WO2021182141A1 - 光伝送システム、光装置、および光伝送方法 - Google Patents

光伝送システム、光装置、および光伝送方法 Download PDF

Info

Publication number
WO2021182141A1
WO2021182141A1 PCT/JP2021/007475 JP2021007475W WO2021182141A1 WO 2021182141 A1 WO2021182141 A1 WO 2021182141A1 JP 2021007475 W JP2021007475 W JP 2021007475W WO 2021182141 A1 WO2021182141 A1 WO 2021182141A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
transmission line
optical transmission
priority
wavelength band
Prior art date
Application number
PCT/JP2021/007475
Other languages
English (en)
French (fr)
Inventor
英男 朝田
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2022505918A priority Critical patent/JPWO2021182141A5/ja
Priority to US17/801,287 priority patent/US20230101846A1/en
Publication of WO2021182141A1 publication Critical patent/WO2021182141A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0287Protection in WDM systems
    • H04J14/0293Optical channel protection
    • H04J14/0295Shared protection at the optical channel (1:1, n:m)
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters

Definitions

  • the present invention relates to an optical transmission system, an optical device, and an optical transmission method, and more particularly to an optical transmission system, an optical device, and an optical transmission method used in an optical submarine cable transmission system.
  • the optical submarine cable transmission system that connects continents with optical fibers plays an important role as an infrastructure that supports international communication networks.
  • the optical submarine cable transmission system is composed of a submarine cable accommodating an optical fiber, a submarine repeater equipped with an optical amplifier, a submarine branching device for branching an optical signal, and an end station device installed in a landing station.
  • the terminal equipment includes a wavelength division multiplexing (WME), submarine line termination equipment (SLTE), a system monitoring device, and the like.
  • Patent Document 1 describes an example of a failure recovery technique in such an optical submarine cable transmission system.
  • the related optical submarine cable system described in Patent Document 1 has a configuration in which related optical devices are connected in a mesh shape by a submarine cable.
  • Related optical devices include optical add / drop circuits, optical path break detectors, and optical distributors. Then, when the related optical device detects the disappearance of the optical signal, the setting of the optical add / drop circuit is changed so as to bypass the lost section. That is, in the related optical submarine cable system, when a failure occurs on the route, the route is switched for each submarine cable and a detour is set.
  • a ROADM Reconfigurable Optical Add / Drop Multiplexer
  • WSS Wavelength Selectable Switch
  • the optical fiber housed in the optical cable is switched to the redundant configuration, the optical fiber is switched even for the optical signal in the normal wavelength band. .. Therefore, the optical transmission device included in the terminal device is changed. In this case as well, it is an unnecessary change for other users who use the normal wavelength band, and there arises a problem that the stable use of the optical transmission system is impaired. Further, since the normal wavelength band of the optical fiber is usable but is not used, there arises a problem that the wavelength band cannot be effectively used.
  • An object of the present invention is to provide an optical transmission system, an optical device, an optical network management device, and an optical transmission method that solve the above-mentioned problems.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is set to the same path as the first optical transmission line in the second stage of the obstacle portion in the first optical transmission line.
  • the optical device of the present invention includes a switching means for performing either a first switching process or a second switching process, a first optical transmission line, and a second optical transmission on the same path as the first optical transmission line. It has an input connecting means for connecting each of the paths to the input side of the switching means, and an output connecting means for connecting each of the first optical transmission line and the second optical transmission line to the output side of the switching means.
  • the first switching process is a process of changing the transmission line of the wavelength band signal propagating in the first optical transmission line to the second optical transmission line in the stage before the failure point in the first optical transmission line.
  • the second switching process is a process of changing the transmission line of the wavelength band signal from the second optical transmission line to the first optical transmission line in the subsequent stage of the failure location.
  • the optical network management device of the present invention monitors the occurrence of a failure in the first optical transmission line, and when the occurrence of a failure is detected, the failure occurs based on the monitoring means for generating the failure occurrence information and the failure occurrence information.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is the second optical transmission line of the same path as the first optical transmission line. Change the transmission line of the wavelength band signal from the second optical transmission line to the first optical transmission line for the second optical device located after the location where the failure occurred. It has a control means, and an instruction to do so.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is set to the same path as the first optical transmission line in the second stage of the obstacle portion in the first optical transmission line.
  • the transmission line of the wavelength band signal is changed from the second optical transmission line to the first optical transmission line in the subsequent stage of the faulty part.
  • the first wavelength-multiplexed optical signal is propagated through the first optical transmission line, and the second wavelength-multiplexed optical signal is transmitted through the second optical transmission line on the same path as the first optical transmission line.
  • the propagation of the second wavelength multiplex optical signal is stopped and the first wavelength multiplex optical signal is configured in the previous stage of the faulty part.
  • the transmission line of the wavelength band signal is changed to the second optical transmission line, and the transmission line of the wavelength band signal is changed from the second optical transmission line to the first optical transmission line in the subsequent stage of the faulty part. do.
  • the optical transmission system the optical device, the optical network management device, and the optical transmission method of the present invention
  • stable use of the optical transmission system can be achieved even when a failure occurs in a part of the optical fiber in the optical cable. It is possible to recover from a failure while effectively using the wavelength band without damaging it.
  • FIG. 1 is a block diagram showing a configuration of an optical transmission system 1000 according to the first embodiment of the present invention.
  • the optical transmission system 1000 has a first optical device 1110 and a second optical device 1120.
  • the transmission line of the wavelength band signal S100 propagating in the first optical transmission line 110 is referred to as the first optical transmission line 110 in the stage before the failure point 100 in the first optical transmission line 110.
  • the change is made to the second optical transmission line 120 of the same route.
  • the second optical device 1120 changes the transmission line of the wavelength band signal S100 from the second optical transmission line 120 to the first optical transmission line 110 in the subsequent stage of the failure location 100.
  • the wavelength band signal S100 bypasses the failure point 100 only between the first optical device 1110 and the second optical device 1120. Propagate. Therefore, it is not necessary to change the optical transmission device included in the terminal device connected to the first optical device 1110 and the second optical device 1120.
  • the optical transmission system 1000 is configured such that after the first optical device 1110 switches the transmission line of the wavelength band signal S100, the second optical device 1120 switches again so as to return to the original transmission line. Therefore, by bypassing the fault location 100, the wavelength band signal S100 is not arranged on the other transmission line side in the terminal device. As a result, even when the users (users) of the first optical transmission line 110 and the second optical transmission line 120 are different, the security of the user can be ensured.
  • optical transmission system 1000 it is possible to recover from a failure without impairing the stable use of the optical transmission system.
  • the first optical device 1110 switches from the first optical transmission line 110 to the second optical transmission line 120 in the stage before the failure point 100 in the first optical transmission line 110. Then, in the subsequent stage of the failure location 100, the second optical device 1120 is switched again so as to return to the first optical transmission line 110. Therefore, in the front stage of the first optical device 1110 and the rear stage of the second optical device 1120, the second optical transmission line 120, which is a detour for the faulty part 100, is used as a transmission line for other wavelength band signals. Can be done. As a result, it is possible to recover from a failure while effectively using the wavelength band.
  • the first optical transmission line 110 and the second optical transmission line 120 are typically composed of an optical fiber. By accommodating the first optical transmission line 110 and the second optical transmission line 120 in the same optical cable, for example, the same path can be obtained. Further, both the first optical transmission line 110 and the second optical transmission line 120 are, for example, optical fibers for an uplink and a fiber pair (Fiber Pair) together with an optical fiber for a downlink (not shown). : FP) may be configured.
  • the first optical transmission line 110 may be an operation optical fiber through which an operation optical signal propagates
  • the second optical transmission line 120 may be a spare optical fiber for detouring in the event of a failure. In the normal state (other than when a failure occurs), the transmission capacity can be increased by using the second optical transmission line 120 as the operating optical fiber.
  • the wavelength band signal S100 may be at least a part of a plurality of wavelength band signals constituting a wavelength division multiplexing (WDM) optical signal.
  • WDM wavelength division multiplexing
  • the first optical device 1110 is configured to operate as follows. be able to.
  • the first optical device 1110 determines the priority optical fiber based on the priority of the plurality of first optical fibers among the plurality of first optical fibers. Then, the first optical device 1110 changes the transmission line of the wavelength band signal S100 propagating through the priority optical fiber to the second optical transmission line 120.
  • the first optical device 1110 can determine the first optical fiber that has detected the signal interruption earliest among the plurality of first optical fibers as the priority optical fiber as having a high priority. Not limited to this, the first optical fiber having a high priority set in advance may be determined as the priority optical fiber.
  • the first optical device 1110 can be configured to operate as follows.
  • the first optical device 1110 determines a low priority optical fiber having a low priority based on the priority of the plurality of second optical fibers among the plurality of second optical fibers, and determines the low priority optical fiber of the wavelength band signal S100.
  • the transmission line is changed to this low priority optical fiber. In this case, it is possible to recover from the failure without providing a spare optical fiber for bypassing when a failure occurs as the second optical transmission line 120.
  • FIG. 3 shows the configuration of the optical device 1100 according to the present embodiment.
  • the optical device 1100 has a switching unit (switching means) 1101, an input connecting unit (input connecting means) 1102, and an output connecting unit (output connection) that perform either the first switching process or the second switching process. Means) 1103 and.
  • the input connection unit 1102 connects each of the first optical transmission line 110 and the second optical transmission line 120 on the same path as the first optical transmission line 110 to the input side of the switching unit (switching means) 1101. ..
  • the output connection unit 1103 connects each of the first optical transmission line 110 and the second optical transmission line 120 to the output side of the switching unit (switching means) 1101.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line 110 is changed to the second optical transmission line 120 in the stage before the failure point in the first optical transmission line 110.
  • This is the process to change.
  • the second switching process is a process of changing the transmission line of the wavelength band signal from the second optical transmission line 120 to the first optical transmission line in the subsequent stage of the failure location.
  • the switching unit 1101 can typically be configured to include a wavelength selection switch (Wavelength Selectable Switch: WSS).
  • WSS wavelength Selection switch
  • the optical device 1100 includes a submarine device used in an optical submarine cable transmission system, for example, an optical branching device, a transmission device, a relay device, and the like.
  • the optical device 1100 is a control unit (control means) that determines a priority optical fiber based on the priority of the plurality of first optical fibers among the plurality of first optical fibers included in the first optical transmission line 110. Can be further configured. In this case, the switching unit 1101 changes the transmission line of the wavelength band signal propagating in the priority optical fiber to the second optical transmission line 120 in the first switching process.
  • control unit determines the low priority optical fiber based on the priority of the plurality of second optical fibers among the plurality of second optical fibers included in the second optical transmission line 120. It may be that. In this case, the switching unit 1101 changes the transmission path of the wavelength band signal to the low priority optical fiber in the first switching process.
  • FIG. 4 shows the configuration of the optical network management device 1200 according to the present embodiment.
  • the optical network management device 1200 has a monitoring unit (monitoring means) 1210 and a control unit (control means) 1220.
  • the monitoring unit 1210 monitors the occurrence of a failure in the first optical transmission line, and when the occurrence of a failure is detected, generates failure occurrence information. Based on this failure occurrence information, the control unit 1220 sets a transmission path for a wavelength band signal propagating in the first optical transmission path to the first optical device located in front of the location where the failure has occurred. It is instructed to change to the second optical transmission line which is the same route as the optical transmission line of 1. The control unit 1220 further changes the transmission line of the wavelength band signal from the second optical transmission line to the first optical transmission line for the second optical device located after the location where the failure has occurred. Instruct.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is the same as that of the first optical transmission line. Change to the second optical transmission line of the path. Then, in the subsequent stage of the failure location, the transmission line of the wavelength band signal is changed from the second optical transmission line to the first optical transmission line.
  • the process of changing the above-mentioned transmission line to the second optical transmission line may include the following process. That is, among the plurality of first optical fibers included in the first optical transmission line, the priority optical fiber is determined based on the priority of the plurality of first optical fibers, and the wavelength band propagating the priority optical fiber is propagated. The signal transmission line is changed to the second optical transmission line.
  • the above-mentioned transmission line is changed to the second optical transmission line, it is based on the priority of the plurality of second optical fibers among the plurality of second optical fibers included in the second optical transmission line.
  • the low priority optical fiber may be determined, and the transmission line of the wavelength band signal may be changed to the low priority optical fiber.
  • the first wavelength-multiplexed optical signal is propagated through the first optical transmission line, and the second wavelength-multiplexed optical signal is the same as the first optical transmission line. Propagate through the second optical transmission line of the path. Then, when a failure occurs in the first optical transmission line, the propagation of the second wavelength-division-multiplexed optical signal is stopped and the wavelength band constituting the first wavelength-multiplexed optical signal is stopped in the stage before the failed part. The signal transmission line is changed to the second optical transmission line. Further, in the subsequent stage of the faulty part, the transmission line of the wavelength band signal is changed from the second optical transmission line to the first optical transmission line.
  • a failure occurs in a part of the optical fiber in the optical cable.
  • the configuration of the optical transmission system 2000 according to the present embodiment is the same as the configuration of the optical transmission system 1000 according to the first embodiment, and the first optical device 2110 and the second optical device 2120 are combined. Have.
  • the transmission line of the wavelength band signal propagating through the first optical transmission line 110 is the same as that of the first optical transmission line 110 in the stage before the failure point 100 in the first optical transmission line 110.
  • the change is made to the second optical transmission line 120 of the path.
  • the first optical device 2110 of the present embodiment is a plurality of first wavelength band signals among the plurality of first wavelength band signals constituting the first wavelength division multiplexing optical signal S210 propagating in the first optical transmission line 110.
  • the priority band signal S11 as the wavelength band signal is determined based on the priority of the wavelength band signal of.
  • the first optical device 2110 changes the transmission line of the priority band signal S11 to the second optical transmission line 120.
  • the second optical device 2120 changes the transmission line of the priority band signal S11 from the second optical transmission line 120 to the first optical transmission line 110 in the subsequent stage of the failure location 100.
  • the priority can be defined by a plurality of priority levels, for example, three levels of low, medium, and high, or five levels of 1, 2, 3, 4, and 5.
  • the first optical device 2110 may be configured to give priority to a wavelength band signal having a higher priority level and change the transmission path thereof, for example. Not limited to this, the first optical device 2110 may change the transmission line in preference to the wavelength band signal of the medium priority level. In this way, among the plurality of first wavelength band signals constituting the first wavelength division multiplexing optical signal S210, the order of changing the transmission path can be determined based on the priority.
  • the second optical transmission is performed in a wavelength band other than the wavelength band occupied by the priority band signal S11.
  • the road 120 can be used as a transmission signal band. As a result, it is possible to recover from a failure while making more effective use of the wavelength band.
  • the first optical device 2110 propagates the wavelength band signal propagating in the first optical transmission line 110 and the second optical transmission line 120. It can be configured to be arranged in a part of the wavelength band of the wavelength division multiplexing optical signal S220.
  • the first optical device 2110 has a second wavelength band occupied by a plurality of second wavelength band signals constituting the second wavelength division multiplexing optical signal S220 propagating in the second optical transmission line 120.
  • the low priority band B21 is determined based on the priority of the plurality of second wavelength band signals.
  • the first optical device 2110 can be configured to arrange the wavelength band signal propagating in the first optical transmission line 110 in the low priority band B21 having a low priority.
  • FIG. 6 shows an example in which the above-mentioned priority band signal S11 is arranged in the low priority band B21 as the wavelength band signal.
  • the low priority band includes an unused band that is not occupied by the second wavelength band signal constituting the second wavelength division multiplexing optical signal S220.
  • the second optical device 2120 After the first optical device 2110 switches the transmission line of the priority band signal S11, the second optical device 2120 returns to the original transmission line. It is configured to switch to again. Therefore, by bypassing the failure location 100, the priority band signal S11 is not arranged on the other transmission line side in the terminal device. As a result, even when the users (users) of the first optical transmission line 110 and the second optical transmission line 120 are different, the security of the user can be ensured.
  • optical transmission systems 2000 and 2001 it is possible to recover from a failure without impairing the stable use of the optical transmission system.
  • the configuration of the optical device according to the present embodiment is the same as the configuration of the optical device 1100 according to the first embodiment shown in FIG.
  • the optical device has a switching unit 1101, an input connecting unit 1102, and an output connecting unit 1103 that perform either a first switching process or a second switching process.
  • the input connection unit 1102 connects each of the first optical transmission line 110 and the second optical transmission line 120 on the same path as the first optical transmission line 110 to the input side of the switching unit 1101.
  • the output connection unit 1103 connects each of the first optical transmission line 110 and the second optical transmission line 120 to the output side of the switching unit 1101.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line 110 is changed to the second optical transmission line 120 in the stage before the failure point in the first optical transmission line 110.
  • This is the process to change.
  • the second switching process is a process of changing the transmission line of the wavelength band signal from the second optical transmission line 120 to the first optical transmission line in the subsequent stage of the failure location.
  • the optical device of the present embodiment has a priority of a plurality of first wavelength band signals among a plurality of first wavelength band signals constituting the first wavelength division multiplexing optical signal propagating in the first optical transmission line 110.
  • a control unit for determining a priority band signal as a wavelength band signal is further provided.
  • the switching unit 1101 changes the transmission line of the priority band signal to the second optical transmission line 120 in the first switching process.
  • control unit is among the second wavelength bands occupied by the plurality of second wavelength band signals constituting the second wavelength multiplex optical signal propagating in the second optical transmission line 120.
  • the low priority band may be determined based on the priority of the plurality of second wavelength band signals.
  • the switching unit 1101 arranges the wavelength band signal in the low priority band having a low priority in the first switching process. It is assumed that the low priority band includes an unused band that is not occupied by the second wavelength band signal constituting the second wavelength division multiplexing optical signal.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is the same as that of the first optical transmission line. Change to the second optical transmission line of the path. Then, in the subsequent stage of the failure location, the transmission line of the wavelength band signal is changed from the second optical transmission line to the first optical transmission line.
  • the process of changing the transmission line to the second optical transmission line includes the following processes. That is, the wavelength band signal is based on the priority of the plurality of first wavelength band signals among the plurality of first wavelength band signals constituting the first wavelength multiplex optical signal propagating in the first optical transmission line. The priority band signal is determined as, and the transmission line of the priority band signal is changed to the second optical transmission line.
  • the process of changing the above-mentioned transmission line to the second optical transmission line may include the following process. That is, among the second wavelength bands occupied by the plurality of second wavelength band signals constituting the second wavelength multiplex optical signal propagating in the second optical transmission line, the plurality of second wavelength band signals
  • the low priority band may be determined based on the priority, and the wavelength band signal may be arranged in the low priority band. It is assumed that the low priority band includes an unused band that is not occupied by the second wavelength band signal constituting the second wavelength division multiplexing optical signal.
  • the optical transmission system 2000 and 2001 even if a failure occurs in a part of the optical fiber in the optical cable, the optical transmission system It is possible to recover from a failure while effectively using the wavelength band without impairing the stable use of the light.
  • the configuration of the optical transmission system 3000 according to the present embodiment is the same as the configuration of the optical transmission system 1000 according to the first embodiment.
  • the optical transmission system 3000 includes a first optical device 3111, a first optical device 3112, and a second optical device 3120 as a first optical device.
  • the first optical transmission line includes a plurality of first optical fibers 111 and 112, and an obstacle portion 101 is provided on the first optical fiber 111 between the first optical device 3111 and the first optical device 3112.
  • the faulty part 102 will be described in the first optical device 3112.
  • the failure points 101 and the failure points 102 include cases where failures such as communication interruption and transmission quality deterioration occur only in a part of the wavelength bands.
  • the first optical device 3111 sets a transmission line for a wavelength band signal propagating through the first optical fiber 111 in the first stage before the failure point 101 in the first optical fiber 111 as the first optical transmission line.
  • the second optical transmission line 120 is changed to the same path as the optical fiber 111.
  • the first optical device 3112 sets a transmission line for a wavelength band signal propagating through the first optical fiber 112 in front of an obstacle 102 in the first optical fiber 112 as a first optical transmission line.
  • the second optical transmission line 120 is changed to the same path as the optical fiber 112 of 1.
  • the second optical device 3120 sets the transmission line of the wavelength band signal as the first optical transmission line from the second optical transmission line to the first optical fiber 111 and the second optical transmission line in the subsequent stage of the failure point 101 and the failure point 102. Change to the first optical fiber 112.
  • the first optical device is a plurality of first wavelength bands among a plurality of first wavelength band signals constituting the first wavelength division multiplexing optical signal propagating in each of the plurality of first optical fibers.
  • a priority band signal as a wavelength band signal is determined for each of the plurality of first optical fibers based on the priority of the signal. Then, the first optical device is configured to change each transmission line of the priority band signal to the second optical transmission line.
  • the first optical device 3111 is the first of the plurality of first wavelength band signals constituting the first wavelength division multiplexing optical signal S311 propagating in the first optical fiber 111.
  • the priority band signal S31 as the wavelength band signal in the optical fiber 111 is determined.
  • the first optical device 3111 determines the priority band signal S31 based on the priority of the plurality of first wavelength band signals.
  • the first optical device 3111 changes the transmission line of the priority band signal S31 to the second optical transmission line 120.
  • the transmission line of the priority band signal S31 is changed from the second optical transmission line 120 to the first optical fiber 111 included in the first optical transmission line. change.
  • the first optical device 3112 has a wavelength band in the first optical fiber 112 among a plurality of second wavelength band signals constituting the second wavelength division multiplexing optical signal S312 propagating in the first optical fiber 112.
  • the priority band signal S32 as a signal is determined.
  • the first optical device 3112 determines the priority band signal S32 based on the priority of the plurality of second wavelength band signals.
  • the first optical device 3112 changes the transmission line of the priority band signal S32 to the second optical transmission line 120.
  • the second optical device 3120 transfers the transmission line of the priority band signal S32 from the second optical transmission line 120 to the first optical fiber 112 included in the first optical transmission line in the subsequent stage of the failure location 102. change.
  • the optical transmission system 3000 of the present embodiment for example, when a failure occurs in each of the plurality of operational optical fibers to which the operational optical signal propagates, among the wavelength band signals propagating in each operational optical fiber. It is possible to switch a wavelength band signal having a high priority setting to a spare optical fiber and propagate it.
  • This priority is defined by a plurality of priority levels, for example, three levels of low, medium, and high, or five levels of 1, 2, 3, 4, and 5.
  • the first optical device 3111, 3112 may be configured to give priority to a wavelength band signal having a higher priority level and change the transmission path thereof, for example. Not limited to this, the first optical device 3111, 3112 may change the transmission path in preference to the wavelength band signal of the medium priority level. In this way, among the plurality of wavelength band signals, the order in which the transmission line is changed can be determined based on the priority.
  • the priority band signals S31 and S32 determined based on the priority propagate to the second optical transmission line 120. Therefore, even in the section corresponding to the failure points 101 and 102 (between the first optical device 3111 and the second optical device 3120), a wavelength band other than the wavelength band occupied by the priority band signals S31 and S32 is set. It can be used as a transmission signal band in the optical transmission line 120 of 2. As a result, it is possible to recover from a failure while making more effective use of the wavelength band.
  • the priority band signals S31 and S32 propagating in each of the plurality of first optical fibers 111 and 112 can be configured to occupy wavelength bands that do not overlap each other on the frequency axis. That is, in the first wavelength division multiplexing optical signal S311 and the second wavelength division multiplexing optical signal S312, for example, priority band signals S31 and S32 having high priority can be assigned to wavelength bands that do not overlap each other on the frequency axis. As a result, even when a failure occurs in a plurality of optical transmission lines, it is possible to transmit each of the wavelength band signals having a high priority among the wavelength band signals propagating in each optical transmission line.
  • the priority band signal having the highest priority setting among the wavelength division multiplexing optical signals propagating in each operational optical fiber is used as the other operational optical fiber. It may be arranged in a low priority band having a low priority among the wavelength bands.
  • the first optical device 3111 includes, for example, priority band signals S31A and S31B having a high priority among a plurality of first wavelength band signals constituting the first wavelength division multiplexing optical signal S311 propagating in the first optical fiber 111.
  • the transmission line of is changed to another first optical fiber 112.
  • the first optical device 3111 sets the priority band signal S31A in the low priority band B12 of the wavelength band occupied by the second wavelength division multiplexing optical signal S312 propagating in the first optical fiber 112. Place S31B.
  • the first optical fiber 112 is added to the priority band signals S32A and S32B included in the second wavelength division multiplexing optical signal S312 propagating in the first optical fiber 112 in the previous stage of the first optical device 3112. Therefore, the priority band signals S31A and S31B are propagating.
  • the first optical device 3112 changes the transmission lines of the priority band signals S31A, S31B, S32A, and S32B to the second optical transmission line in the stage before the failure point 102.
  • the second optical transmission line includes a plurality of second optical fibers 121 and 122 will be described.
  • the first optical device 3112 has a second wavelength band occupied by a plurality of second wavelength band signals constituting the second wavelength division multiplexing optical signal propagating in each of the plurality of second optical fibers 121 and 122. Of these, the low priority band is determined. At this time, the first optical device 3112 determines a low priority band for each of the plurality of second optical fibers based on the priority of the plurality of second wavelength band signals.
  • FIG. 9 shows a case where the first optical device 3112 determines the low priority band B21 for the second optical fiber 121 and the low priority band B22 for the second optical fiber 122, respectively.
  • the first optical device 3112 arranges the priority band signal as the wavelength band signal in the low priority band.
  • the first optical device 3112 arranges the priority band signals S31A and S32B in the low priority band B21 of the second optical fiber 121, and places the priority band signals S31B and S32A in the second optical fiber. It is arranged in the low priority band B22 of 122.
  • the priority band signals S31A, S31B, S32A, and S32B can be optimized and arranged in the low priority bands B21 and B22 in the second optical fibers 121 and 122 where the transmission line is changed.
  • the low priority band includes an unused band that is not occupied by the wavelength band signal.
  • the second optical device 3120 changes the transmission line of the priority band signal as the wavelength band signal from the second optical transmission line to the first optical transmission line in the subsequent stages of the failure points 101 and 102.
  • the second optical device 3120 changes the transmission line of the priority band signals S31A and S31B from the second optical fibers 121 and 122 to the original first optical fiber 111.
  • the second optical device 3120 changes the transmission lines of the priority band signals S32A and S32B from the second optical fibers 121 and 122 to the original first optical fiber 112.
  • the first optical devices 3111 and 3112 switch the transmission path of the priority band signal in the stage before the failure points 101 and 102.
  • the second optical device 3120 is configured to switch again so as to return to the original transmission line at the subsequent stage of the failure points 101 and 102. Therefore, by bypassing the failure points 101 and 102, the priority band signal is not arranged on the other transmission line side in the terminal device. As a result, even when the users (users) of the first optical fibers 111 and 112 and the second optical fibers 121 and 122 are different, the security of the users can be ensured.
  • optical transmission systems 3000 and 3001 it is possible to recover from the failure without impairing the stable use of the optical transmission system.
  • the configuration of the optical device according to the present embodiment is the same as the configuration of the optical device 1100 according to the first embodiment shown in FIG.
  • the optical device has a switching unit 1101, an input connecting unit 1102, and an output connecting unit 1103 that perform either a first switching process or a second switching process.
  • the input connection unit 1102 connects each of the first optical transmission line 110 and the second optical transmission line 120 on the same path as the first optical transmission line 110 to the input side of the switching unit 1101.
  • the output connection unit 1103 connects each of the first optical transmission line 110 and the second optical transmission line 120 to the output side of the switching unit 1101.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line 110 is changed to the second optical transmission line 120 in the stage before the failure point in the first optical transmission line 110.
  • This is the process to change.
  • the second switching process is a process of changing the transmission line of the wavelength band signal from the second optical transmission line 120 to the first optical transmission line in the subsequent stage of the failure location.
  • the optical device of this embodiment is configured to further include a control unit (control means).
  • This control unit includes a plurality of first wavelength band signals constituting the first wavelength division multiplexing optical signal propagating in each of the plurality of first optical fibers included in the first optical transmission line 110.
  • a priority band signal as a wavelength band signal is determined for each first optical fiber.
  • the control unit determines the priority band signal based on the priority of the plurality of first wavelength band signals.
  • the switching unit 1101 changes each transmission line of the priority band signal to the second optical transmission line 120 in the first switching process.
  • the priority band signals propagating in each of the plurality of first optical fibers can be configured to occupy wavelength bands that do not overlap each other on the frequency axis.
  • control unit may determine a low priority band from the second wavelength band occupied by each of the plurality of second wavelength band signals.
  • the plurality of second wavelength band signals constitute a second wavelength division multiplexing optical signal propagating in each of the plurality of second optical fibers included in the second optical transmission line 120.
  • the control unit determines a low priority band for each of the plurality of second optical fibers based on the priority of the plurality of second wavelength band signals.
  • the switching unit 1101 arranges the wavelength band signal in the low priority band in the first switching process.
  • the low priority band includes an unused band that is not occupied by the second wavelength band signal.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is the same as that of the first optical transmission line. Change to the second optical transmission line of the path. Then, in the subsequent stage of the failure location, the transmission line of the wavelength band signal is changed from the second optical transmission line to the first optical transmission line.
  • the process of changing the transmission line to the second optical transmission line includes the following processes. That is, among the plurality of first wavelength band signals, the priority band signal as the wavelength band signal is determined for each of the plurality of first optical fibers based on the priority of the plurality of first wavelength band signals, and the priority is given.
  • the configuration is such that each transmission line of the band signal is changed to a second optical transmission line.
  • the plurality of first wavelength band signals constitute a first wavelength division multiplexing optical signal propagating in each of the plurality of first optical fibers included in the first optical transmission line.
  • the priority band signals propagating in each of the plurality of first optical fibers can be configured to occupy wavelength bands that do not overlap each other on the frequency axis.
  • the process of changing the above-mentioned transmission line to the second optical transmission line may include the following process. That is, among the second wavelength bands occupied by the plurality of second wavelength band signals, the low priority band is determined for each of the plurality of second optical fibers based on the priority of the plurality of second wavelength band signals.
  • the wavelength band signal may be arranged in the low priority band.
  • the plurality of second wavelength band signals constitute a second wavelength division multiplexing optical signal propagating in each of the plurality of second optical fibers included in the second optical transmission line.
  • the low priority band includes an unused band that is not occupied by the second wavelength band signal.
  • the optical device, and the optical transmission method even if a failure occurs in a part of the optical fiber in the optical cable, the optical transmission system It is possible to recover from a failure while effectively using the wavelength band without impairing the stable use of the light.
  • optical transmission system the optical device, and the optical transmission method described in each of the above-described embodiments can be used for the optical submarine cable transmission system.
  • the optical device can be an optical add / drop multiplexing (OADM) having an (ad) function of adding (adding) and an (dropping) function of extracting an optical signal having a specific wavelength.
  • OADM optical add / drop multiplexing
  • the first optical device and the second optical device described in the above embodiment are configured to be arranged in a trunk section (trunk section) connecting the landing stations (trunk stations) facing each other in the optical submarine cable transmission system. be able to.
  • the optical device may be arranged in the branch section (branch section) connected to the branch station (branch station).
  • FIG. 10A shows an example of an operation in which the first optical device 4110 and the second optical device 4120 take out (drop) an optical signal to the branch station side when the failure portion 400 exists in the branch section.
  • FIG. 10B shows an example of (ad) operation in which the first optical device 4110 and the second optical device 4120 add an optical signal from the branch station side when the failure portion 400 exists in the branch section.
  • the operation of the first optical device and the second optical device in the above embodiment can be controlled by a system monitoring device as an optical network management device provided in the terminal device of the landing station. ..
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is set to the second light of the same path as the first optical transmission line.
  • a first optical device that changes to a transmission line and a second light that changes the transmission line of the wavelength band signal from the second optical transmission line to the first optical transmission line in the subsequent stage of the failure location.
  • An optical transmission system having a device, and.
  • the first optical transmission line includes a plurality of first optical fibers, and the first optical device is a plurality of first optical fibers among the plurality of first optical fibers.
  • the first optical device has a plurality of first wavelengths among a plurality of first wavelength band signals constituting the first wavelength multiplex optical signal propagating in the first optical transmission line.
  • the first optical transmission line includes a plurality of first optical fibers, and the first optical device is a first wavelength division multiplexing light propagating in each of the plurality of first optical fibers.
  • the priority band signal as the wavelength band signal for each of the plurality of first optical fibers based on the priority of the plurality of first wavelength band signals.
  • Appendix 5 The optical transmission system according to Appendix 4, wherein the priority band signals propagating in each of the plurality of first optical fibers occupy wavelength bands that do not overlap each other on the frequency axis.
  • the second optical transmission line includes a plurality of second optical fibers, and the first optical device is a plurality of second optical fibers among the plurality of second optical fibers.
  • the optical transmission system according to any one of Supplementary note 1 to 5, wherein a low-priority optical fiber is determined based on the priority of the above, and the transmission path of the wavelength band signal is changed to the low-priority optical fiber.
  • the first optical device has a second wavelength band occupied by a plurality of second wavelength band signals constituting the second wavelength multiplex optical signal propagating in the second optical transmission line.
  • the second optical transmission line includes a plurality of second optical fibers, and the first optical device is a second wavelength division multiplexing light propagating in each of the plurality of second optical fibers.
  • the first optical device is a second wavelength division multiplexing light propagating in each of the plurality of second optical fibers.
  • the second wavelength bands occupied by each of the plurality of second wavelength band signals constituting the signal, for each of the plurality of second optical fibers based on the priority of the plurality of second wavelength band signals.
  • the optical transmission system according to any one of Supplementary note 1 to 5, wherein a low priority band is determined and the wavelength band signal is arranged in the low priority band.
  • Appendix 9 The optical transmission system according to Appendix 7 or 8, wherein the low priority band includes an unused band not occupied by the second wavelength band signal.
  • a switching means for performing either the first switching process or the second switching process, a first optical transmission line, and a second optical transmission line having the same path as the first optical transmission line.
  • An input connecting means for connecting each to the input side of the switching means, and an output connecting means for connecting each of the first optical transmission line and the second optical transmission line to the output side of the switching means.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is transmitted through the second optical transmission line in front of the faulty part in the first optical transmission line.
  • the second switching process is a process of changing to a line, and the second switching process changes the transmission line of the wavelength band signal from the second optical transmission line to the first optical transmission line in the subsequent stage of the failure location.
  • Optical device that is a process.
  • the control means for determining the priority optical fiber based on the priority of the plurality of first optical fibers is further provided.
  • Appendix 14 The optical device according to Appendix 13, wherein the priority band signals propagating in each of the plurality of first optical fibers occupy wavelength bands that do not overlap each other on the frequency axis.
  • the control means for determining the low priority band based on the priority of the wavelength band signal is further provided, and the switching means arranges the wavelength band signal in the low priority band in the first switching process.
  • the switching means further includes a control means for determining a low priority band for each of the plurality of second optical fibers based on the priority of the plurality of second wavelength band signals among the wavelength bands of the above.
  • the optical device according to any one of Appendix 10 to 14, wherein the wavelength band signal is arranged in the low priority band in the first switching process.
  • Appendix 18 The optical device according to Appendix 16 or 17, wherein the low priority band includes an unused band not occupied by the second wavelength band signal.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is the second optical transmission line of the same path as the first optical transmission line.
  • the transmission line of the wavelength band signal is changed from the second optical transmission line to the first light.
  • the transmission line of the wavelength band signal propagating in the first optical transmission line is set to the second light of the same path as the first optical transmission line.
  • Changing the transmission line to the second optical transmission line means that among the plurality of first optical fibers included in the first optical transmission line, the plurality of first optical fibers
  • Changing the transmission line to the second optical transmission line means that a plurality of first wavelength band signals constituting the first wavelength multiplex optical signal propagating in the first optical transmission line are used. Among them, the priority band signal as the wavelength band signal is determined based on the priority of the plurality of first wavelength band signals, and the transmission line of the priority band signal is changed to the second optical transmission line.
  • Changing the transmission line to the second optical transmission line is a first wavelength multiplex optical signal propagating in each of the plurality of first optical fibers included in the first optical transmission line.
  • the priority band signal as the wavelength band signal is set for each of the plurality of first optical fibers based on the priority of the plurality of first wavelength band signals.
  • Appendix 24 The optical transmission method according to Appendix 23, wherein the priority band signals propagating in each of the plurality of first optical fibers occupy wavelength bands that do not overlap each other on the frequency axis.
  • Changing the transmission line to the second optical transmission line means that among the plurality of second optical fibers included in the second optical transmission line, the plurality of second optical fibers.
  • Changing the transmission line to the second optical transmission line means that a plurality of second wavelength band signals constituting the second wavelength multiplex optical signal propagating in the second optical transmission line Note 20 including determining a low priority band based on the priority of the plurality of second wavelength band signals and arranging the wavelength band signal in the low priority band among the second wavelength bands occupied by each.
  • the optical transmission method according to any one of 25 to 25.
  • Changing the transmission line to the second optical transmission line means a second wavelength multiplex optical signal propagating in each of the plurality of second optical fibers included in the second optical transmission line.
  • each of the plurality of second optical fibers is low based on the priority of the plurality of second wavelength band signals.
  • the first wavelength-multiplexed optical signal is propagated through the first optical transmission line, and the second wavelength-multiplexed optical signal is propagated through the second optical transmission line which is the same path as the first optical transmission line.
  • the propagation of the second wavelength multiplex optical signal is stopped and the first wavelength multiplex optical signal is configured in front of the location where the failure occurs.
  • the transmission line of the wavelength band signal is changed to the second optical transmission line, and the transmission line of the wavelength band signal is changed from the second optical transmission line to the first optical transmission line in the subsequent stage of the location where the failure occurs.
  • Optical transmission system 1100 Optical device 1101 Switching unit 1102 Input connection unit 1103 Output connection unit 1110, 2110, 3111, 3112, 4110 First optical device 1120, 2120, 3120, 4120 Second Optical device 1200 Optical network management device 1210 Monitoring unit 1220 Control unit 100, 101, 102, 400 Failure location 110 First optical transmission line 111, 112 First optical fiber 120 Second optical transmission line 121, 122 Second Optical fiber

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

光ケーブル内の光ファイバの一部において障害が発生した場合、冗長構成に切り替えることとすると、光伝送システムの安定した利用が損なわれ、波長帯域の有効利用が図れないので、本発明の光伝送システムは、第1の光伝送路における障害箇所の前段において、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更する第1の光装置と、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する第2の光装置、とを有する。

Description

光伝送システム、光装置、および光伝送方法
 本発明は、光伝送システム、光装置、および光伝送方法に関し、特に、光海底ケーブル伝送システムに用いられる光伝送システム、光装置、および光伝送方法に関する。
 大陸間を光ファイバで結ぶ光海底ケーブル伝送システムは、国際的な通信ネットワークを支えるインフラとして重要な役割を担っている。光海底ケーブル伝送システムは、光ファイバを収容する海底ケーブル、光増幅器を搭載した海底中継器、光信号を分岐する海底分岐装置、および陸揚げ局に設置された端局装置等により構成される。端局装置は、波長多重分離装置(Wavelength Multiplexing Equipment:WME)、海底線路終端装置(Submarine Line Termination Equipment:SLTE)、およびシステム監視装置等を備える。
 光海底ケーブル伝送システムでは大容量トラヒックの通信が行われるため、光ファイバの断線や海底装置の故障などが原因で発生する通信障害から高速に復旧させるための技術の重要性が増している。このような光海底ケーブル伝送システムにおける障害復旧技術の一例が、特許文献1に記載されている。
 特許文献1に記載された関連する光海底ケーブルシステムは、関連する光装置が海底ケーブルによってメッシュ状に接続された構成としている。関連する光装置は、光アド/ドロップ回路、光経路断検出器、および光分配器を備える。そして、関連する光装置は、光信号の消失を検出すると、消失した区間を迂回するように光アド/ドロップ回路の設定を変更することとしている。すなわち、関連する光海底ケーブルシステムにおいては、経路上に障害が発生した際に、海底ケーブル単位でルートを切り替えて迂回路を設定する構成としている。
 また、関連技術としては、特許文献2および3に記載された技術がある。
国際公開第2014/006861号 特表2019-517169号公報 特開2009-088606号公報
 近年、クラウドサービスの普及により、全世界に設置されたデータセンタ(data center:DC)間の通信トラフィックが増大している。それに伴い、通信事業者以外のクラウド事業者等が光海底ケーブル伝送システムに直接投資するようになってきている。その結果、海底ケーブルに収容された光ファイバ毎に、あるいは、光ファイバの波長帯域毎に、利用者(ユーザ)が異なる場合が生じる。
 また、海底分岐装置にも、波長単位で光信号の経路を切り替えるROADM(Reconfigurable Optical Add/Drop Multiplexer)機能が導入され、波長選択スイッチ(Wavelength Selectable Switch:WSS)が搭載されている。そのため、波長選択スイッチ(WSS)等の故障により、一部の波長帯域においてのみ通信断や伝送品質劣化等の障害が生じる場合がある。
 このような場合、障害回復を図るために、上述した関連する光海底ケーブルシステムにおけるように、光ケーブル単位でルートを切り替える、あるいは、光ケーブルに収容された光ファイバ単位で切り替えることとすると、以下のような問題が生じる。
 光ケーブル内の複数の光ファイバの一部に障害が発生した場合、光ケーブル(経路)を冗長構成に切り替えると、障害が発生していない光ファイバについても光ケーブル(経路)が切り替わることになる。そのため、光伝送条件が変化し、端局装置が備える光伝送装置の変更を伴うことになる。これは、障害が発生していない光ファイバを利用する他のユーザにとっては不必要な変更であり、光伝送システムの安定した利用が損なわれるという問題が生じる。また、障害が発生していない光ファイバは使用可能であるにもかかわらず使用されなくなるので、光ファイバの波長帯域の有効利用が図れないという問題が生じる。
 また、光ファイバの一部の波長帯域において障害が発生した場合、光ケーブルに収容された光ファイバ単位で冗長構成に切り替えると、正常な波長帯域の光信号に対しても光ファイバが切り替わることになる。そのため、端局装置が備える光伝送装置の変更を伴うことになる。この場合も、正常な波長帯域を利用する他のユーザにとっては不必要な変更であり、光伝送システムの安定した利用が損なわれるという問題が生じる。また、光ファイバの正常な波長帯域は使用可能であるにもかかわらず使用されなくなるので、波長帯域の有効利用が図れないという問題が生じる。
 このように、光ケーブル内の光ファイバの一部において障害が発生した場合、冗長構成に切り替えることとすると、光伝送システムの安定した利用が損なわれ、波長帯域の有効利用が図れない、という問題があった。
 本発明の目的は、上述した課題を解決する光伝送システム、光装置、光ネットワーク管理装置、および光伝送方法を提供することにある。
 本発明の光伝送システムは、第1の光伝送路における障害箇所の前段において、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更する第1の光装置と、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する第2の光装置、とを有する。
 本発明の光装置は、第1の切替処理と第2の切替処理のいずれかを行う切替手段と、第1の光伝送路と、第1の光伝送路と同一経路の第2の光伝送路のそれぞれを、切替手段の入力側に接続する入力接続手段と、第1の光伝送路と第2の光伝送路のそれぞれを、切替手段の出力側に接続する出力接続手段、とを有し、第1の切替処理は、第1の光伝送路における障害箇所の前段において、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第2の光伝送路に変更する処理であり、第2の切替処理は、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する処理である。
 本発明の光ネットワーク管理装置は、第1の光伝送路における障害の発生を監視し、障害の発生を検知した場合、障害発生情報を生成する監視手段と、障害発生情報に基づいて、障害が発生した箇所の前段に位置する第1の光装置に対して、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更するように指示し、障害が発生した箇所の後段に位置する第2の光装置に対して、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更するように指示する制御手段、とを有する。
 本発明の光伝送方法は、第1の光伝送路における障害箇所の前段において、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更し、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する。
 本発明の光伝送方法は、第1の波長多重光信号を第1の光伝送路を通して伝搬させ、第2の波長多重光信号を第1の光伝送路と同一経路の第2の光伝送路を通して伝搬させ、第1の光伝送路において障害が発生した場合、障害が発生した箇所の前段において、第2の波長多重光信号の伝搬を中止するとともに、第1の波長多重光信号を構成する波長帯域信号の伝送路を、第2の光伝送路に変更し、障害が発生した箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する。
 本発明の光伝送システム、光装置、光ネットワーク管理装置、および光伝送方法によれば、光ケーブル内の光ファイバの一部において障害が発生した場合であっても、光伝送システムの安定した利用を損なうことなく、波長帯域を有効に利用しながら障害回復を図ることができる。
本発明の第1の実施形態に係る光伝送システムの構成を示すブロック図である。 本発明の第1の実施形態に係る光伝送システムの構成を示すブロック図であって、波長帯域信号に加えて他の波長帯域信号が第1の光伝送路を伝搬する場合を示す図である。 本発明の第1の実施形態に係る光装置の構成を示すブロック図である。 本発明の第1の実施形態に係る光ネットワーク管理装置の構成を示すブロック図である。 本発明の第2の実施形態に係る光伝送システムの動作を説明するための図である。 本発明の第2の実施形態に係る光伝送システムの別の動作を説明するための図である。 本発明の第3の実施形態に係る光伝送システムの動作を説明するための図である。 本発明の第3の実施形態に係る光伝送システムの動作を説明するための図であって、一部の波長帯域においてのみ通信断や伝送品質劣化等の障害が生じている場合を示す図である。 本発明の第3の実施形態に係る光伝送システムの別の動作を説明するための図である。 本発明の実施形態に係る第1の光装置および第2の光装置の動作を説明するための図である。 本発明の実施形態に係る第1の光装置および第2の光装置の別の動作を説明するための図である。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態による光伝送システム1000の構成を示すブロック図である。光伝送システム1000は、第1の光装置1110と第2の光装置1120を有する。
 第1の光装置1110は、第1の光伝送路110における障害箇所100の前段において、第1の光伝送路110を伝搬する波長帯域信号S100の伝送路を、第1の光伝送路110と同一経路の第2の光伝送路120に変更する。第2の光装置1120は、障害箇所100の後段において、波長帯域信号S100の伝送路を、第2の光伝送路120から第1の光伝送路110に変更する。
 このような構成としたことにより本実施形態の光伝送システム1000によれば、波長帯域信号S100は、障害箇所100を第1の光装置1110と第2の光装置1120との間だけ迂回して伝搬する。そのため、第1の光装置1110および第2の光装置1120に接続される端局装置が備える光伝送装置の変更は不要である。
 すなわち、光伝送システム1000は、第1の光装置1110が波長帯域信号S100の伝送路を切り替えた後に、第2の光装置1120が元の伝送路に戻すように再度切り替える構成としている。そのため、障害箇所100を迂回することにより、波長帯域信号S100が端局装置において他の伝送路側に配置されることはない。その結果、第1の光伝送路110と第2の光伝送路120の利用者(ユーザ)が異なる場合であっても、ユーザのセキュリティを確保することができる。
 このように、光伝送システム1000によれば、光伝送システムの安定した利用を損なうことなく障害回復を図ることができる。
 光伝送システム1000は上述のように、第1の光伝送路110における障害箇所100の前段において第1の光装置1110が第1の光伝送路110から第2の光伝送路120に切り替える。そして、障害箇所100の後段において第2の光装置1120が第1の光伝送路110に戻すように再度切り替える。そのため、第1の光装置1110の前段および第2の光装置1120の後段においては、障害箇所100の迂回路となる第2の光伝送路120を他の波長帯域信号の伝送路として使用することができる。その結果、波長帯域を有効に利用しながら障害回復を図ることができる。
 ここで、第1の光伝送路110と第2の光伝送路120は典型的には光ファイバによって構成される。第1の光伝送路110と第2の光伝送路120を、例えば、同一の光ケーブルに収容することにより、同一経路とすることができる。また、第1の光伝送路110および第2の光伝送路120はいずれも、例えば、上り回線用の光ファイバであり、下り回線用の光ファイバ(図示せず)と共にそれぞれファイバペア(Fiber Pair:FP)を構成することとしてもよい。
 第1の光伝送路110は運用光信号が伝搬する運用光ファイバであり、第2の光伝送路120は障害発生時における迂回用の予備(スペア)光ファイバであってもよい。なお、通常時(障害発生時以外)においては、第2の光伝送路120を運用光ファイバとして使用することにより、伝送容量を増大させることが可能である。
 図1には波長帯域信号S100だけを示したが、図2に示すように、波長帯域信号S100に加えて他の波長帯域信号が第1の光伝送路110を伝搬する場合であってもよい。例えば、波長帯域信号S100は、波長分割多重(Wavelength Division Multiplexing:WDM)光信号を構成する複数の波長帯域信号のうちの少なくとも一部であってもよい。
 また、第1の光伝送路110が複数の第1の光ファイバを含み、複数の第1の光ファイバにおいて障害が発生した場合、第1の光装置1110は以下のように動作する構成とすることができる。
 すなわち、第1の光装置1110は、複数の第1の光ファイバのうち、複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定する。そして、第1の光装置1110は、この優先光ファイバを伝搬する波長帯域信号S100の伝送路を第2の光伝送路120に変更する。ここで、第1の光装置1110は、複数の第1の光ファイバのうち最も早く信号断を検出した第1の光ファイバを、優先度が高いものとして優先光ファイバと決定することができる。これに限らず、あらかじめ設定された優先度が高い第1の光ファイバを優先光ファイバと決定することとしてもよい。
 また、第2の光伝送路120が複数の第2の光ファイバを含む場合、第1の光装置1110は以下のように動作する構成とすることができる。
 すなわち、第1の光装置1110は、複数の第2の光ファイバのうち、複数の第2の光ファイバの優先度に基づいて優先度が低い低優先光ファイバを決定し、波長帯域信号S100の伝送路をこの低優先光ファイバに変更する。この場合には、第2の光伝送路120として障害発生時における迂回用の予備(スペア)光ファイバを設けることなく、障害回復を図ることが可能である。
 次に、本実施形態による光装置について説明する。図3に、本実施形態による光装置1100の構成を示す。
 本実施形態による光装置1100は、第1の切替処理と第2の切替処理のいずれかを行う切替部(切替手段)1101、入力接続部(入力接続手段)1102、および出力接続部(出力接続手段)1103とを有する。入力接続部1102は、第1の光伝送路110と、第1の光伝送路110と同一経路の第2の光伝送路120のそれぞれを、切替部(切替手段)1101の入力側に接続する。出力接続部1103は、第1の光伝送路110と第2の光伝送路120のそれぞれを、切替部(切替手段)1101の出力側に接続する。
 ここで、第1の切替処理は、第1の光伝送路110における障害箇所の前段において、第1の光伝送路110を伝搬する波長帯域信号の伝送路を、第2の光伝送路120に変更する処理である。第2の切替処理は、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路120から第1の光伝送路に変更する処理である。
 切替部1101は、典型的には、波長選択スイッチ(Wavelength Selectable Switch:WSS)を備えた構成とすることができる。なお、光装置1100には、光海底ケーブル伝送システムにおいて用いられる海底機器、例えば光分岐装置、伝送装置、中継装置等が含まれる。
 光装置1100は、第1の光伝送路110に含まれる複数の第1の光ファイバのうち、複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定する制御部(制御手段)をさらに有する構成とすることができる。この場合、切替部1101は、第1の切替処理において、優先光ファイバを伝搬する波長帯域信号の伝送路を第2の光伝送路120に変更する。
 また、制御部(制御手段)は、第2の光伝送路120に含まれる複数の第2の光ファイバのうち、複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定することとしてもよい。この場合、切替部1101は、第1の切替処理において、波長帯域信号の伝送路を低優先光ファイバに変更する。
 次に、本実施形態による光ネットワーク管理装置について説明する。図4に、本実施形態による光ネットワーク管理装置1200の構成を示す。
 光ネットワーク管理装置1200は、監視部(監視手段)1210と制御部(制御手段)1220を有する。
 監視部1210は、第1の光伝送路における障害の発生を監視し、障害の発生を検知した場合、障害発生情報を生成する。制御部1220は、この障害発生情報に基づいて、障害が発生した箇所の前段に位置する第1の光装置に対して、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更するように指示する。制御部1220はさらに、障害が発生した箇所の後段に位置する第2の光装置に対して、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更するように指示する。
 次に、本実施形態による光伝送方法について説明する。
 本実施形態による光伝送方法においては、まず、第1の光伝送路における障害箇所の前段において、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更する。そして、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する。
 ここで、上述した伝送路を第2の光伝送路に変更する処理には、以下の処理が含まれることとしてもよい。すなわち、第1の光伝送路に含まれる複数の第1の光ファイバのうち、複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定し、この優先光ファイバを伝搬する波長帯域信号の伝送路を第2の光伝送路に変更する。
 また、上述した伝送路を第2の光伝送路に変更する際に、第2の光伝送路に含まれる複数の第2の光ファイバのうち、複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定し、波長帯域信号の伝送路を低優先光ファイバに変更することとしてもよい。
 また、本実施形態による別の光伝送方法においては、まず、第1の波長多重光信号を第1の光伝送路を通して伝搬させ、第2の波長多重光信号を第1の光伝送路と同一経路の第2の光伝送路を通して伝搬させる。そして、第1の光伝送路において障害が発生した場合、障害が発生した箇所の前段において、第2の波長多重光信号の伝搬を中止するとともに、第1の波長多重光信号を構成する波長帯域信号の伝送路を、第2の光伝送路に変更する。さらに、障害が発生した箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する。
 以上説明したように、本実施形態の光伝送システム1000、光装置1100、光ネットワーク管理装置1200、および光伝送方法によれば、光ケーブル内の光ファイバの一部において障害が発生した場合であっても、光伝送システムの安定した利用を損なうことなく、波長帯域を有効に利用しながら障害回復を図ることができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図5に示すように、本実施形態による光伝送システム2000の構成は、第1の実施形態による光伝送システム1000の構成と同様であり、第1の光装置2110と第2の光装置2120を有する。
 第1の光装置2110は、第1の光伝送路110における障害箇所100の前段において、第1の光伝送路110を伝搬する波長帯域信号の伝送路を、第1の光伝送路110と同一経路の第2の光伝送路120に変更する。このとき本実施形態の第1の光装置2110は、第1の光伝送路110を伝搬する第1の波長多重光信号S210を構成する複数の第1の波長帯域信号のうち、複数の第1の波長帯域信号の優先度に基づいて、波長帯域信号としての優先帯域信号S11を決定する。そして、第1の光装置2110は、この優先帯域信号S11の伝送路を第2の光伝送路120に変更する。
 第2の光装置2120は、障害箇所100の後段において、優先帯域信号S11の伝送路を、第2の光伝送路120から第1の光伝送路110に変更する。
 ここで優先度は、複数の優先度レベル、例えば、低・中・高の3段階、または1、2、3、4、5の5段階等により定義することができる。そして、第1の光装置2110は例えば、優先度レベルがより高い波長帯域信号を優先して、その伝送路を変更する構成とすることができる。これに限らず、第1の光装置2110は、中程度の優先度レベルの波長帯域信号を優先して、その伝送路を変更することとしてもよい。このように、第1の波長多重光信号S210を構成する複数の第1の波長帯域信号のうち、伝送路を変更する順番を優先度に基づいて定めることができる。
 ここで、第2の光伝送路120には、優先度に基づいて決定された優先帯域信号S11だけが伝搬する。そのため、障害箇所100に対応する区間(第1の光装置2110と第2の光装置2120の間)であっても、優先帯域信号S11が占める波長帯域以外の波長帯域では、第2の光伝送路120を伝送信号帯域として用いることができる。その結果、波長帯域をさらに有効に利用しながら障害回復を図ることができる。
 また、図6に示した光伝送システム2001のように、第1の光装置2110が、第1の光伝送路110を伝搬する波長帯域信号を、第2の光伝送路120を伝搬する第2の波長多重光信号S220の波長帯域の一部に配置する構成とすることができる。この場合、第1の光装置2110は、第2の光伝送路120を伝搬する第2の波長多重光信号S220を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、複数の第2の波長帯域信号の優先度に基づいて低優先帯域B21を決定する。そして、第1の光装置2110は、第1の光伝送路110を伝搬する波長帯域信号を優先度が低い低優先帯域B21に配置する構成とすることができる。図6では、波長帯域信号として、上述した優先帯域信号S11を低優先帯域B21に配置した例を示す。
 なお、低優先帯域には、第2の波長多重光信号S220を構成する第2の波長帯域信号が占有していない未使用帯域が含まれるものとする。
 上述したように、本実施形態による光伝送システム2000、2001は、第1の光装置2110が優先帯域信号S11の伝送路を切り替えた後に、第2の光装置2120が元の伝送路に戻すように再度切り替える構成としている。そのため、障害箇所100を迂回することにより、優先帯域信号S11が端局装置において他の伝送路側に配置されることはない。その結果、第1の光伝送路110と第2の光伝送路120の利用者(ユーザ)が異なる場合であっても、ユーザのセキュリティを確保することができる。
 このように、光伝送システム2000、2001によれば、光伝送システムの安定した利用を損なうことなく障害回復を図ることができる。
 次に、本実施形態による光装置について説明する。本実施形態による光装置の構成は、図3に示した第1の実施形態による光装置1100の構成と同様である。
 すなわち、本実施形態による光装置は、第1の切替処理と第2の切替処理のいずれかを行う切替部1101、入力接続部1102、および出力接続部1103とを有する。入力接続部1102は、第1の光伝送路110と、第1の光伝送路110と同一経路の第2の光伝送路120のそれぞれを、切替部1101の入力側に接続する。出力接続部1103は、第1の光伝送路110と第2の光伝送路120のそれぞれを、切替部1101の出力側に接続する。
 ここで、第1の切替処理は、第1の光伝送路110における障害箇所の前段において、第1の光伝送路110を伝搬する波長帯域信号の伝送路を、第2の光伝送路120に変更する処理である。第2の切替処理は、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路120から第1の光伝送路に変更する処理である。
 本実施形態の光装置は、第1の光伝送路110を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、複数の第1の波長帯域信号の優先度に基づいて、波長帯域信号としての優先帯域信号を決定する制御部(制御手段)をさらに有する構成とした。この場合、切替部1101は、第1の切替処理において、この優先帯域信号の伝送路を第2の光伝送路120に変更する。
 また、制御部(制御手段)は、第2の光伝送路120を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定することとしてもよい。この場合、切替部1101は、第1の切替処理において、波長帯域信号を優先度が低い低優先帯域に配置する。なお、低優先帯域には、第2の波長多重光信号を構成する第2の波長帯域信号が占有していない未使用帯域が含まれるものとする。
 次に、本実施形態による光伝送方法について説明する。
 本実施形態による光伝送方法においては、まず、第1の光伝送路における障害箇所の前段において、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更する。そして、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する。
 本実施形態による光伝送方法においては、伝送路を第2の光伝送路に変更する処理に、以下の処理が含まれる構成とした。すなわち、第1の光伝送路を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、複数の第1の波長帯域信号の優先度に基づいて、波長帯域信号としての優先帯域信号を決定し、優先帯域信号の伝送路を第2の光伝送路に変更する。
 また、上述した伝送路を第2の光伝送路に変更する処理には、以下の処理が含まれることとしてもよい。すなわち、第2の光伝送路を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定し、波長帯域信号を低優先帯域に配置することとしてもよい。なお、低優先帯域には、第2の波長多重光信号を構成する第2の波長帯域信号が占有していない未使用帯域が含まれるものとする。
 以上説明したように、本実施形態の光伝送システム2000、2001、光装置、および光伝送方法によれば、光ケーブル内の光ファイバの一部において障害が発生した場合であっても、光伝送システムの安定した利用を損なうことなく、波長帯域を有効に利用しながら障害回復を図ることができる。
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。本実施形態による光伝送システム3000の構成は、第1の実施形態による光伝送システム1000の構成と同様である。
 本実施形態では図7に示すように、光伝送システム3000が、第1の光装置としての第1の光装置3111と第1の光装置3112、および第2の光装置3120を備えた場合を例に説明する。また、第1の光伝送路は複数の第1の光ファイバ111、112を含み、第1の光装置3111と第1の光装置3112の間の第1の光ファイバ111上に障害箇所101が、第1の光装置3112内に障害箇所102が存在するものとして説明する。なお、障害箇所101および障害箇所102には、図8に示すように、一部の波長帯域においてのみ通信断や伝送品質劣化等の障害が生じている場合も含まれる。
 第1の光装置3111は、第1の光伝送路としての第1の光ファイバ111における障害箇所101の前段において、第1の光ファイバ111を伝搬する波長帯域信号の伝送路を、第1の光ファイバ111と同一経路の第2の光伝送路120に変更する。また、第1の光装置3112は、第1の光伝送路としての第1の光ファイバ112における障害箇所102の前段において、第1の光ファイバ112を伝搬する波長帯域信号の伝送路を、第1の光ファイバ112と同一経路の第2の光伝送路120に変更する。
 第2の光装置3120は、障害箇所101および障害箇所102の後段において、上記波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路としての第1の光ファイバ111および第1の光ファイバ112に変更する。
 ここで、第1の光装置は、複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、複数の第1の波長帯域信号の優先度に基づいて、複数の第1の光ファイバ毎に波長帯域信号としての優先帯域信号を決定する。そして、第1の光装置は、この優先帯域信号のそれぞれの伝送路を第2の光伝送路に変更する構成とした。
 図7に示した例では、第1の光装置3111は、第1の光ファイバ111を伝搬する第1の波長多重光信号S311を構成する複数の第1の波長帯域信号のうち、第1の光ファイバ111における波長帯域信号としての優先帯域信号S31を決定する。このとき、第1の光装置3111は、上記複数の第1の波長帯域信号の優先度に基づいて、優先帯域信号S31を決定する。そして、第1の光装置3111は優先帯域信号S31の伝送路を第2の光伝送路120に変更する。一方、第2の光装置3120は、障害箇所101の後段において、優先帯域信号S31の伝送路を、第2の光伝送路120から第1の光伝送路に含まれる第1の光ファイバ111に変更する。
 また、第1の光装置3112は、第1の光ファイバ112を伝搬する第2の波長多重光信号S312を構成する複数の第2の波長帯域信号のうち、第1の光ファイバ112における波長帯域信号としての優先帯域信号S32を決定する。このとき、第1の光装置3112は、上記複数の第2の波長帯域信号の優先度に基づいて、優先帯域信号S32を決定する。そして、第1の光装置3112は優先帯域信号S32の伝送路を第2の光伝送路120に変更する。一方、第2の光装置3120は、障害箇所102の後段において、優先帯域信号S32の伝送路を、第2の光伝送路120から第1の光伝送路に含まれる第1の光ファイバ112に変更する。
 このように、本実施形態の光伝送システム3000によれば、例えば、運用光信号が伝搬する複数の運用光ファイバのそれぞれに障害が発生した場合、各運用光ファイバを伝搬する波長帯域信号のうち優先度の設定が高い波長帯域信号を、予備(スペア)光ファイバに切り替えて伝搬させることが可能になる。
 この優先度は、複数の優先度レベル、例えば、低・中・高の3段階、または1、2、3、4、5の5段階等により定義される。そして、第1の光装置3111、3112は例えば、優先度レベルがより高い波長帯域信号を優先して、その伝送路を変更する構成とすることができる。これに限らず、第1の光装置3111、3112は、中程度の優先度レベルの波長帯域信号を優先して、その伝送路を変更することとしてもよい。このように、複数の波長帯域信号のうち、伝送路を変更する順番を優先度に基づいて定めることができる。
 本実施形態による光伝送システム3000においては、第2の光伝送路120には、優先度に基づいて決定された優先帯域信号S31およびS32だけが伝搬する。そのため、障害箇所101、102に対応する区間(第1の光装置3111と第2の光装置3120の間)であっても、優先帯域信号S31およびS32が占める波長帯域以外の波長帯域を、第2の光伝送路120における伝送信号帯域として用いることができる。その結果、波長帯域をさらに有効に利用しながら障害回復を図ることができる。
 ここで、複数の第1の光ファイバ111、112のそれぞれを伝搬する優先帯域信号S31、S32は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する構成とすることができる。すなわち、第1の波長多重光信号S311および第2の波長多重光信号S312において、例えば優先度が高い優先帯域信号S31およびS32を、周波数軸上で互いに重複しない波長帯域に割り当てることができる。これにより、複数の光伝送路において障害が発生した場合であっても、各光伝送路を伝搬する波長帯域信号のうち、優先度が高い波長帯域信号をそれぞれ伝送させることが可能となる。
 また、運用光信号が伝搬する複数の運用光ファイバに障害が発生した場合、各運用光ファイバを伝搬する波長多重光信号のうち優先度の設定が高い優先帯域信号を、他の運用光ファイバの波長帯域のうち優先度が低い低優先帯域に配置することとしてもよい。このような場合の光伝送システム3001の動作を、図9を用いて説明する。
 第1の光装置3111は、第1の光ファイバ111を伝搬する第1の波長多重光信号S311を構成する複数の第1の波長帯域信号のうち、例えば優先度が高い優先帯域信号S31A、S31Bの伝送路を別の第1の光ファイバ112に変更する。このとき、第1の光装置3111は、第1の光ファイバ112を伝搬する第2の波長多重光信号S312が占有する波長帯域のうち優先度が低い低優先帯域B12に、優先帯域信号S31A、S31Bを配置する。その結果、第1の光ファイバ112には、第1の光装置3112の前段において、第1の光ファイバ112を伝搬する第2の波長多重光信号S312に含まれる優先帯域信号S32A、S32Bに加えて、優先帯域信号S31A、S31Bが伝搬している。
 さらに、第1の光装置3112は、障害箇所102の前段において、優先帯域信号S31A、S31B、S32A、およびS32Bの伝送路を第2の光伝送路に変更する。ここで、第2の光伝送路は図9に示したように、複数の第2の光ファイバ121、122を含む場合について説明する。
 第1の光装置3112は、複数の第2の光ファイバ121、122のそれぞれを伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、低優先帯域を決定する。このとき、第1の光装置3112は、複数の第2の波長帯域信号の優先度に基づいて、複数の第2の光ファイバ毎に低優先帯域を決定する。図9には、第1の光装置3112が、第2の光ファイバ121について低優先帯域B21を、第2の光ファイバ122について低優先帯域B22をそれぞれ決定した場合を例として示す。
 そして、第1の光装置3112は、波長帯域信号としての優先帯域信号を低優先帯域に配置する。図9に示した例では、第1の光装置3112は、優先帯域信号S31AおよびS32Bを第2の光ファイバ121の低優先帯域B21に配置し、優先帯域信号S31BおよびS32Aを第2の光ファイバ122の低優先帯域B22に配置する。このように、優先帯域信号S31A、S31B、S32A、およびS32Bを、伝送路の変更先である第2の光ファイバ121、122における低優先帯域B21、B22に最適化して配置することができる。なお、低優先帯域には、波長帯域信号によって占有されていない未使用帯域が含まれるものとする。
 一方、第2の光装置3120は、障害箇所101、102の後段において、波長帯域信号としての優先帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する。図9に示した例では、第2の光装置3120は、優先帯域信号S31A、S31Bの伝送路を、第2の光ファイバ121、122から元の第1の光ファイバ111に変更する。また、第2の光装置3120は、優先帯域信号S32A、S32Bの伝送路を、第2の光ファイバ121、122から元の第1の光ファイバ112に変更する。
 上述したように、本実施形態による光伝送システム3000、3001は、第1の光装置3111、3112が障害箇所101、102の前段において、優先帯域信号の伝送路を切り替える。その後に、第2の光装置3120が障害箇所101、102の後段において、元の伝送路に戻すように再度切り替える構成としている。そのため、障害箇所101、102を迂回することにより、優先帯域信号が端局装置において他の伝送路側に配置されることはない。その結果、第1の光ファイバ111、112および第2の光ファイバ121、122の利用者(ユーザ)が異なる場合であっても、ユーザのセキュリティを確保することができる。
 このように、光伝送システム3000、3001によれば、光伝送システムの安定した利用を損なうことなく障害回復を図ることができる。
 次に、本実施形態による光装置について説明する。本実施形態による光装置の構成は、図3に示した第1の実施形態による光装置1100の構成と同様である。
 すなわち、本実施形態による光装置は、第1の切替処理と第2の切替処理のいずれかを行う切替部1101、入力接続部1102、および出力接続部1103とを有する。入力接続部1102は、第1の光伝送路110と、第1の光伝送路110と同一経路の第2の光伝送路120のそれぞれを、切替部1101の入力側に接続する。出力接続部1103は、第1の光伝送路110と第2の光伝送路120のそれぞれを、切替部1101の出力側に接続する。
 ここで、第1の切替処理は、第1の光伝送路110における障害箇所の前段において、第1の光伝送路110を伝搬する波長帯域信号の伝送路を、第2の光伝送路120に変更する処理である。第2の切替処理は、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路120から第1の光伝送路に変更する処理である。
 本実施形態の光装置は制御部(制御手段)をさらに有する構成とした。この制御部は、第1の光伝送路110に含まれる複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、複数の第1の光ファイバ毎に波長帯域信号としての優先帯域信号を決定する。このとき、制御部は複数の第1の波長帯域信号の優先度に基づいて、優先帯域信号を決定する。
 この場合、切替部1101は、第1の切替処理において、優先帯域信号のそれぞれの伝送路を第2の光伝送路120に変更する。
 ここで、複数の第1の光ファイバのそれぞれを伝搬する優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する構成とすることができる。
 また、制御部(制御手段)は、複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域の中から低優先帯域を決定することとしてもよい。複数の第2の波長帯域信号は、第2の光伝送路120に含まれる複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成している。このとき制御部は、複数の第2の波長帯域信号の優先度に基づいて、複数の第2の光ファイバ毎に低優先帯域を決定する。この場合、切替部1101は、第1の切替処理において、波長帯域信号を低優先帯域に配置する。なお、低優先帯域は、第2の波長帯域信号が占有していない未使用帯域を含むものとする。
 次に、本実施形態による光伝送方法について説明する。
 本実施形態による光伝送方法においては、まず、第1の光伝送路における障害箇所の前段において、第1の光伝送路を伝搬する波長帯域信号の伝送路を、第1の光伝送路と同一経路の第2の光伝送路に変更する。そして、障害箇所の後段において、波長帯域信号の伝送路を、第2の光伝送路から第1の光伝送路に変更する。
 本実施形態による光伝送方法においては、伝送路を第2の光伝送路に変更する処理に、以下の処理が含まれる。すなわち、複数の第1の波長帯域信号のうち、複数の第1の波長帯域信号の優先度に基づいて、複数の第1の光ファイバ毎に波長帯域信号としての優先帯域信号を決定し、優先帯域信号のそれぞれの伝送路を第2の光伝送路に変更する構成とした。ここで、複数の第1の波長帯域信号は、第1の光伝送路に含まれる複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成している。
 この場合、複数の第1の光ファイバのそれぞれを伝搬する優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する構成とすることができる。
 また、上述した伝送路を第2の光伝送路に変更する処理には、以下の処理が含まれることとしてもよい。すなわち、複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、複数の第2の波長帯域信号の優先度に基づいて複数の第2の光ファイバ毎に低優先帯域を決定し、波長帯域信号を低優先帯域に配置することとしてもよい。ここで、複数の第2の波長帯域信号は、第2の光伝送路に含まれる複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成している。なお、低優先帯域には、第2の波長帯域信号が占有していない未使用帯域が含まれるものとする。
 以上説明したように、本実施形態の光伝送システム3000、3001、光装置、および光伝送方法によれば、光ケーブル内の光ファイバの一部において障害が発生した場合であっても、光伝送システムの安定した利用を損なうことなく、波長帯域を有効に利用しながら障害回復を図ることができる。
 上述した各実施形態において説明した光伝送システム、光装置、および光伝送方法を、光海底ケーブル伝送システムに用いることができる。ここで、光装置は、特定の波長の光信号を加える(アド)機能および取り出す(ドロップ)機能を備えた光アド/ドロップ多重装置(Optical Add Drop Multiplexer:OADM)とすることができる。
 上記実施形態において説明した第1の光装置および第2の光装置は、光海底ケーブル伝送システムにおいて対向する陸揚局(トランク局)間を結ぶ基幹区間(トランク区間)に配置された構成とすることができる。これに限らず、図10Aおよび図10Bに示すように、分岐局(ブランチ局)と結ぶ分岐区間(ブランチ区間)に光装置を配置した構成としてもよい。図10Aは、分岐区間に障害箇所400が存在する場合において、第1の光装置4110および第2の光装置4120が分岐局側に光信号を取り出す(ドロップ)動作の例を示す。また、図10Bは、分岐区間に障害箇所400が存在する場合において、第1の光装置4110および第2の光装置4120が分岐局側から光信号を加える(アド)動作の例を示す。
 また、上記実施形態における第1の光装置および第2の光装置の動作を、陸揚局の端局装置に備えられた光ネットワーク管理装置としてのシステム監視装置が制御する構成とすることができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)第1の光伝送路における障害箇所の前段において、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第1の光伝送路と同一経路の第2の光伝送路に変更する第1の光装置と、前記障害箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する第2の光装置、とを有する光伝送システム。
 (付記2)前記第1の光伝送路は、複数の第1の光ファイバを含み、前記第1の光装置は、前記複数の第1の光ファイバのうち、前記複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定し、前記優先光ファイバを伝搬する前記波長帯域信号の伝送路を前記第2の光伝送路に変更する付記1に記載した光伝送システム。
 (付記3)前記第1の光装置は、前記第1の光伝送路を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号の伝送路を前記第2の光伝送路に変更する付記1に記載した光伝送システム。
 (付記4)前記第1の光伝送路は、複数の第1の光ファイバを含み、前記第1の光装置は、前記複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記複数の第1の光ファイバ毎に前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号のそれぞれの伝送路を前記第2の光伝送路に変更する付記1に記載した光伝送システム。
 (付記5)前記複数の第1の光ファイバのそれぞれを伝搬する前記優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する付記4に記載した光伝送システム。
 (付記6)前記第2の光伝送路は、複数の第2の光ファイバを含み、前記第1の光装置は、前記複数の第2の光ファイバのうち、前記複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定し、前記波長帯域信号の伝送路を前記低優先光ファイバに変更する付記1から5のいずれか一項に記載した光伝送システム。
 (付記7)前記第1の光装置は、前記第2の光伝送路を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置する付記1から6のいずれか一項に記載した光伝送システム。
 (付記8)前記第2の光伝送路は、複数の第2の光ファイバを含み、前記第1の光装置は、前記複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて、前記複数の第2の光ファイバ毎に低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置する付記1から5のいずれか一項に記載した光伝送システム。
 (付記9)前記低優先帯域は、前記第2の波長帯域信号が占有していない未使用帯域を含む付記7または8に記載した光伝送システム。
 (付記10)第1の切替処理と第2の切替処理のいずれかを行う切替手段と、第1の光伝送路と、前記第1の光伝送路と同一経路の第2の光伝送路のそれぞれを、前記切替手段の入力側に接続する入力接続手段と、前記第1の光伝送路と前記第2の光伝送路のそれぞれを、前記切替手段の出力側に接続する出力接続手段、とを有し、前記第1の切替処理は、前記第1の光伝送路における障害箇所の前段において、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第2の光伝送路に変更する処理であり、前記第2の切替処理は、前記障害箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する処理である光装置。
 (付記11)前記第1の光伝送路に含まれる複数の第1の光ファイバのうち、前記複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定する制御手段をさらに有し、前記切替手段は、前記第1の切替処理において、前記優先光ファイバを伝搬する前記波長帯域信号の伝送路を前記第2の光伝送路に変更する付記10に記載した光装置。
 (付記12)前記第1の光伝送路を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記波長帯域信号としての優先帯域信号を決定する制御手段をさらに有し、前記切替手段は、前記第1の切替処理において、前記優先帯域信号の伝送路を前記第2の光伝送路に変更する付記10に記載した光装置。
 (付記13)前記第1の光伝送路に含まれる複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記複数の第1の光ファイバ毎に前記波長帯域信号としての優先帯域信号を決定する制御手段をさらに有し、前記切替手段は、前記第1の切替処理において、前記優先帯域信号のそれぞれの伝送路を前記第2の光伝送路に変更する付記10に記載した光装置。
 (付記14)前記複数の第1の光ファイバのそれぞれを伝搬する前記優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する付記13に記載した光装置。
 (付記15)前記第2の光伝送路に含まれる複数の第2の光ファイバのうち、前記複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定する制御手段をさらに有し、前記切替手段は、前記第1の切替処理において、前記波長帯域信号の伝送路を前記低優先光ファイバに変更する付記10から14のいずれか一項に記載した光装置。
 (付記16)前記第2の光伝送路を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定する制御手段をさらに有し、前記切替手段は、前記第1の切替処理において、前記波長帯域信号を前記低優先帯域に配置する付記10から15のいずれか一項に記載した光装置。
 (付記17)前記第2の光伝送路に含まれる複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて、前記複数の第2の光ファイバ毎に低優先帯域を決定する制御手段をさらに有し、前記切替手段は、前記第1の切替処理において、前記波長帯域信号を前記低優先帯域に配置する付記10から14のいずれか一項に記載した光装置。
 (付記18)前記低優先帯域は、前記第2の波長帯域信号が占有していない未使用帯域を含む付記16または17に記載した光装置。
 (付記19)第1の光伝送路における障害の発生を監視し、前記障害の発生を検知した場合、障害発生情報を生成する監視手段と、前記障害発生情報に基づいて、前記障害が発生した箇所の前段に位置する第1の光装置に対して、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第1の光伝送路と同一経路の第2の光伝送路に変更するように指示し、前記障害が発生した箇所の後段に位置する第2の光装置に対して、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更するように指示する制御手段、とを有する光ネットワーク管理装置。
 (付記20)第1の光伝送路における障害箇所の前段において、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第1の光伝送路と同一経路の第2の光伝送路に変更し、前記障害箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する光伝送方法。
 (付記21)前記伝送路を前記第2の光伝送路に変更することは、前記第1の光伝送路に含まれる複数の第1の光ファイバのうち、前記複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定し、前記優先光ファイバを伝搬する前記波長帯域信号の伝送路を前記第2の光伝送路に変更することを含む付記20に記載した光伝送方法。
 (付記22)前記伝送路を前記第2の光伝送路に変更することは、前記第1の光伝送路を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号の伝送路を前記第2の光伝送路に変更することを含む付記20に記載した光伝送方法。
 (付記23)前記伝送路を前記第2の光伝送路に変更することは、前記第1の光伝送路に含まれる複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記複数の第1の光ファイバ毎に前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号のそれぞれの伝送路を前記第2の光伝送路に変更することを含む付記20に記載した光伝送方法。
 (付記24)前記複数の第1の光ファイバのそれぞれを伝搬する前記優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する付記23に記載した光伝送方法。
 (付記25)前記伝送路を前記第2の光伝送路に変更することは、前記第2の光伝送路に含まれる複数の第2の光ファイバのうち、前記複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定し、前記波長帯域信号の伝送路を前記低優先光ファイバに変更することを含む付記20から24のいずれか一項に記載した光伝送方法。
 (付記26)前記伝送路を前記第2の光伝送路に変更することは、前記第2の光伝送路を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置することを含む付記20から25のいずれか一項に記載した光伝送方法。
 (付記27)前記伝送路を前記第2の光伝送路に変更することは、前記第2の光伝送路に含まれる複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて、前記複数の第2の光ファイバ毎に低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置することを含む付記20から24のいずれか一項に記載した光伝送方法。
 (付記28)前記低優先帯域は、前記第2の波長帯域信号が占有していない未使用帯域を含む付記26または27に記載した光伝送方法。
 (付記29)第1の波長多重光信号を第1の光伝送路を通して伝搬させ、第2の波長多重光信号を前記第1の光伝送路と同一経路の第2の光伝送路を通して伝搬させ、前記第1の光伝送路において障害が発生した場合、前記障害が発生した箇所の前段において、前記第2の波長多重光信号の伝搬を中止するとともに、前記第1の波長多重光信号を構成する波長帯域信号の伝送路を、前記第2の光伝送路に変更し、前記障害が発生した箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する光伝送方法。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2020年03月10日に出願された日本出願特願2020-041096を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 1000、2000、2001、3000、3001  光伝送システム
 1100  光装置
 1101  切替部
 1102  入力接続部
 1103  出力接続部
 1110、2110、3111、3112、4110  第1の光装置
 1120、2120、3120、4120  第2の光装置
 1200  光ネットワーク管理装置
 1210  監視部
 1220  制御部
 100、101、102、400  障害箇所
 110  第1の光伝送路
 111、112  第1の光ファイバ
 120  第2の光伝送路
 121、122  第2の光ファイバ

Claims (29)

  1.  第1の光伝送路における障害箇所の前段において、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第1の光伝送路と同一経路の第2の光伝送路に変更する第1の光装置と、
     前記障害箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する第2の光装置、とを有する
     光伝送システム。
  2.  前記第1の光伝送路は、複数の第1の光ファイバを含み、
     前記第1の光装置は、前記複数の第1の光ファイバのうち、前記複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定し、前記優先光ファイバを伝搬する前記波長帯域信号の伝送路を前記第2の光伝送路に変更する
     請求項1に記載した光伝送システム。
  3.  前記第1の光装置は、前記第1の光伝送路を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号の伝送路を前記第2の光伝送路に変更する
     請求項1に記載した光伝送システム。
  4.  前記第1の光伝送路は、複数の第1の光ファイバを含み、
     前記第1の光装置は、前記複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記複数の第1の光ファイバ毎に前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号のそれぞれの伝送路を前記第2の光伝送路に変更する
     請求項1に記載した光伝送システム。
  5.  前記複数の第1の光ファイバのそれぞれを伝搬する前記優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する
     請求項4に記載した光伝送システム。
  6.  前記第2の光伝送路は、複数の第2の光ファイバを含み、
     前記第1の光装置は、前記複数の第2の光ファイバのうち、前記複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定し、前記波長帯域信号の伝送路を前記低優先光ファイバに変更する
     請求項1から5のいずれか一項に記載した光伝送システム。
  7.  前記第1の光装置は、前記第2の光伝送路を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置する
     請求項1から6のいずれか一項に記載した光伝送システム。
  8.  前記第2の光伝送路は、複数の第2の光ファイバを含み、
     前記第1の光装置は、前記複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて、前記複数の第2の光ファイバ毎に低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置する
     請求項1から5のいずれか一項に記載した光伝送システム。
  9.  前記低優先帯域は、前記第2の波長帯域信号が占有していない未使用帯域を含む
     請求項7または8に記載した光伝送システム。
  10.  第1の切替処理と第2の切替処理のいずれかを行う切替手段と、
     第1の光伝送路と、前記第1の光伝送路と同一経路の第2の光伝送路のそれぞれを、前記切替手段の入力側に接続する入力接続手段と、
     前記第1の光伝送路と前記第2の光伝送路のそれぞれを、前記切替手段の出力側に接続する出力接続手段、とを有し、
     前記第1の切替処理は、前記第1の光伝送路における障害箇所の前段において、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第2の光伝送路に変更する処理であり、
     前記第2の切替処理は、前記障害箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する処理である
     光装置。
  11.  前記第1の光伝送路に含まれる複数の第1の光ファイバのうち、前記複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定する制御手段をさらに有し、
     前記切替手段は、前記第1の切替処理において、前記優先光ファイバを伝搬する前記波長帯域信号の伝送路を前記第2の光伝送路に変更する
     請求項10に記載した光装置。
  12.  前記第1の光伝送路を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記波長帯域信号としての優先帯域信号を決定する制御手段をさらに有し、
     前記切替手段は、前記第1の切替処理において、前記優先帯域信号の伝送路を前記第2の光伝送路に変更する
     請求項10に記載した光装置。
  13.  前記第1の光伝送路に含まれる複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記複数の第1の光ファイバ毎に前記波長帯域信号としての優先帯域信号を決定する制御手段をさらに有し、
     前記切替手段は、前記第1の切替処理において、前記優先帯域信号のそれぞれの伝送路を前記第2の光伝送路に変更する
     請求項10に記載した光装置。
  14.  前記複数の第1の光ファイバのそれぞれを伝搬する前記優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する
     請求項13に記載した光装置。
  15.  前記第2の光伝送路に含まれる複数の第2の光ファイバのうち、前記複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定する制御手段をさらに有し、
     前記切替手段は、前記第1の切替処理において、前記波長帯域信号の伝送路を前記低優先光ファイバに変更する
     請求項10から14のいずれか一項に記載した光装置。
  16.  前記第2の光伝送路を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定する制御手段をさらに有し、
     前記切替手段は、前記第1の切替処理において、前記波長帯域信号を前記低優先帯域に配置する
     請求項10から15のいずれか一項に記載した光装置。
  17.  前記第2の光伝送路に含まれる複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて、前記複数の第2の光ファイバ毎に低優先帯域を決定する制御手段をさらに有し、
     前記切替手段は、前記第1の切替処理において、前記波長帯域信号を前記低優先帯域に配置する
     請求項10から14のいずれか一項に記載した光装置。
  18.  前記低優先帯域は、前記第2の波長帯域信号が占有していない未使用帯域を含む
     請求項16または17に記載した光装置。
  19.  第1の光伝送路における障害の発生を監視し、前記障害の発生を検知した場合、障害発生情報を生成する監視手段と、
     前記障害発生情報に基づいて、
      前記障害が発生した箇所の前段に位置する第1の光装置に対して、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第1の光伝送路と同一経路の第2の光伝送路に変更するように指示し、
      前記障害が発生した箇所の後段に位置する第2の光装置に対して、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更するように指示する
     制御手段、とを有する
     光ネットワーク管理装置。
  20.  第1の光伝送路における障害箇所の前段において、前記第1の光伝送路を伝搬する波長帯域信号の伝送路を、前記第1の光伝送路と同一経路の第2の光伝送路に変更し、
     前記障害箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する
     光伝送方法。
  21.  前記伝送路を前記第2の光伝送路に変更することは、前記第1の光伝送路に含まれる複数の第1の光ファイバのうち、前記複数の第1の光ファイバの優先度に基づいて優先光ファイバを決定し、前記優先光ファイバを伝搬する前記波長帯域信号の伝送路を前記第2の光伝送路に変更することを含む
     請求項20に記載した光伝送方法。
  22.  前記伝送路を前記第2の光伝送路に変更することは、前記第1の光伝送路を伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号の伝送路を前記第2の光伝送路に変更することを含む
     請求項20に記載した光伝送方法。
  23.  前記伝送路を前記第2の光伝送路に変更することは、前記第1の光伝送路に含まれる複数の第1の光ファイバのそれぞれを伝搬する第1の波長多重光信号を構成する複数の第1の波長帯域信号のうち、前記複数の第1の波長帯域信号の優先度に基づいて、前記複数の第1の光ファイバ毎に前記波長帯域信号としての優先帯域信号を決定し、前記優先帯域信号のそれぞれの伝送路を前記第2の光伝送路に変更することを含む
     請求項20に記載した光伝送方法。
  24.  前記複数の第1の光ファイバのそれぞれを伝搬する前記優先帯域信号は、周波数軸上で互いに重複しない波長帯域をそれぞれ占有する
     請求項23に記載した光伝送方法。
  25.  前記伝送路を前記第2の光伝送路に変更することは、前記第2の光伝送路に含まれる複数の第2の光ファイバのうち、前記複数の第2の光ファイバの優先度に基づいて低優先光ファイバを決定し、前記波長帯域信号の伝送路を前記低優先光ファイバに変更することを含む
     請求項20から24のいずれか一項に記載した光伝送方法。
  26.  前記伝送路を前記第2の光伝送路に変更することは、前記第2の光伝送路を伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置することを含む
     請求項20から25のいずれか一項に記載した光伝送方法。
  27.  前記伝送路を前記第2の光伝送路に変更することは、前記第2の光伝送路に含まれる複数の第2の光ファイバのそれぞれを伝搬する第2の波長多重光信号を構成する複数の第2の波長帯域信号がそれぞれ占有する第2の波長帯域のうち、前記複数の第2の波長帯域信号の優先度に基づいて、前記複数の第2の光ファイバ毎に低優先帯域を決定し、前記波長帯域信号を前記低優先帯域に配置することを含む
     請求項20から24のいずれか一項に記載した光伝送方法。
  28.  前記低優先帯域は、前記第2の波長帯域信号が占有していない未使用帯域を含む
     請求項26または27に記載した光伝送方法。
  29.  第1の波長多重光信号を第1の光伝送路を通して伝搬させ、
     第2の波長多重光信号を前記第1の光伝送路と同一経路の第2の光伝送路を通して伝搬させ、
     前記第1の光伝送路において障害が発生した場合、
     前記障害が発生した箇所の前段において、前記第2の波長多重光信号の伝搬を中止するとともに、前記第1の波長多重光信号を構成する波長帯域信号の伝送路を、前記第2の光伝送路に変更し、
     前記障害が発生した箇所の後段において、前記波長帯域信号の伝送路を、前記第2の光伝送路から前記第1の光伝送路に変更する
     光伝送方法。
PCT/JP2021/007475 2020-03-10 2021-02-26 光伝送システム、光装置、および光伝送方法 WO2021182141A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022505918A JPWO2021182141A5 (ja) 2021-02-26 光伝送システム、光装置、光ネットワーク管理装置、および光伝送方法
US17/801,287 US20230101846A1 (en) 2020-03-10 2021-02-26 Optical transmission system, optical device, and optical transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-041096 2020-03-10
JP2020041096 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021182141A1 true WO2021182141A1 (ja) 2021-09-16

Family

ID=77671618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007475 WO2021182141A1 (ja) 2020-03-10 2021-02-26 光伝送システム、光装置、および光伝送方法

Country Status (2)

Country Link
US (1) US20230101846A1 (ja)
WO (1) WO2021182141A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197083A (ja) * 1999-10-29 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> パス網運用方法、パス網、およびノード装置
JP2002141867A (ja) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> 波長多重光信号送信装置、波長多重光信号受信装置および光波長多重通信システム
JP2005286961A (ja) * 2004-03-31 2005-10-13 Hitachi Communication Technologies Ltd クロスコネクト装置及び光クロスコネクト装置、ならびにそれを用いた回線救済方法
JP2013030884A (ja) * 2011-07-27 2013-02-07 Fujitsu Ltd 伝送装置およびネットワークプロテクション方法
JP2013243559A (ja) * 2012-05-21 2013-12-05 Mitsubishi Electric Corp 光伝送ノードおよび経路切替方法
WO2014010151A1 (ja) * 2012-07-11 2014-01-16 日本電気株式会社 波長分割多重通信装置及び光ネットワークシステム
WO2014020896A1 (ja) * 2012-08-03 2014-02-06 日本電気株式会社 多重障害対応光ノードとそれを用いた光通信システムおよび波長パス切り替え方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0969615B1 (en) * 1998-07-01 2008-04-09 Kabushiki Kaisha Toshiba Control method and equipment for ring network system
EP1096712A3 (en) * 1999-10-29 2005-09-07 Nippon Telegraph and Telephone Corporation Path network and path network operation method using conversion of protection path into working path
US20040105136A1 (en) * 2001-05-08 2004-06-03 Corvis Corporation Interconnections and protection between optical communications networks
EP1598972B1 (en) * 2003-02-27 2012-08-15 Nippon Telegraph And Telephone Corporation Optical communication network system, wavelength routing apparatus, communication node, optical path managing method for use in optical cross connect apparatus, and apparatus for that method
US9755734B1 (en) * 2016-06-09 2017-09-05 Google Inc. Subsea optical communication network
JP7028113B2 (ja) * 2018-09-06 2022-03-02 日本電信電話株式会社 光伝送システム及び光伝送方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001197083A (ja) * 1999-10-29 2001-07-19 Nippon Telegr & Teleph Corp <Ntt> パス網運用方法、パス網、およびノード装置
JP2002141867A (ja) * 2000-10-30 2002-05-17 Nippon Telegr & Teleph Corp <Ntt> 波長多重光信号送信装置、波長多重光信号受信装置および光波長多重通信システム
JP2005286961A (ja) * 2004-03-31 2005-10-13 Hitachi Communication Technologies Ltd クロスコネクト装置及び光クロスコネクト装置、ならびにそれを用いた回線救済方法
JP2013030884A (ja) * 2011-07-27 2013-02-07 Fujitsu Ltd 伝送装置およびネットワークプロテクション方法
JP2013243559A (ja) * 2012-05-21 2013-12-05 Mitsubishi Electric Corp 光伝送ノードおよび経路切替方法
WO2014010151A1 (ja) * 2012-07-11 2014-01-16 日本電気株式会社 波長分割多重通信装置及び光ネットワークシステム
WO2014020896A1 (ja) * 2012-08-03 2014-02-06 日本電気株式会社 多重障害対応光ノードとそれを用いた光通信システムおよび波長パス切り替え方法

Also Published As

Publication number Publication date
US20230101846A1 (en) 2023-03-30
JPWO2021182141A1 (ja) 2021-09-16

Similar Documents

Publication Publication Date Title
JP4806437B2 (ja) 光リングネットワークにおいてトラフィックを選択的に終端又は転送する方法
US6088141A (en) Self-healing network
JP4099311B2 (ja) 光リング網において波長多重化方式でデータ伝送するための方法および装置
EP0848873B1 (en) Optical communication system
US7072580B2 (en) Autoprotected optical communication ring network
US5986783A (en) Method and apparatus for operation, protection, and restoration of heterogeneous optical communication networks
JP3008260B2 (ja) 光伝送路のリングネットワーク通信構造とその構造用の再構成可能ノード
JP4562443B2 (ja) 光伝送システム及び光伝送方法
EP1360790B1 (en) Optical transmission systems including optical protection systems, apparatuses, and methods
US8204374B2 (en) Reconfigurable multichannel (WDM) optical ring network with optical shared protection
JP2001520830A (ja) 光双方向ラインスイッチ形リングデータ通信システムの方法および装置
JP2006020308A (ja) 光ネットワーク及び光トラフィックを通信する方法
CN108781115B (zh) 光波长复用传送***、光波长复用装置和备用***检查方法
US7483637B2 (en) Optical ring network with optical subnets and method
JP3586586B2 (ja) 光波リングシステム
JP4730145B2 (ja) 光信号切替え装置および光信号切替え方法
JP2000307620A (ja) Wdmネットワーク及びwdmネットワーク装置
WO2021182141A1 (ja) 光伝送システム、光装置、および光伝送方法
JP2000115133A (ja) 光パスクロスコネクト装置及び光ネットワーク
JP2003046456A (ja) 光伝送ネットワークシステムおよび光伝送ネットワークシステムの障害監視方法
JP2006042372A (ja) 光信号切替え装置、光通信網、および、それらの使用方法
EP1075105B1 (en) Autoprotected optical communication ring network
EP1065822A1 (en) Autoprotected optical communication ring network
JPH11112422A (ja) 波長多重網切替え装置及び波長多重リング光ネットワーク・システム
JP2001217776A (ja) 波長多重通信ネットワーク障害復旧システム及びその方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767673

Country of ref document: EP

Kind code of ref document: A1