WO2021182033A1 - Measurement device, program, and measurement method - Google Patents

Measurement device, program, and measurement method Download PDF

Info

Publication number
WO2021182033A1
WO2021182033A1 PCT/JP2021/005748 JP2021005748W WO2021182033A1 WO 2021182033 A1 WO2021182033 A1 WO 2021182033A1 JP 2021005748 W JP2021005748 W JP 2021005748W WO 2021182033 A1 WO2021182033 A1 WO 2021182033A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measurement
mirror
light source
unit
Prior art date
Application number
PCT/JP2021/005748
Other languages
French (fr)
Japanese (ja)
Inventor
洋介 村木
Original Assignee
株式会社Xtia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Xtia filed Critical 株式会社Xtia
Priority to JP2022505865A priority Critical patent/JPWO2021182033A1/ja
Publication of WO2021182033A1 publication Critical patent/WO2021182033A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a measuring device, a program, and a measuring method.
  • An optical measuring device is used to measure the inner diameter of the object to be measured having an opening in a non-contact manner.
  • Patent Document 1 in order to measure the inner diameter of an opening in a non-contact manner, a large number of measurement points are measured by the measurement head while changing the measurement head so as to straddle the direction orthogonal to the axis orthogonal to the rotation axis without a positioning guide. Is disclosed as one data group, and an apparatus for measuring the inner diameter based on the minimum value of each data group is disclosed.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a measuring device capable of measuring an object to be measured with higher accuracy.
  • a measuring device includes a first light source, a mirror, a light detecting unit, a displacement detecting unit, and a measuring unit.
  • the first light source is configured to output measurement light.
  • the mirror is configured to rotate about an axis of rotation towards the first light source.
  • the measurement light is reflected so as to face a desired direction, and the measurement surface is continuously irradiated with the measurement light.
  • the photodetector is configured to detect the specular reflection component of the light reflected on the measurement surface of the measurement light.
  • the displacement detection unit is configured to detect the displacement between the mirror and the rotation axis that occurs during rotation.
  • the measuring unit is configured to continuously calculate the distance between the mirror and one point on the measuring surface based on the specular reflection component and the displacement, thereby measuring the shape of the measuring surface.
  • the object to be measured can be measured with high accuracy.
  • FIG. It is an overall block diagram of the measuring apparatus 1.
  • FIG. It is a figure of the arranged mirror 4. It is a figure which shows the state which the shaft 5 is bent during measurement. It is a schematic diagram which shows the optical path of the measurement light and the reference light. It is a block diagram which shows the hardware composition of the measuring apparatus 1.
  • FIG. It is a block diagram which shows the hardware structure of an information processing apparatus 3. It is a functional block diagram which shows the function which the control part 33 in an information processing apparatus 3 has. It is a figure which looked at the reference light when the shaft 5 was not rotated from the upper surface and the side surface of the shaft 5. It is a figure which looked at the reference light at the time of rotation of a shaft 5 from the upper surface and the side surface of a shaft 5.
  • Each image data of the reference light reflected by the mirror 4 is shown. It is a figure which showed an example which irradiates the upper surface 41 of the mirror 4 with the measurement light from the 1st light source 21 which concerns on embodiment, and measures the length L. It is an activity diagram of the method of calculating the deflection angle ⁇ of the shaft 5 which concerns on embodiment. It is an activity diagram of the measurement method of the distance to the measurement surface 7 which concerns on embodiment.
  • FIG. 1 is an overall configuration diagram of the measuring device 1.
  • the measuring device 1 includes a measuring unit 2, a mirror 4, a shaft 5, and a bearing 6.
  • the measuring device 1 three-dimensionally measures the measuring surface 7 along the central axis of the object to be measured in a non-contact manner.
  • the information processing device 3 is electrically connected to the measurement unit 2 so that the detection signals of the photodetector 23 and the reference light detection unit 24 can be input. Each component will be described in more detail below.
  • the measurement unit 2 includes a first light source 21, a second light source 22, a light detection unit 23, a reference light detection unit 24, a first beam splitter B1, and a second beam splitter B2.
  • the first light source 21 is configured to output the measurement light.
  • the first light source 21 is configured to irradiate the slope 42 of the mirror 4, which will be described later, with the measurement light along the direction of the rotation axis.
  • the optical axis of the measurement light output from the first light source 21 coincides with the central axis of the object to be measured.
  • the measurement light is, for example, laser light, and more preferably, the first light source 21 is an optical comb light source.
  • the second light source 22 irradiates the upper surface 41 of the mirror 4 with reference light along the direction of the rotation axis of the shaft 5.
  • the optical axis of the reference light output by the second light source 22 is separated by a distance ⁇ from the optical axis of the measurement light output by the first light source 21.
  • the light detection unit 23 includes a reference light detection unit 23a and a measurement light detection unit 23b.
  • the reference light detection unit 23a detects a part of the measurement light reflected by the reference light beam splitter B1a and extracts the reference signal data.
  • the photodetector is configured to detect a component of the measurement light reflected on the measurement surface 7 that is mirror-reflected by the mirror 4. That is, the measurement light detection unit 23b detects the specularly reflected measurement light and extracts the measurement signal data.
  • the reference light detection unit 24 detects the reference light that the reference light output by the second light source 22 is reflected by the upper surface 41 of the mirror 4.
  • the reference light is preferably visible light, but may be infrared light or ultraviolet light. That is, the reference light detection unit 24 detects the first reference reflected light G1 and the second reference reflected light G2, which will be described later.
  • the reference light detection unit 24 is, for example, an optical image sensor, and may be a CCD (Charge Couple Devices) image sensor or a CMOS (Completion Metal Semiconductor) image sensor.
  • the first beam splitter B1 has a reference light beam splitter B1a and a measurement light beam splitter B1b. Both of these are arranged in the measuring unit 2.
  • the reference light beam splitter B1a reflects a part of the light emitted from the first light source 21 toward the reference light detection unit 23a.
  • the measurement light beam splitter B1b transmits the remaining light as the measurement light, and reflects the measurement light that has entered from the reflection path toward the measurement light detection unit 23b.
  • the second beam splitter B2 is arranged in the measuring unit 2.
  • the second beam splitter B2 reflects the reference light output from the second light source 22, and transmits the reference light entering from the reflection path toward the reference light detection unit 24.
  • FIG. 2 is a view of the arranged mirror 4. As shown in FIG. 2, the mirror 4 is installed on the lower surface 51 inside the shaft 5.
  • the mirror 4 includes an upper surface 41 orthogonal to the rotation axis and a slope 42 inclined with respect to the upper surface 41.
  • the upper surface 41 reflects the reference light output from the second light source 22 perpendicularly to the lower surface 51 inside the shaft 5. That is, the upper surface 41 is provided horizontally with respect to the installation surface of the mirror 4.
  • the slope 42 reflects the measurement light substantially at right angles to the optical axis. According to such a configuration, the measurement surface 7 of the object to be measured can be continuously irradiated with the measurement light while the shaft 5 is rotating.
  • FIG. 3 is a diagram showing a state in which the shaft 5 is bent during measurement. Since the shaft 5 has the mirror 4 on the lower surface 51, the center of gravity of the shaft 5 deviates from the central axis of the shaft 5. That is, eccentricity occurs because the center of gravity and the rigid center are separated. Due to this eccentricity, centrifugal force is generated during rotation, and deflection occurs in the direction perpendicular to the rotation axis.
  • the deflection angle ⁇ is an angle formed by the tangent line of the flexed shaft 5 and the central axis of the shaft 5.
  • the tangent line of the flexed shaft 5 may be regarded as the same as the central axis of the shaft 5.
  • FIG. 4 is a schematic diagram showing the optical paths of the measurement light and the reference light.
  • FIG. 4A shows a case where there is no deflection angle ⁇
  • FIG. 4B shows a case where there is a deflection angle ⁇ .
  • the measurement light is reflected by the mirror 4 so as to be perpendicular to the central axis of the shaft 5, and travels toward the measurement surface 7.
  • the measurement light is reflected by the measurement surface 7 and travels in the opposite direction to the photodetector 23 in the incident path.
  • the reference light is reflected by the upper surface 41 of the mirror 4 and travels in the opposite direction to the reference light detection unit 24.
  • the shaft 5 rotates during measurement, a deflection angle ⁇ is generated. Since the measuring unit 2 is fixed, the optical axis coincides with the central axis of the object to be measured, but the central axis of the shaft 5 is deviated by a deflection angle ⁇ . As a result, the lower surface 51 of the shaft 5 is displaced in the horizontal direction by ⁇ from the lower surface 51 when not rotating. Ideally, the measurement light is reflected by the mirror 4 so as to be perpendicular to the optical axis and travels toward the measurement surface 7. However, when the deflection angle ⁇ is generated during the measurement, the measurement light travels in the direction in which the posture of the mirror 4 deviates from the deflection angle ⁇ . Therefore, a measurement error occurs, and it is necessary to correct the measurement distance. This will be described in detail in the displacement detection unit 332 described later.
  • the lower surface 51 is configured to be perpendicular to the axis of the shaft 5 so that the mirror 4 maintains a horizontal posture when the shaft 5 is not rotated. Further, since the mirror 4 and the lower surface 51 are joined, the mirror 4 is prevented from moving in the horizontal direction with respect to the lower surface 51 during the rotation of the shaft 5.
  • bearing 6 rotatably supports the shaft 5 with respect to the measuring unit 2.
  • one bearing 6 is shown as a cantilever at one end of the shaft 5, but a plurality of bearings 6 may be arranged. Since the load is applied in the direction perpendicular to the shaft of the shaft 5, the bearing 6 is a radial bearing and may be either a rolling bearing or a slide bearing.
  • the measurement surface 7 is an inner surface of an object to be measured having a circular opening.
  • the inner surface is a cylinder.
  • the optical axis of the first light source 21 and the central axis of the object to be measured coincide with each other before the start of measurement.
  • the measuring device 1 three-dimensionally measures the distance from the central axis of the object to be measured to the measuring surface 7.
  • FIG. 5 is a block diagram showing a hardware configuration of the measuring device 1.
  • the information processing device 3 is a component of the measuring device 1.
  • FIG. 6 is a block diagram showing a hardware configuration of the information processing device 3.
  • FIG. 7 is a functional block diagram showing a function carried out by the control unit 33 in the information processing device 3.
  • the information processing device 3 has a communication unit 31, a storage unit 32, and a control unit 33 (acquisition unit 331, displacement detection unit 332, measurement unit 333, result storage unit 334, and display control unit 335).
  • the components are electrically connected inside the information processing device 3 via the communication bus 30.
  • each component will be further described.
  • the communication unit 31 performs wireless LAN network communication, mobile communication such as LTE / 3G, Bluetooth (registered trademark) communication, and the like as necessary. May be included. That is, it is more preferable to carry out as a set of these plurality of communication means.
  • the first light source 21, the second light source 22, the light detection unit 23, and the reference light detection unit 24 are configured to be communicable according to a predetermined communication standard.
  • the communication unit 31 is configured to receive the data detected by the light detection unit 23 and the reference light detection unit 24. Further, the communication unit 31 is configured to be able to transmit information for the first light source 21 and the second light source 22 to output light. With such a configuration, the measuring device 1 can control the distance from the central axis of the object to be measured to the measuring surface 7 in three dimensions.
  • the storage unit 32 stores various information defined by the above description. This is, for example, as a storage device such as a solid state drive (SSD), or a random access memory (Random Access Memory:) that stores temporarily necessary information (arguments, arrays, etc.) related to program operations. It can be implemented as a memory such as RAM). Moreover, these combinations may be used.
  • the storage unit 32 stores the data detected by the light detection unit 23 and the reference light detection unit 24. Further, the storage unit 32 stores the acquisition program, the displacement detection program, the measurement program, the result storage program, and the display control program. In addition to this, the storage unit 32 stores various programs related to the information processing device 3 executed by the control unit 33.
  • Control unit 33 The control unit 33 processes and controls the entire operation related to the information processing device 3.
  • the control unit 33 is, for example, a central processing unit (CPU) (not shown).
  • the control unit 33 realizes various functions related to the information processing device 3 by reading a predetermined program stored in the storage unit 32. Specifically, the acquisition function, the displacement detection function, the measurement function, the result storage function, and the display control function are applicable. That is, the information processing by the software (stored in the storage unit 32) is concretely realized by the hardware (control unit 33), so that the acquisition unit 331, the displacement detection unit 332, the measurement unit 333, and the result storage unit are realized. It can be executed as 334 and display control unit 335. Although it is described as a single control unit 33 in FIG.
  • control unit 33 it is not actually limited to this, and it may be implemented so as to have a plurality of control units 33 for each function. Moreover, it may be a combination thereof.
  • the acquisition unit 331, the displacement detection unit 332, the measurement unit 333, the result storage unit 334, and the display control unit 335 will be described in more detail.
  • the acquisition unit 331 In the acquisition unit 331, information processing by software (stored in the storage unit 32) is specifically realized by hardware (control unit 33).
  • the acquisition unit 331 is configured to acquire the data detected by the light detection unit 23 and the reference light detection unit 24 via the communication unit 31.
  • the displacement detection unit 332 is configured to detect the displacement between the mirror 4 and the rotation shaft that occurs when the shaft 5 rotates. Specifically, the displacement detection unit 332 is configured to calculate the displacement based on the first reference reflected light G1 and the second reference reflected light G2. That is, the displacement detection unit 332 detects the amount of deflection during rotation of the shaft 5 based on the reference signal data and the measurement signal data acquired by the acquisition unit 331. In other words, the deflection angle ⁇ is calculated using the L (the sum of the length of the shaft 5 and the distance from the shaft 5 to the reference light detection unit 24 (see FIG. 3)) and the amount of deflection stored in the storage unit 32. do.
  • L the sum of the length of the shaft 5 and the distance from the shaft 5 to the reference light detection unit 24 (see FIG. 3)
  • the first reference reflected light G1 is the one in which the reference light is reflected by the mirror 4 in the state where there is no displacement. Since the upper surface 41 of the mirror 4 is perpendicular to the rotation axis, the reference light is reflected in the same path as the incident path. Therefore, the reference light detection unit 24 detects the reflected first reference reflected light G1 at the incident position.
  • FIG. 9 is a view of the reference light during rotation of the shaft 5 as viewed from the upper surface and the side surface of the shaft 5.
  • the central axis of the shaft 5 deviates from the central axis of the object to be measured and the optical axis of the measurement light by the deflection angle ⁇ . Therefore, the upper surface 41 of the mirror 4 is also displaced by the deflection angle ⁇ . Therefore, the reference light is also reflected by a path different from the incident path by ⁇ .
  • the second reference reflected light G2 is the one in which the reference light is reflected by the mirror 4 in a state where there is a displacement. Therefore, the reference light detection unit 24 detects the reflected second reference reflected light G2 at a position deviated from the first reference reflected light G1.
  • FIG. 10 shows each image data of the reference light reflected by the mirror 4.
  • FIG. 10A is image data of the first reference reflected light G1.
  • FIG. 10B is image data of the second reference reflected light G2.
  • the reference light detection unit 24 detects the first reference reflected light G1 at the same position as the reflection position.
  • the mirror 4 tilts by the bending angle ⁇ . Therefore, the reference light detection unit 24 detects the second reference reflected light G2 at a position deviated from the first reference reflected light G1 by the amount of deflection.
  • the reference light detection unit 24 detects only the locus of the reference light reflected by the upper surface 41 of the mirror 4.
  • the second reference reflected light G2 draws a locus around the first reference reflected light G1 within an angle of ⁇ a.
  • the locus is the radius of r from the center of the first reference reflected light G1.
  • ⁇ a is determined by the shape of the mirror 4, the mounting position, and the distance from the optical axis of the measurement light.
  • the displacement detection unit 332 calculates the radius r of the locus which is the displacement based on the first reference reflected light G1 and the second reference reflected light G2, the length L (the length of the shaft 5 and the reference light detection from the shaft 5).
  • the deflection angle ⁇ can be calculated from the relationship between the distance to the portion 24 and the sum (see FIG. 3).
  • the reference light detection unit 24 is a CCD camera
  • the distance per pixel is stored in the storage unit 32 in advance when calculating r.
  • the displacement detection unit 332 calculates r from the number of pixels from the center of the first reference reflected light G1 to the locus of the second reference reflected light G2 and the distance per pixel.
  • the deflection angle ⁇ can be obtained by the following equation. If this radius r is regarded as the amount of deflection of the shaft 5, the following equation 1 is obtained.
  • the deflection angle ⁇ is stored in the storage unit 32 after calculation.
  • the measurement unit 333 continuously calculates the distance between the mirror 4 and one point on the measurement surface 7 based on the measurement light reflected from the slope 42 of the mirror 4 and the displacement obtained from the deflection angle ⁇ , and measures the distance accordingly. It is configured to measure the shape of the surface 7. That is, the measuring unit 333 measures from the center of the object to be measured based on the deflection angle ⁇ calculated from the data detected by the reference light detecting unit 24 and the distance from the first light source 21 to the slope 42 of the mirror 4. Calculate the true distance R to surface 7.
  • the measuring unit 333 measures the true distance R by correcting the distance R'to the measuring surface 7 measured by the photodetecting unit 23 by using the deflection angle ⁇ .
  • the measurement light As shown in FIGS. 3 and 4B, when the mirror 4 is tilted by ⁇ due to the deflection of the shaft 5, the measurement light also shifts by ⁇ and advances to the measurement surface 7. A part of the scattered light reflected by the measurement surface 7 travels to the photodetector 23 along the same path as the incident path. Therefore, the relationship between the true distance R and the distance R'when having the deflection angle ⁇ is the following equation 2. Since the deflection angle ⁇ has already been calculated, R is calculated from this equation.
  • the measuring unit 333 irradiates the first light source 21 with light.
  • the measurement unit 333 measures the round-trip time ⁇ of the light from the reference signal data detected by the reference light detection unit 23a and the measurement signal data detected by the measurement light detection unit 23b.
  • the distance D to the measurement surface 7 of the object to be measured can be obtained as shown in Equation 3.
  • n is the average refractive index of the optical path
  • c is the speed of light in vacuum.
  • the measurement unit 333 calculates the distance R'from the central axis of the object to be measured to the measurement surface 7 excluding the distance from the first beam splitter B1 to the mirror 4 from the distance D. Further, the measuring unit 333 corrects the distance R'by Equation 2 using the deflection angle ⁇ to calculate the true distance R.
  • FIG. 11 is a diagram showing an example in which the upper surface 41 of the mirror 4 is irradiated with the measurement light from the first light source 21 according to the embodiment to measure the length L.
  • the measurement unit 2 is divided into an upper measurement unit 2a and a lower measurement unit 2b, and the central axis of the upper measurement unit 2a provided with the first light source 21 is a distance ⁇ with respect to the central axis of the shaft 5.
  • the first light source 21 is arranged on the upper surface 41.
  • the first light source 21 may be configured to be able to irradiate the upper surface 41 of the mirror 4 with the measurement light along the direction of the rotation axis.
  • the measurement unit 333 makes a point on the first light source 21 and the upper surface 41 based on the reflection component on the upper surface 41. Measure the distance continuously.
  • the length L measured directly by irradiating the measurement light from the first light source 21 to the upper surface 41 of the mirror 4 in the shaft 5 is larger than the length L calculated based on the design data of the shaft 5. High accuracy. Therefore, the measurement unit 2 can measure the shape of the measurement surface 7 with higher accuracy.
  • the distance for moving the central axis of the upper measurement unit 2a including the first light source 21 with respect to the central axis of the shaft 5 is determined. Not limited.
  • the measurement unit 2 is divided into an upper measurement unit 2a and a lower measurement unit 2b.
  • the upper measurement unit 2a includes a first light source 21, a second light source 22, a light detection unit 23, and a first beam splitter B1
  • the lower measurement unit 2b includes a bearing 6. That is, the central axis of the lower measurement unit 2b is arranged coaxially with the central axis of the shaft 5 fitted to the bearing 6.
  • a moving unit 9 is attached between the upper measurement unit 2a and the lower measurement unit 2b. As a result, the upper measurement unit 2a can be moved in a plane relative to the lower measurement unit 2b.
  • the moving portion 9 includes an upper surface moving portion 91 and a lower surface moving portion 92.
  • the upper surface moving portion 91 is configured to be movable relative to the lower surface moving portion 92.
  • the upper measurement unit 2a attached to the upper surface of the upper surface moving portion 91 can move in a plane relative to the lower measuring unit 2b attached to the lower surface of the lower surface moving portion 92.
  • the moving portion 9 may be an XY stage including a stage opening 93.
  • the XY stage is provided with a movement mechanism such as a feed screw, a rack and pinion, etc. on the X-axis and the Y-axis, whereby the upper measurement unit 2a attached to the upper surface of the XY stage is attached to the lower surface of the XY stage. It is moved in a plane relative to the lower measurement unit 2b.
  • the first light source 21 provided in the upper measurement unit 2a irradiates the upper surface 41 of the mirror 4 with the measurement light through the stage opening 93.
  • the moving unit 9 may be a feed screw individually attached to the first light source 21 and the first beam splitter B1. By moving the individual components without dividing the measurement unit 2, the first light source 21 can irradiate the upper surface 41 of the mirror 4 with the measurement light.
  • the structure is not limited as long as the first light source 21 can irradiate the upper surface 41 of the mirror 4 with the measurement light.
  • result storage unit 3334 In the result storage unit 334, information processing by software (stored in the storage unit 32) is specifically realized by hardware (control unit 33).
  • the result storage unit 334 stores data related to measurement such as the true distance R from the central axis of the object to be measured to the measurement surface 7, the deflection angle ⁇ used for correcting the measurement distance, or the rotation speed of the shaft 5. It is stored in the storage unit 32.
  • Display control unit 335 In the display control unit 335, information processing by software (stored in the storage unit 32) is specifically realized by hardware (control unit 33).
  • the display control unit 335 determines the true distance R from the central axis of the object to be measured to the measurement surface 7, the deflection angle ⁇ used to correct the measurement distance, the rotation speed of the shaft 5, etc. during or after the inspection.
  • the data related to the measurement of the above is displayed on the display device 8. Since these data display the measurement status at the production site in real time, they are useful for quickly grasping and identifying the problem of the measurement surface 7 of the object to be measured, and for quick countermeasures and the like.
  • Measurement Method Section 2 describes a measurement method using the measurement device 1 described in Section 1.
  • the measurement method includes a measurement light output step, a light detection step, a displacement detection step, and a measurement step.
  • the measurement light output step the measurement light is output from the first light source 21 and reflected by the mirror 4 so as to face a desired direction. This is continuously irradiated on the measurement surface 7.
  • the mirror 4 is configured to rotate about a rotation axis toward the first light source 21.
  • the specular reflection component of the light reflected on the measurement surface 7 of the measurement light is detected.
  • the displacement detection step the displacement between the mirror 4 and the rotation axis that occurs during rotation is detected.
  • the distance between the mirror 4 and one point on the measurement surface 7 is continuously calculated based on the specular reflection component and the displacement. As a result, the shape of the measuring surface 7 is measured. Specifically, this measurement method will be described in two parts.
  • FIG. 12 is an activity diagram of a method for calculating the deflection angle ⁇ of the shaft 5 according to the embodiment. Hereinafter, description will be given with reference to this figure.
  • the user adjusts the shaft 5 so that the reference light is applied to the upper surface 41 of the mirror 4.
  • the first light source 21 outputs the reference light toward the upper surface 41 of the mirror 4.
  • the reference light detection unit 24 detects the reflected light of the reference light. When the reference light detection unit 24 is a CCD camera, the reference light detection unit 24 captures the first reference reflected light G1 and the second reference reflected light G2 which are reflected lights.
  • the user confirms whether the shaft 5 is not rotating or is rotating.
  • the user rotates the shaft 5 when the shaft 5 is not rotated.
  • the acquisition unit 331 acquires images obtained by capturing the first reference reflected light G1 and the second reference reflected light G2.
  • the result storage unit 334 stores images obtained by capturing the first reference reflected light G1 and the second reference reflected light G2.
  • the displacement detection unit 332 obtains the number of pixels from the center point of the first reference reflected light G1 to the position of the second reference reflected light G2 in the captured image, and calculates the amount of deflection r from the number of pixels. Further, the displacement detection unit 332 determines the deflection angle ⁇ based on the length L (the sum of the length of the shaft 5 and the distance from the shaft 5 to the reference light detection unit 24 (see FIG.
  • the result storage unit 334 stores the calculated deflection angle ⁇ in the storage unit 32.
  • the information processing device 3 completes the calculation of the deflection angle ⁇ .
  • the user stops the rotation of the shaft 5.
  • the user stops the output of the second light source 22.
  • FIG. 13 is an activity diagram of a method for measuring the distance to the measurement surface 7 according to the embodiment.
  • the user activates the measuring device 1.
  • the shaft 5 rotates.
  • the rotation speed is the same as the rotation speed of the shaft 5 when the deflection angle ⁇ is calculated in advance.
  • the first light source 21 irradiates the slope 42 of the mirror 4 with the measurement light.
  • the reference light detection unit 23a detects a part of the measurement light reflected by the reference light beam splitter B1a as the reference light.
  • the measurement light detection unit 23b detects the measurement light reflected by the measurement light beam splitter B1b.
  • the first light source 21 stops the output of the measurement light.
  • the acquisition unit 331 acquires the reference signal data and the measurement signal data.
  • the measurement unit 333 reads the deflection angle ⁇ stored in the storage unit 32.
  • the measurement unit 333 calculates the round-trip time ⁇ of the measurement light from the reference signal data and the measurement signal data, and measures the distance R'from the central axis of the object to be measured to the measurement surface 7.
  • the measuring unit 333 corrects the measured distance using the deflection angle ⁇ , and calculates the true distance R.
  • the result storage unit 334 stores the measured three-dimensional data including the true distance R in the storage unit 32.
  • the information processing device 3 confirms whether the reference signal data and the measurement signal data have been input.
  • the measuring device 1 stops the rotation of the shaft 5.
  • Modification Example Section 3 describes a modification of the measuring device 1. That is, the above-described embodiment may be implemented according to the following aspects.
  • the reference light emitted from the second light source 22 may pass through the upper surface 41 and the lower surface 43 of the mirror 4 and be reflected by the lower surface 51 of the shaft 5.
  • the lower end of the shaft 5 may be a mirror surface, the second light source 22 and the reference light detection unit 24 may be arranged below the shaft 5, and the reference light may be output from the second light source 22 toward the lower end.
  • the shaft 5 does not have to be a cylinder.
  • the bottom surface may be a prism such as a triangle, a quadrangle, or a pentagon.
  • a camera may be arranged below in a direction perpendicular to the central axis of the shaft 5, the contours of the shaft 5 being stopped and rotating may be imaged, and the difference between the contours of both images may be defined as the amount of deflection r.
  • the measuring unit 333 measures the true distance R from the central axis of the object to be measured to the measurement surface 7, it may be corrected by the deflection angle ⁇ measured in advance, but the second light source 22 may be corrected in real time. It is also possible to irradiate the reference light from the source and detect and correct the deflection angle ⁇ .
  • a dichroic mirror capable of separating the reflection component and the transmission component depending on the wavelength band may be adopted.
  • the wavelength band of the measurement light output by the first light source 21 becomes the reflection component
  • the wavelength band of the reference light output by the second light source 22 becomes the transmission component.
  • the distance measurement is not limited to the above-mentioned method, and an optical modulation method, a matching method, an optical comb interference measurement method, or the like may be appropriately adopted.
  • the user may manually adjust the position of the mirror 4, but the position of the mirror 4 may be adjusted by automatically detecting the first reference reflected light G1 by the measuring device 1.
  • a program may be provided that causes a computer to execute the above-mentioned measurement method. This program may be pre-installed, may be installed after the fact, such a program may be stored in an external storage medium, or may be operated by cloud computing.
  • the mirror includes an upper surface orthogonal to the rotation axis and a slope inclined with respect to the upper surface, and the first light source measures the slope along the rotation axis direction.
  • a device that is configured to irradiate light further includes a second light source, and the second light source is configured to irradiate the upper surface with reference light along the direction of the rotation axis.
  • the first light source is configured to be able to irradiate the measuring light on the upper surface of the mirror along the direction of the rotation axis, and the measuring unit is a reflection component on the upper surface. Based on this, the distance between the first light source and one point on the upper surface is continuously measured.
  • the mirror is a dichroic mirror capable of separating a reflected component and a transmitted component by a wavelength band, the wavelength band of the measured light serves as the reflected component, a second light source is further provided, and the second light source is provided.
  • the wavelength band of the reference light output by is the transmission component.
  • the displacement detecting unit is configured to calculate the displacement based on the first reference reflected light and the second reference reflected light, and here, the first reference reflected light is in a state where there is no such displacement.
  • the reference light is reflected by the mirror, and the second reference reflected light is the reference light reflected by the mirror in a state of having the displacement.
  • the measuring device further includes a shaft, the shaft is hollow, the measurement light and the reference light are passed from one end of the shaft, and the mirror is provided on the inner lower surface thereof.
  • the reference light is visible light.
  • the first light source is an optical comb light source. It is a measurement method and includes a measurement light output step, a light detection step, a displacement detection step, and a measurement step. In the measurement light output step, measurement light is output from a first light source, and this is desired by a mirror.
  • the measurement surface is continuously irradiated with light reflected in the direction of the above, where the mirror is configured to rotate about a rotation axis toward the first light source, and in the light detection step, the measurement light is The mirror surface reflection component of the reflected light with respect to the measurement surface is detected, the displacement between the mirror and the rotation axis generated during rotation is detected in the displacement detection step, and the mirror surface reflection component is detected in the measurement step.
  • a program that causes a computer to execute the measurement method is not the case.
  • Measuring device 2 Measuring unit 2a: Upper measuring unit 2b: Lower measuring unit 21: First light source 22: Second light source 23: Light detection unit 23a: Reference light detection unit 23b: Measurement light detection unit 24: Reference light detection Unit 3: Information processing device 30: Communication bus 31: Communication unit 32: Storage unit 33: Control unit 331: Acquisition unit 332: Displacement detection unit 333: Measurement unit 334: Result storage unit 335: Display control unit 4: Mirror 41: Top surface 42: Slope 43: Bottom surface 5: Shaft 51: Bottom surface 6: Bearing 7: Measurement surface 8: Display device 9: Moving unit 91: Top surface moving unit 92: Bottom surface moving unit 93: Stage opening B1: First beam splitter B1a : Reference light beam splitter B1b: Measurement light beam splitter B2: Second beam splitter G1: First reference reflected light G2: Second reference reflected light

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

In one embodiment of this invention, a measurement device is provided. The measurement device comprises a first light source, a mirror, a photodetection unit, a displacement detection unit, and a measurement unit. The first light source outputs measurement light. The mirror rotates around a rotation axis oriented toward the first light source. The measurement light is reflected so as to be oriented in a desired direction and is continuously emitted onto a measurement surface. The photodetection unit detects the specularly reflected component of the measurement light that has been reflected by the measurement surface. The displacement detection unit detects displacement between the mirror and rotation axis that occurs during rotation. The measurement unit successively calculates distances between the mirror and single points on the measurement surface on the basis of the specularly reflected component and the displacement and measures the shape of the measurement surface accordingly.

Description

計測装置、プログラム及び計測方法Measuring equipment, programs and measuring methods
 本発明は、計測装置、プログラム及び計測方法に関する。 The present invention relates to a measuring device, a program, and a measuring method.
 開口部を有する被計測物の内径を非接触で計測するために、光計測装置が用いられている。 An optical measuring device is used to measure the inner diameter of the object to be measured having an opening in a non-contact manner.
 特許文献1には、開口部の内径を非接触に測定するために、位置決めガイドなしで、測定ヘッドを回転軸と直交する軸直交方向を跨ぐように変化させながら、測定ヘッドにより多数の測定点を一つのデータ群として、各データ群の最小値に基づいて内径を測定する装置が開示されている。 In Patent Document 1, in order to measure the inner diameter of an opening in a non-contact manner, a large number of measurement points are measured by the measurement head while changing the measurement head so as to straddle the direction orthogonal to the axis orthogonal to the rotation axis without a positioning guide. Is disclosed as one data group, and an apparatus for measuring the inner diameter based on the minimum value of each data group is disclosed.
特開2017-72546号公報JP-A-2017-72546
 ところが、特許文献1に開示されている計測装置では、測定ヘッドの位置が、連結しているシャフトが回転することで発生するたわみによってずれた場合、正確な内径を測定することはできない。 However, in the measuring device disclosed in Patent Document 1, if the position of the measuring head is deviated due to the deflection generated by the rotation of the connected shaft, it is not possible to accurately measure the inner diameter.
 本発明は、かかる事情を鑑みてなされたものであり、被計測物をより精度良く計測可能な計測装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a measuring device capable of measuring an object to be measured with higher accuracy.
 本発明の一態様によれば、計測装置が提供される。この計測装置は、第1光源と、ミラーと、光検出部と、変位検出部と、計測部とを備える。第1光源は、測定光を出力するように構成される。ミラーは、第1光源に向かう回転軸周りに回転するように構成される。測定光を、所望の方向に向くように反射させて、これを計測面に連続的に照射するように構成される。光検出部は、測定光の、計測面に対する反射光のうちの鏡面反射成分を検出するように構成される。変位検出部は、回転時に生じるミラーと回転軸との変位を検出するように構成される。計測部は、鏡面反射成分と変位とに基づいて、ミラーと計測面における一点との距離を連続的に算出し、これにより計測面の形状を計測するように構成される。 According to one aspect of the present invention, a measuring device is provided. This measuring device includes a first light source, a mirror, a light detecting unit, a displacement detecting unit, and a measuring unit. The first light source is configured to output measurement light. The mirror is configured to rotate about an axis of rotation towards the first light source. The measurement light is reflected so as to face a desired direction, and the measurement surface is continuously irradiated with the measurement light. The photodetector is configured to detect the specular reflection component of the light reflected on the measurement surface of the measurement light. The displacement detection unit is configured to detect the displacement between the mirror and the rotation axis that occurs during rotation. The measuring unit is configured to continuously calculate the distance between the mirror and one point on the measuring surface based on the specular reflection component and the displacement, thereby measuring the shape of the measuring surface.
 このような計測装置によれば、被計測物を精度良く計測することができる。 According to such a measuring device, the object to be measured can be measured with high accuracy.
計測装置1の全体構成図である。It is an overall block diagram of the measuring apparatus 1. FIG. 配置されたミラー4の図である。It is a figure of the arranged mirror 4. 計測中にシャフト5がたわんでいる状態を示す図である。It is a figure which shows the state which the shaft 5 is bent during measurement. 測定光と基準光の光路を示す概要図である。It is a schematic diagram which shows the optical path of the measurement light and the reference light. 計測装置1のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware composition of the measuring apparatus 1. FIG. 情報処理装置3のハードウェア構成を示すブロック図である。It is a block diagram which shows the hardware structure of an information processing apparatus 3. 情報処理装置3における制御部33が担う機能を示す機能ブロック図である。It is a functional block diagram which shows the function which the control part 33 in an information processing apparatus 3 has. シャフト5が未回転時の基準光をシャフト5の上面と側面から見た図である。It is a figure which looked at the reference light when the shaft 5 was not rotated from the upper surface and the side surface of the shaft 5. シャフト5の回転時の基準光をシャフト5の上面と側面から見た図である。It is a figure which looked at the reference light at the time of rotation of a shaft 5 from the upper surface and the side surface of a shaft 5. ミラー4で反射した基準光の各画像データを示している。Each image data of the reference light reflected by the mirror 4 is shown. 実施形態に係る第1光源21から測定光をミラー4の上面41に照射して長さLを測定する一例を表した図である。It is a figure which showed an example which irradiates the upper surface 41 of the mirror 4 with the measurement light from the 1st light source 21 which concerns on embodiment, and measures the length L. 実施形態に係るシャフト5のたわみ角θを算出する方法のアクティビティ図である。It is an activity diagram of the method of calculating the deflection angle θ of the shaft 5 which concerns on embodiment. 実施形態に係る計測面7までの距離の計測方法のアクティビティ図である。It is an activity diagram of the measurement method of the distance to the measurement surface 7 which concerns on embodiment.
 以下、図面を用いて本発明の実施形態について説明する。以下に示す実施形態中で示した各特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The features shown in the embodiments shown below can be combined with each other. In addition, the invention is independently established for each feature.
1.全体構成
1.1 計測装置1
 第1節では、本実施形態に係る計測装置について説明する。図1は、計測装置1の全体構成図である。
1. 1. Overall configuration 1.1 Measuring device 1
Section 1 describes the measuring device according to the present embodiment. FIG. 1 is an overall configuration diagram of the measuring device 1.
 図1に示されるように、計測装置1は、計測ユニット2と、ミラー4と、シャフト5と、軸受6とを備える。計測装置1は、被計測物の中心軸に沿って計測面7を非接触で三次元計測する。情報処理装置3は、光検出部23及び基準光検出部24の検出信号を入力可能に計測ユニット2に電気的に接続されている。以下各構成要素についてさらに詳述する。 As shown in FIG. 1, the measuring device 1 includes a measuring unit 2, a mirror 4, a shaft 5, and a bearing 6. The measuring device 1 three-dimensionally measures the measuring surface 7 along the central axis of the object to be measured in a non-contact manner. The information processing device 3 is electrically connected to the measurement unit 2 so that the detection signals of the photodetector 23 and the reference light detection unit 24 can be input. Each component will be described in more detail below.
1.2 計測ユニット2
 計測ユニット2は、第1光源21と、第2光源22と、光検出部23と、基準光検出部24と、第1ビームスプリッタB1と、第2ビームスプリッタB2とを有する。
1.2 Measuring unit 2
The measurement unit 2 includes a first light source 21, a second light source 22, a light detection unit 23, a reference light detection unit 24, a first beam splitter B1, and a second beam splitter B2.
(第1光源21)
 第1光源21は、測定光を出力するように構成される。特に、第1光源21は、回転軸方向に沿って後述のミラー4における斜面42に測定光を照射するよう構成される。第1光源21から出力する測定光の光軸は、被計測体の中心軸と一致する。ここで測定光は、例えば、レーザー光であり、さらに好ましくは、第1光源21は、光コム光源である。
(First light source 21)
The first light source 21 is configured to output the measurement light. In particular, the first light source 21 is configured to irradiate the slope 42 of the mirror 4, which will be described later, with the measurement light along the direction of the rotation axis. The optical axis of the measurement light output from the first light source 21 coincides with the central axis of the object to be measured. Here, the measurement light is, for example, laser light, and more preferably, the first light source 21 is an optical comb light source.
(第2光源22)
 第2光源22は、シャフト5の回転軸方向に沿ってミラー4の上面41に基準光を照射する。第2光源22が出力する基準光の光軸は、第1光源21が出力する測定光の光軸に対して距離δ離間している。
(Second light source 22)
The second light source 22 irradiates the upper surface 41 of the mirror 4 with reference light along the direction of the rotation axis of the shaft 5. The optical axis of the reference light output by the second light source 22 is separated by a distance δ from the optical axis of the measurement light output by the first light source 21.
(光検出部23)
 光検出部23は、参照光検出部23aと、測定光検出部23bとを有する。参照光検出部23aは、参照光ビームスプリッタB1aで反射した測定光の一部を検出して、参照信号データを抽出する。光検出部は、測定光の、計測面7に対する反射光のうちの、ミラー4で鏡面反射した成分を検出するように構成される。即ち、測定光検出部23bは、鏡面反射した測定光を検出して、測定信号データを抽出する。
(Light detection unit 23)
The light detection unit 23 includes a reference light detection unit 23a and a measurement light detection unit 23b. The reference light detection unit 23a detects a part of the measurement light reflected by the reference light beam splitter B1a and extracts the reference signal data. The photodetector is configured to detect a component of the measurement light reflected on the measurement surface 7 that is mirror-reflected by the mirror 4. That is, the measurement light detection unit 23b detects the specularly reflected measurement light and extracts the measurement signal data.
(基準光検出部24)
 基準光検出部24は、第2光源22が出力した基準光がミラー4の上面41で反射した基準光を検出する。基準光は、好ましくは可視光であるが、赤外光、又は紫外光であってもよい。即ち、基準光検出部24は、後述する第1基準反射光G1及び第2基準反射光G2を検出する。基準光検出部24は、例えば、光撮像素子であり、CCD(Charge Couple Devices)イメージセンサーでもCMOS(Completely Metal Oxide Semiconductor)イメージセンサーであってもよい。
(Reference light detection unit 24)
The reference light detection unit 24 detects the reference light that the reference light output by the second light source 22 is reflected by the upper surface 41 of the mirror 4. The reference light is preferably visible light, but may be infrared light or ultraviolet light. That is, the reference light detection unit 24 detects the first reference reflected light G1 and the second reference reflected light G2, which will be described later. The reference light detection unit 24 is, for example, an optical image sensor, and may be a CCD (Charge Couple Devices) image sensor or a CMOS (Completion Metal Semiconductor) image sensor.
(第1ビームスプリッタB1)
 第1ビームスプリッタB1は、参照光ビームスプリッタB1aと測定光ビームスプリッタB1bとを有する。これらは、両者とも計測ユニット2内に配置される。参照光ビームスプリッタB1aは、第1光源21から照射した光の一部を参照光検出部23aに向けて反射させる。測定光ビームスプリッタB1bは、残りの光を測定光として透過させ、反射経路から進入した測定光を測定光検出部23bに向けて反射させる。
(1st beam splitter B1)
The first beam splitter B1 has a reference light beam splitter B1a and a measurement light beam splitter B1b. Both of these are arranged in the measuring unit 2. The reference light beam splitter B1a reflects a part of the light emitted from the first light source 21 toward the reference light detection unit 23a. The measurement light beam splitter B1b transmits the remaining light as the measurement light, and reflects the measurement light that has entered from the reflection path toward the measurement light detection unit 23b.
(第2ビームスプリッタB2)
 第2ビームスプリッタB2は、計測ユニット2内に配置される。第2ビームスプリッタB2は、第2光源22から出力された基準光を反射させ、反射経路から進入した基準光を基準光検出部24に向けて透過させる。
(2nd beam splitter B2)
The second beam splitter B2 is arranged in the measuring unit 2. The second beam splitter B2 reflects the reference light output from the second light source 22, and transmits the reference light entering from the reflection path toward the reference light detection unit 24.
1.3 ミラー4
 ミラー4は、第1光源21に向かう回転軸周りに回転するように構成される。また、ミラー4は、測定光を、所望の方向に向くように反射させる。図2は、配置されたミラー4の図である。図2に示されるように、ミラー4は、シャフト5の内部の下面51に設置されている。ミラー4は、回転軸に対して直交する上面41と、上面41に対して傾斜する斜面42とを備える。
1.3 Mirror 4
The mirror 4 is configured to rotate about a rotation axis toward the first light source 21. Further, the mirror 4 reflects the measurement light so as to face a desired direction. FIG. 2 is a view of the arranged mirror 4. As shown in FIG. 2, the mirror 4 is installed on the lower surface 51 inside the shaft 5. The mirror 4 includes an upper surface 41 orthogonal to the rotation axis and a slope 42 inclined with respect to the upper surface 41.
 上面41は、第2光源22から出力された基準光をシャフト5の内部の下面51に対して垂直に反射させる。即ち上面41は、ミラー4の設置面に対して水平に設けられている。斜面42は、第1光源21から照射されたら測定光を光軸に対して略直角に反射させる。このような構成によれば、シャフト5が回転中に、測定光を被計測体の計測面7に連続的に照射することができる。 The upper surface 41 reflects the reference light output from the second light source 22 perpendicularly to the lower surface 51 inside the shaft 5. That is, the upper surface 41 is provided horizontally with respect to the installation surface of the mirror 4. When the slope 42 is irradiated from the first light source 21, the slope 42 reflects the measurement light substantially at right angles to the optical axis. According to such a configuration, the measurement surface 7 of the object to be measured can be continuously irradiated with the measurement light while the shaft 5 is rotating.
1.4 シャフト5
 シャフト5は、中空であり、シャフト5の一端から測定光及び基準光を通過させる。また、シャフト5は、その内部の下面51にミラー4を有するように構成される。シャフト5は、高速スピンドルモータ(不図示)によって回転可能に構成される。図3は、計測中にシャフト5がたわんでいる状態を示す図である。シャフト5は、下面51にミラー4を有するため、シャフト5の重心が、シャフト5の中心軸よりもずれる。即ち重心と剛心が離れるため偏心が生ずる。この偏心により回転中に遠心力が発生し、回転軸に対して直角方向にたわみが生じる。たわみ角θは、たわんだシャフト5の接線とシャフト5の中心軸がなす角度である。ここで、たわみ角θは僅かであるため、図3に記すように、たわんだシャフト5の接線は、シャフト5の中心軸と同一とみなしてもよい。
1.4 Shaft 5
The shaft 5 is hollow, and the measurement light and the reference light are passed from one end of the shaft 5. Further, the shaft 5 is configured to have a mirror 4 on the lower surface 51 inside the shaft 5. The shaft 5 is rotatably configured by a high-speed spindle motor (not shown). FIG. 3 is a diagram showing a state in which the shaft 5 is bent during measurement. Since the shaft 5 has the mirror 4 on the lower surface 51, the center of gravity of the shaft 5 deviates from the central axis of the shaft 5. That is, eccentricity occurs because the center of gravity and the rigid center are separated. Due to this eccentricity, centrifugal force is generated during rotation, and deflection occurs in the direction perpendicular to the rotation axis. The deflection angle θ is an angle formed by the tangent line of the flexed shaft 5 and the central axis of the shaft 5. Here, since the deflection angle θ is small, as shown in FIG. 3, the tangent line of the flexed shaft 5 may be regarded as the same as the central axis of the shaft 5.
 図4は、測定光と基準光の光路を示す概要図である。特に図4Aはたわみ角θがないとき、図4Bはたわみ角θがあるときを示している。たわみ角θがないときは、測定光は、シャフト5の中心軸に対して直角になるようにミラー4で反射し、計測面7に向かって進行する。測定光は、計測面7で反射し、光検出部23まで入射経路を逆に進行する。同様に、基準光はミラー4の上面41で反射し、基準光検出部24まで入射経路を逆に進行する。 FIG. 4 is a schematic diagram showing the optical paths of the measurement light and the reference light. In particular, FIG. 4A shows a case where there is no deflection angle θ, and FIG. 4B shows a case where there is a deflection angle θ. When there is no deflection angle θ, the measurement light is reflected by the mirror 4 so as to be perpendicular to the central axis of the shaft 5, and travels toward the measurement surface 7. The measurement light is reflected by the measurement surface 7 and travels in the opposite direction to the photodetector 23 in the incident path. Similarly, the reference light is reflected by the upper surface 41 of the mirror 4 and travels in the opposite direction to the reference light detection unit 24.
 計測中にシャフト5が回転するため、たわみ角θが生じる。計測ユニット2は固定されているため、光軸と被計測物の中心軸とは一致するが、シャフト5の中心軸がたわみ角θ分だけずれることになる。その結果、シャフト5の下面51が、非回転時の下面51よりθだけ水平方向にずれる。理想的には、測定光は、光軸に対して直角になるようにミラー4で反射し、計測面7に向かって進行する。しかし、計測中にたわみ角θが生じた場合、測定光は、ミラー4の姿勢がたわみ角θずれた方向に進行することになる。したがって計測誤差が生じるため、計測距離を補正する必要がある。これについては、後述する変位検出部332で詳しく説明する。 Since the shaft 5 rotates during measurement, a deflection angle θ is generated. Since the measuring unit 2 is fixed, the optical axis coincides with the central axis of the object to be measured, but the central axis of the shaft 5 is deviated by a deflection angle θ. As a result, the lower surface 51 of the shaft 5 is displaced in the horizontal direction by θ from the lower surface 51 when not rotating. Ideally, the measurement light is reflected by the mirror 4 so as to be perpendicular to the optical axis and travels toward the measurement surface 7. However, when the deflection angle θ is generated during the measurement, the measurement light travels in the direction in which the posture of the mirror 4 deviates from the deflection angle θ. Therefore, a measurement error occurs, and it is necessary to correct the measurement distance. This will be described in detail in the displacement detection unit 332 described later.
 シャフト5の非回転時にミラー4が水平な姿勢を維持するように、下面51がシャフト5の軸に対して直角になるように構成されている。また、ミラー4と下面51とは接合されているため、シャフト5の回転中にミラー4が下面51に対して水平方向に移動することが防止される。 The lower surface 51 is configured to be perpendicular to the axis of the shaft 5 so that the mirror 4 maintains a horizontal posture when the shaft 5 is not rotated. Further, since the mirror 4 and the lower surface 51 are joined, the mirror 4 is prevented from moving in the horizontal direction with respect to the lower surface 51 during the rotation of the shaft 5.
1.5 軸受6
 軸受6は、計測ユニット2に対してシャフト5を回転可能に軸支する。図1及び図3では、軸受6がシャフト5の一端に片持ち梁として1つ示されているが、これを複数配置してもよい。シャフト5の軸に対して垂直方向に荷重がかかるため、軸受6はラジアル軸受であって、転がり軸受又は滑り軸受のどちらでもよい。
1.5 Bearing 6
The bearing 6 rotatably supports the shaft 5 with respect to the measuring unit 2. In FIGS. 1 and 3, one bearing 6 is shown as a cantilever at one end of the shaft 5, but a plurality of bearings 6 may be arranged. Since the load is applied in the direction perpendicular to the shaft of the shaft 5, the bearing 6 is a radial bearing and may be either a rolling bearing or a slide bearing.
1.6 計測面7
 計測面7は、円形開口部を有する被計測物の内面である。内面は円筒である。第1光源21の光軸と被計測物の中心軸は、測定開始前は一致している。計測装置1は、被計測物の中心軸から計測面7までの距離を三次元計測する。
1.6 Measuring surface 7
The measurement surface 7 is an inner surface of an object to be measured having a circular opening. The inner surface is a cylinder. The optical axis of the first light source 21 and the central axis of the object to be measured coincide with each other before the start of measurement. The measuring device 1 three-dimensionally measures the distance from the central axis of the object to be measured to the measuring surface 7.
1.7 情報処理装置3
 図5は、計測装置1のハードウェア構成を示すブロック図である。情報処理装置3は、計測装置1の構成要素である。図6は、情報処理装置3のハードウェア構成を示すブロック図である。図7は、情報処理装置3における制御部33が担う機能を示す機能ブロック図である。情報処理装置3は、通信部31と、記憶部32と、制御部33(取得部331、変位検出部332、計測部333、結果保存部334及び表示制御部335)とを有し、これらの構成要素が情報処理装置3の内部において通信バス30を介して電気的に接続されている。以下、各構成要素についてさらに説明する。
1.7 Information processing device 3
FIG. 5 is a block diagram showing a hardware configuration of the measuring device 1. The information processing device 3 is a component of the measuring device 1. FIG. 6 is a block diagram showing a hardware configuration of the information processing device 3. FIG. 7 is a functional block diagram showing a function carried out by the control unit 33 in the information processing device 3. The information processing device 3 has a communication unit 31, a storage unit 32, and a control unit 33 (acquisition unit 331, displacement detection unit 332, measurement unit 333, result storage unit 334, and display control unit 335). The components are electrically connected inside the information processing device 3 via the communication bus 30. Hereinafter, each component will be further described.
(通信部31)
 通信部31は、USB、IEEE1394、Thunderbolt、有線LANネットワーク通信等といった有線型の通信手段が好ましいものの、無線LANネットワーク通信、LTE/3G等のモバイル通信、Bluetooth(登録商標)通信等を必要に応じて含めてもよい。即ち、これら複数の通信手段の集合として実施することがより好ましい。特に、第1光源21、第2光源22、光検出部23及び基準光検出部24とは、所定の通信規格において通信可能に構成されることが好ましい。
(Communication unit 31)
Although wired communication means such as USB, IEEE1394, Thunderbolt, and wired LAN network communication are preferable, the communication unit 31 performs wireless LAN network communication, mobile communication such as LTE / 3G, Bluetooth (registered trademark) communication, and the like as necessary. May be included. That is, it is more preferable to carry out as a set of these plurality of communication means. In particular, it is preferable that the first light source 21, the second light source 22, the light detection unit 23, and the reference light detection unit 24 are configured to be communicable according to a predetermined communication standard.
 通信部31は、光検出部23及び基準光検出部24が検出したデータを受信するように構成される。また、通信部31は、第1光源21及び第2光源22が光を出力するための情報を送信可能に構成される。このような構成により、計測装置1が被計測物の中心軸から計測面7までの距離を三次元計測する制御が可能となる。 The communication unit 31 is configured to receive the data detected by the light detection unit 23 and the reference light detection unit 24. Further, the communication unit 31 is configured to be able to transmit information for the first light source 21 and the second light source 22 to output light. With such a configuration, the measuring device 1 can control the distance from the central axis of the object to be measured to the measuring surface 7 in three dimensions.
(記憶部32)
 記憶部32は、前述の記載により定義される様々な情報を記憶する。これは、例えばソリッドステートドライブ(Solid State Drive:SSD)等のストレージデバイスとして、あるいは、プログラムの演算に係る一時的に必要な情報(引数、配列等)を記憶するランダムアクセスメモリ(Random Access Memory:RAM)等のメモリとして実施されうる。また、これらの組合せであってもよい。特に、記憶部32は、光検出部23及び基準光検出部24が検出したデータを記憶する。また、記憶部32は、取得プログラム、変位検出プログラム、計測プログラム、結果保存プログラム、及び表示制御プログラムを記憶する。また、記憶部32は、これ以外にも制御部33によって実行される情報処理装置3に係る種々のプログラム等を記憶している。
(Memory unit 32)
The storage unit 32 stores various information defined by the above description. This is, for example, as a storage device such as a solid state drive (SSD), or a random access memory (Random Access Memory:) that stores temporarily necessary information (arguments, arrays, etc.) related to program operations. It can be implemented as a memory such as RAM). Moreover, these combinations may be used. In particular, the storage unit 32 stores the data detected by the light detection unit 23 and the reference light detection unit 24. Further, the storage unit 32 stores the acquisition program, the displacement detection program, the measurement program, the result storage program, and the display control program. In addition to this, the storage unit 32 stores various programs related to the information processing device 3 executed by the control unit 33.
(制御部33)
 制御部33は、情報処理装置3に関連する全体動作の処理・制御を行う。制御部33は、例えば不図示の中央処理装置(Central Processing Unit:CPU)である。制御部33は、記憶部32に記憶された所定のプログラムを読み出すことによって、情報処理装置3に係る種々の機能を実現する。具体的には取得機能、変位検出機能、計測機能、結果保存機能、及び表示制御機能が該当する。即ち、ソフトウェア(記憶部32に記憶されている)による情報処理がハードウェア(制御部33)によって具体的に実現されることで、取得部331、変位検出部332、計測部333、結果保存部334、及び表示制御部335として実行されうる。なお、図7においては、単一の制御部33として表記されているが、実際はこれに限るものではなく、機能ごとに複数の制御部33を有するように実施してもよい。またそれらの組合せであってもよい。以下、取得部331、変位検出部332、計測部333、結果保存部334、及び表示制御部335についてさらに詳述する。
(Control unit 33)
The control unit 33 processes and controls the entire operation related to the information processing device 3. The control unit 33 is, for example, a central processing unit (CPU) (not shown). The control unit 33 realizes various functions related to the information processing device 3 by reading a predetermined program stored in the storage unit 32. Specifically, the acquisition function, the displacement detection function, the measurement function, the result storage function, and the display control function are applicable. That is, the information processing by the software (stored in the storage unit 32) is concretely realized by the hardware (control unit 33), so that the acquisition unit 331, the displacement detection unit 332, the measurement unit 333, and the result storage unit are realized. It can be executed as 334 and display control unit 335. Although it is described as a single control unit 33 in FIG. 7, it is not actually limited to this, and it may be implemented so as to have a plurality of control units 33 for each function. Moreover, it may be a combination thereof. Hereinafter, the acquisition unit 331, the displacement detection unit 332, the measurement unit 333, the result storage unit 334, and the display control unit 335 will be described in more detail.
(取得部331)
 取得部331は、ソフトウェア(記憶部32に記憶されている)による情報処理がハードウェア(制御部33)によって具体的に実現されているものである。取得部331は、光検出部23及び基準光検出部24が検出したデータを、通信部31を介して取得するように構成されている。
(Acquisition unit 331)
In the acquisition unit 331, information processing by software (stored in the storage unit 32) is specifically realized by hardware (control unit 33). The acquisition unit 331 is configured to acquire the data detected by the light detection unit 23 and the reference light detection unit 24 via the communication unit 31.
(変位検出部332)
 変位検出部332は、シャフト5の回転時に生じるミラー4と回転軸との変位を検出するように構成される。具体的には、変位検出部332は、第1基準反射光G1及び第2基準反射光G2に基づいて変位を算出するように構成される。即ち、変位検出部332は、取得部331が取得した参照信号データと測定信号データとに基づいて、シャフト5が回転中のたわみ量を検出する。換言すると、記憶部32に記憶されたL(シャフト5の長さと、シャフト5から基準光検出部24までの距離との和(図3参照))とたわみ量とを用いてたわみ角θを算出する。図8は、シャフト5が未回転時の基準光をシャフト5の上面と側面から見た図である。このように、第1基準反射光G1は、変位がない状態で基準光がミラー4で反射したものである。ミラー4の上面41が回転軸に対して直角であるため、基準光は入射経路と同じ経路で反射する。そのため、基準光検出部24は、反射した第1基準反射光G1を入射した位置で検出する。
(Displacement detection unit 332)
The displacement detection unit 332 is configured to detect the displacement between the mirror 4 and the rotation shaft that occurs when the shaft 5 rotates. Specifically, the displacement detection unit 332 is configured to calculate the displacement based on the first reference reflected light G1 and the second reference reflected light G2. That is, the displacement detection unit 332 detects the amount of deflection during rotation of the shaft 5 based on the reference signal data and the measurement signal data acquired by the acquisition unit 331. In other words, the deflection angle θ is calculated using the L (the sum of the length of the shaft 5 and the distance from the shaft 5 to the reference light detection unit 24 (see FIG. 3)) and the amount of deflection stored in the storage unit 32. do. FIG. 8 is a view of the reference light when the shaft 5 is not rotating as viewed from the upper surface and the side surface of the shaft 5. As described above, the first reference reflected light G1 is the one in which the reference light is reflected by the mirror 4 in the state where there is no displacement. Since the upper surface 41 of the mirror 4 is perpendicular to the rotation axis, the reference light is reflected in the same path as the incident path. Therefore, the reference light detection unit 24 detects the reflected first reference reflected light G1 at the incident position.
 図9は、シャフト5の回転時の基準光をシャフト5の上面と側面から見た図である。シャフト5の中心軸は、たわみ角θだけ被計測物の中心軸及び測定光の光軸からずれる。そのためミラー4の上面41もたわみ角θだけずれることになる。したがって、基準光も入射経路とθだけ異なる経路で反射する。このように、第2基準反射光G2は、変位がある状態で基準光がミラー4で反射したものである。そのため、基準光検出部24は、反射した第2基準反射光G2を第1基準反射光G1よりずれた位置で検出する。 FIG. 9 is a view of the reference light during rotation of the shaft 5 as viewed from the upper surface and the side surface of the shaft 5. The central axis of the shaft 5 deviates from the central axis of the object to be measured and the optical axis of the measurement light by the deflection angle θ. Therefore, the upper surface 41 of the mirror 4 is also displaced by the deflection angle θ. Therefore, the reference light is also reflected by a path different from the incident path by θ. As described above, the second reference reflected light G2 is the one in which the reference light is reflected by the mirror 4 in a state where there is a displacement. Therefore, the reference light detection unit 24 detects the reflected second reference reflected light G2 at a position deviated from the first reference reflected light G1.
 基準光検出部24がCCDカメラである場合、検出データは、画像データである。図10は、ミラー4で反射した基準光の各画像データを示している。図10Aは、第1基準反射光G1の画像データである。図10Bは、第2基準反射光G2の画像データである。図10Aは、基準光がミラー4の上面41から垂直に反射されているため、基準光検出部24は反射位置と同じ位置で第1基準反射光G1を検出する。一方で、回転中のシャフト5はたわむため、ミラー4がたわみ角θだけ傾く。そのため、基準光検出部24は、第1基準反射光G1から、たわみ量分ずれた位置で第2基準反射光G2を検出する。ここで、図9からも明らかなように、シャフト5が回転中、基準光はミラー4の上面41に照射できない瞬間が存在する。そのため基準光検出部24は、基準光がミラー4の上面41で反射した軌跡のみを検出する。図10Bに描かれているように、測定光が反射している間は、第1基準反射光G1を中心にθaの角度内で第2基準反射光G2が軌跡を描く。軌跡は第1基準反射光G1を中心からrの半径である。θaはミラー4の形状、取付位置、測定光の光軸との距離によって決まる。 When the reference light detection unit 24 is a CCD camera, the detection data is image data. FIG. 10 shows each image data of the reference light reflected by the mirror 4. FIG. 10A is image data of the first reference reflected light G1. FIG. 10B is image data of the second reference reflected light G2. In FIG. 10A, since the reference light is vertically reflected from the upper surface 41 of the mirror 4, the reference light detection unit 24 detects the first reference reflected light G1 at the same position as the reflection position. On the other hand, since the rotating shaft 5 bends, the mirror 4 tilts by the bending angle θ. Therefore, the reference light detection unit 24 detects the second reference reflected light G2 at a position deviated from the first reference reflected light G1 by the amount of deflection. Here, as is clear from FIG. 9, there is a moment when the reference light cannot irradiate the upper surface 41 of the mirror 4 while the shaft 5 is rotating. Therefore, the reference light detection unit 24 detects only the locus of the reference light reflected by the upper surface 41 of the mirror 4. As shown in FIG. 10B, while the measurement light is reflected, the second reference reflected light G2 draws a locus around the first reference reflected light G1 within an angle of θa. The locus is the radius of r from the center of the first reference reflected light G1. θa is determined by the shape of the mirror 4, the mounting position, and the distance from the optical axis of the measurement light.
 変位検出部332は、第1基準反射光G1及び第2基準反射光G2に基づいて、変位である軌跡の半径rを算出すると、長さL(シャフト5の長さと、シャフト5から基準光検出部24までの距離と、の和(図3参照))との関係でたわみ角θが算出できる。基準光検出部24がCCDカメラである場合、rを算出するにあたり、画素当たりの距離を予め記憶部32に記憶する。変位検出部332は、第1基準反射光G1の中心から第2基準反射光G2の軌跡までの画素数と画素当たりの距離からrを算出する。ここでたわみ角θは以下の式で求まる。この半径rをシャフト5のたわみ量とみなすと以下の数1となる。
Figure JPOXMLDOC01-appb-M000001

 たわみ角θは算出後に、記憶部32に記憶される。
When the displacement detection unit 332 calculates the radius r of the locus which is the displacement based on the first reference reflected light G1 and the second reference reflected light G2, the length L (the length of the shaft 5 and the reference light detection from the shaft 5). The deflection angle θ can be calculated from the relationship between the distance to the portion 24 and the sum (see FIG. 3). When the reference light detection unit 24 is a CCD camera, the distance per pixel is stored in the storage unit 32 in advance when calculating r. The displacement detection unit 332 calculates r from the number of pixels from the center of the first reference reflected light G1 to the locus of the second reference reflected light G2 and the distance per pixel. Here, the deflection angle θ can be obtained by the following equation. If this radius r is regarded as the amount of deflection of the shaft 5, the following equation 1 is obtained.
Figure JPOXMLDOC01-appb-M000001

The deflection angle θ is stored in the storage unit 32 after calculation.
(計測部333)
 計測部333は、ミラー4の斜面42を反射した測定光と、たわみ角θより求めた変位とに基づいて、ミラー4と計測面7における一点との距離を連続的に算出し、これにより計測面7の形状を計測するように構成される。即ち、計測部333は、基準光検出部24が検出したデータから算出したたわみ角θと、第1光源21からミラー4の斜面42までの距離等とに基づいて、被計測物の中心から計測面7までの真の距離Rを算出する。
(Measurement unit 333)
The measurement unit 333 continuously calculates the distance between the mirror 4 and one point on the measurement surface 7 based on the measurement light reflected from the slope 42 of the mirror 4 and the displacement obtained from the deflection angle θ, and measures the distance accordingly. It is configured to measure the shape of the surface 7. That is, the measuring unit 333 measures from the center of the object to be measured based on the deflection angle θ calculated from the data detected by the reference light detecting unit 24 and the distance from the first light source 21 to the slope 42 of the mirror 4. Calculate the true distance R to surface 7.
 変位検出部332が、たわみ角θを算出したときと同じ条件で、スピンドルモーター(不図示)が回転すると、シャフト5は同じたわみ角θを有してたわむ。そのため、計測部333は、光検出部23が計測した計測面7までの距離R‘を、たわみ角θを用いて補正することで真の距離Rを計測する。図3及び図4Bに描かれているように、シャフト5のたわみにより、ミラー4がθ傾くと計測光もθだけずれて計測面7に進行する。計測面7で反射した散乱光の一部が入射経路と同じ経路で光検出部23に進行する。そのため、真の距離Rとたわみ角θを有したときの距離R’の関係は以下の数2である。
Figure JPOXMLDOC01-appb-M000002

 たわみ角θは既に算出されているため、本式からRを算出する。
When the spindle motor (not shown) rotates under the same conditions as when the displacement detection unit 332 calculates the deflection angle θ, the shaft 5 bends with the same deflection angle θ. Therefore, the measuring unit 333 measures the true distance R by correcting the distance R'to the measuring surface 7 measured by the photodetecting unit 23 by using the deflection angle θ. As shown in FIGS. 3 and 4B, when the mirror 4 is tilted by θ due to the deflection of the shaft 5, the measurement light also shifts by θ and advances to the measurement surface 7. A part of the scattered light reflected by the measurement surface 7 travels to the photodetector 23 along the same path as the incident path. Therefore, the relationship between the true distance R and the distance R'when having the deflection angle θ is the following equation 2.
Figure JPOXMLDOC01-appb-M000002

Since the deflection angle θ has already been calculated, R is calculated from this equation.
 非接触で距離を計測する方法は数多くある。ここでは、光パルス法の原理を用いて計測方法を説明する。計測部333は、第1光源21に対して光を照射させる。計測部333は、参照光検出部23aが検出した参照信号データと測定光検出部23bが検出した測定信号データから、光の往復時間τを測定する。被計測物の計測面7までの距離Dは、数3のように求まる。
Figure JPOXMLDOC01-appb-M000003

 ただし、nは光路の平均屈折率、cは真空中の光速である。
There are many ways to measure distance in a non-contact manner. Here, the measurement method will be described using the principle of the optical pulse method. The measuring unit 333 irradiates the first light source 21 with light. The measurement unit 333 measures the round-trip time τ of the light from the reference signal data detected by the reference light detection unit 23a and the measurement signal data detected by the measurement light detection unit 23b. The distance D to the measurement surface 7 of the object to be measured can be obtained as shown in Equation 3.
Figure JPOXMLDOC01-appb-M000003

However, n is the average refractive index of the optical path, and c is the speed of light in vacuum.
 計測部333は、距離Dから、第1ビームスプリッタB1からミラー4までの距離を除いた、被計測物の中心軸から計測面7までの距離R’を算出する。さらに、計測部333は、たわみ角θを用いて数2によって距離R’を補正して真の距離Rを算出する。 The measurement unit 333 calculates the distance R'from the central axis of the object to be measured to the measurement surface 7 excluding the distance from the first beam splitter B1 to the mirror 4 from the distance D. Further, the measuring unit 333 corrects the distance R'by Equation 2 using the deflection angle θ to calculate the true distance R.
 図11は、実施形態に係る第1光源21から測定光をミラー4の上面41に照射して長さLを測定する一例を表した図である。図11に表したように、計測ユニット2を上部計測ユニット2aと下部計測ユニット2bに分割させて、第1光源21を備える上部計測ユニット2aの中心軸をシャフト5の中心軸に対して距離δ移動させることで、第1光源21が上面41の上部に配置される。このような配置で、第1光源21は、測定光を回転軸方向に沿ってミラー4の備える上面41に測定光を照射可能に構成されてもよい。このように回転軸に対して垂直に配置されているミラー4の上面41に測定光を照射すると、計測部333が上面41における反射成分に基づいて、第1光源21と上面41における一点との距離を連続的に計測する。 FIG. 11 is a diagram showing an example in which the upper surface 41 of the mirror 4 is irradiated with the measurement light from the first light source 21 according to the embodiment to measure the length L. As shown in FIG. 11, the measurement unit 2 is divided into an upper measurement unit 2a and a lower measurement unit 2b, and the central axis of the upper measurement unit 2a provided with the first light source 21 is a distance δ with respect to the central axis of the shaft 5. By moving, the first light source 21 is arranged on the upper surface 41. With such an arrangement, the first light source 21 may be configured to be able to irradiate the upper surface 41 of the mirror 4 with the measurement light along the direction of the rotation axis. When the upper surface 41 of the mirror 4 arranged perpendicular to the rotation axis is irradiated with the measurement light in this way, the measurement unit 333 makes a point on the first light source 21 and the upper surface 41 based on the reflection component on the upper surface 41. Measure the distance continuously.
 このように第1光源21からシャフト5内のミラー4の上面41まで測定光を照射させて直接計測された長さLの方が、シャフト5の設計データに基づいて算出された長さLより精度が高い。そのため、計測ユニット2は、計測面7の形状をより精度よく計測できる。 The length L measured directly by irradiating the measurement light from the first light source 21 to the upper surface 41 of the mirror 4 in the shaft 5 is larger than the length L calculated based on the design data of the shaft 5. High accuracy. Therefore, the measurement unit 2 can measure the shape of the measurement surface 7 with higher accuracy.
 ここで、第1光源21が測定光をミラー4の上面41に照射させることができれば、第1光源21を備える上部計測ユニット2aの中心軸をシャフト5の中心軸に対して移動させる距離は、限定されない。 Here, if the first light source 21 can irradiate the upper surface 41 of the mirror 4 with the measurement light, the distance for moving the central axis of the upper measurement unit 2a including the first light source 21 with respect to the central axis of the shaft 5 is determined. Not limited.
 ここでは、第1光源21をシャフト5に対して移動させる構造の一例について説明する。計測ユニット2は、上部計測ユニット2aと下部計測ユニット2bとに分割される。上部計測ユニット2aは、第1光源21、第2光源22、光検出部23及び第1ビームスプリッタB1を備え、下部計測ユニット2bは、軸受6を備える。即ち、下部計測ユニット2bの中心軸は、軸受6に嵌合されたシャフト5の中心軸と同軸上に配置される。上部計測ユニット2aと下部計測ユニット2bとの間には、移動部9が取り付けられる。これにより、上部計測ユニット2aを下部計測ユニット2bに対して相対的に平面移動させることができる。移動部9は、上面移動部91と下面移動部92とを備える。上面移動部91は、下面移動部92に対して相対的に移動可能に構成される。これにより、上面移動部91の上面に取り付けられた上部計測ユニット2aは、下面移動部92の下面に取り付けられた下部計測ユニット2bに対して相対的に平面移動可能となる。 Here, an example of a structure in which the first light source 21 is moved with respect to the shaft 5 will be described. The measurement unit 2 is divided into an upper measurement unit 2a and a lower measurement unit 2b. The upper measurement unit 2a includes a first light source 21, a second light source 22, a light detection unit 23, and a first beam splitter B1, and the lower measurement unit 2b includes a bearing 6. That is, the central axis of the lower measurement unit 2b is arranged coaxially with the central axis of the shaft 5 fitted to the bearing 6. A moving unit 9 is attached between the upper measurement unit 2a and the lower measurement unit 2b. As a result, the upper measurement unit 2a can be moved in a plane relative to the lower measurement unit 2b. The moving portion 9 includes an upper surface moving portion 91 and a lower surface moving portion 92. The upper surface moving portion 91 is configured to be movable relative to the lower surface moving portion 92. As a result, the upper measurement unit 2a attached to the upper surface of the upper surface moving portion 91 can move in a plane relative to the lower measuring unit 2b attached to the lower surface of the lower surface moving portion 92.
 具体的には、移動部9は、ステージ開口部93を備えるXYステージであってもよい。XYステージは、X軸及びY軸に送りネジ、ラック・アンド・ピニオン等の運動機構を備え、これによって、XYステージの上面に取り付けられた上部計測ユニット2aを、XYステージの下面に取り付けられた下部計測ユニット2bに対して相対的に平面移動させる。上部計測ユニット2aに備え付けせれた第1光源21は、ステージ開口部93を介して、測定光をミラー4の上面41に照射する。 Specifically, the moving portion 9 may be an XY stage including a stage opening 93. The XY stage is provided with a movement mechanism such as a feed screw, a rack and pinion, etc. on the X-axis and the Y-axis, whereby the upper measurement unit 2a attached to the upper surface of the XY stage is attached to the lower surface of the XY stage. It is moved in a plane relative to the lower measurement unit 2b. The first light source 21 provided in the upper measurement unit 2a irradiates the upper surface 41 of the mirror 4 with the measurement light through the stage opening 93.
 移動部9は、第1光源21及び第1ビームスプリッタB1に個々に取り付けられる送りネジであってもよい。計測ユニット2を分割させずに、個々の構成要素を移動させることで、第1光源21が測定光をミラー4の上面41に照射することができる。第1光源21が測定光をミラー4の上面41に照射できれば、構造は限定されない。 The moving unit 9 may be a feed screw individually attached to the first light source 21 and the first beam splitter B1. By moving the individual components without dividing the measurement unit 2, the first light source 21 can irradiate the upper surface 41 of the mirror 4 with the measurement light. The structure is not limited as long as the first light source 21 can irradiate the upper surface 41 of the mirror 4 with the measurement light.
(結果保存部334)
 結果保存部334は、ソフトウェア(記憶部32に記憶されている)による情報処理がハードウェア(制御部33)によって具体的に実現されているものである。結果保存部334は、被計測物の中心軸から計測面7までの真の距離R、計測距離を補正する上で用いたがたわみ角θ、又はシャフト5の回転数等の計測に係るデータを記憶部32に記憶させる。
(Result storage unit 334)
In the result storage unit 334, information processing by software (stored in the storage unit 32) is specifically realized by hardware (control unit 33). The result storage unit 334 stores data related to measurement such as the true distance R from the central axis of the object to be measured to the measurement surface 7, the deflection angle θ used for correcting the measurement distance, or the rotation speed of the shaft 5. It is stored in the storage unit 32.
(表示制御部335)
 表示制御部335は、ソフトウェア(記憶部32に記憶されている)による情報処理がハードウェア(制御部33)によって具体的に実現されているものである。表示制御部335は、検査中又は検査終了後に、被計測物の中心軸から計測面7までの真の距離R、計測距離を補正する上で用いたたわみ角θ、又はシャフト5の回転数等の計測に係るデータを表示装置8に表示させる。これらのデータは、生産現場での計測状況をリアルタイムで表示しているため、被計測物の計測面7の問題点を迅速に把握、特定すること、及び素早い対策等に役立てられる。
(Display control unit 335)
In the display control unit 335, information processing by software (stored in the storage unit 32) is specifically realized by hardware (control unit 33). The display control unit 335 determines the true distance R from the central axis of the object to be measured to the measurement surface 7, the deflection angle θ used to correct the measurement distance, the rotation speed of the shaft 5, etc. during or after the inspection. The data related to the measurement of the above is displayed on the display device 8. Since these data display the measurement status at the production site in real time, they are useful for quickly grasping and identifying the problem of the measurement surface 7 of the object to be measured, and for quick countermeasures and the like.
2.計測方法
 第2節では、第1節で説明した計測装置1を用いた計測方法について説明する。計測方法は、測定光出力ステップと、光検出ステップと、変位検出ステップと、計測ステップとを備える。測定光出力ステップでは、第1光源21から測定光を出力し、ミラー4でこれを所望の方向に向くように反射させてる。これを計測面7に連続的に照射する。ここで、ミラー4は第1光源21に向かう回転軸周りに回転するように構成される。光検出ステップでは、測定光の、計測面7に対する反射光のうちの鏡面反射成分を検出する。変位検出ステップでは、回転時に生じるミラー4と回転軸との変位を検出する。計測ステップでは、鏡面反射成分と変位とに基づいて、ミラー4と計測面7における一点との距離を連続的に算出する。これにより計測面7の形状を計測する。具体的には、この計測方法を2つに分けて説明する。
2. Measurement Method Section 2 describes a measurement method using the measurement device 1 described in Section 1. The measurement method includes a measurement light output step, a light detection step, a displacement detection step, and a measurement step. In the measurement light output step, the measurement light is output from the first light source 21 and reflected by the mirror 4 so as to face a desired direction. This is continuously irradiated on the measurement surface 7. Here, the mirror 4 is configured to rotate about a rotation axis toward the first light source 21. In the light detection step, the specular reflection component of the light reflected on the measurement surface 7 of the measurement light is detected. In the displacement detection step, the displacement between the mirror 4 and the rotation axis that occurs during rotation is detected. In the measurement step, the distance between the mirror 4 and one point on the measurement surface 7 is continuously calculated based on the specular reflection component and the displacement. As a result, the shape of the measuring surface 7 is measured. Specifically, this measurement method will be described in two parts.
2.1 シャフト5のたわみ角θを算出方法
 本項では、計測面7までの距離を補正する上で用いるたわみ角θを算出する方法の一例を説明する。図12は、実施形態に係るシャフト5のたわみ角θを算出する方法のアクティビティ図である。以下、本図に沿って説明する。
2.1 Method for calculating the deflection angle θ of the shaft 5 This section describes an example of the method for calculating the deflection angle θ used for correcting the distance to the measurement surface 7. FIG. 12 is an activity diagram of a method for calculating the deflection angle θ of the shaft 5 according to the embodiment. Hereinafter, description will be given with reference to this figure.
(アクティビティA01)
 ユーザーは、基準光がミラー4の上面41に照射されるようにシャフト5を調整する。
(アクティビティA02)
 第1光源21は、基準光をミラー4の上面41に向けて出力する。
(アクティビティA03)
 基準光検出部24は、基準光の反射光を検出する。基準光検出部24がCCDカメラの場合、基準光検出部24は、反射光である第1基準反射光G1及び第2基準反射光G2を撮像する。
(アクティビティA04)
 ユーザーは、シャフト5が未回転か回転中かを確認する。
(アクティビティA05)
 ユーザーは、シャフト5が未回転の場合、シャフト5を回転させる。
(アクティビティA06)
 取得部331は、第1基準反射光G1及び第2基準反射光G2を撮像した画像を取得する。
(アクティビティA07)
 結果保存部334は、第1基準反射光G1及び第2基準反射光G2を撮像した画像を保存する。
(アクティビティA08)
 変位検出部332は、撮像した画像内の、第1基準反射光G1の中心点から第2基準反射光G2の位置までの画素数を求め、該画素数からたわみ量rを算出する。また、変位検出部332は、長さL(シャフト5の長さと、シャフト5から基準光検出部24までの距離と、の和(図3参照))とたわみ量rに基づいてたわみ角θを算出する。
(アクティビティA09)
 結果保存部334は、算出したたわみ角θを記憶部32に保存する。
(アクティビティA10)
 情報処理装置3は、たわみ角θの算出を完了する。
(アクティビティA11)
 ユーザーは、シャフト5の回転を停止する。
(アクティビティA12)
 ユーザーは、第2光源22の出力を停止する。
(Activity A01)
The user adjusts the shaft 5 so that the reference light is applied to the upper surface 41 of the mirror 4.
(Activity A02)
The first light source 21 outputs the reference light toward the upper surface 41 of the mirror 4.
(Activity A03)
The reference light detection unit 24 detects the reflected light of the reference light. When the reference light detection unit 24 is a CCD camera, the reference light detection unit 24 captures the first reference reflected light G1 and the second reference reflected light G2 which are reflected lights.
(Activity A04)
The user confirms whether the shaft 5 is not rotating or is rotating.
(Activity A05)
The user rotates the shaft 5 when the shaft 5 is not rotated.
(Activity A06)
The acquisition unit 331 acquires images obtained by capturing the first reference reflected light G1 and the second reference reflected light G2.
(Activity A07)
The result storage unit 334 stores images obtained by capturing the first reference reflected light G1 and the second reference reflected light G2.
(Activity A08)
The displacement detection unit 332 obtains the number of pixels from the center point of the first reference reflected light G1 to the position of the second reference reflected light G2 in the captured image, and calculates the amount of deflection r from the number of pixels. Further, the displacement detection unit 332 determines the deflection angle θ based on the length L (the sum of the length of the shaft 5 and the distance from the shaft 5 to the reference light detection unit 24 (see FIG. 3)) and the amount of deflection r. calculate.
(Activity A09)
The result storage unit 334 stores the calculated deflection angle θ in the storage unit 32.
(Activity A10)
The information processing device 3 completes the calculation of the deflection angle θ.
(Activity A11)
The user stops the rotation of the shaft 5.
(Activity A12)
The user stops the output of the second light source 22.
2.2 計測面7までの距離の計測方法
 本項では、被計測物の中心軸から計測面7までの距離を三次元計測する方法の一例について説明する。図13は、実施形態に係る計測面7までの距離の計測方法のアクティビティ図である。
2.2 Measurement method of the distance to the measurement surface 7 This section describes an example of the method of three-dimensionally measuring the distance from the central axis of the object to be measured to the measurement surface 7. FIG. 13 is an activity diagram of a method for measuring the distance to the measurement surface 7 according to the embodiment.
(アクティビティA21)
 ユーザーは、計測装置1を起動する。シャフト5が回転する。回転速度は、予めたわみ角θを算出したときのシャフト5の回転速度と同じである。
(アクティビティA22)
 第1光源21は、測定光をミラー4の斜面42に照射する。
(アクティビティA23)
 参照光検出部23aは、参照光ビームスプリッタB1aで反射した測定光の一部を、参照光として検出する。
(アクティビティA24)
 測定光検出部23bは、測定光ビームスプリッタB1bで反射した測定光を検出する。
(アクティビティA25)
 第1光源21は、測定光の出力を停止する。
(アクティビティA26)
 情報処理装置3が、全ての計測を完了したかを確認する。
(アクティビティA27)
 取得部331は、参照信号データ及び測定信号データを取得する。
(アクティビティA28)
 計測部333は、記憶部32に記憶されたたわみ角θを読み込む。
(アクティビティA29)
 計測部333は、参照信号データ及び測定信号データから、測定光の往復時間τを算出し、被計測物の中心軸から計測面7までの距離R’を計測する。計測部333は、計測した距離を、たわみ角θを用いて補正し、真の距離Rを算出する。
(アクティビティA30)
 結果保存部334は、真の距離Rを含む計測した三次元データを記憶部32に保存する。
(アクティビティA31)
 情報処理装置3は、参照信号データ、測定信号データが入力されたか確認する。
(アクティビティA32)
 測定が完了した場合、計測装置1はシャフト5の回転を停止する。
(Activity A21)
The user activates the measuring device 1. The shaft 5 rotates. The rotation speed is the same as the rotation speed of the shaft 5 when the deflection angle θ is calculated in advance.
(Activity A22)
The first light source 21 irradiates the slope 42 of the mirror 4 with the measurement light.
(Activity A23)
The reference light detection unit 23a detects a part of the measurement light reflected by the reference light beam splitter B1a as the reference light.
(Activity A24)
The measurement light detection unit 23b detects the measurement light reflected by the measurement light beam splitter B1b.
(Activity A25)
The first light source 21 stops the output of the measurement light.
(Activity A26)
It is confirmed whether the information processing device 3 has completed all the measurements.
(Activity A27)
The acquisition unit 331 acquires the reference signal data and the measurement signal data.
(Activity A28)
The measurement unit 333 reads the deflection angle θ stored in the storage unit 32.
(Activity A29)
The measurement unit 333 calculates the round-trip time τ of the measurement light from the reference signal data and the measurement signal data, and measures the distance R'from the central axis of the object to be measured to the measurement surface 7. The measuring unit 333 corrects the measured distance using the deflection angle θ, and calculates the true distance R.
(Activity A30)
The result storage unit 334 stores the measured three-dimensional data including the true distance R in the storage unit 32.
(Activity A31)
The information processing device 3 confirms whether the reference signal data and the measurement signal data have been input.
(Activity A32)
When the measurement is completed, the measuring device 1 stops the rotation of the shaft 5.
3.変形例
 第3節では、計測装置1に係る変形例について説明する。即ち、下記のような態様によって前述の実施形態を実施してもよい。
3. 3. Modification Example Section 3 describes a modification of the measuring device 1. That is, the above-described embodiment may be implemented according to the following aspects.
(1)第2光源22から照射する基準光を、ミラー4の上面41と下面43を通過させて、シャフト5の下面51で反射させてもよい。
(2)シャフト5の下端を鏡面にし、第2光源22及び基準光検出部24をシャフト5の下方に配置して、第2光源22から基準光を該下端に向けて出力してもよい。
(3)シャフト5は円筒でなくてもよい。底面が三角形、四角形、五角形のような角柱であってもよい。
(4)シャフト5の中心軸に直角の向きで下方にカメラを配置し、停止中及び回転中のシャフト5の輪郭を撮像し、両画像の輪郭の違いをたわみ量rとしてもよい。
(5)計測部333が、被計測物の中心軸から計測面7までの真の距離Rを計測するにあたり、予め計測したたわみ角θで補正をしてもよいが、リアルタイムで第2光源22から基準光りを照射し、たわみ角θを検出して補正してもよい。
(6)上面41及び斜面42を備えるミラー4に代えて、波長帯によって反射成分と透過成分とを分離可能なダイクロイックミラーを採用してもよい。かかる場合、第1光源21が出力する測定光の波長帯が反射成分となり、第2光源22が出力する基準光の波長帯が透過成分となる。
(7)距離の計測は、前述の方法に限定されず、光変調法、合致法、光コム干渉計測法等を適宜採用してもよい。
(8)ユーザーが、ミラー4の位置を手動で調整してもよいが、計測装置1によって第1基準反射光G1を自動検出することによって、ミラー4の位置を調整してもよい。シャフト5の回転開始、停止、第2光源22の出力の開始、及び停止は、一連のシーケンスとして、計測装置1によって自動的に実施されてもよい。
(9)プログラムであって、コンピュータに前述の計測方法を実行させるものが提供されてもよい。このプログラムが予めインストールされていてもよいし、事後的にインストールされてもよいし、このようなプログラムを外部の記憶媒体に記憶させてもよいし、クラウドコンピューティングで動作させてもよい。
(1) The reference light emitted from the second light source 22 may pass through the upper surface 41 and the lower surface 43 of the mirror 4 and be reflected by the lower surface 51 of the shaft 5.
(2) The lower end of the shaft 5 may be a mirror surface, the second light source 22 and the reference light detection unit 24 may be arranged below the shaft 5, and the reference light may be output from the second light source 22 toward the lower end.
(3) The shaft 5 does not have to be a cylinder. The bottom surface may be a prism such as a triangle, a quadrangle, or a pentagon.
(4) A camera may be arranged below in a direction perpendicular to the central axis of the shaft 5, the contours of the shaft 5 being stopped and rotating may be imaged, and the difference between the contours of both images may be defined as the amount of deflection r.
(5) When the measuring unit 333 measures the true distance R from the central axis of the object to be measured to the measurement surface 7, it may be corrected by the deflection angle θ measured in advance, but the second light source 22 may be corrected in real time. It is also possible to irradiate the reference light from the source and detect and correct the deflection angle θ.
(6) Instead of the mirror 4 provided with the upper surface 41 and the slope 42, a dichroic mirror capable of separating the reflection component and the transmission component depending on the wavelength band may be adopted. In such a case, the wavelength band of the measurement light output by the first light source 21 becomes the reflection component, and the wavelength band of the reference light output by the second light source 22 becomes the transmission component.
(7) The distance measurement is not limited to the above-mentioned method, and an optical modulation method, a matching method, an optical comb interference measurement method, or the like may be appropriately adopted.
(8) The user may manually adjust the position of the mirror 4, but the position of the mirror 4 may be adjusted by automatically detecting the first reference reflected light G1 by the measuring device 1. The rotation start and stop of the shaft 5, the start and stop of the output of the second light source 22 may be automatically performed by the measuring device 1 as a series of sequences.
(9) A program may be provided that causes a computer to execute the above-mentioned measurement method. This program may be pre-installed, may be installed after the fact, such a program may be stored in an external storage medium, or may be operated by cloud computing.
4.結言
 このように、回転中に発生するたわみによる変位を算出し、基準点から被計測物の内径を補正し、より精度良く距離を計測できる計測装置を提供することができる。
4. Conclusion In this way, it is possible to provide a measuring device capable of calculating the displacement due to the deflection generated during rotation, correcting the inner diameter of the object to be measured from the reference point, and measuring the distance more accurately.
 次に記載の各態様で提供されてもよい。
 前記計測装置において、前記ミラーは、前記回転軸に対して直交する上面と、該上面に対して傾斜する斜面とを備え、前記第1光源は、前記回転軸方向に沿って前記斜面に前記測定光を照射するよう構成され、第2光源をさらに備え、前記第2光源は、前記回転軸方向に沿って前記上面に基準光を照射するよう構成される、もの。
 前記計測装置において、前記第1光源は、前記測定光を前記回転軸方向に沿って前記ミラーの備える前記上面に前記測定光を照射可能に構成され、前記計測部は、前記上面における反射成分に基づいて、前記第1光源と前記上面における一点との距離を連続的に計測するように構成される、もの。
 前記計測装置において、前記ミラーは、波長帯によって反射成分と透過成分とを分離可能なダイクロイックミラーであり、前記測定光の波長帯が前記反射成分となり、第2光源をさらに備え、前記第2光源が出力する基準光の波長帯が前記透過成分となる、もの。
 前記計測装置において、前記変位検出部は、第1基準反射光及び第2基準反射光に基づいて前記変位を算出するように構成され、ここで前記第1基準反射光は、前記変位がない状態で前記基準光が前記ミラーで反射したもので、前記第2基準反射光は、前記変位がある状態で前記基準光が前記ミラーで反射したものである、もの。
 前記計測装置において、シャフトをさらに備え前記シャフトは、中空であり、該シャフトの一端から前記測定光及び前記基準光を通過させ、その内部下面に前記ミラーを有するように構成される、もの。
 前記計測装置において、前記基準光は、可視光である、もの。
 前記計測装置において、前記第1光源は、光コム光源である、もの。
 計測方法であって、測定光出力ステップと、光検出ステップと、変位検出ステップと、計測ステップとを備え、前記測定光出力ステップでは、第1光源から測定光を出力し、ミラーでこれを所望の方向に向くように反射させて計測面に連続的に照射し、ここで、前記ミラーは前記第1光源に向かう回転軸周りに回転するように構成され、前記光検出ステップでは、前記測定光の、前記計測面に対する反射光のうちの鏡面反射成分を検出し、前記変位検出ステップでは、回転時に生じる前記ミラーと前記回転軸との変位を検出し、前記計測ステップでは、前記鏡面反射成分と前記変位とに基づいて、前記ミラーと前記計測面における一点との距離を連続的に算出し、これにより前記計測面の形状を計測する、方法。
 プログラムであって、コンピュータに前記計測方法を実行させる、もの。
 もちろん、この限りではない。
It may be provided in each of the following aspects.
In the measuring device, the mirror includes an upper surface orthogonal to the rotation axis and a slope inclined with respect to the upper surface, and the first light source measures the slope along the rotation axis direction. A device that is configured to irradiate light, further includes a second light source, and the second light source is configured to irradiate the upper surface with reference light along the direction of the rotation axis.
In the measuring device, the first light source is configured to be able to irradiate the measuring light on the upper surface of the mirror along the direction of the rotation axis, and the measuring unit is a reflection component on the upper surface. Based on this, the distance between the first light source and one point on the upper surface is continuously measured.
In the measuring device, the mirror is a dichroic mirror capable of separating a reflected component and a transmitted component by a wavelength band, the wavelength band of the measured light serves as the reflected component, a second light source is further provided, and the second light source is provided. The wavelength band of the reference light output by is the transmission component.
In the measuring device, the displacement detecting unit is configured to calculate the displacement based on the first reference reflected light and the second reference reflected light, and here, the first reference reflected light is in a state where there is no such displacement. The reference light is reflected by the mirror, and the second reference reflected light is the reference light reflected by the mirror in a state of having the displacement.
In the measuring device, the measuring device further includes a shaft, the shaft is hollow, the measurement light and the reference light are passed from one end of the shaft, and the mirror is provided on the inner lower surface thereof.
In the measuring device, the reference light is visible light.
In the measuring device, the first light source is an optical comb light source.
It is a measurement method and includes a measurement light output step, a light detection step, a displacement detection step, and a measurement step. In the measurement light output step, measurement light is output from a first light source, and this is desired by a mirror. The measurement surface is continuously irradiated with light reflected in the direction of the above, where the mirror is configured to rotate about a rotation axis toward the first light source, and in the light detection step, the measurement light is The mirror surface reflection component of the reflected light with respect to the measurement surface is detected, the displacement between the mirror and the rotation axis generated during rotation is detected in the displacement detection step, and the mirror surface reflection component is detected in the measurement step. A method of continuously calculating the distance between the mirror and a point on the measuring surface based on the displacement, thereby measuring the shape of the measuring surface.
A program that causes a computer to execute the measurement method.
Of course, this is not the case.
 最後に、本発明に係る種々の実施形態を説明したが、これらは、例として提示したものであり、発明の範囲を限定することは意図していない。当該新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。当該実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 Finally, various embodiments according to the present invention have been described, but these are presented as examples and are not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the gist of the invention. The embodiment and its modifications are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and the equivalent scope thereof.
1   :計測装置
2   :計測ユニット
2a  :上部計測ユニット
2b  :下部計測ユニット
21  :第1光源
22  :第2光源
23  :光検出部
23a :参照光検出部
23b :測定光検出部
24  :基準光検出部
3   :情報処理装置
30  :通信バス
31  :通信部
32  :記憶部
33  :制御部
331 :取得部
332 :変位検出部
333 :計測部
334 :結果保存部
335 :表示制御部
4   :ミラー
41  :上面
42  :斜面
43  :下面
5   :シャフト
51  :下面
6   :軸受
7   :計測面
8   :表示装置
9   :移動部
91  :上面移動部
92  :下面移動部
93  :ステージ開口部
B1  :第1ビームスプリッタ
B1a :参照光ビームスプリッタ
B1b :測定光ビームスプリッタ
B2  :第2ビームスプリッタ
G1  :第1基準反射光
G2  :第2基準反射光
1: Measuring device 2: Measuring unit 2a: Upper measuring unit 2b: Lower measuring unit 21: First light source 22: Second light source 23: Light detection unit 23a: Reference light detection unit 23b: Measurement light detection unit 24: Reference light detection Unit 3: Information processing device 30: Communication bus 31: Communication unit 32: Storage unit 33: Control unit 331: Acquisition unit 332: Displacement detection unit 333: Measurement unit 334: Result storage unit 335: Display control unit 4: Mirror 41: Top surface 42: Slope 43: Bottom surface 5: Shaft 51: Bottom surface 6: Bearing 7: Measurement surface 8: Display device 9: Moving unit 91: Top surface moving unit 92: Bottom surface moving unit 93: Stage opening B1: First beam splitter B1a : Reference light beam splitter B1b: Measurement light beam splitter B2: Second beam splitter G1: First reference reflected light G2: Second reference reflected light

Claims (10)

  1. 計測装置であって、
     第1光源と、ミラーと、光検出部と、変位検出部と、計測部とを備え、
     前記第1光源は、測定光を出力するように構成され、
     前記ミラーは、
      前記第1光源に向かう回転軸周りに回転するように構成され、
      前記測定光を、所望の方向に向くように反射させて、これを計測面に連続的に照射するように構成され、
     前記光検出部は、前記測定光の、前記計測面に対する反射光のうちの鏡面反射成分を検出するように構成され、
     前記変位検出部は、回転時に生じる前記ミラーと前記回転軸との変位を検出するように構成され、
     前記計測部は、前記鏡面反射成分と前記変位とに基づいて、前記ミラーと前記計測面における一点との距離を連続的に算出し、これにより前記計測面の形状を計測するように構成される、
    もの。
    It ’s a measuring device,
    A first light source, a mirror, a light detection unit, a displacement detection unit, and a measurement unit are provided.
    The first light source is configured to output measurement light.
    The mirror
    It is configured to rotate about an axis of rotation towards the first light source.
    The measurement light is reflected so as to face a desired direction, and the measurement surface is continuously irradiated with the measurement light.
    The photodetector is configured to detect a specular reflection component of the light reflected from the measurement surface with respect to the measurement surface.
    The displacement detecting unit is configured to detect the displacement between the mirror and the rotating shaft that occurs during rotation.
    The measuring unit is configured to continuously calculate the distance between the mirror and one point on the measuring surface based on the specular reflection component and the displacement, thereby measuring the shape of the measuring surface. ,
    thing.
  2. 請求項1に記載の計測装置において、
     前記ミラーは、前記回転軸に対して直交する上面と、該上面に対して傾斜する斜面とを備え、
     前記第1光源は、前記回転軸方向に沿って前記斜面に前記測定光を照射するよう構成され、
     第2光源をさらに備え、
     前記第2光源は、前記回転軸方向に沿って前記上面に基準光を照射するよう構成される、
    もの。
    In the measuring device according to claim 1,
    The mirror includes an upper surface orthogonal to the rotation axis and a slope inclined with respect to the upper surface.
    The first light source is configured to irradiate the slope with the measurement light along the direction of the rotation axis.
    With a second light source
    The second light source is configured to irradiate the upper surface with reference light along the direction of the rotation axis.
    thing.
  3. 請求項2に記載の計測装置において、
     前記第1光源は、前記測定光を前記回転軸方向に沿って前記ミラーの備える前記上面に前記測定光を照射可能に構成され、
     前記計測部は、前記上面における反射成分に基づいて、前記第1光源と前記上面における一点との距離を連続的に計測するように構成される、
    もの。
    In the measuring device according to claim 2.
    The first light source is configured to be capable of irradiating the measurement light on the upper surface of the mirror along the direction of the rotation axis.
    The measuring unit is configured to continuously measure the distance between the first light source and one point on the upper surface based on the reflection component on the upper surface.
    thing.
  4. 請求項1に記載の計測装置において、
     前記ミラーは、波長帯によって反射成分と透過成分とを分離可能なダイクロイックミラーであり、
     前記測定光の波長帯が前記反射成分となり、
     第2光源をさらに備え、
     前記第2光源が出力する基準光の波長帯が前記透過成分となる、
    もの。
    In the measuring device according to claim 1,
    The mirror is a dichroic mirror capable of separating a reflection component and a transmission component according to a wavelength band.
    The wavelength band of the measurement light becomes the reflection component.
    With a second light source
    The wavelength band of the reference light output by the second light source serves as the transmitted component.
    thing.
  5. 請求項2~請求項4の何れか1つに記載の計測装置において、
     前記変位検出部は、第1基準反射光及び第2基準反射光に基づいて前記変位を算出するように構成され、ここで
      前記第1基準反射光は、前記変位がない状態で前記基準光が前記ミラーで反射したもので、
      前記第2基準反射光は、前記変位がある状態で前記基準光が前記ミラーで反射したものである、
    もの。
    In the measuring device according to any one of claims 2 to 4.
    The displacement detection unit is configured to calculate the displacement based on the first reference reflected light and the second reference reflected light, and here, the first reference reflected light is the reference light in the absence of the displacement. Reflected by the mirror
    The second reference reflected light is the one in which the reference light is reflected by the mirror in a state where there is the displacement.
    thing.
  6. 請求項2~請求項5の何れか1つに記載の計測装置において、
     シャフトをさらに備え
     前記シャフトは、
      中空であり、該シャフトの一端から前記測定光及び前記基準光を通過させ、
      その内部下面に前記ミラーを有するように構成される、
    もの。
    In the measuring device according to any one of claims 2 to 5.
    The shaft is further provided.
    It is hollow and allows the measurement light and the reference light to pass from one end of the shaft.
    It is configured to have the mirror on its inner lower surface.
    thing.
  7. 請求項2~請求項6の何れか1つに記載の計測装置において、
     前記基準光は、可視光である、
    もの。
    In the measuring device according to any one of claims 2 to 6.
    The reference light is visible light.
    thing.
  8. 請求項1~請求項7の何れか1つに記載の計測装置において、
     前記第1光源は、光コム光源である、
    もの。
    In the measuring device according to any one of claims 1 to 7.
    The first light source is an optical comb light source.
    thing.
  9. 計測方法であって、
     測定光出力ステップと、光検出ステップと、変位検出ステップと、計測ステップとを備え、
     前記測定光出力ステップでは、第1光源から測定光を出力し、ミラーでこれを所望の方向に向くように反射させて計測面に連続的に照射し、ここで、前記ミラーは前記第1光源に向かう回転軸周りに回転するように構成され、
     前記光検出ステップでは、前記測定光の、前記計測面に対する反射光のうちの鏡面反射成分を検出し、
     前記変位検出ステップでは、回転時に生じる前記ミラーと前記回転軸との変位を検出し、
     前記計測ステップでは、前記鏡面反射成分と前記変位とに基づいて、前記ミラーと前記計測面における一点との距離を連続的に算出し、これにより前記計測面の形状を計測する、
    方法。
    It ’s a measurement method.
    It includes a measurement light output step, a light detection step, a displacement detection step, and a measurement step.
    In the measurement light output step, the measurement light is output from the first light source, reflected by the mirror so as to face a desired direction, and continuously irradiated to the measurement surface, where the mirror is the first light source. It is configured to rotate around the axis of rotation towards
    In the light detection step, the specular reflection component of the reflected light of the measurement light with respect to the measurement surface is detected.
    In the displacement detection step, the displacement between the mirror and the rotation axis that occurs during rotation is detected.
    In the measurement step, the distance between the mirror and one point on the measurement surface is continuously calculated based on the specular reflection component and the displacement, thereby measuring the shape of the measurement surface.
    Method.
  10. プログラムであって、
     コンピュータに請求項9に記載の計測方法を実行させる、
    もの。
    It ’s a program
    Let the computer perform the measurement method according to claim 9.
    thing.
PCT/JP2021/005748 2020-03-10 2021-02-16 Measurement device, program, and measurement method WO2021182033A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505865A JPWO2021182033A1 (en) 2020-03-10 2021-02-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-040676 2020-03-10
JP2020040676 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021182033A1 true WO2021182033A1 (en) 2021-09-16

Family

ID=77672243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005748 WO2021182033A1 (en) 2020-03-10 2021-02-16 Measurement device, program, and measurement method

Country Status (2)

Country Link
JP (1) JPWO2021182033A1 (en)
WO (1) WO2021182033A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232539A (en) * 2014-05-12 2015-12-24 並木精密宝石株式会社 Optical type inner surface measuring device
JP2018179918A (en) * 2017-04-20 2018-11-15 株式会社日立製作所 Shape measurement system, and shape measurement method
JP2020148632A (en) * 2019-03-13 2020-09-17 株式会社Xtia Inner diameter measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015232539A (en) * 2014-05-12 2015-12-24 並木精密宝石株式会社 Optical type inner surface measuring device
JP2018179918A (en) * 2017-04-20 2018-11-15 株式会社日立製作所 Shape measurement system, and shape measurement method
JP2020148632A (en) * 2019-03-13 2020-09-17 株式会社Xtia Inner diameter measuring apparatus

Also Published As

Publication number Publication date
JPWO2021182033A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
CN106338244B (en) measuring machine and method for acquiring small-scale 3D information
US11448498B2 (en) Three-dimensional reconstruction system and three-dimensional reconstruction method
EP2613121B1 (en) Image sensor, attitude detector, contact probe, and multi-sensing probe
US20020054297A1 (en) Three dimensional scanning system
JP6417645B2 (en) Alignment method for surface profile measuring device
EP2138803A1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
EP1985968A1 (en) Noncontact measuring apparatus for interior surfaces of cylindrical objects based on using the autofocus function that comprises means for directing the probing light beam towards the inspected surface
WO2021182033A1 (en) Measurement device, program, and measurement method
JP2016148569A (en) Image measuring method and image measuring device
JP2012002548A (en) Light wave interference measurement device
US20210080577A1 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP2019215262A (en) Spectrometric measurement device and spectrometric measurement method
JP7120247B2 (en) SURFACE PROFILE MEASURING DEVICE, SURFACE PROFILE MEASURING METHOD, STRUCTURE MANUFACTURING SYSTEM, STRUCTURE MANUFACTURING METHOD, AND SURFACE PROFILE MEASURING PROGRAM
JP6508763B2 (en) Surface inspection device
US8605291B2 (en) Image correlation displacement sensor
US20220326379A1 (en) System and method for orthogonal laser metrology
EP3421928A1 (en) Optical measuring device
JP7337637B2 (en) Laser probe and optical adjustment method
JP2014002026A (en) Lens shape measuring device, and lens shape measuring method
JP2020046275A (en) Profile detector, profile detection method, and adjustment jig
JP2005345288A (en) Mach-zehnder interferometer and inspection method of optical element by mach-zehnder interferometer
JP3457918B2 (en) Opposite plane parallelism measurement method and apparatus
JP2009139200A (en) Method and apparatus for measuring position variation of rotation center line
JP2008051733A (en) Profile measuring device and method
JP2014106143A (en) Surface shape measurement device and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767429

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21767429

Country of ref document: EP

Kind code of ref document: A1