WO2021182204A1 - 異常検知システム - Google Patents

異常検知システム Download PDF

Info

Publication number
WO2021182204A1
WO2021182204A1 PCT/JP2021/008052 JP2021008052W WO2021182204A1 WO 2021182204 A1 WO2021182204 A1 WO 2021182204A1 JP 2021008052 W JP2021008052 W JP 2021008052W WO 2021182204 A1 WO2021182204 A1 WO 2021182204A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
state
transition probability
data
monitored
Prior art date
Application number
PCT/JP2021/008052
Other languages
English (en)
French (fr)
Inventor
信行 古園井
洋一 木川
文▲セイ▼ 李
雄梧 加世田
洋海 横山
亮介 平本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to JP2022505953A priority Critical patent/JPWO2021182204A1/ja
Priority to CN202180019100.7A priority patent/CN115279182A/zh
Priority to US17/909,121 priority patent/US20230102979A1/en
Priority to AU2021233628A priority patent/AU2021233628A1/en
Priority to EP21767132.0A priority patent/EP4118960A1/en
Priority to BR112022017261A priority patent/BR112022017261A2/pt
Publication of WO2021182204A1 publication Critical patent/WO2021182204A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K29/00Other apparatus for animal husbandry
    • A01K29/005Monitoring or measuring activity, e.g. detecting heat or mating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K11/00Marking of animals
    • A01K11/006Automatic identification systems for animals, e.g. electronic devices, transponders for animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/746Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/101Bovine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/0337Animal models for infectious diseases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/40Animals

Definitions

  • the present invention relates to an abnormality detection system.
  • Non-Patent Document 1 proposes a system that automatically detects cattle that have actually developed BRD (or BRDC) among cattle infected with BRD (or BRDC). According to the system, cattle that develop BRD (or BRDC) can be quickly identified.
  • Cargill "Cargill Brings facial recognition capability to farmers through strategic equity investment in Cainthus", [online], January 31, 2018, [Search February 28, 2020], Internet (URL: https://www.cargill) .com / 2018 / cargill-brings-facial-recognition-capability-to-farmers)
  • One aspect is to provide an anomaly detection system that detects anomalies in monitored animals.
  • the anomaly detection system Based on the time series data from the motion sensor attached to the predetermined part of the animal to be monitored, the first specific part that specifies the state of the animal to be monitored in each time range, and A first calculation unit that calculates a transition probability from a state at a predetermined timing in each time range specified by the first specific unit to the next state, and a first calculation unit. It has a determination unit that determines that an abnormality in the animal to be monitored has been detected when the score calculated based on the transition probability to the next state satisfies a predetermined condition.
  • FIG. 1 is a first diagram showing an example of a system configuration of an abnormality detection system and a functional configuration of a server device.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the server device.
  • FIG. 3 is a diagram showing a specific example of processing of the data acquisition unit.
  • FIG. 4 is a diagram showing details of the functional configuration of the reference data calculation unit.
  • FIG. 5 is a diagram showing a specific example of processing of the reference data calculation unit.
  • FIG. 6 is a first diagram showing details of the functional configuration of the analysis unit.
  • FIG. 7 is a first diagram showing a specific example of the processing of the analysis unit.
  • FIG. 8 is a diagram showing a specific example of processing of the sign detection unit.
  • FIG. 9 is a flowchart showing the flow of the reference data calculation process.
  • FIG. 10 is a first flowchart showing the flow of analysis processing.
  • FIG. 11 is a flowchart showing the flow of the sign detection process.
  • FIG. 12 is a second diagram showing an example of the system configuration of the abnormality detection system and the functional configuration of the server device.
  • FIG. 13 is a second diagram showing details of the functional configuration of the analysis unit.
  • FIG. 14 is a second diagram showing a specific example of the processing of the analysis unit.
  • FIG. 15 is a second flowchart showing the flow of analysis processing.
  • FIG. 1 is a first diagram showing an example of a system configuration of an abnormality detection system and a functional configuration of a server device.
  • the abnormality detection system 100 is a system that detects a sign (some abnormality) of each cow in the fattening farm before developing BRD (or BRDC) in the fattening process.
  • the abnormality detection system 100 includes a measuring device 110, a gateway device 120, and a server device 130.
  • the measuring device 110 and the gateway device 120 are connected via wireless communication
  • the gateway device 120 and the server device 130 are communicably connected via a network (not shown).
  • the measuring device 110 is a three-dimensional (X-axis direction, Y-axis direction, Z-axis direction) motion sensor (acceleration sensor in the present embodiment) mounted on a predetermined portion (neck in the example of FIG. 1) of the cow 10.
  • the X-axis direction is, for example, a direction along the body surface of the neck of the cow 10, and refers to a direction along the circumference of the neck
  • the Y-axis direction is, for example, the body surface of the neck of the cow 10. It shall be a direction along the direction from the head to the body.
  • the Z-axis direction is defined as, for example, a direction perpendicular to the body surface of the neck of the cow 10.
  • the measuring device 110 measures time-series data indicating three-dimensional acceleration at a predetermined sampling frequency and transmits it to the gateway device 120.
  • the gateway device 120 transmits the time-series data indicating the three-dimensional acceleration transmitted from the measuring device 110 to the server device 130.
  • the server device 130 is a device that detects a sign (some abnormality) of each cow in the fattening farm before it develops BRD (or BRDC).
  • An abnormality detection program is installed in the server device 130, and when the program is executed, the server device 130 functions as a data acquisition unit 131, a reference data calculation unit 132, an analysis unit 133, and a sign detection unit 134. do.
  • the data acquisition unit 131 stores the time-series data of healthy cows in the acceleration data storage unit 135 among the time-series data indicating the three-dimensional acceleration transmitted from the gateway device 120.
  • the reference data calculation unit 132 reads out the time-series data indicating the three-dimensional acceleration of the healthy cow stored in the acceleration data storage unit 135, and calculates the state transition probability data of the healthy cow (details will be described later). Further, the reference data calculation unit 132 stores the state transition probability data of a healthy cow as the reference data in the reference data storage unit 136.
  • the analysis unit 133 calculates the state transition probability data of the monitored cow based on the time series data of the monitored cow among the time series data indicating the three-dimensional acceleration acquired by the data acquisition unit 131. In addition, the analysis unit 133 calculates a score indicating how much the state transition probability data of the monitored cow deviates from the state transition probability data of the healthy cow (that is, the degree of abnormality of the state transition). ..
  • the sign detection unit 134 (judgment unit) acquires the score calculated by the analysis unit 133 as data indicating the degree of abnormality of the monitored cow, and predicts the monitored cow before the onset of BRD (or BRDC). Determine whether or not (some abnormality) is detected. Further, the sign detection unit 134 notifies the user when it is determined that the sign (some abnormality) has been detected.
  • the sign detection unit 134 for example, when the data indicating the degree of abnormality of the cow to be monitored exceeds a predetermined threshold value for a plurality of days (for example, 2 days) in a row, a sign (some abnormality) ) Is detected.
  • FIG. 2 is a diagram showing an example of the hardware configuration of the server device.
  • the server device 130 includes a processor 201, a memory 202, an auxiliary storage device 203, an I / F (Interface) device 204, a communication device 205, and a drive device 206.
  • the hardware of the server device 130 is connected to each other via the bus 207.
  • the processor 201 has various arithmetic devices such as a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the processor 201 reads various programs (for example, an abnormality detection program, etc.) onto the memory 202 and executes them.
  • the memory 202 has a main storage device such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the processor 201 and the memory 202 form a so-called computer, and the processor 201 realizes the above-mentioned functions by executing various programs read on the memory 202.
  • the auxiliary storage device 203 stores various programs and various data used when various programs are executed by the processor 201.
  • the acceleration data storage unit 135 and the reference data storage unit 136 are realized in the auxiliary storage device 203.
  • the I / F device 204 is a connection device that connects the operation device 210 and the display device 211, which are examples of external devices, and the server device 130.
  • the I / F device 204 receives an operation on the server device 130 via the operating device 210. Further, the I / F device 204 outputs the result of processing by the server device 130 and displays it via the display device 211.
  • the communication device 205 is a communication device for communicating with another device.
  • the server device 130 communicates with the gateway device 120, which is another device, via the communication device 205.
  • the drive device 206 is a device for setting the recording medium 212.
  • the recording medium 212 referred to here includes a medium such as a CD-ROM, a flexible disk, a magneto-optical disk, or the like that optically, electrically, or magnetically records information. Further, the recording medium 212 may include a semiconductor memory or the like for electrically recording information such as a ROM or a flash memory.
  • the various programs installed in the auxiliary storage device 203 are installed, for example, by setting the distributed recording medium 212 in the drive device 206 and reading the various programs recorded in the recording medium 212 by the drive device 206. Will be done.
  • the various programs installed in the auxiliary storage device 203 may be installed by being downloaded from the network via the communication device 205.
  • FIG. 3 is a diagram showing a specific example of processing of the data acquisition unit.
  • the data acquisition unit 131 sets the time series data for various cows transmitted from the gateway device 120 (time series data indicating acceleration in the X-axis direction, when indicating acceleration in the Y-axis direction). Series data, time series data showing acceleration in the Z-axis direction) are acquired.
  • the data acquisition unit 131 stores a set of time-series data for healthy cows in the acceleration data storage unit 135.
  • FIG. 4 is a diagram showing details of the functional configuration of the reference data calculation unit.
  • the reference data calculation unit 132 includes a standardization processing unit 401 (second standardization processing unit), a labeling unit 402 (second labeling unit), and a state specifying unit 403 (second specifying unit). It has a state transition probability calculation unit 404 (second calculation unit).
  • the standardization processing unit 401 reads out a set of time series data for healthy cows from the acceleration data storage unit 135, performs standardization processing on the time series data of each axis, and notifies the labeling unit 402 of the standardized data.
  • the standardization process refers to a process of dividing the time series data of each axis into predetermined time ranges (for example, 1 [SEC]) and calculating the variation of the time series data of each axis in each time range. That is, the standardized data is composed of the calculation result of the variation of the time series data of each axis in each time range.
  • the labeling unit 402 performs a labeling process on the standardized data.
  • the calculation result of the variation of the time series data of each axis in each time range included in the standardized data is obtained. ⁇ If it is -4 ⁇ or less, enter “1". ⁇ If it is larger than -4 ⁇ and less than -3 ⁇ , enter "2". ⁇ If it is larger than -3 ⁇ and less than -2 ⁇ , enter "3". ⁇ If it is larger than -2 ⁇ and less than -1 ⁇ , enter "4". ⁇ If it is larger than -1 ⁇ and less than + 1 ⁇ , enter "5". ⁇ If it is + 1 ⁇ or more and less than + 2 ⁇ , enter "6".
  • the state specifying unit 403 identifies the state of a healthy cow in each time range based on the labeling data generated by performing the labeling process on the time series data of each axis in each time range. For example, the processing result of the labeling process for the time-series data of the X-axis direction at each time range (L X), the processing result of the labeling process for the time-series data of the Y-axis direction (L Y), for time-series data in the Z-axis direction
  • the state transition probability calculation unit 404 calculates a transition probability indicating which state the state of a healthy cow at a predetermined timing in each time range has transitioned to in the next time range. For example, if the state of the cow 10 in the current time range is "state I", the state of the cow 10 in the next time range is any one of 729 of "state I" to "state DCCXXIX". Transition to the state.
  • the state transition probability calculation unit 404 counts which state has transitioned from "state I" in the next time range for each transition destination state for a certain period of time. Then, the state transition probability calculation unit 404 divides each of the number of transitions to each state by using the total number of transitions to any state. As a result, the state transition probability calculation unit 404 calculates, for example, the transition probability from the current state to the next state for the cow 10.
  • the state transition probability calculation unit 404 for example, the state transition probability data generated by calculating the transition probability with all the states of the cow 10 as the transition source is stored in the reference data storage unit 136 as the reference data. do.
  • the state transition probability data generated by the state transition probability calculation unit 404 can be said to be data showing a tendency of healthy cow movement.
  • FIG. 5 is a diagram showing a specific example of processing of the reference data calculation unit.
  • the standardization processing unit 401 performs standardization processing and generates standardized data 520.
  • the example of FIG. 5 shows that the interval of the broken lines of the set 510 of the time series data is in the time range of 1 [SEC].
  • each value included in the standardized data 520 indicates that it is a variation of the time series data calculated for each 1 [SEC] for each of the X-axis, the Y-axis, and the Z-axis.
  • the standardized data 520 is labeled by the labeling unit 402, and the labeling data 530 is generated. Then, the state specifying unit 403 specifies the state of a healthy cow in each time range based on the processing result of the labeling process of each axis in each time range constituting the labeling data 530 (states I, V, IV). ..
  • the state transition probability calculation unit 404 determines the predetermined timing of each time range for healthy cows. Calculate the transition probability from one state to the next. As a result, the state transition probability calculation unit 404 generates state transition probability data 540 for healthy cattle.
  • the state transition probability data 540 of FIG. 5 arranges the current state of a healthy cow (729 states) in the vertical direction and the next state (729 states) of a healthy cow in the horizontal direction. , It is generated by storing the transition probability to the next state in each column.
  • column 541 contains data for a period of time indicating the condition of healthy cattle in each time range. -The number of transitions (individual transitions) in which the state in the current time range is “state I” and the state remains “state I” in the next time range is counted. -The total number of transitions in which the state in the current time range is “state I” and the state is in any of "state I” to "state DCCXXIX” in the next time range is counted. ⁇ Divide each transition probability by the total number of transitions, The transition probability from "state I" to "state I” calculated by this is stored.
  • column 542 contains data for a period of time indicating the condition of healthy cattle over each time range. -The number of transitions (individual transitions) in which the state in the current time range is “state I” and the state in the next time range is “state II” is counted. -The total number of transitions in which the state in the current time range is “state I” and the state is in any of "state I” to "state DCCXXIX” in the next time range is counted. ⁇ Divide each transition probability by the total number of transitions, The transition probability from "state I” to "state II” calculated by this is stored.
  • the state transition probability data 540 generated for a healthy cow is stored in the reference data storage unit 136 as reference data.
  • FIG. 6 is a diagram showing details of the functional configuration of the analysis unit.
  • the analysis unit 133 has a standardization processing unit 601 (first standardization processing unit) and a labeling unit 602 (first labeling unit). Further, the analysis unit 133 includes a state identification unit 603 (first specific unit), a state transition probability calculation unit 604 (first calculation unit), and a score calculation unit 605 (first score calculation unit).
  • the functions of the standardization processing units 601 to the state transition probability calculation unit 604 are the same as the functions of the standardization processing unit 401 to the state transition probability calculation unit 404 of the reference data calculation unit 132 described with reference to FIG. be. Therefore, here, the score calculation unit 605 will be described.
  • the score calculation unit 605 acquires the state transition probability data of the cow to be monitored, which is generated by the state transition probability calculation unit 604. In addition, the score calculation unit 605 reads out the state transition probability data of a healthy cow from the reference data storage unit 136. Further, the score calculation unit 605 calculates the score by the following equation (1) based on the state transition probability data of the cow to be monitored and the state transition probability data of the healthy cow.
  • Score -log (P ⁇ X)
  • P represents the state transition probability data of a healthy cow
  • X represents the state transition probability data of the cow to be monitored.
  • represents the Amadal product.
  • the score calculation unit 605 how much the state transition probability data of the monitored cow deviates from the state transition probability data of healthy cows (that is, the degree of abnormality of the state transition). ) Is calculated for each transition probability.
  • the score calculation unit 605 extracts the maximum score from the scores calculated for each transition probability and outputs it as data indicating the degree of abnormality of the cow to be monitored on the relevant date.
  • the state probability data generated by the state transition probability calculation unit 604 can be said to be data showing the tendency of the movement of the cow to be monitored.
  • the change is detected by comparison with the movement tendency of a healthy cow. Therefore, the above score is calculated.
  • FIG. 7 is a diagram showing a specific example of the processing of the analysis unit.
  • the cattle to be monitored are acquired or generated by the standardization processing unit 601, the labeling unit 602, the state identification unit 603, and the state transition probability calculation unit 604.
  • ⁇ Time series data set 510, -Standardized data 520, ⁇ Labeling data 530 Since it is the same as the above, detailed description thereof will be omitted here.
  • one day's worth of data is accumulated for the initial state transition probability data 740 of the monitored cow, so that the state transition probability calculation unit 604 can perform one day of the monitored cow.
  • the initial state transition probability data 740 refers to state transition probability data in which the transition probability of each state is "0". Further, in the example of FIG. 7, due to space limitations, only five current states and five next states are shown as state transition probability data 740 and 740'.
  • the score calculation unit 605 By generating the state transition probability data 740'for one day of the cow to be monitored, the score calculation unit 605 reads out the state transition probability data 540 of the healthy cow as shown in FIG. 7, and the above equation ( Calculate the score for each transition probability using 1). As a result, score data 750 is generated.
  • the score calculation unit 605 extracts the maximum score from the scores for each transition probability included in the score data 750, and extracts the extracted maximum score of the cow to be monitored. It is output as data showing the degree of abnormality on the date.
  • graph 760 is a graph of data indicating the degree of abnormality of the cow to be monitored on each date, with the horizontal axis representing the date and the vertical axis representing the data indicating the degree of abnormality. The graph 760 shows that the data indicating the current degree of abnormality is "410".
  • FIG. 8 is a diagram showing a specific example of processing of the sign detection unit.
  • the horizontal axis represents the date and the vertical axis represents the data indicating the degree of abnormality in the graph 800.
  • the graph 800 shows that the data indicating the degree of abnormality is equal to or more than the threshold value on the dates indicated by reference numerals 801 and 802 and reference numeral 803.
  • the sign detection unit 134 indicates a sign (some abnormality). It indicates that it was not determined that the detection was detected.
  • FIG. 9 is a flowchart showing the flow of the reference data calculation process.
  • step S901 the data acquisition unit 131 acquires time-series data indicating the three-dimensional acceleration of a healthy cow.
  • step S902 the standardization processing unit 401 of the reference data calculation unit 132 performs standardization processing on the time series data indicating the three-dimensional acceleration of a healthy cow, and generates standardized data.
  • step S903 the labeling unit 402 of the reference data calculation unit 132 performs labeling processing on the standardized data and generates labeling data.
  • step S904 the state specifying unit 403 of the reference data calculation unit 132 specifies the state of each time range of a healthy cow based on the labeling data.
  • step S905 the state transition probability calculation unit 404 of the reference data calculation unit 132 generates the state transition probability data of the healthy cow based on the data indicating the state of each time range of the healthy cow.
  • step S906 the state transition probability calculation unit 404 of the reference data calculation unit 132 stores the generated state transition probability data of a healthy cow as reference data in the reference data storage unit 136.
  • step S907 the state transition probability calculation unit 404 of the reference data calculation unit 132 determines whether or not the state transition probability data for a certain period of time of a healthy cow has been generated. If it is determined in step S907 that it has not been generated (NO in step S907), the process returns to step S901.
  • step S907 if it is determined in step S907 that the data has been generated (YES in step S907), the reference data calculation process is terminated.
  • FIG. 10 is a first flowchart showing the flow of analysis processing, and shows analysis processing for one day.
  • step S1001 the data acquisition unit 131 acquires time-series data indicating the three-dimensional acceleration of the cow to be monitored.
  • step S1002 the standardization processing unit 601 of the analysis unit 133 performs standardization processing on the time series data indicating the three-dimensional acceleration of the cow to be monitored, and generates standardized data.
  • step S1003 the labeling unit 602 of the analysis unit 133 performs labeling processing on the standardized data and generates labeling data.
  • step S1004 the state specifying unit 603 of the analysis unit 133 identifies the state of each time range of a healthy cow based on the labeling data.
  • step S1005 the state transition probability calculation unit 604 of the analysis unit 133 generates the state transition probability data of the cow to be monitored based on the data indicating the state of each time range of the cow to be monitored.
  • step S1006 the state transition probability calculation unit 604 of the analysis unit 133 determines whether or not the state transition probability data for one day of the cow to be monitored has been generated. If it is determined in step S1006 that the state transition probability data for one day has not been generated (NO in step S1006), the process returns to step S1001.
  • step S1006 determines whether the state transition probability data for one day has been generated (if YES in step S1006). If it is determined in step S1006 that the state transition probability data for one day has been generated (if YES in step S1006), the process proceeds to step S1007.
  • step S1007 the score calculation unit 605 of the analysis unit 133 acquires the state transition probability data for one day of the monitored cow, and from the reference data storage unit 136, the state transition probability of a healthy cow is used as the reference data. Read the data.
  • step S1008 the score calculation unit 605 of the analysis unit 133 scores based on the acquired state transition probability data of the monitored cow for one day and the state transition probability data of the healthy cow read out as the reference data. Is calculated for each transition probability. Further, the score calculation unit 605 of the analysis unit 133 extracts the maximum score from the scores calculated for each transition probability and outputs it as data indicating the degree of abnormality of the cow to be monitored on the relevant date.
  • FIG. 11 is a flowchart showing the flow of the sign detection process.
  • step S1101 the sign detection unit 134 acquires data indicating the degree of abnormality of the cow to be monitored, which is output every day from the score calculation unit 605 of the analysis unit 133.
  • step S1102 the sign detection unit 134 determines whether or not the acquired data indicating the degree of abnormality is equal to or higher than a predetermined threshold value. If it is determined in step S1102 that the threshold value is equal to or higher than the predetermined threshold value (YES in step S1102), the process proceeds to step S1103.
  • step S1103 the sign detection unit 134 increments the counter i that counts the number of consecutive days. It is assumed that "0" is input to the counter i as an initial value.
  • step S1104 the sign detection unit 134 determines whether or not the counter i is a predetermined number or more (for example, two days or more). If it is determined in step S1104 that the number is equal to or greater than a predetermined number (YES in step S1104), the process proceeds to step S1105.
  • step S1105 the sign detection unit 134 determines that a sign (some abnormality) has been detected and notifies the user.
  • step S1104 determines whether the number of counters i is less than a predetermined number (NO in step S1104). If it is determined in step S1104 that the number of counters i is less than a predetermined number (NO in step S1104), the process proceeds to step S1007.
  • step S1102 If it is determined in step S1102 that the value is less than the threshold value (NO in step S1102), the process proceeds to step S1106, inputting "0" to the counter i, and then proceeding to step S1107.
  • step S1107 the sign detection unit 134 determines that the sign (some abnormality) has not been detected.
  • step S1108 the sign detection unit 134 determines whether or not to end the sign detection process, and if it is determined to continue (in the case of NO in step S1108), returns to step S1101. On the other hand, if it is determined in step S1108 that the process is completed (YES in step S1108), the sign detection process is terminated.
  • the abnormality detection system is -Identify the state of a healthy cow in each time range based on time-series data showing three-dimensional acceleration measured by an accelerometer mounted on the neck of a healthy cow.
  • state transition probability data is generated by calculating the transition probability to the next state from the state at a predetermined timing in each specified time range.
  • the state of the cow to be monitored in each time range is specified.
  • state transition probability data is generated by calculating the transition probability from the state at a predetermined timing in the specified time range to the next state.
  • a score indicating the degree of abnormality of the state transition is calculated for each transition probability.
  • the maximum score is extracted from the scores calculated for each transition probability and output as data indicating the degree of abnormality.
  • the monitoring target is to detect the change in the movement tendency that occurs before the onset of BRD (or BRDC) in comparison with the movement tendency of healthy cows.
  • the score is calculated based on the state transition probability data of cows and healthy cows.
  • an abnormality detection system that detects an abnormality in a cow to be monitored.
  • the score is calculated based on the state transition probability data of the cow to be monitored and the state transition probability data of the healthy cow.
  • the score calculation method is not limited to this, and the score may be calculated based on, for example, the state transition probability data of the cow to be monitored. That is, instead of detecting the change in the movement tendency based on the comparison with the state transition probability data of the healthy cow, the change in the movement tendency is detected based on the state transition probability data itself of the monitored cow. May be good.
  • the second embodiment will be described focusing on the differences from the first embodiment.
  • FIG. 12 is a second diagram showing an example of the system configuration of the abnormality detection system and the functional configuration of the server device.
  • the server device 1210 functions as a data acquisition unit 131, an analysis unit 1211, and a sign detection unit 134 by executing an abnormality detection program.
  • the data acquisition unit 131 and the sign detection unit 134 are the same as the data acquisition unit 131 and the sign detection unit 134 shown in FIG. 1, so description thereof will be omitted here.
  • the analysis unit 1211 generates state transition probability data of the cow to be monitored based on the time series data of the cow to be monitored among the time series data indicating the three-dimensional acceleration acquired by the data acquisition unit 131. In addition, the analysis unit 1211 is based on the state transition probability data of the cow to be monitored. -The degree to which each transition probability of the monitored cow has increased, or ⁇ The degree to which each transition probability of the monitored cow has decreased, (That is, the score indicating the degree of abnormality of the state transition) is calculated.
  • FIG. 13 is a diagram showing details of the functional configuration of the analysis unit.
  • the analysis unit 1211 has a standardization processing unit 601, a labeling unit 602, a state identification unit 603, a state transition probability calculation unit 604, and a score calculation unit 1301 (second score calculation unit).
  • the functions of the standardization processing units 601 to the state transition probability calculation unit 604 are the same as the functions of the standardization processing unit 401 to the state transition probability calculation unit 404 of the reference data calculation unit 132 described with reference to FIG. be. Therefore, here, the score calculation unit 1301 will be described.
  • the score calculation unit 1301 acquires the state transition probability data of the cow to be monitored, which is generated by the state transition probability calculation unit 604. Further, the score calculation unit 605 calculates the score by the following equation (2) based on the state transition probability data of the cow to be monitored.
  • the score calculation unit 1301 calculates a score indicating the degree of increase or decrease of each transition probability included in the state transition probability data of the cow to be monitored for each transition probability.
  • the score calculation unit 1301 extracts the maximum score from the scores calculated for each transition probability and outputs it as data indicating the degree of abnormality of the cow to be monitored on the relevant date.
  • FIG. 14 is a diagram showing a specific example of the processing of the analysis unit.
  • the standardization processing unit 601, the labeling unit 602, the state identification unit 603, and the state transition probability calculation unit 604 acquire or generate the cow to be monitored.
  • ⁇ Time series data set 710, -Standardized data 720, ⁇ Labeling data 730, -Initial state transition probability data 740, ⁇ One day's state transition probability data 740' Is acquired or generated for healthy cows by the standardization processing unit 401, the labeling unit 402, the state identification unit 403, and the state transition probability calculation unit 404.
  • the state transition probability calculation unit 604 acquires or generates the cow to be monitored.
  • -Initial state transition probability data 740, ⁇ One day's state transition probability data 740' Since it is the same as the above, detailed description thereof will be omitted here.
  • state transition probability data 740 and 740' are shown as state transition probability data 740 and 740'.
  • the score calculation unit 1301 calculates the score for each transition probability using the above equation (2) as shown in FIG. do. As a result, score data 1410 is generated.
  • the score calculation unit 1301 extracts the maximum score from the scores for each transition probability included in the score data 1410, and sets the extracted maximum score as the date of the cow to be monitored. It is output as data showing the degree of abnormality in.
  • graph 1420 is a graph of data indicating the degree of abnormality of the cow to be monitored on each date, with the horizontal axis representing the date and the vertical axis representing the data indicating the degree of abnormality. The graph 1420 shows that the data indicating the current degree of abnormality is "390".
  • FIG. 15 is a second flowchart showing the flow of analysis processing.
  • each step of steps S1001 to S1006 executes the same process as each step of steps S1001 to S1006 shown in FIG. 10, and thus description thereof will be omitted here. ..
  • step S1501 the score calculation unit 1301 of the analysis unit 1211 calculates a score for each transition probability based on the state transition probability data for one day of the monitored cow. Further, the score calculation unit 1301 of the analysis unit 1211 extracts the maximum score from the scores calculated for each transition probability and outputs it as data indicating the degree of abnormality of the cow to be monitored on the relevant date.
  • the abnormality detection system is -Based on the time-series data showing the three-dimensional acceleration measured by the acceleration sensor attached to the neck of the cow to be monitored, the state of the cow to be monitored in each time range is specified.
  • state transition probability data is generated by calculating the transition probability from the state at a predetermined timing in the specified time range to the next state.
  • a score indicating the degree of abnormality of the state transition is calculated for each transition probability.
  • the maximum score is extracted from the scores calculated for each transition probability and output as data indicating the degree of abnormality.
  • the data indicating the degree of abnormality satisfies the predetermined condition, it is determined that the abnormality of the cow to be monitored is detected.
  • the score is based on the state transition probability data of the cow to be monitored. Is calculated.
  • the sign is detected before the cow to be monitored develops BRD (or BRDC). Will be possible.
  • an abnormality detection system that detects an abnormality in a cow to be monitored.
  • the acceleration sensor has been described as being attached to the neck portion, but the attachment portion of the acceleration sensor is not limited to the neck portion and may be attached to another portion.
  • the acceleration sensor is attached as the motion sensor, but a motion sensor other than the acceleration sensor (for example, an angular velocity sensor) may be attached.
  • the state transition probability data for a certain period of time is generated as the state transition probability data for a healthy cow, but the fixed period is a plurality of days even if it is one day. It may be.
  • the state transition probability data for healthy cows even if the state transition probability data for one healthy cow is generated, the state transition probability data for multiple healthy cows is generated and the average value. May be calculated.
  • data indicating the degree of abnormality is output for the cow to be monitored every day, and it is determined whether or not a sign (some abnormality) is detected every day.
  • the output frequency for outputting data indicating the degree of abnormality and the determination frequency for determining whether or not a sign (some abnormality) is detected are not limited to one day, and even if it is less than one day, it is one day or more. There may be.
  • time series data showing the three-dimensional acceleration has been described, but the number of axial directions using the time series data is not limited to three axes.
  • time series data showing acceleration on any two axes may be used.
  • time series data showing acceleration on one axis may be used.
  • the time range during the standardization process is set to "1 [SEC]", but the time range during the standardization process is not limited to "1 [SEC]”.
  • the determination condition as to whether or not a sign (some abnormality) is detected is not limited to this, and the determination may be made using other predetermined conditions. That is, it may be determined depending on whether or not the condition defined in advance is satisfied.
  • the animal to be monitored is a cow, but an animal other than a cow may be a monitoring target.
  • Anomaly detection system 110 Measuring device 130: Server device 131: Data acquisition unit 132: Reference data calculation unit 133: Analysis unit 134: Predictive detection unit 150, 160: Terminal equipment 401: Standardization processing unit 402: Labeling unit 403: State identification unit 404: State transition probability calculation unit 601: Standardization processing unit 602: Labeling unit 603: State identification unit 604: State transition probability calculation unit 605: Score calculation unit 1211: Analysis unit 1301: Score calculation unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Primary Health Care (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Business, Economics & Management (AREA)
  • Data Mining & Analysis (AREA)
  • General Business, Economics & Management (AREA)
  • Zoology (AREA)
  • Birds (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Eye Examination Apparatus (AREA)
  • Paper (AREA)
  • Alarm Systems (AREA)
  • Catching Or Destruction (AREA)

Abstract

監視対象の動物の異常を検知する異常検知システムを提供する。異常検知システムは、監視対象の動物の所定部位に装着されたモーションセンサからの時系列データに基づいて、前記監視対象の動物の各時間範囲における状態を特定する第1の特定部と、前記第1の特定部により特定された各時間範囲の所定タイミングにおける状態から、次の状態への遷移確率を算出する第1の算出部と、前記次の状態への遷移確率に基づいて算出されるスコアが所定の条件を満たす場合に、前記監視対象の動物の異常を検知したと判定する判定部とを有する。

Description

異常検知システム
 本発明は、異常検知システムに関する。
 一般に、畜産牛における飼育から販売までの流れは、複数の工程に大別される(例えば、牧草飼育の工程、肥育の工程、加工の工程等)。このうち、肥育の工程は、Feedlot(肥育場)と呼ばれる一定の区域内で行われるため、牛が牛呼吸器病(BRD(またはBRDC):Bovine Respiratory Disease (Complex))に感染しやすいといった問題がある。
 これに対して、例えば、下記非特許文献1では、BRD(またはBRDC)に感染した牛のうち、BRD(またはBRDC)を実際に発症した牛を自動検知するシステムが提案されている。当該システムによれば、BRD(またはBRDC)を発症した牛をいち早く特定することができる。
Cargill、"Cargill brings facial recognition capability to farmers through strategic equity investment in Cainthus"、[online]、2018年1月31日、[2020年2月28日検索]、インターネット(URL:https://www.cargill.com/2018/cargill-brings-facial-recognition-capability-to-farmers)
 一方で、監視対象の牛がBRD(またはBRDC)を発症する前に、その予兆(何らかの異常)を検知して処置することができれば、BRD(またはBRDC)の発症や重症化に伴って生じる様々なコストを低減できると考えられる。
 一つの側面では、監視対象の動物の異常を検知する異常検知システムを提供することを目的としている。
 一態様によれば、異常検知システムは、
 監視対象の動物の所定部位に装着されたモーションセンサからの時系列データに基づいて、前記監視対象の動物の各時間範囲における状態を特定する第1の特定部と、
 前記第1の特定部により特定された各時間範囲の所定タイミングにおける状態から、次の状態への遷移確率を算出する第1の算出部と、
 前記次の状態への遷移確率に基づいて算出されるスコアが所定の条件を満たす場合に、前記監視対象の動物の異常を検知したと判定する判定部とを有する。
 監視対象の動物の異常を検知する異常検知システムを提供することが可能となる。
図1は、異常検知システムのシステム構成及びサーバ装置の機能構成の一例を示す第1の図である。 図2は、サーバ装置のハードウェア構成の一例を示す図である。 図3は、データ取得部の処理の具体例を示す図である。 図4は、基準データ算出部の機能構成の詳細を示す図である。 図5は、基準データ算出部の処理の具体例を示す図である。 図6は、解析部の機能構成の詳細を示す第1の図である。 図7は、解析部の処理の具体例を示す第1の図である。 図8は、予兆検知部の処理の具体例を示す図である。 図9は、基準データ算出処理の流れを示すフローチャートである。 図10は、解析処理の流れを示す第1のフローチャートである。 図11は、予兆検知処理の流れを示すフローチャートである。 図12は、異常検知システムのシステム構成及びサーバ装置の機能構成の一例を示す第2の図である。 図13は、解析部の機能構成の詳細を示す第2の図である。 図14は、解析部の処理の具体例を示す第2の図である。 図15は、解析処理の流れを示す第2のフローチャートである。
 以下、各実施形態について添付の図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省略する。
 [第1の実施形態]
 <異常検知システムのシステム構成及びサーバ装置の機能構成>
 はじめに、異常検知システムのシステム構成及びサーバ装置の機能構成について説明する。図1は、異常検知システムのシステム構成及びサーバ装置の機能構成の一例を示す第1の図である。
 異常検知システム100は、肥育の工程において、肥育場内の各牛がBRD(またはBRDC)を発症する前に、その予兆(何らかの異常)を検知するシステムである。
 図1に示すように、異常検知システム100は、計測装置110と、ゲートウェイ装置120と、サーバ装置130とを有する。異常検知システム100において、計測装置110とゲートウェイ装置120とは、無線通信を介して接続され、ゲートウェイ装置120とサーバ装置130とは、不図示のネットワークを介して通信可能に接続される。
 計測装置110は、牛10の所定部位(図1の例では、首部)に装着される3次元(X軸方向、Y軸方向、Z軸方向)のモーションセンサ(本実施形態では、加速度センサ)である。なお、X軸方向は、例えば、牛10の首部の体表に沿った方向であって、首部の円周に沿った方向を指し、Y軸方向は、例えば、牛10の首部の体表に沿った方向であって、頭部から胴体部に向かう方向を指すものとする。また、Z軸方向は、例えば、牛10の首部の体表に垂直な方向を指すものとする。
 計測装置110では、3次元の加速度を示す時系列データを、所定のサンプリング周波数で計測し、ゲートウェイ装置120に送信する。
 ゲートウェイ装置120は、計測装置110から送信された3次元の加速度を示す時系列データを、サーバ装置130に送信する。
 サーバ装置130は、肥育場内の各牛がBRD(またはBRDC)を発症する前に、その予兆(何らかの異常)を検知する装置である。サーバ装置130には、異常検知プログラムがインストールされており、当該プログラムが実行されることで、サーバ装置130は、データ取得部131、基準データ算出部132、解析部133、予兆検知部134として機能する。
 データ取得部131は、ゲートウェイ装置120から送信された3次元の加速度を示す時系列データのうち、健康な牛の時系列データを、加速度データ格納部135に格納する。
 基準データ算出部132は、加速度データ格納部135に格納された、健康な牛の3次元の加速度を示す時系列データを読み出し、健康な牛の状態遷移確率データ(詳細は後述)を算出する。また、基準データ算出部132は、健康な牛の状態遷移確率データを、基準データとして、基準データ格納部136に格納する。
 解析部133は、データ取得部131が取得する、3次元の加速度を示す時系列データのうち、監視対象の牛の時系列データに基づいて、監視対象の牛の状態遷移確率データを算出する。また、解析部133は、監視対象の牛の状態遷移確率データが、健康な牛の状態遷移確率データに対して、どの程度乖離したか(つまり、状態遷移の異常度)を示すスコアを算出する。
 予兆検知部134(判定部)は、解析部133により算出されたスコアを、監視対象の牛の異常度を示すデータとして取得し、監視対象の牛についてBRD(またはBRDC)を発症する前の予兆(何らかの異常)を検知したか否かを判定する。また、予兆検知部134は、予兆(何らかの異常)を検知したと判定した場合に、ユーザに報知する。
 なお、予兆検知部134では、例えば、監視対象の牛の異常度を示すデータが、予め定められた閾値以上となる日が、複数日(例えば、2日)連続した場合に、予兆(何らかの異常)を検知したと判定する。
 <サーバ装置のハードウェア構成>
 次に、サーバ装置130のハードウェア構成について説明する。図2は、サーバ装置のハードウェア構成の一例を示す図である。図2に示すように、サーバ装置130は、プロセッサ201、メモリ202、補助記憶装置203、I/F(Interface)装置204、通信装置205、ドライブ装置206を有する。なお、サーバ装置130の各ハードウェアは、バス207を介して相互に接続されている。
 プロセッサ201は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)等の各種演算デバイスを有する。プロセッサ201は、各種プログラム(例えば、異常検知プログラム等)をメモリ202上に読み出して実行する。
 メモリ202は、ROM(Read Only Memory)、RAM(Random Access Memory)等の主記憶デバイスを有する。プロセッサ201とメモリ202とは、いわゆるコンピュータを形成し、プロセッサ201が、メモリ202上に読み出した各種プログラムを実行することで、当該コンピュータは上記機能を実現する。
 補助記憶装置203は、各種プログラムや、各種プログラムがプロセッサ201によって実行される際に用いられる各種データを格納する。例えば、加速度データ格納部135、基準データ格納部136は、補助記憶装置203において実現される。
 I/F装置204は、外部装置の一例である操作装置210、表示装置211と、サーバ装置130とを接続する接続デバイスである。I/F装置204は、サーバ装置130に対する操作を、操作装置210を介して受け付ける。また、I/F装置204は、サーバ装置130による処理の結果を出力し、表示装置211を介して表示する。
 通信装置205は、他の装置と通信するための通信デバイスである。サーバ装置130の場合、通信装置205を介して他の装置であるゲートウェイ装置120と通信する。
 ドライブ装置206は記録媒体212をセットするためのデバイスである。ここでいう記録媒体212には、CD-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する媒体が含まれる。また、記録媒体212には、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等が含まれていてもよい。
 なお、補助記憶装置203にインストールされる各種プログラムは、例えば、配布された記録媒体212がドライブ装置206にセットされ、該記録媒体212に記録された各種プログラムがドライブ装置206により読み出されることでインストールされる。あるいは、補助記憶装置203にインストールされる各種プログラムは、通信装置205を介してネットワークからダウンロードされることで、インストールされてもよい。
 <データ取得部の処理の具体例>
 次に、サーバ装置130により実行される各部の処理のうち、データ取得部131の処理の具体例について説明する。図3は、データ取得部の処理の具体例を示す図である。図3に示すように、データ取得部131は、ゲートウェイ装置120から送信される様々な牛についての時系列データの組(X軸方向の加速度を示す時系列データ、Y軸方向の加速度を示す時系列データ、Z軸方向の加速度を示す時系列データ)を取得する。
 データ取得部131では、このうち、健康な牛についての時系列データの組を、加速度データ格納部135に格納する。
 <基準データ算出部の機能構成の詳細>
 次に、サーバ装置130により実現される各部の機能構成のうち、基準データ算出部132の機能構成について詳細を説明する。図4は、基準データ算出部の機能構成の詳細を示す図である。図4に示すように、基準データ算出部132は、標準化処理部401(第2の標準化処理部)、ラベリング部402(第2のラベリング部)、状態特定部403(第2の特定部)、状態遷移確率算出部404(第2の算出部)を有する。
 標準化処理部401は、加速度データ格納部135より、健康な牛についての時系列データの組を読み出し、各軸の時系列データについて標準化処理を行い、標準化データをラベリング部402に通知する。
 標準化処理とは、各軸の時系列データを、所定の時間範囲(例えば、1[SEC])ごとに分割し、各時間範囲における各軸の時系列データそれぞれのばらつきを算出する処理を指す。つまり、標準化データは、各時間範囲における各軸の時系列データのばらつきの算出結果により構成される。
 ラベリング部402は、標準化データに対して、ラベリング処理を行う。ラベリング部402では、標準化データに含まれる、各時間範囲における各軸の時系列データのばらつきの算出結果が、
・-4σ以下の場合には、"1"を、
・-4σより大きく、かつ、-3σ以下の場合には、"2"を、
・-3σより大きく、かつ、-2σ以下の場合には、"3"を、
・-2σより大きく、かつ、-1σ以下の場合には、"4"を、
・-1σより大きく、かつ、+1σ未満の場合には、"5"を、
・+1σ以上で、かつ、+2σ未満の場合には、"6"を、
・+2σ以上で、かつ、+3σ未満の場合には、"7"を、
・+3σ以上で、かつ、+4σ未満の場合には、"8"を、
・+4σ以上の場合には、"9"を、
それぞれ割り当てるラベリング処理を行う(符号411参照)。
 状態特定部403は、各時間範囲における各軸の時系列データに対してラベリング処理が行われることで生成されたラベリングデータに基づいて、各時間範囲における健康な牛の状態を特定する。例えば、各時間範囲におけるX軸方向の時系列データに対するラベリング処理の処理結果(L)、Y軸方向の時系列データに対するラベリング処理の処理結果(L)、Z軸方向の時系列データに対するラベリング処理の処理結果(L)が、
・(L=1、L=1、L=1)の場合には、当該牛の状態を状態Iと特定し、
・(L=1、L=1、L=2)の場合には、当該牛の状態を状態IIと特定し、
・・・
・(L=9、L=9、L=9)の場合には、当該牛の状態を状態DCCXXIXと特定する(符号412参照)。
 状態遷移確率算出部404は、各時間範囲の所定タイミングにおける健康な牛の状態が、次の時間範囲において、いずれの状態に遷移したかを示す遷移確率を算出する。例えば、現在の時間範囲における牛10の状態が"状態I"であった場合、次の時間範囲における牛10の状態は、"状態I"~"状態DCCXXIX"の729通りのうちのいずれかの状態に遷移する。状態遷移確率算出部404では、次の時間範囲において"状態I"からいずれの状態に遷移したかを、遷移先の状態ごとに、それぞれ、一定期間分カウントする。そして、状態遷移確率算出部404では、いずれかの状態に遷移した遷移回数の総数を用いて、各状態に遷移した遷移回数それぞれを除算する。これにより、状態遷移確率算出部404では、例えば、牛10について、現在の状態から次の状態への遷移確率を算出する。
 また、状態遷移確率算出部404では、例えば、牛10についてすべての状態を遷移元として、遷移確率を算出することで生成される状態遷移確率データを、基準データとして、基準データ格納部136に格納する。
 なお、上記の説明から明らかなように、状態遷移確率算出部404により生成される状態遷移確率データは、健康な牛の動きの傾向を示すデータであるといえる。
 <基準データ算出部による処理の具体例>
 次に、サーバ装置130により実行される各部の処理のうち、基準データ算出部132の処理の具体例について説明する。図5は、基準データ算出部の処理の具体例を示す図である。
 図5に示すように、健康な牛についての時系列データの組510が取得されると、標準化処理部401では標準化処理を行い、標準化データ520を生成する。図5の例は、時系列データの組510の破線の間隔が1[SEC]の時間範囲であることを示している。また、標準化データ520に含まれる各値は、X軸、Y軸、Z軸それぞれについて、1[SEC]ごとに算出された時系列データのばらつきであることを示している。
 また、図5に示すように、標準化データ520に対しては、ラベリング部402によりラベリング処理が行われ、ラベリングデータ530が生成される。そして、状態特定部403では、ラベリングデータ530を構成する各時間範囲における各軸のラベリング処理の処理結果に基づいて、健康な牛の各時間範囲における状態を特定する(状態I、V、IV)。
 なお、図5の例では、1~9の9種類のラベルを用いてラベリング処理が行われるため、X軸、Y軸、Z軸それぞれのラベリング処理の処理結果の組み合わせは、最大で729(=9×9×9)通りとなる。つまり、各時間範囲における状態として、状態I~状態DCCXXIXのいずれかの状態が特定される。
 また、図5に示すように、健康な牛の各時間範囲における状態を示すデータ(一定期間分のデータ)に基づいて、状態遷移確率算出部404では、健康な牛について各時間範囲の所定タイミングにおける状態から次の状態への遷移確率を算出する。これにより、状態遷移確率算出部404では、健康な牛の状態遷移確率データ540を生成する。図5の状態遷移確率データ540は、縦方向に、健康な牛の現在の状態(729通りの状態)を、横方向に、健康な牛の次の状態(729通りの状態)をそれぞれ配列し、各欄に、次の状態への遷移確率を格納することで生成される。
 例えば、欄541には、健康な牛の各時間範囲における状態を示す一定期間分のデータについて、
・現在の時間範囲における状態が"状態I"で、次の時間範囲でも状態が"状態I"のままであった遷移回数(個々の遷移回数)をカウントし、
・現在の時間範囲における状態が"状態I"で、次の時間範囲において、"状態I"~"状態DCCXXIX"のいずれかに遷移した遷移回数の総数をカウントし、
・個々の遷移確率を遷移回数の総数で除算する、
ことで算出される、"状態I"から"状態I"への遷移確率が格納される。
 同様に、欄542には、健康な牛の各時間範囲における状態を示す一定期間分のデータについて、
・現在の時間範囲における状態が"状態I"で、次の時間範囲における状態が"状態II"に遷移した遷移回数(個々の遷移回数)をカウントし、
・現在の時間範囲における状態が"状態I"で、次の時間範囲において、"状態I"~"状態DCCXXIX"のいずれかに遷移した遷移回数の総数をカウントし、
・個々の遷移確率を遷移回数の総数で除算する、
ことで算出される、"状態I"から"状態II"への遷移確率が格納される。
 以下、同様の処理を、遷移先の状態として、"状態III"~"状態DCCXXIX"について行うとともに、遷移元の状態として、"状態II"~"状態DCCXXIX"について行うことで、健康な牛の状態遷移確率データ540が生成される。なお、図5の状態遷移確率データ540に示すように、遷移元が同じで遷移先が異なる遷移確率の和は、"1"となる(状態遷移確率データ540に含まれる情報の項目="合計"参照)。
 なお、健康な牛について生成された状態遷移確率データ540は、基準データとして、基準データ格納部136に格納される。
 <解析部の機能構成の詳細>
 次に、サーバ装置130により実現される各部の機能構成のうち、解析部133の機能構成について詳細を説明する。図6は、解析部の機能構成の詳細を示す図である。図6に示すように、解析部133は、標準化処理部601(第1の標準化処理部)、ラベリング部602(第1のラベリング部)を有する。また、解析部133は、状態特定部603(第1の特定部)、状態遷移確率算出部604(第1の算出部)、スコア算出部605(第1のスコア算出部)を有する。
 なお、標準化処理部601~状態遷移確率算出部604の各部の機能は、図4を用いて説明した基準データ算出部132の標準化処理部401~状態遷移確率算出部404の各部の機能と同様である。したがって、ここでは、スコア算出部605について説明する。
 スコア算出部605は、状態遷移確率算出部604により生成された、監視対象の牛の状態遷移確率データを取得する。また、スコア算出部605は、基準データ格納部136より、健康な牛の状態遷移確率データを読み出す。また、スコア算出部605は、監視対象の牛の状態遷移確率データと、健康な牛の状態遷移確率データとに基づいて、下式(1)により、スコアを算出する。
(式1)スコア=-log(P〇X)
 なお、上式(1)において、Pは、健康な牛の状態遷移確率データを表し、Xは、監視対象の牛の状態遷移確率データを表す。また、〇はアマダール積を表している。上式(1)に基づき、スコア算出部605では、監視対象の牛の状態遷移確率データが、健康な牛の状態遷移確率データに対して、どの程度乖離したか(つまり、状態遷移の異常度)を示すスコアを遷移確率ごとに算出する。
 更に、スコア算出部605は、遷移確率ごとに算出したスコアの中から、最大のスコアを抽出し、監視対象の牛の当該日付における異常度を示すデータとして、出力する。
 なお、上記の説明から明らかなように、状態遷移確率算出部604により生成される状態確率データは、監視対象の牛の動きの傾向を示すデータであるといえる。本実施形態では、BRD(またはBRDC)の発症前において監視対象の牛の動きの傾向に変化が生じるとの前提のもと、その変化を、健康な牛の動きの傾向との対比により検知すべく、上記スコアを算出する。
 <解析部の処理の具体例>
 次に、サーバ装置130により実行される各部の処理のうち、解析部133の処理の具体例について説明する。図7は、解析部の処理の具体例を示す図である。
 図7に示すように、標準化処理部601、ラベリング部602、状態特定部603、状態遷移確率算出部604により監視対象の牛について取得または生成される、
・時系列データの組710、
・標準化データ720、
・ラベリングデータ730、
は、標準化処理部401、ラベリング部402、状態特定部403、状態遷移確率算出部404により、健康な牛について取得または生成される、
・時系列データの組510、
・標準化データ520、
・ラベリングデータ530、
と同様であるため、ここでは、詳細な説明は省略する。
 図7に示すように、監視対象の牛の初期の状態遷移確率データ740に対して、1日分のデータが蓄積されることで、状態遷移確率算出部604では、監視対象の牛の1日分の状態遷移確率データ740'を生成する。なお、初期の状態遷移確率データ740とは、各状態の遷移確率が"0"の状態遷移確率データを指す。また、図7の例では、紙面の関係上、状態遷移確率データ740、740'として、5通りの現在の状態と、5通りの次の状態のみを示している。
 監視対象の牛の1日分の状態遷移確率データ740'が生成されることで、スコア算出部605では、図7に示すように、健康な牛の状態遷移確率データ540を読み出し、上式(1)を用いて各遷移確率についてスコアを算出する。これにより、スコアデータ750が生成される。
 また、図7に示すように、スコア算出部605では、スコアデータ750に含まれる各遷移確率についてのスコアの中から、最大のスコアを抽出し、抽出した最大のスコアを、監視対象の牛の当該日付における異常度を示すデータとして出力する。図7においてグラフ760は、監視対象の牛の各日付における異常度を示すデータをグラフ化したものであり、横軸は日付を、縦軸は異常度を示すデータを表している。なお、グラフ760は、現在の異常度を示すデータが"410"であることを示している。
 <予兆検知部の処理の具体例>
 次に、サーバ装置130により実行される各部の処理のうち、予兆検知部134の処理の具体例について説明する。図8は、予兆検知部の処理の具体例を示す図である。図8において、グラフ800は、グラフ760と同様、横軸は日付を、縦軸は異常度を示すデータを表している。また、グラフ800は、符号801、符号802、符号803で示す日付において、異常度を示すデータが閾値以上となったことを示している。
 更に、グラフ800は、符号801で示す日付の場合、異常度を示すデータが閾値以上となった日が1日のみであり、連続していないため、予兆検知部134が、予兆(何らかの異常)を検知したと判定しなかったことを示している。
 一方、グラフ800は、符号803で示す日付の場合、異常度を示すデータが閾値以上となった日が、2日連続したため、予兆検知部134が、予兆(何らかの異常)を検知したと判定したことを示している。
 <基準データ算出処理の流れ>
 次に、サーバ装置130による基準データ算出処理の流れについて説明する。図9は、基準データ算出処理の流れを示すフローチャートである。
 ステップS901において、データ取得部131は、健康な牛の3次元の加速度を示す時系列データを取得する。
 ステップS902において、基準データ算出部132の標準化処理部401は、健康な牛の3次元の加速度を示す時系列データについて標準化処理を行い、標準化データを生成する。
 ステップS903において、基準データ算出部132のラベリング部402は、標準化データに対してラベリング処理を行い、ラベリングデータを生成する。
 ステップS904において、基準データ算出部132の状態特定部403は、ラベリングデータに基づいて、健康な牛の各時間範囲の状態を特定する。
 ステップS905において、基準データ算出部132の状態遷移確率算出部404は、健康な牛の各時間範囲の状態を示すデータに基づいて、健康な牛の状態遷移確率データを生成する。
 ステップS906において、基準データ算出部132の状態遷移確率算出部404は、生成した健康な牛の状態遷移確率データを、基準データとして、基準データ格納部136に格納する。
 ステップS907において、基準データ算出部132の状態遷移確率算出部404は、健康な牛の一定期間分の状態遷移確率データを生成したか否かを判定する。ステップS907において、生成していないと判定した場合には(ステップS907においてNOの場合には)、ステップS901に戻る。
 一方、ステップS907において、生成したと判定した場合には(ステップS907においてYESの場合には)、基準データ算出処理を終了する。
 <解析処理の流れ>
 次に、サーバ装置130による解析処理の流れについて説明する。図10は、解析処理の流れを示す第1のフローチャートであり、1日分の解析処理を示している。
 ステップS1001において、データ取得部131は、監視対象の牛の3次元の加速度を示す時系列データを取得する。
 ステップS1002において、解析部133の標準化処理部601は、監視対象の牛の3次元の加速度を示す時系列データに対して、標準化処理を行い、標準化データを生成する。
 ステップS1003において、解析部133のラベリング部602は、標準化データに対してラベリング処理を行い、ラベリングデータを生成する。
 ステップS1004において、解析部133の状態特定部603は、ラベリングデータに基づいて、健康な牛の各時間範囲の状態を特定する。
 ステップS1005において、解析部133の状態遷移確率算出部604は、監視対象の牛の各時間範囲の状態を示すデータに基づいて、監視対象の牛の状態遷移確率データを生成する。
 ステップS1006において、解析部133の状態遷移確率算出部604は、監視対象の牛の1日分の状態遷移確率データを生成したか否かを判定する。ステップS1006において、1日分の状態遷移確率データを生成していないと判定した場合には(ステップS1006においてNOの場合には)、ステップS1001に戻る。
 一方、ステップS1006において、1日分の状態遷移確率データを生成したと判定した場合には(ステップS1006においてYESの場合には)、ステップS1007に進む。
 ステップS1007において、解析部133のスコア算出部605は、監視対象の牛の1日分の状態遷移確率データを取得するとともに、基準データ格納部136より、基準データとして、健康な牛の状態遷移確率データを読み出す。
 ステップS1008において、解析部133のスコア算出部605は、取得した監視対象の牛の1日分の状態遷移確率データと、基準データとして読み出した健康な牛の状態遷移確率データとに基づいて、スコアを遷移確率ごとに算出する。更に、解析部133のスコア算出部605は、遷移確率ごとに算出したスコアの中から最大のスコアを抽出し、監視対象の牛の当該日付における異常度を示すデータとして出力する。
 <予兆検知処理の流れ>
 次に、サーバ装置130による予兆検知処理の流れについて説明する。図11は、予兆検知処理の流れを示すフローチャートである。
 ステップS1101において、予兆検知部134は、解析部133のスコア算出部605より1日ごとに出力される、監視対象の牛の異常度を示すデータを取得する。
 ステップS1102において、予兆検知部134は、取得した異常度を示すデータが、予め定められた閾値以上であるか否かを判定する。ステップS1102において、予め定められた閾値以上であると判定された場合には(ステップS1102においてYESの場合には)、ステップS1103に進む。
 ステップS1103において、予兆検知部134は、連続日数をカウントするカウンタiをインクリメントする。なお、カウンタiには、初期値として"0"が入力されているものとする。
 ステップS1104において、予兆検知部134は、カウンタiが所定数以上(例えば、2日以上)であるか否かを判定する。ステップS1104において、所定数以上であると判定した場合には(ステップS1104においてYESの場合には)、ステップS1105に進む。
 ステップS1105において、予兆検知部134は、予兆(何らかの異常)を検知したと判定し、ユーザに報知する。
 一方、ステップS1104において、カウンタiが所定数未満であると判定された場合には(ステップS1104においてNOの場合には)、ステップS1007に進む。
 また、ステップS1102において、閾値未満であると判定された場合には(ステップS1102においてNOの場合には)、ステップS1106に進み、カウンタiに"0"を入力した後、ステップS1107に進む。
 ステップS1107において、予兆検知部134は、予兆(何らかの異常)を検知しなかったと判定する。
 ステップS1108において、予兆検知部134は、予兆検知処理を終了するか否かを判定し、継続すると判定した場合には(ステップS1108においてNOの場合には)、ステップS1101に戻る。一方、ステップS1108において、終了すると判定した場合には(ステップS1108においてYESの場合には)、予兆検知処理を終了する。
 <まとめ>
 以上の説明から明らかなように、第1の実施形態に係る異常検知システムは、
・健康な牛の首部に装着された加速度センサにより計測された、3次元の加速度を示す時系列データに基づいて、健康な牛の各時間範囲における状態を特定する。また、特定した各時間範囲の所定タイミングにおける状態から、次の状態への遷移確率を算出することで、状態遷移確率データを生成する。
・監視対象の牛の首部に装着された加速度センサにより計測された、3次元の加速度を示す時系列データに基づいて、監視対象の牛の各時間範囲における状態を特定する。また、特定した時間範囲の所定タイミングにおける状態から、次の状態への遷移確率を算出することで、状態遷移確率データを生成する。
・健康な牛について生成した状態遷移確率データと、監視対象の牛について算出した状態遷移確率データとに基づいて、遷移確率ごとに、状態遷移の異常度を示すスコアを算出する。
・遷移確率ごとに算出したスコアの中から、最大のスコアを抽出し、異常度を示すデータとして出力する。
・異常度を示すデータが所定の条件を満たす場合に、監視対象の牛の異常を検知したと判定する。
 このように、第1の実施形態に係る異常検知システムでは、BRD(またはBRDC)の発症前に生じる動きの傾向の変化を、健康な牛の動きの傾向との対比により検知すべく、監視対象の牛と健康な牛の状態遷移確率データに基づいてスコアを算出する。これにより、第1の実施形態に係る異常検知システムによれば、監視対象の牛がBRD(またはBRDC)を発症する前に、その予兆(何らかの異常)を検知することが可能になる。
 つまり、第1の実施形態によれば、監視対象の牛の異常を検知する異常検知システムを提供することができる。
 [第2の実施形態]
 上記第1の実施形態では、監視対象の牛の状態遷移確率データと、健康な牛の状態遷移確率データとに基づいて、スコアを算出する構成とした。
 しかしながら、スコアの算出方法はこれに限定されず、例えば、監視対象の牛の状態遷移確率データに基づいて、スコアを算出してもよい。つまり、健康な牛の状態遷移確率データとの対比に基づいて動きの傾向の変化を検知するのではなく、監視対象の牛の状態遷移確率データそのものに基づいて動きの傾向の変化を検知してもよい。以下、第2の実施形態について、上記第1の実施形態との相違点を中心に説明する。
 <異常検知システムのシステム構成及びサーバ装置の機能構成>
 はじめに、異常検知システムのシステム構成及びサーバ装置の機能構成について説明する。図12は、異常検知システムのシステム構成及びサーバ装置の機能構成の一例を示す第2の図である。
 なお、図12に示すように、異常検知システムのシステム構成は、図1に示した異常検知システムのシステム構成と同じであるため、システム構成の説明は省略し、ここでは、サーバ装置1210の機能構成について説明する。
 図12に示すように、サーバ装置1210は、異常検知プログラムが実行されることで、データ取得部131、解析部1211、予兆検知部134として機能する。このうち、データ取得部131、予兆検知部134は、図1に示したデータ取得部131、予兆検知部134と同じであるため、ここでは、説明を省略する。
 解析部1211は、データ取得部131が取得する、3次元の加速度を示す時系列データのうち、監視対象の牛の時系列データに基づいて、監視対象の牛の状態遷移確率データを生成する。また、解析部1211は、監視対象の牛の状態遷移確率データに基づいて、
・監視対象の牛の各遷移確率が増大した度合い、または、
・監視対象の牛の各遷移確率が減少した度合い、
(つまり、状態遷移の異常度)を示すスコアを算出する。
 <解析部の機能構成の詳細>
 次に、解析部1211の機能構成の詳細について説明する。図13は、解析部の機能構成の詳細を示す図である。図13に示すように、解析部1211は、標準化処理部601、ラベリング部602、状態特定部603、状態遷移確率算出部604、スコア算出部1301(第2のスコア算出部)を有する。
 なお、標準化処理部601~状態遷移確率算出部604の各部の機能は、図4を用いて説明した基準データ算出部132の標準化処理部401~状態遷移確率算出部404の各部の機能と同様である。したがって、ここでは、スコア算出部1301について説明する。
 スコア算出部1301は、状態遷移確率算出部604により生成された、監視対象の牛の状態遷移確率データを取得する。また、スコア算出部605は、監視対象の牛の状態遷移確率データに基づいて、下式(2)により、スコアを算出する。
(式2)スコア=-log(X)
 なお、上式(2)において、Xは、監視対象の牛の状態遷移確率データを表す。
 スコア算出部1301では、監視対象の牛の状態遷移確率データに含まれる各遷移確率が増大または減少した度合いを示すスコアを、遷移確率ごとに算出する。
 更に、スコア算出部1301は、遷移確率ごとに算出したスコアの中から、最大のスコアを抽出し、監視対象の牛の当該日付における異常度を示すデータとして、出力する。
 <解析部の処理の具体例>
 次に、サーバ装置1210により実行される各部の処理のうち、解析部1211の処理の具体例について説明する。図14は、解析部の処理の具体例を示す図である。
 図14に示すように、標準化処理部601、ラベリング部602、状態特定部603、状態遷移確率算出部604により、監視対象の牛について取得または生成される、
・時系列データの組710、
・標準化データ720、
・ラベリングデータ730、
・初期の状態遷移確率データ740、
・1日分の状態遷移確率データ740'
は、標準化処理部401、ラベリング部402、状態特定部403、状態遷移確率算出部404により、健康な牛について取得または生成される、
・時系列データの組510、
・標準化データ520、
・ラベリングデータ530、
または、状態遷移確率算出部604により、監視対象の牛について取得または生成される、
・初期の状態遷移確率データ740、
・1日分の状態遷移確率データ740'、
と同様であるため、ここでは、詳細な説明は省略する。
 また、図14においても、紙面の関係上、状態遷移確率データ740、740'として、5通りの現在の状態と、5通りの次の状態のみを示している。
 監視対象の牛の1日分の状態遷移確率データ740'が生成されることで、図14に示すように、スコア算出部1301では、上式(2)を用いて各遷移確率についてスコアを算出する。これにより、スコアデータ1410が生成される。
 また、図14に示すように、スコア算出部1301では、スコアデータ1410に含まれる各遷移確率についてのスコアから、最大のスコアを抽出し、抽出した最大のスコアを、監視対象の牛の当該日付における異常度を示すデータとして出力する。図14においてグラフ1420は、監視対象の牛の各日付における異常度を示すデータをグラフ化したものであり、横軸は日付を、縦軸は異常度を示すデータを表している。なお、グラフ1420は、現在の異常度を示すデータが"390"であることを示している。
 <解析処理の流れ>
 次に、サーバ装置1210による解析処理の流れについて説明する。図15は、解析処理の流れを示す第2のフローチャートである。
 なお、図15に示す各工程のうち、ステップS1001~ステップS1006の各工程は、図10に示したステップS1001~ステップS1006の各工程と同様の処理が実行されるため、ここでは説明を省略する。
 ステップS1501において、解析部1211のスコア算出部1301は、監視対象の牛の1日分の状態遷移確率データに基づいて、各遷移確率についてスコアを算出する。また、解析部1211のスコア算出部1301は、各遷移確率について算出したスコアの中から最大のスコアを抽出し、監視対象の牛の当該日付における異常度を示すデータとして出力する。
 <まとめ>
 以上の説明から明らかなように、第2の実施形態に係る異常検知システムは、
・監視対象の牛の首部に装着された加速度センサにより計測された、3次元の加速度を示す時系列データに基づいて、監視対象の牛の各時間範囲における状態を特定する。また、特定した時間範囲の所定タイミングにおける状態から、次の状態への遷移確率を算出することで、状態遷移確率データを生成する。
・監視対象の牛について生成した状態遷移確率データに基づいて、遷移確率ごとに、状態遷移の異常度を示すスコアを算出する。
・遷移確率ごとに算出したスコアの中から、最大のスコアを抽出し、異常度を示すデータとして出力する。
・異常度を示すデータが所定の条件を満たす場合に、監視対象の牛の異常を検知したと判定する。
 このように、第2の実施形態に係る異常検知システムでは、BRD(またはBRDC)の発症前に生じる動きの傾向の変化を検知すべく、監視対象の牛の状態遷移確率データに基づいて、スコアを算出する。これにより、第2の実施形態に係る異常検知システムによれば、上記第1の実施形態同様、監視対象の牛がBRD(またはBRDC)を発症する前に、その予兆(何らかの異常)を検知することが可能になる。
 つまり、第2の実施形態によれば、監視対象の牛の異常を検知する異常検知システムを提供することができる。
 [第3の実施形態]
 上記第1及び第2の実施形態では、加速度センサを首部に装着するものとして説明したが、加速度センサの装着部位は首部に限定されず、他の部位に装着してもよい。
 また、上記第1及び第2の実施形態では、モーションセンサとして加速度センサを装着するものとして説明したが、加速度センサ以外のモーションセンサ(例えば、角速度センサ)を装着してもよい。
 また、上記第1の実施形態では、健康な牛についての状態遷移確率データとして、一定期間分の状態遷移確率データを生成するものとして説明したが、一定期間は、1日であっても複数日であってもよい。
 また、健康な牛についての状態遷移確率データは1頭分の健康な牛についての状態遷移確率データを生成しても、複数頭分の健康な牛についての状態遷移確率データを生成し、平均値を算出してもよい。
 また、上記第1及び第2の実施形態では、監視対象の牛について、1日ごとに異常度を示すデータを出力し、1日ごとに、予兆(何らかの異常)を検知したか否かを判定するものとして説明した。しかしながら、異常度を示すデータを出力する出力頻度及び予兆(何らかの異常)を検知したか否かを判定する判定頻度は、1日に限定されず、1日未満であっても、1日以上であってもよい。
 また、上記第1及び第2の実施形態では、3次元の加速度を示す時系列データを用いる場合について説明したが、時系列データを用いる軸方向の数は、3軸に限定されない。例えば、いずれか2軸の加速度を示す時系列データを用いてもよい。あるいは、1軸の加速度を示す時系列データのみを用いてもよい。
 また、上記第1及び第2の実施形態では、ラベリング処理の際"1"から"9"の9種類のラベルを用いるものとして説明したが、ラベリング処理に用いるラベルの種類は、9種類に限定されない。
 また、上記第1及び第2の実施形態では、標準化処理の際の時間範囲を"1[SEC]"としたが、標準化処理の際の時間範囲は、"1[SEC]"に限定されない。
 また、上記第1及び第2の実施形態では、異常度を示すデータが閾値以上となる日が2日連続した場合に、予兆(何らかの異常)を検知したと判定するものとして説明した。しかしながら、予兆(何らかの異常)を検知したか否かの判定条件はこれに限定されず、他の所定の条件を用いて判定を行ってもよい。つまり、予め定義した条件を満たすか否かにより判定してもよい。
 また、上記第1及び第2の実施形態では、監視対象の動物が牛であるとして説明したが、牛以外の動物を監視対象としてもよい。
 なお、上記実施形態に挙げた構成等に、その他の要素との組み合わせ等、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。
 本出願は、2020年3月9日に出願された日本国特許出願第2020-040117号に基づきその優先権を主張するものであり、同日本国特許出願の全内容を参照することにより本願に援用する。
 100         :異常検知システム
 110         :計測装置
 130         :サーバ装置
 131         :データ取得部
 132         :基準データ算出部
 133         :解析部
 134         :予兆検知部
 150、160     :端末装置
 401         :標準化処理部
 402         :ラベリング部
 403         :状態特定部
 404         :状態遷移確率算出部
 601         :標準化処理部
 602         :ラベリング部
 603         :状態特定部
 604         :状態遷移確率算出部
 605         :スコア算出部
 1211        :解析部
 1301        :スコア算出部

Claims (6)

  1.  監視対象の動物の所定部位に装着されたモーションセンサからの時系列データに基づいて、前記監視対象の動物の各時間範囲における状態を特定する第1の特定部と、
     前記第1の特定部により特定された各時間範囲の所定タイミングにおける状態から、次の状態への遷移確率を算出する第1の算出部と、
     前記次の状態への遷移確率に基づいて算出されるスコアが所定の条件を満たす場合に、前記監視対象の動物の異常を検知したと判定する判定部と
     を有する異常検知システム。
  2.  前記監視対象の動物の所定部位に装着されたモーションセンサからの時系列データに対して、前記時間範囲ごとに標準化処理を行う第1の標準化処理部と、
     前記第1の標準化処理部により時間範囲ごとに行われた標準化処理の結果に対してラベリング処理を行う第1のラベリング部と、を有し、
     前記第1の特定部は、前記第1のラベリング部によるラベリング処理の処理結果の組み合わせから、各時間範囲における状態を特定する、請求項1に記載の異常検知システム。
  3.  前記第1の算出部により算出される各遷移確率に基づいて前記スコアを算出し、算出したスコアの中から、最大のスコアを抽出する第1のスコア算出部を更に有し、
     前記判定部は、前記第1のスコア算出部により抽出されたスコアが所定の閾値以上となる日数が連続した場合に、前記監視対象の動物の異常を検知したと判定する、請求項2に記載の異常検知システム。
  4.  健康な動物の所定部位に装着されたモーションセンサからの時系列データに基づいて、前記健康な動物の各時間範囲における状態を特定する第2の特定部と、
     前記第2の特定部により特定された各時間範囲の所定タイミングにおける状態から、次の状態への遷移確率を算出する第2の算出部と、
     前記第1の算出部により算出される各遷移確率と、前記第2の算出部により算出される各遷移確率とに基づいて前記スコアを算出し、算出したスコアの中から、最大のスコアを抽出する第2のスコア算出部と
     を更に有する、請求項1に記載の異常検知システム。
  5.  前記判定部は、前記第2のスコア算出部により抽出されたスコアが所定の閾値以上となる日数が連続した場合に、前記監視対象の動物の異常を検知したと判定する、請求項4に記載の異常検知システム。
  6.  前記健康な動物の所定部位に装着されたモーションセンサからの時系列データに対して、前記時間範囲ごとに標準化処理を行う第2の標準化処理部と、
     前記第2の標準化処理部により時間範囲ごとに行われた標準化処理の結果に対してラベリング処理を行う第2のラベリング部と、を有し、
     前記第2の特定部は、前記第2のラベリング部によるラベリング処理の処理結果の組み合わせから、各時間範囲における状態を特定する、請求項4に記載の異常検知システム。
PCT/JP2021/008052 2020-03-09 2021-03-03 異常検知システム WO2021182204A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022505953A JPWO2021182204A1 (ja) 2020-03-09 2021-03-03
CN202180019100.7A CN115279182A (zh) 2020-03-09 2021-03-03 异常检测***
US17/909,121 US20230102979A1 (en) 2020-03-09 2021-03-03 Abnormality detecting system
AU2021233628A AU2021233628A1 (en) 2020-03-09 2021-03-03 Anomaly sensing system
EP21767132.0A EP4118960A1 (en) 2020-03-09 2021-03-03 Anomaly sensing system
BR112022017261A BR112022017261A2 (pt) 2020-03-09 2021-03-03 Sistema de detecção de anormalidade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020040117 2020-03-09
JP2020-040117 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021182204A1 true WO2021182204A1 (ja) 2021-09-16

Family

ID=77671595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008052 WO2021182204A1 (ja) 2020-03-09 2021-03-03 異常検知システム

Country Status (7)

Country Link
US (1) US20230102979A1 (ja)
EP (1) EP4118960A1 (ja)
JP (1) JPWO2021182204A1 (ja)
CN (1) CN115279182A (ja)
AU (1) AU2021233628A1 (ja)
BR (1) BR112022017261A2 (ja)
WO (1) WO2021182204A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011120529A1 (en) * 2010-03-31 2011-10-06 Københavns Universitet Model for classifying an activity of an animal
JP5156030B2 (ja) * 2007-02-09 2013-03-06 ヘイレックス リミテッド 活動の監視および表示
WO2018012005A1 (ja) * 2016-07-13 2018-01-18 浩二 清家 牛の活動状態管理システム
JP2019122368A (ja) * 2018-01-12 2019-07-25 デザミス株式会社 牛の健康状態管理システム及び管理方法並びに健康状態管理プログラム
JP2020040117A (ja) 2018-09-12 2020-03-19 青山 省司 プロジェクションナットの供給ロッドおよび供給方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5156030B2 (ja) * 2007-02-09 2013-03-06 ヘイレックス リミテッド 活動の監視および表示
WO2011120529A1 (en) * 2010-03-31 2011-10-06 Københavns Universitet Model for classifying an activity of an animal
WO2018012005A1 (ja) * 2016-07-13 2018-01-18 浩二 清家 牛の活動状態管理システム
JP2019122368A (ja) * 2018-01-12 2019-07-25 デザミス株式会社 牛の健康状態管理システム及び管理方法並びに健康状態管理プログラム
JP2020040117A (ja) 2018-09-12 2020-03-19 青山 省司 プロジェクションナットの供給ロッドおよび供給方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARGILL, CARGILL BRINGS FACIAL RECOGNITION CAPABILITY TO FARMERS THROUGH STRATEGIC EQUITY INVESTMENT IN CAINTHUS, 31 January 2018 (2018-01-31)

Also Published As

Publication number Publication date
JPWO2021182204A1 (ja) 2021-09-16
US20230102979A1 (en) 2023-03-30
BR112022017261A2 (pt) 2022-10-18
AU2021233628A1 (en) 2022-09-22
CN115279182A (zh) 2022-11-01
EP4118960A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US10445563B2 (en) Time-in-store estimation using facial recognition
KR102265525B1 (ko) 인공지능 기반의 피부 진단 방법 및 시스템
CN112385569B (zh) 使用健康图网络检测和管理牲畜中的疾病爆发
KR102043687B1 (ko) 음성 인식 기반의 열화상 카메라를 이용하는 스마트 미러 장치 및 그 방법
WO2017217169A1 (ja) 情報処理装置、方法及びプログラム
US20160267254A1 (en) System and method for classifying respiratory and overall health status of an animal
WO2019093293A1 (ja) 接客支援装置、接客支援方法、及びコンピュータ読み取り可能な記録媒体
US12026575B2 (en) Animal motion and temperature monitoring
Kleen et al. Precision livestock farming: What does it contain and what are the perspectives?
US20130281871A1 (en) System and method for classifying the respiratory health status of an animal
WO2021182204A1 (ja) 異常検知システム
JP7222344B2 (ja) 判定装置、判定方法、判定プログラム、学習装置、学習方法、および、学習プログラム
JPWO2020152848A1 (ja) 認識器訓練装置、認識装置、データ処理システム、データ処理方法、およびプログラム
US10692256B2 (en) Visualization method, visualization device, and recording medium
KR20220151889A (ko) 반려동물을 위한 인공지능 진단 정보 제공 방법 및 시스템
KR102429447B1 (ko) 안면 표정 인식을 이용한 기분장애 진단을 위한 정보 제공 시스템
WO2021255898A1 (ja) 情報処理装置、情報処理方法、情報処理システム、及びコンピュータ読み取り可能な記憶媒体
EP4118961A1 (en) Anomaly sensing system
CN110796156A (zh) 信息处理方法及信息处理***
JP2008293178A (ja) シーン管理装置及びシーン管理方法ならびにそのプログラム
WO2023234333A1 (ja) 管理システム、端末装置、管理方法、管理プログラム
US20210398053A1 (en) Work content analyzing apparatus, work content analyzing method, program, and sensor
KR20180045631A (ko) 동산 담보 위험 관리 방법 및 이를 수행하는 장치들
WO2023217616A1 (en) Defining a timestamp for a target medical event
Agrusti Big Data approaches as a support for precision livestock farming techniques

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767132

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505953

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022017261

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021233628

Country of ref document: AU

Date of ref document: 20210303

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021767132

Country of ref document: EP

Effective date: 20221010

ENP Entry into the national phase

Ref document number: 112022017261

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220829