WO2021180181A1 - 嘧啶并杂环类化合物及其应用 - Google Patents

嘧啶并杂环类化合物及其应用 Download PDF

Info

Publication number
WO2021180181A1
WO2021180181A1 PCT/CN2021/080278 CN2021080278W WO2021180181A1 WO 2021180181 A1 WO2021180181 A1 WO 2021180181A1 CN 2021080278 W CN2021080278 W CN 2021080278W WO 2021180181 A1 WO2021180181 A1 WO 2021180181A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
added
add
reaction
pharmaceutically acceptable
Prior art date
Application number
PCT/CN2021/080278
Other languages
English (en)
French (fr)
Inventor
张杨
伍文韬
孙继奎
徐洋洋
陈曙辉
Original Assignee
南京明德新药研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN202311017911.0A priority Critical patent/CN117050079A/zh
Priority to EP21767113.0A priority patent/EP4105211A4/en
Application filed by 南京明德新药研发有限公司 filed Critical 南京明德新药研发有限公司
Priority to CA3171365A priority patent/CA3171365A1/en
Priority to AU2021233058A priority patent/AU2021233058B2/en
Priority to CN202311335558.0A priority patent/CN117510492A/zh
Priority to JP2022554868A priority patent/JP2023517995A/ja
Priority to US17/905,973 priority patent/US20230151004A1/en
Priority to BR122023026304-9A priority patent/BR122023026304A2/pt
Priority to KR1020227035086A priority patent/KR20220152295A/ko
Priority to IL296357A priority patent/IL296357A/en
Priority to MX2022011283A priority patent/MX2022011283A/es
Priority to CN202180021254.XA priority patent/CN115298174B/zh
Priority to BR112022018140-0A priority patent/BR112022018140B1/pt
Priority to TW110112436A priority patent/TWI811656B/zh
Publication of WO2021180181A1 publication Critical patent/WO2021180181A1/zh
Priority to US18/473,147 priority patent/US20240116934A1/en
Priority to JP2024005840A priority patent/JP2024045251A/ja
Priority to AU2024201366A priority patent/AU2024201366A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/557Eicosanoids, e.g. leukotrienes or prostaglandins
    • A61K31/558Eicosanoids, e.g. leukotrienes or prostaglandins having heterocyclic rings containing oxygen as the only ring hetero atom, e.g. thromboxanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D419/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms
    • C07D419/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D419/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen, oxygen, and sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/044Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • C07D491/052Ortho-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring the oxygen-containing ring being six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Definitions

  • the present invention relates to a class of pyrimidoheterocyclic compounds, in particular to a compound represented by formula (III) or a pharmaceutically acceptable salt thereof.
  • RAS oncogene mutations are the most common activating mutations in human cancers, occurring in 30% of human tumors.
  • the RAS gene family includes three subtypes (KRAS, HRAS, and NRAS), of which 85% of RAS-driven cancers are caused by mutations in the KRAS subtype.
  • KRAS mutations are common in solid tumors, such as lung adenocarcinoma, pancreatic ductal carcinoma, and colorectal cancer. In KRAS mutant tumors, 80% of oncogenic mutations occur at codon 12.
  • the most common mutations include: p.G12D (41%), p.G12V (28%) and p.G12C (14%).
  • KRAS The full name of the KRAS gene is Kirsten rat sarcoma viraloncogene homolog (Kristen rat sarcoma virus oncogene homolog).
  • KRAS plays a pivotal role in the signal regulation of cell growth.
  • the upstream cell surface receptors such as EGFR (ErbB1), HER2 (ErbB2), ErbB3 and ErbB4, after receiving external signals, will pass through the RAS protein to transfer the signal. Pass it downstream.
  • the KRAS protein When the KRAS protein is not activated, it binds closely to GDP (guanine nucleotide diphosphate).
  • guanine nucleotide exchange factors such as SOS1
  • GTP guanine nucleotide triphosphate
  • KRAS gene After being activated by guanine nucleotide exchange factors such as SOS1, it binds to GTP (guanine nucleotide triphosphate) and becomes a state of kinase activity.
  • GTP guanine nucleotide triphosphate
  • KRAS gene After the mutation of KRAS gene, it can independently transmit growth and proliferation signals to downstream pathways independently of the upstream growth factor receptor signal, resulting in uncontrolled cell growth and tumor progression. At the same time, whether the KRAS gene has mutations is also one of the prognosis of tumors. Important indicators.
  • KRAS is the first oncogene to be discovered, it has long been regarded as an un-drugable target.
  • Amgen and Mirati Therapeutics successively announced the clinical research results of KRAS small molecule inhibitors AMG510 and MRTX849, which for the first time clinically confirmed the effectiveness of KRAS inhibitors in the treatment of tumors.
  • Both AMG 510 and MRTX849 are irreversible small-part inhibitors, which inhibit KRAS activity by forming irreversible covalent bonds with the cysteine residues of the KRAS G12C mutant protein.
  • the present invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from O and N;
  • R 1 is selected from a C 6-10 aryl group and a 5-10 membered heteroaryl group, and the C 6-10 aryl group and a 5-10 membered heteroaryl group are optionally substituted by 1, 2, 3, 4 or 5 Ra replace;
  • R 2 When T 1 is selected from O, R 2 does not exist;
  • R 3 is selected from a C 1-3 alkyl group, the C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R 4 is selected from H and C 1-3 alkyl, said C 1-3 alkyl is optionally substituted with 1, 2 or 3 R d ;
  • R 5 , R 6 and R 7 are each independently selected from H, F, Cl, Br, I, C 1-3 alkyl, and the C 1-3 alkyl is optionally substituted with 1, 2 or 3 F;
  • R 8 is selected from H and CH 3 ;
  • R a is independently selected from F, Cl, Br, I, OH, NH 2 , CN, C 1-3 alkyl, C 1-3 alkoxy, C 2-3 alkynyl and C 2-3 alkenyl ,
  • the C 1-3 alkyl group, C 1-3 alkoxy group, C 2-3 alkynyl group and C 2-3 alkenyl group are optionally substituted with 1, 2 or 3 F;
  • R b is independently selected from F, Cl, Br, I, OH and NH 2 ;
  • R c are each independently selected from 4-8 membered heterocycloalkyl, which is optionally substituted by 1, 2 or 3 R;
  • R d are independently selected from F, Cl, Br, I, OH, NH 2 and CN;
  • R is independently selected from H, F, Cl, Br, OH, CN, C 1-3 alkyl, C 1-3 alkoxy and -C 1-3 alkyl-O-CO-C 1-3 alkane Amino; provided that when R 1 is selected from naphthyl, the naphthyl is optionally substituted by F, Cl, Br, OH, NH 2 , CF 3 , CH 2 CH 3 and -C ⁇ CH, and R 5 , R 6 and R 7 are each independently selected from H.
  • each R a is independently selected from F, OH, NH 2, CH 3, CF 3, CH 2 CH 3 and -C ⁇ CH, other variables are as defined in the present invention.
  • R 1 is selected from phenyl, naphthyl, indolyl and indazolyl, and the phenyl, naphthyl, indolyl and indazolyl are optionally selected by 1, 2 or 3 R a is substituted, and other variables are as defined in the present invention.
  • R 1 is selected from Other variables are as defined in the present invention.
  • R 2 is selected from H, CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 , and the CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 are optionally selected from 1, 2 or 3 R b substitutions, and other variables are as defined in the present invention.
  • R 2 is selected from H and CH 3 , and other variables are as defined in the present invention.
  • each R above is independently selected from H, F, Cl, Br, OH, CN, CH 3 , CH 2 CH 3 , CH 2 CF 3 , OCH 3 , OCF 3 and Other variables are as defined in the present invention.
  • the above-mentioned R c is selected from tetrahydropyrrolyl and hexahydro-1H-pyrrolizinyl, and the tetrahydropyrrolyl and hexahydro-1H-pyrrolizinyl are optionally selected by 1, 2 Or 3 R substitutions, and other variables are as defined in the present invention.
  • R c is selected from Other variables are as defined in the present invention.
  • R c is selected from Other variables are as defined in the present invention.
  • R 3 is selected from CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R 4 is selected from H and CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R d , and other variables are as defined in the present invention.
  • R 4 is selected from H, CH 3 and CH 2 CN, and other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from O and N;
  • R 1 is selected phenyl, naphthyl, and indazolyl, said phenyl, naphthyl and indazolyl optionally substituted 3, 4 or 5 substituents R a;
  • R 2 When T 1 is selected from O, R 2 does not exist;
  • R 3 is selected from a C 1-3 alkyl group, the C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R 4 is selected from H and C 1-3 alkyl, said C 1-3 alkyl is optionally substituted with 1, 2 or 3 R d ;
  • R 5 , R 6 and R 7 are each independently selected from H, F, Cl, Br, I, OH and NH 2 ;
  • R 8 is selected from H and CH 3 ;
  • R a is independently selected from F, Cl, Br, I, OH, NH 2 , CN, CH 3 , CF 3 and OCH 3 ;
  • R b is independently selected from F, Cl, Br, I, OH and NH 2 ;
  • R c is independently selected from tetrahydropyrrolyl and hexahydro-1H-pyrrolizinyl, the tetrahydropyrrolyl and hexahydro-1H-pyrrolizinyl are substituted with 1, 2 or 3 R;
  • R d are independently selected from F, Cl, Br, I, OH, NH 2 and CN;
  • R is each independently selected from H, F, Cl, Br, and CH 3 .
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 4 is selected from C 1-3 alkyl group, said C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R d ;
  • T 1 , R 1 , R 2 , R 3 , R 5 , R 6 , R 7 and R d are as defined in the present invention.
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • R 1 is selected from phenyl, naphthyl and The phenyl, naphthyl and Optionally substituted with 1,2 or 3 substituents R a, the other variables are as defined in the present invention.
  • R 1 is selected from Other variables are as defined in the present invention.
  • R 2 is selected from H, CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 , and the CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 are optionally selected from 1, 2 or 3 R b substitutions, and other variables are as defined in the present invention.
  • R 2 is selected from H and CH 3 , and other variables are as defined in the present invention.
  • R c is selected from Other variables are as defined in the present invention.
  • R c is selected from Other variables are as defined in the present invention.
  • R 3 is selected from CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R 4 is selected from H and CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 Rd , and other variables are as defined in the present invention.
  • R 4 is selected from H, CH 3 and CH 2 CN, and other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (III) or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from O and N;
  • R 1 is selected phenyl, naphthyl, and indazolyl, said phenyl, naphthyl and indazolyl optionally substituted 3, 4 or 5 substituents R a;
  • R 2 When T 1 is selected from O, R 2 does not exist;
  • R 3 is selected from a C 1-3 alkyl group, the C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R 4 is selected from H and C 1-3 alkyl, said C 1-3 alkyl is optionally substituted with 1, 2 or 3 R d ;
  • R 5 , R 6 and R 7 are each independently selected from H, F, Cl, Br, I, OH and NH 2 ;
  • R 8 is selected from H and CH 3 ;
  • R a is independently selected from F, Cl, Br, I, OH, NH 2 , CN, CH 3 , CF 3 and OCH 3 ;
  • R b is independently selected from F, Cl, Br, I, OH, NH 2 and CH 3 ;
  • R c are each independently selected from tetrahydropyrrolyl, which is substituted with 1, 2 or 3 R;
  • R d are independently selected from F, Cl, Br, I, OH, NH 2 and CN;
  • R is each independently selected from F, Cl, Br, and CH 3 .
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • T 1 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 are as defined in the present invention.
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • R 1 is selected from phenyl, naphthyl and The phenyl, naphthyl and Optionally substituted with 1,2 or 3 substituents R a, the other variables are as defined in the present invention.
  • R 1 is selected from Other variables are as defined in the present invention.
  • R 2 is selected from H, CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 , and the CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 are optionally selected from 1, 2 or 3 R b substitutions, and other variables are as defined in the present invention.
  • R 2 is selected from H and CH 3 , and other variables are as defined in the present invention.
  • R c is selected from Other variables are as defined in the present invention.
  • R 3 is selected from CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R 4 is selected from CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R d , and other variables are as defined in the present invention.
  • R 4 is selected from CH 2 CN, and other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (II) or a pharmaceutically acceptable salt thereof,
  • T 1 is selected from O and N;
  • R 1 is selected phenyl and naphthyl, said phenyl and naphthyl optionally substituted with 1, 2 or 3 R a;
  • R 2 When T 1 is selected from O, R 2 does not exist;
  • R 3 is selected from a C 1-3 alkyl group, the C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R 4 is selected from C 1-3 alkyl group, said C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R d ;
  • R 5 , R 6 and R 7 are each independently selected from H, F, Cl, Br, I, OH and NH 2 ;
  • R a is independently selected from F, Cl, Br, I, OH, NH 2 , CN, CH 3 and OCH 3 ;
  • R b is independently selected from F, Cl, Br, I, OH, NH 2 and CH 3 ;
  • R c are each independently selected from tetrahydropyrrolyl, which is substituted with 1, 2 or 3 R;
  • R d are independently selected from F, Cl, Br, I, OH, NH 2 and CN;
  • R is independently selected from F, Cl, Br and CH 3 ;
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • R 1 is selected naphthyl group, a naphthyl group optionally substituted with 1, 2 or 3 R a, the other variables are as defined in the present invention.
  • R 1 is selected from Other variables are as defined in the present invention.
  • R 2 is selected from CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 , and the CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 are optionally selected from 1, 2 or 3 R b substitutions, other variables are as defined in the present invention.
  • R 2 is selected from CH 3 , and other variables are as defined in the present invention.
  • R c is selected from Other variables are as defined in the present invention.
  • R 3 is selected from CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R 4 is selected from CH 3 , and the CH 3 is optionally substituted by 1, 2 or 3 R d , and other variables are as defined in the present invention.
  • R 4 is selected from CH 2 CN, and other variables are as defined in the present invention.
  • the present invention provides a compound represented by formula (I) or a pharmaceutically acceptable salt thereof,
  • R 1 is selected phenyl and naphthyl, said phenyl and naphthyl optionally substituted with 1, 2 or 3 R a;
  • R 3 is selected from a C 1-3 alkyl group, the C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R c ;
  • R 4 is selected from C 1-3 alkyl, and the C 1-3 alkyl is optionally substituted with 1, 2 or 3 R d ;
  • R 5 , R 6 and R 7 are each independently selected from H, F, Cl, Br, I, OH and NH 2 ;
  • R a and R b are each independently selected from F, Cl, Br, I, OH, NH 2 and CH 3 ;
  • R c are each independently selected from tetrahydropyrrolyl, which is substituted with 1, 2 or 3 R;
  • R d are independently selected from F, Cl, Br, I, OH, NH 2 and CN;
  • R is independently selected from F, Cl, Br and CH 3 ;
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • R 1 is selected from naphthyl, and other variables are as defined in the present invention.
  • R 1 is selected from Other variables are as defined in the present invention.
  • R 2 is selected from CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 , and the CH 3 , CH 2 CH 3 and CH(CH 3 ) 2 are optionally selected from 1, 2 or 3 R b substitutions, other variables are as defined in the present invention.
  • R 2 is selected from CH 3 , and other variables are as defined in the present invention.
  • R c is selected from Other variables are as defined in the present invention.
  • R 3 is selected from CH 3 , and the CH 3 is optionally substituted with 1, 2 or 3 R c , and other variables are as defined in the present invention.
  • R 3 is selected from Other variables are as defined in the present invention.
  • R 4 is selected from CH 3 , and the CH 3 is optionally substituted by 1, 2 or 3 R d , and other variables are as defined in the present invention.
  • R 4 is selected from CH 2 CN, and other variables are as defined in the present invention.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 1 , R 5 , and R c are as defined in the present invention.
  • R 4 is selected from C 1-3 alkyl group, said C 1-3 alkyl group is optionally substituted with 1, 2 or 3 R d ;
  • R d are independently selected from F, Cl, Br, I, OH, NH 2 and CN;
  • the carbon atom with "*" is a chiral carbon atom and exists in the form of (R) or (S) single enantiomer or enriched in one enantiomer.
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • R 1 , R 2 , R 4 , R 5 , R 6 , R 7 , R 8 and R are as defined in the present invention.
  • the present invention provides a compound of the following formula or a pharmaceutically acceptable salt thereof,
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • the above-mentioned compound or a pharmaceutically acceptable salt thereof is selected from,
  • the present invention also provides the use of the above-mentioned compound or a pharmaceutically acceptable salt thereof in the preparation of a medicine for treating diseases related to KRASG12C mutant protein.
  • the compound of the present invention has good cell proliferation inhibitory activity on KRASG12C mutant MIA-PA-CA-2 cell line and NCI-H358 cell. It has good stability of liver microsomes, hepatocytes, plasma and whole blood, good PK properties, and significant anti-tumor effect.
  • pharmaceutically acceptable refers to those compounds, materials, compositions and/or dosage forms that are within the scope of reliable medical judgment and are suitable for use in contact with human and animal tissues. , Without excessive toxicity, irritation, allergic reactions or other problems or complications, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable salt refers to a salt of the compound of the present invention, which is prepared from a compound with specific substituents discovered in the present invention and a relatively non-toxic acid or base.
  • a base addition salt can be obtained by contacting the compound with a sufficient amount of base in a pure solution or a suitable inert solvent.
  • Pharmaceutically acceptable base addition salts include sodium, potassium, calcium, ammonium, organic amine or magnesium salt or similar salts.
  • the acid addition salt can be obtained by contacting the compound with a sufficient amount of acid in a pure solution or a suitable inert solvent.
  • Examples of pharmaceutically acceptable acid addition salts include inorganic acid salts including, for example, hydrochloric acid, hydrobromic acid, nitric acid, carbonic acid, hydrogen carbonate, phosphoric acid, monohydrogen phosphate, dihydrogen phosphate, sulfuric acid, Hydrogen sulfate, hydroiodic acid, phosphorous acid, etc.; and organic acid salts, the organic acid includes, for example, acetic acid, propionic acid, isobutyric acid, maleic acid, malonic acid, benzoic acid, succinic acid, suberic acid, Similar acids such as fumaric acid, lactic acid, mandelic acid, phthalic acid, benzenesulfonic acid, p-toluenesulfonic acid, citric acid, tartaric acid and methanesulfonic acid; also include salts of amino acids (such as arginine, etc.) , And salts of organic acids such as glucuronic acid. Certain specific compounds of the present invention contain basic and
  • the pharmaceutically acceptable salt of the present invention can be synthesized from the parent compound containing acid or base by conventional chemical methods. In general, such salts are prepared by reacting these compounds in free acid or base form with a stoichiometric amount of appropriate base or acid in water or organic solvent or a mixture of both.
  • the compounds of the present invention may exist in specific geometric or stereoisomeric forms.
  • the present invention contemplates all such compounds, including cis and trans isomers, (-)- and (+)-enantiomers, (R)- and (S)-enantiomers, diastereomers Isomers, (D)-isomers, (L)-isomers, and their racemic mixtures and other mixtures, such as enantiomers or diastereomer-enriched mixtures, all of these mixtures belong to this Within the scope of the invention.
  • Additional asymmetric carbon atoms may be present in substituents such as alkyl groups. All these isomers and their mixtures are included in the scope of the present invention.
  • the compound of the present invention may contain unnatural proportions of atomic isotopes on one or more of the atoms constituting the compound.
  • compounds can be labeled with radioisotopes, such as tritium ( 3 H), iodine-125 ( 125 I), or C-14 ( 14 C).
  • deuterium can be substituted for hydrogen to form deuterated drugs.
  • the bond formed by deuterium and carbon is stronger than the bond formed by ordinary hydrogen and carbon.
  • deuterated drugs can reduce toxic side effects and increase drug stability. , Enhance the efficacy, extend the biological half-life of drugs and other advantages. All changes in the isotopic composition of the compounds of the present invention, whether radioactive or not, are included in the scope of the present invention.
  • substituted means that any one or more hydrogen atoms on a specific atom are replaced by a substituent.
  • the substituent may include deuterium and hydrogen variants, as long as the valence of the specific atom is normal and the compound after substitution Is stable.
  • Oxygen substitution does not occur on aromatic groups.
  • optionally substituted means that it can be substituted or unsubstituted. Unless otherwise specified, the type and number of substituents can be arbitrary on the basis that they can be chemically realized.
  • any variable such as R
  • its definition in each case is independent.
  • the group can optionally be substituted with up to two Rs, and R has independent options in each case.
  • combinations of substituents and/or variants thereof are only permitted if such combinations result in stable compounds.
  • linking group When the number of a linking group is 0, such as -(CRR) 0 -, it means that the linking group is a single bond.
  • the middle linking group L is -MW-, at this time -MW- can be formed by connecting ring A and ring B in the same direction as the reading order from left to right It can also be formed by connecting ring A and ring B in the opposite direction to the reading order from left to right
  • Combinations of the linking groups, substituents, and/or variants thereof are only permitted if such combinations result in stable compounds.
  • any one or more sites of the group can be connected to other groups through chemical bonds.
  • the connection method of the chemical bond is not positioned, and there is a H atom at the connectable site, when the chemical bond is connected, the number of H atoms at the site will correspondingly decrease with the number of chemical bonds connected to become the corresponding valence number ⁇ The group.
  • the chemical bond between the site and other groups can be a straight solid bond Straight dashed key Or wavy line Express.
  • the straight solid bond in -OCH 3 means that it is connected to other groups through the oxygen atom in the group;
  • the straight dashed bond in indicates that the two ends of the nitrogen atom in the group are connected to other groups;
  • the wavy line in indicates that the phenyl group is connected to other groups through the 1 and 2 carbon atoms;
  • wedge-shaped solid line keys And wedge-shaped dashed key Represents the absolute configuration of a three-dimensional center, with a straight solid line key And straight dashed key Indicates the relative configuration of the three-dimensional center, using wavy lines Represents a wedge-shaped solid line key Or wedge-shaped dashed key Or use wavy lines Represents a straight solid line key Or straight dashed key like represent represent
  • the term “enriched in one isomer”, “enriched in isomers”, “enriched in one enantiomer” or “enriched in enantiomers” refers to one of the isomers or pairs of
  • the content of the enantiomer is less than 100%, and the content of the isomer or enantiomer is greater than or equal to 60%, or greater than or equal to 70%, or greater than or equal to 80%, or greater than or equal to 90%, or greater than or equal to 95%, or 96% or greater, or 97% or greater, or 98% or greater, or 99% or greater, or 99.5% or greater, or 99.6% or greater, or 99.7% or greater, or 99.8% or greater, or greater than or equal 99.9%.
  • the term “isomer excess” or “enantiomeric excess” refers to the difference between the relative percentages of two isomers or two enantiomers. For example, if the content of one isomer or enantiomer is 90%, and the content of the other isomer or enantiomer is 10%, the isomer or enantiomer excess (ee value) is 80% .
  • optically active (R)- and (S)-isomers and D and L isomers can be prepared by chiral synthesis or chiral reagents or other conventional techniques. If you want to obtain an enantiomer of a compound of the present invention, it can be prepared by asymmetric synthesis or derivatization with chiral auxiliary agents, in which the resulting diastereomeric mixture is separated and the auxiliary group is cleaved to provide pure The desired enantiomer.
  • the molecule when the molecule contains a basic functional group (such as an amino group) or an acidic functional group (such as a carboxyl group), it forms a diastereomeric salt with an appropriate optically active acid or base, and then passes through a conventional method known in the art The diastereoisomers are resolved, and then the pure enantiomers are recovered.
  • the separation of enantiomers and diastereomers is usually accomplished through the use of chromatography, which uses a chiral stationary phase and is optionally combined with chemical derivatization (for example, the formation of amino groups from amines). Formate).
  • C 1-6 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 6 carbon atoms.
  • the C 1-6 alkyl group includes C 1-5 , C 1-4 , C 1-3 , C 1-2 , C 2-6 , C 2-4 , C 6 and C 5 alkyl groups, etc.; it may Is monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine).
  • C 1-6 alkyl groups include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), butyl (including n-butyl, isobutyl) , S-butyl and t-butyl), pentyl (including n-pentyl, isopentyl and neopentyl), hexyl, etc.
  • C 1-3 alkyl is used to indicate a linear or branched saturated hydrocarbon group composed of 1 to 3 carbon atoms.
  • the C 1-3 alkyl group includes C 1-2 and C 2-3 alkyl groups, etc.; it can be monovalent (such as methyl), divalent (such as methylene) or multivalent (such as methine) .
  • Examples of C 1-3 alkyl include, but are not limited to, methyl (Me), ethyl (Et), propyl (including n-propyl and isopropyl), and the like.
  • C 1-3 alkoxy refers to those alkyl groups containing 1 to 3 carbon atoms that are attached to the rest of the molecule through an oxygen atom.
  • the C 1-3 alkoxy group includes C 1-2 , C 2-3 , C 3 and C 2 alkoxy groups and the like.
  • Examples of C 1-3 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy (including n-propoxy and isopropoxy), and the like.
  • C 1-3 alkylamino refers to those alkyl groups containing 1 to 3 carbon atoms attached to the rest of the molecule through an amino group.
  • the C 1-3 alkylamino group includes C 1-2 , C 3 and C 2 alkylamino groups and the like.
  • Examples of C 1-3 alkylamino groups include, but are not limited to, -NHCH 3 , -N(CH 3 ) 2 , -NHCH 2 CH 3 , -N(CH 3 )CH 2 CH 3 , -NHCH 2 CH 2 CH 3 ,- NHCH 2 (CH 3 ) 2 and so on.
  • C 2-3 alkenyl is used to mean a linear or branched hydrocarbon group consisting of 2 to 3 carbon atoms containing at least one carbon-carbon double bond, and a carbon-carbon double bond It can be located in any position of the group.
  • the C 2-3 alkenyl groups include C 2 and C 3 alkenyl group; a C 2- 3 alkenyl group may be a monovalent, divalent or polyvalent. Examples of C 2-3 alkenyl include, but are not limited to, vinyl, propenyl, and the like.
  • C 2-3 alkynyl is used to mean a linear or branched hydrocarbon group consisting of 2 to 3 carbon atoms containing at least one carbon-carbon triple bond, and a carbon-carbon triple bond It can be located in any position of the group. It can be univalent, bivalent, or multivalent.
  • the C 2-3 alkynyl group includes C 3 and C 2 alkynyl groups. Examples of C 2-3 alkynyl include, but are not limited to, ethynyl, propynyl, and the like.
  • C 6-10 aromatic ring and “C 6-10 aryl” in the present invention can be used interchangeably, and the term “C 6-10 aromatic ring” or “C 6-10 aryl” means A cyclic hydrocarbon group with a conjugated ⁇ -electron system composed of 6 to 10 carbon atoms, which can be a monocyclic, fused bicyclic or fused tricyclic system, in which each ring is aromatic. It may be monovalent, divalent or multivalent, and C 6-10 aryl groups include C 6-9 , C 9 , C 10 and C 6 aryl groups and the like. Examples of C 6-10 aryl groups include, but are not limited to, phenyl, naphthyl (including 1-naphthyl, 2-naphthyl, etc.).
  • 5-10 membered heteroaryl ring and “5-10 membered heteroaryl group” can be used interchangeably in the present invention.
  • the term “5-10 membered heteroaryl group” means a ring consisting of 5 to 10 A cyclic group composed of atoms with a conjugated ⁇ -electron system, wherein 1, 2, 3 or 4 ring atoms are heteroatoms independently selected from O, S and N, and the rest are carbon atoms. It can be a monocyclic, fused bicyclic or fused tricyclic system, where each ring is aromatic.
  • the nitrogen and sulfur heteroatoms may optionally be oxidized (ie NO and S(O) p , p is 1 or 2).
  • the 5-10 membered heteroaryl group can be attached to the rest of the molecule through a heteroatom or a carbon atom.
  • the 5-10 membered heteroaryl groups include 5-8 membered, 5-7 membered, 5-6 membered, 5 membered and 6 membered heteroaryl groups and the like.
  • Examples of the 5-10 membered heteroaryl include but are not limited to pyrrolyl (including N-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, etc.), pyrazolyl (including 2-pyrazolyl and 3-pyrrolyl, etc.) Azolyl, etc.), imidazolyl (including N-imidazolyl, 2-imidazolyl, 4-imidazolyl and 5-imidazolyl, etc.), oxazolyl (including 2-oxazolyl, 4-oxazolyl and 5- Oxazolyl, etc.), triazolyl (1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, 1H-1,2,4-triazolyl and 4H-1, 2,4-triazolyl, etc.), tetrazolyl, isoxazolyl (3-isoxazolyl, 4-isoxazolyl and 5-isoxazolyl, etc.), thiazolyl (including 2-thiazoly
  • the term "4-8 membered heterocycloalkyl" by itself or in combination with other terms means a saturated cyclic group consisting of 4 to 8 ring atoms, with 1, 2, 3 or 4 ring atoms.
  • heteroatoms independently selected from O, S and N, and the rest are carbon atoms, wherein nitrogen atoms are optionally quaternized, and nitrogen and sulfur heteroatoms can be optionally oxidized (ie, NO and S(O) p , p Is 1 or 2). It includes monocyclic and bicyclic ring systems, where the bicyclic ring system includes spiro, fused, and bridged rings.
  • a heteroatom may occupy the connection position of the heterocycloalkyl group with the rest of the molecule.
  • the 4-8 membered heterocycloalkyl group includes 4-6 membered, 5-6 membered, 4-membered, 5-membered and 6-membered heterocycloalkyl group.
  • 4-8 membered heterocycloalkyl groups include, but are not limited to, azetidinyl, oxetanyl, thietanyl, pyrrolidinyl, pyrazolidinyl, imidazolidinyl, tetrahydrothienyl ( Including tetrahydrothiophen-2-yl and tetrahydrothiophen-3-yl, etc.), tetrahydrofuranyl (including tetrahydrofuran-2-yl, etc.), tetrahydropyranyl, piperidinyl (including 1-piperidinyl, 2- Piperidinyl and 3-piperidinyl, etc.), piperazinyl (including 1-piperazinyl and 2-piperazinyl, etc.), morpholinyl (including 3-morpholinyl and 4-morpholinyl, etc.), Dioxanyl, dithiazinyl, isoxazolidinyl, isothiazolidin
  • C n-n+m or C n -C n+m includes any specific case of n to n+m carbons, for example, C 1-12 includes C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , C 9 , C 10 , C 11 , and C 12 , including any range from n to n+m, for example, C 1- 12 includes C 1-3 , C 1-6 , C 1-9 , C 3-6 , C 3-9 , C 3-12 , C 6-9 , C 6-12 , and C 9-12, etc.; similarly, from n to n +m member means that the number of atoms in the ring is from n to n+m, for example, 3-12 membered ring includes 3-membered ring, 4-membered ring, 5-membered ring, 6-membered ring, 7-membered ring, 8-membered ring, 9-membered
  • leaving group refers to a functional group or atom that can be replaced by another functional group or atom through a substitution reaction (for example, a nucleophilic substitution reaction).
  • representative leaving groups include triflate; chlorine, bromine, iodine; sulfonate groups, such as methanesulfonate, tosylate, p-bromobenzenesulfonate, p-toluenesulfonic acid Esters, etc.; acyloxy groups, such as acetoxy, trifluoroacetoxy and the like.
  • protecting group includes, but is not limited to, "amino protecting group", “hydroxy protecting group” or “thiol protecting group”.
  • amino protecting group refers to a protecting group suitable for preventing side reactions at the amino nitrogen position.
  • Representative amino protecting groups include, but are not limited to: formyl; acyl, such as alkanoyl (such as acetyl, trichloroacetyl or trifluoroacetyl); alkoxycarbonyl, such as tert-butoxycarbonyl (Boc) ; Arylmethoxycarbonyl, such as benzyloxycarbonyl (Cbz) and 9-fluorenylmethyloxycarbonyl (Fmoc); arylmethyl, such as benzyl (Bn), trityl (Tr), 1,1-di -(4'-Methoxyphenyl)methyl; silyl groups, such as trimethylsilyl (TMS) and tert-butyld
  • hydroxy protecting group refers to a protecting group suitable for preventing side reactions of the hydroxyl group.
  • Representative hydroxy protecting groups include but are not limited to: alkyl groups, such as methyl, ethyl, and tert-butyl; acyl groups, such as alkanoyl groups (such as acetyl); arylmethyl groups, such as benzyl (Bn), p-methyl Oxybenzyl (PMB), 9-fluorenylmethyl (Fm) and diphenylmethyl (diphenylmethyl, DPM); silyl groups such as trimethylsilyl (TMS) and tert-butyl Dimethylsilyl (TBS) and so on.
  • alkyl groups such as methyl, ethyl, and tert-butyl
  • acyl groups such as alkanoyl groups (such as acetyl)
  • arylmethyl groups such as benzyl (Bn), p-methyl Oxybenzyl (P
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and those well known to those skilled in the art Equivalent alternatives, preferred implementations include but are not limited to the embodiments of the present invention.
  • the structure of the compound of the present invention can be confirmed by conventional methods well known to those skilled in the art. If the present invention relates to the absolute configuration of the compound, the absolute configuration can be confirmed by conventional technical means in the art.
  • the single crystal X-ray diffraction method uses the Bruker D8 venture diffractometer to collect the diffraction intensity data of the cultured single crystal.
  • the light source is CuK ⁇ radiation
  • the scanning method After scanning and collecting relevant data, the direct method (Shelxs97) is further used to analyze the crystal structure to confirm the absolute configuration.
  • the solvent used in the present invention is commercially available.
  • Figure 1 shows the changes in tumor volume with different doses over time.
  • Figure 2 shows the changes in animal body weights of different doses over time.
  • reaction solution was poured into a saturated aqueous ammonium chloride solution (80 mL), and extracted with ethyl acetate (50 mL ⁇ 3). The organic phases were combined, washed with saturated brine, dried over anhydrous sodium sulfate, filtered, and the filtrate was collected and concentrated.
  • the compound methyl acetate (5.55g, 74.98mmol, 5.96mL, 5eq) was dissolved in tetrahydrofuran (50mL), the temperature was reduced to -78°C under nitrogen protection, and sodium hexamethyldisilazide (1M, 74.98mL, 5eq) was added to the reaction solution. After stirring at -78°C for 1 hr, compound 1-3 (5 g, 15.00 mmol, 1 eq) was slowly added dropwise to the reaction solution, and stirring was continued at this temperature for 1 hr.
  • reaction solution was poured into a saturated aqueous ammonium chloride solution (50 mL), and extracted with ethyl acetate (50 mL ⁇ 3). The organic phases were combined, washed with saturated brine (50 mL), dried over anhydrous sodium sulfate, filtered, and the filtrate was collected and concentrated to obtain compound 1-4, which was directly used in the next reaction.
  • LCMS m/z 376.1 [M+1] + .
  • the reaction was quenched by adding saturated ammonium chloride solution (10 mL), water (10 mL) was added, the organic phase was separated, and the aqueous phase was extracted with ethyl acetate (50 mL). The combined organic phase was dried with anhydrous sodium sulfate, filtered to remove the desiccant, and the solvent was removed under reduced pressure to obtain a crude product.
  • reaction system was cooled to -78°C with a dry ice acetone bath, and a solution of compound 2-2 (1.08 g, 5.68 mmol, 1.1 eq) in tetrahydrofuran (6 mL) was added dropwise thereto.
  • the reaction was stirred for 30 minutes, then slowly raised to room temperature and stirred for 30 minutes.
  • the reaction was quenched by adding water (30 mL), and the aqueous phase was extracted with ethyl acetate (50 mL ⁇ 2).
  • the combined organic phase was dried over sodium sulfate, filtered to remove the desiccant, and the filtrate was decompressed to remove the solvent to obtain a crude product.
  • reaction solution was concentrated in vacuo, and the residue was adjusted to pH ⁇ 3-4 with 2M hydrochloric acid, and then extracted with ethyl acetate (30 mL ⁇ 3).
  • the combined organic phase was concentrated under vacuum to obtain the crude product.
  • reaction solution was poured into 700mL of water, filtered, and the filter cake was washed with water (100mL ⁇ 3 times); the resulting filter cake was dissolved with 300mL ethyl acetate and then separated, the organic phase was added with 50.00g anhydrous sulfuric acid After the sodium was dried, it was filtered, and the filtrate was rotary evaporated under reduced pressure at 45°C to obtain compound 4-4.
  • reaction solution was poured into 100 mL of saturated ammonium chloride solution, combined with 1 g batch, and separated, the organic phase was added with 3.00 g of anhydrous sodium sulfate and dried, filtered, and the filtrate was subjected to reduced pressure rotary evaporation at 45°C.
  • n-butyllithium (2M, 7.50mL, 1.9eq) was added dropwise to it, and after the reaction continued for 30 minutes, the temperature was lowered to -70 ⁇ -65°C, and then compound 4-6 (2.75g, 9.87mmol, 1 eq) was dissolved in tetrahydrofuran (27 mL) and added dropwise to it, and the reaction was continued for 0.5 hr. After the reaction solution was poured into 50 mL of saturated ammonium chloride solution for quenching, the organic phase was dried by adding 1.50 g of anhydrous sodium sulfate and filtered, and the filtrate was subjected to reduced pressure rotary evaporation at 45°C.
  • the white solid obtained was extracted by adding 10 mL of water and 10 mL of ethyl acetate for liquid separation.
  • the organic phase was washed once with 10 mL of saturated brine, and then dried by adding 0.50 g of anhydrous sodium sulfate, and then filtered
  • the filtrate was subjected to vacuum rotary evaporation at 45°C.
  • N,N-dimethylformamide (5mL), compound 5-5 (0.33g, 569.94 ⁇ mol, 1eq) into a clean reaction flask prepared in advance, start stirring, and then add N,N-diisopropyl Ethylethylamine (368.29mg, 2.85mmol, 496.35 ⁇ L, 5eq), compound 5-5a (143mg, 1.14mmol, 2.00eq, 2HCl) were added to it, the temperature was raised to 100°C, and the reaction was carried out for 1hr.
  • reaction solution was poured into 20 mL of saturated amine chloride solution, it was added to 10 mL of ethyl acetate solution for liquid separation, the organic phase was added with anhydrous sodium sulfate and dried, filtered, and the filtrate was subjected to reduced pressure rotary evaporation at 45°C.
  • N,N-dimethylformamide (6mL), compound 5-9 (150mg, 193.18 ⁇ mol, 80% mass content, 1eq) into the pre-prepared reaction flask, start stirring, and then reduce the temperature to 0 ⁇ 5°C, then sequentially add 2-fluoroacrylic acid (26.10mg, 289.78 ⁇ mol, 3.08 ⁇ L, 1.5eq), 2-(7-azobenzotriazole)-N,N,N,N-tetramethylurea Hexafluorophosphate (110.18mg, 289.78 ⁇ mol, 1.5eq) and N,N-diisopropylethylamine (74.90mg, 579.55 ⁇ mol, 100.94 ⁇ L, 3eq) were added to it and reacted for 0.5hr.
  • 2-fluoroacrylic acid 26.10mg, 289.78 ⁇ mol, 3.08 ⁇ L, 1.5eq
  • Compound 7A was obtained (chiral column peak time: 1.263 min).
  • 2,2,6,6-Tetramethylpiperidine (31.31g, 221.65mmol, 37.63mL, 3eq) was added to anhydrous tetrahydrofuran (300mL), the temperature was reduced to -5°C, and n-butyllithium (2.5 M, 94.57mL, 3.2eq), react at -5 ⁇ 0°C for 15min, cool to -60°C, add compound 8-2 (27g, 73.88mmol, 1eq) in tetrahydrofuran (60mL) solution, react at -60°C for 0.5hr, Quickly add N,N-dimethylformamide (108.00g, 1.48mol, 113.69mL, 20eq), and react at -60°C for 10min.
  • reaction solution was washed with saturated ammonium chloride (20 mL x 2), then with saturated brine (20 mL), dried over anhydrous sodium sulfate, filtered, concentrated under reduced pressure, and used in the next step without purification to obtain compound 9-4.
  • reaction system was cooled to -60°C, and O-(7-azabenzotriazole-1-YL)-N,N,N,N-tetramethylurea hexafluorophosphonium salt (114.77mg, 301.85 ⁇ mol, 1.2eq), the reaction system was reacted at -60°C for 10 minutes, then compound 9-5 (0.14 g, 251.54 ⁇ mol, 1 eq) was added, and the reaction was continued for 1 hour.
  • the reaction solution was diluted with dichloromethane (10 mL), washed with saturated ammonium chloride (10 mL x 2) solution, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the method of separation and purification using HPLC column is ⁇ (Column: Phenomenex luna C18 80*40mm*3 ⁇ m; Mobile phase: [H 2 O(0.04%HCl)-ACN]; Acetonitrile%: 20%-32%, 7min ] ⁇ , the chiral separation method according to SFC after lyophilization is ⁇ (Column: DAICEL CHIRALCEL OD (250mm*30mm, 10 ⁇ m); Mobile phase: [0.1%NH 3 H 2 O MEOH]; MeOH%: 60%- 60%, 9min) ⁇ .
  • dichloromethane (5mL) to a dry reaction flask, then add compound 14-4 (260mg, 291.15 ⁇ mol, 1eq) to start stirring, then add trifluoroacetic acid (2.77g, 24.31mmol, 1.8mL, 83.50eq) ), the reaction system was stirred at 20°C for 2 hours.
  • Dichloromethane (20mL) solution was added to the reaction solution to dilute the reaction solution, and then water (20mL) was added for separation.
  • reaction solution was poured into a saturated aqueous ammonium chloride solution (15 mL), extracted with ethyl acetate (10 mL x 2), the organic phases were combined, washed with saturated brine (5 mL), anhydrous sodium sulfate was added, dried and filtered, and the filtrate was concentrated under reduced pressure Get crude product.
  • reaction solution was diluted by adding ethyl acetate (5mL), washed with saturated ammonium chloride (10mL x 2) solution and saturated brine (10mL), and anhydrous sulfuric acid was added After sodium drying and filtration, the filtrate was concentrated under reduced pressure to obtain a crude product. The crude product was not purified and was directly used in the next step to obtain compound 17-5.
  • LCMS m/z 848.3 [M+H] + .
  • LCMS m/z 593.3[M+H] + .
  • compound 20-3 (20mg, 34.33 ⁇ mol) was dissolved in anhydrous dichloromethane (2mL), and diisopropylethylamine (13.31mg, 102.99 ⁇ mol, 17.94 ⁇ L) and acryloyl chloride ( 4.66mg, 51.49 ⁇ mol, 4.20 ⁇ L), the reaction solution was stirred at this temperature for 16 hours.
  • Mutation KRAS G12C test compound on the MIA-PA-CA-2 cell proliferation inhibition IC 50 was selected from the MIA-PA-CA-2 cell proliferation inhibition IC 50.
  • the main reagents used in this study include CellTiter-Glo (Promega, catalog number: G7573).
  • the main instrument used in this research is PerkinElmer EnVision multi-function microplate reader.
  • Adherent cells are trypsinized to form a cell suspension, and the cell suspension is counted for use.
  • *F Day0 is the reading value of the original cell number test hole without drug treatment
  • F Con is the fluorescence reading of the Con group after 72 hours of incubation.
  • F Cpd is the fluorescence reading of each compound well after 72 hours of incubation.
  • the experimental results show that the compound of the present invention has a good cell proliferation inhibitory activity on the KRASG12C mutant MIA-PA-CA-2 cell line.
  • the main reagents used in this study included RPMI-1640 medium, penicillin/streptomycin antibiotics were purchased from Vicente, and fetal bovine serum was purchased from Biosera.
  • CellTiter-Glo (cell viability chemiluminescence detection reagent) reagent was purchased from Promega.
  • the NCI-H358 cell line was purchased from the Cell Bank of the Chinese Academy of Sciences.
  • the main instrument used in this research is the Nivo multi-label analyzer (PerkinElmer).
  • Plant NCI-H358 cells in a white 96-well plate 80 ⁇ L of cell suspension per well, which contains 4000 NCI-H358 cells.
  • the cell plate was placed in a carbon dioxide incubator for overnight culture.
  • the compound to be tested is diluted 5 times with a discharge gun to the 9th concentration, that is, diluted from 2mM to 5.12nM, and a double-well experiment is set up.
  • the concentration of the compound transferred to the cell plate ranges from 10 ⁇ M to 0.0256 nM.
  • the cell plate was placed in a carbon dioxide incubator for 5 days. Another cell plate is prepared, and the signal value is read as the maximum value (Max value in the following equation) on the day of drug addition to participate in data analysis.
  • Add 25 ⁇ L of cell viability chemiluminescence detection reagent to each well of this cell plate, and incubate for 10 minutes at room temperature to stabilize the luminescence signal. Use multi-marker analyzer to read.
  • the IC 50 value can be obtained by four-parameter curve fitting ("log(inhibitor) vs. GraphPad Prism" response--Variable slope” mode).
  • Table 2 provides the inhibitory activity of the compounds of the present invention on the proliferation of NCI-H358 cells.
  • the test substance is 1 ⁇ M
  • the final concentration of the reference substance is 3 ⁇ M
  • the final concentration of hepatocytes is 0.5 ⁇ 106cells/mL
  • the final concentration of total organic solvents is 0.96%
  • the final concentration of DMSO is 0.1 %.
  • the incubation plate was taken out, and 25 ⁇ L of the mixture of the compound and the control compound and the cells were taken out and added to the sample plate containing 125 ⁇ L of stop solution (acetonitrile solution containing 200 ng/mL tolbutamide and Rabenol).
  • stop solution acetonitrile solution containing 200 ng/mL tolbutamide and Rabenol.
  • For Blank sample plates add 25 ⁇ L of incubation medium without hepatocytes directly. All sample plates were sealed and shaken on a plate shaker at 600 rpm for 10 minutes, and then centrifuged at 3220 ⁇ g for 20 minutes. The supernatant of the test substance and the reference substance was diluted with ultrapure water in a ratio of 1:3. All samples were mixed and analyzed by LC/MS/MS method.
  • T60 incubation plate and NCF60 incubation plate were prepared two 96-well incubation plates, named T60 incubation plate and NCF60 incubation plate, respectively. Add 445 ⁇ L of microsomal working solution (liver microsomal protein concentration of 0.56 mg/mL) to the T60 incubation plate and NCF60 incubation plate respectively, and then place the above incubation plate in a 37°C water bath for pre-incubation for about 10 minutes.
  • microsomal working solution liver microsomal protein concentration of 0.56 mg/mL
  • the final concentration of the compound, testosterone, diclofenac and propafenone in the reaction is 1 ⁇ M
  • the concentration of liver microsomes is 0.5mg/mL
  • the final concentration of DMSO and acetonitrile in the reaction system They are 0.01% (v/v) and 0.99% (v/v), respectively.
  • stop solution containing 200ng/mL tolbutamide and 200ng/mL labetalol
  • Acetonitrile solution After incubating for an appropriate time (such as 5, 15, 30, 45, and 60 minutes), add 180 ⁇ L of stop solution (containing 200ng/mL tolbutamide and 200ng/mL labetalol to the sample wells of each stop plate). Acetonitrile solution), and then take out 60 ⁇ L sample from the T60 incubation plate to stop the reaction. All sample plates were shaken and centrifuged at 3220 ⁇ g for 20 minutes, and then 80 ⁇ L of supernatant was diluted into 240 ⁇ L of pure water from each well for liquid chromatography tandem mass spectrometry analysis, and liquid chromatography tandem mass spectrometry analysis of all samples.
  • the final incubation concentration of the compound and the control compound bisacodyl, enalapril maleate, procaine and propensin was 2 ⁇ M, and the final organic phase content was 2.0%.
  • take out the corresponding incubation plate and add 400 ⁇ L of acetonitrile solution containing 200 ng/mL tolbutamide and Rabenol to each corresponding sample well to precipitate the protein.
  • centrifuge at 3220 ⁇ g for 20 minutes. Take 50 ⁇ L of supernatant and add 100 ⁇ L of ultrapure water to dilute, mix all samples and analyze by LC/MS/MS method.
  • the compound of the present invention has good stability in human and mouse plasma.
  • the purpose of the experiment to evaluate the stability of the test compound in the whole blood of CD-1 mice, SD rats, beagle dogs, and cynomolgus monkeys.
  • test compound was mixed with a 5% dimethyl sulfoxide/95% (10% hydroxypropyl- ⁇ -cyclodextrin) solution, vortexed and sonicated to prepare a 1 mg/mL clear solution, which was filtered through a microporous membrane for use .
  • Male SD rats aged 7 to 10 weeks were selected, and the candidate compound solution was administered intravenously or orally. Collect whole blood for a certain period of time, prepare plasma, analyze drug concentration by LC-MS/MS method, and use Phoenix WinNonlin software (Pharsight, USA) to calculate pharmacokinetic parameters.
  • Table 8 The experimental results are shown in Table 8:
  • PK studies show that the compound of the present invention is Rats have high unbound plasma exposure and good oral bioavailability.
  • test compound was mixed with a 5% dimethyl sulfoxide/95% (10% hydroxypropyl- ⁇ -cyclodextrin) solution, vortexed and sonicated to prepare a 1 mg/mL clear solution, which was filtered through a microporous membrane for use .
  • Male CD mice aged 7 to 10 weeks were selected, and the candidate compound solution was administered intravenously or orally. Collect whole blood for a certain period of time, prepare plasma, analyze drug concentration by LC-MS/MS method, and use Phoenix WinNonlin software (Pharsight, USA) to calculate pharmacokinetic parameters.
  • Table 9 The experimental results are shown in Table 9:
  • PK studies show that the compound of the present invention is Rats have high unbound plasma exposure and good oral bioavailability.
  • Cell culture Human pancreatic cancer Mia PaCa-2 cells (ATCC-CRL-1420) are cultured in a monolayer in vitro, and the culture conditions are DMEM medium with 10% fetal bovine serum, 2.5% horse serum, and 37°C 5% carbon dioxide incubator. . Use pancreatin-EDTA for routine digestion and passage twice a week. When the cell saturation is 80%-90% and the number reaches the requirement, the cells are collected, counted, and resuspended in an appropriate amount of PBS. Matrigel is added 1:1 to obtain a cell suspension with a cell density of 25x 106 cells/mL.
  • PO oral administration
  • QD once a day
  • the tumor diameter was measured with vernier calipers twice a week.
  • TGI time of tumor growth rate
  • T/C relative tumor growth rate
  • Relative tumor proliferation rate T/C(%) TRTV/CRTV ⁇ 100% (TRTV: treatment group RTV; CRTV: negative control group RTV).
  • RTV relative tumor volume
  • TGI (%) reflects the tumor growth inhibition rate.
  • TGI(%) [(1-(Average tumor volume at the end of a certain treatment group-average tumor volume at the beginning of the treatment group))/(Average tumor volume at the end of treatment in the solvent control group-start treatment in the solvent control group Average tumor volume at time)] ⁇ 100%.
  • the compound of the present invention has a significant anti-tumor effect, and the weight of each dose group of mice is stable, and there is no obvious intolerance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

一类嘧啶并杂环类化合物,具体公开了式(III)所示化合物或其药学上可接受的盐。

Description

嘧啶并杂环类化合物及其应用
本发明主张如下优先权:
CN202010172140.2,申请日2020年03月12日;
CN202010323035.4,申请日2020年04月22日;
CN202010953203.8,申请日2020年09月11日;
CN202011593642.9,申请日2020年12月29日。
技术领域
本发明涉及一类嘧啶并杂环类化合物,具体涉及式(III)所示化合物或其药学上可接受的盐。
背景技术
RAS癌基因突变是人类癌症中最常见的激活突变,发生在30%的人类肿瘤中。RAS基因家族包括三个亚型(KRAS、HRAS和NRAS),其中85%的RAS驱动的癌症是由KRAS亚型突变引起的。KRAS突变常见于实体肿瘤中,如:肺腺癌、胰腺导管癌和结直肠癌等。在KRAS突变肿瘤中,80%的致癌突变发生在密码子12上,最常见的突变包括:p.G12D(41%)、p.G12V(28%)和p.G12C(14%)。
KRAS基因的全名是Kirsten rat sarcoma viraloncogene homolog(Kristen大鼠肉瘤病毒癌基因同源物)。KRAS在细胞生长的信号调控中起着一个枢纽的作用,上游的EGFR(ErbB1)、HER2(ErbB2)、ErbB3和ErbB4等细胞表面受体,在接受了外界信号之后,会通过RAS蛋白,把信号传递到下游。KRAS蛋白没有被激活的时候,与GDP(鸟嘌呤核苷酸二磷酸)紧密结合。在被SOS1等鸟嘌呤核苷酸交换因子激活后,与GTP(鸟嘌呤核苷酸三磷酸)结合,变成激酶活性的状态。KRAS基因突变后,可以不依赖于上游生长因子受体信号,独立向下游通路传输生长和增殖的信号,造成不受控制的细胞生长和肿瘤进展,同时KRAS基因是否有突变,也是肿瘤预后的一个重要指标。
尽管KRAS是第一个被发现的癌基因,但长期以来被认为是不可成药靶点。直到2019年,Amgen和Mirati Therapeutics先后公布了的KRAS小分子抑制剂AMG510和MRTX849的临床研究结果,首次在临床上证实了KRAS抑制剂在临床上***的有效性。AMG 510和MRTX849都属于不可逆小分抑制剂,通过与KRAS G12C突变蛋白的半胱氨酸残基形成不可逆共价键,从而抑制KRAS活性。
统计结果显示,肺腺癌有12-36%病人KRAS突变驱动的;27-56%结肠癌病人由KRAS驱动,此外90%的胰腺癌、21%的子宫内膜癌和12-36%的肺腺癌等都是由KRAS驱动的,病人群体巨大;在KRAS的基因突变中,97%是发生在第12位或者第13位的氨基酸残基发生了突变,其中G12D,G12V和G13D这三种突变,但是这三种突变的成药性较差,KRAS(G12C)突变:12位的甘氨酸被半胱氨酸替换后为共价抑制剂的开发提供了一个很好的方向。
发明内容
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2021080278-appb-000001
其中,
T 1选自O和N;
R 1选自C 6-10芳基和5-10元杂芳基,所述C 6-10芳基和5-10元杂芳基任选被1、2、3、4或5个R a取代;
当T 1选自O时,R 2不存在;
当T 1选自N时,R 2选自H、C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基,所述C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基任选被1、2或3个R b取代;
R 3选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
R 4选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
R 5、R 6和R 7分别独立地选自H、F、Cl、Br、I、C 1-3烷基,所述C 1-3烷基任选被1、2或3个F取代;
R 8选自H和CH 3
R a分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-3炔基和C 2-3烯基,所述C 1-3烷基、C 1-3烷氧基、C 2-3炔基和C 2-3烯基任选被1、2或3个F取代;
R b分别独立地选自F、Cl、Br、I、OH和NH 2
R c分别独立地选自4-8元杂环烷基,所述4-8元杂环烷基任选被1、2或3个R取代;
R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
R分别独立地选自H、F、Cl、Br、OH、CN、C 1-3烷基、C 1-3烷氧基和-C 1-3烷基-O-CO-C 1-3烷氨基;条件是,当R 1选自萘基时,所述萘基任选被F、Cl、Br、OH、NH 2、CF 3、CH 2CH 3和-C≡CH取代,且R 5、R 6和R 7分别独立地选自H。
在本发明的一些方案中,上述各R a分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH任选被1、2或3个F取代,其他变量如本发明所定义。
在本发明的一些方案中,上述各R a分别独立地选自F、OH、NH 2、CH 3、CF 3、CH 2CH 3和-C≡CH,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自苯基、萘基、吲哚基和吲唑基,所述苯基、萘基、吲哚基和吲唑基任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自
Figure PCTCN2021080278-appb-000002
其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H、CH 3、CH 2CH 3和CH(CH 3) 2,所述CH 3、CH 2CH 3和CH(CH 3) 2选任被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H和CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述各R分别独立地选自H、F、Cl、Br、OH、CN、CH 3、CH 2CH 3、CH 2CF 3、OCH 3、OCF 3
Figure PCTCN2021080278-appb-000003
其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自四氢吡咯基和六氢-1H-吡咯里嗪基,所述四氢吡咯基和六氢-1H-吡咯里嗪基任选被1、2或3个R取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自
Figure PCTCN2021080278-appb-000004
其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自
Figure PCTCN2021080278-appb-000005
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH 3,所述CH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021080278-appb-000006
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021080278-appb-000007
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H和CH 3,所述CH 3任选被1、2或3个R d取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H、CH 3和CH 2CN,其他变量如本发明所定义。
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2021080278-appb-000008
其中,
T 1选自O和N;
R 1选自苯基、萘基和吲唑基,所述苯基、萘基和吲唑基任选被1、2、3、4或5个R a取代;
当T 1选自O时,R 2不存在;
当T 1选自N时,R 2选自H、C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基,所述C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基任选被1、2或3个R b取代;
R 3选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
R 4选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
R 5、R 6和R 7分别独立地选自H、F、Cl、Br、I、OH和NH 2
R 8选自H和CH 3
R a分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CF 3和OCH 3
R b分别独立地选自F、Cl、Br、I、OH和NH 2
R c分别独立地选自四氢吡咯基和六氢-1H-吡咯里嗪基,所述四氢吡咯基和六氢-1H-吡咯里嗪基被1、2或3个R取代;
R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
R分别独立地选自H、F、Cl、Br和CH 3
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021080278-appb-000009
其中,
R 4选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
T 1、R 1、R 2、R 3、R 5、R 6、R 7和R d如本发明所定义;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述R 1选自苯基、萘基和
Figure PCTCN2021080278-appb-000010
所述苯基、萘基和
Figure PCTCN2021080278-appb-000011
任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自
Figure PCTCN2021080278-appb-000012
其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H、CH 3、CH 2CH 3和CH(CH 3) 2,所述CH 3、CH 2CH 3和CH(CH 3) 2选任被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H和CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自
Figure PCTCN2021080278-appb-000013
其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自
Figure PCTCN2021080278-appb-000014
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH 3,所述CH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021080278-appb-000015
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021080278-appb-000016
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H、CH 3,所述CH 3任选被1、2或3个R d取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自H、CH 3和CH 2CN,其他变量如本发明所定义。
本发明提供了式(III)所示化合物或其药学上可接受的盐,
Figure PCTCN2021080278-appb-000017
其中,
T 1选自O和N;
R 1选自苯基、萘基和吲唑基,所述苯基、萘基和吲唑基任选被1、2、3、4或5个R a取代;
当T 1选自O时,R 2不存在;
当T 1选自N时,R 2选自H、C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基,所述C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基任选被1、2或3个R b取代;
R 3选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
R 4选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
R 5、R 6和R 7分别独立地选自H、F、Cl、Br、I、OH和NH 2
R 8选自H和CH 3
R a分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CF 3和OCH 3
R b分别独立地选自F、Cl、Br、I、OH、NH 2和CH 3
R c分别独立地选自四氢吡咯基,所述四氢吡咯基被1、2或3个R取代;
R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
R分别独立地选自F、Cl、Br和CH 3
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021080278-appb-000018
其中,T 1、R 1、R 2、R 3、R 4、R 5、R 6和R 7如本发明所定义;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述R 1选自苯基、萘基和
Figure PCTCN2021080278-appb-000019
所述苯基、萘基和
Figure PCTCN2021080278-appb-000020
任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自
Figure PCTCN2021080278-appb-000021
其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H、CH 3、CH 2CH 3和CH(CH 3) 2,所述CH 3、CH 2CH 3和CH(CH 3) 2选任被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自H和CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自
Figure PCTCN2021080278-appb-000022
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH 3,所述CH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021080278-appb-000023
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自CH 3,所述CH 3任选被1、2或3个R d取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自CH 2CN,其他变量如本发明所定义。
本发明提供了式(II)所示化合物或其药学上可接受的盐,
Figure PCTCN2021080278-appb-000024
其中,
T 1选自O和N;
R 1选自苯基和萘基,所述苯基和萘基任选被1、2或3个R a取代;
当T 1选自O时,R 2不存在;
当T 1选自N时,R 2选自C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基,所述C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基任选被1、2或3个R b取代;
R 3选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
R 4选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
R 5、R 6和R 7分别独立地选自H、F、Cl、Br、I、OH和NH 2
R a分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3和OCH 3
R b分别独立地选自F、Cl、Br、I、OH、NH 2和CH 3
R c分别独立地选自四氢吡咯基,所述四氢吡咯基被1、2或3个R取代;
R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
R分别独立地选自F、Cl、Br和CH 3
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述R 1选自萘基,所述萘基任选被1、2或3个R a取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自
Figure PCTCN2021080278-appb-000025
其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自CH 3、CH 2CH 3和CH(CH 3) 2,所述CH 3、CH 2CH 3和CH(CH 3) 2选任被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自
Figure PCTCN2021080278-appb-000026
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH 3,所述CH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021080278-appb-000027
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自CH 3,所述CH 3任选被1、2或3个R d取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自CH 2CN,其他变量如本发明所定义。
本发明提供了式(I)所示化合物或其药学上可接受的盐,
Figure PCTCN2021080278-appb-000028
其中,
R 1选自苯基和萘基,所述苯基和萘基任选被1、2或3个R a取代;
R 2选自C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基,所述C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1- 3烷基任选被1、2或3个R b取代;
R 3选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
R 4选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
R 5、R 6和R 7分别独立地选自H、F、Cl、Br、I、OH和NH 2
R a和R b分别独立地选自F、Cl、Br、I、OH、NH 2和CH 3
R c分别独立地选自四氢吡咯基,所述四氢吡咯基被1、2或3个R取代;
R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
R分别独立地选自F、Cl、Br和CH 3
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述R 1选自萘基,其他变量如本发明所定义。
在本发明的一些方案中,上述R 1选自
Figure PCTCN2021080278-appb-000029
其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自CH 3、CH 2CH 3和CH(CH 3) 2,所述CH 3、CH 2CH 3和CH(CH 3) 2选任被1、2或3个R b取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 2选自CH 3,其他变量如本发明所定义。
在本发明的一些方案中,上述R c选自
Figure PCTCN2021080278-appb-000030
其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自CH 3,所述CH 3任选被1、2或3个R c取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 3选自
Figure PCTCN2021080278-appb-000031
其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自CH 3,所述CH 3任选被1、2或3个R d取代,其他变量如本发明所定义。
在本发明的一些方案中,上述R 4选自CH 2CN,其他变量如本发明所定义。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021080278-appb-000032
其中,R 1、R 5、R c如本发明所定义;
R 4选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021080278-appb-000033
其中,
R 1、R 2、R 4、R 5、R 6、R 7、R 8和R如本发明所定义。
本发明还有一些方案是由上述变量任意组合而来。
本发明提供了下式化合物或其药学上可接受的盐,
Figure PCTCN2021080278-appb-000034
Figure PCTCN2021080278-appb-000035
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021080278-appb-000036
Figure PCTCN2021080278-appb-000037
在本发明的一些方案中,上述化合物或其药学上可接受的盐,其选自,
Figure PCTCN2021080278-appb-000038
Figure PCTCN2021080278-appb-000039
Figure PCTCN2021080278-appb-000040
Figure PCTCN2021080278-appb-000041
本发明还提供了上述的化合物或其药学上可接受的盐在制备治疗与KRASG12C突变蛋白相关疾病的药物中的应用。
技术效果
本发明化合物对KRASG12C突变的MIA-PA-CA-2细胞系、NCI-H358细胞具有良好的细胞增殖抑制活性。有良好的肝微粒体、肝细胞、血浆、全血稳定性,有良好的PK性质,并且有显著的抑瘤作用。
相关定义
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文中出现商品名时,意在指代其对应的商品或其活性成分。
这里所采用的术语“药学上可接受的”,是针对那些化合物、材料、组合物和/或剂型而言,它们在可靠的医学判断的范围之内,适用于与人类和动物的组织接触使用,而没有过多的毒性、刺激性、过敏性反应或其它问题或并发症,与合理的利益/风险比相称。
术语“药学上可接受的盐”是指本发明化合物的盐,由本发明发现的具有特定取代基的化合物与相对无毒的酸或碱制备。当本发明的化合物中含有相对酸性的功能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的碱与这类化合物接触的方式获得碱加成盐。药学上可接受的碱加成盐包括钠、钾、钙、铵、有机胺或镁盐或类似的盐。当本发明的化合物中含有相对碱性的官能团时,可以通过在纯的溶液或合适的惰性溶剂中用足够量的酸与这类化合物接触的方式获得酸加成盐。药学上可接受的酸加成盐的实例包括无机酸盐,所述无机酸包括例如盐酸、氢溴酸、硝酸、碳酸,碳酸氢根,磷酸、磷酸一氢根、磷酸二氢根、硫酸、硫酸氢根、氢碘酸、亚磷酸等;以及有机酸盐,所述有机酸包括如乙酸、丙酸、异丁酸、马来酸、丙二酸、苯甲酸、琥珀酸、辛二酸、反丁烯二酸、乳酸、扁桃酸、邻苯二甲酸、苯磺酸、对甲苯磺酸、柠檬酸、酒石酸和甲磺酸等类似的酸;还包括氨基酸(如精氨酸等) 的盐,以及如葡糖醛酸等有机酸的盐。本发明的某些特定的化合物含有碱性和酸性的官能团,从而可以被转换成任一碱或酸加成盐。
本发明的药学上可接受的盐可由含有酸根或碱基的母体化合物通过常规化学方法合成。一般情况下,这样的盐的制备方法是:在水或有机溶剂或两者的混合物中,经由游离酸或碱形式的这些化合物与化学计量的适当的碱或酸反应来制备。
本发明的化合物可以存在特定的几何或立体异构体形式。本发明设想所有的这类化合物,包括顺式和反式异构体、(-)-和(+)-对映体、(R)-和(S)-对映体、非对映异构体、(D)-异构体、(L)-异构体,及其外消旋混合物和其他混合物,例如对映异构体或非对映体富集的混合物,所有这些混合物都属于本发明的范围之内。烷基等取代基中可存在另外的不对称碳原子。所有这些异构体以及它们的混合物,均包括在本发明的范围之内。
本发明的化合物可以在一个或多个构成该化合物的原子上包含非天然比例的原子同位素。例如,可用放射性同位素标记化合物,比如氚( 3H),碘-125( 125I)或C-14( 14C)。又例如,可用重氢取代氢形成氘代药物,氘与碳构成的键比普通氢与碳构成的键更坚固,相比于未氘化药物,氘代药物有降低毒副作用、增加药物稳定性、增强疗效、延长药物生物半衰期等优势。本发明的化合物的所有同位素组成的变换,无论放射性与否,都包括在本发明的范围之内。
术语“任选”或“任选地”指的是随后描述的事件或状况可能但不是必需出现的,并且该描述包括其中所述事件或状况发生的情况以及所述事件或状况不发生的情况。
术语“被取代的”是指特定原子上的任意一个或多个氢原子被取代基取代,取代基可以包括重氢和氢的变体,只要特定原子的价态是正常的并且取代后的化合物是稳定的。当取代基为氧(即=O)时,意味着两个氢原子被取代。氧取代不会发生在芳香基上。术语“任选被取代的”是指可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的。
当任何变量(例如R)在化合物的组成或结构中出现一次以上时,其在每一种情况下的定义都是独立的。因此,例如,如果一个基团被0-2个R所取代,则所述基团可以任选地至多被两个R所取代,并且每种情况下的R都有独立的选项。此外,取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
当一个连接基团的数量为0时,比如-(CRR) 0-,表示该连接基团为单键。
当其中一个变量选自单键时,表示其连接的两个基团直接相连,比如A-L-Z中L代表单键时表示该结构实际上是A-Z。
当所列举的连接基团没有指明其连接方向,其连接方向是任意的,例如,
Figure PCTCN2021080278-appb-000042
中连接基团L为-M-W-,此时-M-W-既可以按与从左往右的读取顺序相同的方向连接环A和环B构成
Figure PCTCN2021080278-appb-000043
也可以按照与从左往右的读取顺序相反的方向连接环A和环B构成
Figure PCTCN2021080278-appb-000044
所述连接基团、取代基和/或其变体的组合只有在这样的组合会产生稳定的化合物的情况下才是被允许的。
除非另有规定,当某一基团具有一个或多个可连接位点时,该基团的任意一个或多个位点可以通过化学键与其他基团相连。当该化学键的连接方式是不定位的,且可连接位点存在H原子时,则连接化学键时,该位点的H原子的个数会随所连接化学键的个数而对应减少变成相应价数的基团。所述位点与其他基团连接的化学键可以用直形实线键
Figure PCTCN2021080278-appb-000045
直形虚线键
Figure PCTCN2021080278-appb-000046
或波浪线
Figure PCTCN2021080278-appb-000047
表示。例如-OCH 3中的直形实线键表示通过该基团中的氧原子与其他基团相连;
Figure PCTCN2021080278-appb-000048
中的直形虚线键表示通过该基团中的氮原子的两端与其他基团相连;
Figure PCTCN2021080278-appb-000049
中的波浪线表示通过该苯基基团中的1和2位碳原子与其他基团相连;
Figure PCTCN2021080278-appb-000050
表示该哌啶基上的任意可连接位点可以通过1个化学键与其他基团相连,至少包括
Figure PCTCN2021080278-appb-000051
这4种连接方式,即使-N-上画出了H原子,但是
Figure PCTCN2021080278-appb-000052
仍包括
Figure PCTCN2021080278-appb-000053
这种连接方式的基团,只是在连接1个化学键时,该位点的的H会对应减少1个变成相应的一价哌啶基。
除非另有说明,用楔形实线键
Figure PCTCN2021080278-appb-000054
和楔形虚线键
Figure PCTCN2021080278-appb-000055
表示一个立体中心的绝对构型,用直形实线键
Figure PCTCN2021080278-appb-000056
和直形虚线键
Figure PCTCN2021080278-appb-000057
表示立体中心的相对构型,用波浪线
Figure PCTCN2021080278-appb-000058
表示楔形实线键
Figure PCTCN2021080278-appb-000059
或楔形虚线键
Figure PCTCN2021080278-appb-000060
或用波浪线
Figure PCTCN2021080278-appb-000061
表示直形实线键
Figure PCTCN2021080278-appb-000062
或直形虚线键
Figure PCTCN2021080278-appb-000063
Figure PCTCN2021080278-appb-000064
代表
Figure PCTCN2021080278-appb-000065
Figure PCTCN2021080278-appb-000066
代表
Figure PCTCN2021080278-appb-000067
除非另有说明,术语“富含一种异构体”、“异构体富集”、“富含一种对映体”或者“对映体富集”指其中一种异构体或对映体的含量小于100%,并且,该异构体或对映体的含量大于等于60%,或者大 于等于70%,或者大于等于80%,或者大于等于90%,或者大于等于95%,或者大于等于96%,或者大于等于97%,或者大于等于98%,或者大于等于99%,或者大于等于99.5%,或者大于等于99.6%,或者大于等于99.7%,或者大于等于99.8%,或者大于等于99.9%。
除非另有说明,术语“异构体过量”或“对映体过量”指两种异构体或两种对映体相对百分数之间的差值。例如,其中一种异构体或对映体的含量为90%,另一种异构体或对映体的含量为10%,则异构体或对映体过量(ee值)为80%。
可以通过的手性合成或手性试剂或者其他常规技术制备光学活性的(R)-和(S)-异构体以及D和L异构体。如果想得到本发明某化合物的一种对映体,可以通过不对称合成或者具有手性助剂的衍生作用来制备,其中将所得非对映体混合物分离,并且辅助基团裂开以提供纯的所需对映异构体。或者,当分子中含有碱性官能团(如氨基)或酸性官能团(如羧基)时,与适当的光学活性的酸或碱形成非对映异构体的盐,然后通过本领域所公知的常规方法进行非对映异构体拆分,然后回收得到纯的对映体。此外,对映异构体和非对映异构体的分离通常是通过使用色谱法完成的,所述色谱法采用手性固定相,并任选地与化学衍生法相结合(例如由胺生成氨基甲酸盐)。
除非另有规定,术语“C 1-6烷基”用于表示直链或支链的由1至6个碳原子组成的饱和碳氢基团。所述C 1-6烷基包括C 1-5、C 1-4、C 1-3、C 1-2、C 2-6、C 2-4、C 6和C 5烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-6烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)、丁基(包括n-丁基,异丁基,s-丁基和t-丁基)、戊基(包括n-戊基,异戊基和新戊基)、己基等。
除非另有规定,术语“C 1-3烷基”用于表示直链或支链的由1至3个碳原子组成的饱和碳氢基团。所述C 1-3烷基包括C 1-2和C 2-3烷基等;其可以是一价(如甲基)、二价(如亚甲基)或者多价(如次甲基)。C 1-3烷基的实例包括但不限于甲基(Me)、乙基(Et)、丙基(包括n-丙基和异丙基)等。
除非另有规定,术语“C 1-3烷氧基”表示通过一个氧原子连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氧基包括C 1-2、C 2-3、C 3和C 2烷氧基等。C 1-3烷氧基的实例包括但不限于甲氧基、乙氧基、丙氧基(包括正丙氧基和异丙氧基)等。
除非另有规定,术语“C 1-3烷氨基”表示通过氨基连接到分子的其余部分的那些包含1至3个碳原子的烷基基团。所述C 1-3烷氨基包括C 1-2、C 3和C 2烷氨基等。C 1-3烷氨基的实例包括但不限于-NHCH 3、-N(CH 3) 2、-NHCH 2CH 3、-N(CH 3)CH 2CH 3、-NHCH 2CH 2CH 3、-NHCH 2(CH 3) 2等。
除非另有规定,“C 2-3烯基”用于表示直链或支链的包含至少一个碳-碳双键的由2至3个碳原子组成的碳氢基团,碳-碳双键可以位于该基团的任何位置上。所述C 2-3烯基包括C 3和C 2烯基;所述C 2- 3烯基可以是一价、二价或者多价。C 2-3烯基的实例包括但不限于乙烯基、丙烯基等。
除非另有规定,“C 2-3炔基”用于表示直链或支链的包含至少一个碳-碳三键的由2至3个碳原子组成的碳氢基团,碳-碳三键可以位于该基团的任何位置上。其可以是一价、二价或者多价。所述C 2-3炔基包括C 3和C 2炔基。C 2-3炔基的实例包括但不限于乙炔基、丙炔基等。
除非另有规定,本发明术语“C 6-10芳环”和“C 6-10芳基”可以互换使用,术语“C 6-10芳环”或“C 6-10芳 基”表示由6至10个碳原子组成的具有共轭π电子体系的环状碳氢基团,它可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其可以是一价、二价或者多价,C 6-10芳基包括C 6-9、C 9、C 10和C 6芳基等。C 6-10芳基的实例包括但不限于苯基、萘基(包括1-萘基和2-萘基等)。
除非另有规定,本发明术语“5-10元杂芳环”和“5-10元杂芳基”可以互换使用,术语“5-10元杂芳基”是表示由5至10个环原子组成的具有共轭π电子体系的环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子。其可以是单环、稠合双环或稠合三环体系,其中各个环均为芳香性的。其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。5-10元杂芳基可通过杂原子或碳原子连接到分子的其余部分。所述5-10元杂芳基包括5-8元、5-7元、5-6元、5元和6元杂芳基等。所述5-10元杂芳基的实例包括但不限于吡咯基(包括N-吡咯基、2-吡咯基和3-吡咯基等)、吡唑基(包括2-吡唑基和3-吡唑基等)、咪唑基(包括N-咪唑基、2-咪唑基、4-咪唑基和5-咪唑基等)、噁唑基(包括2-噁唑基、4-噁唑基和5-噁唑基等)、***基(1H-1,2,3-***基、2H-1,2,3-***基、1H-1,2,4-***基和4H-1,2,4-***基等)、四唑基、异噁唑基(3-异噁唑基、4-异噁唑基和5-异噁唑基等)、噻唑基(包括2-噻唑基、4-噻唑基和5-噻唑基等)、呋喃基(包括2-呋喃基和3-呋喃基等)、噻吩基(包括2-噻吩基和3-噻吩基等)、吡啶基(包括2-吡啶基、3-吡啶基和4-吡啶基等)、吡嗪基、嘧啶基(包括2-嘧啶基和4-嘧啶基等)、苯并噻唑基(包括5-苯并噻唑基等)、嘌呤基、苯并咪唑基(包括2-苯并咪唑基等)、苯并噁唑基、吲哚基(包括5-吲哚基等)、异喹啉基(包括1-异喹啉基和5-异喹啉基等)、喹喔啉基(包括2-喹喔啉基和5-喹喔啉基等)或喹啉基(包括3-喹啉基和6-喹啉基等)。
除非另有规定,术语“4-8元杂环烷基”本身或者与其他术语联合分别表示由4至8个环原子组成的饱和环状基团,其1、2、3或4个环原子为独立选自O、S和N的杂原子,其余为碳原子,其中氮原子任选地被季铵化,氮和硫杂原子可任选被氧化(即NO和S(O) p,p是1或2)。其包括单环和双环体系,其中双环体系包括螺环、并环和桥环。此外,就该“4-8元杂环烷基”而言,杂原子可以占据杂环烷基与分子其余部分的连接位置。所述4-8元杂环烷基包括4-6元、5-6元、4元、5元和6元杂环烷基等。4-8元杂环烷基的实例包括但不限于氮杂环丁基、氧杂环丁基、硫杂环丁基、吡咯烷基、吡唑烷基、咪唑烷基、四氢噻吩基(包括四氢噻吩-2-基和四氢噻吩-3-基等)、四氢呋喃基(包括四氢呋喃-2-基等)、四氢吡喃基、哌啶基(包括1-哌啶基、2-哌啶基和3-哌啶基等)、哌嗪基(包括1-哌嗪基和2-哌嗪基等)、吗啉基(包括3-吗啉基和4-吗啉基等)、二噁烷基、二噻烷基、异噁唑烷基、异噻唑烷基、1,2-噁嗪基、1,2-噻嗪基、六氢哒嗪基、高哌嗪基、高哌啶基或二氧杂环庚烷基等。
除非另有规定,C n-n+m或C n-C n+m包括n至n+m个碳的任何一种具体情况,例如C 1-12包括C 1、C 2、C 3、C 4、C 5、C 6、C 7、C 8、C 9、C 10、C 11、和C 12,也包括n至n+m中的任何一个范围,例如C 1- 12包括C 1-3、C 1-6、C 1-9、C 3-6、C 3-9、C 3-12、C 6-9、C 6-12、和C 9-12等;同理,n元至n+m元表示环上原子数为n至n+m个,例如3-12元环包括3元环、4元环、5元环、6元环、7元环、8元环、9元环、10元环、11元环、和12元环,也包括n至n+m中的任何一个范围,例如3-12元环包括3-6元环、3-9元环、5-6元环、5-7元环、6-7元环、6-8元环、和6-10元环等。
术语“离去基团”是指可以被另一种官能团或原子通过取代反应(例如亲核取代反应)所取代的官能团或原子。例如,代表性的离去基团包括三氟甲磺酸酯;氯、溴、碘;磺酸酯基,如甲磺酸酯、甲苯磺酸酯、对溴苯磺酸酯、对甲苯磺酸酯等;酰氧基,如乙酰氧基、三氟乙酰氧基等等。
术语“保护基”包括但不限于“氨基保护基”、“羟基保护基”或“巯基保护基”。术语“氨基保护基”是指适合用于阻止氨基氮位上副反应的保护基团。代表性的氨基保护基包括但不限于:甲酰基;酰基,例如链烷酰基(如乙酰基、三氯乙酰基或三氟乙酰基);烷氧基羰基,如叔丁氧基羰基(Boc);芳基甲氧羰基,如苄氧羰基(Cbz)和9-芴甲氧羰基(Fmoc);芳基甲基,如苄基(Bn)、三苯甲基(Tr)、1,1-二-(4'-甲氧基苯基)甲基;甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。术语“羟基保护基”是指适合用于阻止羟基副反应的保护基。代表性羟基保护基包括但不限于:烷基,如甲基、乙基和叔丁基;酰基,例如链烷酰基(如乙酰基);芳基甲基,如苄基(Bn),对甲氧基苄基(PMB)、9-芴基甲基(Fm)和二苯基甲基(二苯甲基,DPM);甲硅烷基,如三甲基甲硅烷基(TMS)和叔丁基二甲基甲硅烷基(TBS)等等。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明的化合物可以通过本领域技术人员所熟知的常规方法来确认结构,如果本发明涉及化合物的绝对构型,则该绝对构型可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法(SXRD),把培养出的单晶用Bruker D8 venture衍射仪收集衍射强度数据,光源为CuKα辐射,扫描方式:
Figure PCTCN2021080278-appb-000068
扫描,收集相关数据后,进一步采用直接法(Shelxs97)解析晶体结构,便可以确证绝对构型。
本发明所使用的溶剂可经市售获得。
化合物依据本领域常规命名原则或者使用
Figure PCTCN2021080278-appb-000069
软件命名,市售化合物采用供应商目录名称。
附图说明
图1为不同给药量随着时间延长的肿瘤体积变化。
图2为不同给药量随着时间延长的动物体重变化。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
实施例1
Figure PCTCN2021080278-appb-000070
步骤1:化合物1-2的合成
将化合物1-1(10g,64.03mmol,8.70mL,1eq),叔丁基亚磺酰胺(7.76g,64.03mmol,1eq)溶于四氢呋喃(100mL)中,然后加入钛酸四乙酯(29.21g,128.06mmol,26.56mL,2eq),25℃下搅10hr。反应完成后,冰水浴下,加入10g冰,有大量固体析出。再加入四氢呋喃(100mL),过滤,收集滤液,浓缩后得到化合物1-2,直接用于下一步反应。 1H NMR(400MHz,CDCl 3)δ=9.17(s,1H),9.05(d,J=8.5Hz,1H),8.05(dd,J=7.9,10.8Hz,2H),7.94(d,J=8.1Hz,1H),7.72-7.63(m,1H),7.59(t,J=7.6Hz,2H),1.34(s,9H);LCMS m/z=260.1[M+1] +
步骤2:化合物1-3的合成
将乙酸甲酯(4.28g,57.83mmol,4.60mL,1.5eq)溶于四氢呋喃(100mL)中,氮气保护下降温至-78℃,将六甲基二硅基胺基锂(1M,59.76mL,1.55eq)缓慢滴加到反应液中。-78℃下搅拌1hr后,再将化合物1-2(10g,38.56mmol,1eq)缓慢滴加到反应液中,在此温度下继续搅拌1hr。反应结束后,将反应液倒入饱和氯化铵水溶液(80mL)中,乙酸乙酯(50mL×3)萃取。合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤,收集滤液浓缩。粗品经柱层析纯化(石油醚/乙酸乙酯=50/1~1/1)得到化合物1-3。 1H NMR(400MHz,CDCl 3)δ=8.17(d,J=8.4Hz,1H),7.89(d,J=8.0Hz,1H),7.82(d, J=8.0Hz,1H),7.57(t,J=6.8Hz,2H),7.54-7.52(m,1H),7.52-7.44(m,2H),4.78(d,J=2.4Hz,1H),3.69(s,3H),3.09(d,J=6.4Hz,2H),1.25-1.22(s,9H);LCMS m/z=334.1[M+1] +
步骤3:化合物1-4的合成
将化合物乙酸甲酯(5.55g,74.98mmol,5.96mL,5eq)溶于四氢呋喃(50mL)中,氮气保护下降温至-78℃,将六甲基二硅基胺基钠(1M,74.98mL,5eq)加入到反应液中。在-78℃下搅拌1hr后,再将化合物1-3(5g,15.00mmol,1eq)缓慢滴加到反应液中,在此温度下继续搅拌1hr。反应完成后,将反应液倒入饱和氯化铵水溶液(50mL)中,乙酸乙酯(50mL×3)萃取。合并有机相,饱和食盐水洗涤(50mL),无水硫酸钠干燥,过滤,收集滤液浓缩,得到化合物1-4,直接用于下一步反应。LCMS m/z=376.1[M+1] +
步骤4:化合物1-5的合成
将化合物1-4(5g,13.32mmol,11.92mL,1eq)溶于甲苯(50mL)中,加入N,N-二甲基甲酰胺二甲基缩醛(15.87g,133.16mmol,17.69mL,10eq),在19℃下搅拌反应10hr。反应完成后,将反应液倒入饱和氯化铵水溶液(80mL)中,乙酸乙酯(50mL×3)萃取。合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤,收集滤液浓缩。粗品经柱层析(二氯甲烷/甲醇=100/1~10/1)分离纯化得到化合物1-5。LCMS m/z=431.1[M+1] +
步骤5:化合物1-6的合成:
将化合物1-5(2.4g,5.57mmol,1eq)溶于盐酸二氧六环(4M,60.00mL)中,在18℃下搅拌10hr。反应完成后,反应液直接浓缩,得到化合物1-6的盐酸盐,直接用于下一步反应。LCMS m/z=282.1[M+1] +
步骤6:化合物1-7的合成
将化合物1-6盐酸盐(2g,6.29mmol,1eq)溶于N,N-二甲基甲酰胺(20mL),然后依次加入碳酸钾(6.15g,18.88mmol,3eq),碘甲烷(1.79g,12.59mmol,783.65μL,2eq),在18℃下搅拌10hr。反应完成后,反应液倒入水中(30mL),用乙酸乙酯(30mL×2)萃取。合并后的有机相用饱和食盐水洗涤(50mL),无水硫酸钠干燥,过滤,浓缩得到粗品。粗品经柱层析(二氯甲烷/甲醇=50/1~10/1)分离纯化得到化合物1-7。 1H NMR(400MHz,CDCl 3)δ=8.47(s,1H),7.96-7.88(m,2H),7.85(d,J=8.4Hz,1H),7.62-7.51(m,2H),7.48-7.41(m,1H),7.35(d,J=7.0Hz,1H),5.52-5.39(m,1H),3.83(s,3H),3.19(s,3H),3.23-3.14(m,1H),2.98-2.87(m,1H)。
步骤7:化合物1-8的合成
将化合物1-7(20mg,67.72μmol,1eq)溶于乙醇(0.2mL),1,4二氧六环(1mL)中。然后加入六水合氯化镍(19.32mg,81.26μmol,1.2eq)。降温至5~10℃后,再加入硼氢化钠(1.28mg,33.86μmol,0.5eq),并在10℃下反应0.5hr。反应完成后,倒入饱和氯化铵水溶液(5mL)中,用乙酸乙酯(10mL×2)萃取。合并后的有机相用饱和食盐水洗涤(5mL),无水硫酸钠干燥,过滤,浓缩得到粗品。粗品经过薄层色谱制备板分离纯化(展开液:石油醚/乙酸乙酯=3/1)得到化合物1-8。 1H NMR(400MHz,CDCl 3)δ=11.99-11.85(m,1H),8.67-8.49(m,1H),7.92-7.85(m,1H),7.85-7.77(m,1H),7.57-7.41 (m,4H),3.82(s,3H),3.56-3.51(m,1H),3.16-2.95(m,2H),2.68-2.47(m,1H),2.15(s,3H)。
步骤8:化合物1-9的合成
将化合物1-8(240mg,807.14μmol,1eq),尿素(242.36mg,4.04mmol,216.40μL,5eq)溶于乙醇(5mL)中,再加入甲醇钠(130.80mg,2.42mmol,3eq)。85℃下反应10hr后,将反应液缓慢倒入水中,再加入乙酸乙酯(5mL),有固体析出。过滤,收集固体得到化合物1-9。LCMS m/z=308.1[M+1] +
步骤9:化合物1-10的合成
将化合物1-9(400mg,1.30mmol,1eq)溶于三氯氧磷(132.00g,860.89mmol,80mL)。升温至105℃下反应10hr后,减压浓缩除去多余三氯氧磷。剩余物用乙酸乙酯(50mL)溶解,再加入到饱和碳酸氢钠水溶液(20mL)中。水相用乙酸乙酯(50mL×3)萃取。合并后的有机相用饱和食盐水(50mL)洗涤,无水硫酸钠干燥,过滤,浓缩得到粗品。粗品用薄层层析柱(洗脱液:石油醚/乙酸乙酯=20/1~0/1)分离纯化得到化合物1-10。LCMS m/z=344.0[M+1] +
步骤10:化合物1-11的合成
将化合物1-10(250mg,726.24μmol,1eq),中间体1-10A盐酸盐(279.24mg,944.12μmol,1.3eq)溶于异丙醇(2mL),再加入N,N-二异丙基乙胺(375.44mg,2.90mmol,505.98μL,4eq)。110℃下反应12hr后,反应液直接浓缩。剩余物经柱层析分离纯化(洗脱液:石油醚/乙酸乙酯=10/1~1/1)得到化合物1-11。 1H NMR(400MHz,CDCl 3)δ=8.60-8.48(m,1H),7.93-7.87(m,1H),7.86-7.80(m,1H),7.58-7.34(m,9H),5.21(m,2H),4.77-4.61(m,1H),4.06(m,2H),3.97-3.75(m,2H),3.62-3.40(m,3H),3.30-3.00(m,4H),2.78-2.64(m,1H),2.26(s,1.5H),2.21(s,1.5H);LCMS m/z=567.3[M+1] +
步骤11:化合物1-12的合成
将化合物1-11(100mg,176.34μmol,1eq),1-11A(60.93mg,529.03μmol,62.81μL,3eq)溶于1,4二氧六环(1.5mL)中,再加入碳酸铯(172.37mg,529.03μmol,3eq),2-二环己基磷-2',6'-二异丙氧基-1,1'-联苯(16.46mg,35.27μmol,0.2eq)和三(二亚苄基丙酮)二钯(32.30mg,35.27μmol,0.2eq)。氮气保护下,90℃反应24hr。反应完成后,直接浓缩。剩余物经柱层析分离纯化(洗脱液:二氯甲烷/甲醇=100/1~10/1)得到化合物1-12。LCMS m/z=646.4[M+1] +
步骤12:化合物1-13的合成
将化合物1-12(50mg,77.42μmol,1eq)溶于四氢呋喃(50mL)中,加入Pd/C(77.4mg,10%纯度),反应体系用H 2置换三次。在15psi,20℃下,搅拌反应10hr。反应完成后,过滤,得到化合物1-13的四氢呋喃溶液(70mL),直接用于下一步。LCMS m/z=512.3[M+1] +
步骤13:化合物1的合成
往上一步反应所得到的化合物1-13四氢呋喃溶液(70mL)中加入N,N-二异丙基乙胺(17.18mg,132.90μmol,23.15μL,2eq),然后降温至-20~-30℃,加入丙烯酰氯(6.01mg,66.45μmol,5.42μL,1eq)。在此温度下,反应30min后,反应液倒入水中(10mL)。再用乙酸乙酯(10mL)萃取。有机相用无水硫酸钠干燥,过滤,浓缩得到粗品。粗品使用高效液相色谱柱分离纯化(柱子:Phenomenex Luna 80*30mm*3μm;流动相:[10mM NH 4HCO 3水溶液-乙腈];乙腈%:30%-60%,7min)得到化合物1, 化合物1经SFC鉴定由两个非对映异构体组成(Chiralcel OD-3柱,P1 Rt=1.93min,P2 Rt=2.08min,P1:P2=50.6:49.4)。 1H NMR(400MHz,CDCl 3)δ=8.66-8.53(m,1H),7.93-7.87(m,1H),7.82(d,J=8.0Hz,1H),7.56-7.41(m,4H),6.70-6.50(m,1H),6.47-6.34(m,1H),5.84(d,J=7.2Hz,1H),4.38(m,1H),4.27-4.09(m,2H),4.05-3.78(m,4H),3.60-3.35(m,3H),3.23-3.01(m,4H),2.84-2.60(m,3H),2.50-2.41(m,3H),2.30-2.21(m,4H),2.10-1.98(m,1H),1.90-1.66(m,4H).LCMS m/z=566.4[M+1] +
实施例2和3
Figure PCTCN2021080278-appb-000071
步骤1:化合物2-2的合成
将化合物2-1(2.2g,9.11mmol,1eq)溶解于无水四氢呋喃(15mL)中,并在氮气保护下冷却到- 78℃。然后向其中滴加n-BuLi(2.5M,3.64mL,1eq),-78℃下搅拌反应1hr。加入N,N-二甲基甲酰胺(3.33g,45.55mmol,3.50mL,5eq),-78℃下继续搅拌0.5hr。加入饱和氯化铵溶液(10mL)淬灭反应,再加入水(10mL),分出有机相,水相用乙酸乙酯(50mL)萃取。合并后的有机相用无水硫酸钠干燥、过滤除去干燥剂、减压除去溶剂得到粗品。粗品过柱纯化(乙酸乙酯/石油醚=0~15%)得到化合物2-2。 1H NMR(400MHz,CDCl 3)δ=11.32(s,1H),8.04(dd,J=1.2,8.0Hz,1H),7.92(dd,J=1.2,7.2Hz,1H),7.87(dd,J=1.2,8.4Hz,1H),7.71(dd,J=1.2,7.2Hz,1H),7.59(t,J=7.6Hz,1H),7.51-7.44(m,1H)。
步骤2:化合物2-3的合成
将钠氢(248.01mg,6.20mmol,60%纯度,1.2eq)悬浮于无水四氢呋喃(5mL)中,氮气保护下冷却到0℃,然后向其中滴加乙酰乙酸甲酯(600mg,5.17mmol,555.56μL,1eq)。搅拌10min后,滴加正丁基锂(2.5M,2.27mL,1.1eq),0℃继续搅拌反应20min。再用干冰丙酮浴将反应体系冷却到-78℃,向其中滴加化合物2-2(1.08g,5.68mmol,1.1eq)的四氢呋喃(6mL)溶液。搅拌反应30min,缓慢升至室温搅拌30min。加水(30mL)淬灭反应,水相用乙酸乙酯(50mL×2)萃取。合并后的有机相用硫酸钠干燥、过滤除去干燥剂、滤液减压除去溶剂得到粗品。粗品过柱纯化(乙酸乙酯/石油醚=0~20%)得到化合物2-3。 1H NMR(400MHz,CDCl 3)δ=8.07(d,J=7.6Hz,1H),7.81(d,J=8.0Hz,2H),7.63-7.49(m,2H),7.35(t,J=8.0Hz,1H),6.92(br d,J=9.6Hz,1H),3.75(s,3H),3.55(s,2H),3.37(dd,J=1.6,18.1Hz,1H),3.24(d,J=1.2Hz,1H),2.86-2.77(m,1H)。
步骤3:化合物2-4的合成
将化合物2-3(520mg,1.70mmol,1eq)溶解于二氯甲烷(5mL)中,然后加入N,N-二甲基甲酰胺缩二甲醇(202.01mg,1.70mmol,225.20μL,1eq)。所得反应液25℃搅拌反应1hr,然后加入三氟化硼***络合物(240.60mg,1.70mmol,209.22μL,1eq),反应液25℃搅拌反应18hr。反应液真空浓缩,残留物中用2M盐酸调节pH~3-4,然后用乙酸乙酯(30mL×3)萃取。合并后的有机相真空下浓缩得到粗品。粗品经过柱纯化(乙酸乙酯/石油醚=0~35%)得到化合物2-4。 1H NMR(400MHz,CDCl 3)δ=8.56(d,J=0.8Hz,1H),7.91(t,J=8.0Hz,2H),7.85(dd,J=1.2,8.4Hz,1H),7.65(dd,J=1.6,7.6Hz,1H),7.59(t,J=8.0Hz,1H),7.44-7.35(m,2H),3.87(s,3H),3.27-3.17(m,1H),2.92-2.82(m,1H).LCMS m/z=317.0[M+H] +
步骤4:化合物2-5的合成
将化合物2-4(780mg,2.46mmol,1eq)溶解于四氢呋喃(3mL),在氮气保护下冷却到-78℃。然后向其中滴加三仲丁基硼氢化锂(1M,2.46mL,1eq),-78℃搅拌反应1hr。用饱和氯化铵(5mL)淬灭反应,然后用乙酸乙酯(50mL×3)萃取。合并有机相,真空浓缩得到粗品。粗品过柱纯化(乙酸乙酯/石油醚=0~15%)得到化合物2-5。 1H NMR(400MHz,CDCl 3)δ=11.81(s,1H),7.99(d,J=7.2Hz,1H),7.85-7.80(m,2H),7.63-7.53(m,2H),7.36(t,J=7.6Hz,1H),6.30(dd,J=2.8,10.4Hz,1H),4.68-4.62(m,1H),4.56-4.47(m,1H),3.82(s,3H),3.07-2.98(m,1H),2.57-2.46(m,1H)。
步骤5:化合物2-6的合成
将化合物2-5(497mg,1.56mmol,1eq)溶解于甲醇(2mL)中,然后加入2-甲基硫脲硫酸盐(528.27 mg,2.81mmol,1.8eq)和甲醇钠(421.14mg,7.80mmol,5eq),所得反应液氮气保护下在25℃搅拌反应18hr。减压除去甲醇,残留物中加入水(1mL),然后用2M盐酸调节pH~5-6,有大量白色固体析出来,过滤收集固体,真空干燥得到化合物2-6。粗品直接用于下一步反应。LCMS m/z=359.1[M+H] +
步骤6:化合物2-7的合成
将化合物2-6(440.00mg,1.23mmol,1eq)和N.N-二异丙基乙胺(316.95mg,2.45mmol,427.15μL,2eq)加入到无水二氯甲烷(5mL)中,并冷却到0℃,然后向其中加入三氟甲磺酸酐(449.74mg,1.59mmol,263.00μL,1.3eq)。加完后,0℃搅拌反应60min。反应液真空下浓缩得到粗品,粗品过柱纯化(乙酸乙酯/石油醚=0~6%)得到化合物2-7。 1H NMR(400MHz,CDCl 3)δ=7.99(d,J=7.2Hz,1H),7.90-7.82(m,2H),7.66-7.54(m,2H),7.44-7.33(m,1H),6.46(dd,J=2.4,10.4Hz,1H),5.12-5.04(m,1H),4.97-4.89(m,1H),3.63(dd,J=2.0,18.0Hz,1H),3.05-2.90(m,1H),2.57(s,3H).LCMS m/z=491.0[M+H] +
步骤7:化合物2-8的合成
将化合物2-7(121mg,246.48μmol,1eq)和N,N-二异丙基乙胺(95.57mg,739.45μmol,128.80μL,3eq)加入到N,N-二甲基甲酰胺(1.5mL)中,然后加入化合物1-10A盐酸盐(70.31mg,237.71μmol,1.1eq),所得反应液氮气置换后置于100℃油浴中搅拌反应1hr。反应液真空下浓缩得到粗品,粗品过柱纯化(乙酸乙酯/石油醚=0~30%)得到化合物2-8。LCMS m/z=600.2[M+H] +
步骤8:化合物2-9的合成
将化合物2-8(125mg,208.29μmol,1eq)溶解于二氯甲烷(1mL)中,然后加入间氯过氧苯甲酸(84.57mg,416.58μmol,85%纯度,2eq),所得反应液20℃搅拌反应8hr。将反应液过滤除去不溶物,滤液真空浓缩得到粗品,粗品过柱纯化(乙酸乙酯/石油醚=0~60%)得到化合物2-9。LCMS m/z=632.3[M+H] +
步骤9:化合物2-10的合成
将化合物2-9(101mg,159.78μmol,1eq)和1-11A(55.21mg,479.34μmol,56.91μL,3eq)溶解于甲苯(0.8mL)中。所得溶液冷却到-5℃,然后加入t-BuONa(30.71mg,319.56μmol,2eq),所得反应液在-5~0℃搅拌反应1hr。将反应液用3mL乙酸乙酯稀释,然后用水(1mL)和饱和食盐水(1mL)洗涤。有机相真空下浓缩得到粗品,粗品过柱纯化(甲醇/二氯甲烷=0~8%)得到化合物2-10。LCMS m/z=667.3[M+H] +
步骤10:化合物2-11和3-1混合物的合成
将化合物2-10(101mg,151.38μmol,1eq)溶解于二氯甲烷(1mL)中,然后加入醋酸钯(6.80mg,30.28μmol,0.2eq)和三乙基硅烷(88.01mg,756.90μmol,120.90μL,5eq),所得反应液室温下搅拌反应1hr。将反应液真空浓缩得到化合物2-11和3-1的混合物,该混合物不经纯化直接用于下一步反应。化合物2-11:LCMS m/z=555.3[M+Na] +;化合物3-1:LCMS m/z=521.3[M+Na] +
步骤11:化合物2和3的合成
将化合物2-11和3-1的混合物溶于二氯甲烷(1mL)中,然后加入三乙胺(45.95mg,454.14μmol,63.21μL,3eq)。所得反应液冷却至0℃,然后加入烯丙基酰氯(20.55mg,227.07μmol,18.52μL,1.5 eq),搅拌反应30min。将反应液真空浓缩得到粗品,粗品用高效液相色谱制备分离(分离条件:色谱柱:Welch Xtimate C18 150*30mm*5μm;流动相:[水(0.225%甲酸)-乙腈];乙腈%:15%-55%,8min)得到化合物2和3。化合物2和3分别为一对非对映异构体。化合物2:LCMS m/z=587.3[M+H] +;化合物3:LCMS m/z=553.3[M+H] +
实施例4
Figure PCTCN2021080278-appb-000072
Figure PCTCN2021080278-appb-000073
中间体4-14A的合成
步骤1:化合物4-21的合成
将化合物4-20(3g,8.35mmol,1eq)溶于四氢呋喃(30mL)中,加入湿钯碳(1.2g,10%质量含量),氢气(562.02μg,278.23μmol,1eq)置换三次,室温25℃,15Psi反应2hr。反应液过滤,收集母液,浓缩得到产品。得到化合物4-21。LCMS m/z=170.1[M-55+H] +
步骤2:化合物4-22的合成
将化合物4-21(0.2g,887.76μmol,1eq)溶于四氢呋喃(5mL)中,加入三乙胺(269.50mg,2.66mmol,370.70μL,3eq),氮气保护,降温至0℃,加入三氟乙酸酐(205.10mg,976.53μmol,135.83μL,1.1 eq),在0 反应0.5hr。倒入饱和氯化铵水溶液(10mL),加入乙酸乙酯(5mL*2),饱和食盐水(5mL)洗涤,柱层析纯化,(石油醚/乙酸乙酯=10/1~1/1,TLC:石油醚/乙酸乙酯=3/1)得到化合物4-22。 1H NMR(400MHz,CDCl 3)δ=4.86(s,1H),4.51-4.06(m,2H),3.88(d,J=14.0Hz,1H),3.52-3.33(m,1H),3.24(dd,J=4.0,14.2Hz,1H),3.12-2.92(m,1H),2.91-2.73(m,1H),2.67(s,1H),1.50(s,9H);LCMS:MS m/z=222.0[M-100+H] +
步骤3:化合物4-14A的合成
将化合物4-22(150mg,466.86μmol,1eq)溶于盐酸二氧六环(5M,8mL,85.68eq),氮气保护,18℃反应1hr。直接旋干,得到化合物4-14A的盐酸盐。LCMS:MS m/z=222.0[M+H] +
实施例4的合成
步骤1:化合物4-2的合成
将水(210mL),盐酸(210mL,36~38%质量含量)混合后,将化合物4-1(36.00g,176.44mmol,1eq)加入其中,将温度升至65℃,反应1hr。然后将温度降至0~5℃后,然后将亚硝酸钠(14.61g,211.72mmol,1.2eq)溶于水(70mL)中后滴加到其中,搅拌15min。将氯化亚铜(26.20g,264.65mmol,6.33mL,1.5eq)溶于盐酸(350mL,36~38%质量含量)后,降温至0~5℃,将上述溶液滴加到其中后,继续反应6hr。向反应体系中加入750mL二氯甲烷后搅拌20min后,分液,有机相加入350mL饱和食盐水洗涤一次,加入30.00g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸,得到化合物4-2。 1H NMR(400MHz,CDCl 3)δ=7.24-7.21(m,1H),6.94(dd,J=2.8,8.8Hz,1H),2.43(s,3H)。
步骤2:化合物4-3的合成
将四氢呋喃(395mL),化合物4-2(39.50g,176.76mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌,将温度降至-70~-65℃后,将二异丙基氨基锂(2M,106.05mL,1.2eq)滴加到其中,反应1hr。然后将N,N-二甲基甲酰胺(18.76g,256.70mmol,19.75mL,1.45eq)加入其中,继续反应1hr。向反应体系中加入500mL饱和氯化铵溶液后,分液,有机相用300mL饱和食盐水洗涤一次后加入20g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。得到化合物4-3。 1H NMR(400MHz,CDCl 3)δ=10.28(s,1H),7.08(d,J=10.8Hz,1H),2.51(s,3H);LCMS m/z=245.0[M+H] +,247.0[M+3H] +
步骤3:化合物4-4的合成
将二甲亚砜(300mL),化合物4-3(20.00g,79.53mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌,然后将水合肼(48.75g,954.35mmol,47.33mL,98%质量含量,12eq)加入其中,将温度升至130℃,反应3hr。与小试反应液合并后,将反应液倒入700mL水中后,过滤,滤饼用水(100mLx3次)洗涤;得到的滤饼用300mL乙酸乙酯溶解后分液,有机相加入50.00g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸,得到化合物4-4。 1H NMR(400MHz,CDCl 3)δ=10.38(brs,1H),8.03(s,1H),7.33(s,1H),2.57(s,3H);LCMS m/z=245.1[M+H] +,247.1[M+3H] +
步骤4:化合物4-5的合成
将二氯甲烷(200mL),化合物4-4(20.00g,81.47mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌;然后依次将对甲苯磺酸吡啶盐(2.05g,8.15mmol,0.1eq),2-甲羟基-3,4-二氢吡喃(20.56g,244.40mmol,22.35mL,3eq)加入其中,室温20℃,反应12hr。向反应体系中加入200mL水后,反应液直接分液,有机相加入20.00g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸,得到粗品化合物。粗品经柱层析纯化(石油醚/乙酸乙酯=100/0~70/30,TLC:石油醚/乙酸乙酯=5/1),得到化合物4-5。 1H NMR(400MHz,CDCl 3)δ=7.95(s,1H),7.44(s,1H),5.67(dd,J=2.8,8.8Hz,1H),4.02-3.98(m,1H),3.79-3.71(m,1H),2.57(s,3H),2.54-2.46(m,1H),2.18-2.05(m,2H),1.80-1.66(m,3H);LCMS m/z=329.0[M+H] +,331.0[M+3H] +
步骤5:化合物4-6的合成
将四氢呋喃(160mL),化合物4-5(16g,48.54mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌。将温度降至-70~-65℃后,将正丁基锂(2.5M,21.36mL,1.1eq)缓慢滴加到其中,反应1hr;然后将N,N-二甲基甲酰胺(35.48g,485.41mmol,37.35mL,10eq)加入其中,继续反应0.5hr。向反应体系中加入250mL饱和氯化铵溶液后,分液,有机相用150mL饱和食盐水洗涤一次后,加入无水硫酸钠干燥,过滤,滤液在45℃下进行减压旋蒸的有状物。油状物与7mL乙酸乙酯混合打浆20min后,过滤,滤饼在45℃下进行减压旋蒸。得到化合物4-6。 1H NMR(400MHz,CDCl 3)δ=10.72(s,1H),8.63(s,1H),7.74(s,1H),5.70(dd,J=2.8,8.8Hz,1H),3.98-3.94(m,1H),3.75-3.68(m,1H),2.55(s,3H),2.53-2.45(m,1H),2.16-2.05(m,2H),1.83-1.61(m,3H);LCMS m/z=279.1[M+H] +
步骤6:化合物7的合成
将四氢呋喃(54mL),化合物4-6(5.4g,19.37mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌;然后依次将叔丁基亚磺酰胺(2.58g,21.31mmol,232.15μL,1.1eq),钛酸四异丙酯(8.84g,38.75mmol,8.04mL,2eq)加入其中,20℃反应12hr。向反应体系中加入50mL饱和氯化铵溶液后,分液,有机相加入3.00g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(石油醚/乙酸乙酯=100/0~50/50,TLC:石油醚/乙酸乙酯=10/1),得到化合物4-7。LCMS m/z=382.2[M+H] +
步骤7:化合物4-8的合成
将四氢呋喃(35mL),钠氢(829.50mg,20.74mmol,60%质量含量,1.2eq)加入预先准备好的干净反应瓶中,开始搅拌,然后将温度降至0~5℃后,将乙酰乙酸甲酯(2.41g,20.74mmol,2.23mL,1.2eq)滴加到其中,反应20min。然后将正丁基锂(2.5M,7.60mL,1.1eq)滴加到其中,继续反应20min,然后将温度降至-70~-65℃后,将化合物4-7(6.60g,17.28mmol,1eq)溶于四氢呋喃(35mL)后,滴加到其中,继续反应20min,将温度缓慢升至室温20℃,继续反应0.5hr。将反应液倒入100mL饱和氯化铵溶液后,与1g批次合并后,分液,有机相加入3.00g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(石油醚/乙酸乙酯=100/0~20/80,TLC:PE/EtOAc=0:1),得到化合物4-8。 1H NMR(400MHz,CDCl 3)δ=8.20(s,1H),7.44(d,J=5.6Hz,1H),5.72-5.64(m,2H), 4.04-3.99(m,1H),3.77-3.69(m,4H),3.57-3.46(m,2H),3.15-3.08(m,1H),2.59-2.52(m,4H),2.16-2.05(m,2H),1.83-1.65(m,4H),1.20-1.18(m,9H);LCMS m/z=498.2[M+H] +
步骤8:化合物4-9的合成
将甲苯(66mL),化合物4-8(6.60g,13.25mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌;然后将N,N-二甲基甲酰胺二甲缩醛(4.74g,39.76mmol,5.28mL,3eq)加入其中,室温20℃反应12hr。向反应体系中加入60mL水,以及60mL乙酸乙酯后,搅拌5min;分液,有机相加入60mL饱和食盐水洗涤一次后,加入5.00g无水硫酸钠干燥后,过滤,滤液在50℃下进行减压旋蒸,得到化合物4-9,直接用于下一步。
步骤9:化合物4-10的合成
将化合物4-9(50mg,90.40μmol,1eq)溶于盐酸乙酸乙酯(3mL)中,加入到反应中,18℃搅拌20min。直接浓缩得到粗品。得到化合物4-10的盐酸盐。LCMS m/z=320.0[M+H] +
步骤10:化合物4-11的合成
将化合物4-10(5.00g,14.04mmol,1eq,HCl)溶于二氯甲烷(50mL)中,三乙胺(5.97g,58.96mmol,8.21mL,4.2eq),二碳酸叔丁酯(12.25g,56.15mmol,12.90mL,4eq),4-二甲氨基吡啶(1.71g,14.04mmol,1eq)加入到反应中,18℃搅拌10hr。与0.5g批次合并处理,饱和氯化铵水溶液淬灭(100mL),二氯甲烷(30mL*2次)萃取,合并有机相,无水硫酸钠干燥浓缩,得到粗品。粗品柱层析(石油醚/乙酸乙酯=50/1~0/1,TLC:石油醚/乙酸乙酯=1/1),得到化合物4-11。 1H NMR(400MHz,CDCl 3)δ=9.02(s,1H),8.12(s,1H),7.89(s,1H),6.16(dd,J=5.2,8.8Hz,1H),3.77(s,3H),3.10(dd,J=8.4,16.0Hz,1H),2.82(m,1H),2.48(s,3H),1.63(s,9H),1.18(s,9H)。LCMS m/z=520.1[M+H] +
步骤11:化合物4-12的合成
将化合物4-11(3.00g,5.77mmol,1eq)溶于四氢呋喃(30mL)中,降温至-78℃,氮气保护,将三仲丁基硼氢化锂(1M,5.77mL,1eq)滴加到反应液中,搅拌0.5hr。饱和氯化铵水溶液淬灭(30mL),乙酸乙酯(20mL x 2次)萃取,合并有机相,无水硫酸钠干燥浓缩,得到粗品得到化合物4-12。LCMS m/z=522.2[M+H] +,466.1[M-56+H] +
步骤12:化合物4-13的合成
将化合物4-12(2.30g,4.41mmol,1eq),2-甲基-2-硫代异尿素硫酸氢盐(1.66g,8.81mmol,2eq,H 2SO 4)溶于甲醇(430mL)中,加入甲醇钠(476.05mg,8.81mmol,2eq),18℃搅拌1.5hr,再将甲醇钠(357.04mg,6.61mmol,1.5eq)加入到反应液中,18℃在搅拌10hr。旋干,加入水(50mL),1M稀盐酸调节pH=2~3,白色固体析出,过滤收集固体。粗品柱层析纯化(石油醚/乙酸乙酯=10/1~0/1,TLC:石油醚/乙酸乙酯=1/1)得到化合物4-13。LCMS m/z=562.1[M+H] +
步骤13:化合物4-14的合成
将化合物4-13(0.328g,583.55μmol,1eq),N,N-二异丙基乙胺(377.09mg,2.92mmol,508.21μL,5eq)溶于二氯甲烷(10mL)中,0℃加入三氟甲磺酸酐(246.96mg,875.32μmol,144.42μL,1.5eq),0℃搅拌1hr。与0.56g批次合并处理,合并倒入饱和氯化铵水溶液(50mL)中,加入乙酸乙酯(20 mL x 3次)萃取,饱和食盐水洗涤,无水硫酸钠干燥,过滤,浓缩得到粗品。粗品柱层析(石油醚/乙酸乙酯=20/1~5/1)TLC(石油醚/乙酸乙酯=5/1),得到化合物4-14。 1H NMR(400MHz,CDCl3)δ=8.21-8.11(m,1H),8.00-7.90(m,1H),5.86-5.69(m,1H),5.25-5.09(m,1H),4.68-4.46(m,1H),3.57-3.42(m,1H),3.27-3.08(m,1H),2.66-2.41(m,6H),1.79-1.67(m,9H),1.21-1.07(m,9H);LCMS m/z=637.9[M-56+H] +,639.8[M-56+3H] +
步骤14:化合物4-15的合成
将化合物4-14(630mg,907.60μmol,1eq),化合物4-14A(420.90mg,1.63mmol,1.8eq,HCl)溶于N,N-二甲基甲酰胺(15mL)中,加入N,N-二异丙基乙胺(469.19mg,3.63mmol,632.33μL,4eq),20℃搅拌2hr。倒入水中(30mL),乙酸乙酯萃取(20mL x 3),饱和食盐水(10mL)洗涤,无水硫酸钠干燥,过滤,浓缩得到粗品。柱层析纯化(石油醚/乙酸乙酯=50/1~1/1),TLC:石油醚/乙酸乙酯=0/1得到化合物4-15。 1H NMR(400MHz,CDCl3)δ=8.18-8.05(m,1H),8.04-7.93(m,1H),5.75-5.45(m,1H),5.06-4.89(m,1H),4.66-4.35(m,1H),4.19-3.84(m,3H),3.82-3.45(m,1H),3.43-3.12(m,2H),3.06-2.75(m,6H),2.61-2.38(m,5H),1.79-1.60(m,9H),1.14-0.85(s,9H);LCMS m/z=765.0[M+H] +
步骤15:化合物4-16的合成
将化合物4-15(400.00mg,522.71μmol,1eq),溶于二氯甲烷(8mL)中,加入间氯过氧苯甲酸(200.00mg,985.11μmol,85%质量含量,1.88eq),20℃搅拌2hr。与200mg批次合并处理,反应液用亚硫酸钠水溶液(20mL,10%)洗涤,无水硫酸钠干燥,过滤,浓缩,得到粗品。粗品柱层析(SiO 2100目,石油醚/乙酸乙酯=50/1~1/1,TLC:石油醚/乙酸乙酯=2/1)得到化合物4-16。LCMS m/z=697.1[M-100+H] +
步骤16:化合物4-17的合成
将化合物1-11A(57.79mg,501.73μmol,59.57μL,4eq)溶于甲苯(1mL)中,0℃加入叔丁醇钠(42.19mg,439.01μmol,3.5eq),搅拌15min,再将化合物4-16(100.00mg,125.43μmol,1eq)溶于0.1mL甲苯中,缓慢加入到反应液中,0℃反应30min。水(5mL)淬灭,乙酸乙酯(5mL x 2)萃取,合并有机相。得到化合物4-17。LCMS m/z=636.1[M+H] +
步骤17:化合物4-18的合成
将化合物4-17(79.80mg,125.44μmol,1eq)溶于二氯甲烷(2mL)中,18℃加入N,N-二异丙基乙胺(81.06mg,627.18μmol,109.24μL,5eq),降温至-78℃,再将丙烯酰氯(4.54mg,50.17μmol,4.09μL,0.4eq),缓慢加入到反应液中,-78℃反应0.5hr。补加8.00mg丙烯酰氯反应1hr,饱和氯化铵水溶液(5mL)淬灭,二氯甲烷(5mL*2)萃取,合并有机相。粗品在碳酸钾(1.7M,1mL)/甲醇(1mL)中,18℃搅拌1hr,检测产品(time=0.943)得到化合物4-18。LCMS m/z=690.3[M+H] +
步骤18:化合物4A和4B的合成
将化合物4-18(100mg,144.88μmol,1eq)溶于二氯甲烷(2mL)、三氟乙酸(3.08g,27.01mmol,2.00mL,186.45eq),18℃反应1hr。浓缩得到化合物4-19。化合物4-19使用高效液相色谱柱分离纯 化:色谱柱:Phenomenex luna C18 100*40mm*5μm;流动相:[H 2O(0.1%TFA)-乙腈];乙腈%:5%-30%,8min,样品在加入0.05mL稀盐酸0.2mL,真空下浓缩,得到化合物4A的盐酸盐(出峰时间:2.417min)。LCMS m/z=590.1[M+H]+,295.9[M/2+H] +;和化合物4B的盐酸盐(出峰时间:2.388min)。LCMS m/z=590.1[M+H]+,295.9[M/2+H] +
实施例5
Figure PCTCN2021080278-appb-000074
步骤1:化合物5-1的合成
将四氢呋喃(27mL),氢化钠(789.28mg,19.73mmol,60%质量含量,2eq)加入预先准备好的干净反应瓶中,开始搅拌,然后将温度降至0~5℃后,将乙酰乙酸甲酯(2.29g,19.73mmol,2.12mL,2eq)滴加到其中,反应30min。然后将正丁基锂(2.5M,7.50mL,1.9eq)滴加到其中,继续反应30min后,将温度降至-70~-65℃,然后将化合物4-6(2.75g,9.87mmol,1eq)溶于四氢呋喃(27mL)后滴加到其中,继续反应0.5hr。将反应液倒入50mL饱和氯化铵溶液淬灭后,有机相加入1.50g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(石油醚/乙酸乙酯=100/0~70/30,TLC:石油醚/乙酸乙酯=1/1),得到物化合物5-1。 1H NMR(400MHz,CDCl 3)δ=8.40(d,J=2.8Hz,1H),7.41(d,J=11.6Hz,1H),5.95-5.91(m,1H),5.69-5.64(m,1H),4.04-3.98(m,1H),3.78-3.70(m,4H),3.56(d,J=0.8Hz,2H),3.37(d,J=3.2,8.4Hz,1H),3.08-2.99(m,2H),2.61-2.54(m,1H),2.50(s,3H),2.18-2.04(m,2H),1.81-1.70(m,2H)。LCMS:MS m/z=395.0[M+H] +
步骤2:化合物5-2的合成
将二氯甲烷(25mL),化合物5-1(1.6g,4.05mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌;然后将N,N-二甲基甲酰胺二甲缩醛(724.30mg,6.08mmol,807.47μL,1.5eq)加入其中,室温20℃反应12hr。然后将温度降至0~5℃后,将三氟化硼***(575.13mg,4.05mmol,500.11μL,1eq)加入其中,室温20℃继续反应1hr。反应液30℃进行减压旋蒸,得到化合物5-2直接用于下一步。
步骤3:化合物5-3的合成
将四氢呋喃(58mL),化合物5-2(3.9g,8.40mmol,87.233%质量含量,1eq)加入预先准备好的干净反应瓶中,开始搅拌;将温度降至-70~-65℃后,将三仲丁基硼氢化锂(1M,9.24mL,1.1eq)滴加到其中,反应0.5hr。将反应液倒入50mL饱和氯化铵溶液中后,有机相加入2.00g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(石油醚/乙酸乙酯=100/0~70/30,TLC:石油醚/乙酸乙酯=5/1),得到化合物5-3。LCMS:MS m/z=407.0[M+H] +
步骤4:化合物5-4的合成
将甲醇(4mL),化合物5-3(0.65g,1.60mmol,1eq),甲基异硫脲硫酸盐(1.22g,6.39mmol,4eq,H 2SO 4)加入预先准备好的反应瓶中,开始搅拌。然后将甲醇钠(172.61mg,3.20mmol,2eq)加入其中,室温25℃反应1hr,补加甲醇钠(172.62mg,3.20mmol,2eq)后,继续反应15hr。反应液在45℃下进行减压旋蒸,得到的白色固体加入10mL水以及10mL乙酸乙酯萃取分液,有机相用10mL饱和食盐水洗涤一次后,加入0.50g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(石油醚/乙酸乙酯=100/0~40/60,TLC:石油醚/乙酸乙酯=1/1),得到化合物5-4。LCMS:MS m/z=447.0[M+H] +
步骤5:化合物5-5的合成
将二氯甲烷(20mL),化合物5-4(610mg,1.36mmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌。将温度降至0~5℃后,依次将N,N-二异丙基乙胺(617.36mg,4.78mmol,832.02μL,3.5eq),三氟甲磺酸酐(770.13mg,2.73mmol,450.37μL,2eq)加入其中,反应0.5hr。将反应液倒入20 mL饱和氯化铵溶液中后,分液,有机相加入10mL饱和食盐水洗涤一次后,加入无水硫酸钠干燥,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(石油醚/乙酸乙酯=100/0~70/30,TLC:石油醚/乙酸乙酯=5/1),得到化合物5-5。1H NMR(400MHz,CDCl 3)δ=8.26(d,J=5.2Hz,1H),7.48(d,J=14.4Hz,1H),5.73-5.67(m,1H),5.53-5.49(m,1H),5.15(dd,J=3.2,15.6Hz,1H),4.88(d,J=15.6Hz,1H),4.06-3.99(m,1H),3.80-3.72(m,1H),3.30-3.25(m,1H),3.12-3.04(m,1H),2.61-2.49(m,7H),2.19-2.07(m,2H),1.83-1.68(m,3H).
步骤6:化合物5-6的合成
将N,N-二甲基甲酰胺(5mL),化合物5-5(0.33g,569.94μmol,1eq)加入预先准备好的干净反应瓶中,开始搅拌,然后依次将N,N-二异丙基乙胺(368.29mg,2.85mmol,496.35μL,5eq),化合物5-5a(143mg,1.14mmol,2.00eq,2HCl)加入其中,将温度升至100℃,反应1hr。将反应液倒入20mL饱和氯化胺溶液中后,加入10mL乙酸乙酯溶液中,分液,有机相加入无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(二氯甲烷/甲醇=100/0~85/15,TLC:二氯甲烷/甲醇=15/1),得到化合物5-6。 1H NMR(400MHz,CDCl 3)δ=8.22(d,J=4.4Hz,1H),7.45(d,J=8.8Hz,1H),5.71-5.66(m,1H),5.57-5.53(m,1H),4.89-4.80(m,2H),4.05-3.86(m,2H),3.77-3.32(m,1H),3.60-3.57(m,1H),3.39-3.38(m,1H),3.31-3.26(m,1H),3.23-3.17(m,1H),3.12-3.09(m,1H),3.02-2.96(m,3H),2.93-2.83(m,2H),2.57-2.56(m,1H),2.54-2.52(m,7H),2.16-2.04(m,2H),1.79-1.71(m,3H)。LCMS:MS m/z=554.0[M+H] +
步骤7:化合物5-7的合成
将化合物5-6(190mg,342.90μmol,1eq)溶于四氢呋喃(2mL)后,开始搅拌。然后将温度降至0~5℃后,将三氟乙酸酐(108.03mg,514.34μmol,71.54μL,1.5eq),三乙胺(121.44mg,1.20mmol,167.04μL,3.5eq)加入其中,反应0.5hr。将反应液倒入10mL饱和氯化铵溶液中后,加入10mL二氯甲烷萃取,有机相用饱和食盐水洗涤一次后,加入无水硫酸钠干燥,过滤,滤液在45℃下进行减压旋蒸,得到化合物5-7。LCMS:MS m/z=650.2[M+H] +
步骤8:化合物5-8的合成
将二氯甲烷(5mL),化合物5-7(0.2g,290.04μmol,94.281%质量含量,1eq)加入预先准备好的干净反应瓶中,开始搅拌。然后将间氯过氧苯甲酸(143.96mg,667.37μmol,80%质量含量,2.30eq)加入其中,室温25℃反应0.5hr。将反应液倒入20mL的硫代硫酸钠溶液(10%)中后,加入15mL二氯甲烷萃取,有机相加入无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(二氯甲烷/甲醇=100/0~85/15,TLC:二氯甲烷/甲醇=15/1),得到化合物5-8。LCMS:MS m/z=682.0[M+H] +
步骤9:化合物5-9的合成
将甲苯(5mL),化合物1-11A(148.59mg,1.29mmol,153.18μL,4eq)加入预先准备好的干净反应瓶中,开始搅拌。然后将温度降至0~5℃后,将叔丁醇钠(123.98mg,1.29mmol,4eq)加入其中,反应15min,然后将化合物5-8(0.22g,322.53μmol,1eq)溶于0.2mL甲苯后,快速加入其中,反 应0.5hr。将反应液倒入10mL饱和氯化铵溶液中后,加入10mL二氯甲烷萃取,有机相用10mL饱和食盐水洗涤一次后,加入0.50g无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸,得到化合物5-9。LCMS:MS m/z=621.4[M+H] +
步骤10:化合物5-10的合成
将二氯甲烷(5mL),化合物5-9(98.26mg,125.80μmol,79.529%质量含量,1eq)加入预先准备好的反应瓶中,开始搅拌。然后将温度降至-60℃,然后将N,N-二异丙基乙胺(162.59mg,1.26mmol,219.12μL,10eq)加入其中,将丙烯酰氯(17.08mg,188.70μmol,15.39μL,1.5eq)溶于0.3mL二氯甲烷后,滴加到其中,反应10min。将反应液倒入5mL饱和氯化铵溶液中后,分液,有机相加入5mL饱和食盐水洗涤一次后,加入无水硫酸钠干燥后,过滤,滤液在35℃下进行减压旋蒸。得到化合物5-10,直接用于下一步。LCMS:MS m/z=675.1[M+H] +
步骤11:化合物5A和5B的合成
将二氯甲烷/三氟乙酸(4mL,5/3),化合物5-10(0.1g,148.10μmol,1eq)加入反应瓶中,室温25℃反应0.5hr。将反应液缓慢滴加到15mL饱和碳酸氢钠溶液中后,然后加入10mL二氯甲烷萃取,有机相用10mL饱和食盐水洗涤一次后,加入无水硫酸钠干燥后,过滤,滤液在30℃下进行减压旋蒸,粗品使用高效液相色谱柱分离纯化,方法色谱柱:Phenomenex Gemini-NX 150*30mm*5μm;流动相:[H 2O(0.1%TFA)-乙腈];乙腈%:20%-50%,9min,得到化合物5-11。化合物5-11送SFC拆分,方法为色谱柱:DAICEL CHIRALPAK AS(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];乙醇:50%-50%,15min。
得到5A(手性柱出峰时间:1.516)。SFC分析方法(柱子:Chiralpak AD-3,50×4.6mm,I.D.,3μm;流动相:A(CO2)和B(异丙醇,含0.05%二乙醇胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:91.04%。 1H NMR(400MHz,CDCl 3)δ=8.26(s,1H),7.37(s,1H),6.62-6.56(m,1H),6.42-6.38(m,1H),5.84(d,J=11.6Hz,1H),5.58(dd,J=4.0,11.2Hz,1H),4.94(s,2H),4.55-4.43(m,1H),4.27-4.18(m,1H),4.02-3.87(m,1H),3.76-3.73(m,1H),3.23-3.18(m,4H),3.07–2.98(m,2H),2.87-2.74(m,3H),2.56-2.53(m,6H),2.13-2.07(m,1H),1.82-1.76(m,3H),1.37-1.29(m,3H)。LCMS:MS m/z=591.2[M+H] +
得到5B(手性柱出峰时间:1.800)。SFC分析方法(柱子:Chiralpak AD-3,50×4.6mm,I.D.,3μm;流动相:A(CO2)和B(异丙醇,含0.05%二乙醇胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:99.74%。 1H NMR(400MHz,CDCl 3)δ=8.31(s,1H),7.36(s,1H),6.63-6.53(m,1H),6.42-6.37(m,1H),5.83(d,J=11.6Hz,1H),5.59(dd,J=4.0,11.2Hz,1H),4.98-4.88(m,2H),4.55-4.80(m,1H),4.24-4.19(m,1H),4.01-3.97(m,1H),3.93-3.85(m,1H),3.74-3.69(m,1H),3.56-3.52(m,1H),3.28-3.05(m,3H),3.03-2.95(m,1H),2.83-2.69(m,3H),2.58-2.53(m,6H),2.43-2.33(m,1H),2.12-2.06(m,1H),1.91-1.86(m,1H),1.81-1.79(m,2H),1.45-1.30(m,2H)。LCMS:MS m/z=591.2[M+H] +
实施例6
Figure PCTCN2021080278-appb-000075
步骤1:化合物6-1的合成
将化合物4-17(190mg,298.65μmol,1eq),N,N-二异丙基乙胺(192.99mg,1.49mmol,260.10μL,5eq)溶于二氯甲烷(5mL)中,0℃加入三氟乙酸酐(94.09mg,447.98μmol,62.31μL,1.5eq),0℃反应0.5hr。饱和氯化铵水溶液(5mL)淬灭,二氯甲烷(5mL*2)萃取,合并有机相,无水硫酸钠干燥,过滤,浓缩,得到化合物6-1。LCMS:MS m/z=732.3[M+H] +
步骤2:化合物6-2的合成
将化合物6-1(200mg,273.15μmol,1eq)溶于二氯甲烷(4mL)中,0℃加入三氟乙酸(3.08g,27.01mmol,2mL,98.89eq),18℃反应0.5hr。直接旋干,得到粗品,使用高效液相色谱柱分离纯化色谱柱:Phenomenex Gemini-NX 150*30mm*5μm;流动相:[H 2O(0.1%TFA)-乙腈];乙腈%:30%-60%,9min,得到化合物6-2。LCMS:MS m/z=632.3[M+H] +
步骤3:化合物6-3的合成
将化合物6-2(110mg,174.03μmol,1eq),多聚甲醛(88.91mg,1.74mmol,10eq)溶于1,2-二氯乙烷(1mL),甲醇(1mL)中,加入冰乙酸(1.05mg,17.40μmol,9.95e-1μL,0.1eq),搅拌30min, 在加入氰基硼氢化钠(21.87mg,348.06μmol,2eq),25℃搅拌10hr。倒入饱和氯化铵水溶液(10mL),加入二氯甲烷(5mL x 3),无水硫酸钠干燥,过滤,浓缩得到6-3。LCMS:MS m/z=646.1[M+H] +,647.7[M+2H] +
步骤4:化合物6-4的合成
将化合物6-3(90mg,139.30μmol,1eq)溶于甲醇(3mL)中,加入碳酸钾(1.7M,2.70mL,32.95eq),18 反应1hr。饱和氯化铵水溶液(5mL)淬灭,乙酸乙酯(5mL x 2)萃取,合并有机相,饱和食盐水洗涤,无水硫酸钠干燥,过滤,浓缩得到化合物6-4。LCMS:MS m/z=550.2[M+H] +,551.8[M+2H] +
步骤5:化合物6A和6B的合成
将化合物6-4(76mg,138.16μmol,1eq)溶于二氯甲烷(20mL)中,加入N,N-二异丙基乙胺(267.83mg,2.07mmol,360.96μL,15eq),-60℃加入丙烯酰氯(12.50mg,138.16μmol,11.27μL,1eq),-60℃反应0.5hr。饱和氯化铵水溶液(5mL)淬灭,乙酸乙酯(5mL x 2)萃取,合并有机相,浓缩得到化合物6-5,使用高效液相色谱柱分离纯化:色谱柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[H 2O(0.04%NH 3H 2O+10mM NH 4HCO 3)-ACN];乙腈%:25%-55%,6min,得到化合物6-5,进行SFC:色谱柱:Phenomenex Gemini-NX C18 75*30mm*3μm;流动相:[H 2O(0.04%NH 3H 2O+10mM NH 4HCO 3)-ACN];乙腈%:25%-55%,6min,得到化合物6A(手性柱出峰时间=1.435min),SFC分析方法(柱子:Chiralpak AD-3,50×4.6mm,I.D.,3μm;流动相:A(CO2)和B(异丙醇,含0.05%二乙醇胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:87.38%。LCMS:MS m/z=604.1[M+H]+,和化合物6B(手性柱出峰时间=1.643),SFC分析方法(柱子:Chiralpak AD-3,50×4.6mm,I.D.,3μm;流动相:A(CO2)和B(异丙醇,含0.05%二乙醇胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:100%。LCMS:MS m/z=604.1[M+H]+。
实施例7
Figure PCTCN2021080278-appb-000076
步骤1:化合物7-1的合成
将N,N-二甲基甲酰胺(6mL),化合物5-9(150mg,193.18μmol,80%质量含量,1eq)加入预先准备好的反应瓶中,开始搅拌,然后将温度降至0~5℃,然后依次将2-氟丙烯酸(26.10mg,289.78μmol,3.08μL,1.5eq),2-(7-偶氮苯并三氮唑)-N,N,N,N-四甲基脲六氟磷酸酯(110.18mg,289.78μmol,1.5eq),N,N-二异丙基乙胺(74.90mg,579.55μmol,100.94μL,3eq)加入其中,反应0.5hr。将反应液倒入15mL饱和氯化铵溶液中后,加入20mL乙酸乙酯萃取,水相用15mL乙酸乙酯洗涤一次,合并有机相,用15mL饱和食盐水洗涤一次后,加入无水硫酸钠干燥,过滤,滤液在45℃下进行减压旋蒸。粗品经柱层析纯化(二氯甲烷/甲醇=50/1,30/1,20/1,15/1,10/1,TLC:二氯甲烷/甲醇=10/1),得到化合物7-1。 1H NMR(400MHz,CDCl3)δ=8.24-8.21(m,1H),7.48-7.43(m,1H),5.71-5.65(m,1H),5.61-5.55(m,1H),5.27-5.23(m,1H),4.97-4.84(m,2H),4.60-4.56(m,2H),4.06-4.00(m,2H),3.76-3.67(m,5H),3.57-3.37(m,2H),3.21-3.15(m,4H),3.04-2.97(m,4H),2.93-2.81(m,3H),2.54(s,3H),2.38-2.33(m,1H),2.19-2.05(m,6H),1.79-1.66(m,3H)。LCMS:MS m/z=693.2[M+H] +
步骤2:化合物7A和7B的合成
将二氯甲烷/三氟乙酸(7mL,5/3),化合物7-1(70mg,100.98μmol,1eq)加入反应瓶中,室温25℃反应3hr。将反应液缓慢滴加到15mL饱和碳酸氢钠溶液中后,与小试反应液混合,然后加入10mL二氯甲烷萃取,有机相用10mL饱和食盐水洗涤一次后,加入无水硫酸钠干燥后,过滤,滤液在30℃下进行减压旋蒸得到粗品,使用高效液相色谱柱分离纯化,方法为色谱柱:Phenomenex lμna C18 100*40mm*5μm;流动相:[H 2O(0.1%TFA)-乙腈];乙腈%:10%-35%,8min.得到化合物7-2,进行SFC拆分纯化,方法为色谱柱:DAICEL CHIRALCEL OJ(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O EtOH];EtOH%:40%-40%,15min。
得到化合物7A(手性柱出峰时间:1.263min)。SFC分析方法(柱子:Chiralcel OJ-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(乙醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:91.94%。 1HNMR(400MHz,CDCl 3)δ=8.29(s,1H),7.35(s,1H),5.61-5.57(m,1H),5.48-5.32(m,1H),5.28-5.24(m,1H),4.95-4.86(m,3H),4.44-4.43(m,1H),4.20-4.16(m,2H),3.97-3.93(m,1H),3.80-3.78(m,1H),3.50-3.48(m,1H),3.27-3.22(m,1H),3.14-2.95(m,4H),2.81-2.71(m,3H),2.52-2.50(m,7H),2.34-2.28(m,1H),2.08-2.02(m,1H),1.91-1.84(m,2H)。LCMS:MS m/z=609.2[M+H] +
得到化合物7B(手性柱出峰时间:1.393min)。SFC分析方法(柱子:Chiralcel OJ-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(乙醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:82.48%。 1HNMR(400MHz,CDCl3)δ=8.26(s,1H),7.35(s,1H),5.59-5.55(m,1H),5.48-5.36(m,1H),5.29-5.24(m,1H),4.93(s,2H),4.42-4.40(m,1H),4.24-4.20(m,2H),3.73-3.70(m,1H),3.24-2.98(m,8H),2.90-2.71(m,3H),2.53-2.48(m,7H),2.33-2.31(m,1H),2.09-2.04(m,1H),1.89-1.85(m,2H)。LCMS:MS m/z=609.1[M+H] +
实施例8
Figure PCTCN2021080278-appb-000077
Figure PCTCN2021080278-appb-000078
步骤1:化合物8-2的合成
在干燥的2L三口瓶中(无水无氧环境),将氢化钠(39.12g,978.08mmol,60%质量含量,2.4eq)加入到N,N-二甲基甲酰胺(510mL)中,反应体系成非均相灰色,降温至0℃,氮气保护下滴加化合物8-1(51g,407.53mmol,1eq)的N,N-二甲基甲酰胺(200mL)溶液,0℃反应0.5hr,加入对甲氧基氯苄(140.41g,896.57mmol,122.10mL,2.2eq),缓慢升温至20℃,反应体系成土红色,氮气保护下反应7.5hr。将反应液缓慢加入到200mL饱和氯化铵中,利用(200mL x 2)的甲基叔丁基醚萃取,合并有机相,200mL饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩得到粗品。粗品通过自动过柱机COMBI-FLASH分离(梯度淋洗:石油醚:乙酸乙酯=10:0-10:1,石油醚:乙酸乙酯=10:1),纯化得到化合物8-2。 1H NMR(400MHz,CDCl3)δ=7.23-7.18(m,4H),6.91-6.87(m,1H),6.82-6.76(m,4H),6.65-6.59(m,2H),4.20(s,4H),3.79(s,6H),2.19(s,3H)。LCMS:MS m/z=366.1[M+H] +
步骤2:化合物8-3的合成
将2,2,6,6-四甲基哌啶(31.31g,221.65mmol,37.63mL,3eq)加入到无水四氢呋喃(300mL)中,降温至-5℃,滴加正丁基锂(2.5M,94.57mL,3.2eq),-5~0℃反应15min,降温至-60℃,加入化合物8-2(27g,73.88mmol,1eq)的四氢呋喃(60mL)溶液,-60℃反应0.5hr,快速加入N,N-二甲基甲酰胺(108.00g,1.48mol,113.69mL,20eq),-60℃反应10min。向反应液中加入400mL饱和氯化铵,利用200mLx 2的甲基叔丁基醚萃取,合并有机相,200mL饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩得到产物粗品,粗品经石油醚:甲基叔丁基醚=5:1的混合溶剂70mL打浆0.5hr,过滤,滤饼旋干,滤液拌样后经过柱纯化(石油醚:乙酸乙酯=100:0-10:1),得到的化合物8-3。 1H NMR(400MHz,CDCl 3)δ=10.43-10.35(m,1H),7.21-7.18(m,5H),6.92-6.81(m,5H),4.25(s,4H),3.80(s,6H),2.23(s,3H)。LCMS:MS m/z=394.2[M+H] +
步骤3:化合物8-4的合成
将化合物8-3(17.8g,45.24mmol,1eq)加入到N,N-二甲基甲酰胺(170mL)中,加入溴代丁二酰亚胺(8.05g,45.24mmol,1eq),20℃反应20min,将反应液加入到300mL的水中,利用150mL x 2的甲基叔丁基醚萃取,合并有机相,100mL x 2的饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩,粗品利用乙酸乙酯:甲基叔丁基醚=1:1的混合溶剂打浆0.5hr,过滤,将滤饼旋干,得到化合物8-4。 1H NMR(400MHz,CDCl 3)δ=10.39(s,1H),7.17(d,J=8.8Hz,4H),6.89(d,J=8.8Hz,1H),6.85-6.82(m,4H),4.22(s,4H),3.79(s,6H),2.28(s,3H)。LCMS:MS m/z=472.1[M+H] +,474.1[M+3H] +
步骤4:化合物8-5的合成
将化合物8-4(19.3g,40.86mmol,1eq)加入到N,N-二甲基甲酰胺(190mL)中,氮气下加入碘化亚铜(15.56g,81.72mmol,2eq)和氟磺酰基二氟乙酸甲酯(39.25g,204.30mmol,25.99mL,5eq),100℃氮气下反应1hr,将反应液垫硅藻土过滤,滤液加入到300mL的水中,利用150mL x 2的甲基叔丁基醚萃取,合并有机相,饱和食盐水洗涤(200mL x 2),无水硫酸钠干燥过滤后浓缩,粗品利用过柱纯化(石油醚:乙酸乙酯=100:0-10:1,石油醚:乙酸乙酯=5:1),得到化合物8-5。 1H NMR(400MHz,CDCl 3)δ=10.37(q,J=4.0Hz,1H),7.18-7.11(m,4H),6.89-6.82(m,4H),6.73(d,J=8.8Hz,1H),4.36(s,4H),3.81(s,6H),2.37-2.29(m,3H)。LCMS:MS m/z=484.0[M+Na] +
步骤5:化合物8-6的合成
将无水四氢呋喃(50mL)和钠氢(1.17g,29.26mmol,60%质量含量,3eq)加入到干燥的三口烧瓶中,降温至0℃,氮气保护下滴加乙酰乙酸甲酯(3.40g,29.26mmol,3.15mL,3eq),0℃氮气下反应0.5hr,滴加正丁基锂(2.5M,11.70mL,3eq),0℃反应0.5hr,降温至-60℃,滴加化合物8-5(4.5g,9.75mmol,1eq)的四氢呋喃(20mL)溶液,-60℃反应0.5hr,向反应液中加入100mL饱和氯化铵溶液,利用30mL的乙酸乙酯萃取,80mL饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩得到产物粗品,合并纯化,粗品利用过柱纯化(石油醚:乙酸乙酯=100:0-3:1,石油醚:乙酸乙酯=3:1),得到黄色油状的化合物8-6。 1H NMR(400MHz,CDCl3)δ=7.18-7.15(m,4H),6.90-6.78(m,4H),6.61(d,J=8.8Hz,1H),5.72-5.57(m,1H),4.31(m,4H),3.81(s,6H),3.76(s,3H),3.56(s,2H),3.50-3.38(m,1H),2.98-2.93(m,1H),2.38-2.26(m,3H)。LCMS:MS m/z=578.1[M+H] +
步骤6:化合物8-7的合成
将化合物8-6(3g,5.19mmol,1eq)加入到无水二氯甲烷(30mL)中,加入N,N-二甲基甲酰胺二甲基缩醛(742.74mg,6.23mmol,828.02μL,1.2eq),20℃反应16hr,加入三氟化硼***(884.66mg,6.23mmol,769.27μL,1.2eq),20℃反应1hr。将反应液加入到20mL饱和碳酸氢钠溶液中,分液,水相继续利用20mL的二氯甲烷萃取,合并有机相,无水硫酸钠干燥过滤后浓缩,粗品利用过柱纯化(石油醚:乙酸乙酯=100:0-3:1,石油醚:乙酸乙酯=3:1),得到化合物8-7。 1H NMR(400MHz,CDCl 3)δ=8.43(d,J=0.8Hz,1H),7.21-7.10(m,4H),6.91-6.81(m,4H),6.70(d,J=8.8Hz,1H),5.93(dd,J=3.2,14.8Hz,1H),4.35(s,4H),3.8(s,3H),3.81(s,6H),3.38-3.29(m,1H),2.68(dd,J=3.6,16.8Hz,1H),2.39-2.24(m,3H)。LCMS:MS m/z=588.2[M+H] +
步骤7:化合物8-8的合成
将化合物8-7(2.1g,3.57mmol,1eq)加入到无水四氢呋喃(21mL)中,降温至-60℃,氮气保护下加入三仲丁基硼氢化锂(1M,4.29mL,1.2eq),-60℃反应0.5hr。将反应液加入到30mL的饱和氯化铵中,分液萃取,有机相利用20mL饱和食盐水洗涤无水硫酸钠干燥过滤后浓缩得到产物粗品,粗品利用过柱纯化(石油醚:乙酸乙酯=100:0=3:1,石油醚:乙酸乙酯=3:1),得到化合物8-8。 1H NMR(400MHz,CDCl3)δ=7.167-7.14(m,4H),6.87-6.83(m,4H),6.63(d,J=8.8Hz,1H),5.05-5.00(m,1H),4.61-4.58(m,1H),4.42-4.24(m,5H),3.85-3.73(m,10H),3.13-3.05(m,1H),2.47-2.38(m,1H),2.35-2.31(m,3H)。LCMS:MS m/z=600.1[M+H] +
步骤8:化合物8-9的合成
将化合物8-8(1.27g,2.15mmol,1eq)加入到乙醇(15mL)和水(3mL)中,加入碳酸氢钠(3.62g,43.08mmol,1.68mL,20eq)和甲基异硫脲硫酸盐(4.05g,21.54mmol,10eq),50℃反应4hr。将反应液加入到40mL水中,利用20mL x 2的乙酸乙酯萃取,合并有机相,利用20mL x 2的饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩,粗品利用过柱纯化(石油醚:乙酸乙酯=100:0-1:1,石油醚:乙酸乙酯=1:1),得到化合物8-9。 1H NMR(400MHz,CDCl3)δ=7.22-7.14(m,4H),6.91-6.82(m,4H),6.65(dd,J=8.4Hz 1H),5.12-5.08(m,1H),4.97-4.91(m,1H),4.67-4.57(m,1H),4.45-4.22(m,4H),3.88-3.74(m,6H),3.43-3.35(m,1H),2.77-2.72(m,1H),2.59(m,3H),2.40-2.31(m,3H)。LCMS:MS m/z=630.2[M+H] +
步骤9:化合物8-10的合成
将化合物8-9(0.57g,905.25μmol,1eq)加入到无水二氯甲烷(6mL)中,0℃加入N,N-二异丙基乙胺(409.48mg,3.17mmol,551.86μL,3.5eq)和三氟甲磺酸酐(510.81mg,1.81mmol,298.72μL,2eq),0~5℃反应0.5hr。将反应液加入到20mL饱和氯化铵中,利用10mL的二氯甲烷萃取,无水硫酸钠干燥过滤后浓缩,粗品利用过柱纯化(石油醚:乙酸乙酯=100:0-5:1,石油醚:乙酸乙酯=3:1)得到化合物8-10。 1H NMR(400MHz,CDCl3)δ=7.21-7.11(m,4H),6.90-6.80(m,4H),6.66(d,J=8.4Hz,1H),5.19-5.15(m,1H),5.04-4.93(m,1H),4.77-4.72(m,1H),4.41-4.19(m,4H),3.80(s,6H),3.62-3.54(m,1H),3.11-2.97(m,1H),2.56(s,3H),2.42-2.31(m,3H)。LCMS:MS m/z=762.2[M+H] +
步骤10:化合物8-11的合成
将化合物8-10(0.45g,590.76μmol,1eq)加入到N,N-二甲基甲酰胺(5mL)中,依次加入N,N-二异丙基乙胺(229.05mg,1.77mmol,308.69μL,3eq)和化合物1-10A(306.37mg,1.18mmol,2eq,HCl),50℃反应2hr。将反应液倒入到20mL水中,过滤,将滤饼溶于20mL甲基叔丁基醚中,利用20mL饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩得到化合物8-11。 1H NMR(400MHz,CDCl3)δ=7.44-7.32(m,5H),7.16-7.13(m,4H),6.85-6.82(m,4H),6.63(d,J=7.6Hz,1H),5.21-5.15(m,2H),4.80-4.66(m,3H),4.39-4.22(m,4H),3.93-3.88(m,1H),3.80(s,6H),3.71-3.55(m,1H),3.52-3.29(m,2H),3.25-3.08(m,3H),3.06-2.96(m,2H),2.91-2.77(m,1H),2.71-2.68(m,1H),2.52(s,3H),2.35-2.30(m,3H)。LCMS:MS m/z=871.4[M+H] +
步骤11:化合物8-12的合成
将化合物8-11(580.00mg,665.94μmol,1eq)加入到无水二氯甲烷(6mL)中,加入间氯过氧苯甲酸(359.13mg,1.66mmol,80%质量含量,2.5eq),25℃反应0.5hr,将反应液倒入20mL的硫代硫酸钠溶液(10%)中后,加入10mL二氯甲烷萃取,有机相加入无水硫酸钠干燥后,过滤,滤液在45℃下进行减压旋蒸,粗品利用过柱纯化(石油醚:乙酸乙酯=100:0-1:1,石油醚:乙酸乙酯=1:1),得到化合物8-12。 1H NMR(400MHz,CDCl3)δ=7.40-7.37(m,5H),7.17-7.12(m,4H),6.86-6.82(m,4H),6.67-6.64(d,J=8.4Hz,1H),5.19(s,2H),4.86-4.79(m,2H),4.71-4.63(m,1H),4.35-4.24(m,4H),3.82-3.81(m,1H),3.80(s,6H),3.64-3.50(m,2H),3.46-3.33(m,2H),3.30-3.27(m,4H),3.25-3.11(m,3H),2.71-2.65(m,1H),2.52-2.45(m,1H),2.38-2.30(m,3H)。LCMS:MS m/z=903.3[M+H] +
步骤12:化合物8-13的合成
将1-11A(117.35mg,1.02mmol,120.98μL,4eq)加入到二氧六环(5mL)中,降温至0-5℃,加入叔丁醇钠(97.91mg,1.02mmol,4eq),反应10min,加入化合物8-12(230.00mg,254.72μmol,1eq)的甲苯(1mL)溶液,反应0.5hr,将反应液加入到20mL饱和氯化铵中,利用10mL x 2的乙酸乙酯萃取,合并有机相,20mL饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩,粗品利用过柱纯化(石油醚:乙酸乙酯=1:1-0:1,二氯甲烷:甲醇=100:0-10:1,二氯甲烷:甲醇=10:1),得到化合物8-13。LCMS:MS m/z=938.2[M+H] +
步骤13:化合物8-14的合成
将化合物8-13(0.15g,159.91μmol,1eq)加入到无水二氯甲烷(5mL)中,加入三氟乙酸(0.5mL),25℃反应2.5hr,将反应液加入到10mL饱和碳酸氢钠溶液中,利用5mL x 2的二氯甲烷萃取,合并有机相,无水硫酸钠干燥过滤后浓缩,得到化合物8-14。LCMS:MS m/z=698.2[M+H] +
步骤14:化合物8-15的合成
将化合物8-14(0.17g,243.65μmol,1eq)加入到无水甲醇(2mL)和无水四氢呋喃(2mL)中,加入钯碳(0.15g,10%质量含量),在氢气(15psi)25℃反应0.5hr。反应液直接过滤,回收催化剂,滤液浓缩得到黄色固体状的化合物8-15。LCMS:MS m/z=564.2[M+H] +
步骤15:化合物8A和8B的合成
将化合物8-15(60mg,106.46μmol,1eq)和2-氟丙烯酸(11.50mg,127.75μmol,1.2eq)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(60.72mg,159.69μmol,1.5eq)加入到N,N二甲基甲酰胺(1mL)中,加入N,N-二异丙基乙胺(41.28mg,319.38μmol,55.63μL,3eq),25℃反应0.5hr,将反应液加入到10mL饱和氯化铵中,利用5mL x 2的乙酸乙酯萃取,合并有机相,利用5mL x 2的饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩得到化合物8-16,使用高效液相色谱柱分离纯化(色谱柱:Phenomenex Gemini-NX 150*30mm*5μm;流动相:[H 2O(0.1%TFA)-ACN];乙腈%:20%-50%,9min),真空下浓缩后,加入5mL去离子水和0.5mL乙腈,加入2滴1M的盐酸溶液,真空下浓缩得到化合物8A的盐酸盐(出峰时间:1.379min)。SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波 长:220nm;压力:1800psi。光学纯度:80.82%。LCMS:MS m/z=636.4[M+H] +;得到化合物8B的盐酸盐(出峰时间:1.789min)。SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:75.56%。 1H NMR(400MHz,CDCl 3)δ=6.59(d,J=8.4Hz,1H),5.50-5.33(m,1H),5.29-5.16(m,2H),4.82-4.69(m,2H),4.39(dd,J=5.2,10.8Hz,1H),4.16(dd,J=6.8,10.4Hz,1H),4.04(s,2H),3.94(d,J=14.0Hz,1H),3.68(d,J=11.6Hz,1H),3.50-3.32(m,2H),3.10(br t,J=7.2Hz,1H),3.05-2.94(m,2H),2.79(br d,J=7.2Hz,2H),2.71-2.62(m,1H),2.48(s,3H),2.39(q,J=4.0Hz,3H),2.32-2.22(m,1H),2.11-1.99(m,1H),1.93-1.66(m,6H)。LCMS:MS m/z=636.4[M+H] +
实施例9
Figure PCTCN2021080278-appb-000079
步骤1:化合物9-3A的合成
将无水四氢呋喃(30mL)加入到干燥的反应瓶中,再加入化合物9-6(1.5g,6.07mmol,1eq),反应体系降温至10℃,分批次加入氢化锂铝(690.66mg,18.20mmol,3eq),反应体系在15℃的条件下反应16小时。向反应液中加入十水硫酸钠(4g),搅拌1小时,过滤,滤饼加入到四氢呋喃(20mL x2)中,搅拌0.5小时后,分别过滤,合并滤液进行减压浓缩,未纯化直接用于下一步。得到化合物9-3A。 1H NMR(400MHz,CDCl 3)δppm 5.25-4.98(m,1H)3.75-3.65(m,1H)3.61-3.43(m,2H)2.83-2.74(m,1H)2.71-2.56(m,1H)2.39(s,3H)2.14-2.03(m,2H)。LCMS m/z=134.2[M+H] +
步骤2:化合物9-2的合成
将N,N-二甲基甲酰胺(6mL)加入到干燥的反应瓶中,再加入化合物8-10(0.55g,722.04μmol,1eq),N,N-二异丙基乙胺(279.95mg,2.17mmol,377.29μL,3eq)和化合物9-1A(289.22mg,1.44mmol,2eq),反应体系在50℃和氮气保护的条件下反应50分钟,补加化合物9-1A(50mg)继续反应0.5小时,TLC(石油醚:乙酸乙酯=3:1)表明原料消失,出现新点。反应体系降温至室温后(15℃),将反应液加入到饱和氯化铵溶液(30mL)中,用甲基叔丁基醚(10mL x 2)萃取,合并有机相,用饱和食盐水(20mL x 2)洗涤,无水硫酸钠干燥过滤后减压浓缩,未纯化,直接用于下一步。得到化合物9-2。LCMS m/z=812.4[M+H] +
步骤3:化合物9-3的合成
将二氯甲烷(10mL)加入到干燥的反应瓶中,再加入化合物9-2(0.65g,800.57μmol,1eq)和间氯过氧苯甲酸(207.23mg,960.68μmol,80%纯度,1.2eq),反应体系在15℃的条件下反应0.5小时。将反应液倒入到水(20mL)中,加入硫代硫酸钠溶液(20mL,10%)后,用淀粉-KI试纸检测成阴性后,加入二氯甲烷(20mL)萃取,有机相加入无水硫酸钠干燥后过滤,滤液在40℃下进行减压浓缩得到粗品,粗品根据TLC(石油醚:乙酸乙酯=0:1,RF=0.53)过柱纯化(石油醚:乙酸乙酯=3:1到0:1),得到化合物9-3。 1H NMR(400MHz,CDCl 3)δppm 7.16(d,J=7.60Hz,4H)6.84(d,J=8.40Hz,4H)6.66(s,1H)5.26(d,J=10.42Hz,1H),4.85-4.68(m,2H)4.39-4.20(m,4H)4.09-3.90(m,2H)3.89-3.67(m,7H)3.66-3.42(m,2H)3.40-3.16(m,2H)3.14-2.75(m,4H)2.34(d,J=4.00Hz,3H)1.49(s,9H)1.43-1.37(m,2H)1.19(m,2H),LCMS m/z=828.2[M+H] +
步骤4:化合物9-4的合成
将甲苯(6mL)加入到干燥的反应瓶中,再加入化合物9-3A(289.51mg,2.17mmol,28.68μL,4eq),反应体系降温至0℃,加入叔丁醇钠(208.93mg,2.17mmol,4eq),反应体系在0-5℃的条件下反应10分钟,加入含有化合物9-3(0.45g,543.53μmol,1eq)的甲苯(2mL)溶液,反应体系在0-5℃的条件下反应0.5小时。反应液用的饱和氯化铵(20mL x 2)洗涤,再用饱和食盐水(20mL)洗涤,无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步,得到化合物9-4。 1H NMR(400MHz,CDCl 3)δppm 7.15(d,J=7.60Hz,4H)6.84(d,J=8.40Hz,4H)6.62(d,J=7.20Hz,1H)5.29-5.04(m,3H)4.29(d,J=14.80Hz,4H)3.80(s,6H)3.44-3.34(m,2H)3.30-3.21(m,1H)3.06-2.79(m,2H)2.68-2.52(m,5H)2.47(s,3H)2.42-2.27(m,5H)2.25-2.08(m,5H)1.49(s,9H)1.38(d,J=6.40Hz,2H)1.14 (d,J=6.80Hz,1H)。LCMS m/z=897.3[M+H] +
步骤5:化合物9-5的合成
将二氯甲烷(15mL)加入到干燥的反应瓶中,再加入化合物9-4(0.6g,668.91μmol,1eq)和三氟乙酸(3mL),反应体系在15℃的条件下反应2.5小时,补加三氟乙酸(0.5mL),继续反应1小时,继续补加三氟乙酸(0.5mL),反应1小时。将反应液缓慢加入到饱和碳酸氢钠溶液(80mL)中,用二氯甲烷(30mL x 2)萃取,合并有机相,无水硫酸钠干燥过滤后减压浓缩得到粗品,粗品根据TLC(二氯甲烷:甲醇=5:1)过柱纯化(二氯甲烷:甲醇=100:0-1:1),得到化合物9-5。 1H NMR(400MHz,CDCl 3)δppm6.59(d,J=8.40Hz,1H)5.29-5.07(m,2H)4.75-4.67(m,1H)4.52-4.38(m,1H)4.32-4.16(m,1H)4.08-3.87(m,3H)3.66-3.26(m,4H)3.25-2.8(m,6H)2.72-2.59(m,1H)2.54(d,J=2.00Hz,3H)2.44-2.26(m,3H)2.11-1.86(m,1H)1.52(d,J=6.80Hz,1H)1.26(d,J=6.80Hz,2H)。LCMS m/z=557.3[M+H] +
步骤6:化合物9A和9B的合成
将二氯甲烷(5mL)加入到干燥的反应瓶中,再加入丙烯酸(21.75mg,301.85μmol,20.72μL,1.2eq)和N,N-二异丙基乙胺(97.53mg,754.62μmol,131.44μL,3eq)。反应体系降温至-60℃,加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(114.77mg,301.85μmol,1.2eq),反应体系在-60℃的条件下反应10分钟,再加入化合物9-5(0.14g,251.54μmol,1eq),继续反应1小时。将反应液用二氯甲烷(10mL)稀释,用饱和氯化铵(10mL x 2)溶液洗涤,用无水硫酸钠干燥过滤后减压浓缩。使用高效液相色谱柱分离纯化方法为{(色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:[H 2O(0.04%HCl)-ACN];乙腈%:20%-32%,7min]},冻干后根据SFC进行手性分离方法为{(色谱柱:DAICEL CHIRALCEL OD(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O MEOH];MeOH%:60%-60%,9min)}。得到化合物9A(手性柱出峰时间:1.594min)SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:100%。 1H NMR(400MHz,CDCl 3)δppm6.71-6.49(m,2H)6.42-6.28(m,1H)5.77(d,J=10.80Hz,1H)5.50-5.04(m,3H)4.71(s,3H)4.49-4.22(m,2H)4.03(s,3H)3.78(d,J=9.20Hz,1H)3.64(s,1H)3.51-3.17(m,4H)3.14-3.00(m,4H)2.64-2.48(m,1H)2.40(d,J=4.00Hz,4H)1.16(d,J=10.40Hz,3H)。LCMS m/z=611.3[M+H] +
化合物9B(手性出峰时间:1.903min)SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:100%。 1H NMR(400MHz,CDCl 3)δppm 6.69-6.54(m,2H)6.42-6.30(m,1H)5.77(d,J=10.80Hz,1H)5.47-5.01(m,3H)4.71(s,3H)4.49-4.23(m,2H)4.03(s,3H)3.94-3.72(m,1H)3.64(s,1H)3.53-3.22(m,4H)3.14-3.01(m,4H)2.62-2.49(m,1H)2.40(d,J=4.00Hz,4H)1.16(d,J=10.40Hz,3H)。LCMS m/z=611.3[M+H] +
实施例10
Figure PCTCN2021080278-appb-000080
步骤1:化合物10-1A和10-1B的合成
将化合物8-9(9g,15.27mmol,1eq)溶于乙醇(100mL)水(20mL),然后加入2-甲基-2-硫代异尿素硫酸盐(42.49g,152.65mmol,10eq),碳酸氢钠(25.65g,305.31mmol,11.87mL,20eq),30℃搅拌4hr。向反应液中加入100mL饱和氯化铵溶液,利用乙酸乙酯(100mL x 2)萃取,80mL饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩得到产物粗品,根据TLC(石油醚:乙酸乙酯=0:1)过柱纯化石油醚:乙酸乙酯=10%-20%-30%。然后SFC拆分色谱柱:DAICEL CHIRALPAK AD(250mm*50mm,10μm);流动相:[0.1%NH 3。H 2O EtOH];EtOH%:45%-45%,6.3min。得化合物10-1A(出峰时间:1.665),化合物10-1B(出峰时间:2.446)。
步骤2:化合物10-2的合成
将化合物10-1A(2g,3.18mmol,1eq)溶于二氯甲烷(20mL)中,加入N,N-二异丙基乙胺(1.23g,9.53mmol,1.66mL,3eq),降温至0~10℃,将三氟甲磺酸酐(1.34g,4.76mmol,786.11μL,1.5eq)缓 慢加入到体系中,在此温度下反应15min。倒入饱和氯化铵水溶液(15mL),分液,水相用二氯甲烷(15mL x 2)萃取,合并有机相,无水硫酸钠干燥,过滤,浓缩得到粗品。粗品根据TLC(PE/EtOAc=10/1)柱层析(PE/ETOAC=100/1~0/1)得到化合物10-2。LCMS m/z=762.2[M+H] +
步骤3:化合物10-3的合成
将N,N-二甲基甲酰胺(2mL)加入到一个干燥的反应瓶中,再加入化合物10-2(0.16g,210.05μmol,1eq),N,N-二异丙基乙胺(81.44mg,630.15μmol,109.76μL,3eq)和化合物10-2A(50.48mg,252.06μmol,1.2eq),反应体系在50℃和氮气保护的条件下反应1小时。TLC(石油醚:乙酸乙酯=3:1)表明原料消失,出现新点。向反应液中加入甲基叔丁基醚(10mL),用饱和氯化铵溶液(20mL x 2)洗涤后,再用饱和食盐水(10mL)洗涤,用无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步,得到化合物10-3。 1H NMR(400MHz,CDCl 3)δppm 7.12(d,J=8.80Hz,4H)6.81(d,J=8.80Hz,4H)6.60(d,J=8.80Hz,1H)5.19(d,J=8.00Hz,1H)4.72(s,2H)4.37-4.22(m,4H)3.88(d,J=13.2Hz,1H)3.77(s,6H)3.71-3.56(dd,J=12.80,13.20Hz,2H)3.40(dd,J=12.40,12.40Hz,1H)3.31(m,2H)3.20(s,1H)3.03-2.91(m,2H)2.50(s,3H)2.35-2.25(m,3H)1.46(s,9H)1.13(d,J=6.80Hz,3H)。
步骤4:化合物10-4的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物10-3(0.21g,258.64μmol,1eq)和间氯过氧苯甲酸(66.95mg,310.37μmol,80%纯度,1.2eq),反应体系在15℃的条件下反应0.5小时。向反应液中加入硫代硫酸钠(15mL,10%)溶液,淀粉-KI试纸检测为阴性后,用二氯甲烷(15mL)萃取,无水硫酸钠干燥过滤后减压浓缩得到粗品,粗品根据TLC(石油醚:乙酸乙酯=0:1)过柱纯化(石油醚:乙酸乙酯=10:1到0:1)得到化合物10-4和10-4A。 1H NMR(400MHz,CDCl 3)δppm 7.20(s,4H),6.84(d,J=8.80Hz,4H),6.79~6.62(s,1H),5.24(d,J=10.80Hz,1H),4.87-4.74(m,2H),4.36(s,4H),3.99-3.83(m,3H),3.83-3.71(m,7H),3.62-3.43(m,2H),3.40-3.27(m,3H),3.22-3.06(m,2H),2.92(d,J=5.20Hz,1H),2.34(s,3H),1.49(s,9H),1.16(d,J=6.80Hz,3H)。LCMS m/z=828.2M+H] +
步骤3:化合物10-5的合成
将甲苯(1mL)加入到一个干燥的反应瓶中,再加入化合物1-11A(38.95mg,338.19μmol,4eq),反应体系降温至0℃加入叔丁醇钠(32.50mg,338.19μmol,4eq),反应10分钟后,加入含有化合物10-4(0.07g,84.55μmol,1eq)和10-4A(71.35mg,84.55μmol,1eq)混合物的甲苯混合溶液(1mL),反应0.5小时。向反应液中加入10mL乙酸乙酯,然后分别用10mL的饱和氯化铵溶液和饱和食盐水洗涤,有机相用无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步。得到化合物10-5。LCMS m/z=879.3[M+H] +
步骤4:化合物10-6的合成
将二氯甲烷(5mL)加入到干燥的反应瓶中,再加入化合物10-5(0.16g,182.03μmol,1eq)和三氟乙酸(1.25mL),反应体系在18℃的条件下搅拌1.5小时。补加三氟乙酸(0.25mL),继续反应1.5小时,向反应液中加入水(5mL),收集水相,用饱和碳酸氢钠溶液调节pH为8,用二氯甲烷(20mL x 2)萃取,合并有机相,用无水硫酸钠干燥过滤后减压浓缩,未纯化,直接用于下一步。得到化合物10-6。 LCMS m/z=539.2[M+H] +
步骤5:化合物10的合成
将二氯甲烷(5mL)加入到干燥的反应瓶中,再加入化合物丙烯酸(5.54mg,76.87μmol,5.28μL,2eq),化合物10-6(23mg,38.43μmol,90%纯度,1eq)和N,N-二异丙基乙胺(14.90mg,115.30μmol,20.08μL,3eq),反应体系降温至-60℃,再加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(17.54mg,46.12μmol,1.2eq),然后搅拌0.5小时。该反应与化合物10-6(19.49mg)批次合并处理,向反应液中加入水(5ml),分液,有机相减压浓缩,高效液相色谱柱分离,纯化方法为{色谱柱:Phenomenex luna C18 80*40mm*3μm;:[H 2O(0.04%HCl)-ACN];;乙腈%:20%-40%,7min}得到化合物10。LCMS m/z=593.4[M+H] +
实施例11
Figure PCTCN2021080278-appb-000081
步骤1:化合物11-2的合成
将N,N-二甲基甲酰胺(2mL)加入到一个干燥的反应瓶中,再加入化合物10-2(0.16g,210.05μmol,1eq),N,N-二异丙基乙胺(81.44mg,630.15μmol,109.76μL,3eq)和化合物11-1(54.02mg,252.06μmol,1.2eq),反应体系在50℃和氮气保护的条件下反应1小时。与化合物10-2(50mg)批次合并处理,向反应液中加入甲基叔丁基醚(10mL),用饱和氯化铵溶液(10mL x 2)洗涤,再用饱和食盐水(10mL)洗涤后,无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步,得到化合物11-2。 1H NMR(400MHz,CDCl 3)δppm 7.14(d,J=8.80Hz,4H),6.84(d,J=8.40Hz,4H),6.62(d,J=8.80Hz,1H),5.19(br  d,J=8.00Hz,1H),4.76(s,2H),4.37-4.22(m,5H),3.80(s,7H),3.58-3.35(m,3H),3.22(s,2H),3.04-2.93(m,1H),2.52(s,3H),2.38-2.30(m,3H),1.49(s,9H),1.34(dd,J=6.80,6.40Hz,6H)。
步骤2:化合物11-3的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物11-2(0.20g,242.14μmol,1eq)和间氯过氧苯甲酸(62.68mg,290.57μmol,80%纯度,1.2eq),反应体系在15℃的条件下反应0.5小时,与化合物11-2(50mg)批次合并处理。向反应液中加入硫代硫酸钠(15mL,10%)溶液,淀粉-KI试纸检测为阴性后,用二氯甲烷(10mL)萃取,无水硫酸钠干燥过滤后减压浓缩粗品,粗品根据TLC(石油醚:乙酸乙酯=0:1)过柱纯化(石油醚:乙酸乙酯=10:1到0:1)得到化合物11-3和化合物11-3A的混合物。 1H NMR(400MHz,CDCl 3)δppm 7.17(d,J=6.40Hz,4H)6.84(d,J=8.40Hz,4H)6.67(s,1H)5.23(d,J=11.20Hz,1H)4.90-4.74(m,2H)4.32(d,J=12.00Hz,4H)3.84-3.75(m,9H)3.68-3.39(m,3H)3.31-3.10(m,3H)2.89(d,J=10.40Hz,2H)2.34(d,J=3.60Hz,3H)1.49(s,9H)1.42-1.29(m,6H)。LCMS m/z=842.2[M+H] +
步骤3:化合物11-4的合成
将甲苯(1mL)加入到一个干燥的反应瓶中,再加入化合物1-11A(46.51mg,403.82μmol,4eq),反应体系降温至0℃加入叔丁醇钠(38.81mg,403.82μmol,4eq),反应10分钟后,加入含有化合物11-3(0.085g,100.96μmol,1eq)和11-3A(86.62mg,100.96μmol,1eq)混合物的甲苯混合溶液(1mL),反应体系搅拌0.5小时。与化合物11-3(10mg)批次合并处理。向反应液中加入10mL乙酸乙酯,然后分别用10mL的饱和氯化铵溶液和饱和食盐水洗涤,用无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步,得到化合物11-4。LCMS m/z=893.4[M+H] +
步骤4:化合物11-5的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物11-4(0.13g,145.57μmol,1eq)和三氟乙酸(1.25mL)中,反应体系在18℃的条件下反应1.5小时,补加三氟乙酸(0.25mL),继续反应1.5小时,与11-4(15mg)批次合并处理,向反应液中加入水(5mL),收集水相,用饱和碳酸氢钠溶液调节pH为8,再用的二氯甲烷(20mL x 2)萃取,合并有机相,用无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步,得到化合物11-5。LCMS m/z=553.2[M+H] +
步骤5:化合物11的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物丙烯酸(14.08mg,195.44μmol,13.41μL,2eq),化合物11-5(60.00mg,97.72μmol,90%纯度,1eq)和N,N-二异丙基乙胺(37.89mg,293.16μmol,51.06μL,3eq),反应体系降温至-60℃。加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(44.59mg,117.26μmol,1.2eq),然后搅拌0.5小时。该反应与化合物11-5(20mg)批次合并处理,向反应液中加入水(5ml),分液,有机相减压浓缩,高效液相色谱柱分离纯化方法为{色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:[H 2O(0.04%HCl)-ACN];乙腈%:15%-40%,7min}得化合物11。 1H NMR(400MHz,CD 3OD)δ=6.92-6.75(m,1H),6.74-6.70(m,1H),6.33-6.24(m,1H),5.88-5.77(m,1H),5.28-5.18(m,1H),4.82-4.63(m,2H),4.56-4.43(m,1H),4.42-4.23(m,1H),4.01-3.81 (m,2H),3.79-3.59(m,2H),3.57-3.41(m,1H),3.32-3.20(m,5H),3.17-3.02(m,3H),2.84(m,2H),2.51-2.35(m,3H),2.31-1.99(m,3H),1.49-1.29(m,6H)。LCMS m/z=607.5[M+H] +
实施例12
Figure PCTCN2021080278-appb-000082
步骤1:化合物12-2的合成
将N,N-二甲基甲酰胺(2mL)加入到干燥的反应瓶中,再加入化合物10-2(0.2g,262.56μmol,1eq),N,N-二异丙基乙胺(101.80mg,787.69μmol,137.20μL,3eq)和化合物9-1A(63.10mg,315.07μmol,1.2eq),反应体系在50℃和氮气保护的条件下反应30分钟,补加化合物9-1A(30mg,0.6eq),继续反应30分钟。向反应液中加入饱和氯化铵(10mL)溶液,用甲基叔丁基醚(5mL)萃取,有机相溶液先后用饱和氯化铵溶液(10mL)和饱和食盐水(10mL)洗涤,无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步。得到化合物12-2。 1H NMR(400MHz,CDCl 3)δppm 7.14(d,J=8.80Hz,4H)6.84(d,J=8.40Hz,4H)6.62(d,J=8.80Hz,1H)5.21(d,J=7.20Hz,1H)4.78-4.63(m,2H)4.38-4.15(m,4H)4.00-3.82(m,2H)3.80(s,6H)3.73-3.60(m,1H)3.48-3.33(m,1H)3.22(s,2H)3.16-2.80(m,3H)2.51(s,3H)2.38-2.30(m,3H)1.49(s,9H)1.38(d,J=6.80Hz,3H)。LCMS m/z=812.3[M+H] +
步骤2:化合物12-3的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物12-2(0.18g,221.70μmol,1eq)和间氯过氧苯甲酸(57.39mg,266.03μmol,80%纯度,1.2eq),反应体系在15℃的条件下反应0.5小时。与化合物12-2(30mg)批次合并处理。向反应液中加入硫代硫酸钠(10mL,10%)溶液,淀粉-KI试纸检测为阴性后,用二氯甲烷(3mL)萃取,无水硫酸钠干燥过滤后减压浓缩得到粗品,粗品根据TLC(石油醚:乙酸乙酯=0:1),过柱纯化(石油醚:乙酸乙酯=10:1到0:1)得到化合物12-3。 1H NMR(400MHz,CDCl 3)δppm 7.17(br s,4H)6.84(br d,J=8.40Hz,4H)6.67(br s,1H)5.25(br d,J=9.60Hz,1H)4.89-4.64(m,2H)4.32(br d,J=10.40Hz,4H)4.09-3.86(m,3H)3.84-3.68(m,7H)3.64-3.51(m,1H) 3.37-2.97(m,4H)2.95-2.81(m,3H)2.34(br d,J=3.60Hz,3H)1.49(s,9H)1.41(br s,3H)。LCMS m/z=828.2[M+H] +
步骤3:化合物12-4的合成
将甲苯(1mL)加入到干燥的反应瓶中,再加入化合物12-3A(66.52mg,471.06μmol,3eq),反应体系降温至0℃,再加入加入叔丁醇钠(45.27mg,471.06μmol,3eq),搅拌10分钟后,加入含有化合物12-3(0.13g,157.02μmol,1eq)的甲苯溶液(0.5mL),搅拌0.5小时。与化合物12-3(20mg)批次合并处理,向反应液中加入10mL乙酸乙酯,然后分别用10mL的饱和氯化铵溶液和饱和食盐水洗涤,无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步,得到化合物12-4。LCMS m/z=905.3[M+H] +
步骤4:化合物12-5的合成
将二氯甲烷(6mL)加入到干燥的反应瓶中,再加入化合物12-4(0.18g,198.89μmol,1eq)和三氟乙酸(1.5mL),反应体系在18℃的条件下搅拌3.5小时。向反应液中加入水(5mL),收集水相,用饱和碳酸氢钠溶液调节反应液的pH为8,用二氯甲烷(20mL x 2)萃取,合并有机相,无水硫酸钠干燥过滤后减压浓缩,未纯化直接用于下一步,得到化合物12-5。LCMS m/z=565.2[M+H] +
步骤5:化合物12的合成
将二氯甲烷(5mL)加入到干燥的反应瓶中开始搅拌,再加入化合物丙烯酸(11.49mg,159.40μmol,10.94μL,2eq),化合物12-5(50mg,79.70μmol,90%纯度,1eq)和N,N-二异丙基乙胺(30.90mg,239.10μmol,41.65μL,3eq),反应体系降温至-60℃,加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(36.37mg,95.64μmol,1.2eq),然后搅拌0.5小时。该反应与化合物12-5(20mg)批次合并处理。向反应液中加入水(5ml),分液,有机相用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品高效液相色谱柱分离纯化{色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:[H 2O(0.04%HCl)-ACN];乙腈%:15%-40%,7min},得化合物12(出峰时间:1.509)。SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi。光学纯度:99.4%。 1H NMR(400MHz,CD 3OD)δ=6.89-6.71(m,1H),6.71-6.65(d,J=8.8Hz,1H),6.32-6.19(m,1H),5.84-5.75(m,1H),5.26-5.15(m,1H),4.68-4.60(m,1H),4.52(s,2H),4.50-4.45(m,1H),4.39-4.32(m,1H),4.27-4.16(m,1H),4.15-3.89(m,2H),3.76-3.61(m,2H),3.60-3.32(m,2H),3.28-3.13(m,3H),3.09-3.00(m,1H),2.96-2.85(m,1H),2.38-2.32(m,3H),2.32-2.24(m,2H),2.24-2.12(m,4H),2.12-2.03(m,2H),1.42-1.31(m,3H)。LCMS m/z=619.3[M+H] +
实施例13
Figure PCTCN2021080278-appb-000083
步骤1:化合物13-2的合成
将N,N-二甲基甲酰胺(4mL)加入到一个干燥的反应瓶中,再加入化合物10-2(220mg,288.82μmol,1eq)和化合物13-1(115.69mg,577.64μmol,2eq)开始搅拌,然后加入N,N-二异丙基乙胺(111.98mg,866.45μmol,150.92μL,3eq),反应体系升温至50℃搅拌1小时。向反应液中加入乙酸乙酯(30mL)萃取,用饱和氯化铵(15mL)溶液和饱和食盐水(15mL)各洗涤一次,用无水硫酸钠干燥过滤后滤液减压浓缩得到产物粗品,粗品未纯化直接用于下一步,得到化合物13-2。LCMS m/z=812.2[M+H] +
步骤2:化合物13-3的合成
将二氯甲烷(10mL)加入到一个干燥的反应瓶中,再加入化合物13-2(200.00mg,246.33μmol,1eq)开始搅拌,然后加入间氯过氧苯甲酸(60.01mg,295.59μmol,85%纯度,1.2eq),反应体系在25℃的条件下搅拌1小时。将反应液用二氯甲烷(20mL)稀释,然后5%硫代硫酸钠(10mL)溶液和饱和食盐水(10mL)各洗涤一次,用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品TLC(石油醚:乙酸乙酯=1:1),过柱纯化(石油醚:乙酸乙酯=90:10到50:50)得到产物,得化合物13-3。LCMS m/z=828.3[M+H] +
步骤3:化合物13-4的合成
将甲苯(5mL)加入到一个干燥的反应瓶中,再加入化合物1-11A(112.68mg,978.35μmol,4.5eq)开始搅拌,然后加入叔丁醇钠(94.02mg,978.35μmol,4.5eq),反应体系降温至0℃搅拌10分钟,然后加入化合物13-3(180mg,217.41μmol,1eq),反应体系在0℃的条件下搅拌1小时。该反应与化合物13-3(60mg)批次合并处理。向反应液中加入乙酸乙酯(30mL)萃取,有机相溶液用饱和氯化铵(10mL)溶液和饱和食盐水(10mL)各洗涤一次,用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步,得化合物13-4。LCMS m/z=879.3[M+H] +
步骤4:化合物13-5的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物13-4(260mg,295.79μmol,1eq)开始搅拌,然后加入乙酸钾(2.82g,24.70mmol,1.83mL,83.50eq),反应体系在20℃的条件下搅拌2 小时。向反应液中加入水(30mL)分液,水相用饱和碳酸氢钠调节pH=9,然后用乙酸乙酯(15mL x 2)萃取,合并有机相,用饱和食盐水(10mL)洗涤,用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步,得到化合物13-5。LCMS m/z=539.2[M+H] +
步骤5:化合物13的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合丙烯酸(10.84mg,150.40μmol,10.32μL,1eq),化合物13-5(90mg,150.40μmol,90%纯度,1eq)和N,N-二异丙基乙胺(58.31mg,451.19μmol,78.59μL,3eq)开始搅拌,反应体系降温至-60℃,加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(68.62mg,180.47μmol,1.2eq),然后搅拌0.5小时。该反应与化合物13-5(30mg)批次合并处理,向反应液中加入水(5mL)分液,有机相溶液直接减压浓缩得到粗品,粗品高效液相色谱柱分离纯化{色谱柱:Welch Xtimate C18 100*25mm*3μm;流动相:[H 2O(0.05%HCl)-ACN];乙腈%:15%-45%,8min}得化合物13(出峰时间:1.683)。SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi,光学纯度:95.48%。 1H NMR(400MHz,CD 3OD)δ=6.87-6.73(m,1H),6.68(d,J=8.4Hz,1H),6.25(dd,J=3.8,16.6Hz,1H),5.78(d,J=11.6Hz,1H),5.20(dd,J=4.0,11.2Hz,1H),4.83-4.75(m,2H),4.74-4.61(m,2H),4.60-4.45(m,2H),4.32(d,J=13.0Hz,1H),4.17-3.92(m,1H),3.90-3.80(m,1H),3.71-3.57(m,2H),3.55-3.42(m,1H),3.39-3.32(m,1H),3.27-3.18(m,2H),3.04(s,3H),2.99-2.85(m,2H),2.41-2.30(m,4H),2.22-1.95(m,3H),1.11(d,J=6.6Hz,3H),LCMS m/z=593.3[M+H] +
实施例14
Figure PCTCN2021080278-appb-000084
步骤1:化合物14-2的合成
将N,N-二甲基甲酰胺(4mL)加入到一个干燥的反应瓶中,再加入化合物10-2(220mg,288.82μmol,1eq),化合物14-1(123.79mg,577.64μmol,2eq)和N,N-二异丙基乙胺(111.98mg,866.45μmol,150.92μL,3eq)开始搅拌,反应体系在50℃的条件下搅拌1小时。向反应液中加入乙酸乙酯(30mL)萃取,收集有机相溶液用饱和氯化铵(15mL)溶液和饱和食盐水(15mL)各洗涤一次,用无水硫酸钠干燥过滤后滤液减压浓缩得到产物粗品,粗品未纯化直接用于下一步,得化合物14-2。LCMS m/z=826.3[M+H] +
步骤2:化合物14-3的合成
将二氯甲烷(10mL)加入到一个干燥的反应瓶中,再加入化合物14-2(350.18mg,423.97μmol,1eq),开始搅拌,然后加入间氯过氧苯甲酸(109.75mg,508.77μmol,80%纯度,1.2eq),反应体系在25℃的条件下搅拌1小时。检测到一个极性变大的主点形成。将反应液用二氯甲烷(10mL)稀释,然后5%硫代硫酸钠(10mL)溶液和饱和食盐水(10mL)各洗涤一次,用无水硫酸钠干燥过滤后滤液减压浓缩得到粗品。粗品TLC(石油醚:乙酸乙酯=0:1),过柱纯化(石油醚:乙酸乙酯=90:10到50:50)得到化合物14-3。LCMS m/z=842.3[M+H] +
步骤3:化合物14-4的合成
将甲苯(5mL)加入到一个干燥的反应瓶中,再加入化合物1-11A(98.73mg,857.24μmol,4.5eq), 开始搅拌,然后加入叔丁醇钠(82.38mg,857.24μmol,4.5eq),反应体系降温至0℃搅拌10分钟,然后加入含有化合物14-3(160.39mg,190.50μmol,1eq)的甲苯(2mL)溶液,反应体系在0C的条件下搅拌1小时。该反应与化合物14-3(50mg)批次合并处理。向反应液中加入乙酸乙酯(30mL)萃取,收集有机相溶液用饱和氯化铵(10mL)溶液和饱和食盐水(10mL)各洗涤一次,用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步,得化合物14-4。LCMS m/z=893.4[M+H] +
步骤4:化合物14-5的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物14-4(260mg,291.15μmol,1eq)开始搅拌,然后加入三氟乙酸(2.77g,24.31mmol,1.8mL,83.50eq),反应体系在20℃的条件下搅拌2小时。向反应液中加入二氯甲烷(20mL)溶液稀释反应液,然后加入水(20mL)分液,水相用饱和碳酸氢钠调节pH=8,然后用乙酸乙酯(20mL x 2)溶液萃取,合并有机相,用饱和食盐水(10mL)洗涤,用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步,得化合物14-5。LCMS m/z=553.2[M+H] +
步骤5:化合物14的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,再加入化合物丙烯酸(10.56mg,146.58μmol,10.06μL,1eq),化合物14-5(90mg,146.58μmol,90%纯度,1eq)和N,N-二异丙基乙胺(56.83mg,439.73μmol,76.59μL,3eq)开始搅拌,反应体系降温至-60℃,加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(66.88mg,175.89μmol,1.2eq),然后搅拌0.5小时。向反应液中加入水(5mL)淬灭反应后分液,有机相用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品。粗品进行高效液相色谱柱分离纯化方法为{色谱柱:Welch Xtimate C18 100*25mm*3μm;流动相:[H 2O(0.05%HCl)-ACN];乙腈%:15%-45%,8min},得化合物14。 1H NMR(400MHz,CDCl 3)6.69-6.62(m,1H),6.62-6.48(m,1H),6.47-6.34(m,1H),5.91-5.76(m,1H),5.34(s,1H),5.25-5.14(m,1H),5.10-4.99(m,1H),4.86-4.64(m,2H),4.62-4.30(m,2H),4.21-4.11(m,1H),4.06-3.93(m,2H),3.90-3.73(m,2H),3.71-3.59(m,1H),3.57-3.49(m,3H),3.47-3.33(m,1H),3.28-3.15(m,2H),3.09-2.92(m,1H),2.50-2.35(m,4H),2.26-2.09(m,2H),1.43-1.32(m,4H),1.31-1.25(m,2H),LCMS m/z=607.4[M+H] +
实施例15
Figure PCTCN2021080278-appb-000085
Figure PCTCN2021080278-appb-000086
步骤1:化合物15-2的合成
将N,N-二甲基甲酰胺(3mL)加入到一个干燥的反应瓶中,再加入化合物10-2(200mg,262.56μmol,1eq)开始搅拌,再加入N,N-二异丙基乙胺(101.80mg,787.69μmol,137.20μL,3eq)和化合物15-1(78.88mg,393.84μmol,1.5eq),反应体系在50℃的条件下反应30分钟。与化合物10-2(10mg)批次合并处理,将反应液倒入饱和氯化铵水溶液(5mL)中,用乙酸乙酯(5mL x 3)萃取,合并有机相,用饱和食盐水洗涤,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,未纯化直接用于下一步。得到化合物15-2。LCMS m/z=812.2[M+H] +
步骤2:化合物15-3的合成
将二氯甲烷(3mL)加入到一个干燥的反应瓶中,加入化合物15-2(0.24g,295.59μmol,1eq)开始搅拌,再加入间氯过氧苯甲酸(66.95mg,310.37μmol,80%纯度1.05eq),反应体系在25℃的条件下反应30分钟。向反应液中加入亚硫酸钠水溶液(5mL 5%)淬灭,反应液分液后,水相用二氯甲烷(5mL x 2)萃取,合并有机相,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品。水相用淀粉碘化钾试纸检测,无氧化性后,水相遗弃。粗品根据TLC(石油醚:乙酸乙酯=1:1,产品Rf=0.51)经柱层析纯化(石油醚:乙酸乙酯=50:1到0:1)得到产物。得到化合物15-3。 1H NMR(400MHz,CDCl 3)δ=7.17-7.06(m,4H),6.83-6.72(m,4H),6.71-6.60(m,1H),5.24-5.10(m,1H),4.87-4.64(m,2H),4.44-4.17(m,4H),3.98-3.81(m,2H),3.78-3.69(m,6H),3.67-3.43(m,2H),3.20-2.97(m,4H),2.88-2.78(m,3H),2.32-2.20(m,3H),1.47-1.37(m,9H),1.32-1.23(m,3H)。LCMS m/z=828.3M+H] +
步骤3:化合物15-4的合成
将甲苯(1mL)加入到一个干燥的反应瓶中,加入化合物15-3(180mg,217.41μmol,1eq)开始搅拌,反应体系降温至0-5℃,加入叔丁醇钠(2.68mg,652.23μmol,3eq),搅拌10分钟,将含有化合物1-11A(75.12mg,652.23μmol,77.44μL,3eq)的甲苯(0.3mL)加入到上述反应液中,反应体系在0-5℃的条件下反应30分钟。将反应液倒入饱和氯化铵水溶液(5mL)中,用乙酸乙酯(5mL x 3)萃取,合并有机相,用饱和食盐水(5mL)洗涤,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步。得到化合物15-4。LCMS m/z=879.4[M+H] +
步骤4:化合物15-5的合成
将二氯甲烷(4mL)加入到一个干燥的反应瓶中,加入化合物15-4(160mg,182.03μmol,1eq)开始搅拌,反应体系降温至0-5℃,加入三氟乙酸(1.23g,10.81mmol,800.00μL,59.36eq),搅拌4小时。 反应液加入到饱和碳酸氢钠水溶液(10mL)中,分液,用二氯甲烷(5mL x 2)萃取,合并有机相,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步,得到化合物15-5。LCMS m/z=539.2[M+H] +
步骤5:化合物15的合成
将二氯甲烷(10mL)加入到一个干燥的反应瓶中,加入化合物15-5(0.06g,111.40μmol,1eq)和化合物丙烯酸(16.06mg,222.81μmol,15.29μL,2eq)开始搅拌,再加入N,N-二异丙基乙胺(28.80mg,222.81μmol,38.81μL,2eq),反应体系降温至-60℃,加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(63.54mg,167.11μmol,1.5eq),反应体系在-60℃的条件下反应0.5小时。与化合物15-5(20mg)批次合并处理,向反应液中加入二氯甲烷(5mL),用饱和氯化铵溶液(5mL x 2)洗涤,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品。进行高效液相色谱柱分离纯化,方法为{色谱柱:Phenomenex Luna C18 200*40mm*10μm;流动相:[H 2O(0.04%HCl)-ACN];乙腈%:1%-50%,8min},机分液中加入1滴氨水,溶液显示为碱性,浓缩除去有机溶剂后冻干,得到化合物15。 1H NMR(400MHz,CD 3OD)δ=7.24-7.07(m,2H),6.80(dd,J=10.8,16.8Hz,1H),6.71(d,J=8.6Hz,1H),6.24(d,J=16.8Hz,1H),5.79(d,J=11.7Hz,1H),5.24-5.16(m,1H),4.76(d,J=13.8Hz,3H),4.57(dd,J=7.2,12.5Hz,2H),4.07-3.86(m,3H),3.73(s,1H),3.17(d,J=11.4Hz,3H),3.07(s,3H),2.90(d,J=14.8Hz,1H),2.46-2.34(m,4H),2.33-2.30(m,1H),2.26-1.95(m,3H),1.41(s,3H)。LCMS m/z=593.2[M+H] +
实施例16
Figure PCTCN2021080278-appb-000087
步骤1:化合物16-2的合成
将N,N-二甲基甲酰胺(3mL)加入到一个干燥的反应瓶中,加入化合物10-2(200mg,262.56μmol,1eq)开始搅拌,再加入N,N-二异丙基乙胺(101.80mg,787.69μmol,137.20μL,3eq)和化合物16-1(78.02mg,393.84μmol,1.5eq,2HCl),反应体系在50℃的条件下反应30分钟。合并处理,将反应液倒入饱和氯化铵水溶液(15mL)中,用乙酸乙酯(10mL x 3)萃取,合并有机相,用饱和食盐水(20mL)洗涤,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步,得到化合物16-2。LCMS m/z=737.2[M+H] +
步骤2:化合物16-3的合成
将N,N-二甲基甲酰胺(3mL)加入到一个干燥的反应瓶中,加入化合物16-2(230mg,312.15μmol,1eq)开始搅拌,再加入N,N-二异丙基乙胺(121.03mg,936.46μmol,163.11μL,3eq)和二叔丁基二碳酸酯(74.94mg,343.37μmol,78.88μL,1.1eq),反应体系在20℃的条件下反应10小时。反应液倒入饱和氯化铵水溶液(15mL)中,用乙酸乙酯(10mL x 2)萃取,合并有机相,用饱和食盐水(5mL)洗涤,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品。粗品根据TLC(石油醚:乙酸乙酯=3:1)经柱层析纯化(石油醚:乙酸乙酯=100:1-0:1)得到化合物16-3。 1H NMR(400MHz,CDCl 3)δ=7.16(d,J=8.4Hz,4H),6.85(d,J=8.6Hz,4H),6.64(d,J=8.0Hz,1H),5.22(d,J=7.2Hz,1H),4.90-4.68(m,2H),4.61(s,1H),4.41-4.21(m,4H),4.04(s,1H),3.80(s,6H),3.71(s,1H),3.50(d,J=11.0Hz,2H),3.30(s,1H),3.24-3.02(m,2H),2.90(d,J=2.0Hz,1H),2.78-2.58(m,2H),2.55(s,3H),2.34(d,J=4.0Hz,3H),1.51(s,9H)。LCMS m/z=837.2[M+H] +
步骤3:化合物16-4的合成
将二氯甲烷(0.3mL)加入到一个干燥的反应瓶中,加入化合物16-3(230mg,274.81μmol,1eq)开始搅拌,再加入间氯过氧苯甲酸(61.37mg,302.29μmol,85%纯度,1.1eq),反应体系在20℃的条件下反应1小时。将反应液倒入5%亚硫酸钠水溶液(5mL)中,分液,水相用二氯甲烷(5mL x 2)萃取,合并有机相,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,水相用淀粉碘化钾试纸检测,没有氧化性后遗弃水相。粗品根据TLC(石油醚:乙酸乙酯=1:1)经柱层析纯化(石油醚:乙酸乙酯=100:1-0:1)得到化合物16-4。
LCMS m/z=853.2[M+H] +
步骤4:化合物16-5的合成
将甲苯(2mL)加入到一个干燥的反应瓶中,加入化合物16-4(158mg,185.24μmol,1eq)开始搅拌,反应体系降温至0℃,再加入叔丁醇钠(35.60mg,370.49μmol,2eq),搅拌15分钟,加入化合物12-3A(65.40mg,463.11μmol,2.5eq),反应体系在0℃的条件下反应30分钟。反应液倒入饱和氯化铵水溶液(5mL)中,用乙酸乙酯(5mL x 3)萃取,合并有机相,用饱和食盐水(3mL)洗涤,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,未纯化直接用于下一步,得到化合物16-5。LCMS m/z=930.4[M+H] +
步骤5:化合物16-6的合成
将二氯甲烷(5mL)加入到一个干燥的反应瓶中,加入化合物16-5(0.18g,193.54μmol,1eq)开始搅 拌,再加入三氟乙酸(1mL),反应体系在18℃的条件下反应3小时。向反应液中加入水(10mL)萃取分液,收集水相,用饱和碳酸氢钠溶液调节pH为8,用二氯甲烷(20mL x 2)萃取,合并有机相,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化直接用于下一步,得到化合物16-6。LCMS m/z=590.2[M+H] +
步骤6:化合物16的合成
将化合物16-6(62.77mg,106.46μmol,1eq),2-氟丙烯酸(19.17mg,212.92μmol,2eq),N,N-二异丙基乙胺(41.28mg,319.38μmol,55.63μL,3eq),溶于DCM(5mL),降温至-60℃。加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(48.58mg,127.75μmol,1.2eq),然后搅拌0.5hr。与化合物16-6(20.92mg)批次合并处理。向反应液中加入5mL水,分液,有机相浓缩,高效液相色谱柱分离纯机分纯化,纯化方法{色谱柱:Phenomenex luna C18 80*40mm*3μm;流动相:[H 2O(0.04%HCl)-ACN];乙腈%:20%-40%,7min}得化合物16。 1H NMR(400MHz,CD 3OD)δ=6.73(d,J=8.6Hz,1H),5.45-5.21(m,3H),4.87-4.80(m,2H),4.57(s,2H),4.19(br d,J=13.7Hz,1H),3.98(br d,J=13.1Hz,1H),3.75-3.66(m,2H),3.56-3.49(m,1H),3.37(s,3H),3.32-3.27(m,2H),3.26-3.11(m,1H),3.06-2.87(m,1H),3.06-2.87(m,1H),3.06-2.87(m,1H),2.44-2.03(m,12H)。LCMS m/z=662.4[M+H] +
实施例17
Figure PCTCN2021080278-appb-000088
步骤1:化合物17-2的合成
将N,N-二甲基甲酰胺(30mL)加入到干燥的反应瓶中,再加入化合物10-2(2.8g,3.68mmol,1eq)开始搅拌,再加入N,N-二异丙基乙胺(1.43g,11.03mmol,1.92mL,3eq)和化合物16-1(873.80mg,4.41mmol,1.2eq,2HCl),反应体系在50℃和氮气保护的条件下反应1小时。与化合物10-2(0.2g)批次合并处理,向反应液中加入甲基叔丁基醚(30mL),用饱和氯化铵溶液(30mL x 2)和饱和食盐水(30mL x 2)各洗涤两次,加入无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品未纯化,直接用于下一步,得到化合物17-2。 1H NMR(400MHz,CDCl 3)δppm 7.15(d,J=8.80Hz,4H),6.84(d,J=8.40Hz,4H),6.63(d,J=8.40Hz,1H),5.22(dd,J=11.20,4.00Hz,1H),4.71(s,2H),4.36-4.20(m,4H),4.06(d,J=12.80Hz,1H),3.80(s,6H),3.61-3.50(m,2H),3.43(dd,J=18.80,11.60Hz,2H),3.27-3.15(m,2H),3.12-2.98(m,2H),2.85-2.66(m,2H),2.53(s,3H),2.38-2.31(m,3H),LCMS m/z=737.2[M+H] +
步骤2:化合物17-3的合成
将二氯甲烷(25mL)加入到干燥的反应瓶中,再加入化合物17-2(2.3g,3.12mmol,1eq)开始搅拌,反应体系降温至0℃,加入三乙胺(789.67mg,7.80mmol,1.09mL,2.5eq)和三氟乙酸酐(983.42mg,4.68mmol,651.27μL,1.5eq),反应体系在0-5℃的条件下反应0.5小时。与化合物17-2(0.3g)批次合 并处理,向反应液中加入的饱和氯化铵溶液(20mL x 2)洗涤后,用无水硫酸钠干燥过滤后,滤液减压浓缩得到粗品,粗品未纯化,直接用于下一步。得到化合物17-3。 1H NMR(400MHz,CDCl 3)δppm 7.15(d,J=8.40Hz,4H),6.84(d,J=8.40Hz,4H),6.65(br d,J=8.40Hz,1H),5.29-5.20(m,1H),4.77(s,2H),4.38-4.24(m,4H),4.05-3.88(m,2H),3.80(s,6H),3.78-3.60(m,2H),3.59-3.37(m,2H),3.14-2.99(m,2H),2.98-2.93(m,1H),2.91-2.86(m,1H),2.78(t,J=6.80Hz,1H),2.53(s,3H),2.39-2.30(m,3H),LCMS m/z=833.1[M+H] +
步骤3:化合物17-4的合成
将二氯甲烷(30mL)加入到干燥的反应瓶中,再加入化合物17-3(2.6g,3.12mmol,1eq)开始搅拌,再加入间氯过氧苯甲酸(697.20mg,3.43mmol,85%纯度,1.1eq),反应体系在18℃的条件下反应0.5小时。与化合物17-3(0.2g)批次合并处理,向反应液中加入硫代硫酸钠溶液(20mL 10%),用淀粉-KI试纸检测为阴性后,用二氯甲烷(20mL x 2)萃取,加入无水硫酸钠干燥过滤后,滤液减压浓缩得到粗品,粗品根据TLC(石油醚:乙酸乙酯=0:1)过柱纯化(石油醚:乙酸乙酯=10:1-0:1),得到化合物17-4。 1H NMR(400MHz,CDCl 3)δppm 7.15(d,J=8.40Hz,4H),6.84(d,J=8.40Hz,4H),6.66(d,J=8.40Hz,1H),5.27(d,J=9.20Hz,1H),4.93-4.982(m,2H),4.38-4.24(m,4H),4.10-3.99(m,2H),3.98-3.88(m,1H),3.87-3.68(m,8H),3.67-3.54(m,1H),3.54-2.98(m,3H),2.93-2.79(m,4H),2.78-2.65(m,1H),2.35(d,J=3.60Hz,3H),LCMS m/z=849.1[M+H] +
步骤4:化合物17-5的合成
将甲苯(1mL)加入到干燥的反应瓶中,再加入化合物17-4A(78.77mg,494.80μmol,3eq)开始搅拌,反应体系降温至0℃,加入叔丁醇钠(47.55mg,494.80μmol,3eq),搅拌10分钟后,加入含有化合物17-4(0.14g,164.93μmol,1eq)的甲苯溶液(0.5mL),继续反应0.5小时。与化合物17-4(20mg)批次合并处理,向反应液加入乙酸乙酯(5mL)稀释,依次用饱和氯化铵(10mL x 2)溶液和饱和食盐水(10mL)洗涤,加入无水硫酸钠干燥过滤后,滤液减压浓缩得到粗品,粗品未纯化,直接用于下一步,得到化合物17-5。LCMS m/z=848.3[M+H] +
步骤5:化合物17-6的合成
将二氯甲烷(12mL)加入到干燥的反应瓶中,再加入化合物17-5(160.00mg,188.70μmol,1eq)开始搅拌,再加入三氟乙酸(2mL),反应体系在18℃的条件下反应2小时。与化合物17-5(20mg)批次合并处理,向反应液中加入水(10mL),分液萃取,水相用饱和碳酸氢钠溶液至pH=8,用的二氯甲烷(10mL x 2)萃取,合并有机相,用无水硫酸钠干燥过滤后,滤液减压浓缩得到粗品,粗品未纯化,直接用于下一步,得到化合物17-6。LCMS m/z=608.3[M+H] +
步骤6:化合物17的合成
将二氯甲烷(5mL)加入到干燥的反应瓶中,再加入化合物17-6(50mg,82.29μmol,1eq)和2-氟丙烯酸(14.82mg,164.58μmol,2eq)以及N,N-二异丙基乙胺(31.90mg,246.87μmol,43.00μL,3eq)开始搅拌,反应体系降温至-60℃,再加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(37.55mg,98.75μmol,1.2eq),然后搅拌0.5小时。合并处理,向反应液中加入水(5mL)淬灭反应,分液,有 机相用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品高效液相色谱柱分离纯化{色谱柱:Welch Xtimate C18 100*25mm*3μm;流动相:[H 2O(0.05%HCl)-ACN];乙腈%:20%-50%,8min},得到化合物17。SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi,光学纯度:99.21%,出峰时间:1.840。 1H NMR(400MHz,CD 3OD)δ=6.80-6.68(m,1H),5.73-5.51(m,1H),5.46-5.19(m,3H),5.05-4.90(m,3H),4.74-4.58(m,2H),4.37-4.26(m,1H),4.20-4.06(m,2H),4.05-3.84(m,3H),3.79-3.59(m,2H),3.54-3.43(m,1H),3.42-3.35(m,1H),3.31-3.24(m,1H),3.13-2.89(m,3H),2.82-2.52(m,2H),2.50-2.42(m,1H),2.41-2.30(m,5H),2.29-2.18(m,1H)。
实施例18
Figure PCTCN2021080278-appb-000089
步骤1:化合物18-1的合成
将1-11A(194.75mg,1.69mmol,200.78μL,4eq)加入到无水甲苯(16mL)中,降温至0℃,加入叔丁醇钠(162.50mg,1.69mmol,4eq),0-5℃反应10分钟,加入化合物9-3(0.35g,422.74μmol,1eq)的甲苯溶液(5mL),0-5℃应0.5小时,与化合物9-3(50mg)批次合并处理,将反应液利用20mL x 2的饱和氯化铵洗涤,20mL饱和食盐水洗涤,无水硫酸钠干燥过滤后浓缩得到化合物18-1。MS m/z=879.2[M+H] +.
步骤2:化合物18-2的合成
将化合物18-1(0.4g,455.07μmol,1eq)加入到无水二氯甲烷(12mL)中,加入三氟乙酸(2.4mL),25℃反应1.5小时,与化合物18-1(50mg)批次合并处理,向反应液缓慢加入饱和碳酸氢钠至pH为7-8,利用20mL的二氯甲烷萃取,无水硫酸钠干燥过滤后浓缩旋干得到化合物18-2。LCMS m/z=539.1[M+H] +
步骤5:化合物18A和18B的合成
将化合物18-2(36.80mg,510.60μmol,35.04μL,1.1eq),丙烯酸(36.80mg,510.60μmol,35.04μL,1.1eq)和N,N-二异丙基乙胺(179.97mg,1.39mmol,242.55μL,3eq)加入到无水二氯甲烷(5mL)中,降温至-60℃,加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(176.50mg,464.18μmol,1eq),-60℃反应30分钟,将反应液利用10mL二氯甲烷稀释,用10mL x 2的饱和氯化铵洗涤,无水硫酸钠干燥过滤后浓缩,进行高效液相色谱柱分离纯化(柱子:Phenomenex luna C18 100*40mm*5μm;流动相:[H 2O(0.1%TFA)-ACN];乙腈%:10%-40%,8min)后冻干,SFC进行手性分离(柱子:DAICEL CHIRALCEL OD(250mm*30mm,10μm);流动相:[0.1%NH 3H 2O ETOH];乙醇%:50%-50%,15min),得到化合物18A(手性出峰时间:1.479)。SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO 2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi,光学纯度100%。MS m/z=593.3[M+H] +1H NMR(400MHz,CDCl 3)δ=6.66-6.50(m,2H),6.36(d,J=16.8Hz,1H),5.76(d,J=10.0Hz,1H),5.20(d,J=7.6Hz,1H),4.58-4.53(m,1H),4.45-4.20(m,2H),4.01(s,3H),3.85-3.23(m,6H),3.04-2.86(m,2H),2.67(s,2H),2.47-2.33(m,3H),2.22-1.53(m,8H),1.23-1.04(m,3H)。
得到化合物18B(手性出峰时间:1.642)SFC分析方法(柱子:Chiralcel OD-3,50×4.6mm I.D.,3μm;流动相:A(CO 2)和B(甲醇,含0.05%二异丙胺胺);梯度:B%=5~50%,3min;流速:3.4mL/min;波长:220nm;压力:1800psi,光学纯度97.8%。LCMS m/z=593.3[M+H] +1H NMR(400MHz,CDCl 3)δ=6.72-6.48(m,2H),6.35(dd,J=1.6,16.8Hz,1H),5.76(d,J=10.4Hz,1H),5.20(d,J=7.6Hz,1H),4.83-4.57(m,3H),4.18-3.99(m,3H),3.94-3.51(m,2H),3.50-3.20(m,2H),3.11-2.75(m,6H),2.43-2.35(m,3H),2.35–1.80(m,8H),1.38(d,J=6.4Hz,3H)。
实施例19
Figure PCTCN2021080278-appb-000090
步骤1:化合物19的合成
将二氯甲烷(5mL)加入到干燥的反应瓶中,再加入化合物17-6(25mg,42.40μmol,1eq)和丙烯酸(6.11mg,84.80μmol,5.82μL,2eq)以及N,N-二异丙基乙胺(16.44mg,127.20μmol,22.16μL,3eq)开始搅拌,反应体系降温至0℃,再加入O-(7-氮杂苯并三氮唑-1-YL)-N,N,N,N-四甲基脲六氟膦盐(19.35mg,50.88μmol,1.2eq),然后20℃搅拌3小时。向反应液中加入水(5mL)淬灭反应,分液,有机相用无水硫酸钠干燥过滤,滤液减压浓缩得到粗品,粗品高效液相色谱柱分离纯化{色谱柱:Phenomenex luna C18 80*40mm*3um;流动相:[H 2O(0.04%HCl)-ACN];B%:18%-34%,7min;得到化合物19。LCMS m/z=622.2[M+H] +
实施例20
Figure PCTCN2021080278-appb-000091
步骤1:中间体20-1的制备
将化合物9-2(90mg,110.85μmol)溶于二氯甲烷(2mL)中,加入间氯过氧苯甲酸(45.01mg,221.70μmol,85%含量),反应液在20℃下继续搅拌3小时。减压除去有机溶剂,所得粗产物经薄层层析制备板(展开剂:二氯甲烷:甲醇=20:1)分离纯化,得到化合物20-1。MS m/z=844.4[M+H] +.步骤2:中间体20-2的制备
20℃条件下,将化合物17-4A(12.26mg,77.02μmol)溶于无水四氢呋喃(2mL)中,加入叔丁醇钠(7.40mg,77.02μmol),反应液继续搅拌30分钟,加入化合物20-1(50mg,59.25μmol)的四氢呋喃(0.5mL)溶液,反应液在该温度下继续搅拌0.5小时。减压除去有机溶剂,所得粗产物经薄层层析制备板(展开剂:二氯甲烷:甲醇=10:1)分离纯化,得到化合物20-2。MS m/z=923.6[M+H] +.
步骤3:化合物20-3的制备
将化合物20-2(45mg,48.75μmol)溶于无水二氯甲烷(2mL)中,加入三氟乙酸(1.5mL),反应液在20℃下继续搅拌2小时。减压除去溶剂,所得粗产物溶于20mL二氯甲烷中,加入固体碳酸氢钠3g,室温下继续搅拌1小时,过滤,减压除去有机溶剂,得到粗产物20-3,该化合物不经进一步纯化直接用于下一步反应。
步骤5:化合物20的制备
20℃条件下,将化合物20-3(20mg,34.33μmol)溶于无水二氯甲烷(2mL)中,加入二异丙基乙胺(13.31mg,102.99μmol,17.94μL)和烯丙酰氯(4.66mg,51.49μmol,4.20μL),反应液在该温度下继续搅拌16小时。减压除去有机溶剂,所得粗产物通过高效液相色谱法(柱子:Welch Xtimate C18 100*40mm*3μm;流动相:[水(0.075%三氟乙酸)-乙腈];乙腈:22%-52%,8分钟)分离纯化,得到化合物20的三氟乙酸盐。MS m/z=637.4[M+H] +.
生物测试数据:
实验例1:化合物对KRAS G12C突变的MIA-PA-CA-2细胞增殖抑制作用的测试
1.1实验目的
测试化合物对KRAS G12C突变的MIA-PA-CA-2细胞增殖抑制的IC 50
1.2试剂
本研究使用的主要试剂包括CellTiter-Glo(Promega,货号:G7573)。
1.3仪器
本研究所使用主要仪器为PerkinElmer EnVision多功能酶标仪。
1.4实验方法
1)贴壁细胞经胰酶消化处理成细胞悬液,并对细胞悬液进行计数备用。
2)取适量细胞至离心管并用细胞培养液补足至需要体积,铺至96孔板,终密度为2000细胞/孔,100μL培养液。
3)培养24hr后,将化合物用DMSO配置成10mM,并用DPBS(杜比可磷酸缓冲盐)以3倍梯度稀释9个点,每孔加入10μL,两复孔。实验对照孔(Con)每孔加入10μL DPBS。
4)同天,取一块未加药处理的细胞培养板,加入50μL CellTiter Glo,利用EnVision进行荧光读值,标记为Day0读值。
5)加药处理后的细胞培养72h后,去除培养板,向细胞板中加入50μL CellTiter Glo,利用EnVision进行荧光读值。
6)数据分析:按下列公式计算各孔对细胞的抑制率:
Figure PCTCN2021080278-appb-000092
*F Day0为未加药处理的原始细胞数目测试孔的读值;
F Con为培养72hr后,Con组的荧光读值。
F Cpd为培养72hr后,各化合物孔的荧光读值。
7)使用GraphPad Prism软件对化合物的抑制率数据(抑制率%)进行log(agonist)vs.response--Variable slope非线性拟合分析,得到化合物的IC 50值,拟合公式为:
Y=Bottom+(Top-Bottom)/(1+10^((LogIC 50-X)*HillSlope))
1.5实验结果
表1.本发明化合物对KRASG12C突变的MIA-PA-CA-2细胞增殖抑制的测试结果
化合物编号 IC 50(nM)
1 5.21
8B的盐酸盐 2.7
9B 6.98
12 1.30
16 2.22
17 0.44
18B 3.29
实验结果显示本发明化合物对KRASG12C突变的MIA-PA-CA-2细胞系具有良好的细胞增殖抑制活性。
实验例2:H358细胞实验
2.1实验目的
测试化合物对KRAS G12C突变的H358细胞增殖抑制的IC 50
2.2试剂
本研究使用的主要试剂包括RPMI-1640培养基,盘尼西林/链霉素抗生素购自维森特,胎牛血清购自Biosera。CellTiter-Glo(细胞活率化学发光检测试剂)试剂购自Promega。NCI-H358细胞系购自中国科学院细胞库。
2.3仪器
本研究所使用主要仪器为Nivo多标记分析仪(PerkinElmer)。
2.4实验方法:
1)将NCI-H358细胞种于白色96孔板中,80μL细胞悬液每孔,其中包含4000个NCI-H358细胞。细胞板置于二氧化碳培养箱中过夜培养。
2)将待测化合物用排枪进行5倍稀释至第9个浓度,即从2mM稀释至5.12nM,设置双复孔实验。向中间板中加入78μL培养基,再按照对应位置,转移2μL每孔的梯度稀释化合物至中间板,混匀后转移20μL每孔到细胞板中。转移到细胞板中的化合物浓度范围是10μM至0.0256nM。细胞板置于二氧化碳培养箱中培养5天。另准备一块细胞板,在加药当天读取信号值作为最大值(下面方程式中Max值)参与数据分析。向此细胞板每孔加入25μL细胞活率化学发光检测试剂,室温孵育10分钟使发光信号稳定。采用多标记分析仪读数。
3)向细胞板中加入每孔25μL的细胞活率化学发光检测试剂,室温孵育10分钟使发光信号稳定。采用多标记分析仪读数。
数据分析:
利用方程式(Sample-Min)/(Max-Min)*100%将原始数据换算成抑制率,IC 50的值即可通过四参数进行曲线拟合得出(GraphPad Prism中"log(inhibitor)vs.response--Variable slope"模式得出)。表2提供了本发明的化合物对NCI-H358细胞增殖的抑制活性。
表2.本发明化合物对KRASG12C突变的H358细胞增殖抑制的测试结果
化合物 NCI-H358IC 50(nM)
1 68.2
2 19.0
4B的盐酸盐 27.0
5B 12.9
6A <4.6
8B的盐酸盐 <4.6
9B 5.5
10 70
11 6.7
12 2.5
13 32.6
15 9.2
16 1.7
17 0.6
18B 4.7
结论:本发明部分化合物对NCI-H358细胞增殖展现出较好的抑制活性。
实验例3:肝细胞代谢稳定性
实验目的:评定受试化合物分别在CD-1小鼠、SD大鼠、比格犬、食蟹猴、人肝细胞中的代谢稳定性
实验操作:准备若干96孔样品沉淀板,分别命名为T0、T15、T30、T60、T90、T120、T0-MC、T120-MC和空白基质。提前取出复苏培养液和孵育培养液,放置在37℃水浴锅中预热。从液氮罐中取出冻存的肝细胞,立即浸没到37℃水浴中(约90秒)。待冻存部分溶化松动后,分别倒入含有40mL复苏培养液的离心管中,轻柔的颠倒让细胞在复苏培养液中重悬。室温条件下,100×g离心5分钟,移除上清液,用适当体积的孵育培养液重悬肝细胞,用台盼蓝染色法计算细胞活率。将198μL的肝细胞混悬液(0.51×106cells/mL)加入到已预热的孵育板中,培养液对照组加入198μL不含肝细胞的孵育培养液至T0-MC和T120-MC孵育板中,所有孵育板在37℃培养箱中预孵育10分钟。然后加入2μL供试品和对照化合物工作液,混匀,立即将孵育板放入培养箱内的摇板机中,启动计时器开始反应。每个化合物的每个时间点准备2个重复样本。孵育条件为37℃、饱和湿度、含5%CO 2。测试体系中,供试品的终浓度为1μM,对照品的终浓度为3μM,肝细胞的终浓度为0.5×106cells/mL,总有机溶剂的终浓度为0.96%,其中DMSO的终浓度为0.1%。相应时间点孵育结束时,取出孵育板,取出25μL化合物和对照化合物与细胞的混合液加入到含有125μL终止液(含有200ng/mL甲苯磺丁脲和拉贝诺尔的乙腈溶液)的样品板中。对于Blank样品板,直接加入25μL不含肝细胞的孵育培养液。所有样品板封膜后在摇板机上以600rpm摇10分钟后,3220×g离心20分钟。供试品和对照品上清液用超纯水以1:3的比例稀释。所有样品混匀后用LC/MS/MS的方法进行分析。
实验结果如表3所示。
表3.受试化合物CD-1小鼠、SD大鼠、比格犬、食蟹猴、人肝细胞中的代谢稳定性
Figure PCTCN2021080278-appb-000093
Figure PCTCN2021080278-appb-000094
实验结论:多种属肝细胞代谢实验显示本发明化合物具有良好的代谢稳定性
实验例4:体外肝微粒体稳定性研究
实验目的:评定受试化合物分别在CD-1小鼠、SD大鼠、比格犬、食蟹猴、人肝微粒体中的代谢稳定性
实验操作:准备2块96孔孵育板,分别命名为T60孵育板和NCF60孵育板。在T60孵育板和NCF60孵育板上分别加入445μL微粒体工作液(肝微粒体蛋白浓度为0.56mg/mL),然后将上述孵育板放置于37℃水浴锅中预孵育大约10分钟。
预孵育结束后,在T60孵育板和NCF60孵育板上分别加入5μL供试品或对照化合物工作液,混匀。在NCF60孵育板上每孔添加50μL磷酸钾盐缓冲液启动反应;在T0终止板中加入180μL的终止液(含200ng/mL甲苯磺丁脲和200ng/mL拉贝洛尔的乙腈溶液)和6μL的NADPH再生体系工作液,从T60孵育板中取出54μL样品至T0终止板(T0样品产生)。在T60孵育板上每孔添加44μLNADPH再生体系工作液启动反应。在Blank板中只添加54μL微粒体工作液、6μL的NADPH再生体系工作液和180μL的终止液。因此,在供试品或对照化合物的样品中,化合物、睾酮、双氯芬酸和普罗帕酮的反应终浓度为1μM,肝微粒体的浓度为0.5mg/mL,DMSO和乙腈在反应体系中的终浓度分别为0.01%(v/v)和0.99%(v/v)。
孵育适当时间(如5、15、30、45和60分钟)后,分别在每个终止板的样品孔中加入180μL的终止液(含200ng/mL甲苯磺丁脲和200ng/mL拉贝洛尔的乙腈溶液),之后从T60孵育板中取出60μL样品以终止反应。所有样品板摇匀并在3220×g离心20分钟,然后每孔取80μL上清液稀释到240μL纯水中用于液相色谱串联质谱分析,液相色谱串联质谱分析所有样品进样分析。
表4.受试化合物CD-1小鼠、SD大鼠、比格犬、食蟹猴、人肝微粒体的代谢稳定性
Figure PCTCN2021080278-appb-000095
Figure PCTCN2021080278-appb-000096
实验结论:肝微粒体代谢稳定性研究显示本发明化合物具有良好的代谢稳定性
实验例5:血浆稳定研究
实验目的:评定受试化合物分别在CD-1小鼠、人的血浆稳定性
实验操作:将冻存的血浆解冻10~20分钟,待血浆完全解冻后,将其置于离心机中以3220×g离心5分钟,去除其中存在的悬浮物和沉淀物。准备96孔孵育板,分别命名为T0、T10、T30、T60、T120。将孵育板中对应的加入98μL的小鼠、大鼠、犬、猴和人空白血浆,然后加入2μL化合物或对照化合物的工作液加入到对应的孵育板中,每个样品准备两个平行孔。所有的样品在37℃水浴锅中进行孵育。化合物和对照化合物比沙可啶、马来酸依那普利、普鲁卡因和普鲁本辛的最终孵育浓度为2μM,最终有机相含量为2.0%。每一个孵育时间点结束时,取出相应的孵育板,向每个对应的样品孔中加入400μL含有200ng/mL甲苯磺丁脲和拉贝诺尔的乙腈溶液沉淀蛋白。所有样品板封膜并摇匀后,3220×g离心20分钟。取50μL上清液加入100μL超纯水稀释,所有样品混匀后用LC/MS/MS的方法分析。
表5.受试化合物CD-1小鼠、人的血浆稳定性
Figure PCTCN2021080278-appb-000097
实验结论:本发明化合物在人和小鼠血浆中的稳定性良好。
实验例6:全血稳定研究
实验目的:评定受试化合物分别在评定受试化合物分别在CD-1小鼠、SD大鼠、比格犬、食蟹猴的全血稳定性
实验操作:在实验当天或实验的前一天,采用抗凝剂EDTA-K2采集新鲜的CD-1小鼠、SD大鼠、比格犬、食蟹猴全血。在实验开始前,将全血与PBS进行1:1(v:v)混合,放置于37℃水浴锅中预热10~20分钟。准备96孔孵育板,分别命名为T0、T30、T60、T240。在对应的孵育板中,包括T0、T30、T60和T240孵育板,将2μL化合物或对照化合物的工作液与98μL的小鼠、大鼠、犬、猴和人空白全血混合,每个样品准备两个平行孔。所有的样品在37℃水浴锅中进行孵育。化合物的最终 孵育浓度为5μM,对照化合物的最终孵育浓度为2μM。每一个时间点孵育结束时,取出相应的孵育板,立即向对应的样品孔中加入100μL超纯水,混匀,然后加入800μL含有200ng/mL甲苯磺丁脲和拉贝诺尔的乙腈溶液沉淀蛋白。样品板封膜并摇匀后,3220×g离心20分钟。取150μL上清液用LC/MS/MS的方法分析。
表6.受试化合物CD-1小鼠、SD大鼠、比格犬、食蟹猴的全血稳定性
Figure PCTCN2021080278-appb-000098
实验结论:多种属犬血稳定性研究显示本发明化合物在全血中的稳定性良好。
实验例7:蛋白结合率研究
实验目的:采用平衡透析法测定受试化合物在CD-1小鼠、SD大鼠、比格犬、食蟹猴和人血浆中的蛋白结合率。
实验操作:采用上述五个物种的血浆分别配制化合物浓度为2μM的血浆样品,置于96孔平衡透析装置中,在37±1℃下用磷酸盐缓冲溶液透析4h。本实验采用华法林作为对照化合物。血浆和透析缓冲液中待测物的浓度用LC-MS/MS法进行测定。
表7.受试化合物CD-1小鼠、SD大鼠、比格犬、食蟹猴、人的蛋白结合率
Figure PCTCN2021080278-appb-000099
Figure PCTCN2021080278-appb-000100
实验结论:多种属血浆结合率研究显示本发明化合物在血浆中具有更高的蛋白未结合率。
实验例8:体内药代动力学研究
1)SD大鼠口服及静脉注射受试化合物的药代动力学研究
受试化合物与5%二甲基亚砜/95%(10%羟丙基-β-环糊精)溶液混合,涡旋并超声,制备得到1mg/mL澄清溶液,微孔滤膜过滤后备用。选取7至10周龄的雄性SD大鼠,静脉注射、口服给予候选化合物溶液。收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。实验结果如表8所示:
表8.受试化合物的药代动力学结果
Figure PCTCN2021080278-appb-000101
注:Vd ss,u为血浆蛋白未结合下的表观容积分布(Vd ss,u=Vd ss/PPB(Unbond%));C max,u,AUC 0-last,u,都是血浆蛋白未结合下的相应数值(C max,u=C max x PPB(Unbond%);AUC 0-last,u=AUC 0-last x PPB(Unbond%))实验结论:PK研究显示,本发明化合物在大鼠中具有较高的非结合血浆暴露量和良好的口服生物利用度。
2)CD小鼠口服及静脉注射受试化合物的药代动力学研究
受试化合物与5%二甲基亚砜/95%(10%羟丙基-β-环糊精)溶液混合,涡旋并超声,制备得到1mg/mL澄清溶液,微孔滤膜过滤后备用。选取7至10周龄的雄性CD小鼠,静脉注射、口服给予候选化合物溶 液。收集一定时间的全血,制备得到血浆,以LC-MS/MS方法分析药物浓度,并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。实验结果如表9所示:
表9.受试化合物的药代动力学结果
Figure PCTCN2021080278-appb-000102
注:Vd ss,u为血浆蛋白未结合下的表观容积分布(Vd ss,u=Vd ss/PPB(Unbond%));C max,u,AUC 0-last,u,都是血浆蛋白未结合下的相应数值(C max,u=C max x PPB(Unbond%);AUC 0-last,u=AUC 0-last x PPB(Unbond%))实验结论:PK研究显示,本发明化合物在小鼠中具有较高的非结合血浆暴露量和良好的口服生物利用度。
实验例9:体内药效学研究
人胰腺癌Mia PaCa-2细胞裸小鼠皮下移植肿瘤Balb/c Nude小鼠模型的体内药效学研究
1.细胞培养和肿瘤组织准备
细胞培养:人胰腺癌Mia PaCa-2细胞(ATCC-CRL-1420)体外单层培养,培养条件为DMEM培养基中加10%胎牛血清,2.5%马血清,37℃5%二氧化碳孵箱培养。一周两次用胰酶-EDTA进行常规消化处理传代。当细胞饱和度为80%-90%,数量到达要求时,收取细胞,计数,重悬于适量PBS中,1:1加入基质胶,获取细胞密度为25x 106cells/mL的细胞悬液。
细胞接种:将0.2mL(5×106 cells/mouse个)Mia PaCa-2细胞(加基质胶,体积比为1:1)皮下接种于每只小鼠的右后背,肿瘤平均体积达到190mm3时,根据肿瘤体积进行随机分组,按照表10中的方案开始给药
表10.实验动物分组及给药方案
Figure PCTCN2021080278-appb-000103
注:PO代表口服;QD代表每日一次。
2.肿瘤测量和实验指标
每周两次用游标卡尺测量肿瘤直径。肿瘤体积的计算公式为:V=0.5a×b 2,a和b分别表示肿瘤的长径和短径。
化合物的抑瘤疗效用TGI(%)或相对肿瘤增殖率T/C(%)评价。相对肿瘤增殖率T/C(%)=TRTV/CRTV×100%(TRTV:治疗组RTV;CRTV:阴性对照组RTV)。根据肿瘤测量的结果计算出相对肿瘤体积(relative tumor volume,RTV),计算公式为RTV=Vt/V0,其中V0是分组给药时(即D0)测量所得平均肿瘤体积,Vt为某一次测量时的平均肿瘤体积,TRTV与CRTV取同一天数据。
TGI(%),反映肿瘤生长抑制率。TGI(%)=[(1-(某处理组给药结束时平均瘤体积-该处理组开始给药时平均瘤体积))/(溶剂对照组治疗结束时平均瘤体积-溶剂对照组开始治疗时平均瘤体积)]×100%。
3.实验结果
实验结果如图1、2所示。
给药22天时结果如表11所示
表11.给药第22天下的T/C及TGI
化合物 给药量 肿瘤体积均值 T/C TGI
溶媒 N/A 2016.29mm 3 N/A N/A
8B 10mg/kg 745.84mm 3 36.99% 66.89%
8B 30mg/kg 227.15mm 3 11.28% 94.23%
17 10mg/kg 249.87mm 3 12.39% 93.06%
17 30mg/kg 124.14mm 3 6.16% 99.64%
实验结论:本发明化合物具有显著的抑瘤作,且小鼠各个剂量组的体重平稳,无明显不耐受现象。

Claims (22)

  1. 式(III)所示化合物或其药学上可接受的盐,
    Figure PCTCN2021080278-appb-100001
    其中,
    T 1选自O和N;
    R 1选自C 6-10芳基和5-10元杂芳基,所述C 6-10芳基和5-10元杂芳基任选被1、2、3、4或5个R a取代;
    当T 1选自O时,R 2不存在;
    当T 1选自N时,R 2选自H、C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基,所述C 1-3烷基、-C(=O)-C 1-3烷基和-S(=O) 2-C 1-3烷基任选被1、2或3个R b取代;
    R 3选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R c取代;
    R 4选自H和C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
    R 5、R 6和R 7分别独立地选自H、F、Cl、Br、I、C 1-3烷基,所述C 1-3烷基任选被1、2或3个F取代;
    R 8选自H和CH 3
    R a分别独立地选自F、Cl、Br、I、OH、NH 2、CN、C 1-3烷基、C 1-3烷氧基、C 2-3炔基和C 2-3烯基,所述C 1-3烷基、C 1-3烷氧基、C 2-3炔基和C 2-3烯基任选被1、2或3个F取代;
    R b分别独立地选自F、Cl、Br、I、OH和NH 2
    R c分别独立地选自4-8元杂环烷基,所述4-8元杂环烷基任选被1、2或3个R取代;
    R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
    R分别独立地选自H、F、Cl、Br、OH、CN、C 1-3烷基、C 1-3烷氧基和-C 1-3烷基-O-C(=O)-C 1-3烷氨基;
    条件是,当R 1选自萘基时,所述萘基任选被F、Cl、Br、OH、NH 2、CF 3、CH 2CH 3和-C≡CH取代,且R 5、R 6和R 7分别独立地选自H。
  2. 根据权利要求1所述化合物或其药学上可接受的盐,其中各R a分别独立地选自F、Cl、Br、I、OH、NH 2、CN、CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH,所述CH 3、CH 2CH 3、OCH 3、OCH 2CH 3、-CH=CH 2、-CH 2-CH=CH 2和-C≡CH任选被1、2或3个F取代。
  3. 根据权利要求2所述化合物或其药学上可接受的盐,其中各R a分别独立地选自F、OH、NH 2、CH 3、CF 3、CH 2CH 3和-C≡CH。
  4. 根据权利要求1~3任意一项所述化合物或其药学上可接受的盐,其中,R 1选自苯基、萘基、吲哚基和吲唑基,所述苯基、萘基、吲哚基和吲唑基任选被1、2或3个R a取代。
  5. 根据权利要求4所述化合物或其药学上可接受的盐,其中,R 1选自
    Figure PCTCN2021080278-appb-100002
    Figure PCTCN2021080278-appb-100003
  6. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 2选自H、CH 3、CH 2CH 3和CH(CH 3) 2,所述CH 3、CH 2CH 3和CH(CH 3) 2选任被1、2或3个R b取代。
  7. 根据权利要求6所述化合物或其药学上可接受的盐,其中,R 2选自H和CH 3
  8. 根据权利要求1所述化合物或其药学上可接受的盐,其中,各R分别独立地选自H、F、Cl、Br、OH、CN、CH 3、CH 2CH 3、CH 2CF 3、OCH 3、OCF 3
    Figure PCTCN2021080278-appb-100004
  9. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R c选自四氢吡咯基和六氢-1H-吡咯里嗪基,所述四氢吡咯基和六氢-1H-吡咯里嗪基任选被1、2或3个R取代。
  10. 根据权利要求9所述化合物或其药学上可接受的盐,其中,R c选自
    Figure PCTCN2021080278-appb-100005
    Figure PCTCN2021080278-appb-100006
  11. 根据权利要求1、9或10任意一项所述化合物或其药学上可接受的盐,其中,R c选自
    Figure PCTCN2021080278-appb-100007
    Figure PCTCN2021080278-appb-100008
  12. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 3选自CH 3,所述CH 3任选被1、2或3个R c取代。
  13. 根据权利要求12所述化合物或其药学上可接受的盐,其中,R 3选自
    Figure PCTCN2021080278-appb-100009
    Figure PCTCN2021080278-appb-100010
  14. 根据权利要求1、12或13任意一项所述化合物或其药学上可接受的盐,其中,R 3选自
    Figure PCTCN2021080278-appb-100011
    Figure PCTCN2021080278-appb-100012
  15. 根据权利要求1所述化合物或其药学上可接受的盐,其中,R 4选自H和CH 3,所述CH 3任选被1、2或3个R d取代。
  16. 根据权利要求15所述化合物或其药学上可接受的盐,其中,R 4选自H、CH 3和CH 2CN。
  17. 根据权利要求1~16任意一项所述化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2021080278-appb-100013
    其中,
    R 1如权利要求1~5任意一项所定义;
    R 4选自C 1-3烷基,所述C 1-3烷基任选被1、2或3个R d取代;
    R d分别独立地选自F、Cl、Br、I、OH、NH 2和CN;
    R 5如权利要求1所定义;
    R c如权利要求1或8~11任意一项所定义;
    带“*”碳原子为手性碳原子,以(R)或(S)单一对映体形式或富含一种对映体形式存在。
  18. 根据权利要求1~16任意一项所述化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2021080278-appb-100014
    Figure PCTCN2021080278-appb-100015
    其中,
    R 1如权利要求1~5任意一项所定义;
    R 2如权利要求1、6或7任意一项所定义;
    R 4如权利要求1、15或16任意一项所定义;
    R 5、R 6、R 7和R 8如权利要求1所定义;
    R如权利要求1或8所定义。
  19. 下式所示化合物或其药学上可接受的盐,
    Figure PCTCN2021080278-appb-100016
    Figure PCTCN2021080278-appb-100017
  20. 根据权利要求19所述的化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2021080278-appb-100018
    Figure PCTCN2021080278-appb-100019
  21. 根据权利要求20所述的化合物或其药学上可接受的盐,其选自,
    Figure PCTCN2021080278-appb-100020
    Figure PCTCN2021080278-appb-100021
    Figure PCTCN2021080278-appb-100022
  22. 根据权利要求1~21任意一项所述的化合物或其药学上可接受的盐在制备治疗与KRAS相关疾病的药物中的应用。
PCT/CN2021/080278 2020-03-12 2021-03-11 嘧啶并杂环类化合物及其应用 WO2021180181A1 (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
BR112022018140-0A BR112022018140B1 (pt) 2020-03-12 2021-03-11 Compostos pirimidoheterocíclicos e uso dos mesmos
BR122023026304-9A BR122023026304A2 (pt) 2020-03-12 2021-03-11 Compostos pirimidoheterocíclicos, composição farmacêutica e uso dos referidos compostos
CA3171365A CA3171365A1 (en) 2020-03-12 2021-03-11 Pyrimidoheterocyclic compounds and application thereof
AU2021233058A AU2021233058B2 (en) 2020-03-12 2021-03-11 Pyrimidoheterocyclic compounds and application thereof
CN202311335558.0A CN117510492A (zh) 2020-03-12 2021-03-11 嘧啶并杂环类化合物及其应用
JP2022554868A JP2023517995A (ja) 2020-03-12 2021-03-11 ピリミドヘテロ環式化合物およびその応用
US17/905,973 US20230151004A1 (en) 2020-03-12 2021-03-11 Pyrimidoheterocyclic compounds and application thereof
CN202311017911.0A CN117050079A (zh) 2020-03-12 2021-03-11 嘧啶并杂环类化合物及其应用
KR1020227035086A KR20220152295A (ko) 2020-03-12 2021-03-11 피리미도헤테로사이클릭 화합물 및 이의 응용
MX2022011283A MX2022011283A (es) 2020-03-12 2021-03-11 Compuestos pirimidoheterocíclicos y aplicación de los mismos.
IL296357A IL296357A (en) 2020-03-12 2021-03-11 Heterocyclic pyrimido compounds and their uses
CN202180021254.XA CN115298174B (zh) 2020-03-12 2021-03-11 嘧啶并杂环类化合物及其应用
EP21767113.0A EP4105211A4 (en) 2020-03-12 2021-03-11 PYRIMIDOHETEROCYCLIC COMPOUNDS AND THEIR APPLICATION
TW110112436A TWI811656B (zh) 2020-04-22 2021-04-06 嘧啶并雜環類化合物及其應用
US18/473,147 US20240116934A1 (en) 2020-03-12 2023-09-22 Pyrimidoheterocyclic compounds and application thereof
JP2024005840A JP2024045251A (ja) 2020-03-12 2024-01-18 ピリミドヘテロ環式化合物およびその応用
AU2024201366A AU2024201366A1 (en) 2020-03-12 2024-02-29 Pyrimidoheterocyclic Compounds And Application Thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010172140 2020-03-12
CN202010172140.2 2020-03-12
CN202010323035.4 2020-04-22
CN202010323035 2020-04-22
CN202010953203 2020-09-11
CN202010953203.8 2020-09-11
CN202011593642 2020-12-29
CN202011593642.9 2020-12-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/905,973 A-371-Of-International US20230151004A1 (en) 2020-03-12 2021-03-11 Pyrimidoheterocyclic compounds and application thereof
US18/473,147 Continuation US20240116934A1 (en) 2020-03-12 2023-09-22 Pyrimidoheterocyclic compounds and application thereof

Publications (1)

Publication Number Publication Date
WO2021180181A1 true WO2021180181A1 (zh) 2021-09-16

Family

ID=77670465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080278 WO2021180181A1 (zh) 2020-03-12 2021-03-11 嘧啶并杂环类化合物及其应用

Country Status (11)

Country Link
US (2) US20230151004A1 (zh)
EP (1) EP4105211A4 (zh)
JP (2) JP2023517995A (zh)
KR (1) KR20220152295A (zh)
CN (3) CN115298174B (zh)
AU (2) AU2021233058B2 (zh)
BR (2) BR112022018140B1 (zh)
CA (2) CA3171365A1 (zh)
IL (1) IL296357A (zh)
MX (1) MX2022011283A (zh)
WO (1) WO2021180181A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220112204A1 (en) * 2020-10-14 2022-04-14 Accutar Biotechnology Inc. Substituted dihydropyranopyrimidine compounds as kras inhibitors
CN114539246A (zh) * 2021-12-30 2022-05-27 苏州闻天医药科技有限公司 一种哌啶并嘧啶类化合物及其用途
US11453683B1 (en) 2019-08-29 2022-09-27 Mirati Therapeutics, Inc. KRas G12D inhibitors
WO2022235864A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors
WO2022235870A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors for the treatment of cancer
US11548888B2 (en) 2019-01-10 2023-01-10 Mirati Therapeutics, Inc. KRas G12C inhibitors
WO2023036282A1 (zh) * 2021-09-10 2023-03-16 德昇济医药(无锡)有限公司 嘧啶并杂环类化合物的晶型及其制备方法
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
WO2023114954A1 (en) 2021-12-17 2023-06-22 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
US11702418B2 (en) 2019-12-20 2023-07-18 Mirati Therapeutics, Inc. SOS1 inhibitors
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors
US11845761B2 (en) 2020-12-18 2023-12-19 Erasca, Inc. Tricyclic pyridones and pyrimidones
WO2023246914A1 (zh) * 2022-06-24 2023-12-28 南京明德新药研发有限公司 杂环取代的嘧啶并吡喃类化合物及其应用
US11890285B2 (en) 2019-09-24 2024-02-06 Mirati Therapeutics, Inc. Combination therapies
US11932633B2 (en) 2018-05-07 2024-03-19 Mirati Therapeutics, Inc. KRas G12C inhibitors
WO2024081674A1 (en) 2022-10-11 2024-04-18 Aadi Bioscience, Inc. Combination therapies for the treatment of cancer
WO2024083120A1 (zh) * 2022-10-18 2024-04-25 南京明德新药研发有限公司 苄氨基喹啉类化合物及其制备方法
WO2024102421A2 (en) 2022-11-09 2024-05-16 Revolution Medicines, Inc. Compounds, complexes, and methods for their preparation and of their use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3163218A1 (en) * 2019-12-02 2021-06-10 Shanghai Yingli Pharmaceutical Co., Ltd Oxygen-containing heterocyclic compound, preparation method therefor and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035031A1 (en) * 2018-08-16 2020-02-20 Genentech, Inc. Fused ring compounds
WO2020239123A1 (zh) * 2019-05-31 2020-12-03 上海翰森生物医药科技有限公司 芳香杂环类衍生物调节剂、其制备方法和应用
CN112390788A (zh) * 2019-08-13 2021-02-23 苏州闻天医药科技有限公司 一种用于抑制krasg12c突变蛋白的化合物及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2017266911B2 (en) * 2016-05-18 2021-09-02 Array Biopharma, Inc. KRas G12C inhibitors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020035031A1 (en) * 2018-08-16 2020-02-20 Genentech, Inc. Fused ring compounds
WO2020239123A1 (zh) * 2019-05-31 2020-12-03 上海翰森生物医药科技有限公司 芳香杂环类衍生物调节剂、其制备方法和应用
CN112390788A (zh) * 2019-08-13 2021-02-23 苏州闻天医药科技有限公司 一种用于抑制krasg12c突变蛋白的化合物及其制备方法和用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4105211A4

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11932633B2 (en) 2018-05-07 2024-03-19 Mirati Therapeutics, Inc. KRas G12C inhibitors
US11548888B2 (en) 2019-01-10 2023-01-10 Mirati Therapeutics, Inc. KRas G12C inhibitors
US11964989B2 (en) 2019-08-29 2024-04-23 Mirati Therapeutics, Inc. KRas G12D inhibitors
US11453683B1 (en) 2019-08-29 2022-09-27 Mirati Therapeutics, Inc. KRas G12D inhibitors
US11890285B2 (en) 2019-09-24 2024-02-06 Mirati Therapeutics, Inc. Combination therapies
US11702418B2 (en) 2019-12-20 2023-07-18 Mirati Therapeutics, Inc. SOS1 inhibitors
WO2022081655A1 (en) * 2020-10-14 2022-04-21 Accutar Biotechnology, Inc. Substituted dihydropyranopyrimidine compounds as kras inhibitors
US20220112204A1 (en) * 2020-10-14 2022-04-14 Accutar Biotechnology Inc. Substituted dihydropyranopyrimidine compounds as kras inhibitors
US11845761B2 (en) 2020-12-18 2023-12-19 Erasca, Inc. Tricyclic pyridones and pyrimidones
WO2022235870A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors for the treatment of cancer
WO2022235864A1 (en) 2021-05-05 2022-11-10 Revolution Medicines, Inc. Ras inhibitors
WO2023036282A1 (zh) * 2021-09-10 2023-03-16 德昇济医药(无锡)有限公司 嘧啶并杂环类化合物的晶型及其制备方法
WO2023060253A1 (en) 2021-10-08 2023-04-13 Revolution Medicines, Inc. Ras inhibitors
WO2023114954A1 (en) 2021-12-17 2023-06-22 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
CN114539246A (zh) * 2021-12-30 2022-05-27 苏州闻天医药科技有限公司 一种哌啶并嘧啶类化合物及其用途
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors
WO2023246914A1 (zh) * 2022-06-24 2023-12-28 南京明德新药研发有限公司 杂环取代的嘧啶并吡喃类化合物及其应用
WO2024081674A1 (en) 2022-10-11 2024-04-18 Aadi Bioscience, Inc. Combination therapies for the treatment of cancer
WO2024083120A1 (zh) * 2022-10-18 2024-04-25 南京明德新药研发有限公司 苄氨基喹啉类化合物及其制备方法
WO2024102421A2 (en) 2022-11-09 2024-05-16 Revolution Medicines, Inc. Compounds, complexes, and methods for their preparation and of their use

Also Published As

Publication number Publication date
CA3232127A1 (en) 2021-09-16
CN117050079A (zh) 2023-11-14
CN115298174B (zh) 2023-11-03
EP4105211A4 (en) 2023-09-06
JP2023517995A (ja) 2023-04-27
KR20220152295A (ko) 2022-11-15
EP4105211A1 (en) 2022-12-21
CN117510492A (zh) 2024-02-06
CA3171365A1 (en) 2021-09-16
AU2024201366A1 (en) 2024-03-21
MX2022011283A (es) 2022-11-16
BR112022018140A2 (pt) 2022-11-22
CN115298174A (zh) 2022-11-04
AU2021233058A1 (en) 2022-10-13
IL296357A (en) 2022-11-01
BR122023026304A2 (pt) 2024-01-16
AU2021233058B2 (en) 2024-05-16
US20230151004A1 (en) 2023-05-18
JP2024045251A (ja) 2024-04-02
BR112022018140B1 (pt) 2024-02-15
US20240116934A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2021180181A1 (zh) 嘧啶并杂环类化合物及其应用
WO2021147967A1 (zh) 作为kras抑制剂的大环类化合物
WO2021259331A1 (zh) 八元含n杂环类化合物
WO2022171147A1 (zh) 嘧啶并芳香环类化合物
WO2020200316A1 (zh) 作为ret抑制剂的吡唑并吡啶类化合物及其应用
CN111788205B (zh) 吡唑并嘧啶衍生物及其用途
KR20210057767A (ko) Crbn단백질에 작용하는 삼환식 화합물
WO2021063404A1 (zh) 作为pd-1/pd-l1小分子抑制剂的化合物及其应用
WO2022161443A1 (zh) 嘧啶并吡喃类化合物
WO2022134642A1 (zh) 芳香杂环类化合物、药物组合物及其应用
WO2021204111A1 (zh) 作为dna-pk抑制剂的氨基嘧啶化合物及其衍生物
WO2022063308A1 (zh) 一类1,7-萘啶类化合物及其应用
CN113993867A (zh) 作为fgfr和vegfr双重抑制剂的并环类化合物
TWI811656B (zh) 嘧啶并雜環類化合物及其應用
WO2023208127A1 (zh) 杂芳基取代的双环化合物及其应用
WO2020063965A1 (zh) 作为选择性Trk抑制剂的吡唑并嘧啶衍生物
WO2022166721A1 (zh) 含1,4-氧杂氮杂环庚烷的并环类衍生物
WO2022262782A1 (zh) 戊二酰亚胺取代的异噁唑稠环化合物及其应用
WO2022083687A1 (zh) 硒杂环类化合物及其应用
WO2020177762A1 (zh) 同时具有BET Bromodomain蛋白抑制和PD-L1基因调控作用的化合物
WO2023241618A1 (zh) 氨基嘧啶类化合物及其应用
WO2023138601A1 (zh) 桥环取代的杂芳基并吡喃类衍生物及其应用
WO2022063094A1 (zh) 四氢异喹啉衍生物及其应用
WO2024067857A1 (zh) 大环衍生物及其应用
WO2022171013A1 (zh) 四氢喹唑啉类化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21767113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022554868

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3171365

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022018140

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2021767113

Country of ref document: EP

Effective date: 20220915

ENP Entry into the national phase

Ref document number: 20227035086

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021233058

Country of ref document: AU

Date of ref document: 20210311

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022018140

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220909