WO2021181830A1 - Physical quantity measurement device - Google Patents

Physical quantity measurement device Download PDF

Info

Publication number
WO2021181830A1
WO2021181830A1 PCT/JP2020/048706 JP2020048706W WO2021181830A1 WO 2021181830 A1 WO2021181830 A1 WO 2021181830A1 JP 2020048706 W JP2020048706 W JP 2020048706W WO 2021181830 A1 WO2021181830 A1 WO 2021181830A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
signal
physical quantity
measuring device
quantity measuring
Prior art date
Application number
PCT/JP2020/048706
Other languages
French (fr)
Japanese (ja)
Inventor
康章 露木
晃 小田部
尭生 佐藤
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2022505784A priority Critical patent/JP7354409B2/en
Publication of WO2021181830A1 publication Critical patent/WO2021181830A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/696Circuits therefor, e.g. constant-current flow meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present invention relates to a physical quantity measuring device.
  • the physical quantity measuring device acquires data representing the physical quantity by, for example, a control circuit (semiconductor element such as a processor) arithmetically processing a measurement signal output by a humidity sensor, a flow rate sensor, or the like for measuring the physical quantity.
  • a control circuit semiconductor element such as a processor
  • a device equipped with a control circuit eg, a large-scale integrated circuit: LSI
  • a burn-in test is performed to reduce initial defects.
  • the burn-in test is a screening test aimed at reducing initial defects by, for example, applying a temperature and voltage load to an inspection target.
  • Patent Document 1 describes a burn-in method for a semiconductor wafer.
  • the document provides "a burn-in method for a semiconductor wafer that does not require a dummy circuit simulating a sensor element outside the wafer in an IC chip having an input / output terminal to which a sensor element is connected after dicing the semiconductor wafer.
  • a dummy circuit is formed inside an input / output terminal to which a sensor element is connected via a switching element.” Since the switching element is controlled to be turned on only at the time of burn-in by the input voltage level of the mode terminal, burn-in is possible without probing to the input / output terminal. Further, during normal operation, the switching element is turned off depending on the input voltage level of the mode terminal, and there is no effect when the external sensor circuit is connected. ⁇ Disclosures the technology (see summary).
  • the control circuit provided in the physical quantity measuring device is operated in a state of being connected to a physical quantity sensor (humidity sensor, etc.) via a sensor terminal. Therefore, if the physical quantity sensor is not connected to the sensor terminal, the control circuit determines that the signal error occurs.
  • a physical quantity sensor humidity sensor, etc.
  • the control circuit is performed during the burn-in test. Determines that a signal error has occurred. Then, since the control circuit cannot proceed to the processing after the signal error, even if a temperature load or a voltage load is applied, only a part of the processing performed by the control circuit is inspected. As a result, the accuracy of detecting initial defects is reduced.
  • Patent Document 1 a physical quantity sensor is simulated in a burn-in test by turning on / off a built-in dummy circuit, thereby avoiding a signal error.
  • the dummy circuit requires a suitable circuit scale, there is a problem that the cost of the semiconductor wafer increases.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a physical quantity measuring device capable of avoiding a signal error by a simple circuit configuration even if a physical quantity sensor is not connected to a sensor terminal. And.
  • the physical quantity measuring device has a mask circuit capable of masking a signal to a level at which the diagnostic unit does not operate, between an input / output terminal that serially communicates with the sensor and a diagnostic unit that diagnoses the sensor.
  • the physical quantity measuring device According to the physical quantity measuring device according to the present invention, a signal error can be avoided even if the physical quantity sensor is not connected to the sensor terminal. Further, since the mask circuit can be easily mounted, the above effect can be exhibited by a simple circuit configuration.
  • FIG. 1 This is an example of a signal waveform when a sensor is connected to a terminal. This is an example of a signal waveform when the sensor is not connected to the terminal. It is a circuit block diagram of the physical quantity measuring apparatus 1 which concerns on Embodiment 1.
  • FIG. This is an example of a signal waveform when a sensor is connected to a terminal. This is an example of a signal waveform when the sensor is not connected to the terminal.
  • FIG. This is an example of a signal waveform when the sensor is not connected to the terminal. This is another example of a signal waveform when the sensor is not connected to the terminal.
  • FIG. 1 It is a graph explaining the voltage level of REGOUT output by a power supply circuit 10. It is a circuit block diagram of the physical quantity measuring apparatus 1 which concerns on Embodiment 5. It is a graph explaining the voltage level of REGOUT output by a power supply circuit 10. It is a circuit block diagram of the physical quantity measuring apparatus 1 which concerns on Embodiment 6. This is an example of a signal waveform for explaining the operation of the physical quantity measuring device 1 in the sixth embodiment.
  • FIG. 1 is a circuit configuration diagram of the conventional physical quantity measuring device 1.
  • the physical quantity measuring device 1 is a device that receives a measurement signal output by the flow rate sensor 8 and the humidity sensor 9 by measuring the physical quantity, and outputs data representing the physical quantity by arithmetically processing the measurement signal.
  • the physical quantity measuring device 1 is connected to the flow rate sensor 8 via terminals 16 and 17, and is connected to the humidity sensor 9 via terminals 18 and 19.
  • the AD converter 5 receives signals QH and QL from terminals 16 and 17, respectively, converts them into digital signals, and outputs them to the logic circuit 7.
  • the difference voltage between the signal QH and the signal QL is a signal representing a change in the flow rate.
  • the physical quantity measuring device 1 includes two input / output circuits 2.
  • One of the input / output circuits 2 transmits and receives the signal SDA to and from the terminal 18, and further transmits and receives the signal SDA to and from the control circuit 6.
  • the signal SDA is a signal for transmitting and receiving data in I2C (Inter-Integrated Circuit) communication.
  • the other of the input / output circuits 2 transmits and receives the signal SCL to and from the terminal 19, and further transmits and receives the signal SCL to and from the control circuit 6.
  • the signal SCL is a synchronization signal in I2C communication.
  • the input / output circuit 2 includes a pull-up resistor 3 and an NMOS transistor 4.
  • the control circuit 6 turns on / off the NMOS transistor 4 by the signal DAD or CLD. That is, each of the signal DAD and the signal CLD inverts the signal level output by the input / output circuit 2.
  • the pull-up resistor 3 fixes the signal level of the SDA to REGOUT (described later) when the NMOS transistor 4 is OFF.
  • the control circuit 6 controls the input / output circuit 2 and diagnoses whether or not the communication between the humidity sensor 9 and the physical quantity measuring device 1 is normal.
  • the logic circuit 7 operates at a frequency corresponding to the oscillation signal output by the oscillation circuit 12.
  • the logic circuit 7 generates data representing the physical quantity measured by each sensor by performing processing such as correcting the measured value acquired from each sensor, and outputs the data via the output circuit 11 and the terminal 14. do.
  • the power supply circuit 10 receives the input voltage VCS via the terminal 13 and steps it down to the operating voltage (sometimes called the internal voltage) of the physical quantity measuring device 1 to generate the voltage REGOUT.
  • Terminal 15 is connected to GND.
  • FIG. 2 is an example of a signal waveform when the sensor is connected to the terminal.
  • a signal waveform when a physical quantity measuring device 1 serves as a master and a humidity sensor 9 serves as a slave and a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated.
  • the physical quantity measuring device 1 (control circuit 6) specifies an address (ADDRESS in FIG. 2) and a command (COMMAND in FIG. 2) to the humidity sensor 9 by operating the DAD.
  • Bit W represents sending a command.
  • the control circuit 6 performs a communication diagnosis every 9 bits of the SCL after START CONDITION (indicating that I2C communication is started). If the communication is normal, the SDA becomes 0V, and the control circuit 6 receives an acknowledgment (ACK) as a communication confirmation signal. When the command transmission is finished, STOP CONDITION is output to the humidity sensor 9.
  • FIG. 3 is an example of a signal waveform when the sensor is not connected to the terminal.
  • a signal waveform when a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated.
  • the humidity sensor 9 When the humidity sensor 9 is not connected, an abnormality is diagnosed by the communication diagnosis at the 9th bit, the SDA becomes the VINT level, and the communication confirmation signal becomes a negative response (NACK).
  • the control circuit 6 immediately transmits STOP CONDITION (indicating that I2C communication is terminated) to the humidity sensor 9 to terminate the communication.
  • the present invention proposes a configuration for properly performing a burn-in test while avoiding being diagnosed with a communication abnormality even when the sensor is not connected.
  • FIG. 4 is a circuit configuration diagram of the physical quantity measuring device 1 according to the first embodiment of the present invention.
  • the physical quantity measuring device 1 according to the first embodiment includes a mask circuit 21 between the input / output circuit 2 (the side that transmits / receives SDA) and the control circuit 6.
  • the mask circuit 21 is arranged on an input line (a signal line used when the control circuit 6 receives a signal from the humidity sensor 9) between the input / output circuit 2 and the control circuit 6. Therefore, the mask circuit 21 receives the signal output by the humidity sensor 9 before the control circuit 6.
  • the physical quantity measuring device 1 further includes a terminal 20 for inputting a burn-in signal. Since other configurations are substantially the same as those in FIG. 1, the differences between the mask circuit 21 and the terminal 20 will be mainly described below.
  • the mask circuit 21 generates a signal MDA by overwriting the signal SDA output by the input / output circuit 2, and outputs the signal MDA to the control circuit 6.
  • the mask circuit 21 switches whether or not to overwrite the SDA according to the signal MAS output by the control circuit 6.
  • the control circuit 6 treats the MDA value as the SDA regardless of the SDA value.
  • FIG. 5 is an example of a signal waveform when the sensor is connected to the terminal.
  • a signal waveform when a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated.
  • the control circuit 6 always sets the MAS signal to the VINT level during normal operation (when the sensor is connected).
  • the mask circuit 21 outputs the SDA to the control circuit 6 as it is. Therefore, even if the mask circuit 21 is arranged on the input line between the input / output circuit 2 and the control circuit 6, the SDA value received by the control circuit 6 does not change. That is, the control circuit 6 can receive ACK as a communication confirmation signal.
  • FIG. 6 is an example of a signal waveform when the sensor is not connected to the terminal.
  • a signal waveform when a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated.
  • the control circuit 6 sets the MAS to 0V at the same timing as the ACK.
  • the mask circuit 21 sets the MDA to 0V regardless of the value of the SDA.
  • the control circuit 6 recognizes that the SDA is 0V, and therefore receives ACK as a communication confirmation signal.
  • the timing at which the control circuit 6 receives the ACK response from the humidity sensor 9 is known to the control circuit 6 (that is, the timing of the 9th bit described in FIGS. 2 to 3). Therefore, the control circuit 6 may set the MAS to 0V according to the timing. In other words, the mask circuit 21 outputs the same signal as the ACK to the control circuit 6 by setting the MDA to 0V at the timing when the control circuit 6 should receive the ACK while synchronizing with the synchronization signal (SCL) in the I2C communication. ..
  • FIG. 7 is a circuit configuration diagram showing a modified example of the physical quantity measuring device 1 according to the first embodiment.
  • the flow rate sensor 8 is incorporated inside the physical quantity measuring device 1.
  • Other configurations are the same as those in FIGS. 4 to 6. Also in the configuration of FIG. 7, the same effect can be exhibited by overwriting the SDA when the humidity sensor 9 is not connected by the mask circuit 21.
  • the mask circuit 21 (a) outputs the SDA to the control circuit 6 as it is when the MAS signal is at the VINT level, and (b) when the MAS is 0V, the MDA does not depend on the SDA value. Was set to 0V. This operation may be reversed. That is, when the MAS is 0V, the SDA may be output as it is, and when the MAS is VINT, the MDA may always be 0V. In other words, the operation of the mask circuit 21 may be inverted by inverting the MAS level input to the mask circuit 21.
  • FIG. 8 is an example of a signal waveform when the sensor is not connected to the terminal.
  • a signal waveform when the physical quantity measuring device 1 receives data from the humidity sensor 9 is illustrated. Even when data is received, the control circuit 6 performs communication diagnosis every 9 bits of the SCL. Therefore, as in the first embodiment, the burn-in signal is input to the terminal 20 at the time of the burn-in test.
  • the control circuit 6 While the burn-in signal is being input to the terminal 20, the control circuit 6 sets MAS to 0V at the same timing as ACK. When the MAS is 0V, the mask circuit 21 sets the MDA to 0V regardless of the value of the SDA. As a result, even if the actual SDA is at the VINT level, the control circuit 6 recognizes that the SDA is 0V, and therefore receives ACK as a communication confirmation signal. Therefore, even when the data reception process from the humidity sensor 9 is performed in the burn-in test process, the process can be continued assuming that the communication is normal as in the first embodiment.
  • NACK may be inserted immediately before STOP CONDITION after data reception.
  • the control circuit 6 sets the MAS to the VINT level at the same timing as NACK. Since the mask circuit 21 outputs the SDA as it is when the MAS is at the VINT level, it is output as it is to the control circuit 6 when the SDA is at the VINT level. Therefore, NACK can be provided immediately before STOP CONDITION.
  • FIG. 9 is another signal waveform example when the sensor is not connected to the terminal.
  • the signal waveform when the physical quantity measuring device 1 receives data from the humidity sensor 9 is illustrated.
  • an error correction code for example, Cyclic Redundancy Check: CRC code
  • CRC code Cyclic Redundancy Check
  • the error correction code is also recalculated in the control circuit 6, and if the given error correction code and the calculated error correction code do not match (for example, the humidity sensor 9 is not connected), the error correction code is recalculated in the control circuit 6 as well.
  • the control circuit 6 will diagnose a communication error. Therefore, in FIG. 9, the mask circuit 21 itself generates an error correction code corresponding to the case where it is not a communication error and outputs it to the control circuit 6. As a result, even when the humidity sensor 9 is not connected, the control circuit 6 considers that the communication confirmation signal is normal. Therefore, even when data is received from the humidity sensor 9, the communication confirmation signal can be masked as in the first embodiment.
  • the mask circuit 21 may generate a data body received from the humidity sensor 9 in addition to generating an error correction code.
  • the data body in this case needs to be different from that received by the control circuit 6 at least at the time of a communication error, but as long as it is, any data may be used.
  • the activation rate of the control circuit 6 is increased, so that the control circuit 6 can be efficiently tested at the time of the burn-in test.
  • FIG. 10 is an example of a signal waveform illustrating the operation of the physical quantity measuring device 1 according to the third embodiment of the present invention.
  • the mask circuit 21 sets the MDA to 0V at the timing of ACK when the burn-in signal is input.
  • the mask circuit 21 instead of this, the mask circuit 21 always uses the MDA regardless of the synchronization signal SCL while the burn-in signal is input (when the humidity sensor 9 is not connected to the physical quantity measuring device 1). Set to 0V.
  • the control circuit 6 always receives 0V as the SDA without depending on the timing of the communication confirmation signal. Therefore, even if the humidity sensor 9 is not connected to the terminal at the time of the burn-in test, the process after the diagnostic process can be continuously subjected to the burn-in test.
  • the operation procedure is simplified in that it is not necessary to operate the mask circuit 21 in accordance with the synchronization signal SCL. Therefore, there is an advantage that the configuration of the control circuit 6 can be simplified.
  • FIG. 11 is a circuit configuration diagram of the physical quantity measuring device 1 according to the fourth embodiment of the present invention.
  • the control circuit 6 sets the MAS to 0V in accordance with ACK.
  • the terminal 20 is not required.
  • the power supply circuit 10 In order to carry out the burn-in test, it is necessary to input a voltage higher than that during normal operation to the physical quantity measuring device 1. By inputting this high voltage to the terminal 13, the power supply circuit 10 outputs a REGOUT higher than that in the normal operation, and outputs a signal BE notifying that the high voltage is in the state to the logic circuit 7.
  • the logic circuit 7 When this signal BE is input, the logic circuit 7 notifies the control circuit 6 that the burn-in mode has been entered. Upon receiving this notification, the control circuit 6 sets the MAS to 0V. Subsequent operations are the same as in the first embodiment.
  • FIG. 12 is a graph for explaining the voltage level of REGOUT output by the power supply circuit 10.
  • the power supply circuit 10 When the VCS is within the specified range (Vmin to Vmax), the power supply circuit 10 outputs the specified voltage VINT.
  • the VCS When the VCS is Vmax or higher, the power supply circuit 10 outputs a voltage equal to or higher than VINT.
  • the logic circuit 7 receives the signal BE, the logic circuit 7 notifies the control circuit 6 that the burn-in mode has been entered.
  • FIG. 13 is a circuit configuration diagram of the physical quantity measuring device 1 according to the fifth embodiment of the present invention.
  • the transition to the burn-in mode is performed by inputting a voltage higher than that during normal operation to the VCS.
  • the burn-in mode is entered by inputting a voltage equal to or higher than the threshold value to the terminal 20.
  • Other configurations are the same as those of the first and fourth embodiments.
  • FIG. 14 is a graph illustrating the voltage level of REGOUT output by the power supply circuit 10.
  • the burn-in signal BURN is BT or less
  • the power supply circuit 10 outputs a specified voltage VINT.
  • the power supply circuit 10 outputs a voltage of VINT or more.
  • the logic circuit 7 notifies the control circuit 6 that the burn-in mode has been entered. That is, the BURN signal having a signal level equal to or higher than BT acts as a signal instructing the transition to the burn-in mode.
  • the fifth embodiment is the same as the first embodiment in that a burn-in signal is input to the terminal 20, but (a) normal operation is performed until the burn-in signal becomes the threshold value BT or more, and (b) a power supply.
  • the circuit 10 is different from the first embodiment in that it generates an internal voltage corresponding to the signal level of the burn-in signal. That is, in the fifth embodiment, the burn-in signal has a role of designating the voltage load level in the burn-in mode in addition to instructing the shift to the burn-in mode. This allows burn-in tests to be performed at various voltage load levels.
  • FIG. 15 is a circuit configuration diagram of the physical quantity measuring device 1 according to the sixth embodiment of the present invention.
  • the mask circuit 21 is arranged on the input line for inputting the SDA from the input / output circuit 2 to the control circuit 6.
  • the mask circuit 21 is arranged on the output line that outputs the SDA from the control circuit 6 to the input / output circuit 2. That is, the mask circuit 21 is arranged at a position where the DAD output by the control circuit 6 is received before the input / output circuit 2. If the MAS is at the VINT level, the mask circuit 21 outputs the DAD as an MDA as it is, and if the MAS is 0V, the mask circuit 21 outputs the VINT as the MDA regardless of the value of the DAD.
  • the input / output circuit 2 outputs a signal level in which the MDA is inverted. Specifically, when the gate is OFF (when MDA is 0V), the output level is fixed to the VINT side by the pull-up resistor 3, and when the gate is ON (when MDA is VINT level), the output level is short-circuited with the ground to set the output level. It is fixed at 0V.
  • FIG. 16 is an example of a signal waveform illustrating the operation of the physical quantity measuring device 1 in the sixth embodiment.
  • the control circuit 6 sets the MAS to 0V at the same timing as the ACK.
  • the mask circuit 21 sets the MDA to VINT when the MAS is 0V, regardless of the value of the DAD. Since the input / output circuit 2 outputs the signal level in which the MDA is inverted as the SDA, the SDA becomes 0V at the ACK timing. As a result, the control circuit 6 recognizes that the SDA is 0V, and therefore receives ACK as a communication confirmation signal. Therefore, the same operation as in the first embodiment can be realized.
  • the present invention is not limited to the above embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • control circuit 6 and the logic circuit 7 can be configured by hardware such as a circuit device that implements these functions, and software that implements these functions is provided by a CPU (Central Processing Unit) or the like. It can also be configured by executing the arithmetic unit of. Further, in the present embodiment, the communication method has been described by taking I2C communication as an example, but it can also be applied to a communication protocol for performing communication confirmation such as CAN (Control Area Network) communication.
  • CAN Control Area Network

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

Provided is a physical quantity measurement device that makes it possible to use a simple circuit configuration to prevent signal error even when a physical quantity sensor is not connected to a sensor terminal. This physical quantity measurement device comprises a mask circuit that is between an input/output terminal for communicating serially with a sensor and a diagnosis unit for diagnosing the sensor and is capable of masking a signal to a level at which the diagnosis unit will not operate.

Description

物理量測定装置Physical quantity measuring device
 本発明は、物理量測定装置に関する。 The present invention relates to a physical quantity measuring device.
 物理量測定装置は、例えば湿度センサや流量センサなどが物理量を計測することにより出力する計測信号を、制御回路(プロセッサなどの半導体素子)が演算処理することにより、物理量を表すデータを取得する。物理量測定装置を製造する工程において、制御回路を搭載したデバイス(例:大規模集積回路:LSI)を検査する。検査工程においては、例えばバーンイン試験などによって初期不良を低減することを図る。バーンイン試験は、例えば温度と電圧の負荷を検査対象に対してかけることにより、初期不良を低減することを図るスクリーニング試験である。 The physical quantity measuring device acquires data representing the physical quantity by, for example, a control circuit (semiconductor element such as a processor) arithmetically processing a measurement signal output by a humidity sensor, a flow rate sensor, or the like for measuring the physical quantity. In the process of manufacturing a physical quantity measuring device, a device equipped with a control circuit (eg, a large-scale integrated circuit: LSI) is inspected. In the inspection process, for example, a burn-in test is performed to reduce initial defects. The burn-in test is a screening test aimed at reducing initial defects by, for example, applying a temperature and voltage load to an inspection target.
 下記特許文献1は、半導体ウェハのバーンイン方法について記載している。同文献は、『半導体ウェハのダイシング後にセンサ素子が接続される入出力端子をもつICチップにおいて、センサ素子を模擬したダミー回路をウェハ外部に必要としない半導体ウェハでのバーンイン方法を提供する。』ことを課題として、『半導体ウェハ上に形成されたICチップにおいて、センサ素子が接続される入出力端子の内部にスイッチング素子を介してダミー回路を形成する。スイッチング素子はモード端子の入力電圧レベルによってバーンイン時のみONするように制御されることにより、その入出力端子へのプロービングをせずにバーンインが可能となる。又、通常動作時にはモード端子の入力電圧レベルによってスイッチング素子がOFFとなり外部センサ回路接続時には影響がない。』という技術を開示している(要約参照)。 The following Patent Document 1 describes a burn-in method for a semiconductor wafer. The document provides "a burn-in method for a semiconductor wafer that does not require a dummy circuit simulating a sensor element outside the wafer in an IC chip having an input / output terminal to which a sensor element is connected after dicing the semiconductor wafer. "In an IC chip formed on a semiconductor wafer, a dummy circuit is formed inside an input / output terminal to which a sensor element is connected via a switching element." Since the switching element is controlled to be turned on only at the time of burn-in by the input voltage level of the mode terminal, burn-in is possible without probing to the input / output terminal. Further, during normal operation, the switching element is turned off depending on the input voltage level of the mode terminal, and there is no effect when the external sensor circuit is connected. 』Disclosures the technology (see summary).
特開2018-136197号公報Japanese Unexamined Patent Publication No. 2018-136197
 物理量測定装置が備える制御回路は、センサ端子を介して物理量センサ(湿度センサなど)と接続された状態で運用される。したがって、センサ端子に物理量センサが接続されていない場合、制御回路は信号エラーと判断することになる。 The control circuit provided in the physical quantity measuring device is operated in a state of being connected to a physical quantity sensor (humidity sensor, etc.) via a sensor terminal. Therefore, if the physical quantity sensor is not connected to the sensor terminal, the control circuit determines that the signal error occurs.
 物理量測定装置の検査工程を効率化するためには、ウェハ単位でバーンイン試験を実施することが望ましい。すなわち、ウェハ上の複数の物理量測定装置に対してバーンイン試験を実施することが望ましい。しかし、ウェハ状態では個々の物理量測定装置に物理量センサを接続することができないため、物理量測定装置に物理量センサとの通信確認する診断機能がある場合、バーンイン試験を実施している間において、制御回路は信号エラーが生じていると判断する。そうすると、制御回路はその信号エラー以降の処理へ進むことができないので、温度負荷や電圧負荷をかけたとしても、制御回路が実施する処理のうち一部のみしか検査されないことになる。これにより、初期不良の検出精度が低下する。 In order to streamline the inspection process of the physical quantity measuring device, it is desirable to carry out a burn-in test on a wafer-by-wafer basis. That is, it is desirable to carry out a burn-in test on a plurality of physical quantity measuring devices on a wafer. However, since the physical quantity sensor cannot be connected to each physical quantity measuring device in the wafer state, if the physical quantity measuring device has a diagnostic function for confirming communication with the physical quantity sensor, the control circuit is performed during the burn-in test. Determines that a signal error has occurred. Then, since the control circuit cannot proceed to the processing after the signal error, even if a temperature load or a voltage load is applied, only a part of the processing performed by the control circuit is inspected. As a result, the accuracy of detecting initial defects is reduced.
 特許文献1においては、内蔵したダミー回路をON/OFFすることにより、バーンイン試験において物理量センサを模擬し、これにより信号エラーを回避している。しかしダミー回路は相応の回路規模が必要なので、半導体ウェハのコストが上昇するという課題がある。 In Patent Document 1, a physical quantity sensor is simulated in a burn-in test by turning on / off a built-in dummy circuit, thereby avoiding a signal error. However, since the dummy circuit requires a suitable circuit scale, there is a problem that the cost of the semiconductor wafer increases.
 本発明は、上記課題に鑑みてなされたものであり、センサ端子に物理量センサが接続されていなくとも、簡易な回路構成によって信号エラーを回避することができる、物理量測定装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a physical quantity measuring device capable of avoiding a signal error by a simple circuit configuration even if a physical quantity sensor is not connected to a sensor terminal. And.
 本発明に係る物理量測定装置は、センサとシリアル通信する入出力端子と、センサを診断する診断部との間に、前記診断部が動作しないレベルに信号をマスクすることができるマスク回路を有する。 The physical quantity measuring device according to the present invention has a mask circuit capable of masking a signal to a level at which the diagnostic unit does not operate, between an input / output terminal that serially communicates with the sensor and a diagnostic unit that diagnoses the sensor.
 本発明に係る物理量測定装置によれば、センサ端子に物理量センサが接続されていなくとも、信号エラーを回避することができる。またマスク回路は簡易に実装できるので、簡易な回路構成によって上記効果を発揮できる。 According to the physical quantity measuring device according to the present invention, a signal error can be avoided even if the physical quantity sensor is not connected to the sensor terminal. Further, since the mask circuit can be easily mounted, the above effect can be exhibited by a simple circuit configuration.
従来の物理量測定装置1の回路構成図である。It is a circuit block diagram of the conventional physical quantity measuring apparatus 1. センサが端子に接続されている場合における信号波形例である。This is an example of a signal waveform when a sensor is connected to a terminal. センサが端子に接続されていない場合における信号波形例である。This is an example of a signal waveform when the sensor is not connected to the terminal. 実施形態1に係る物理量測定装置1の回路構成図である。It is a circuit block diagram of the physical quantity measuring apparatus 1 which concerns on Embodiment 1. FIG. センサが端子に接続されている場合における信号波形例である。This is an example of a signal waveform when a sensor is connected to a terminal. センサが端子に接続されていない場合における信号波形例である。This is an example of a signal waveform when the sensor is not connected to the terminal. 実施形態1に係る物理量測定装置1の変形例を示す回路構成図である。It is a circuit block diagram which shows the modification of the physical quantity measuring apparatus 1 which concerns on Embodiment 1. FIG. センサが端子に接続されていない場合における信号波形例である。This is an example of a signal waveform when the sensor is not connected to the terminal. センサが端子に接続されていない場合における別の信号波形例である。This is another example of a signal waveform when the sensor is not connected to the terminal. 実施形態3に係る物理量測定装置1の動作を説明する信号波形の例である。This is an example of a signal waveform for explaining the operation of the physical quantity measuring device 1 according to the third embodiment. 実施形態4に係る物理量測定装置1の回路構成図である。It is a circuit block diagram of the physical quantity measuring apparatus 1 which concerns on Embodiment 4. FIG. 電源回路10が出力するREGOUTの電圧レベルを説明するグラフである。It is a graph explaining the voltage level of REGOUT output by a power supply circuit 10. 実施形態5に係る物理量測定装置1の回路構成図である。It is a circuit block diagram of the physical quantity measuring apparatus 1 which concerns on Embodiment 5. 電源回路10が出力するREGOUTの電圧レベルを説明するグラフである。It is a graph explaining the voltage level of REGOUT output by a power supply circuit 10. 実施形態6に係る物理量測定装置1の回路構成図である。It is a circuit block diagram of the physical quantity measuring apparatus 1 which concerns on Embodiment 6. 実施形態6における物理量測定装置1の動作を説明する信号波形の例である。This is an example of a signal waveform for explaining the operation of the physical quantity measuring device 1 in the sixth embodiment.
<従来の回路構成について> 図1は、従来の物理量測定装置1の回路構成図である。物理量測定装置1は、流量センサ8や湿度センサ9が物理量を計測することにより出力する計測信号を受け取り、その計測信号を演算処理することにより、その物理量を表すデータを出力する装置である。物理量測定装置1は、端子16と17を介して流量センサ8と接続され、端子18と19を介して湿度センサ9と接続されている。 <Conventional circuit configuration> FIG. 1 is a circuit configuration diagram of the conventional physical quantity measuring device 1. The physical quantity measuring device 1 is a device that receives a measurement signal output by the flow rate sensor 8 and the humidity sensor 9 by measuring the physical quantity, and outputs data representing the physical quantity by arithmetically processing the measurement signal. The physical quantity measuring device 1 is connected to the flow rate sensor 8 via terminals 16 and 17, and is connected to the humidity sensor 9 via terminals 18 and 19.
 ADコンバータ5は、端子16と17からそれぞれ信号QHとQLを受け取り、これらをデジタル信号に変換して論理回路7へ出力する。信号QHと信号QLの差電圧は、流量の変化を表す信号である。 The AD converter 5 receives signals QH and QL from terminals 16 and 17, respectively, converts them into digital signals, and outputs them to the logic circuit 7. The difference voltage between the signal QH and the signal QL is a signal representing a change in the flow rate.
 物理量測定装置1は、2つの入出力回路2を備えている。入出力回路2のうち一方は、端子18との間で信号SDAを送受信し、さらに信号SDAを制御回路6との間で送受信する。信号SDAは、I2C(Inter-Integrated Circuit)通信におけるデータ送受信のための信号である。入出力回路2のうちもう一方は、端子19との間で信号SCLを送受信し、さらに信号SCLを制御回路6との間で送受信する。信号SCLは、I2C通信における同期信号である。 The physical quantity measuring device 1 includes two input / output circuits 2. One of the input / output circuits 2 transmits and receives the signal SDA to and from the terminal 18, and further transmits and receives the signal SDA to and from the control circuit 6. The signal SDA is a signal for transmitting and receiving data in I2C (Inter-Integrated Circuit) communication. The other of the input / output circuits 2 transmits and receives the signal SCL to and from the terminal 19, and further transmits and receives the signal SCL to and from the control circuit 6. The signal SCL is a synchronization signal in I2C communication.
 入出力回路2は、プルアップ抵抗3とNMOSトランジスタ4を備える。制御回路6は、信号DADまたはCLDによってNMOSトランジスタ4をON/OFFする。すなわち信号DADと信号CLDはそれぞれ、入出力回路2が出力する信号レベルを反転させる。プルアップ抵抗3は、NMOSトランジスタ4がOFFのときSDAの信号レベルをREGOUT(後述)に固定する。 The input / output circuit 2 includes a pull-up resistor 3 and an NMOS transistor 4. The control circuit 6 turns on / off the NMOS transistor 4 by the signal DAD or CLD. That is, each of the signal DAD and the signal CLD inverts the signal level output by the input / output circuit 2. The pull-up resistor 3 fixes the signal level of the SDA to REGOUT (described later) when the NMOS transistor 4 is OFF.
 制御回路6は、入出力回路2を制御するとともに、湿度センサ9と物理量測定装置1との間の通信が正常であるか否かを診断する。論理回路7は、発振回路12が出力する発振信号に対応する周波数で動作する。論理回路7は、各センサから取得した計測値を補正するなどの処理を実施することにより、各センサが計測した物理量を表すデータを生成し、出力回路11と端子14を介してそのデータを出力する。 The control circuit 6 controls the input / output circuit 2 and diagnoses whether or not the communication between the humidity sensor 9 and the physical quantity measuring device 1 is normal. The logic circuit 7 operates at a frequency corresponding to the oscillation signal output by the oscillation circuit 12. The logic circuit 7 generates data representing the physical quantity measured by each sensor by performing processing such as correcting the measured value acquired from each sensor, and outputs the data via the output circuit 11 and the terminal 14. do.
 電源回路10は、端子13を介して入力電圧VCCを受け取り、これを物理量測定装置1の動作電圧(内部電圧と呼ぶ場合もある)に降圧することにより、電圧REGOUTを生成する。端子15はGNDと接続されている。 The power supply circuit 10 receives the input voltage VCS via the terminal 13 and steps it down to the operating voltage (sometimes called the internal voltage) of the physical quantity measuring device 1 to generate the voltage REGOUT. Terminal 15 is connected to GND.
 図2は、センサが端子に接続されている場合における信号波形例である。ここでは物理量測定装置1がマスタとなり、湿度センサ9がスレーブとなって、物理量測定装置1から湿度センサ9に対してコマンドを送信するときの信号波形を例示する。物理量測定装置1(制御回路6)は、DADを操作することにより、湿度センサ9に対してアドレス(図2のADDRESS)やコマンド(図2のCOMMAND)を指定する。ビットWはコマンド送信することを表す。 FIG. 2 is an example of a signal waveform when the sensor is connected to the terminal. Here, a signal waveform when a physical quantity measuring device 1 serves as a master and a humidity sensor 9 serves as a slave and a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated. The physical quantity measuring device 1 (control circuit 6) specifies an address (ADDRESS in FIG. 2) and a command (COMMAND in FIG. 2) to the humidity sensor 9 by operating the DAD. Bit W represents sending a command.
 制御回路6は、START CONDITION(I2C通信を開始することを表す)後、SCLの9ビットごとに通信診断を実施する。通信が正常であればSDAは0Vとなり、制御回路6は通信確認信号として肯定応答(ACK)を受け取ることになる。コマンド送信を終了するときは、STOP CONDITIONを湿度センサ9に対して出力する。 The control circuit 6 performs a communication diagnosis every 9 bits of the SCL after START CONDITION (indicating that I2C communication is started). If the communication is normal, the SDA becomes 0V, and the control circuit 6 receives an acknowledgment (ACK) as a communication confirmation signal. When the command transmission is finished, STOP CONDITION is output to the humidity sensor 9.
 図3は、センサが端子に接続されていない場合における信号波形例である。ここでは図2と同様に物理量測定装置1から湿度センサ9に対してコマンドを送信するときの信号波形を例示する。湿度センサ9が接続されていない場合、9ビット目における通信診断によって異常と診断され、SDAはVINTレベルとなり、通信確認信号は否定応答(NACK)となる。制御回路6はこの場合、直ちにSTOP CONDITION(I2C通信を終了することを表す)を湿度センサ9に対して送信し通信を終了する。 FIG. 3 is an example of a signal waveform when the sensor is not connected to the terminal. Here, as in FIG. 2, a signal waveform when a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated. When the humidity sensor 9 is not connected, an abnormality is diagnosed by the communication diagnosis at the 9th bit, the SDA becomes the VINT level, and the communication confirmation signal becomes a negative response (NACK). In this case, the control circuit 6 immediately transmits STOP CONDITION (indicating that I2C communication is terminated) to the humidity sensor 9 to terminate the communication.
 通信を再開したとしても、同じく異常と判断され再び9ビット目において同様にNACK応答となってSTOP CONDITIONが送信される。以下同様の手順が繰り返される。したがってアドレス指定処理が繰り返され湿度センサ9に対してコマンドを送信する段階まで処理が進行できないことになる。バーンイン試験においても同様に、端子にセンサが接続されていない状態で通信診断を実施することになるので、湿度センサ9に対してコマンドを送信する以降の処理は実施されない。すなわちバーンイン試験において、それ以降の動作を検査することができないので、初期不良の検出漏れが生じる可能性が高まる。 Even if the communication is restarted, it is also judged to be abnormal, and in the 9th bit again, a NACK response is obtained and STOP CONDITION is transmitted. The same procedure is repeated thereafter. Therefore, the addressing process is repeated and the process cannot proceed to the stage where the command is transmitted to the humidity sensor 9. Similarly, in the burn-in test, the communication diagnosis is performed in a state where the sensor is not connected to the terminal, so that the processing after the command is transmitted to the humidity sensor 9 is not performed. That is, in the burn-in test, it is not possible to inspect the operation after that, so that the possibility of omission of detection of initial defects increases.
 本発明は、以上説明したような課題に鑑みて、センサを接続していない場合においても通信異常を診断されることを回避し、バーンイン試験を適正に実施するための構成を提案する。 In view of the above-described problems, the present invention proposes a configuration for properly performing a burn-in test while avoiding being diagnosed with a communication abnormality even when the sensor is not connected.
<実施の形態1> 図4は、本発明の実施形態1に係る物理量測定装置1の回路構成図である。本実施形態1に係る物理量測定装置1は、入出力回路2(SDAを送受信する側)と制御回路6との間にマスク回路21を備える。マスク回路21は、入出力回路2と制御回路6との間の入力線(制御回路6が湿度センサ9から信号を受け取るとき用いる信号線)上に配置されている。したがってマスク回路21は、湿度センサ9が出力する信号を制御回路6よりも前に受け取ることになる。物理量測定装置1はさらに、バーンイン信号を入力するための端子20を備える。その他構成は概ね図1と同様であるので、以下では主にマスク回路21と端子20に関する差異点について説明する。 <Embodiment 1> FIG. 4 is a circuit configuration diagram of the physical quantity measuring device 1 according to the first embodiment of the present invention. The physical quantity measuring device 1 according to the first embodiment includes a mask circuit 21 between the input / output circuit 2 (the side that transmits / receives SDA) and the control circuit 6. The mask circuit 21 is arranged on an input line (a signal line used when the control circuit 6 receives a signal from the humidity sensor 9) between the input / output circuit 2 and the control circuit 6. Therefore, the mask circuit 21 receives the signal output by the humidity sensor 9 before the control circuit 6. The physical quantity measuring device 1 further includes a terminal 20 for inputting a burn-in signal. Since other configurations are substantially the same as those in FIG. 1, the differences between the mask circuit 21 and the terminal 20 will be mainly described below.
 マスク回路21は、入出力回路2が出力する信号SDAを上書することにより信号MDAを生成し、信号MDAを制御回路6に対して出力する。マスク回路21は、制御回路6が出力する信号MASにしたがって、SDAを上書するか否かを切り替える。マスク回路21がSDAを上書することにより、SDAの値によらず、制御回路6はMDAの値をSDAとして取り扱うことになる。 The mask circuit 21 generates a signal MDA by overwriting the signal SDA output by the input / output circuit 2, and outputs the signal MDA to the control circuit 6. The mask circuit 21 switches whether or not to overwrite the SDA according to the signal MAS output by the control circuit 6. By overwriting the SDA by the mask circuit 21, the control circuit 6 treats the MDA value as the SDA regardless of the SDA value.
 図5は、センサが端子に接続されている場合における信号波形例である。ここでは図2と同様に物理量測定装置1から湿度センサ9に対してコマンドを送信するときの信号波形を例示する。制御回路6は、通常動作時(センサが接続されているとき)はMAS信号を常にVINTレベルとする。マスク回路21は、MAS信号がVINTレベルのときは、SDAをそのまま制御回路6に対して出力する。したがって、マスク回路21が入出力回路2と制御回路6との間の入力線上に配置されていても、制御回路6が受け取るSDAの値は変わらない。すなわち制御回路6は、通信確認信号としてACKを受け取ることができる。 FIG. 5 is an example of a signal waveform when the sensor is connected to the terminal. Here, as in FIG. 2, a signal waveform when a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated. The control circuit 6 always sets the MAS signal to the VINT level during normal operation (when the sensor is connected). When the MAS signal is at the VINT level, the mask circuit 21 outputs the SDA to the control circuit 6 as it is. Therefore, even if the mask circuit 21 is arranged on the input line between the input / output circuit 2 and the control circuit 6, the SDA value received by the control circuit 6 does not change. That is, the control circuit 6 can receive ACK as a communication confirmation signal.
 図6は、センサが端子に接続されていない場合における信号波形例である。ここでは図2と同様に物理量測定装置1から湿度センサ9に対してコマンドを送信するときの信号波形を例示する。端子20に対してバーンイン信号が入力されている間、制御回路6は、ACKと同じタイミングにおいて、MASを0Vにセットする。マスク回路21は、MASが0Vであるとき、SDAの値によらず、MDAを0Vにセットする。これにより、実際のSDAがVINTレベルであっても、制御回路6はSDAが0Vであると認識するので、通信確認信号としてACKを受け取る。 FIG. 6 is an example of a signal waveform when the sensor is not connected to the terminal. Here, as in FIG. 2, a signal waveform when a command is transmitted from the physical quantity measuring device 1 to the humidity sensor 9 is illustrated. While the burn-in signal is input to the terminal 20, the control circuit 6 sets the MAS to 0V at the same timing as the ACK. When the MAS is 0V, the mask circuit 21 sets the MDA to 0V regardless of the value of the SDA. As a result, even if the actual SDA is at the VINT level, the control circuit 6 recognizes that the SDA is 0V, and therefore receives ACK as a communication confirmation signal.
 制御回路6が湿度センサ9からACK応答を受け取るタイミングは、制御回路6にとって既知である(すなわち図2~図3において説明した9ビット目のタイミング)。したがって制御回路6は、そのタイミングに合わせてMASを0Vにセットすればよい。換言するとマスク回路21は、I2C通信における同期信号(SCL)に同期しつつ、制御回路6がACKを受け取るべきタイミングで、MDAを0VにセットすることによりACKと同じ信号を制御回路6へ出力する。 The timing at which the control circuit 6 receives the ACK response from the humidity sensor 9 is known to the control circuit 6 (that is, the timing of the 9th bit described in FIGS. 2 to 3). Therefore, the control circuit 6 may set the MAS to 0V according to the timing. In other words, the mask circuit 21 outputs the same signal as the ACK to the control circuit 6 by setting the MDA to 0V at the timing when the control circuit 6 should receive the ACK while synchronizing with the synchronization signal (SCL) in the I2C communication. ..
 以上の動作により、バーンイン信号が入力されている間は信号エラーを回避して、アドレス指定以降のSDA信号を送受信することができる。したがって、バーンイン試験時においてセンサが端子に接続されていない場合であっても、診断処理以降の処理を継続してバーンイン試験に供することができる。 By the above operation, it is possible to avoid a signal error while the burn-in signal is being input, and to send and receive the SDA signal after the address is specified. Therefore, even if the sensor is not connected to the terminal at the time of the burn-in test, the process after the diagnostic process can be continuously subjected to the burn-in test.
 図7は、本実施形態1に係る物理量測定装置1の変形例を示す回路構成図である。図7においては流量センサ8が物理量測定装置1内部に組み込まれている。その他構成は図4~図6と同様である。図7の構成においても、マスク回路21によって、湿度センサ9が接続されていないときのSDAを上書することにより、同様の効果を発揮できる。 FIG. 7 is a circuit configuration diagram showing a modified example of the physical quantity measuring device 1 according to the first embodiment. In FIG. 7, the flow rate sensor 8 is incorporated inside the physical quantity measuring device 1. Other configurations are the same as those in FIGS. 4 to 6. Also in the configuration of FIG. 7, the same effect can be exhibited by overwriting the SDA when the humidity sensor 9 is not connected by the mask circuit 21.
 以上の説明において、マスク回路21は、(a)MAS信号がVINTレベルのときはSDAをそのまま制御回路6に対して出力し、(b)MASが0VであるときはSDAの値によらずMDAを0Vにセットすることを説明した。この動作は反対であってもよい。すなわちMASが0VのときはSDAをそのまま出力し、MASがVINTのときはMDAを常に0Vとしてもよい。換言すると、マスク回路21に対して入力するMASレベルを反転させることによりマスク回路21の動作も反転するようにすればよい。 In the above description, the mask circuit 21 (a) outputs the SDA to the control circuit 6 as it is when the MAS signal is at the VINT level, and (b) when the MAS is 0V, the MDA does not depend on the SDA value. Was set to 0V. This operation may be reversed. That is, when the MAS is 0V, the SDA may be output as it is, and when the MAS is VINT, the MDA may always be 0V. In other words, the operation of the mask circuit 21 may be inverted by inverting the MAS level input to the mask circuit 21.
<実施の形態2> 実施形態1においては、物理量測定装置1が湿度センサ9に対してコマンドを送信するときにおいて、マスク回路21によってSDAをマスクする例を説明した。同様の動作は物理量測定装置1が湿度センサ9からデータを受信するときにおいても用いることができる。本発明の実施形態2ではその動作例を説明する。物理量測定装置1の構成は実施形態1と同じである。 <Embodiment 2> In the first embodiment, an example in which the SDA is masked by the mask circuit 21 when the physical quantity measuring device 1 transmits a command to the humidity sensor 9 has been described. The same operation can be used when the physical quantity measuring device 1 receives data from the humidity sensor 9. In the second embodiment of the present invention, an operation example thereof will be described. The configuration of the physical quantity measuring device 1 is the same as that of the first embodiment.
 図8は、センサが端子に接続されていない場合における信号波形例である。ここでは物理量測定装置1が湿度センサ9からデータを受信するときの信号波形を例示する。データ受信時においても、制御回路6はSCLの9ビットごとに通信診断を実施する。そこで実施形態1と同様に、バーンイン試験時において端子20に対してバーンイン信号を入力する。 FIG. 8 is an example of a signal waveform when the sensor is not connected to the terminal. Here, a signal waveform when the physical quantity measuring device 1 receives data from the humidity sensor 9 is illustrated. Even when data is received, the control circuit 6 performs communication diagnosis every 9 bits of the SCL. Therefore, as in the first embodiment, the burn-in signal is input to the terminal 20 at the time of the burn-in test.
 端子20に対してバーンイン信号が入力されている間、制御回路6は、ACKと同じタイミングにおいて、MASを0Vにセットする。マスク回路21は、MASが0Vであるとき、SDAの値によらず、MDAを0Vにセットする。これにより、実際のSDAがVINTレベルであっても、制御回路6はSDAが0Vであると認識するので、通信確認信号としてACKを受け取る。したがってバーンイン試験工程のなかで湿度センサ9からのデータ受信処理を実施する場合であっても、実施形態1と同様に通信が正常であるものとして処理を継続することができる。 While the burn-in signal is being input to the terminal 20, the control circuit 6 sets MAS to 0V at the same timing as ACK. When the MAS is 0V, the mask circuit 21 sets the MDA to 0V regardless of the value of the SDA. As a result, even if the actual SDA is at the VINT level, the control circuit 6 recognizes that the SDA is 0V, and therefore receives ACK as a communication confirmation signal. Therefore, even when the data reception process from the humidity sensor 9 is performed in the burn-in test process, the process can be continued assuming that the communication is normal as in the first embodiment.
 I2C通信においては、データ受信後のSTOP CONDITION直前にNACKを挿入する場合がある。この場合は、NACKと同じタイミングにおいて、制御回路6がMASをVINTレベルにセットする。マスク回路21は、MASがVINTレベルであればSDAをそのまま出力するので、SDAがVINTレベルであればこれがそのまま制御回路6へ出力される。したがってSTOP CONDITION直前にNACKを設けることができる。 In I2C communication, NACK may be inserted immediately before STOP CONDITION after data reception. In this case, the control circuit 6 sets the MAS to the VINT level at the same timing as NACK. Since the mask circuit 21 outputs the SDA as it is when the MAS is at the VINT level, it is output as it is to the control circuit 6 when the SDA is at the VINT level. Therefore, NACK can be provided immediately before STOP CONDITION.
 図9は、センサが端子に接続されていない場合における別の信号波形例である。ここでは図8と同様に、物理量測定装置1が湿度センサ9からデータを受信するときの信号波形を例示する。湿度センサ9は、制御回路6に対して応答する際に、データ本体に加えて誤り訂正符号(例えばCyclic Redundancy Check:CRCコード)を付与する場合がある。誤り訂正符号は制御回路6でも再計算され、付与された誤り訂正符号と計算した誤り訂正符号が不一致の場合(例えば、湿度センサ9が接続されていない)、誤り訂正符号は制御回路6でも再計算され、付与された誤り訂正符号と計算した誤り訂正符号が不一致の場合(例えば、湿度センサ9が接続されていない)、制御回路6は通信エラーであると診断することになる。そこで図9において、マスク回路21は、通信エラーではない場合に相当する誤り訂正符号を自ら生成して制御回路6へ出力する。これにより、湿度センサ9が接続されていない場合であっても、制御回路6は通信確認信号が正常であるとみなすことになる。したがって湿度センサ9からデータ受信するときであっても、実施形態1と同様に通信確認信号をマスクすることができる。 FIG. 9 is another signal waveform example when the sensor is not connected to the terminal. Here, as in FIG. 8, the signal waveform when the physical quantity measuring device 1 receives data from the humidity sensor 9 is illustrated. When the humidity sensor 9 responds to the control circuit 6, an error correction code (for example, Cyclic Redundancy Check: CRC code) may be added in addition to the data body. The error correction code is also recalculated in the control circuit 6, and if the given error correction code and the calculated error correction code do not match (for example, the humidity sensor 9 is not connected), the error correction code is recalculated in the control circuit 6 as well. If the calculated and assigned error correction code and the calculated error correction code do not match (for example, the humidity sensor 9 is not connected), the control circuit 6 will diagnose a communication error. Therefore, in FIG. 9, the mask circuit 21 itself generates an error correction code corresponding to the case where it is not a communication error and outputs it to the control circuit 6. As a result, even when the humidity sensor 9 is not connected, the control circuit 6 considers that the communication confirmation signal is normal. Therefore, even when data is received from the humidity sensor 9, the communication confirmation signal can be masked as in the first embodiment.
 マスク回路21は、誤り訂正符号を生成することに加えて、湿度センサ9から受信するデータ本体を生成してもよい。この場合におけるデータ本体は、少なくとも通信エラー時において制御回路6が受信するものとは異なるようにする必要があるが、その限りにおいては任意のデータでよい。これにより、正しいCRCコードを模擬することに加えて、制御回路6の活性化率を上げることになるので、バーンイン試験時において制御回路6を効率的にテストすることができる。 The mask circuit 21 may generate a data body received from the humidity sensor 9 in addition to generating an error correction code. The data body in this case needs to be different from that received by the control circuit 6 at least at the time of a communication error, but as long as it is, any data may be used. As a result, in addition to simulating the correct CRC code, the activation rate of the control circuit 6 is increased, so that the control circuit 6 can be efficiently tested at the time of the burn-in test.
<実施の形態3> 図10は、本発明の実施形態3に係る物理量測定装置1の動作を説明する信号波形の例である。以上の実施形態においては、バーンイン信号が入力されたとき、マスク回路21は、ACKのタイミングでMDAを0Vにセットすることを説明した。本実施形態3においてはこれに代えて、バーンイン信号が入力されている間(湿度センサ9が物理量測定装置1に対して未接続のとき)、マスク回路21は同期信号SCLによらず常にMDAを0Vにセットする。これにより、通信確認信号のタイミングに依拠することなく、制御回路6は常にSDAとして0Vを受け取る。したがってバーンイン試験時において湿度センサ9が端子に接続されていない場合であっても、診断処理以降の処理を継続してバーンイン試験に供することができる。 <Embodiment 3> FIG. 10 is an example of a signal waveform illustrating the operation of the physical quantity measuring device 1 according to the third embodiment of the present invention. In the above embodiment, it has been described that the mask circuit 21 sets the MDA to 0V at the timing of ACK when the burn-in signal is input. In the third embodiment, instead of this, the mask circuit 21 always uses the MDA regardless of the synchronization signal SCL while the burn-in signal is input (when the humidity sensor 9 is not connected to the physical quantity measuring device 1). Set to 0V. As a result, the control circuit 6 always receives 0V as the SDA without depending on the timing of the communication confirmation signal. Therefore, even if the humidity sensor 9 is not connected to the terminal at the time of the burn-in test, the process after the diagnostic process can be continuously subjected to the burn-in test.
 本実施形態3は、同期信号SCLに合わせてマスク回路21を動作させる必要がない点において、動作手順が簡易化されている。したがって制御回路6の構成を簡易化できる利点がある。 In the third embodiment, the operation procedure is simplified in that it is not necessary to operate the mask circuit 21 in accordance with the synchronization signal SCL. Therefore, there is an advantage that the configuration of the control circuit 6 can be simplified.
<実施の形態4> 図11は、本発明の実施形態4に係る物理量測定装置1の回路構成図である。実施形態1においては、端子20に対してバーンイン信号を入力したとき、制御回路6がACKに合わせてMASを0Vにセットすることを説明した。本実施形態4においてはこれに代えて、端子13に対して通常動作時よりも高い電圧を入力することにより、バーンイン信号を入力したときと同じ動作を実施する。したがって本実施形態4において、端子20は必要ない。 <Embodiment 4> FIG. 11 is a circuit configuration diagram of the physical quantity measuring device 1 according to the fourth embodiment of the present invention. In the first embodiment, it has been described that when a burn-in signal is input to the terminal 20, the control circuit 6 sets the MAS to 0V in accordance with ACK. In the fourth embodiment, instead of this, by inputting a voltage higher than that during normal operation to the terminal 13, the same operation as when the burn-in signal is input is performed. Therefore, in the fourth embodiment, the terminal 20 is not required.
 バーンイン試験を実施するためには、通常動作時よりも高い電圧を物理量測定装置1に対して入力する必要がある。端子13に対してこの高電圧を入力することにより、電源回路10は通常動作時よりも高いREGOUTを出力し、高電圧を状態となったことを通知する信号BEを論理回路7へ出力する。論理回路7はこの信号BEが入力されると、バーンインモードに移行した旨を制御回路6へ通知する。制御回路6はこの通知を受け取ると、MASを0Vにセットする。以後の動作は実施形態1と同様である。 In order to carry out the burn-in test, it is necessary to input a voltage higher than that during normal operation to the physical quantity measuring device 1. By inputting this high voltage to the terminal 13, the power supply circuit 10 outputs a REGOUT higher than that in the normal operation, and outputs a signal BE notifying that the high voltage is in the state to the logic circuit 7. When this signal BE is input, the logic circuit 7 notifies the control circuit 6 that the burn-in mode has been entered. Upon receiving this notification, the control circuit 6 sets the MAS to 0V. Subsequent operations are the same as in the first embodiment.
 図12は、電源回路10が出力するREGOUTの電圧レベルを説明するグラフである。VCCが規定範囲内(Vmin~Vmax)であるとき、電源回路10は規定電圧VINTを出力する。VCCがVmax以上である場合、電源回路10はVINT以上の電圧を出力する。論理回路7は、信号BEを受け取った場合、バーンインモードに移行した旨を制御回路6へ通知する。 FIG. 12 is a graph for explaining the voltage level of REGOUT output by the power supply circuit 10. When the VCS is within the specified range (Vmin to Vmax), the power supply circuit 10 outputs the specified voltage VINT. When the VCS is Vmax or higher, the power supply circuit 10 outputs a voltage equal to or higher than VINT. When the logic circuit 7 receives the signal BE, the logic circuit 7 notifies the control circuit 6 that the burn-in mode has been entered.
 本実施形態4においては、バーンイン試験時に用いる高電圧をバーンイン信号の代わりに用いるので、端子20を設ける必要がない。したがって端子や配線の数を抑制できる利点がある。 In the fourth embodiment, since the high voltage used in the burn-in test is used instead of the burn-in signal, it is not necessary to provide the terminal 20. Therefore, there is an advantage that the number of terminals and wiring can be suppressed.
<実施の形態5> 図13は、本発明の実施形態5に係る物理量測定装置1の回路構成図である。実施形態4においては、VCCに対して通常動作時よりも高い電圧を入力することにより、バーンインモードへ移行することを説明した。本実施形態5においては、端子20に対して閾値以上の電圧を入力することにより、バーンインモードへ移行する。その他構成は実施形態1、4と同様である。 <Embodiment 5> FIG. 13 is a circuit configuration diagram of the physical quantity measuring device 1 according to the fifth embodiment of the present invention. In the fourth embodiment, it has been described that the transition to the burn-in mode is performed by inputting a voltage higher than that during normal operation to the VCS. In the fifth embodiment, the burn-in mode is entered by inputting a voltage equal to or higher than the threshold value to the terminal 20. Other configurations are the same as those of the first and fourth embodiments.
 図14は、電源回路10が出力するREGOUTの電圧レベルを説明するグラフである。バーンイン信号BURNがBT以下であるとき、電源回路10は規定電圧VINTを出力する。BURNがBT以上である場合、電源回路10はVINT以上の電圧を出力する。論理回路7は、BURNがBT以上である場合、バーンインモードに移行した旨を制御回路6へ通知する。すなわちBT以上の信号レベルを有するBURN信号は、バーンインモードへ移行するように指示する信号として作用する。 FIG. 14 is a graph illustrating the voltage level of REGOUT output by the power supply circuit 10. When the burn-in signal BURN is BT or less, the power supply circuit 10 outputs a specified voltage VINT. When BURN is BT or more, the power supply circuit 10 outputs a voltage of VINT or more. When the BURN is BT or more, the logic circuit 7 notifies the control circuit 6 that the burn-in mode has been entered. That is, the BURN signal having a signal level equal to or higher than BT acts as a signal instructing the transition to the burn-in mode.
 本実施形態5は、端子20に対してバーンイン信号を入力する点においては実施形態1と同様であるが、(a)バーンイン信号が閾値BT以上になるまでは通常動作する点、(b)電源回路10がバーンイン信号の信号レベルに対応する内部電圧を生成する点、が実施形態1とは異なる。すなわち本実施形態5において、バーンイン信号は、バーンインモードへ移行する旨を指示することに加えて、バーンインモード時における電圧負荷レベルを指定する役割をも有する。これにより様々な電圧負荷レベルでバーンイン試験を実施することができる。 The fifth embodiment is the same as the first embodiment in that a burn-in signal is input to the terminal 20, but (a) normal operation is performed until the burn-in signal becomes the threshold value BT or more, and (b) a power supply. The circuit 10 is different from the first embodiment in that it generates an internal voltage corresponding to the signal level of the burn-in signal. That is, in the fifth embodiment, the burn-in signal has a role of designating the voltage load level in the burn-in mode in addition to instructing the shift to the burn-in mode. This allows burn-in tests to be performed at various voltage load levels.
<実施の形態6> 図15は、本発明の実施形態6に係る物理量測定装置1の回路構成図である。実施形態1~5においては、入出力回路2から制御回路6へSDAを入力する入力線上にマスク回路21を配置した。本実施形態6においてはこれに代えて、制御回路6から入出力回路2へSDAを出力する出力線上にマスク回路21を配置する。すなわちマスク回路21は、制御回路6が出力するDADを入出力回路2よりも前に受け取る位置に配置されていることになる。マスク回路21は、MASがVINTレベルであればDADをそのままMDAとして出力し、MASが0VであればDADの値によらずVINTをMDAとして出力する。 <Embodiment 6> FIG. 15 is a circuit configuration diagram of the physical quantity measuring device 1 according to the sixth embodiment of the present invention. In the first to fifth embodiments, the mask circuit 21 is arranged on the input line for inputting the SDA from the input / output circuit 2 to the control circuit 6. In the sixth embodiment, instead of this, the mask circuit 21 is arranged on the output line that outputs the SDA from the control circuit 6 to the input / output circuit 2. That is, the mask circuit 21 is arranged at a position where the DAD output by the control circuit 6 is received before the input / output circuit 2. If the MAS is at the VINT level, the mask circuit 21 outputs the DAD as an MDA as it is, and if the MAS is 0V, the mask circuit 21 outputs the VINT as the MDA regardless of the value of the DAD.
 入出力回路2は、MDAを反転した信号レベルを出力する。具体的には、ゲートOFF時(MDAが0Vとき)はプルアップ抵抗3によって出力レベルをVINT側に固定し、ゲートON時(MDAがVINTレベルのとき)はグラウンドと短絡することにより出力レベルを0Vに固定する。 The input / output circuit 2 outputs a signal level in which the MDA is inverted. Specifically, when the gate is OFF (when MDA is 0V), the output level is fixed to the VINT side by the pull-up resistor 3, and when the gate is ON (when MDA is VINT level), the output level is short-circuited with the ground to set the output level. It is fixed at 0V.
 図16は、本実施形態6における物理量測定装置1の動作を説明する信号波形の例である。端子20に対してバーンイン信号が入力されている間、制御回路6は、ACKと同じタイミングにおいて、MASを0Vにセットする。マスク回路21は、MASが0Vであるとき、DADの値によらず、MDAをVINTにセットする。入出力回路2はMDAを反転した信号レベルをSDAとして出力するので、ACKのタイミングにおいてSDAは0Vとなる。これにより制御回路6はSDAが0Vであると認識するので、通信確認信号としてACKを受け取る。したがって実施形態1と同様の動作を実現できる。 FIG. 16 is an example of a signal waveform illustrating the operation of the physical quantity measuring device 1 in the sixth embodiment. While the burn-in signal is input to the terminal 20, the control circuit 6 sets the MAS to 0V at the same timing as the ACK. The mask circuit 21 sets the MDA to VINT when the MAS is 0V, regardless of the value of the DAD. Since the input / output circuit 2 outputs the signal level in which the MDA is inverted as the SDA, the SDA becomes 0V at the ACK timing. As a result, the control circuit 6 recognizes that the SDA is 0V, and therefore receives ACK as a communication confirmation signal. Therefore, the same operation as in the first embodiment can be realized.
<本発明の変形例について> 本発明は上記実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 <About Modifications of the Present Invention> The present invention is not limited to the above embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
 以上の実施形態においては、湿度センサ9が物理量測定装置1に対して接続されていなくともバーンイン試験を適切に実施する例を説明したが、マスク回路21が通信確認信号をマスクすることができるのであれば、その他センサについても本発明と同様の効果を発揮することができる。 In the above embodiment, an example in which the burn-in test is appropriately performed even if the humidity sensor 9 is not connected to the physical quantity measuring device 1 has been described, but since the mask circuit 21 can mask the communication confirmation signal. If so, the same effect as that of the present invention can be exhibited for other sensors.
 以上の実施形態において、制御回路6や論理回路7は、これらの機能を実装した回路デバイスなどのハードウェアによって構成することもできるし、これらの機能を実装したソフトウェアをCPU(Central Processing Unit)などの演算装置が実行することによって構成することもできる。また、本実施形態において、通信方式はI2C通信を例に説明したが、CAN(Controller Area Network)通信など、通信確認を実施する通信プロトコルにおいても適用することができる。 In the above embodiment, the control circuit 6 and the logic circuit 7 can be configured by hardware such as a circuit device that implements these functions, and software that implements these functions is provided by a CPU (Central Processing Unit) or the like. It can also be configured by executing the arithmetic unit of. Further, in the present embodiment, the communication method has been described by taking I2C communication as an example, but it can also be applied to a communication protocol for performing communication confirmation such as CAN (Control Area Network) communication.
1:物理量測定装置2:入出力回路3:プルアップ抵抗4:NMOSトランジスタ5:ADコンバータ6:制御回路7:論理回路8:流量センサ9:湿度センサ10:電源回路11:出力回路12:発振回路13:端子14~20:端子 1: Physical quantity measuring device 2: Input / output circuit 3: Pull-up resistor 4: NMOS transistor 5: AD converter 6: Control circuit 7: Logic circuit 8: Flow sensor 9: Humidity sensor 10: Power supply circuit 11: Output circuit 12: Oscillation Circuit 13: Terminals 14 to 20: Terminals

Claims (15)

  1.  センサとのシリアル通信用の入出力端子部と、前記入出力端子から入力される信号を診断する診断部と、を有する半導体素子を備える物理量測定装置において、
     前記半導体素子は、前記入出力端子と前記診断部の間に設けられ、前記診断部が動作しないレベルに信号をマスク可能なマスク回路を有する、
     物理量測定装置。
    In a physical quantity measuring device including a semiconductor element having an input / output terminal unit for serial communication with a sensor and a diagnostic unit for diagnosing a signal input from the input / output terminal.
    The semiconductor element is provided between the input / output terminal and the diagnostic unit, and has a mask circuit capable of masking a signal to a level at which the diagnostic unit does not operate.
    Physical quantity measuring device.
  2.  前記半導体素子は第1端子を有し、
     前記マスク回路は、前記第1端子が第1電圧レベルの場合には動作し、第2電圧レベルの場合には動作せず、
     前記第1電圧レベルはバーンインの際に設定され、
     前記第2電圧レベルは製品実装の際に設定される、
     請求項1記載の物理量測定装置。
    The semiconductor element has a first terminal and has a first terminal.
    The mask circuit operates when the first terminal is at the first voltage level and does not operate when the first terminal is at the second voltage level.
    The first voltage level is set at the time of burn-in,
    The second voltage level is set at the time of product mounting.
    The physical quantity measuring device according to claim 1.
  3.  前記物理量測定装置はさらに、前記入出力端子との間で信号を入出力する入出力回路を備え、
     前記マスク回路は、前記入出力回路が前記入出力端子から受け取った信号を前記半導体素子へ伝搬する入力線に対して割り込む位置に配置されていることにより、前記入出力回路が前記入出力端子から受け取った信号を前記半導体素子よりも前に受け取る、
     請求項1記載の物理量測定装置。
    The physical quantity measuring device further includes an input / output circuit for inputting / outputting a signal to / from the input / output terminal.
    The mask circuit is arranged at a position where the input / output circuit interrupts the signal received from the input / output terminal with respect to the input line propagating to the semiconductor element, so that the input / output circuit is inserted from the input / output terminal. Receives the received signal before the semiconductor element,
    The physical quantity measuring device according to claim 1.
  4.  前記マスク回路は、前記シリアル通信の同期信号と同期することにより、前記入出力端子から入力される通信確認信号を前記診断部が受け取るタイミングで、その通信確認信号を前記診断部が動作しないレベルにマスクする、
     請求項1記載の物理量測定装置。
    By synchronizing with the synchronization signal of the serial communication, the mask circuit brings the communication confirmation signal to a level at which the diagnosis unit does not operate at the timing when the diagnosis unit receives the communication confirmation signal input from the input / output terminal. To mask
    The physical quantity measuring device according to claim 1.
  5.  前記半導体素子は、前記入出力端子を介して、流量センサまたは湿度センサのうち少なくともいずれかと接続できるように構成されており、
     前記診断部は、前記入出力端子を介して接続された前記流量センサまたは前記湿度センサを診断する、
     請求項1記載の物理量測定装置。
    The semiconductor element is configured to be connected to at least one of a flow rate sensor and a humidity sensor via the input / output terminal.
    The diagnostic unit diagnoses the flow rate sensor or the humidity sensor connected via the input / output terminal.
    The physical quantity measuring device according to claim 1.
  6.  前記マスク回路は、前記第1電圧レベルを前記マスク回路に対して入力している間は、前記入出力端子から入力された信号レベルを、前記診断部が動作しないレベルにマスクした信号レベルを出力する、
     請求項2記載の物理量測定装置。
    While the first voltage level is being input to the mask circuit, the mask circuit outputs a signal level obtained by masking the signal level input from the input / output terminals to a level at which the diagnostic unit does not operate. do,
    The physical quantity measuring device according to claim 2.
  7.  前記マスク回路は、前記第2電圧レベルを前記マスク回路に対して入力している間は、前記入出力端子から入力された信号レベルと同じ信号レベルを出力する、
     請求項6記載の物理量測定装置。
    The mask circuit outputs the same signal level as the signal level input from the input / output terminal while the second voltage level is input to the mask circuit.
    The physical quantity measuring device according to claim 6.
  8.  前記診断部は、前記入出力端子から入力される信号に誤り訂正符号が付与されている場合は、その誤り訂正符号が正常であるか否かを診断することにより、前記入出力端子から入力される信号が正常であるか否かを診断するように構成されており、
     前記マスク回路は、前記入出力端子から入力される信号がエラーではない場合に対応する誤り訂正符号を生成して前記診断部へ出力することにより、前記入出力端子から入力される信号を前記診断部が正常と診断するように動作する、
     請求項1記載の物理量測定装置。
    When an error correction code is added to the signal input from the input / output terminal, the diagnosis unit diagnoses whether or not the error correction code is normal, so that the signal is input from the input / output terminal. It is configured to diagnose whether the signal is normal or not.
    The mask circuit generates an error correction code corresponding to the case where the signal input from the input / output terminal is not an error and outputs the error correction code to the diagnostic unit to diagnose the signal input from the input / output terminal. The part works to diagnose normal,
    The physical quantity measuring device according to claim 1.
  9.  前記診断部は、前記入出力端子から入力される信号に誤り訂正符号が付与されている場合は、その誤り訂正符号が正常であるか否かを診断することにより、前記入出力端子から入力される信号が正常であるか否かを診断するように構成されており、
     前記マスク回路は、前記診断部がエラーとして取り扱わない信号を生成して前記診断部へ出力するとともに、その信号の誤り訂正符号を生成して前記診断部へ出力することにより、前記入出力端子から入力される信号を前記診断部が正常と診断するように動作する、 請求項1記載の物理量測定装置。
    When an error correction code is added to the signal input from the input / output terminal, the diagnosis unit diagnoses whether or not the error correction code is normal, so that the signal is input from the input / output terminal. It is configured to diagnose whether the signal is normal or not.
    The mask circuit generates a signal that the diagnostic unit does not handle as an error and outputs it to the diagnostic unit, and also generates an error correction code for the signal and outputs the signal to the diagnostic unit from the input / output terminal. The physical quantity measuring device according to claim 1, wherein the diagnostic unit operates so as to diagnose the input signal as normal.
  10.  前記マスク回路は、前記第1端子に対して前記第1電圧レベルを有する信号が入力されている間は、前記シリアル通信の同期信号がいずれの値であるかによらず、前記入出力端子から入力される通信確認信号を前記診断部が動作しないレベルにマスクする、
     請求項2記載の物理量測定装置。
    In the mask circuit, while a signal having the first voltage level is input to the first terminal, the input / output terminal is used regardless of the value of the serial communication synchronization signal. Mask the input communication confirmation signal to a level at which the diagnostic unit does not operate.
    The physical quantity measuring device according to claim 2.
  11.  前記物理量測定装置はさらに、
     前記物理量測定装置に対して電圧を入力する電源端子、
     前記電源端子に対して入力された入力電圧を変圧することにより前記物理量測定装置が用いる内部電圧に変換する電源回路、
     を備え、
     前記電源回路は、前記入力電圧が第1範囲に含まれる場合は前記入力電圧を前記内部電圧に変換し、
     前記電源回路は、前記入力電圧が前記第1範囲を超える場合は前記入力電圧を前記内部電圧よりも大きい超過電圧に変換し、
     前記マスク回路は、前記電源回路が前記超過電圧を出力した場合は、前記入出力端子から入力される信号を前記診断部が動作しないレベルにマスクする、
     請求項1記載の物理量測定装置。
    The physical quantity measuring device further
    A power supply terminal that inputs a voltage to the physical quantity measuring device,
    A power supply circuit that converts the input voltage input to the power supply terminal into the internal voltage used by the physical quantity measuring device.
    With
    When the input voltage is included in the first range, the power supply circuit converts the input voltage into the internal voltage.
    When the input voltage exceeds the first range, the power supply circuit converts the input voltage into an excess voltage larger than the internal voltage.
    The mask circuit masks the signal input from the input / output terminal to a level at which the diagnostic unit does not operate when the power supply circuit outputs the excess voltage.
    The physical quantity measuring device according to claim 1.
  12.  前記物理量測定装置はさらに、
      前記物理量測定装置に対して電圧を入力する電源端子、
      前記電源端子に対して入力された入力電圧を変圧することにより前記物理量測定装置が用いる内部電圧に変換する電源回路、
      前記物理量測定装置の動作モードを指示するモード指示信号を入力するモード指定端子、
     を備え、
     前記電源回路は、前記モード指示信号が第1モードを指示している場合は、前記入力電圧を前記内部電圧よりも大きくかつ前記モード指示信号の信号レベルに対応する超過電圧に変換し、
     前記電源回路は、前記モード指示信号が第2モードを指示している場合は、前記入力電圧を前記内部電圧に変換し、
     前記マスク回路は、前記電源回路が前記超過電圧を出力した場合は、前記入出力端子から入力される信号を前記診断部が動作しないレベルにマスクする、
     請求項1記載の物理量測定装置。
    The physical quantity measuring device further
    A power supply terminal that inputs a voltage to the physical quantity measuring device,
    A power supply circuit that converts the input voltage input to the power supply terminal into the internal voltage used by the physical quantity measuring device.
    A mode designation terminal for inputting a mode instruction signal indicating the operation mode of the physical quantity measuring device,
    With
    When the mode instruction signal indicates the first mode, the power supply circuit converts the input voltage into an excess voltage that is larger than the internal voltage and corresponds to the signal level of the mode instruction signal.
    When the mode instruction signal indicates the second mode, the power supply circuit converts the input voltage into the internal voltage.
    The mask circuit masks the signal input from the input / output terminal to a level at which the diagnostic unit does not operate when the power supply circuit outputs the excess voltage.
    The physical quantity measuring device according to claim 1.
  13.  前記物理量測定装置はさらに、前記入出力端子との間で信号を入出力する入出力回路を備え、
     前記マスク回路は、前記半導体素子が前記入出力回路に対して出力した信号を前記入出力端子へ伝搬する出力線に対して割り込む位置に配置されていることにより、前記半導体素子が前記入出力端子に対して出力した信号を前記入出力回路よりも前に受け取る、
     請求項1記載の物理量測定装置。
    The physical quantity measuring device further includes an input / output circuit for inputting / outputting a signal to / from the input / output terminal.
    The mask circuit is arranged at a position where the semiconductor element interrupts the signal output to the input / output circuit with respect to the output line propagating to the input / output terminal, so that the semiconductor element is arranged at the input / output terminal. Receives the signal output to the above before the input / output circuit.
    The physical quantity measuring device according to claim 1.
  14.  前記物理量測定装置はさらに、前記物理量測定装置の動作モードを指示するモード指示信号を入力するモード指定端子を備え、
     前記マスク回路は、前記モード指示信号が第1モードを指示している場合は、前記入出力端子から入力される信号を前記診断部が動作しないレベルにマスクし、
     前記マスク回路は、前記モード指示信号が第2モードを指示している場合は、前記入出力端子から入力される信号レベルと同じ信号レベルを出力する、
     請求項13記載の物理量測定装置。
    The physical quantity measuring device further includes a mode designation terminal for inputting a mode instruction signal for instructing the operation mode of the physical quantity measuring device.
    When the mode instruction signal indicates the first mode, the mask circuit masks the signal input from the input / output terminal to a level at which the diagnostic unit does not operate.
    When the mode instruction signal indicates the second mode, the mask circuit outputs the same signal level as the signal level input from the input / output terminal.
    The physical quantity measuring device according to claim 13.
  15.  前記入出力回路は、前記入出力回路が出力する信号レベルを固定することができるように構成されており、
     前記マスク回路は、前記入出力回路が出力する信号レベルを固定させる指示信号を前記入出力回路に対して出力することにより、前記診断部が前記入出力回路から受け取る信号を、前記診断部が動作しないレベルにマスクする、
     請求項13記載の物理量測定装置。
    The input / output circuit is configured so that the signal level output by the input / output circuit can be fixed.
    The mask circuit outputs an instruction signal for fixing the signal level output by the input / output circuit to the input / output circuit, so that the diagnostic unit operates a signal received from the input / output circuit. Mask to a level that does not
    The physical quantity measuring device according to claim 13.
PCT/JP2020/048706 2020-03-09 2020-12-25 Physical quantity measurement device WO2021181830A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022505784A JP7354409B2 (en) 2020-03-09 2020-12-25 Physical quantity measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-039784 2020-03-09
JP2020039784 2020-03-09

Publications (1)

Publication Number Publication Date
WO2021181830A1 true WO2021181830A1 (en) 2021-09-16

Family

ID=77671610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048706 WO2021181830A1 (en) 2020-03-09 2020-12-25 Physical quantity measurement device

Country Status (2)

Country Link
JP (1) JP7354409B2 (en)
WO (1) WO2021181830A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236797A (en) * 1999-12-17 2001-08-31 Fujitsu Ltd Self-test circuit and memory device incorporating it
WO2006025140A1 (en) * 2004-09-02 2006-03-09 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit device and method for inspecting the same, semiconductor wafer and burn-in inspection apparatus
WO2006080111A1 (en) * 2005-01-27 2006-08-03 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit and system lsi
JP2007309773A (en) * 2006-05-18 2007-11-29 Renesas Technology Corp Semiconductor integrated circuit and its diagnostic method
JP2009047557A (en) * 2007-08-20 2009-03-05 Fujitsu Ltd Semiconductor device
US20100271064A1 (en) * 2009-04-28 2010-10-28 Kohler Ross A Integrated Circuit Self-Monitored Burn-In
JP2014238348A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Electronic control device having integrated circuit element and single item inspection device of the integrated circuit element
WO2020217925A1 (en) * 2019-04-23 2020-10-29 日立オートモティブシステムズ株式会社 Semiconductor integrated circuit device and inspection method for semiconductor integrated circuit device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024659A (en) * 2005-07-15 2007-02-01 Fujitsu Ltd Integrated circuit and circuit board
JP2014046730A (en) * 2012-08-30 2014-03-17 Hitachi Automotive Systems Ltd Onboard electronic control unit
JP6210187B2 (en) * 2012-10-23 2017-10-11 セイコーエプソン株式会社 Integrated circuit device, physical quantity measuring device, electronic device, and moving object
JP6708083B2 (en) * 2016-09-30 2020-06-10 横河電機株式会社 Application development environment providing system, application development environment providing method, application development environment providing program, and terminal device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001236797A (en) * 1999-12-17 2001-08-31 Fujitsu Ltd Self-test circuit and memory device incorporating it
WO2006025140A1 (en) * 2004-09-02 2006-03-09 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit device and method for inspecting the same, semiconductor wafer and burn-in inspection apparatus
WO2006080111A1 (en) * 2005-01-27 2006-08-03 Matsushita Electric Industrial Co., Ltd. Semiconductor integrated circuit and system lsi
JP2007309773A (en) * 2006-05-18 2007-11-29 Renesas Technology Corp Semiconductor integrated circuit and its diagnostic method
JP2009047557A (en) * 2007-08-20 2009-03-05 Fujitsu Ltd Semiconductor device
US20100271064A1 (en) * 2009-04-28 2010-10-28 Kohler Ross A Integrated Circuit Self-Monitored Burn-In
JP2014238348A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Electronic control device having integrated circuit element and single item inspection device of the integrated circuit element
WO2020217925A1 (en) * 2019-04-23 2020-10-29 日立オートモティブシステムズ株式会社 Semiconductor integrated circuit device and inspection method for semiconductor integrated circuit device

Also Published As

Publication number Publication date
JP7354409B2 (en) 2023-10-02
JPWO2021181830A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JPS62228177A (en) Tolerant input voltage inspection circuit for semiconductor integrated circuit
WO2021181830A1 (en) Physical quantity measurement device
JP2014216738A (en) Communication circuit, physical value measuring apparatus, electronic apparatus, mobile apparatus, and communication method
JP2007233573A (en) Electronic controller
JP2020112469A (en) Test device, test method and interface unit
CN116050324A (en) Chip verification structure, chip verification system and method
JP2010134677A (en) Microcomputer and embedded software development system
JP2002252660A (en) Serial data communication apparatus and communication error detection method
US11557370B2 (en) Semiconductor device and self-diagnostic method of semiconductor device
CN108241117B (en) System and method for testing semiconductor devices
JP2009288064A (en) Semiconductor test apparatus and method
JP2008116281A (en) Ic tester calibrating method
US20190285696A1 (en) Semiconductor device and failure diagnosis method
KR101072810B1 (en) Self-Diagnosis Apparatus for Application-Specific IC of Automobile
US20230194628A1 (en) Semiconductor Device
US6411115B2 (en) Apparatus for testing a semiconductor and process for the same
JP2002300013A (en) Delay circuit
JPH01111365A (en) Semiconductor integrated circuit
US7511506B2 (en) Semiconductor testing system and testing method
JPS6151578A (en) Fault diagnostic system of electronic circuit device
JPH01309446A (en) Line simulator
US20180364297A1 (en) Semiconductor device and method of testing semiconductor device
JP2001034500A (en) Microcomputer failure diagnosing device and method
JPH07270490A (en) Semiconductor test device
JP2842840B2 (en) Semiconductor device burn-in test equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924595

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022505784

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924595

Country of ref document: EP

Kind code of ref document: A1