WO2021184236A1 - 一种精细陶瓷弯曲强度无损检测方法、装置及存储介质 - Google Patents

一种精细陶瓷弯曲强度无损检测方法、装置及存储介质 Download PDF

Info

Publication number
WO2021184236A1
WO2021184236A1 PCT/CN2020/079888 CN2020079888W WO2021184236A1 WO 2021184236 A1 WO2021184236 A1 WO 2021184236A1 CN 2020079888 W CN2020079888 W CN 2020079888W WO 2021184236 A1 WO2021184236 A1 WO 2021184236A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
ultrasonic
bending strength
rebound
testing
Prior art date
Application number
PCT/CN2020/079888
Other languages
English (en)
French (fr)
Inventor
黄建平
谢悦增
林克辉
余海龙
Original Assignee
东莞市唯美陶瓷工业园有限公司
江西和美陶瓷有限公司
广东家美陶瓷有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市唯美陶瓷工业园有限公司, 江西和美陶瓷有限公司, 广东家美陶瓷有限公司 filed Critical 东莞市唯美陶瓷工业园有限公司
Priority to PCT/CN2020/079888 priority Critical patent/WO2021184236A1/zh
Priority to JP2021542560A priority patent/JP7202472B2/ja
Priority to US17/421,598 priority patent/US11959881B2/en
Publication of WO2021184236A1 publication Critical patent/WO2021184236A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/388Ceramics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4472Mathematical theories or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0232Glass, ceramics, concrete or stone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Definitions

  • the invention relates to the technical field of fine ceramic bending strength detection, in particular to a method, device and storage medium for nondestructive detection of fine ceramic bending strength.
  • the testing of the bending strength of fine ceramic products mainly refers to the standard GB/T 6569-2006 "Fine Ceramics Bending Strength Test Method", and most of the existing fine ceramic material bending strength testing equipment is not suitable for large sizes. (Such as the surface area of ⁇ 1.62m2 plate-shaped products, hollow or arc-shaped products with special-shaped structures); this has resulted in the existing testing of fine ceramic bending strength using destructive testing methods or methods.
  • the test can only be performed by processing the sample to obtain a sample of the appropriate size; that is, the fine ceramic material itself needs to be cut and trimmed, and then the cut small-size material is tested, which results in The large-size product itself is destroyed, and the sample to be tested cannot be reused after destructive testing, resulting in great waste. In addition, such destructive testing will destroy the performance of the material itself. Compared with the performance of the material itself, the test results may produce large detection errors, which can not truly characterize the bending strength of the material.
  • the technical problem to be solved by the present invention is to provide a method, device and storage medium for non-destructive testing of the bending strength of fine ceramics in view of the above-mentioned defects of the prior art.
  • the material itself will be destroyed and cannot be reused, and the measured data will also have large errors.
  • a method for non-destructive testing of the bending strength of fine ceramics which includes:
  • a data model is established according to the ultrasonic testing data and the rebound testing data or substituted into a pre-established data model to obtain the bending strength characterization data of the sample.
  • the adjusting and fixing of the uncut complete fine ceramic sample to the ultrasonic detection position and fixation also includes:
  • the fine ceramic bending strength non-destructive testing system includes an automatic control testing mechanism and a data processing mechanism; the automatic testing mechanism also includes a sample mounting component, an ultrasonic testing component, and a springback testing component.
  • the uncut complete fine ceramic sample needs to be pre-cured before the non-destructive testing of bending strength is performed;
  • the pre-curing steps include:
  • the bending strength level select at least 5 groups of fine ceramic samples with different bending strengths, and the number of fine samples with the same bending strength in each group shall be at least 10;
  • the adjustment of the ultrasonic detector controls and adjusts the position of the ultrasonic detection probe of the ultrasonic detector until the ultrasonic detection probe, the fine ceramic sample and the rebound direction are on the same plane, the sample is ultrasonically tested, and Collect sample ultrasonic testing data, including:
  • the adjusting the position of the fine ceramic sample until the rebound measuring rod is on the same plane as the sample and fixed, performing rebound detection on the sample, and collecting sample rebound detection data specifically includes:
  • the rebound measuring rod is controlled to be vertically aligned with the detection points, the rebound value detection is performed on each detection point, and the rebound detection data of each side of the sample is collected.
  • the data collection mechanism collects the ultrasonic velocity V of each detection point and the rebound value R in the rebound detection data, and stores the average value of multiple ultrasonic velocities V as the effective ultrasonic velocity, and stores the multiple The average value of the rebound value R is stored as the effective value of the rebound value.
  • A is the coefficient factor, and its value range is: e 5.0 ⁇ e 35.0 ;
  • B is the sonic factor, and its value range is: -3.5 ⁇ 0.0;
  • C is the resilience factor, and its value range is: 0.0 ⁇ 2.0;
  • is the bending strength, the unit is MPa
  • V is the ultrasonic velocity, the unit is m/s;
  • R is the rebound value
  • non-destructive testing method for the bending strength of the fine ceramics further includes:
  • a device including a memory, a processor, and a fine ceramic bending strength nondestructive testing program stored on the memory and running on the processor, so When the fine ceramic bending strength nondestructive testing program is executed by the processor, the steps of the fine ceramic bending strength nondestructive testing method as described in the above item are realized.
  • a storage medium wherein the storage medium stores a computer program
  • the computer program can be executed to achieve the above-mentioned fine ceramic bending strength lossless Detection method.
  • the present invention provides a method, device and storage medium for non-destructive testing of the bending strength of fine ceramics, and a method for non-destructive testing of the bending strength of fine ceramics, which includes: adjusting the uncut complete fine ceramic sample to the ultrasonic testing position And fix; adjust the ultrasonic detector, control and adjust the position of the ultrasonic detection probe of the ultrasonic detector until the ultrasonic detection probe, fine ceramic sample and the rebound direction are on the same plane, perform ultrasonic testing on the sample, and collect the test Sample ultrasonic testing data; adjust the position of the fine ceramic sample until the rebound measuring rod is on the same plane as the sample and fixed, perform rebound detection on the sample, and collect sample rebound detection data; according to the ultrasonic
  • the test data and springback test data establish a data model or substitute a pre-established data model to obtain the bending strength characterization data of the sample.
  • the fine ceramic samples do not need to be cut into small-size samples, and do not need to be damaged, and the complete fine ceramics are directly non-destructively tested without damaging the material itself.
  • the accuracy of the measured data is improved, the damage of the sample is also avoided, and the reuse of the sample is realized.
  • Fig. 1 is a flowchart of a preferred embodiment of the non-destructive testing method for the bending strength of fine ceramics in the present invention.
  • Figure 2 is a schematic diagram of ultrasonic testing in a preferred embodiment of the non-destructive testing method for bending strength of fine ceramics in the present invention.
  • Fig. 3 is a functional block diagram of a preferred embodiment of the device in the present invention.
  • the bending strength test of fine ceramic products is mainly carried out with reference to the standard GB/T 6569-2006 "Fine Ceramic Bending Strength Test Method", which uses destructive testing methods or methods, which are not widely accepted at home and abroad.
  • Non-destructive testing method to characterize its bending strength The existing test methods mainly have the following problems in actual operation:
  • the traditional destructive test for detecting bending strength uses random sampling, systematic sampling and other types of sampling methods to select samples for testing.
  • the test data is used as an indicator of the true strength of batch materials, and there is a certain probability or error; For fine ceramics of size, it is necessary to cut and process samples from the original sample, which destroys the elastic modulus performance of the sample itself and causes certain damage, resulting in large errors in the test results of the elastic modulus of the sample.
  • the present invention provides a method, device and storage medium for non-destructive testing of the bending strength of fine ceramics.
  • the ultrasonic rebound method is used to detect the bending strength of inorganic non-metallic plates, and a non-destructive testing model with dual parameters of ultrasonic rebound and the bending strength of non-metallic materials is established, and the following problems are solved:
  • the invention solves the problems of cumbersome whole detection process and long detection period, and avoids the influence caused by irregular processing of samples.
  • the non-destructive testing method used in the present invention can expand the sample capacity and even perform 100% sampling, which solves the problem that the sample is not representative of the overall performance of the product due to the small number of samplings, and can also realize the test after the product has been put into use. .
  • the method of the present invention can realize the direct detection of the bending strength of the material without cutting and cutting the original characteristics of the fine ceramic material, which not only ensures the accuracy of the detection result, but also ensures that the fine ceramic material can still be normal after normal use. Use to avoid waste of resources.
  • This method has a positive role in promoting the quality control of fine ceramic materials in the production process, the selection of materials and the quality monitoring in the use process, and it has a positive significance in promoting the technological progress of the industry.
  • Fig. 1 is a flow chart of a method for non-destructive testing of bending strength of fine ceramics provided by the present invention.
  • the method for non-destructive testing of bending strength of fine ceramics includes:
  • the fine ceramic sample in the method for non-destructive testing of the fine ceramic bending strength provided by the present invention does not undergo any cutting or cutting treatment, regardless of the original shape and original size of the fine ceramic sample, the complete sample is directly Directly perform bending strength testing; thereby effectively ensuring the accuracy of the bending strength testing of fine ceramics, and will not damage the fine ceramic samples, avoiding waste of resources after the fine ceramic samples are tested.
  • the method before the step S100, the method further includes:
  • the fine ceramic bending strength non-destructive testing system includes an automatic control testing mechanism and a data processing mechanism.
  • the automatic control detection mechanism includes a sample mounting component and a springback detection component.
  • the present invention first constructs an ultrasonic non-destructive testing system for the bending strength of fine ceramics based on dual parameters of ultrasonic and rebound.
  • the system includes an automatic control detection mechanism and a data processing mechanism; the automatic detection module further includes a sample installation component and a detection component.
  • the fine ceramic sample is adjusted by the sample mounting component to adjust the position of the sample, and the fine ceramic sample is fixed; The sample then realizes the automatic detection of the flexural modulus of the fine ceramic sample.
  • the method before the step S100, the method further includes:
  • the uncut complete fine ceramic sample needs to be pre-cured before the non-destructive testing of the bending strength
  • the pre-curing steps include:
  • the bending strength level select at least 5 groups of fine ceramic samples with different bending strengths, and the number of fine samples with the same bending strength in each group shall be at least 10;
  • the fine ceramic samples are pre-cured to ensure the bending strength of the fine ceramic samples. Accuracy of test results.
  • Step S200 Adjust the ultrasonic detector, control and adjust the position of the ultrasonic detection probe of the ultrasonic detector until the ultrasonic detection probe, the fine ceramic sample and the rebound direction are on the same plane, perform ultrasonic testing on the sample, and collect the test Sample ultrasonic testing data;
  • step S100 specifically includes:
  • Step S110 Connect the ultrasonic transmitter and the ultrasonic receiver to the ultrasonic detector, and control the ultrasonic detector to communicate with the data acquisition mechanism;
  • Step S120 Preliminarily select at least 8 detection points distributed at equal intervals at the center of each side of the sample in the thickness direction;
  • Step S130 Adjust the ultrasonic transmitter and the ultrasonic receiver to the detection points on the two opposite sides of the fine ceramic sample, and are on the same plane as the side plates;
  • Step S140 Perform an ultrasonic inspection on each detection point, detect the time difference, wave velocity, and amplitude of the received signals of the two ultrasonic detection probes at the moment of time, and obtain the ultrasonic velocity V of each detection point.
  • the ultrasonic detector is controlled, the ultrasonic transmitter and the ultrasonic receiver are connected to the ultrasonic detector, and then the ultrasonic detector is communicatively connected with the data acquisition mechanism to ensure
  • the data collection mechanism accurately collects the ultrasonic testing data of the fine ceramic sample; at the same time, at the center of each side of the fine ceramic sample in the rear direction, at least 8 detection points distributed at equal intervals are uniformly selected to ensure accurate collection of each sample.
  • Step S300 Adjust the position of the fine ceramic sample until the rebound measuring rod is on the same plane as the sample and fixed, perform rebound detection on the sample, and collect sample rebound detection data;
  • step S300 specifically includes:
  • Step S310 controlling the sample mounting assembly to adjust the fine ceramic sample to a position on the same horizontal plane as the rebound measuring rod of the rebound detecting assembly;
  • Step S320 Control the rebound measuring rod to vertically align with the detection point, perform rebound value detection on each detection point, and collect rebound detection data on each side of the sample.
  • the position of the sample is adjusted by automatically controlling the sample mounting assembly in the testing mechanism, and the fine ceramic sample is adjusted to the same horizontal position as the rebound measuring rod of the rebound testing assembly;
  • the rebound measuring rod is vertically aligned with the equally spaced detection points on the center line of the thickness direction on the fine ceramic side; the distance between the detection points should be at least 20mm and evenly distributed on the side; after the detection points are set, the rebound tester Automatically adjust and align the test points of the sample vertically, detect the rebound value of each detection point on each side of the sample, and obtain the side rebound value parameter, which is the rebound detection data, which further improves the accuracy of the detection sex.
  • only one ultrasonic test and one springback test are performed for each detection point, and the data acquisition mechanism collects the ultrasonic velocity V of each detection point and the springback value R in the rebound detection data.
  • the average value of the multiple ultrasonic velocities V is stored as the effective value of the ultrasonic velocity
  • the average value of the multiple rebound values R is stored as the effective value of the rebound value.
  • the average value of the ultrasonic velocity V is taken as the effective value of the ultrasonic velocity
  • the average value of multiple rebound values R is taken as the effective value of the rebound value
  • the data model is
  • A is the coefficient factor, and its value range is: e 5.0 ⁇ e 35.0 ;
  • B is the sonic factor, its value range is: -3.5 ⁇ 0.0;
  • C is the rebound factor, its value range is: 0.0 ⁇ 2.0;
  • is the bending strength, the unit is MPa;
  • V is the ultrasonic velocity, the unit is m/s;
  • R is the rebound value.
  • the non-destructive testing method for the bending strength of fine ceramics further includes:
  • testing is performed according to the bending strength level to form regression analysis samples, and the relationship curve between springback and ultrasonic testing fine ceramic materials bending strength is fitted and established. Then perform data processing: Obtain the effective values of the rebound value R and the ultrasonic propagation velocity V at each measuring point during the inspection process, and use the average value as the rebound value and ultrasonic velocity value of the sample respectively, and use the regression equation to calculate and analyze the bending strength value.
  • Obtain the effective value of the bending strength value ⁇ of each sample in each group, and take the arithmetic mean value as the representative value ⁇ 'of the bending strength of the group of samples.
  • the present invention has the following advantages: First, the bending strength of the fine ceramic material can be detected without destroying the original material and shape of the fine ceramic material. Second, the present invention does not destroy the original characteristics of the material, but can also obtain results in a short time for relevant personnel to make judgments, which is beneficial to the continuity of production and improves the production efficiency; it can also make the material in the process of use , To better achieve "use the best", reduce the risk of use, and reduce the waste of resources. Third, the present invention can perform detection during the use of the material, evaluate whether the material is damaged or decrease in strength during the use, and provide an effective evaluation reference for the safety status during the use of the material.
  • testing is performed according to the above-mentioned fine ceramic elastic modulus non-destructive testing method to obtain the effective values of the rebound value R and the ultrasonic velocity V.
  • the specific testing steps are:
  • the fine ceramic sample enters the sample mounting assembly, the sample is fixed and the fine ceramic sample is adjusted to the ultrasonic inspection position (that is, the fine ceramic sample);
  • the rebound tester will automatically adjust and align the test point of the specimen vertically, and detect the rebound value of the test points on each surface to obtain the rebound value parameters of the specimen;
  • the tested fine ceramics are tested according to the standard test method GB/T 6569-2006 "Fine Ceramics Bending Strength Test Method" to obtain the effective value of bending strength ⁇ , the rebound value of each group of samples R, ultrasonic speed
  • the corresponding test data of V and bending strength ⁇ are shown in Table 1.
  • A is the coefficient factor
  • B is the acoustic wave factor
  • C is the resilience factor
  • is the bending strength
  • the unit is MPa
  • V is the ultrasonic velocity
  • the unit is m/s
  • R is the resilience value
  • the present invention also provides a device, which includes a memory 20, a processor 10, and a fine ceramic bending strength nondestructive testing program stored on the memory 20 and running on the processor 10,
  • the steps of the non-destructive testing method for the bending strength of fine ceramics as described above are implemented when the program for the non-destructive testing of the bending strength of fine ceramics is executed by the processor; the details are as described above.
  • the present invention also provides a storage medium, wherein the storage medium stores a computer program, and the computer program can be executed to implement the method for non-destructive testing of the bending strength of fine ceramics as described above; the details are as described above.
  • the non-destructive testing method, device and storage medium for bending strength of fine ceramics disclosed in the present invention are calculated by establishing the relationship formula and curve of the springback value, ultrasonic velocity and bending strength of the fine ceramic material, using the springback value and ultrasonic velocity. Infer the bending strength of the fine ceramic material; realize the non-destructive testing of the sample, and further obtain higher precision and correlation, and the relevant formula can be obtained by enlarging the sample capacity of the sample according to the steps of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Ceramic Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Signal Processing (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种精细陶瓷弯曲强度无损检测方法、装置及存储介质,该方法包括:将未裁剪的完整精细陶瓷试样调节至超声检测位置并固定;调节超声检测仪,控制并调节超声检测仪的超声检测探头位置,直至超声检测探头、精细陶瓷试样及回弹方向处于同一平面上,对试样进行超声检测,并采集试样超声检测数据;调节精细陶瓷试样的位置,直至回弹测杆与试样同一平面上并固定,对试样进行回弹检测,并采集试样回弹检测数据;根据超声检测数据和回弹检测数据建立数据模型或代入预先建立的数据模型,获得试样的弯曲强度表征数据。该方法直接对未切割裁剪完整的精细陶瓷进行无损检测,即提高了测得数据的准确性,实现试样的再次利用。

Description

一种精细陶瓷弯曲强度无损检测方法、装置及存储介质 技术领域
本发明涉及精细陶瓷弯曲强度检测技术领域,尤其涉及的是一种精细陶瓷弯曲强度无损检测方法、装置及存储介质。
背景技术
目前,针对精细陶瓷制品的弯曲强度强度的检测,主要参照标准GB/T 6569-2006《精细陶瓷弯曲强度试验方法》进行,并且现有大部分精细陶瓷材料弯曲强度检测设备并不适用于大尺寸(如上表面面积≥1.62㎡的板状制品、中空或弧形等异型结构的制品)的试样;这就造成现有对精细陶瓷弯曲强度的检测,都是采用破坏性的检测手段或方法进行;也就是说,只能通过对试样进行加工得到合适尺寸的样品才能进行检测;即,需要将精细陶瓷材料本身进行切割、裁剪,再对切割出来的小尺寸材料进行检测,这样就造成了大尺寸产品本身被破坏,也使得待测样品经破坏性检测后,无法再利用,造成了极大的浪费。另外,这样的有损检测会破坏材料本身的性能,其检测结果与材料本身的性能比较,可能会产生较大的检测误差,从而不能真实的表征材料弯曲强度。
因此,现有技术存在缺陷,有待改进与发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供精细陶瓷弯曲强度无损检测方法、装置及存储介质,旨在解决现有技术中的大尺寸精细陶瓷在进行弯曲强度检测时,会对材料本身进行破坏,无法再利用,测得的数据也存在较大误差的问题。
本发明解决技术问题所采用的技术方案如下:一种精细陶瓷弯曲强度无损检测方法,其包括:
将未裁剪的完整精细陶瓷试样调节至超声检测位置并固定;
调节超声检测仪,控制并调节超声检测仪的超声检测探头位置,直至所述超声检测探头、精细陶瓷试样及回弹方向处于同一平面上,对试样进行超声检测,并采集试样超声检测数据;
调节精细陶瓷试样的位置,直至所述回弹测杆与试样同一平面上并固定,对试样进行回弹检测,并采集试样回弹检测数据;
根据所述超声检测数据和回弹检测数据建立数据模型或代入预先建立的数据模型,获得试样的弯曲强度表征数据。
进一步的,所述将未裁剪的完整精细陶瓷试样调节至超声检测位置并固定,之前还包括:
预先构建基于超声波和回弹双参数的精细陶瓷弯曲强度无损检测***;
其中,精细陶瓷弯曲强度无损检测***包括自动控制检测机构和数据处理机构;所述自动检测机构还包括样品安装组件、超声检测组件和回弹检测组件。
进一步的,所述未裁剪的完整精细陶瓷试样在进行弯曲强度无损检测之前,还需要进行预养护;
所述预养护的步骤包括:
根据弯曲强度等级,选取至少5组弯曲强度不同的精细陶瓷试样,且每组弯曲强度相同的精细试样的数量至少10个;
将选取好的精细陶瓷试样,温度20℃±2℃、相对湿度60%±5%的环境中,静置养护48h,获得养护好的精细陶瓷试样。
进一步的,所述调节超声检测仪,控制并调节超声检测仪的超声检测探头位置,直至所述超声检测探头、精细陶瓷试样及回弹方向处于同一平面上,对试样进行超声检测,并采集试样超声检测数据,具体包括:
将超声发射器和超声接收器连接于所述超声检测仪上,且控制所述超声检测仪与所述数据采集机构通讯连接;
预先在试样的每个侧面厚度方向中心处,均匀选取等间距分布的至少8个检测点;
调节所述超声发射器和超声接收器至精细陶瓷试样的两个相对侧面上的检测点上, 且与所述侧片处于同一平面;
对每个检测点进行一次超声检测,检测两个超声检测探头的接收信号瞬间的时间差、波速、波幅等数据,获得每个检测点超声波速度V。
进一步的,所述调节精细陶瓷试样的位置,直至所述回弹测杆与试样同一平面上并固定,对试样进行回弹检测,并采集试样回弹检测数据,具体包括:
控制样品安装组件将精细陶瓷试样调节至于,与回弹检测组件的回弹测杆同一水平面的位置;
控制所述回弹测杆垂直对准检测点,对各个检测点进行回弹值检测,采集试样各个侧面的回弹检测数据。
进一步的,所述数据采集机构采集每个检测点的超声波速度V和回弹检测数据中的回弹值R,将多个超声波速度V的平均值作为超声波速度有效值并存储,以及将多个回弹值R的平均值作为回弹值有效值并存储。
进一步的,所述数据模型为
σ=A·V B·R C
式中:
A为系数因子,其取值范围为:e 5.0~e 35.0
B为声波因子,其取值范围为:-3.5~0.0;
C为回弹因子,其取值范围为:0.0~2.0;
σ为弯曲强度,单位为MPa;
V为超声波速度,单位为m/s;
R为回弹值。
进一步的,所述精细陶瓷弯曲强度无损检测方法还包括:
按照弯曲强度等级进行检测形成回归分析样本,拟合建立回弹-超声波检测精细陶瓷弯曲强度的关系曲线;
根据获得的回弹有效值和超声有效值,利用建立的数据模型计算分析获得弯曲强度σ;
获得每组每个试样的弯曲强度σ的有效数值,取算术平均值作为该组试样的弯曲强度σ’。
本发明解决技术问题所采用的又一技术方案如下:一种装置,其包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的精细陶瓷弯曲强度无损检测程 序,所述精细陶瓷弯曲强度无损检测程序被所述处理器执行时实现如上项所述的精细陶瓷弯曲强度无损检测方法的步骤。
本发明解决技术问题所采用的又一技术方案如下:一种存储介质,其中,所述存储介质存储有计算机程序,所述计算机程序能够被执行以用于实现如上所述的精细陶瓷弯曲强度无损检测方法。
有益效果:本发明提供了的一种精细陶瓷弯曲强度无损检测方法、装置及存储介质,一种精细陶瓷弯曲强度无损检测方法,其包括:将未裁剪的完整精细陶瓷试样调节至超声检测位置并固定;调节超声检测仪,控制并调节超声检测仪的超声检测探头位置,直至所述超声检测探头、精细陶瓷试样及回弹方向处于同一平面上,对试样进行超声检测,并采集试样超声检测数据;调节精细陶瓷试样的位置,直至所述回弹测杆与试样同一平面上并固定,对试样进行回弹检测,并采集试样回弹检测数据;根据所述超声检测数据和回弹检测数据建立数据模型或代入预先建立的数据模型,获得试样的弯曲强度表征数据。本发明提供的精细陶瓷弯曲强度无损检测方法中,精细陶瓷试样无需进行裁剪切割成小尺寸的试样,也无需损坏,直接对完整的精细陶瓷进行无损检测,不会对材料本身进行破坏,提高了测得数据的准确性,也避免了试样的损伤,实现试样的再次利用。
附图说明
图1是本发明中精细陶瓷弯曲强度无损检测方法的较佳实施例的流程图。
图2是本发明中精细陶瓷弯曲强度无损检测方法的较佳实施例中超声检测示意图。
图3是本发明中装置的较佳实施例的功能原理框图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
目前,针对精细陶瓷制品的弯曲强度强度的测试,主要参照标准GB/T 6569-2006 《精细陶瓷弯曲强度试验方法》进行,其采用破坏性的检测手段或方法进行,国内外还没有广泛接受的无损检测方法来表征其弯曲强度。现有的测试方法在实际操作中主要存在以下几方面的问题:
(1)现有大部分精细陶瓷弯曲强度测试方法或设备并不适用于大尺寸或异型制品(如上表面面积≥1.62㎡的板状制品、中空或弧形等异型结构的制品)的试样,只能通过对试样进行加工得到合适尺寸或同等条件下制备的样品才能进行测试;而针对一些超高强度的精细陶瓷,受检测设备自身能力的限制,即使采用破坏性方法进行试验,也无法准确表征其强度。
(2)传统检测弯曲强度的破坏性试验,通过采用随机抽样、***性抽样等类型的抽样方法选取样品进行检测,其测试数据用作代表批量材料的真实强度指标,存在一定的概率或误差;而对于尺寸的精细陶瓷,需要从原试样中进行裁剪切割加工制样,这就破坏了试样本身的弹性模量性能产生一定的破坏,致使试样的弹性模量检测结果误差较大。
(3)待测样品经破坏性测试后,无法再利用,造成了极大的浪费。对于大尺寸(如上表面面积≥1.6㎡)的精细陶瓷薄板,将会产生更大的浪费。
(4)部分使用场合要求,需要制成管状、中空等结构、无法进行破坏性试验的精细陶瓷产品,其只能用相同工艺条件下制作的、满足相关标准规定的样品替代进行检测以表征强度,存在一定的局限性。
本发明则提供一种精细陶瓷弯曲强度无损检测方法、装置及存储介质。采用超声波回弹法对无机非金属板的弯曲强度进行检测,建立超声波回弹双参数与非金属材料弯曲强度的无损检测模型,并且解决了以下问题:
第一、解决传统的精细陶瓷在进行破坏性的弯曲测试后,材料将无法继续使用成为废弃物,造成了资源浪费、环境污染以及经济损失问题。
第二、传统的精细陶瓷进行强度测试时,在产品尺寸不规则的情况下,需制作规定尺寸要求的标准测试样品。本发明解决整个检测过程繁琐、检测周期长的问题,并且避免加工处理的试样不规范而产生影响。
第三、本发明所采用的无损测试方法,可扩大样品容量甚至进行100%抽检,解决由于抽检数量少,试样对于产品整体性能代表性不足的问题,更可实现产品已投入使用后进行测试。
本发明的方法在不切割裁剪精细陶瓷材料原有特性的情况下,可以实现对材料弯曲强度的直接检测,既保证了检测结果的准确性,又保证了精细陶瓷材料在正常使用之后仍然可以正常使用,避免资源浪费。该方法对精细陶瓷材料在生产过程中的质量控制、使用过程中材料的选择和质量监控,都具有积极的促进作用,同时对推动行业技术进步具有积极的意义。
请结合参阅图1,图1是本发明所提供的一种精细陶瓷弯曲强度无损检测方法的流程图,所述精细陶瓷弯曲强度无损检测方法包括:
S100、将未裁剪的完整精细陶瓷试样调节至超声检测位置并固定;
可以理解,本发明提供的精细陶瓷弯曲强度无损检测方法中的精细陶瓷试样,并不进行任何裁剪或切割处理,不管精细陶瓷试样的原始形状和原始尺寸多大,都直接将完整的试样直接进行弯曲强度检测;进而有效的保障了精细陶瓷的弯曲强度检测的精准性,更不会破坏精细陶瓷试样,避免精细陶瓷试样进行检测后出现资源浪费。
在一些较佳实施例中,所述步骤S100之前还包括:
S11、预先构建基于超声波和回弹双参数的精细陶瓷弯曲强度无损检测***;
其中,所述精细陶瓷弯曲强度无损检测***包括自动控制检测机构和数据处理机构。
进一步的,所述自动控制检测机构包括样品安装组件和回弹检测组件。
具体的,本发明首先构建超声波基于超声波和回弹双参数的精细陶瓷弯曲强度无损检测***。该***包括自动控制检测机构和数据处理机构;所述自动检测模块又包括样品安装组件和检测组件。可以理解,通过本发明中提供的一种精细陶瓷弯曲强度无损检测方法中,精细陶瓷试样通过样品安装组件调节试样位置,以及固定精细陶瓷试样;之后,通过回弹检测组件检测精细陶瓷试样进而实现精细陶瓷试样弯曲模量的自动检测。
在另一些较佳实施例中,所述步骤S100之前还包括:
所述未裁剪的完整精细陶瓷试样在进行弯曲强度无损检测之前,还需要进行预养护;
所述预养护的步骤包括:
根据弯曲强度等级,选取至少5组弯曲强度不同的精细陶瓷试样,且每组弯曲强度相同的精细试样的数量至少10个;
将选取好的精细陶瓷试样,温度20℃±2℃、相对湿度60%±5%的环境中,静置养护48h,获得养护好的精细陶瓷试样。
可以理解,为了保障精细陶瓷试样进行弯曲强度检测前条件统一,提升同一精细陶瓷试样的弯曲强度的重复性,通过对精细陶瓷试样进行预养护,保障了精细陶瓷试样的弯曲强度的检测结果精准性。
步骤S200、调节超声检测仪,控制并调节超声检测仪的超声检测探头位置,直至所述超声检测探头、精细陶瓷试样及回弹方向处于同一平面上,对试样进行超声检测,并采集试样超声检测数据;
具体的,所述步骤S100具体包括:
步骤S110、将超声发射器和超声接收器连接于所述超声检测仪上,且控制所述超声检测仪与所述数据采集机构通讯连接;
步骤S120、预先在试样的每个侧面厚度方向中心处,均匀选取等间距分布的至少8个检测点;
步骤S130、调节所述超声发射器和超声接收器至精细陶瓷试样的两个相对侧面上的检测点上,且与所述侧片处于同一平面;
步骤S140、对每个检测点进行一次超声检测,检测两个超声检测探头的接收信号瞬间的时间差、波速、波幅等数据,获得每个检测点超声波速度V。
可以理解,在精细陶瓷试样在固定至超声检测位置后;控制所述超声检测仪,将超声发射器和超声接收器连接至超声检测仪,之后将超声检测仪与数据采集机构通讯连接,保障所述数据采集机构精准采集精细陶瓷试样的超声检测数据;同时,在精细陶瓷试样的每个侧面后方向的中心处,均匀选取等间距分布的至少8个检测点,进而保证精准采集每个面上的超声检测数据;最后调节所述超声发射器和超声接收器与精细陶瓷试样保持统一平面,进而有效保障了超声数据检测的精准性。
步骤S300、调节精细陶瓷试样的位置,直至所述回弹测杆与试样同一平面上并固定,对试样进行回弹检测,并采集试样回弹检测数据;
具体的,所述步骤S300具体包括:
步骤S310、控制样品安装组件将精细陶瓷试样调节至于,与回弹检测组件的回弹测杆同一水平面的位置;
步骤S320、控制所述回弹测杆垂直对准检测点,对各个检测点进行回弹值检测,采集试样各个侧面的回弹检测数据。
可以理解,在试样完成超声检测之后,通过自动控制检测机构中的样品安装组件调整试样的位置,将精细陶瓷试样调节至与回弹检测组件的回弹测杆同一水平面位置;即将所述回弹测杆垂直对准精细陶瓷侧面上厚度方向中心线上设置的等间隔的检测点;检测点间隔应至少在20mm以上,并且在侧面上均匀分布;设置好检测点后,回弹仪自动进行调整并垂直对准试样待测点,对试样每个侧面上的各个检测点进行回弹值检测,获得该侧边回弹值参数,即为回弹检测数据,进一步提升检测准确性。
在一些较佳实施例中,每个检测点仅仅进行一次超声检测和一次回弹检测,所述数据采集机构采集每个检测点的超声波速度V和回弹检测数据中的回弹值R,将多个超声波速度V的平均值作为超声波速度有效值并存储,以及将多个回弹值R的平均值作为回弹值有效值并存储。
可以理解,通过将超声波速度V的平均值作为超声波速度有效值,将多个回弹值R的平均值作为回弹值有效值;进而保障精细陶瓷试样的弯曲强度的精确性。
在一些较佳实施例中,所述数据模型为
σ=A·V B·R C
式中,A为系数因子,其取值范围为:e 5.0~e 35.0;B为声波因子,其取值范围为:-3.5~0.0;C为回弹因子,其取值范围为:0.0~2.0;σ为弯曲强度,单位为MPa;V为超声波速度,单位为m/s;R为回弹值。
在另一些较佳实施例中,所述精细陶瓷弯曲强度无损检测方法还包括:
按照弯曲强度等级进行检测形成回归分析样本,拟合建立回弹-超声波检测精细陶瓷弯曲强度的关系曲线;
根据获得的回弹有效值和超声有效值,利用建立的数据模型计算分析获得弯曲强度 σ;
获得每组每个试样的弯曲强度σ的有效数值,取算术平均值作为该组试样的弯曲强度σ’。
具体的,针对不同精细陶瓷材料,按照弯曲强度等级进行检测形成回归分析样本,拟合建立回弹-超声波检测精细陶瓷材料弯曲强度的关系曲线。然后进行数据处理:检测过程中获得各测点回弹值R和超声波传播速度V的有效值,分别以平均值作为该试样回弹值和超声波速度值,利用回归方程计算分析获得弯曲强度值σ;获得每组组每块试样弯曲强度值σ的有效数值,取算术平均值作为该组试样的弯曲强度代表值σ’。
可知,本发明具有以下优点:第一、可在不破坏精细陶瓷材料原有材质和形状的情况下,对其弯曲强度进行检测。第二、本发明即不破坏材料的原有特性,还能够在短时间内获得结果,以便相关人员进行判断,有利于生产的连续性,提高了生产效率;也可以使得材料在使用的过程中,更好的做到“物尽其用”,降低了使用风险,减少了资源浪费。第三、本发明可在材料使用过程中进行检测,评价材料在使用过程中是否出现损坏或者强度下降等情况,对材料使用过程中的安全状况提供有效的评价参考。
下面列举一种实施例,检测步骤如下:
a、取弯曲强度范围在400GPa~1000GPa,规格型号同为150mm×150mm的Al 2O 3精细陶瓷试样一批;
b、利用上述实施例中构建的精细陶瓷材料弯曲强度无损检测***,按照上述精细陶瓷弹性模量无损检测方法进行检测,获得回弹值R、超声波速度V的有效值,具体检测步骤为:
①精细陶瓷试样进入样品安装组件,试样进行固定并将精细陶瓷试样调节至超声检测位置(即将精细陶瓷试样);
②将超声检测仪的超声发射探头1和超声接收探头2分别接入超声检测仪两端,并将超声检测仪通信连接所述数据采集机构,并将超声发射探头1和超声接收探头2分别接入试样两项对侧面上,获得两传感器接收信号瞬间的时间差、波速、波幅等数据,并未对试样的每个侧面都进行超声检测,完成超声检测、获得超声波速度、频率等数据;
③将试样位置进行调节至回弹测试位置,调至回弹测杆与检测点处于同一水平面位置,检测点为试样侧边厚度方向中点,两检测点间隔应至少在20mm以上,设置好检测点后,回弹仪自动进行调整并垂直对准试样检测点,对各个面上检测点进行回弹值检测,获得试样回弹值参数;
④测试完的精细陶瓷按照标准试验方法GB/T 6569-2006《精细陶瓷弯曲强度试验方法》进行弯曲强度性能的测试,获得其弯曲强度σ有效值,每组试样回弹值R、超声波速度V和弯曲强度σ对应测试数据如表1所示。
表1精细陶瓷回弹值、超声波速度和弯曲强度测试结果
序号 1 2 3 4 5 6
回弹值R 24 26 28 32 35 37
传播速度m/s 998.65 998.69 1004.99 1007.17 1022.84 1037.15
弯曲强度MPa 475.5 512.81 591.66 611.61 647.28 663.72
对试样回弹值、超声波速度、和弯曲强度的拟合关系方程为:
σ=A·V B·R C
式中,A为系数因子,B为声波因子,C为回弹因子,σ为弯曲强度,单位为MPa,V为超声波速度,单位为m/s,R为回弹值
通过数据处理分析,A=e 19.015,B=-2.284,C=0.9268,方程为:
σ=e 19.015V -2.284×R 0.9268
根据上述测试步骤,随机另取其他批次尺寸为300×300mm的Al 2O 3精细陶瓷进行试验验证,通过利用回弹值和超声波速度计算获得的弯曲强度推断值和实测值进行对比,验证该测试方法和拟合方程的可靠性,测试结果对比如表2所示:
表2验证试验测试结果
Figure PCTCN2020079888-appb-000001
Figure PCTCN2020079888-appb-000002
经验证,试样实测值与推断值相比,误差最大的为2.3%,误差较小。
请参阅图3,本发明还提供了一种装置,其中,包括存储器20、处理器10及存储在所述存储器20上并可在所述处理器10上运行的精细陶瓷弯曲强度无损检测程序,所述精细陶瓷弯曲强度无损检测程序被所述处理器执行时实现如上所述的精细陶瓷弯曲强度无损检测方法的步骤;具体如上所述。
本发明还提供了一种存储介质,其中,所述存储介质存储有计算机程序,所述计算机程序能够被执行以用于实现如上所述的精细陶瓷弯曲强度无损检测方法;具体如上所述。
综上所述,本发明公开的精细陶瓷弯曲强度无损检测方法、装置及存储介质,通过建立精细陶瓷材料回弹值、超声波速度与弯曲强度的关系公式及曲线,利用回弹值和超声波速度计算推断出精细陶瓷材料弯曲强度;实现对试样进行无损检测,进一步获得更高精度和相关性,还可按照本发明步骤扩大试样样品容量自行得出相关公式。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种精细陶瓷弯曲强度无损检测方法,其特征在于,包括:
    将未裁剪的完整精细陶瓷试样调节至超声检测位置并固定;
    调节超声检测仪,控制并调节超声检测仪的超声检测探头位置,直至所述超声检测探头、精细陶瓷试样及回弹方向处于同一平面上,对试样进行超声检测,并采集试样超声检测数据;
    调节精细陶瓷试样的位置,直至所述回弹测杆与试样同一平面上并固定,对试样进行回弹检测,并采集试样回弹检测数据;
    根据所述超声检测数据和回弹检测数据建立数据模型或代入预先建立的数据模型,获得试样的弯曲强度表征数据。
  2. 根据权利要求1所述的精细陶瓷弯曲强度无损检测方法,其特征在于,所述将未裁剪的完整精细陶瓷试样调节至超声检测位置并固定,之前还包括:
    预先构建基于超声波和回弹双参数的精细陶瓷弯曲强度无损检测***;
    其中,精细陶瓷弯曲强度无损检测***包括自动控制检测机构和数据处理机构;所述自动检测机构还包括样品安装组件、超声检测组件和回弹检测组件。
  3. 根据权利要求2所述的精细陶瓷弯曲强度无损检测方法,其特征在于,所述未裁剪的完整精细陶瓷试样在进行弯曲强度无损检测之前,还需要进行预养护;
    所述预养护的步骤包括:
    根据弯曲强度等级,选取至少5组弯曲强度不同的精细陶瓷试样,且每组弯曲强度相同的精细试样的数量至少10个;
    将选取好的精细陶瓷试样,温度20℃±2℃、相对湿度60%±5%的环境中,静置养护48h,获得养护好的精细陶瓷试样。
  4. 根据权利要求3所述的精细陶瓷弯曲强度无损检测方法,其特征在于,所述调节超声检测仪,控制并调节超声检测仪的超声检测探头位置,直至所述超声检测探头、精细陶瓷试样及回弹方向处于同一平面上,对试样进行超声检测,并采集试样超声检测数据,具体包括:
    将超声发射器和超声接收器连接于所述超声检测仪上,且控制所述超声检测仪与所述数据采集机构通讯连接;
    预先在试样的每个侧面厚度方向中心处,均匀选取等间距分布的至少8个检测点;
    调节所述超声发射器和超声接收器至精细陶瓷试样的两个相对侧面上的检测点上,且与所述侧片处于同一平面;
    对每个检测点进行一次超声检测,检测两个超声检测探头的接收信号瞬间的时间差、波速、波幅等数据,获得每个检测点超声波速度V。
  5. 根据权利要求4所述的精细陶瓷弯曲强度无损检测方法,其特征在于,所述调节精细陶瓷试样的位置,直至所述回弹测杆与试样同一平面上并固定,对试样进行回弹检测,并采集试样回弹检测数据,具体包括:
    控制样品安装组件将精细陶瓷试样调节至于,与回弹检测组件的回弹测杆同一水平面的位置;
    控制所述回弹测杆垂直对准检测点,对各个检测点进行回弹值检测,采集试样各个侧面的回弹检测数据。
  6. 根据权利要求5所述的精细陶瓷弯曲强度无损检测方法,其特征在于,所述数据采集机构采集每个检测点的超声波速度V和回弹检测数据中的回弹值R,将多个超声波速度V的平均值作为超声波速度有效值并存储,以及将多个回弹值R的平均值作为回弹值有效值并存储。
  7. 根据权利要求5所述的精细陶瓷弯曲强度无损检测方法,其特征在于,所述数据模型为
    σ=A·V B·R C
    式中:
    A为系数因子,其取值范围为:e 5.0~e 35.0
    B为声波因子,其取值范围为:-3.5~0.0;
    C为回弹因子,其取值范围为:0.0~2.0;
    σ为弯曲强度,单位为MPa;
    V为超声波速度,单位为m/s;
    R为回弹值。
  8. 根据权利要求2所述的精细陶瓷弯曲强度无损检测方法,其特征在于,所述精细陶瓷弯曲强度无损检测方法还包括:
    按照弯曲强度等级进行检测形成回归分析样本,拟合建立回弹-超声波检测精细陶瓷弯曲强度的关系曲线;
    根据获得的回弹有效值和超声有效值,利用建立的数据模型计算分析获得弯曲强度σ;
    获得每组每个试样的弯曲强度σ的有效数值,取算术平均值作为该组试样的弯曲强度σ’。
  9. 一种装置,其特征在于,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的精细陶瓷弯曲强度无损检测程序,所述精细陶瓷弯曲强度无损检测程序被所述处理器执行时实现如权利要求1-8任一项所述的精细陶瓷弯曲强度无损检测方法的步骤。
  10. 一种存储介质,其特征在于,所述存储介质存储有计算机程序,所述计算机程序能够被执行以用于实现如权利要求1-8任一项所述的精细陶瓷弯曲强度无损检测方法。
PCT/CN2020/079888 2020-03-18 2020-03-18 一种精细陶瓷弯曲强度无损检测方法、装置及存储介质 WO2021184236A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/079888 WO2021184236A1 (zh) 2020-03-18 2020-03-18 一种精细陶瓷弯曲强度无损检测方法、装置及存储介质
JP2021542560A JP7202472B2 (ja) 2020-03-18 2020-03-18 ファインセラミックの曲げ強度の非破壊検査方法、装置および記憶媒体
US17/421,598 US11959881B2 (en) 2020-03-18 2020-03-18 Non-destructive testing method for flexural strength of fine ceramic, apparatus, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/079888 WO2021184236A1 (zh) 2020-03-18 2020-03-18 一种精细陶瓷弯曲强度无损检测方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2021184236A1 true WO2021184236A1 (zh) 2021-09-23

Family

ID=77768367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079888 WO2021184236A1 (zh) 2020-03-18 2020-03-18 一种精细陶瓷弯曲强度无损检测方法、装置及存储介质

Country Status (3)

Country Link
US (1) US11959881B2 (zh)
JP (1) JP7202472B2 (zh)
WO (1) WO2021184236A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220268737A1 (en) * 2021-02-22 2022-08-25 Zhengzhou University of Aeronautics Ltd. Method, Equipment and Readable Medium for Evaluating Structural Strength of Fiber and Nanosized Materials Reinforced Concrete

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712961A (zh) * 2005-06-29 2005-12-28 贵州中建建筑科研设计院 超声回弹综合检测山砂混凝土抗压强度方法
CN104251882A (zh) * 2014-09-30 2014-12-31 湖南理工学院 一种混凝土抗压强度曲线的建立方法
CN105352831A (zh) * 2015-10-21 2016-02-24 广东省建筑材料研究院 一种陶瓷材料抗冲击性测试表征方法
CN105842076A (zh) * 2016-05-06 2016-08-10 太原理工大学 一种公路桥梁预应力混凝土超声回弹双参数无损检测方法
CN109142050A (zh) * 2018-07-28 2019-01-04 中国计量大学 一种隧道火灾后二次衬砌混凝土抗压强度曲线建立方法
US20190178765A1 (en) * 2017-12-12 2019-06-13 Imam Abdulrahman Bin Faisal University Combined ultrasonic pulse velocity and schmidt hammer rebound test for non-destructive evaluation
CN110672822A (zh) * 2019-09-23 2020-01-10 郑州航空工业管理学院 一种桥梁混凝土的结构缺陷的无损检测***

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326546A (ja) * 1986-07-19 1988-02-04 Matasaburo Shindo フアインセラミツクス曲げ強さ試験機
JP4810320B2 (ja) * 2006-06-14 2011-11-09 四国電力株式会社 コンクリートの品質評価方法及び品質評価装置
JP2013054020A (ja) * 2011-09-04 2013-03-21 Keycom Corp 放射線吸収量測定装置
EP4220506A1 (de) * 2013-10-30 2023-08-02 Screening Eagle Dreamlab Pte. Ltd. Anordnung und verfahren zur inspektion eines objekts, insbesondere eines bauwerks
JP6692582B2 (ja) * 2017-06-26 2020-05-13 日本電信電話株式会社 レジンコンクリートの曲げ強度推定装置、レジンコンクリートの曲げ強度推定方法、及びレジンコンクリートの曲げ強度推定プログラム
CN109781847B (zh) * 2019-01-23 2021-06-11 湘潭大学 一种声波检测混凝土坍落度的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1712961A (zh) * 2005-06-29 2005-12-28 贵州中建建筑科研设计院 超声回弹综合检测山砂混凝土抗压强度方法
CN104251882A (zh) * 2014-09-30 2014-12-31 湖南理工学院 一种混凝土抗压强度曲线的建立方法
CN105352831A (zh) * 2015-10-21 2016-02-24 广东省建筑材料研究院 一种陶瓷材料抗冲击性测试表征方法
CN105842076A (zh) * 2016-05-06 2016-08-10 太原理工大学 一种公路桥梁预应力混凝土超声回弹双参数无损检测方法
US20190178765A1 (en) * 2017-12-12 2019-06-13 Imam Abdulrahman Bin Faisal University Combined ultrasonic pulse velocity and schmidt hammer rebound test for non-destructive evaluation
CN109142050A (zh) * 2018-07-28 2019-01-04 中国计量大学 一种隧道火灾后二次衬砌混凝土抗压强度曲线建立方法
CN110672822A (zh) * 2019-09-23 2020-01-10 郑州航空工业管理学院 一种桥梁混凝土的结构缺陷的无损检测***

Also Published As

Publication number Publication date
JP7202472B2 (ja) 2023-01-11
JP2022529559A (ja) 2022-06-23
US11959881B2 (en) 2024-04-16
US20220341878A1 (en) 2022-10-27

Similar Documents

Publication Publication Date Title
US20230061816A1 (en) Air-coupled Ultrasonic Detection Method and Device Based on Defect Probability Reconstruction Algorithm
CN109253921A (zh) 一种检测混凝土试块强度评价方法
CN113325075A (zh) 一种用于金属薄板高周疲劳损伤的非线性波检测方法
CN105424810A (zh) 纤维增韧陶瓷基复合材料均匀性评价方法
CN101256171A (zh) 复合材料固化过程的超声波实时监测方法及***
WO2021184236A1 (zh) 一种精细陶瓷弯曲强度无损检测方法、装置及存储介质
US10620166B1 (en) In-plane modulus testing of materials by an ultrasonic same-side method
CN109521092A (zh) 一种表面波和板波声速的非接触式测量装置及其方法
CN110646119A (zh) 一种超声波测量轧制金属材料表面应力张量的方法
CN113533519B (zh) 一种非接触无损评估材料各向异性的方法和装置
WO2021184240A1 (zh) 一种精细陶瓷弹性模量无损检测方法、装置及存储介质
CN113533504B (zh) 基于激光超声表面波频域参数的亚表面裂纹定量测量方法
CN109490417A (zh) 一种金属材料平面各项异性超声检测方法
Berketis et al. Impact damage detection and degradation monitoring of wet GFRP composites using noncontact ultrasonics
CN106680375B (zh) 用于确定材料的弹性模量的空气耦合超声检测方法
CN111208201B (zh) 无机非金属板破坏强度无损检测方法、装置及存储介质
CN112858474A (zh) 一种陶瓷岩板应力的超声测试方法及测试***
CN109374753B (zh) 探轮测试装置、测试***和测试方法
CN108918668B (zh) 基于公共外切圆的复合材料椭圆损伤定位检测方法
CN115856076A (zh) 基于空耦超声的cfrp板小尺寸缺陷测量方法、装置及***
CN209471081U (zh) 一种表面波和板波声速的非接触式测量装置
CN114061804A (zh) 一种基于共线混频技术的空气耦合超声应力检测***及其检测方法
CN112485331B (zh) 一种修正晶粒尺寸对金属塑性损伤测量影响的方法
CN221100612U (zh) 一种基于非线性超声的直角构件缺陷检测装置
Chen et al. Damage Location for a Steel Plate Using Distributed Sensors Based on EMI Method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021542560

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925837

Country of ref document: EP

Kind code of ref document: A1