WO2021184262A1 - 一种锂离子电池的电芯、其制备方法及包含其的锂离子电池 - Google Patents

一种锂离子电池的电芯、其制备方法及包含其的锂离子电池 Download PDF

Info

Publication number
WO2021184262A1
WO2021184262A1 PCT/CN2020/080042 CN2020080042W WO2021184262A1 WO 2021184262 A1 WO2021184262 A1 WO 2021184262A1 CN 2020080042 W CN2020080042 W CN 2020080042W WO 2021184262 A1 WO2021184262 A1 WO 2021184262A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
lithium
silicon
battery
pole piece
Prior art date
Application number
PCT/CN2020/080042
Other languages
English (en)
French (fr)
Inventor
章婷
姜道义
陈志焕
崔航
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to CN202080094446.9A priority Critical patent/CN115039268A/zh
Priority to PCT/CN2020/080042 priority patent/WO2021184262A1/zh
Publication of WO2021184262A1 publication Critical patent/WO2021184262A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the technical field of lithium ion batteries, and in particular to a battery cell of a lithium ion battery, a preparation method thereof, and a lithium ion battery including the battery core.
  • the cell of a soft-packaged lithium-ion battery is wound from pole pieces, and there are usually varying degrees of volume expansion during the lithium insertion process, which causes the pole pieces to wrinkle and deform, and the wrinkle and deformation of the pole pieces will cause the charging process Lithium evolution occurs in the process, causing safety hazards.
  • the present application provides a cell of a lithium ion battery to reduce the probability of deformation of the pole piece, so as to at least improve the problem of lithium evolution in the cell caused by the deformation of the pole piece.
  • the first aspect of the present application provides a battery cell of a lithium ion battery, including a straight section and a bent section, and the battery cell is wound by a laminate including a positive pole piece, a negative pole piece and a separator;
  • the total number of winding turns of the battery core is N
  • the thickness of the laminated body in the straight section of the battery core is m 1 mm
  • a reserve is provided inside at least one designated turn of the bending section of the battery core.
  • a and g satisfy: 0.55m 1 N ⁇ 1000 g/a ⁇ 1.90m 1 N.
  • the number of the designated circles is 2 or 3, and the interval between two adjacent reserved spaces is 2-5 circle stacks.
  • the negative active material on the negative pole piece includes a silicon-based material.
  • the silicon-based material includes at least one of nano-silicon particles, SiO x , silicon-carbon composite material, or silicon alloy, where 0.5 ⁇ x ⁇ 1.6.
  • the average particle size of SiOx, silicon-carbon composite material or silicon alloy in the silicon-based material is 500 nm-30 ⁇ m; the average particle size of the nano silicon particles is less than 100 nm.
  • the silicon-based material further contains lithium and/or magnesium.
  • the second aspect of the application provides the method for preparing the battery cell provided in the first aspect of the application, including:
  • a third aspect of the present application provides a lithium ion battery including the battery cell provided in the first aspect of the application, the lithium ion battery further includes an electrolyte and a packaging film, the battery is immersed in the electrolyte and packaged In the packaging film.
  • the fourth aspect of the present application provides an electronic device, including the lithium ion battery provided in the third aspect of the present application.
  • wrinkle refers to the phenomenon of continuous bending of the separator and the pole piece
  • the wrinkle or deformation caused by the expansion of the battery cell can be improved, and at least the battery cell caused by the deformation can be improved Analyze the lithium problem.
  • Fig. 1 is a schematic diagram of a cell structure of a lithium-ion battery according to an embodiment of the present application
  • FIG. 2 is a top view of the battery cell of the lithium ion battery of Embodiment 4;
  • FIG. 3 is a thickness side view of the cell of the lithium ion battery of Embodiment 4; FIG.
  • the first aspect of the present application provides a lithium-ion battery cell, as shown in Figures 1-3, including a straight section 1 and a bent section 2.
  • the cell consists of a positive pole piece 6 and a negative pole piece 7. It is wound up with a laminated body of the separator,
  • the total number of winding turns of the battery core is N
  • the thickness of the laminated body in the straight section of the battery core is m 1 mm
  • a reserve is provided inside at least one designated turn of the bending section of the battery core.
  • Space 3 so that the distance g between the two points where the curvature of the innermost layer of the bending section 2 of the battery core and the outermost layer is greatest satisfies m 1 N ⁇ g ⁇ 1.87m 1 N; wherein the at least one designated circle In the range of N/4 to 3N/4; the unit volume capacity of the negative pole piece is a mAh/cm 3 , and 619 ⁇ a ⁇ 3000.
  • the straight section 1 of the battery cell refers to the two sections of the cell where the laminate body does not bend or bends less
  • the bending section 2 of the cell refers to the two ends of the cell where the laminate body is bent.
  • the laminate may specifically include a positive pole piece, a negative pole piece, and two-layer isolation films.
  • One of the two-layer isolation films is located between the positive pole piece and the negative pole piece, and the other layer is located On the other side of the positive pole piece, when the laminated body is wound to form a battery, the functions of the two isolation films are to separate the positive pole piece and the negative pole piece in each winding, and to isolate the two adjacent ones.
  • the positive pole piece and the negative pole piece that are close to each other in the winding to prevent short circuit of the positive and negative poles inside the battery.
  • the structure of the laminated body and the positional relationship of the various parts in the laminated body can be used by those skilled in the art by conventional technical means, and this application is not limited herein.
  • the layers in the laminate may be arranged in the order of a separator, a positive pole piece, a separator, and a negative pole piece.
  • each layer is wound in isolation.
  • the membrane is located at the innermost layer, and the negative pole piece is located at the outermost layer.
  • the reserved space is set inside the designated circle means that the pre-set is set between the innermost separator of the designated circle and the negative pole piece of the previous circle of the designated circle. Leave space.
  • the distance between the innermost layer of the bending section of the cell and the two points where the outermost layer has the greatest curvature can be understood as a bending section, the inner isolation film of the innermost layer of the cell is laminated with the outermost layer The distance between the two points with the largest curvature of the positive pole piece on the outside of the body.
  • the reserved space is set so that the line connecting the innermost layer of the bending section of the wound cell and the two points where the outermost layer has the largest curvature passes through the reserved space; the bending of the wound cell
  • the two points where the curvature of the innermost layer and the outermost layer of the segment are greatest can be the two points where the innermost layer and the outermost layer on the cell section are located on the center line 5 in the thickness direction of the cell;
  • the reserved space 3 may be arranged in the winding corner 4.
  • the thickness of the laminate can be understood as the sum of the thickness of the positive pole piece, the negative pole piece and the two separators.
  • the thickness of the flat section of the laminate can be considered There is no change before and after.
  • too large or too small reserved space 3 can not achieve the purpose of effectively inhibiting the lithium evolution and deformation of the pole piece. It is not limited to any theory. It can be considered that when g ⁇ m 1 N, it is not enough. To alleviate volume expansion, to suppress wrinkles and deformation; and when g ⁇ 1.87m 1 N, the space reserved inside the cell is too large, which causes the cell to deform, and the solid electrolyte interface (SEI) becomes worse, thereby affecting The degree of lithium insertion in the negative electrode and the diffusion rate of lithium ions cause the phenomenon of lithium evolution.
  • SEI solid electrolyte interface
  • a and g satisfy: 0.55m 1 N ⁇ 1000g/a ⁇ 1.90m 1 N; the inventor found in the research that when g and a satisfy the above proportional relationship, it can be obtained Better suppression of deformation and lithium precipitation.
  • the total number of winding turns N is usually an integer; in “at least one designated turn is in the range of N/4 to 3N/4", the "designated turn” is an integer turn, and the designated turn is in N/ In the range of 4 to 3N/4; when N/4 and 3N/4 are not integers, round up to the nearest whole number, and the value after rounding should be in the range of N/4 to 3N/4.
  • the number of the designated circles is 2 or 3, and the interval between two adjacent reserved spaces is 2-5 circle stacks; preferably, two adjacent ones The interval between the two reserved spaces is 2-3 turns of the laminated body; more preferably, the interval between two adjacent reserved spaces is 2 turns of the laminated body.
  • the inventor also discovered in research that in lithium-ion batteries, the cells will have different degrees of volume expansion during the process of lithium insertion.
  • the gram capacity is much higher than that of carbon-based anode materials in the prior art, so it is considered to be the most promising anode material for next-generation lithium-ion batteries; however, silicon-based anode materials have about 300% Volume expansion, the existing technology to prevent the deformation of the negative electrode material and inhibit the lithium evolution can hardly be applied to this kind of negative electrode material with high gram capacity and high expansion rate;
  • the unit volume capacity a (mAh/cm 3 ) of the pole piece and the distance between the innermost layer and the outermost layer of the bending section of the battery core at the maximum curvature g satisfies 0.55m 1 N ⁇ 1000g/a ⁇ 1.90m At 1 N, it can effectively reduce the probability of battery cell deformation and improve the problem of lithium evolution in the battery cell.
  • the battery of the present application includes a positive pole piece, a negative pole piece and a separator.
  • the negative pole piece includes a negative electrode current collector and a negative electrode coating.
  • the negative electrode coating is formed by coating a negative electrode material on the negative electrode current collector.
  • the negative electrode coating contains a negative electrode active material.
  • the negative electrode active material on the negative electrode piece contains a silicon-based material.
  • the silicon-based material used in this application is a material known in the art; it can be prepared according to the prior art or obtained through commercial channels.
  • the silicon-based material comprises nano-silicon particles. , Silicon oxide (SiOx, where 0.5 ⁇ x ⁇ 1.6), at least one of a silicon-carbon composite material or a silicon alloy; the particle size of the silicon-based material can be a conventional size in the field, in the first aspect of this application.
  • the average particle size of SiOx, silicon-carbon composite material or silicon alloy in the silicon-based material is 500 nm-30 ⁇ m; the average particle size of the nano silicon particles is less than 100 nm.
  • the silicon-based material may also contain elements such as lithium and magnesium.
  • the materials and preparation of the positive electrode sheet and the separator are not particularly limited, and they can be prepared by any method known to those skilled in the art or purchased from commercial sources.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode coating.
  • the positive electrode coating layer is formed by coating a positive electrode material on a positive electrode current collector, the positive electrode coating layer contains a positive electrode active material, and the positive electrode active material contains lithium cobaltate, lithium manganate, lithium iron phosphate, and nickel acid. At least one of lithium or lithium nickel cobalt oxide; the material of the isolation membrane is selected from at least one of polyethylene, polypropylene, and polyvinylidene fluoride.
  • the second aspect of the application provides the method for preparing the battery cell provided in the first aspect of the application, including:
  • a third aspect of the present application provides a lithium ion battery including the battery cell provided in the first aspect of the application, the lithium ion battery further includes an electrolyte and a packaging film, the battery is immersed in the electrolyte and packaged In the packaging film.
  • the electrolyte and packaging film used in this application are all materials known in the art; for example, the electrolyte can be prepared by the following method: in a dry argon environment, in propylene carbonate (PC), ethylene carbonate (EC) , Diethyl carbonate (DEC) is mixed with a weight ratio of 1:1:1 to the solvent solution, add lithium hexafluorophosphate (LiPF 6 ) and mix evenly.
  • the concentration of LiPF 6 is about 1.15mol/L, and then add 12wt% Fluorinated ethylene carbonate (FEC) is mixed uniformly to obtain an electrolyte.
  • the packaging film can be aluminum-plastic film; this application is not limited here.
  • the fourth aspect of the present application provides an electronic device, including the lithium ion battery provided in the third aspect of the present application.
  • the test temperature was 25° C., and the full batteries prepared in each example and comparative example were charged to 4.4V at a constant current of 0.7C, charged to 0.05C at a constant voltage, and discharged to 3.0V at 0.5C after standing for 5 minutes. Afterwards, a 0.7C charge/0.5C discharge cycle test was performed. After 10 cycles, the battery cell was removed and disassembled to observe the phenomenon of lithium precipitation.
  • the pole piece is golden yellow for non-lithium, and the pole piece is gray for lithium. And according to the area of the fully charged pole piece (gray) and the entire pole piece The ratio of the area to judge the degree of lithium extraction:
  • the positive pole piece is prepared by the following method:
  • the active material LiCoO 2 , conductive carbon black, and binder polyvinylidene fluoride (PVDF) are fully stirred and mixed in an N-methylpyrrolidone solvent system at a weight ratio of 96.7:1.7:1.6.
  • the solid content of the slurry is 30vol %, and then coated on the Al foil, dried, and cold pressed to obtain a positive pole piece.
  • a PE porous polymer film is used as the isolation membrane.
  • Negative electrode sheet were prepared: Example of a silicone material graphite embodiment (the SiOx, where 0.5 ⁇ x ⁇ 1.6) mixed at a certain proportion, to give capacity per unit volume of 619.8mAh / cm 3 of the mixed powder, the mixed powder, conductive Acetylene black and polyacrylic acid (PAA) are mixed thoroughly in a deionized water solvent system with a weight ratio of 95:1.2:3.8. The solid content of the slurry is 30vol%, and then the negative electrode material is coated on the Cu foil and baked Dry and cold press to obtain a negative pole piece; wherein the coating weight per unit area is 9.74 mg/cm 2 , and the coating thickness is 0.115 mm.
  • the coating weight per unit area is 9.74 mg/cm 2
  • the coating thickness is 0.115 mm.
  • Per unit volume mixed powder of EXAMPLE 14 was adjusted to 3000.0mAh / cm 3; a negative electrode coating weight per unit area becomes 2.279mg / cm 2; coating thickness becomes 0.0364mm; m 1 laminate thickness becomes 0.162 mm; the rest is the same as in Example 14.
  • Example 15 The capacity per unit volume in Example 15 was adjusted to the mixed powder 3000.0mAh / cm 3; a negative electrode coating weight per unit area becomes 2.279mg / cm 2; coating thickness becomes 0.0364mm; m 1 laminate thickness becomes 0.162 mm; the rest is the same as in Example 15.
  • Comparing Examples 1-3 and Comparative Examples 1-2, Examples 14, 15 and Comparative Examples 10 and 11 illustrate the same negative pole piece unit volume capacity, and by controlling different g values, that is, controlling the reservation Depending on the size of the space, battery cells have different lithium evolution situations. When m 1 N ⁇ g ⁇ 1.87m 1 N, none of the battery cells exhibit lithium evolution.
  • the size of the reserved space has a greater impact on the lithium evolution of the battery cell.
  • Different silicon content can provide different negative pole piece unit volume capacity, but it will also cause different degree of volume expansion. Therefore, different unit volume capacity should match different g value.
  • the bending section of the battery is set to reserve space When m 1 N ⁇ g ⁇ 1.87m 1 N, it can effectively alleviate the volume expansion, reduce the deformation probability of the pole piece, thereby improving the phenomenon of lithium precipitation in the battery; this improvement is at least suitable for the negative electrode unit volume capacity of 619mAh/cm 3 ⁇ 3000mAh/cm 3 anode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种锂离子电池的电芯,包括平直段和弯折段,所述电芯由包括正极极片、负极极片和隔离膜的层叠体卷绕而成;其中,所述电芯的卷绕总圈数为N,所述电芯的平直段中层叠体的厚度为m 1毫米,在所述电芯的弯折段的至少一个指定圈内侧设置有预留空间,使所述电芯的弯折段的最内层与最外层曲率最大处的两点间的距离g满足m1N<g<1.87m1N;其中所述至少一个指定圈在N/4到3N/4范围内;所述负极极片的单位体积容量为a mAh/cm 3,且619<a<3000。采用本申请实施例提供的电芯,通过在电芯的弯折段设置适当的预留空间,可以改善电芯膨胀引起的褶皱或变形现象,从而改善电芯的析锂问题。

Description

一种锂离子电池的电芯、其制备方法及包含其的锂离子电池 技术领域
本申请涉及锂离子电池技术领域,特别是涉及一种锂离子电池的电芯、其制备方法及包含所述电芯的锂离子电池。
背景技术
软包装锂离子电池的电芯是由极片卷绕而成,在嵌锂过程中通常会存在不同程度的体积膨胀,从而导致极片发生褶皱变形的现象,而极片的褶皱变形会引起充电过程中发生析锂,引发安全隐患。
发明内容
本申请提供一种锂离子电池的电芯,以降低极片发生变形的几率,从而至少改善由极片变形造成的电芯析锂的问题。
本申请第一方面提供了一种锂离子电池的电芯,包括平直段和弯折段,所述电芯由包括正极极片、负极极片和隔离膜的层叠体卷绕而成;
所述电芯的卷绕总圈数为N,所述电芯的平直段中层叠体的厚度为m 1毫米,在所述电芯的弯折段的至少一个指定圈内侧设置有预留空间,使所述电芯的弯折段的最内层与最外层曲率最大处的两点间的距离g满足m 1N<g<1.87m 1N;其中所述至少一个指定圈在N/4到3N/4范围内;所述负极极片的单位体积容量为a mAh/cm 3,且619<a<3000。
在本申请第一方面的一些实施方式中,a与g满足:0.55m 1N<1000g/a<1.90m 1N。
在本申请第一方面的一些实施方式中,所述指定圈的数量为2或3个,并且相邻两个预留空间之间的间隔为2-5圈层叠体。
在本申请第一方面的一些实施方式中,5≤N≤30。
在本申请第一方面的一些实施方式中,所述负极极片上的负极活性物质包含硅基材料。
在本申请第一方面的一些实施方式中,所述硅基材料包含纳米硅颗粒,SiO x,硅碳复合材料或硅合金中的至少一种,其中0.5≤x<1.6。
在本申请第一方面的一些实施方式中,所述硅基材料中的SiOx、硅碳复合材料或硅合金的平均粒径为500nm-30μm;所述纳米硅颗粒的平均粒径小于100nm。
在本申请第一方面的一些实施方式中,所述硅基材料中还包含有锂元素和/或镁元素。
本申请第二方面提供了本申请第一方面所提供的电芯的制备方法,包括:
将层叠体进行卷绕;
在卷绕完成所述指定圈的前一圈之后,在需要设置有预留空间的弯折段处***间隔物,并卷绕所述指定圈;
卷绕完成后,将间隔物取出,形成预留空间。
本申请第三方面提供了一种包含本申请第一方面所提供的电芯的锂离子电池,所述锂离子电池还包括电解液和包装膜,所述电芯浸没于电解液中,并封装于所述包装膜内。
本申请第四方面提供了一种电子装置,包括本申请第三方面所提供的锂离子电池。
本申请中所用的术语一般为本领域技术人员常用的术语,如果与常用术语不一致,以本申请中的术语为准。
本文中,术语“褶皱”是指隔离膜以及极片连续弯曲的现象;
本文中,术语“变形”是指电芯Ripple>2,其中Ripple=全电芯的平板面厚度(PPG)/全电芯的点厚度(MMC)-1;
本申请实施例提供的锂离子电池的电芯,通过在电芯的弯折段设置适当的预留空间,可以改善电芯膨胀引起的褶皱或变形现象,进而至少可以改善由变形引起的电芯析锂问题。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本申请的一个实施例的锂离子电池的电芯结构示意图;
图2为实施例4的锂离子电池的电芯的顶部视图;
图3为实施例4的锂离子电池的电芯的厚度面视图;
附图标记:
1:平直段;2:弯折段;3:预留空间;4:卷绕拐角;5:电芯厚度方向的中心线;6:正极极片;7负极极片。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请第一方面提供了一种锂离子电池的电芯,如图1-3所示,包括平直段1和弯折段2;所述电芯由包括正极极片6、负极极片7和隔离膜的层叠体卷绕而成,
所述电芯的卷绕总圈数为N,所述电芯的平直段中层叠体的厚度为m 1毫米,在所述电芯的弯折段的至少一个指定圈内侧设置有预留空间3,使所述电芯的弯折段2的最内层与最外层曲率最大处的两点间的距离g满足m 1N<g<1.87m 1N;其中所述至少一个指定圈在N/4到3N/4范围内;所述负极极片的单位体积容量为a mAh/cm 3,且619<a<3000。
本申请中,电芯的平直段1是指电芯中层叠体不发生弯曲或弯曲较小的两段区域,电芯的弯折段2是指电芯中层叠体发生弯曲的两个端部;其中, 所述弯折段2还包括卷绕拐角4,所述卷绕拐角4是指各弯折段内,在电芯的截面上,以电芯厚度方向的中心线5为中心,宽度约为电芯厚度1/2的范围。
本申请中,层叠体具体地可包括正极极片、负极极片和两层隔离膜,所述两层隔离膜中的一层位于正极极片和负极极片之间,另一层隔离膜位于正极极片的另一侧,当所述层叠体通过卷绕形成电芯时,两层隔离膜的作用分别是隔离每一圈卷绕内正极极片和负极极片,以及隔离相邻的两圈卷绕中相接近的正极极片和负极极片,以防止电池内部正负极短路。层叠体的构成、层叠体中各部分的位置关系,本领域技术人员可采用惯用技术手段,本申请在此不做限定。示例性地,所述层叠体中的各层可以以隔离膜、正极极片、隔离膜、负极极片的顺序排列,当将所述层叠体卷绕成电芯时,每层卷绕中隔离膜位于最内层,负极极片位于最外层,此时“指定圈内侧设置有预留空间”是指指定圈最内侧的隔离膜与指定圈的前一圈的负极极片之间设置预留空间。
电芯的弯折段的最内层与最外层曲率最大处的两点间的距离,可以理解为,一个弯折段中,电芯最内层层叠体的内侧隔离膜与最外层层叠体外侧正极极片,曲率最大的两点之间的距离。
本申请中,设置所述预留空间使得卷绕电芯的弯折段的最内层与最外层曲率最大处的两点的连线经过所述预留空间;卷绕电芯的弯折段的最内层与最外层曲率最大处的两点,可以是电芯截面上最内层与最外层层叠***于电芯厚度方向的中心线5上的两点;此时,所述预留空间3可以设置于所述卷绕拐角4内。
本申请中,层叠体的厚度可以理解为正极极片、负极极片和两层隔离膜的厚度之和,当层叠体卷绕成为电芯时,可以认为平直段层叠体的厚度在卷绕前后没有变化。
发明人在研究中发现,预留空间3过大或者过小均不能达到有效地抑制极片析锂和变形的目的,不限于任何理论,可以认为,当g≤m 1N,则不足以起到缓解体积膨胀,以抑制褶皱和变形的作用;而当g≥1.87m 1N,则电芯内部预留的空隙过大,使电芯发生变形,固体电解质界面(SEI)变差,从而影响负极嵌锂程度和锂离子的扩散速度,从而造成析锂现象。
在本申请第一方面的一些实施方式中,a与g满足:0.55m 1N<1000g/a<1.90m 1N;发明人在研究中发现,当g与a满足上述比例关系时,能够获得更好的抑制变形和析锂的效果。
本申请中,卷绕的总圈数N通常为整数;“至少一个指定圈在N/4到3N/4范围内”中,所述“指定圈”为整数圈,所述指定圈在N/4到3N/4范围内;当N/4、3N/4不为整数时,按四舍五入取整,取整后的数值应该在N/4到3N/4范围内。
在本申请第一方面的一些实施方式中,5≤N≤30。
在本申请第一方面的一些实施方式中,所述指定圈的数量为2或3个,并且相邻两个预留空间之间的间隔为2-5圈层叠体;优选地,相邻两个预留空间之间的间隔为2-3圈层叠体;更优选地,相邻两个预留空间之间的间隔为2圈层叠体。发明人在研究中出人意料地发现,当所述指定圈的数量为2或3个,并且相邻两个预留空间之间的间隔为2-5圈层叠体时,防止电芯变形和析锂的效果更佳。
不限于任何理论,发明人在研究中还发现,锂离子电池中,电芯在嵌锂的过程中会存在不同程度的体积膨胀,例如硅基负极材料由于其具有的高达1500~4200mAh/g的克容量,远高于现有技术中的碳基负极材料,因而被认为是最具有应用前景的下一代锂离子电池负极材料;然而硅基负极材料在脱嵌锂的过程中具有约300%的体积膨胀,现有防止负极材料变形、抑制析锂的技术几乎不能适用于此类具有高克容量和高膨胀率的负极材料;然而采用本申请的方法,通过设置预留空间,进一步地,负极极片的单位体积容量a(mAh/cm 3)与电芯的弯折段的最内层与最外层曲率最大处的两点间的距离g满足0.55m 1N<1000g/a<1.90m 1N时,能够有效降低电芯发生变形的几率,改善电芯析锂问题。
本申请的电芯中包括正极极片、负极极片及隔离膜,所述负极极片包括负极集流体及负极涂层,所述负极涂层由负极材料涂敷于负极集流体上形成,所述负极涂层中包含负极活性物质,在本申请第一方面的一些实施方式中,所述负极极片上的负极活性物质包含硅基材料。
本申请所采用的硅基材料为本领域已知的材料;可以根据现有技术来制备或者通过商业途径获得,在本申请第一方面的一些实施方式中,所述硅基材料包含纳米硅颗粒,硅氧化物(SiOx,其中0.5≤x<1.6),硅碳复合材料或硅合金中的至少一种;所述硅基材料的颗粒尺寸可以为本领域常规尺寸,在本申请第一方面的一些实施方式中,所述硅基材料中的SiOx、硅碳复合材料或硅合金的平均粒径为500nm-30μm;所述纳米硅颗粒的平均粒径小于100nm。在本申请第一方面的另一些实施方式中,所述硅基材料中还可以包含有锂、镁等元素。
在本申请中,正极极片及隔离膜的材料和制备没有特别限定,可以用本领域技术人员已知的任何方法制备或购自商业途径,例如所述正极极片包括正极集流体及正极涂层,所述正极涂层由正极材料涂敷于正极集流体上形成,所述正极涂层中包含正极活性物质,所述正极活性物质包含钴酸锂、锰酸锂、磷酸铁锂、镍酸锂或镍钴酸锂中的至少一种;所述隔离膜的材料选自聚乙烯、聚丙烯、聚偏氟乙烯中的至少一种。
本申请第二方面提供了本申请第一方面所提供的电芯的制备方法,包括:
将层叠体进行卷绕;
在卷绕完成所述指定圈的前一圈之后,在需要设置有预留空间的弯折段处***间隔物,并卷绕所述指定圈;
卷绕完成后,将间隔物取出,形成预留空间。
本申请第三方面提供了一种包含本申请第一方面所提供的电芯的锂离子电池,所述锂离子电池还包括电解液和包装膜,所述电芯浸没于电解液中,并封装于所述包装膜内。
本申请所采用的电解液和包装膜均为本领域已知的材料;例如电解液可采用如下方法进行制备:在干燥氩气环境下,在碳酸丙烯酯(PC),碳酸乙烯酯(EC),碳酸二乙酯(DEC)以重量比1:1:1混合而成的溶剂溶液中,加入六氟磷酸锂(LiPF 6)混合均匀,其中LiPF 6的浓度约为1.15mol/L,再加入12wt%的氟代碳酸乙烯酯(FEC)后混合均匀得到电解液。
包装膜可采用铝塑膜;本申请在此不做限定。
本申请第四方面提供了一种电子装置,包括本申请第三方面所提供的锂离子电池。
以下,基于实施例对本申请进行具体地说明,但本申请并不限于这些实施例。
负极极片容量检测:
将实施例中得到的负极极片(单面区域),用万分尺测量单面极片和相应铜箔厚度(分别为t 1和t 2),85℃经过12小时真空干燥箱烘干后,在干燥环境中用冲压机切成直径为1.4cm的圆片,在手套箱中以金属锂片作为对电极,隔离膜选择ceglard复合膜,加入电解液组装成扣式电池。运用蓝电(LAND)系列电池测试对电池进行充放电测试,测试其充放电性能。其中得到的容量设为C1(mAh),则单位体积容量a=C1/涂覆的面积*(t 1-t 2)。
析锂测试:
测试温度为分别为25℃,各实施例及对比例所制备的全电池以0.7C恒流充电到4.4V,恒压充电到0.05C,静置5分钟后以0.5C放电到3.0V。之后进行0.7C充电/0.5C放电循环测试,进行10个循环后,取下电芯进行拆解观察析锂现象。
根据满充拆解极片的状态来判定,其中极片呈金黄色为不析锂,极片呈灰色则为析锂,且根据满充极片析锂(呈灰色)的面积与整个极片面积的比例来判断析锂的程度:
<3%为轻微析锂
3%~5%为析锂
>5%为严重析
结果见表1。
全电池制备实施例
以下实施例及对比例中,正极极片通过以下方法制备:
将活性物质LiCoO 2、导电炭黑、粘结剂聚偏二氟乙烯(PVDF)按重量比96.7:1.7:1.6在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀,浆料的固含量为30vol%,然后涂覆于Al箔上烘干、冷压,得到正极极片。
以下实施例及对比例中,以PE多孔聚合薄膜作为隔离膜。
实施例1
负极极片制备:将石墨与实施例中的硅氧材料(SiOx,其中0.5≤x<1.6)按照一定的比例混合,得到单位体积容量为619.8mAh/cm 3的混合粉末,将混合粉末、导电剂乙炔黑、聚丙烯酸(PAA)按照重量比95:1.2:3.8在去离子水溶剂体系中充分搅拌混合均匀,其中浆料的固含量为30vol%,然后将负极材料涂覆于Cu箔上烘干、冷压,得到负极极片;其中,单位面积涂布重量为9.74mg/cm 2,涂布厚度为0.115mm。
全电池制备:
将包含正极极片、负极极片和隔离膜的,厚度m 1=0.260mm的层叠体卷绕13圈以获得电芯;其中,在第5圈的两个弯折段,通过***间隔物,设置预留空间,使电芯每个弯折段截面中心线处的厚度g=3.41mm=1.01m 1N。
将电芯置于包装膜中,注入配好的电解液并封装,经过化成,脱气,切边等工艺流程得到全电池。
实施例2
层叠体卷绕25圈,在第17圈***间隔物,使g=6.63mm=1.02m 1N,其余与实施例1相同。
实施例3
层叠体卷绕25圈,在第10圈和第12圈分别***间隔物,使g=12.09mm=1.86m 1N,其余与实施例1相同。
实施例4
将实施例1中混合粉末的单位体积容量957.8mAh/cm 3;负极单位面积涂布重量变为7.27mg/cm 2;涂布厚度变为0.091mm;将厚度m 1=0.27mm的层 叠体卷绕5圈,在第2圈***间隔物,使g=2.84mm=1.05m 1N,其余与实施例1相同。
实施例5
除了层叠体卷绕11圈,在第3圈、第5圈的弯折段,***间隔物,使每个弯折段中形成两个预留空间,且g=1.72m 1N=4.64mm其余与实施例4相同。
实施例6
除了层叠体卷绕10圈,在第4圈、第6圈的弯折段,***间隔物,使每个弯折段中形成两个预留空间,且g=1.75m 1N=4.72mm其余与实施例4相同。
实施例7
将实施例1中混合粉末的单位体积容量调整为1151.3mAh/cm 3;负极单位面积涂布重量变为5.324mg/cm 2;涂布厚度变为0.070mm;将厚度m 1=0.212mm的层叠体卷绕30圈,在第15圈***间隔物,使g=1.56m 1N=9.92mm,其余与实施例1相同。
实施例8
除了在第9圈、第14圈、第19圈的弯折段,***间隔物,使每个弯折段中形成三个预留空间,且g=1.58m 1N=10.05mm其余与实施例7相同。
实施例9
除了在第9圈、第15圈、第21圈的弯折段,***间隔物,使每个弯折段中形成三个预留空间,其余与实施例8相同。
实施例10
除了在第9圈、第12圈、第15圈和第18圈的弯折段***间隔物,使每个弯折段中形成四个预留空间,其余与实施例8相同。
实施例11
将实施例1中混合粉末的单位体积容量调整为1336.7mAh/cm 3;负极单位面积涂布重量变为5.194mg/cm 2;涂布厚度变为0.0698mm;将厚度m 1=0.202mm的层叠体卷绕20圈,在第6圈、第8圈以及第10圈***间隔物, 使g=1.47m 1N=5.94mm,其余与实施例1相同。
实施例12
将实施例1中混合粉末的设计单位体积容量调整为1671.8mAh/cm 3;负极单位面积涂布重量变为4.181mg/cm 2;涂布厚度变为0.0575mm;将厚度m 1=0.192mm的层叠体卷绕20圈,在第12圈、第15圈***间隔物,使g=1.49m 1N=5.72mm,其余与实施例1相同。
实施例13
将实施例1中混合粉末的设计单位体积容量调整为2422.2mAh/cm 3;负极单位面积涂布重量变为2.642mg/cm 2;涂布厚度变为0.04mm;将厚度m 1=0.180mm的层叠体卷绕15圈,通过在第4圈***间隔物,使g=1.64m 1N=4.43mm,其余与实施例1相同。
实施例14
将实施例1中混合粉末的设计单位体积容量调整为2839.0mAh/cm 3;负极单位面积涂布重量变为2.434mg/cm 2;涂布厚度变为0.038mm;将厚度m 1=0.166mm的层叠体卷绕10圈,通过在第3、5圈***间隔物,使g=1.66m 1N=2.76mm,其余与实施例1相同。
实施例15
通过在第4、6圈***间隔物,使g=1.86m 1N=3.09mm,其余与实施例14相同。
对比例1
通过层叠体卷绕,使g=m 1N,其余与实施例2相同。
对比例2
通过***间隔物,使g=1.87m 1N,其余与实施例2相同。
对比例3
卷绕层叠体,使g=0.95m 1N,其余与实施例6相同。
对比例4
通过***间隔物,使g=1.88m 1N,其余与实施例6相同。
对比例5
层叠体卷绕20圈,在第5、7、9、11圈***间隔物,使g=1.89m 1N,其余与实施例6相同。
对比例6
卷绕层叠体,使g=0.85m 1N,其余与实施例7相同。
对比例7
卷绕层叠体,使g=0.80m 1N,其余与实施例11相同。
对比例8
卷绕层叠体,使g=0.79m 1N,其余与实施例12相同。
对比例9
卷绕层叠体,使g=0.73m 1N,其余与实施例13相同。
对比例10
卷绕层叠体,使g=0.95m 1N,其余与实施例14相同。
对比例11
通过在第5圈***间隔物,使g=1.88m 1N,其余与实施例14相同。
对比例12
将实施例14中的混合粉末的单位体积容量调整为3000.0mAh/cm 3;负极单位面积涂布重量变为2.279mg/cm 2;涂布厚度变为0.0364mm;层叠体厚度m 1变为0.162mm;其余与实施例14相同。
对比例13
将实施例15中的混合粉末的单位体积容量调整为3000.0mAh/cm 3;负极 单位面积涂布重量变为2.279mg/cm 2;涂布厚度变为0.0364mm;层叠体厚度m 1变为0.162mm;其余与实施例15相同。
对比例14
将实施例1中混合粉末的设计单位体积容量调整为3600mAh/cm 3;负极单位面积涂布重量变为2.253mg/cm 2;涂布厚度变为0.0356;将厚度m 1=0.163mm的层叠体卷绕15圈,通过在第4、6、8圈***间隔物,使g=2m 1N=4.89mm,其余与实施例1相同。
表1
Figure PCTCN2020080042-appb-000001
Figure PCTCN2020080042-appb-000002
“-”表示未设置预留空间。
通过实施例1-3和对比例1-2相比,实施例14、15与对比例10、11相比,说明相同的负极极片单位体积容量,通过控制不同的g值,即控制预留空间的大小,电芯有不同的析锂情况,当m 1N<g<1.87m 1N时,电芯均未出现析锂的现象。这说明,虽然极片在脱嵌锂过程中存在反复的膨胀收缩过程,且当负极活性物质中包含硅基材料时极片的体积膨胀更大,但如果在电芯内部预留相应的空间以缓解膨胀和收缩,抑制极片产生褶皱变形,可以抑制CB值【cell balance,(负极可逆容量×负极活性物质比例)/(阳极可逆容量×阳极活性物质比例)】的变小,从而改善析锂现象。而从对比例2、4、5、11看出,当g≥1.87m 1N时,电芯均出现了析锂或严重析锂,不限于任何理论,这可能是因为g值过大,电芯内部预留的空隙变大,使得电芯发生变形,固体电解质界面(SEI)变差,影响了负极嵌锂程度和Li+扩散速率,从而造成析锂的现象。而从对比例1、3、6-10可以看出,当g≤m 1N时,电芯也开始出现析锂的现象,不限于任何理论,这可能是没有预留空间,起不到缓解体积膨胀的作用,因此极片在循环后出现了变形而产生严重的析锂现象。
实施例11-13以及对比例7-9对比发现,随着负极极片单位体积容量的增加,如果逐渐增大g值,增加在卷绕拐角处的预留空间,电芯不会出现析锂的现象,而如果进一步减小g值,电芯出现严重的析锂现象。由于负极极片单位体积容量的增加,负极中活性物质硅的含量也随之增多,因而其造成的体积膨胀程度也显著提高,只有在一定范围内增加预留空间,才能有效地缓解体积膨胀,从而抑制极片变形而导致的析锂,如果没有相应的预留空间,则难以起到缓解体积膨胀以抑制变形的作用,电芯出现严重析锂。
实施例14、15与对比例12、13相比,当g值相同时,随着负极极片单位体积容量的增加,循环后极片出现了不同的现象,当负极极片单位体积容量小于3000mAh/cm 3时,电芯的极片并没有出现析锂的现象;而当负极极片单位体积容量高于3000mAh/cm 3时,电芯极片出现了严重的析锂现象;从对比例14也可以看出,单位体积容量过大,再提高g值,也依然会导致严重析锂;不限于任何理论,这可能是因为g值的设定应匹配相应的负极极片单位体积容量,单位体积容量过大,会造成过大的体积膨胀,即使设置很大的预留空间,也不能有效抑制极片变形,从而不能有效的改善析锂现象。
综上所述,预留空间大小对电芯的析锂有较大的影响。不同的硅含量能够提供不同的负极极片单位体积容量,但也会造成不同程度的体积膨胀,因而不同的单位体积容量应匹配不同的g值,当电芯弯折段设置预留空间以满足m 1N<g<1.87m 1N时,可以有效的缓解体积膨胀,降低极片的变形几率,从而改善电芯析锂的现象;这种改善作用至少适用于负极单位体积容量为619mAh/cm 3~3000mAh/cm 3的负极材料。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (11)

  1. 一种锂离子电池的电芯,包括平直段和弯折段,所述电芯由包括正极极片、负极极片和隔离膜的层叠体卷绕而成;
    其中,所述电芯的卷绕总圈数为N,所述电芯的平直段中层叠体的厚度为m 1毫米,在所述电芯的弯折段的至少一个指定圈内侧设置有预留空间,使所述电芯的弯折段的最内层与最外层曲率最大处的两点间的距离g满足m 1N<g<1.87m 1N;其中所述至少一个指定圈在N/4到3N/4范围内;所述负极极片的单位体积容量为a mAh/cm 3,且619<a<3000。
  2. 根据权利要求1所述的电芯,其中,a与g满足:0.55m 1N<1000g/a<1.90m 1N。
  3. 根据权利要求1所述的电芯,其中,所述指定圈的数量为2或3个,并且相邻两个预留空间之间的间隔为2-5圈层叠体。
  4. 根据权利要求1所述的电芯,其中,5≤N≤30。
  5. 根据权利要求1-4中任一项所述的电芯,其中,所述负极极片上的负极活性物质包含硅基材料。
  6. 根据权利要求5所述的电芯,其中,所述硅基材料包含纳米硅颗粒,SiO x,硅碳复合材料或硅合金中的至少一种,其中0.5≤x<1.6。
  7. 根据权利要求6所述的电芯,其中,所述硅基材料中的SiOx、硅碳复合材料或硅合金的平均粒径为500nm-30μm;所述纳米硅颗粒的平均粒径小于100nm。
  8. 根据权利要求5所述的电芯,其中,所述硅基材料中还包含有锂元素和/或镁元素。
  9. 权利要求1-8中任一项所述的电芯的制备方法,包括:
    将层叠体进行卷绕;
    在卷绕完成所述指定圈的前一圈之后,在需要设置有预留空间的弯折段处***间隔物,并卷绕所述指定圈;
    卷绕完成后,将间隔物取出,形成预留空间。
  10. 一种包含权利要求1-8中任一项所述的电芯的锂离子电池,所述锂离子电池还包括电解液和包装膜,所述电芯浸没于电解液中,并封装于所述包装膜内。
  11. 一种电子装置,包括权利要求10所述的锂离子电池。
PCT/CN2020/080042 2020-03-18 2020-03-18 一种锂离子电池的电芯、其制备方法及包含其的锂离子电池 WO2021184262A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080094446.9A CN115039268A (zh) 2020-03-18 2020-03-18 一种锂离子电池的电芯、其制备方法及包含其的锂离子电池
PCT/CN2020/080042 WO2021184262A1 (zh) 2020-03-18 2020-03-18 一种锂离子电池的电芯、其制备方法及包含其的锂离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/080042 WO2021184262A1 (zh) 2020-03-18 2020-03-18 一种锂离子电池的电芯、其制备方法及包含其的锂离子电池

Publications (1)

Publication Number Publication Date
WO2021184262A1 true WO2021184262A1 (zh) 2021-09-23

Family

ID=77767944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080042 WO2021184262A1 (zh) 2020-03-18 2020-03-18 一种锂离子电池的电芯、其制备方法及包含其的锂离子电池

Country Status (2)

Country Link
CN (1) CN115039268A (zh)
WO (1) WO2021184262A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122315A (zh) * 2021-11-22 2022-03-01 宁德新能源科技有限公司 电化学装置和电子装置
CN114583289A (zh) * 2022-03-31 2022-06-03 珠海冠宇电池股份有限公司 一种锂离子电池
CN114824508A (zh) * 2022-05-17 2022-07-29 宁德新能源科技有限公司 电化学装置及包含该电化学装置的电子装置
CN115036587A (zh) * 2022-08-15 2022-09-09 中创新航科技股份有限公司 单体电池、电池组及用电设备
CN115832186A (zh) * 2022-07-11 2023-03-21 宁德时代新能源科技股份有限公司 电芯组件、电池单体、电池以及用电装置
CN116190806A (zh) * 2023-02-28 2023-05-30 深圳市康胜新能源产品有限公司 一种磷酸铁锂电芯以及电芯加工工艺
CN116914277A (zh) * 2023-09-12 2023-10-20 厦门海辰储能科技股份有限公司 一种电池单体、电池包及其用电装置
CN117706386A (zh) * 2024-02-05 2024-03-15 苏州易来科得科技有限公司 锂电池正负极嵌锂系数上下限的计算方法和装置
WO2024098175A1 (zh) * 2022-11-07 2024-05-16 宁德时代新能源科技股份有限公司 二次电池及其制备方法、用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116914228B (zh) * 2023-09-13 2024-04-12 厦门海辰储能科技股份有限公司 电芯、电池和用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157888A (ja) * 2001-11-26 2003-05-30 Toshiba Corp 平板状二次電池及びその製造方法
JP2006107742A (ja) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd 非水電解質二次電池とその製造方法
CN102511105A (zh) * 2010-07-30 2012-06-20 松下电器产业株式会社 扁平形非水系二次电池
CN103151551A (zh) * 2011-12-06 2013-06-12 丰田自动车株式会社 电池制造的方法
CN109509917A (zh) * 2018-11-28 2019-03-22 惠州锂威新能源科技有限公司 一种电池电芯的卷绕工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003157888A (ja) * 2001-11-26 2003-05-30 Toshiba Corp 平板状二次電池及びその製造方法
JP2006107742A (ja) * 2004-09-30 2006-04-20 Sanyo Electric Co Ltd 非水電解質二次電池とその製造方法
CN102511105A (zh) * 2010-07-30 2012-06-20 松下电器产业株式会社 扁平形非水系二次电池
CN103151551A (zh) * 2011-12-06 2013-06-12 丰田自动车株式会社 电池制造的方法
CN109509917A (zh) * 2018-11-28 2019-03-22 惠州锂威新能源科技有限公司 一种电池电芯的卷绕工艺

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122315A (zh) * 2021-11-22 2022-03-01 宁德新能源科技有限公司 电化学装置和电子装置
CN114583289A (zh) * 2022-03-31 2022-06-03 珠海冠宇电池股份有限公司 一种锂离子电池
CN114824508A (zh) * 2022-05-17 2022-07-29 宁德新能源科技有限公司 电化学装置及包含该电化学装置的电子装置
CN115832186A (zh) * 2022-07-11 2023-03-21 宁德时代新能源科技股份有限公司 电芯组件、电池单体、电池以及用电装置
CN115036587A (zh) * 2022-08-15 2022-09-09 中创新航科技股份有限公司 单体电池、电池组及用电设备
WO2024098175A1 (zh) * 2022-11-07 2024-05-16 宁德时代新能源科技股份有限公司 二次电池及其制备方法、用电装置
CN116190806A (zh) * 2023-02-28 2023-05-30 深圳市康胜新能源产品有限公司 一种磷酸铁锂电芯以及电芯加工工艺
CN116914277A (zh) * 2023-09-12 2023-10-20 厦门海辰储能科技股份有限公司 一种电池单体、电池包及其用电装置
CN116914277B (zh) * 2023-09-12 2024-01-26 厦门海辰储能科技股份有限公司 一种电池单体、电池包及其用电装置
CN117706386A (zh) * 2024-02-05 2024-03-15 苏州易来科得科技有限公司 锂电池正负极嵌锂系数上下限的计算方法和装置
CN117706386B (zh) * 2024-02-05 2024-05-07 苏州易来科得科技有限公司 锂电池正负极嵌锂系数上下限的计算方法和装置

Also Published As

Publication number Publication date
CN115039268A (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2021184262A1 (zh) 一种锂离子电池的电芯、其制备方法及包含其的锂离子电池
WO2022206877A1 (zh) 电化学装置及电子装置
US7556881B2 (en) Lithium secondary battery
JP7254875B2 (ja) リチウム二次電池用正極活物質およびこれを含むリチウム二次電池
WO2020134780A1 (zh) 一种正极材料及其制备方法和用途
JP4743752B2 (ja) リチウムイオン二次電池
WO2019165795A1 (zh) 锂离子二次电池及其制备方法
WO2021174689A1 (zh) 一种全固态电池及其制备方法
WO2022117080A1 (zh) 锂离子电池及动力车辆
CN110212247B (zh) 电芯
CN110890525B (zh) 用于锂二次电池的正极活性材料及包括其的锂二次电池
WO2022057189A1 (zh) 一种固态电池、电池模组、电池包及其相关的装置
JP7282925B2 (ja) リチウム二次電池用正極、その製造方法、及びそれを含むリチウム二次電池
CN114597335A (zh) 一种负极片及包括该负极片的电池
CN101667658A (zh) 磷酸铁锂基混合正极材料系锂离子电池
CN114242936B (zh) 一种电极组件及其应用
CN116093247A (zh) 一种极片及锂离子电池
US20130337324A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing same
WO2023029002A1 (zh) 负极集流体、含有其的二次电池、电池模块、电池包及用电装置
CN116598418B (zh) 一种三电极电池及其预锂化的预锂量计算方法
CN114142038B (zh) 一种负极片及锂电池
WO2023130204A1 (zh) 二次电池、电池模块、电池包和用电装置
WO2023141972A1 (zh) 正极极片及包含所述极片的锂离子电池
JP6168356B2 (ja) リチウムイオン二次電池
CN113314697A (zh) 一种电芯和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925162

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925162

Country of ref document: EP

Kind code of ref document: A1