射到链路#1。
应理解,上述可能一中每个链路标识比特位图对应的TID和该链路标识比特位图中比特值为1的比特所位于的位置指示的链路相对应只是举例,对本申请的保护范围不构成任何的限定,例如,还可以是确定比特值为0的比特所位于的位置,判断TID相对应的链路,这里不再赘述。
可能二:
TID-to-Link映射信息包括控制字段和N个链路标识比特位图字段,N为正整数。
其中,控制字段中包括需要映射的TID的个数或者TID比特位图。可选地,该控制字段中还可以包括链路个数,另外链路个数也可以位于多链路建立请求帧和/或多链路建立响应帧其他位置,本申请对此不做限定。
链路标识比特位图字段的字段取决于需要映射的TID的个数或者取决于TID比特位图置第一值的个数(如TID比特位图置1的个数)。链路标识比特位图字段长度可以由链路个数决定,也可以是固定的长度。
进一步地,不需要要映射的TID则隐式的指示该TID可以所有链路上传输,其中,所有链路为在多链路建立过程的建立的链路。
如果TID-to-Link映射信息包括TID个数,则链路标识比特位图还需包括对应的TID标识号;如果TID-to-Link映射信息包括TID比特位图,则链路标识比特位图不需包括链路标识号。
例如,TID比特位图为11000000,链路个数为3,2个链路标识比特位图字段分别为110 101,则表明TID#1映射到链路#1和链路#2,TID#2映射到链路#1和链路#3,TID#3~TID#8则映射到所有链路上(链路#1、链路#2和链路#3)。
再例如,TID个数为2,链路个数为3,2个链路标识比特位图字段分别为TID 1 110 101,TID2 101,其中TID#1和#2也是需要用序列指示的,用4比特或者3比特指示,TID1用0000,TID2用0001,则表明TID#1映射到链路#1和链路#2,TID#2映射到链路#1和链路#3,TID#3~TID#8则映射到所有链路上(链路#1、链路#2和链路#3)。
可选的,链路个数指示字段不存在,则链路标识比特位图字段(不包括TID标识)的长度为固定的,比如8比特
需要说明的是,如果TID比特位图全为第二值(如TID比特位图全置0),则表明所有TID分别与所有链路映射。
另外,TID-to-Link映射信息也可以包括多个TID比特位图和多个链路标识,TID比特位图的个数等于链路的个数,每个TID的比特位图为8比特。每个TID比特位图指示哪些TID映射到相应链路上,比如链路个数2,2个TID比特位图为11110000 00001111,2个链路标识为链路#2和链路#3,其中链路标识可以用多个比特数表示,则表明TID#1~TID#4映射到链路#2,TID#5~TID#8映射到链路#3。
需要说明的是,上述的多链路发送端和多链路接收端协商建立TID-To-Link映射关系之后,该TID-To-Link映射关系在之后可以更改。
例如,多链路发送端和多链路接收端建立第一TID-To-Link映射关系之后,多链路发送端侧不同链路上的缓存业务大小发生变化的,或者每条链路的业务量发生变化等等(本申请对TID-To-Link映射关系需要更新的原因不做限制),多链路发送端和多链路接收端可以重新协商第二TID-To-Link映射关系,比如通过其他的管理帧,该第一TID-To-Link映射关系和第二TID-To-Link映射关系可以不同。
还应理解,上述的多链路发送端和多链路接收端协商建立TID-To-Link映射关系的流程可以单独应用,即无需限定多链路发送端和多链路接收端协商建立TID-To-Link映射关系之后,多链路发送端和多链路接收端之间需要进行BSR信令的传输。
进一步地,多链路发送端确定BSR之后,需要向多链路接收端发送该BSR,即图7所示的方法流程还包括S720,多链路发送端向多链路接收端发送BSR。
具体地,所述多链路发送端在一条或多条链路上向所述多链路接收端发送所述BSR信令。
本申请实施例中,多链路发送端向多链路接收端发送BSR可以通过发送携带BSR的数据包给多链路接收端,该数据包MAC头中携带BSR。示例性地,数据包可以是QoS数据包。其中,本申请实施例中涉及的QoS数据包包括QoS空(Null)数据包。
一种可能的实现方式,本申请实施例中多链路发送端可以主动向多链路接收端发送BSR。
例如,多链路发送端在发送数据包给多链路接收端时,在数据包的MAC头中携带BSR信令。
另一种可能的实现方式,本申请实施例中多链路发送端可以被触发地向多链路接收端发送BSR。在该实现方式下,图7所示的方法流程还包括S721,多链路接收端向多链路发送端发送触发信息,该触发信息用于触发多链路发送端上报BSR。
一种可能的实现方式,多链路发送端接收到多链路接收端发送的BAR请求帧,比如类似于802.11BSR poll触发帧时,间隔短帧间隔(short interframe space,SIFS)时间后响应BSR信令。
例如,多链路发送端收到多链路接收端发送的触发帧之后,在预设的时长之后多链路发送端在发送数据包给多链路接收端时,在数据包的MAC头中携带BSR信令。
本申请实施例中多链路发送端除了需要向多链路接收端发送上述的BSR信令之外,还需要向多链路发送端发送缓存状态指示信息,即上述数据包中还包括缓存状态指示信息,该缓存状态指示信息用于指示多链路发送端的缓存状态。
示例性地,如图9所示,图9是本申请实施例提供的一种数据包示意图。除了在HT-control字段携带BSR信令,还在QoS control字段携带缓存状态指示信息。
目前QoS control字段包括:TID字段、服务期限届满(end of service period,EOSP)字段、确认策略(ACK policy)字段、聚合媒体接入控制服务数据单元(aggregated medium access control service data unit,A-MSDU)出现(present)字段、比例因子字段和队列大小字段。
本申请实施例中重用TID字段1比特高位比特用来和8比特队列大小字段一起指示TID字段指示的业务的缓存大小。
本申请还提供一种拓展块确认帧的比特位图的方法,下面详细介绍该方案:
在发送端发送数据包之前,发送端与接收端通常需要建立块确认对话,之后发送端才可以发送多个数据包聚合,接收端在接收到多个数据包聚合时会响应块确认(block Ack)或多站点块确认(multi-STA block Ack)。
块确认对话通过发送端和接收端交互增加块确认(add block acknowledgement,ADDBA)请求帧以及ADDBA响应帧完成,具体来讲,发送端发送ADDBA请求帧,接收端响应确认帧Ack;然后接收端回复ADDBA响应帧,接收端响应确认帧Ack。在发送端和接收端交互完ADDBA请求帧以及ADDBA响应帧后,发送端根据帧携带的内容维护一个发送窗口,接收端根据ADDBA请求帧和ADDBA响应帧携带的内容维护接收窗口(或者称为计分板)以及一个缓冲重排序空间。
ADDBA请求帧和ADDBA响应帧是一种功能管理帧,分别包含下表2和表3中所示的内容,ADDBA请求帧和ADDBA响应帧中包括的内容的具体含义可以参考802.11-2016标准协议,本申请对此不进行赘述。
表2 ADDBA请求帧
顺序号  
1 Category种类
2 Block Ack Action块确认功能
3 Dialog Token令牌号
4 Block Ack Parameter Set块确认参数集
5 Block Ack Timeout Value块确认停工时间
6 Block Ack Starting Sequence Control块确认开始顺序控制
7 GCR Group Address element(optional)组播地址元素,可选出现
8 Multi-band(optional),多频段元素,可选出现
9 TCLAS(optional),TCLAS,可选出现
10 ADDBA Extension(optional)ADDBA拓展元素,可选出现
表3 ADDBA响应帧
Figure PCTCN2021080836-appb-000003
其中块确认参数集字段包括聚合MAC协议数据单元(aggregate MAC protocol data unit,A-MSDU)支持、块确认策略、业务类型、以及缓冲大小等字段。如图10所示,图10是一种块确认参数集字段示意图。
为了支持多链路聚合的块确认对话,可以在块确认功能字段增加一类多链路块确认会话相关功能,使用下表4中的保留值指示多链路块确认请求、多链路块确认响应以及多链路快确认对话拆除指。
表4 块确认功能字段值
Figure PCTCN2021080836-appb-000004
Figure PCTCN2021080836-appb-000005
为了支持1K或者更长块确认帧的比特位图,可以拓展图10所示的块确认参数集字段中的缓存大小字段。如图11所示,图11是本申请实施例提供的一种ADDBA拓展元素的示意图。从图11中可以看出在ADDBA拓展元素使用1比特(不存在分片(No-fragmentation))、2比特(HE分片操作(HE fragmentation operation))、或者5比特(保留)联合块确认参数集中的10比特缓存大小字段一起指示块确认参数集中TID字段指示的TID上有多少个缓存。如果发送端不支持A-MSDU,则每个缓存业务大小等于最大MSDU的个数;如果发送端支持A-MSDU,则每个业务缓存大小等于最大A-MSDU的个数,其中,增加的比特位为高比特位,块确认参数集字段的10比特的缓存大小字段为10位低比特位,或者增加的比特数也可以放在其他元素中(如新增的元素中),比特数也可以为其他比特数,比如1字节。
以上,结合图7至图11,详细说明了本申请实施例提供的数据传输的方法。本申请实施例提供了一种数据传输的装置。在一种可能的实现方式中,该装置用于实现上述方法实施例中的多链路接收端对应的步骤或流程。在另一种可能的实现方式中,该装置用于实现上述方法实施例中的多链路发送端对应的步骤或流程。
以下,结合图12至图14,详细说明本申请实施例提供的数据传输的装置。
图12是本申请实施例提供的数据传输的装置的示意性框图。如图12所示,该装置 1200可以包括通信单元1210和处理单元1220。通信单元1210可以与外部进行通信,处理单元1220用于进行数据处理。通信单元1210还可以称为通信接口或收发单元。
在一种可能的设计中,该装置1200可实现对应于上文方法实施例中的多链路发送端执行的步骤或者流程,其中,处理单元1220用于执行上文方法实施例中多链路发送端的处理相关的操作,通信单元1210用于执行上文方法实施例中多链路发送端的收发相关的操作。
示例性地,处理单元1220用于:确定缓存状态报告BSR信令,该BSR信令用于指示该多链路接收端在一条或多条链路上对该多链路发送端的站点进行调度。
通信单元1210用于:在一条或多条链路上向该多链路接收端发送该BSR信令。
需要说明的是,在多链路发送端为多链路STA的场景下,该多链路发送端可以是图5所示的多链路STA。当多链路STA通过链路#1发送该BSR信令时,处理单元1220可以是图5所示的STA#1中的处理单元(如,处理器),该通信单元1210可以是图5所示的STA#1中的通信单元(如,收发器);当多链路STA通过链路#1和链路#2分别发送该BSR信令时,处理单元1220可以是图5所示的STA#1和/或STA#2中的处理单元,该通信单元1210可以表示图5所示的STA#1和STA#2中的通信单元;或者,多链路STA还可以通过其他的一条或者多条链路发送BSR信令,处理单元1220和通信单元1210可以表示其他的一个或者多个STA中的处理单元和通信单元,这里不再赘述。
可选地,通信单元1210还用于:向该多链路接收端发送请求消息,以及接收来自该多链路接收端的响应消息,其中,该请求消息和该响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
可选地,在通信单元1210在一条或多条链路上向该多链路接收端发送该BSR信令之前,该通信单元1210还用于:接收来自该多链路接收端的触发信息,该触发信息用于触发该多链路发送端在一条或多条链路上发送该BSR信令。
可选地,通信单元1210在一条或多条链路上向该多链路接收端发送该BSR信令包括:
通信单元1210在一条或多条链路上向该多链路接收端发送服务质量QoS数据包,该QoS数据包的媒体接入控制MAC头中携带该BSR信令。
示例性地,上述的通信单元1210可以分为接收单元和发送单元,其中,接收单元用于执行上文方法实施例中多链路发送端的接收相关的操作、发送单元用于执行上文方法实施例中多链路发送端的发送相关的操作。
在另一种可能的设计中,该装置1200可实现对应于上文方法实施例中的多链路接收端执行的步骤或者流程,其中,通信单元1210用于执行上文方法实施例中多链路接收端的收发相关的操作,处理单元1220用于执行上文方法实施例中多链路接收端的处理相关的操作。
需要说明的是,在多链路接收端为多链路AP的场景下,该多链路接收端可以是图5所示的多链路AP。当多链路AP通过链路#1接收该BSR信令时,处理单元1220可以是图5所示的AP#1中的处理单元(如,处理器),该通信单元1210可以是图5所示的AP#1中的通信单元(如,收发器);当多链路AP通过链路#1和链路#2分别接收该BSR信令时,处理单元1220可以是图5所示的AP#1和/或AP#2中的处理单元,该通信单元1210可以表示图5所示的AP#1和AP#2中的通信单元;或者,多链路AP还可以通过其他的 一条或者多条链路接收BSR信令,处理单元1220和通信单元1210可以表示其他的一个或者多个AP中的处理单元和通信单元,这里不再赘述。
示例性地,通信单元1210用于:在一条或多条链路上接收来自该多链路发送端的缓存状态报告BSR信令。
处理单元1220用于:根据该BSR信令在一条或多条链路上对该多链路发送端的站点进行调度。
可选地,通信单元1210还用于:接收来自该多链路发送端的请求消息,以及向该多链路发送端发送响应消息,其中,该请求消息和该响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
可选地,在通信单元1210在一条或多条链路上接收来自该多链路发送端的该BSR信令之前,通信单元1210还用于向该多链路发送端发送触发信息,该触发信息用于触发该多链路发送端在一条或多条链路上发送该BSR信令。
可选地,通信单元1210在一条或多条链路上接收来自该多链路发送端的该BSR信令包括:
该通信单元1210在一条或多条链路上接收来自该多链路发送端的服务质量QoS数据包,该QoS数据包的媒体接入控制MAC头中携带该BSR信令。
示例性地,上述的通信单元1210可以分为接收单元和发送单元,其中,接收单元用于执行上文方法实施例中多链路接收端的接收相关的操作、发送单元用于执行上文方法实施例中多链路接收端的发送相关的操作。
应理解,这里的装置1200以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置1200可以具体为上述实施例中的多链路发送端,可以用于执行上述方法实施例中与多链路发送端对应的各个流程和/或步骤,或者,装置1200可以具体为上述实施例中的多链路接收端,可以用于执行上述方法实施例中与多链路接收端对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述各个方案的装置1200具有实现上述方法中多链路发送端所执行的相应步骤的功能,或者,上述各个方案的装置1200具有实现上述方法中多链路接收端所执行的相应步骤的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块;例如通信单元可以由收发机替代(例如,通信单元中的发送单元可以由发送机替代,通信单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述通信单元还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。在本申请的实施例,图12中的装置可以是前述实施例中的接收端或发送端,也可以是芯片或者芯片***,例如:片上***(system on chip,SoC)。其中,通信单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
图13示出了本申请实施例提供的数据传输的装置1300。该装置1300包括处理器1310和收发器1320。其中,处理器1310和收发器1320通过内部连接通路互相通信,该处理器1310用于执行指令,以控制该收发器1320发送信号和/或接收信号。
可选地,该装置1300还可以包括存储器1330,该存储器1330与处理器1310、收发器1320通过内部连接通路互相通信。该存储器1330用于存储指令,该处理器1310可以执行该存储器1330中存储的指令。在一种可能的实现方式中,装置1300用于实现上述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置1300用于实现上述方法实施例中的接收端对应的各个流程和步骤。
应理解,装置1300可以具体为上述实施例中的发送端或接收端,也可以是芯片或者芯片***。对应的,该收发器1320可以是该芯片的收发电路,在此不做限定。具体地,该装置1300可以用于执行上述方法实施例中与发送端或接收端对应的各个步骤和/或流程。可选地,该存储器1330可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器1310可以用于执行存储器中存储的指令,并且当该处理器1310执行存储器中存储的指令时,该处理器1310用于执行上述与发送端或接收端对应的方法实施例的各个步骤和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。本申请实施例中的处理器可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态 随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图14示出了本申请实施例提供的数据传输的装置1400。该装置1400包括处理电路1410和收发电路1420。其中,处理电路1410和收发电路1420通过内部连接通路互相通信,该处理电路1410用于执行指令,以控制该收发电路1420发送信号和/或接收信号。
可选地,该装置1400还可以包括存储介质1430,该存储介质1430与处理电路1410、收发电路1420通过内部连接通路互相通信。该存储介质1430用于存储指令,该处理电路1410可以执行该存储介质1430中存储的指令。在一种可能的实现方式中,装置1400用于实现上述方法实施例中的发送端对应的各个流程和步骤。在另一种可能的实现方式中,装置1400用于实现上述方法实施例中的接收端对应的各个流程和步骤。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行图7所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行图7所示实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种***,其包括前述的多链路发送端以及多链路接收端。
根据本申请实施例提供的方法,本申请还提供一种***,其包括一个或多个站点以及一个或者多个接入点,其中,站点和接入点为多链路的。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络 单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种数据传输的方法,其特征在于,包括:
    多链路发送端确定缓存状态报告BSR信令,所述BSR信令用于指示多链路接收端在一条或多条链路上对所述多链路发送端的站点进行调度;
    所述多链路发送端在一条或多条链路上的向所述多链路接收端发送所述BSR信令。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述多链路发送端向所述多链路接收端发送请求消息;
    所述多链路发送端接收来自所述多链路接收端的响应消息;
    其中,所述请求消息和所述响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
  3. 一种数据传输的方法,其特征在于,包括:
    多链路发送端向多链路接收端发送请求消息;
    所述多链路发送端接收来自所述多链路接收端的响应消息;
    其中,所述请求消息和所述响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    所述多链路发送端确定缓存状态报告BSR信令,所述BSR信令用于指示所述多链路接收端在一条或多条链路上对所述多链路发送端的站点进行调度;
    所述多链路发送端在一条或多条链路上向所述多链路接收端发送所述BSR信令。
  5. 如权利要求1或2或4所述的方法,其特征在于,所述BSR信令包括传输链路的所有队列大小字段、传输链路的比例因子字段、TID字段、队列大小字段和第一比例因子字段中的一个或多个,
    其中,所述传输链路的所有队列大小字段指示发送所述BSR信令的链路上的第一缓存业务的大小、所述传输链路的比例因子字段指示所述第一缓存业务大小的单位、所述TID字段指示上报的第一业务类型、所述队列大小字段指示所述第一业务类型对应的第二缓存业务的大小、所述第一比例因子字段指示所述第二缓存业务大小的单位。
  6. 如权利要求1或2或4所述的方法,其特征在于,所述BSR信令包括第一TID字段、第一队列大小字段、第二TID字段、第二队列大小字段和第二比例因子字段中的一个或多个,
    其中,第一TID字段指示上报的第二业务类型、第一队列大小字段指示所述第二业务类型对应的第三缓存业务的大小、第二TID字段指示上报的第三业务类型、第二队列大小字段指示所述第三业务类型对应的第四缓存业务的大小、所述第二比例因子字段指示所述第三缓存业务大小和所述第四缓存业务大小的单位。
  7. 如权利要求1或2或4所述的方法,其特征在于,所述BSR信令包括包括第三TID字段、第三队列大小字段、第三比例因子字段、第四TID字段、第四队列大小字段和比例因子差值字段中的一个或多个,
    其中,所述第三TID字段指示上报的第四业务类型、第三队列大小字段指示所述第四 业务类型对应的第五缓存业务的大小、第四TID字段指示上报的第五业务类型、第四队列大小字段指示所述第五业务类型对应的第六缓存业务的大小、所述第三比例因子字段指示所述第五缓存业务大小的单位、所述第三比例因子字段和所述比例因子差值字段指示所述第六缓存业务大小的单位。
  8. 如权利要求2或3所述的方法,其特征在于,所述请求消息和/或所述响应消息中包括控制信息和映射信息,所述控制信息用于确定建立所述映射关系,所述映射信息用于指示所述映射关系。
  9. 如权利要求8中所述的方法,其特征在于,所述映射信息包括N个链路标识比特位图,N为正整数。
  10. 如权利要求1或4-9中任一项所述的方法,其特征在于,在所述多链路发送端在一条或多条链路上向所述多链路接收端发送所述BSR信令之前,所述方法还包括:
    所述多链路发送端接收来自所述多链路接收端的触发信息,所述触发信息用于触发所述多链路发送端在一条或多条链路上发送所述BSR信令。
  11. 如权利要求1或4-10中任一项所述的方法,其特征在于,所述多链路发送端在一条或多条链路上向所述多链路接收端发送所述BSR信令包括:
    所述多链路发送端端在一条或多条链路上向所述多链路接收端发送服务质量QoS数据包,所述QoS数据包的媒体接入控制MAC头中携带所述BSR信令。
  12. 如权利要求11所述的方法,其特征在于,所述QoS数据包的QoS控制字段中还包括缓存状态指示信息,所述缓存状态指示信息用于指示所述多链路发送端的缓存业务的大小。
  13. 如权利要求12所述的方法,其特征在于,所述缓存状态指示信息包括所述QoS控制字段中TID字段的1比特和所述QoS控制字段中队列大小字段的8比特。
  14. 一种数据传输的方法,其特征在于,包括:
    多链路接收端在一条或多条链路上接收来自多链路发送端的缓存状态报告BSR信令;
    所述多链路接收端根据所述BSR信令在一条或多条链路上对所述多链路发送端的站点进行调度。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    所述多链路接收端接收来自所述多链路发送端的请求消息;
    所述多链路接收端向所述多链路发送端发送响应消息;
    其中,所述请求消息和所述响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
  16. 一种数据传输的方法,其特征在于,包括:
    多链路接收端接收来自多链路发送端的请求消息;
    所述多链路接收端向所述多链路发送端发送响应消息;
    其中,所述请求消息和所述响应消息用于协商建立业务类型与链路TID-To-Link映射关系。
  17. 如权利要求16所述的方法,其特征在于,所述方法还包括:
    所述多链路接收端在一条或多条链路上接收来自所述多链路发送端的缓存状态报告BSR信令;
    所述多链路接收端根据所述BSR信令在一条或多条链路上对所述多链路发送端的站点进行调度。
  18. 如权利要求14或15或17所述的方法,其特征在于,所述BSR信令包括传输链路的所有队列大小字段、传输链路的比例因子字段、TID字段、队列大小字段和第一比例因子字段中的一个或者多个,
    其中,所述传输链路的所有队列大小字段指示发送所述BSR信令的链路上的第一缓存业务的大小、所述传输链路的比例因子字段指示所述第一缓存业务大小的单位、所述TID字段指示上报的第一业务类型、所述队列大小字段指示所述第一业务类型对应的第二缓存业务的大小、所述第一比例因子字段指示所述第二缓存业务大小的单位。
  19. 如权利要求14或15或17所述的方法,其特征在于,所述BSR信令包括第一TID字段、第一队列大小字段、第二TID字段、第二队列大小字段和第二比例因子字段中的一个或者多个,
    其中,第一TID字段指示上报的第二业务类型、第一队列大小字段指示所述第二业务类型对应的第三缓存业务的大小、第二TID字段指示上报的第三业务类型、第二队列大小字段指示所述第三业务类型对应的第四缓存业务的大小、所述第二比例因子字段指示所述第三缓存业务大小和所述第四缓存业务大小的单位。
  20. 如权利要求14或15或17所述的方法,其特征在于,所述BSR信令包括包括第三TID字段、第三队列大小字段、第三比例因子字段、第四TID字段、第四队列大小字段和比例因子差值字段中的一个或者多个,
    其中,所述第三TID字段指示上报的第四业务类型、第三队列大小字段指示所述第四业务类型对应的第五缓存业务的大小、第四TID字段指示上报的第五业务类型、第四队列大小字段指示所述第五业务类型对应的第六缓存业务的大小、所述第三比例因子字段指示所述第五缓存业务大小的单位、所述第三比例因子字段和所述比例因子差值字段指示所述第六缓存业务大小的单位。
  21. 如权利要求15或16所述的方法,其特征在于,所述请求消息和/或所述响应消息中包括控制信息和映射信息,所述控制信息用于确定建立所述映射关系,所述映射信息用于指示所述映射关系。
  22. 如权利要求21中所述的方法,其特征在于,所述映射信息包括N个链路标识比特位图,N为正整数。
  23. 如权利要求14或18-22中任一项所述的方法,其特征在于,在所述多链路接收端在一条或多条链路上接收来自所述多链路发送端的所述BSR信令之前,所述方法还包括:
    所述多链路接收端向所述多链路发送端发送触发信息,所述触发信息用于触发所述多链路发送端在一条或多条链路上发送所述BSR信令。
  24. 如权利要求14或18-23中任一项所述的方法,其特征在于,所述多链路接收端在一条或多条链路上接收来自所述多链路发送端的所述BSR信令包括:
    所述多链路接收端在一条或多条链路上接收来自所述多链路发送端的服务质量QoS数据包,所述QoS数据包的媒体接入控制MAC头中携带所述BSR信令。
  25. 如权利要求24所述的方法,其特征在于,所述QoS数据包的QoS控制字段中还 包括缓存状态指示信息,所述缓存状态指示信息用于指示所述多链路发送端的缓存业务的大小。
  26. 如权利要求25所述的方法,其特征在于,所述缓存状态指示信息包括所述QoS控制字段中TID字段的1比特和所述QoS控制字段中队列大小字段的8比特。
  27. 一种数据传输的装置,其特征在于,用于实现如权利要求1-13中任意一项所述的方法。
  28. 一种数据传输的装置,其特征在于,用于实现如权利要求14-26中任意一项所述的方法。
  29. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1-13中任一项所述的方法或使得所述通信装置执行如权利要求14-26中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,所述计算机程序包括用于实现如权利要求1-13中任一项所述的方法的指令,或包括用于实现如权利要求14-26中任一项所述的方法的指令。
  31. 一种计算机程序产品,其特征在于,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机实现如权利要求1-13中任一项所述的方法或使得所述计算机实现如权利要求14-26中任一项所述的方法。
PCT/CN2021/080836 2020-03-16 2021-03-15 数据传输的方法和装置 WO2021185211A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227035839A KR20220154213A (ko) 2020-03-16 2021-03-15 데이터 전송 방법 및 장치
EP21771321.3A EP4114076A4 (en) 2020-03-16 2021-03-15 DATA TRANSMISSION METHOD AND DEVICE
BR112022018493A BR112022018493A2 (pt) 2020-03-16 2021-03-15 Método e aparelho de transmissão de dados
AU2021238794A AU2021238794B2 (en) 2020-03-16 2021-03-15 Data transmission method and apparatus
US17/946,924 US20230013454A1 (en) 2020-03-16 2022-09-16 Data transmission method and apparatus
AU2024203800A AU2024203800A1 (en) 2020-03-16 2024-06-05 Data transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010183125.8A CN113411831B (zh) 2020-03-16 2020-03-16 数据传输的方法和装置
CN202010183125.8 2020-03-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/946,924 Continuation US20230013454A1 (en) 2020-03-16 2022-09-16 Data transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2021185211A1 true WO2021185211A1 (zh) 2021-09-23

Family

ID=77676747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080836 WO2021185211A1 (zh) 2020-03-16 2021-03-15 数据传输的方法和装置

Country Status (7)

Country Link
US (1) US20230013454A1 (zh)
EP (1) EP4114076A4 (zh)
KR (1) KR20220154213A (zh)
CN (4) CN117793790A (zh)
AU (2) AU2021238794B2 (zh)
BR (1) BR112022018493A2 (zh)
WO (1) WO2021185211A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114765901A (zh) * 2021-12-20 2022-07-19 成都极米科技股份有限公司 多链路设备连接管理方法、装置、设备及存储介质
WO2023069344A1 (en) * 2021-10-20 2023-04-27 Sony Group Corporation Quality of service buffer status report operation
WO2024011162A1 (en) * 2022-07-08 2024-01-11 Cisco Technology, Inc. Predictive traffic identifier-to-link updates in wireless networks
WO2024054337A1 (en) * 2022-09-06 2024-03-14 Sony Group Corporation Enhanced quality of service status report that supports latency requirements

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117793790A (zh) * 2020-03-16 2024-03-29 华为技术有限公司 数据传输的方法和装置
WO2022010260A1 (ko) * 2020-07-10 2022-01-13 엘지전자 주식회사 무선 통신 시스템에서 멀티 링크 셋업
US11800396B2 (en) * 2020-07-20 2023-10-24 Nxp Usa, Inc. Method and apparatus for wireless communications
CN116017583A (zh) * 2021-10-21 2023-04-25 华为技术有限公司 业务优先级确定方法以及相关装置
JP2023083883A (ja) * 2021-12-06 2023-06-16 キヤノン株式会社 通信装置、通信方法、およびプログラム
CN114630368B (zh) * 2022-04-22 2023-03-24 成都极米科技股份有限公司 控制在多链路上进行数据传输的方法、装置、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199494A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 用于链路聚合建立和重新配置的信令
CN110418404A (zh) * 2019-09-06 2019-11-05 展讯通信(上海)有限公司 多链路传输、接收方法及装置、存储介质、终端
US20200029350A1 (en) * 2018-07-23 2020-01-23 Qualcomm Incorporated Quality of service (qos) for uplink access in a wireless local area network (wlan)
CN110830175A (zh) * 2018-08-14 2020-02-21 华为技术有限公司 数据包的确认方法、装置、设备及计算机可读存储介质
CN110876165A (zh) * 2018-08-31 2020-03-10 三星电子株式会社 在wlan波段中为wlan操作提供同步模式的***和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10536948B2 (en) * 2015-06-22 2020-01-14 Qualcomm Incorporated Methods and apparatus for requesting buffer status reports for implementing multiple user uplink medium access control protocols in a wireless network
US10750401B2 (en) * 2016-10-04 2020-08-18 Lg Electronics Inc. Method for transmitting or receiving frame in wireless LAN system, and device therefor
US10959153B2 (en) * 2017-09-11 2021-03-23 Qualcomm Incorporated Techniques for multi-link aggregation signaling
CN109729566B (zh) * 2017-10-27 2021-01-29 华为技术有限公司 一种信息传输方法和设备
CN110166976B (zh) * 2018-02-12 2022-10-25 中兴通讯股份有限公司 传输方式确定方法及装置,存储介质和电子装置
SG10202002245YA (en) * 2020-03-11 2021-10-28 Panasonic Ip Corp America Communication apparatus and communication method for multi-link setup and link maintenance
CN117793790A (zh) * 2020-03-16 2024-03-29 华为技术有限公司 数据传输的方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199494A (zh) * 2017-01-19 2019-09-03 高通股份有限公司 用于链路聚合建立和重新配置的信令
US20200029350A1 (en) * 2018-07-23 2020-01-23 Qualcomm Incorporated Quality of service (qos) for uplink access in a wireless local area network (wlan)
CN110830175A (zh) * 2018-08-14 2020-02-21 华为技术有限公司 数据包的确认方法、装置、设备及计算机可读存储介质
CN110876165A (zh) * 2018-08-31 2020-03-10 三星电子株式会社 在wlan波段中为wlan操作提供同步模式的***和方法
CN110418404A (zh) * 2019-09-06 2019-11-05 展讯通信(上海)有限公司 多链路传输、接收方法及装置、存储介质、终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4114076A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023069344A1 (en) * 2021-10-20 2023-04-27 Sony Group Corporation Quality of service buffer status report operation
CN114765901A (zh) * 2021-12-20 2022-07-19 成都极米科技股份有限公司 多链路设备连接管理方法、装置、设备及存储介质
CN114765901B (zh) * 2021-12-20 2023-05-02 极米科技股份有限公司 多链路设备连接管理方法、装置、设备及存储介质
WO2024011162A1 (en) * 2022-07-08 2024-01-11 Cisco Technology, Inc. Predictive traffic identifier-to-link updates in wireless networks
WO2024054337A1 (en) * 2022-09-06 2024-03-14 Sony Group Corporation Enhanced quality of service status report that supports latency requirements

Also Published As

Publication number Publication date
AU2021238794B2 (en) 2024-03-14
KR20220154213A (ko) 2022-11-21
CN117793792A (zh) 2024-03-29
EP4114076A1 (en) 2023-01-04
AU2024203800A1 (en) 2024-06-27
CN117793791A (zh) 2024-03-29
CN113411831A (zh) 2021-09-17
CN117793790A (zh) 2024-03-29
BR112022018493A2 (pt) 2022-11-01
EP4114076A4 (en) 2023-08-16
AU2021238794A1 (en) 2022-10-27
CN113411831B (zh) 2023-12-08
US20230013454A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021185211A1 (zh) 数据传输的方法和装置
EP3968731B1 (en) Communication method applicable to multiple links, and related devices
JP2019515584A (ja) ワイヤレスローカルエリアネットワーク(wlan)におけるバッファステータス報告
Yang et al. Survey and perspective on extremely high throughput (EHT) WLAN—IEEE 802.11 be
CN113169821A (zh) 用于多频带业务流的通信设备和通信方法
KR20070015154A (ko) 공통 무선 채널에 의해 접속된 복수의 국을 포함하는네트워크에 있어서 데이터 패킷에 대해 확인 응답하는 방법
US11509597B2 (en) Data transmission method and device
US20210167895A1 (en) Data packet acknowledgment method, apparatus, device, and computer-readable storage medium
CN102739349B (zh) 一种用于帧确认的方法和装置
US11108503B2 (en) Multiple traffic class data aggregation in a wireless local area network
WO2017223228A1 (en) Method and apparatus for mu resource request
WO2021218435A1 (zh) 一种多链路通信方法及相关装置
WO2021180141A1 (zh) 通信方法及装置
US20240049187A1 (en) Trigger Frame for Uplink Resource Allocation
US20240007896A1 (en) Buffer status report frame transmission in a multi-link communication environment
US20240114552A1 (en) Buffer Status Reporting for Triggered Transmission Opportunity Sharing
WO2024109614A1 (zh) 信息指示方法及设备
US20240196380A1 (en) Multi-Station Block Acknowledgment Frame with Padding
US20230284290A1 (en) Enhanced Multi-link UORA
US20240187170A1 (en) Channel Reservation for Packet Transmission
WO2023036050A1 (zh) 一种通信方法及装置
WO2023130713A1 (zh) 多链路通信的方法和多链路设备
WO2024145471A1 (en) Period for multi-access point communication
WO2024137550A1 (en) Low latency triggered transmission opportunity (txop) sharing
CN118338461A (zh) 通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21771321

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018493

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227035839

Country of ref document: KR

Kind code of ref document: A

Ref document number: 2021771321

Country of ref document: EP

Effective date: 20220930

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021238794

Country of ref document: AU

Date of ref document: 20210315

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022018493

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220915