WO2021184667A1 - 一种基于槽道的作物根系表型采集*** - Google Patents

一种基于槽道的作物根系表型采集*** Download PDF

Info

Publication number
WO2021184667A1
WO2021184667A1 PCT/CN2020/109495 CN2020109495W WO2021184667A1 WO 2021184667 A1 WO2021184667 A1 WO 2021184667A1 CN 2020109495 W CN2020109495 W CN 2020109495W WO 2021184667 A1 WO2021184667 A1 WO 2021184667A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
frame
loading frame
collection
crop root
Prior art date
Application number
PCT/CN2020/109495
Other languages
English (en)
French (fr)
Inventor
姜东�
吴劼
傅秀清
丁艳锋
周国栋
毛江美
Original Assignee
南京星土科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京星土科技有限公司 filed Critical 南京星土科技有限公司
Publication of WO2021184667A1 publication Critical patent/WO2021184667A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8466Investigation of vegetal material, e.g. leaves, plants, fruits

Definitions

  • the invention relates to a collection system, in particular to a crop root phenotype collection system based on a channel.
  • Crop phenotypes are divided into two parts, the above-ground phenotype and the underground phenotype. At present, most of the observations are focused on the above-ground phenotypic traits. Due to the invisibility of the underground, there are relatively few studies on the underground phenotype.
  • the phenotype of underground crops usually refers to the part of the root system of the crop below the surface, which is an important vegetative organ for plants.
  • the root system absorbs water and other organic nutrients in the soil, and on the other hand, it also affects and improves the environment of plant soil microorganisms by secreting organic acids and other substances, promotes the growth and development of the above-ground parts of crops, and directly or indirectly affects the yield. Therefore, the study of root phenotype is of great significance to water, liquid nutrition and its relationship with the environment.
  • the root system is taken out of the soil and washed, and measured with a meter to obtain the root system length, diameter and some related biomass parameters.
  • Manual sampling method is time-consuming It is laborious, the sample is easily damaged and the error is large.
  • non-destructive indirect observation methods of root phenotype The micro-root window root observation system presses a 6-8mm thick transparent glass or plexiglass board into the soil profile at fixed points according to the needs of the experiment, and dynamically observes the growth of the root system.
  • the cylindrical micro-root canal is embedded in the soil below the ground at 45° or 90°, connected to the sensor and camera on the ground, connected with the light source trigger and the computer to realize the dynamic visualization of the root system growth status, and perform in-situ repeated observation of the crop root system at different stages , Quantitative analysis of root status through image processing technology.
  • the scanner is inserted into the soil horizontally or at an oblique angle, connected to a computer via USB or wireless network, high-throughput automatic shooting, realizing a wide range of root observations.
  • the said crop root phenotype non-destructive indirect observation system is expensive in equipment cost and is not conducive to popularization and use. The operation is cumbersome and requires on-site monitoring by professional technicians.
  • Root system image When the equipment is embedded in the soil below the ground, the moisture of the soil air caused by the large water content of the soil may easily cause condensation water droplets on the inner wall of the equipment and instruments, which seriously obstructs the line of sight. Only part of the root system can be observed, which affects the overall observation of the root system. In addition, soil pressure can easily cause deformation of equipment and instruments, which affects the accuracy of observations. At present, traditional or indirect methods of measuring root phenotype cannot achieve high-throughput, fully automatic, and real-time observation of crop roots in a dark environment.
  • a channel-based crop root system phenotype acquisition system includes a collection mechanism for shooting crop root images on the left and right sides of the channel; a loading frame for loading the collection mechanism and capable of being along the length of the channel slide.
  • the channel-based crop root phenotype acquisition system provided by the present invention further includes two parallel rails extending along the length of the channel, and the loading frame is slidably arranged on the rail.
  • the collection mechanism includes a collection frame and a plurality of cameras arranged on the collection frame, and the camera lenses of the plurality of cameras face the left and right sides of the channel.
  • the collection frame includes a left frame and a right frame, the upper and lower parts of the left frame are both equipped with cameras with lenses facing the right side of the channel, and the upper and lower parts of the right frame are both equipped with lenses Face the camera on the left side of the channel.
  • both the left frame and the right frame are provided with light-shielding plates, the cross-section of the light-shielding plates is U-shaped, and the lenses are inlaid on the U-shaped bending part of the same light-shielding plate facing the same camera.
  • the bottom of the loading frame is provided with a driving wheel group, a driven wheel group and a guide wheel.
  • the driving wheel set includes a first rotating shaft, a driving wheel sleeved on two ends of the first rotating shaft and slidingly fitted with two parallel rails, and a driving device for driving the first rotating shaft to rotate.
  • the driven wheel set includes a second rotating shaft and a driven wheel sleeved on two ends of the second rotating shaft and slidingly fitted with two parallel rails.
  • the guide wheels are arranged on both sides of the driving wheel and the driven wheel that are slidingly matched with the same track and are in contact with the side surface of the track.
  • the bottom of the rear side of the loading frame is provided with two directional wheels matched with two parallel rails.
  • both the left and right sides of the loading frame are provided with light bars extending in a vertical direction.
  • both the left and right sides of the loading frame are provided with a drawing board extending in a vertical direction, and the drawing board is slidably connected to the loading frame in a horizontal direction.
  • a light bar is also installed on the side of the drawing board.
  • the present invention has the following advantages due to the above technical solutions: 1.
  • the collection mechanism is arranged inside the loading frame, and the cameras in the collection mechanism are set in the same direction in the "U-shaped" light-shielding plate, matching the left side of the loading frame.
  • the light bars installed on the side and right can collect crop root images clearly and comprehensively, and observe the complete crop root phenotype from multiple angles in real time.
  • the loading frame of the present invention drives the collection mechanism to slide freely based on the track in the length direction of the channel, with a high degree of automation, and realizing high-throughput and fully automatic photography.
  • the present invention integrates the collection mechanism into the loading frame, the system structure is light and concise, and meets the needs of high-throughput monitoring of crop root phenotype.
  • the present invention does not need to be embedded in the soil below the ground, which improves the service life of the equipment and the accuracy of observation. 5.
  • a light bar is installed on the side of the drawing board, which can realize the monitoring of the root phenotype in a dark environment.
  • Figure 1 is a schematic diagram of the structure of the crop root phenotype collection system of the present invention.
  • Figure 2 is a schematic diagram of the structure of the collection mechanism of the present invention.
  • Figure 3 is a schematic diagram of the structure of the loading frame of the present invention.
  • Figure 4 is a top view of Figure 3.
  • the present invention provides a channel-based crop root phenotype acquisition system.
  • the system includes a collection mechanism 3 for shooting crop root images on the left and right sides of the channel; a loading frame 1,
  • the collection mechanism 3 is used to load the collection mechanism 3 and can slide along the length of the channel.
  • the collection mechanism 3 is arranged in the loading frame 1.
  • the loading frame 1 loads the collection mechanism 3 and slides along the length of the channel to the left and right sides of the channel.
  • the crop root system images were taken.
  • the channel-based crop root phenotype acquisition system provided by the present invention also includes two parallel tracks (not shown in the figure) extending along the length of the channel, and the loading frame 1 is slidably arranged on the track Above, during the sliding process of the loading frame, the collection mechanism 3 takes pictures of the crop root system images on the left and right sides of the channel.
  • the collection mechanism 3 includes a collection frame 3-7 and a plurality of cameras arranged on the collection frame 3-7, and the camera lenses of the plurality of cameras face the left and right sides of the channel.
  • the collection mechanism 3 includes collection frames 3-7, and the collection frame includes left Frame 3-8 and right frame 3-4, the upper and lower parts of left frame 3-8 are equipped with camera 3-1 with the lens facing the right side of the channel, and the upper and lower parts of right frame 3-4 Half of them are equipped with cameras 3-6 with the lens facing the left side of the channel.
  • the cameras in the left frame and the right frame respectively collect the images of the crop roots on the right side of the channel and the left side of the channel.
  • both the left frame 3-8 and the right frame 3-4 of the collection frame 3-7 are equipped with light-shielding plates 3-5 to shield light
  • the cross-section of the board is U-shaped, and the two lenses on the left frame 3-8 face the camera 3-1 on the right side of the channel and are inlaid with the U-shaped bending part of the light-shielding plate 3-3 on the left frame 3-8.
  • the two lenses on the right frame 3-4 face the camera 3-6 on the left side of the channel and are inlaid with the U-shaped bending part of the light shielding plate 3-5 on the right and left frame 3-4; further fixed by the support frame 3-2 Camera position.
  • the shading plate adopts shading flannel to avoid light reflection when taking pictures and improve the shooting quality.
  • the light of two cameras in the same light shield does not interfere with each other, and the root system images are collected independently of each other.
  • both the left and right sides of the loading frame 1 are provided with light bars 1-2 extending in a vertical direction, and light can be supplemented according to needs when taking pictures.
  • both the left and right sides of the loading frame 1 are provided with drawing plates 1-5 extending in the vertical direction.
  • the drawing plates 1-5 are slidably connected to the loading frame 1 in the horizontal direction, and the loading frame 1 is provided with
  • a light bar 1-2 is also installed on the side of the limit block 1-1, which can monitor the root phenotype in a dark environment.
  • the bottom of the loading frame 1 is provided with a driving wheel set, a driven wheel set and a guide wheel.
  • the driving wheel set includes a first rotating shaft 1-7, sleeved on both ends of the first rotating shaft 1-7 and The driving wheel 1-8 slidingly matched with two parallel rails (not shown in the figure) is used to drive the first rotating shaft 1-7 to rotate the driving device 1-3;
  • the driven wheel group includes the second rotating shaft 1-12 ,
  • the driven wheels 1-6 sleeved on the two ends of the second rotating shaft 1-12 and slidingly matched with two parallel rails (not shown in the figure);
  • the guide wheels 1-10 are provided on the active wheel slidingly matched with the same rail
  • the two sides of the wheel and the driven wheel are in contact with the side of the track.
  • the driving device is a motor
  • the motor output shaft meshes with the first rotating shaft 1-7
  • the motor output shaft drives the first rotating shaft 1-7 to rotate
  • the first rotating shaft 1-7 drives the two driving wheels 1-8 at both ends to rotate.
  • the second rotating shaft 1-12 and the driven wheels 1-6 at both ends of the second rotating shaft 1-12 are also driven by the traveling power. The rotation occurs, so that the loading frame 1 moves smoothly.
  • the driving wheel and the guide wheels 1-10 on both sides of the driven wheel that are slidingly matched with the same track can not only play a guiding role, but also enhance the stability of the entire loading frame when traveling, and effectively improve the camera The quality of shooting.
  • the guide wheel 1-10 is arranged on the elastic guide wheel frame 1-11, and the elastic guide wheel frame 1-11 makes the guide wheel 1-10 close to the side of the track, which can reduce the imagination of the loading frame 1 from shaking side to side, and further Improve the overall stability of the loading frame.
  • the loading frame is also provided with a power box 2 for providing power sources for cameras, motors, light bars, and the like.
  • the bottom of the rear side of the loading frame is provided with two directional wheels 1-4 that are matched with two parallel rails.
  • the entire system can be turned back to a certain angle. , Make the two directional wheels support the entire acquisition system to cooperate with the track sliding, and it can run smoothly and save effort by manual pushing.
  • the bottom of the loading frame 1 is further provided with feet 1-9. There are four feet, which are arranged around the bottom. The height of the feet is greater than the height of the driving wheel group, the driven wheel group and the guide wheel. When the loading frame is not placed on the track, the loading frame is supported by four feet to avoid damage to the driving wheel set, driven wheel set and guide wheel at the bottom.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种基于槽道的作物根系表型采集***,该***包括采集机构(3),用于拍摄槽道左右两侧的作物根系图像;装载框架(1),用于装载采集机构(3)并能够沿槽道的长度方向滑动。将采集机构(3)设置在装载框架(1)的内部且采集机构(3)中的相机(3-1,3-6)两两同向设置在"U形"遮光板(3-3,3-5)中,配合装载框架(1)的左侧、右侧装有的灯条(1-2)能够清晰全面的采集作物根系图像,实时多角度、全方位观测完整的作物根系表型。装载框架(1)带动采集机构(3)基于槽道长度方向的轨道自由滑动,全自动拍照,自动化程度高。将采集机构(3)集成在装载框架(1)中,***结构轻便简洁,满足作物根系表型高通量监测的需要。该***无需嵌入地面以下土壤,提高了设备的使用寿命和观测的准确性。

Description

一种基于槽道的作物根系表型采集*** 技术领域
本发明涉及一种采集***,尤其涉及一种基于槽道的作物根系表型采集***。
背景技术
作物表型分为地上部表型和地下部表型两部分,目前多集中在地上部表型性状的观测,由于地下的不可见性导致地下部表型研究相对较少。地下部作物表型通常是指位于地表以下的作物根系部分,是植物重要的营养器官。根系一方面吸收土壤中的水分和其他有机营养物质,另一方面本身也通过分泌有机酸等物质影响和改善植物土壤微生物的环境,促进作物地上部分的生长发育,直接或间接影响了产量。因此,研究根系表型对水分和液态营养及其与环境的关系具有十分重要的意义。
技术问题
传统的根系研究大多数是纯手工、破坏性直接采样,将根系从土壤中取出后洗净,米尺进行测量,获取根系的长度、直径及其相关生物量的一些性状参数,手工取样法费时费力,样品易遭到破坏且误差较大。根系表型非破坏性间接观测方法众多,微根窗根系观测***将6—8mm厚的透明玻璃或有机玻璃板根据实验需要定点定位压入土壤剖面,动态观测根系的生长状况。圆柱微根管以45°或90°方式嵌入地面以下土壤,与地面上的传感器和相机相连,连接光源触发器和电脑实现根系生长状况动态的可视化,在不同阶段对作物根系进行原位重复观测,通过图像处理技术定量分析根系状态。扫描仪水平或倾斜角度***土壤,通过USB或无线网络与电脑连接,高通量自动化拍摄,实现广范围的根系观测。所述作物根系表型非破坏性间接观测***,设备成本昂贵不利于大众化推广使用,操作繁琐需要专业的技术人员现场监测,只能针对单株的部分根系图像进行采集,无法获取多株成排根系图像。此外,仪器设备嵌入地面以下土壤,由于土壤的含水量较大造成的土壤空气的潮湿,易导致设备仪器内壁产生冷凝水珠,严重遮挡视线,只能部分观测到根系,影响根系的全面观测,且土壤压力易导致设备仪器变形,影响观测的准确性。目前传统或间接测量根系表型方法,无法实现在全暗环境下,高通量、全自动、实时地观测的作物根系。
技术解决方案。
本发明的具体技术方案如下。
一种基于槽道的作物根系表型采集***,该***包括采集机构,用于拍摄槽道左右两侧的作物根系图像;装载框架,用于装载所述采集机构并能够沿槽道的长度方向滑动。
优选的,本发明提供的基于槽道的作物根系表型采集***还包括沿槽道长度方向延伸的相互平行的两条轨道,装载框架可滑动的设置在该轨道上。
优选的,所述采集机构包括采集框架以及设在采集框架上的多个相机,多个相机的相机镜头朝向槽道左侧和右侧。
优选的,所述采集框架包括左框架和右框架,左框架的上半部分和下半部分均设有镜头朝向槽道右侧的相机,右框架的上半部分和下半部分均设有镜头朝向槽道左侧的相机。
优选的,左框架和右框架上均设有遮光板,遮光板的横截面呈U形状,镜头朝向相同的相机镶嵌设置在同一遮光板的U形弯折部。
优选的,装载框架的底部设有主动轮组、从动轮组和导轮。
主动轮组包括第一转轴、套设在第一转轴两端并且与相互平行的两条轨道滑动配合的主动轮,用于驱动第一转轴转动的驱动装置。
从动轮组包括第二转轴、套设在第二转轴两端并且与相互平行的两条轨道滑动配合的从动轮。
导轮设在与同一轨道滑动配合的主动轮、从动轮的两侧并与该轨道侧面接触。
优选的,装载框架的后侧底部设有两个与相互平行的两条轨道相配合的定向轮。
优选的,所述装载框架的左侧、右侧均设有沿竖直方向延伸的灯条。
优选的,所述装载框架的左侧、右侧均设有沿竖直方向延伸的抽拉板,抽拉板沿水平方向滑动连接在装载框架上。
优选的,所述抽拉板的边侧还安装有灯条。
有益效果
本发明由于采用以上技术方案,其具有以下优点1. 本发明将采集机构设置在装载框架的内部且采集机构中的相机两两同向设置在“U形”遮光板中,配合装载框架的左侧、右侧装有的灯条能够清晰全面的采集作物根系图像,实时多角度、全方位观测完整的作物根系表型。2. 本发明装载框架带动采集机构基于槽道长度方向的轨道自由滑动,自动化程度高,实现高通量、全自动拍照。3.本发明将采集机构集成在装载框架中,***结构轻便简洁,满足作物根系表型高通量监测的需要。4.本发明无需嵌入地面以下土壤,提高了设备的使用寿命和观测的准确性。5.本发明在抽拉板的边侧安装有灯条,可以实现全暗环境下的根系表型的监测。
附图说明
图1 为本发明作物根系表型采集***的结构示意图。
图2为本发明采集机构的结构示意图。
图3为本发明装载框架的结构示意图。
图4 为图3的俯视图。
本发明的实施方式
以下将结合附图对本发明的较佳实施例进行详细说明,以便更清楚理解本发明的目的、特点和优点。应理解的是,附图所示的实施例并不是对本发明范围的限制,而只是为了说明本发明技术方案的实质精神。本发明未提及部分均为现有技术。
如图1和图2所示,本发明提供了一种基于槽道的作物根系表型采集***,该***包括采集机构3,用于拍摄槽道左右两侧的作物根系图像;装载框架1,用于装载所述采集机构3并能够沿槽道的长度方向滑动,采集机构3设在装载框架1内,装载框架1装载所述采集机构3沿槽道的长度方向滑动对槽道左右两侧的作物根系图像进行拍摄。
进一步的,本发明提供的基于槽道的作物根系表型采集***还包括沿槽道长度方向延伸的相互平行的两条轨道(图中未画出),装载框架1可滑动的设置在该轨道上,装载框架在滑动的过程中,采集机构3对槽道左右两侧的作物根系图像进行拍摄。
进一步的,采集机构3包括采集框架3-7以及设在采集框架3-7上的多个相机,多个相机的相机镜头朝向槽道左侧和右侧。
进一步的,如图2所示,由于装载框架离两侧的栽培区距离很近,考虑相机拍摄时的对焦问题以获得高质量的图像;采集机构3包括采集框架3-7,采集框架包括左框架3-8和右框架3-4,左框架3-8的上半部分和下半部分均设有镜头朝向槽道右侧的相机3-1,右框架3-4的上半部分和下半部分均设有镜头朝向槽道左侧的相机3-6。左框架、右框架中的相机分别对槽道右侧、槽道左侧作物根系的图像进行上、下部分全方位采集。
进一步的,由于槽道左右两侧的栽培区采用的是玻璃,拍照时容易发光;采集框架3-7的左框架3-8和右框架3-4上均设有遮光板3-5,遮光板的横截面呈U形状,左框架3-8上的两个镜头朝向槽道右侧的相机3-1镶嵌设置在左框架3-8上的遮光板3-3的U形弯折部,右框架3-4上的两个镜头朝向槽道左侧的相机3-6镶嵌设置在右左框架3-4上的遮光板3-5的U形弯折部;通过支撑架3-2进一步固定相机位置。优选的,遮光板采用遮光绒布,避免拍照时反光,提高拍摄质量。同一遮光板中的两个相机光线互不干扰,相互独立采集根系图像。
进一步的,如图3和图4所示,所述装载框架1的左侧、右侧均设有沿竖直方向延伸的灯条1-2,拍照时根据需要可以进行补光。
进一步的,装载框架1的左侧、右侧均设有沿竖直方向延伸的抽拉板1-5,抽拉板1-5沿水平方向滑动连接在装载框架1上,装载框架1上设有用于限制抽拉板1-5滑动距离的限位块1-1。所述限位块1-1的边侧还安装有灯条1-2,可以实现全暗环境下的根系表型的监测。
进一步的,如图4所示,装载框架1的底部设有主动轮组、从动轮组和导轮,主动轮组包括第一转轴1-7、套设在第一转轴1-7两端并且与相互平行的两条轨道(图中未画出)滑动配合的主动轮1-8,用于驱动第一转轴1-7转动的驱动装置1-3;从动轮组包括第二转轴1-12、套设在第二转轴1-12两端并且与相互平行的两条轨道(图中未画出)滑动配合的从动轮1-6;导轮1-10设在与同一轨道滑动配合的主动轮、从动轮的两侧并与该轨道侧面接触。优选的,驱动装置为电机,电机输出轴与第一转轴1-7啮合,电机输出轴带动第一转轴1-7转动,第一转轴1-7带动其两端的两个主动轮1-8转动,从而给第一转轴1-7上的两个主动轮1-8施加行进的动力,第二转轴1-12以及第二转轴1-12两端的从动轮1-6在行进的动力带动下也发生转动,从而使得装载框架1平稳移动。装载框架1移动时,与同一轨道滑动配合的主动轮、从动轮两侧的导轮1-10,不仅可以起到导向的作用,而且增强了整个装载框架行进时的稳定性,有效提高了相机的拍摄质量。优选的,导轮1-10设在弹性导轮架1-11上,弹性导轮架1-11使得导轮1-10紧贴于轨道侧面,可以减少装载框架1发生左右晃动的想象,进一步提高装载框架整体的稳定性。
进一步的,所述装载框架还设有电源箱2,用于为相机、电机、灯条等提供电力来源。
进一步的,参见图4,装载框架的后侧底部设有两个与相互平行的两条轨道相配合的定向轮1-4,当采集***出现故障时,可将整个***向后翻转一定的角度、使得两个定向轮支撑整个采集***配合轨道滑动,通过手动推动即可平稳运行,省力。
进一步的,所述装载框架1的底部还设有垫脚1-9,垫脚有四个,设在底部四周处,垫脚的高度大于主动轮组、从动轮组和导轮的高度。装载框架不放在轨道上时,通过四个垫脚支撑装载框架,避免损坏底部的主动轮组、从动轮组和导轮。
本发明仅以上述实施例进行说明,各部件的结构、设置位置及其连接都是可以有所变化的。在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进或等同变换,均不应排除在本发明的保护范围之外。

Claims (10)

  1. 一种基于槽道的作物根系表型采集***,其特征在于:该***包括
    采集机构,用于拍摄槽道左右两侧的作物根系图像;
    装载框架,用于装载所述采集机构并能够沿槽道的长度方向滑动。
  2. 根据权利要求1所述的基于槽道的作物根系表型采集***,其特征在于,还包括沿槽道长度方向延伸的相互平行的两条轨道,装载框架可滑动的设置在该轨道上。
  3. 根据权利要求1或2所述的基于槽道的作物根系表型采集***,其特征在于,所述采集机构包括采集框架以及设在采集框架上的多个相机,多个相机的相机镜头朝向槽道左侧和右侧。
  4. 根据权利要求3 所述的基于槽道的作物根系表型采集***,其特征在于,所述采集框架包括左框架和右框架,左框架的上半部分和下半部分均设有镜头朝向槽道右侧的相机,右框架的上半部分和下半部分均设有镜头朝向槽道左侧的相机。
  5. 根据权利要求4所述的基于槽道的作物根系表型采集***,其特征在于,左框架和右框架上均设有遮光板,遮光板的横截面呈U形状,镜头朝向相同的相机镶嵌设置在同一遮光板的U形弯折部。
  6. 根据权利要求1或2所获的基于槽道的作物表型根系采集***,其特征在于,装载框架的底部设有主动轮组、从动轮组和导轮,
    主动轮组包括第一转轴、套设在第一转轴两端并且与相互平行的两条轨道滑动配合的主动轮,用于驱动第一转轴转动的驱动装置;
    从动轮组包括第二转轴、套设在第二转轴两端并且与相互平行的两条轨道滑动配合的从动轮;
    导轮设在与同一轨道滑动配合的主动轮、从动轮的两侧并与该轨道侧面接触。
  7. 根据权利要求1或2所述的基于槽道的作物表型根系采集***,其特征在于,装载框架的后侧底部设有两个与相互平行的两条轨道相配合的定向轮。
  8. 根据权利要求1或2所述的基于槽道的作物表型根系采集***,其特征在于,所述装载框架的左侧、右侧均设有沿竖直方向延伸的灯条。
  9. 根据权利要求1或2所述的基于槽道的作物根系表型采集***,其特征在于,所述装载框架的左侧、右侧均设有沿竖直方向延伸的抽拉板,抽拉板沿水平方向滑动连接在装载框架上。
  10. 根据权利要求9所述的基于槽道的根系表型采集***,其特征在于,所述抽拉板的边侧还安装有灯条。
PCT/CN2020/109495 2020-03-15 2020-08-17 一种基于槽道的作物根系表型采集*** WO2021184667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010179035.1A CN111289513A (zh) 2020-03-15 2020-03-15 一种基于槽道的作物根系表型采集***
CN202010179035.1 2020-03-15

Publications (1)

Publication Number Publication Date
WO2021184667A1 true WO2021184667A1 (zh) 2021-09-23

Family

ID=71019288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109495 WO2021184667A1 (zh) 2020-03-15 2020-08-17 一种基于槽道的作物根系表型采集***

Country Status (2)

Country Link
CN (1) CN111289513A (zh)
WO (1) WO2021184667A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061483A (zh) * 2021-11-08 2022-02-18 华中农业大学 基于人工智能的作物全表型组高通量检测***和方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111289513A (zh) * 2020-03-15 2020-06-16 南京慧瞳作物表型组学研究院有限公司 一种基于槽道的作物根系表型采集***

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044445A1 (en) * 2005-08-01 2007-03-01 Pioneer Hi-Bred International, Inc. Sensor system, method, and computer program product for plant phenotype measurement in agricultural environments
CN204495400U (zh) * 2015-04-03 2015-07-22 安徽大学 一种农作物表型测定装置
CN107655888A (zh) * 2017-09-09 2018-02-02 华中农业大学 一种应用于根盒土壤中水稻根系二维图像采集装置
CN109387247A (zh) * 2018-12-04 2019-02-26 上海乾菲诺农业科技有限公司 一种移动式高通量植物表型***及其数据采集方法
CN208998847U (zh) * 2018-12-04 2019-06-18 上海乾菲诺农业科技有限公司 一种移动式高通量植物表型***
CN110260789A (zh) * 2019-07-12 2019-09-20 南京农业大学 一种田间高通量作物表型监测***及方法
CN209946608U (zh) * 2019-04-26 2020-01-14 南京农业大学 一种基于扁平栽培容器的植物根系自动化成像***
CN110741849A (zh) * 2019-10-21 2020-02-04 南京慧瞳作物表型组学研究院有限公司 一种田间作物移动表型舱监测***
CN110741848A (zh) * 2019-10-21 2020-02-04 南京慧瞳作物表型组学研究院有限公司 一种用于田间作物表型分析的移动大棚***及其运输轨道
CN110849264A (zh) * 2019-11-26 2020-02-28 南京农业大学 一种基于多行轨道的田间作物表型监测***及方法
CN111272221A (zh) * 2020-02-28 2020-06-12 南京慧瞳作物表型组学研究院有限公司 一种田间作物表型五维数据采集车
CN111289513A (zh) * 2020-03-15 2020-06-16 南京慧瞳作物表型组学研究院有限公司 一种基于槽道的作物根系表型采集***
CN111296119A (zh) * 2020-03-15 2020-06-19 南京慧瞳作物表型组学研究院有限公司 集装箱表型舱***

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070044445A1 (en) * 2005-08-01 2007-03-01 Pioneer Hi-Bred International, Inc. Sensor system, method, and computer program product for plant phenotype measurement in agricultural environments
CN204495400U (zh) * 2015-04-03 2015-07-22 安徽大学 一种农作物表型测定装置
CN107655888A (zh) * 2017-09-09 2018-02-02 华中农业大学 一种应用于根盒土壤中水稻根系二维图像采集装置
CN109387247A (zh) * 2018-12-04 2019-02-26 上海乾菲诺农业科技有限公司 一种移动式高通量植物表型***及其数据采集方法
CN208998847U (zh) * 2018-12-04 2019-06-18 上海乾菲诺农业科技有限公司 一种移动式高通量植物表型***
CN209946608U (zh) * 2019-04-26 2020-01-14 南京农业大学 一种基于扁平栽培容器的植物根系自动化成像***
CN110260789A (zh) * 2019-07-12 2019-09-20 南京农业大学 一种田间高通量作物表型监测***及方法
CN110741849A (zh) * 2019-10-21 2020-02-04 南京慧瞳作物表型组学研究院有限公司 一种田间作物移动表型舱监测***
CN110741848A (zh) * 2019-10-21 2020-02-04 南京慧瞳作物表型组学研究院有限公司 一种用于田间作物表型分析的移动大棚***及其运输轨道
CN110849264A (zh) * 2019-11-26 2020-02-28 南京农业大学 一种基于多行轨道的田间作物表型监测***及方法
CN111272221A (zh) * 2020-02-28 2020-06-12 南京慧瞳作物表型组学研究院有限公司 一种田间作物表型五维数据采集车
CN111289513A (zh) * 2020-03-15 2020-06-16 南京慧瞳作物表型组学研究院有限公司 一种基于槽道的作物根系表型采集***
CN111296119A (zh) * 2020-03-15 2020-06-19 南京慧瞳作物表型组学研究院有限公司 集装箱表型舱***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114061483A (zh) * 2021-11-08 2022-02-18 华中农业大学 基于人工智能的作物全表型组高通量检测***和方法
CN114061483B (zh) * 2021-11-08 2024-02-09 华中农业大学 基于人工智能的作物全表型组高通量检测***和方法

Also Published As

Publication number Publication date
CN111289513A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN110274556B (zh) 一种植物表型信息提取方法
WO2021082655A1 (zh) 一种用于获取作物表型的根盒
WO2021184667A1 (zh) 一种基于槽道的作物根系表型采集***
WO2021082656A1 (zh) 一种用于获取作物表型的高通量拍照***
CN202798997U (zh) 植物田间三维形态信息采集装置
WO2021082537A1 (zh) 一种作物表型高通量获取装置与气候舱
CN108680706B (zh) 一种可水平移动和垂直升降型高通量植物表型测量***及方法
WO2021169200A1 (zh) 一种田间作物表型五维数据采集车
CN111693551B (zh) 一种水稻植株及根系三维性状无损测量装置及方法
WO2021151286A1 (zh) 一种田间作物根系表型的获取***
CN202634550U (zh) 一种植物图像采集装置
CN115468937A (zh) 基于叶绿素荧光成像的幼苗表型检测***
US11823408B2 (en) Apparatus and method to quantify maize seed phenotypes
CN212568494U (zh) 一种基于槽道的作物根系表型采集***
CN212180636U (zh) 一种田间作物表型五维数据采集车
CN111812922A (zh) 田间根系槽道式拍照***
CN210298927U (zh) 一种组织培养观测机组及培养箱、培养架
WO2021253605A1 (zh) 一种透明根系栽培容器拍照自动线
CN110866972A (zh) 一种甘蔗根系构型的原位观测装置及其分析方法
CN111239340A (zh) 一种田间作物根系表型的多通道获取***及安装方法
CN212623531U (zh) 田间根系槽道式拍照***
CN2816857Y (zh) 一种x射线无损检测数字化成像装置
CN210533866U (zh) 一种裂纹扩展实时跟踪装置
CN210298680U (zh) 一种用于高通量植物根系可视化分析的培养及测量装置
CN210374998U (zh) 一种用于获取作物表型的高通量拍照***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926212

Country of ref document: EP

Kind code of ref document: A1