WO2021180138A1 - Self-catalyzing rapid degradable polyester polymers and preparation method and use thereof - Google Patents

Self-catalyzing rapid degradable polyester polymers and preparation method and use thereof Download PDF

Info

Publication number
WO2021180138A1
WO2021180138A1 PCT/CN2021/080046 CN2021080046W WO2021180138A1 WO 2021180138 A1 WO2021180138 A1 WO 2021180138A1 CN 2021080046 W CN2021080046 W CN 2021080046W WO 2021180138 A1 WO2021180138 A1 WO 2021180138A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
degradable
blocks
substituted
catalyzing
Prior art date
Application number
PCT/CN2021/080046
Other languages
French (fr)
Inventor
Edwin W. Huang
Original Assignee
Huang Edwin W
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huang Edwin W filed Critical Huang Edwin W
Priority to CN202180034136.2A priority Critical patent/CN115667361A/en
Publication of WO2021180138A1 publication Critical patent/WO2021180138A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/688Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur
    • C08G63/6884Polyesters containing atoms other than carbon, hydrogen and oxygen containing sulfur derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/6886Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes

Definitions

  • the present invention relates to the preparation methods and use of a self-catalyzing rapid degradable polyester polymer.
  • the invention relates to the preparation and applications of condensation type copolyesters by embedding with small biodegradable blocks and catalyzing blocks in the polymer main chains. It belongs to the field of functional polymer materials.
  • Polyesters are the general name of the polymers prepared by condensation polymerization of polyol (poly alcohol) with poly acids, the typical polyester is aromatic polyester that is represented by polyethylene terephthalate (PET) , which is widely applied in various industries of fibers, packaging and others for its excellent chemical stability, proper mechanical properties and transparency and health performance. At present time, polyester production and sales growth momentum remains strong, especially in the field of packaging of carbonate drinks. With the breakthrough of research on polyester’s resistance properties, the applications in the field of beer, food and cosmetic packaging will enlarge the market of polyesters. However, the polyester (PET) waste is difficult to degrade naturally in nature.
  • toluenesulfonic acid or cation ion exchange resins are often used as hydrolysis catalyst for hydrolysis of esters of small molecules.
  • Sodium dimethyl 5-sulfoisophthalate or its derivatives sodium diethyl 5-sulfoisophthalate or sodium diethyleneglycol 5-sulfoisophthalate are used as co-monomers of polyethylene terephthalate to embrace the sulfoisophthalate into the polymer main chains, which services as binding site of dyes and therefore improves the polyester’s dyeing performance.
  • the sulfoisophthalate is not serving as hydrolysis catalyst in the polyester because the ester bonds in polyethylene terephthalate are not easy to be hydrolyzed, even with existing of sulfoisophthalate.
  • both rapid degradable blocks hydroxyl acids ester which is easily to be hydrolyzed with catalysts, and catalyzing blocks sulfoisophthalate are embraced into the same polyester main chains and therefore to make hydroxyl acid ester hydrolyzing even more quickly and therefore break the polyester main chains much more rapid.
  • the objective of the present invention is to provide a rapid degradable polyester polymer and their preparation methods and use thereof to reach the goal of rapid degradation at special conditions for polyester polymers such as PET and resolve the environment pollution problems resulted from the application of such kind polymers.
  • the present invention provides a self-catalyzing rapid degradable polyester polymer comprising a repeat unit – [ (A) n1 - (B) n2 - (C) n3 - (D) n4 - (E) n5 ] n –, which is made by polycondensation of repeat structure units comprising non-degradable rigidity blocks A, degradable soft blocks B, rapid degradable blocks C, soft blocks D and self-catalyzing blocks E, wherein the said non-degradable rigidity blocks A have a structure of Formula (I) :
  • the said degradable soft blocks B have a structure of Formula (II) :
  • the said rapid degradable blocks C have a structure of Formula (IIIa) , or or (IIIb) or (IIIc) or (IIId) :
  • n 1 , and n 3 each independently is an integer larger than 0; n 2 , n 4 and n 5 each independently is 0, or an integer larger than 0; p, q and y each independently is 0 or 1; r 1 , r 2 , r 3 , s, t, u, v, w, x and z are each independently is an integer larger than 0, less than 50; m is integers larger than 0, less than 200; R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7, R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14
  • the said R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7, R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 are independently selected in each structural unit from H or C 1 -C 10 alkyls.
  • the said R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7, R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 are independently selected in each structural units from H or methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl; R’, R”, R” and R 4 are selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl.
  • the said R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7, R 8 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 are H;
  • R 9 , R 10 are H or methyl;
  • r 1 , r 2 , r 3 , s, t, w, x and z are any integer independently selected from 2, 3, 4;
  • u and v are any integer independently selected from 1, 2, 3 or 4.
  • the present invention provides a preparation method for preparing the self-catalyzing rapid degradable polyester polymer comprising the following steps:
  • step (a) described above can be achieved by:
  • step 2) first esterification: the mixtures in step 1) are esterified 220 °C to 260 °C, methyl or ethyl alcohol and H 2 O are removed through fractional distillation (Scheme VIIIa to VIIIf) ; and
  • step 2) Secondary esterification: the mixtures in step 2) are continued to be esterified at 220 to 260 °C, methyl or ethyl alcohol and H 2 O are removed through fractional distillation until no more alcohol or H 2 O be moved out (Scheme IXa to IXc) .
  • the method for preparing self-catalyzing rapid degradable polyester polymers can comprise the following steps:
  • the method for preparing self-catalyzing rapid degradable polyester polymers can comprise the following steps:
  • R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2 CH 2 -) , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , n, n 1 , n 2 , n 3 , n 4 , n 5 , p, q, y, r 1 , r 2 , r 3 , s, t, u, v, w, x, z and m are defined above.
  • the conditions for melting polymerization in the present invention are polymerization at 200 to 290°C, under vacuum for 2 to 7 hours.
  • the melting polymerization in the present invention can be processed as follows:
  • the desired viscosity described above is 0.6 to 1.2 dL/g.
  • the synthesis of monomers or oligomers of said non-degradable rigidity block A comprising the steps of:
  • R’, R 1 , R 2 , R 3 , r 1 , and n 1 are defined above.
  • the synthesis of monomers or oligomers of said rapid degradable block C can be achieved from alkyl hydroxyl acids esters via Scheme IIIa or Scheme IIIb or Scheme IIIc or Scheme IIId as follows:
  • R is independently selected in each structural unit from H or C 1 -C 10 alkyls or ethylene glycol (HOCH 2 CH 2 -) , u, v, R 9 , R 10 , R 11 , R 12 are defined same above;
  • R is independently selected in each structural unit from H or C 1 -C 10 alkyls or ethylene glycol (HOCH 2 CH 2 O-) , u, v, R 9 , R 10 , R 11 , R 12 are defined above;
  • R 4 is selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl;
  • R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2 CH 2 -) , u, v, R 9 , R 10 , R 11 , R 12 are defined above;
  • the Catalyst in Scheme (IIIc) is selected from any ester exchange reaction catalysts, such as but not limited to: H 2 SO 4 or Lewis Acids or Zinc Acetate or Terabutyl titanate or Butyl (oxo) stannanol or the mixtures of any of them;
  • R and R’ are independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2 CH 2 -) , u, v, R 9 , R 10 , R 11 , R 12 are defined above;
  • R 4 is selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl;
  • the Catalyst in Scheme IIId is selected from any ester exchange reaction catalysts, such as but not limited to: H 2 SO 4 or Lewis Acids or Zinc Acetate or Terabutyl titanate or Butyl (oxo) stannanol or the mixtures of any of them.
  • the synthesis of monomers or oligomers of said degradable soft block B comprising the steps of:
  • R 2 , R 3 , R 5 , R 6 , R 7 , R 8 , r 2 , s, and n 2 are defined same as above.
  • the synthesis of monomers or oligomers of said catalyzing block E comprising the steps of:
  • R is independently selected from H or methyl or ethyl or C3-C10 alkyls, R 15 , R 16 and w are defined above, the said Catalyst in Scheme V is selected from one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, preferably a Lewis acid, zinc acetate, tetrabutyl titanate, monobutyltin oxide, calcium carbonate or a mixture thereof.
  • R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2 CH 2 -)
  • R’ is independently selected from H or methyl or ethyl
  • the definition of R 9 , R 10 and v are all same as those defined above
  • the catalyst at Scheme VIIa is one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts
  • the solid acid catalyst is specifically cation ion exchange resin, antimony glycol, antimony trioxide, antimony acetate, aluminum glycol, aluminum hydroxide, aluminum chloride, aluminum acetate, aluminum oxide, trimethyl aluminum, triethyl aluminum, and triethyl, oxyaluminum, aluminum triisopropoxide,
  • R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2 CH 2 -)
  • R’ is independently selected from H or methyl or ethyl
  • the definition of R 9 , R 10 and v are all same as those defined above
  • the Catalyst in Scheme VIIb is one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid ; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, the solid acid catalyst is specifically cation ion exchange resin, antimony glycol, antimony trioxide, antimony acetate, aluminum glycol, aluminum hydroxide, aluminum chloride, aluminum acetate, aluminum oxide, trimethyl aluminum, triethyl aluminum, and triethyl, oxyaluminum, aluminum triiso
  • the hydroxyl moles contained in non-degradable rigidity blocks A are larger than the hydroxyl moles contained in rapid degradable blocks C; and the hydroxyl moles contained in degradable blocks C are large than the hydroxyl moles contained in catalyzing blocks E, because the ethylene glycol in the over dosed non-rapid degradable blocks can be removed under vacuum at high temperature and therefore conduct a self-condensation polymerization to form high molecular polymers.
  • the polyester polymers disclosed in present invention embraced different structured degradable blocks, soft blocks and catalyzing blocks along the polymer main chains and therefore reduced its crystallinity, make its melting temperature much lower than that of regular polyester polymers;
  • soft segments of polymer become longer, the glass transition temperature of the polymer is lower than that of regular polyester polymers also.
  • the polyester polymers in present invention not only have excellent processing properties, but also can be degraded quickly into many short non-degradable chains in proper environment (such as existing of water) , followed by further complete degradation of non-degradable short segments. It effectively resolved the problems of environment pollution resulted from applications of such kind of polymers and satisfied the need of wide applications of such kind of polymers.
  • the method of preparation in present invention is simple, low cost, the raw materials are easy to be obtained at low price. It is suitable to volume production and has practical value and application potentials.
  • PTA p-terephthalic acid
  • Step A To the above Step A mixture, co-monomers catalyzing block (V) , one of rapid degradable blocks (IIIa, IIIb, IIIc or IIId) , degradable soft block (II) and commercial available soft block (IV, such as polyethylene glycol or polytetrahydrofuran) were added according to desired mole ratios with stirring at 240 °C to 250°C, the mixture was polymerized for about 1 hour at 200 to 240 °C under vacuum (20 KPa) and then the temperature of the mixture was raised to 210 to 250°C and reacted for another half an hour under vacuum (10 KPa) . The ethylene glycol was removed through vacuum.
  • co-monomers catalyzing block (V) one of rapid degradable blocks (IIIa, IIIb, IIIc or IIId) , degradable soft block (II) and commercial available soft block (IV, such as polyethylene glycol or polytetrahydrofuran) were added according to desired mole ratios with stirring at 240
  • step B The mixture in step B was further polymerized at 220 to 270 °C under very high vacuum (50to 100 Pa) until viscosity reach desired value.
  • catalyst e.g. Sb 2 O 3 , 0.1 wt %
  • stabilizer 0.05 wt % in ethylene glycol was added.
  • the mixture was reacted at 250 °C to collect methanol, ethanol and H 2 O until no more H 2 O can be distilled out, more catalyst and stabilizer, and soft block IV (such as polyethylene glycol or polytetrahydrofuran ) were added.
  • soft block IV such as polyethylene glycol or polytetrahydrofuran
  • step A The mixture of step A was polymerized for about 1 hour at 200 to 240 °C under vacuum (20 KPa) and then the temperature of the mixture was raised to 210 to 250°C and reacted for another half an hour under vacuum (10 KPa) . The ethylene glycol was removed through vacuum.
  • step B The mixture in step B was further polymerized at 220 to 270 °C under very high vacuum (50to 100 Pa) until viscosity reach desired value.
  • the polyester polymers provided in the present invention not only have excellent mechanical processing properties but also can be rapid degraded as long as water or moistures existing and therefore effectively resolved the environment pollution problems caused by this kind of polymers. It satisfied the wide application demand and especially it ensured such kind of polymers can be applied in beverage bottle, food package film, agricultural film (green house film and /or mulch film) , shopping bag and other food package containers.
  • the method of preparation in present invention is simple with low cost, the raw materials are easy to be obtained at low price. It is suitable to volume production and has practical value and application potentials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention discloses a self-catalyzing rapid degradable polyester polymer, its preparation method and use thereof. The polyester polymers provided in this invention not only have good machinery processing performance, but also can be quickly degraded in appropriate of environment with water and the degradation is not relying on micro-organism or bacterial, therefore the invention effectively resolved the environment pollution problems resulted in the applications of such kind of polyester polymers. It satisfied the wide application demands and especially it ensured such kind of polymers can be applied in beverage bottle, food package films, especially mulch films, shopping bags and other food package containers. In addition, the method of preparation in present invention is simple and at low cost, the raw materials are easy to be obtained at low price. It is suitable to volume production and has practical value and application potentials.

Description

Self-catalyzing Rapid Degradable Polyester Polymers and Preparation Method and Use Thereof
Field of Invention
The present invention relates to the preparation methods and use of a self-catalyzing rapid degradable polyester polymer. In particularly, the invention relates to the preparation and applications of condensation type copolyesters by embedding with small biodegradable blocks and catalyzing blocks in the polymer main chains. It belongs to the field of functional polymer materials.
Background of Invention
Polyesters are the general name of the polymers prepared by condensation polymerization of polyol (poly alcohol) with poly acids, the typical polyester is aromatic polyester that is represented by polyethylene terephthalate (PET) , which is widely applied in various industries of fibers, packaging and others for its excellent chemical stability, proper mechanical properties and transparency and health performance. At present time, polyester production and sales growth momentum remains strong, especially in the field of packaging of carbonate drinks. With the breakthrough of research on polyester’s resistance properties, the applications in the field of beer, food and cosmetic packaging will enlarge the market of polyesters. However, the polyester (PET) waste is difficult to degrade naturally in nature. I n the environment of humidity of 45%to100%, and temperature of 20 ℃ the PET bottles can exist for 30to40 years, and its mechanical properties loss only 50%; at the same conditions, the polyester film can exist as long as 90to100 years. Therefore, the huge amount of polyester waste will bring us tremendous pressure to the environment.
In the prior arts a kind of polyesters with degradable blocks embraced in the polymer main chain were disclosed which shown similar mechanical and thermal properties to the regular polyesters but much rapid degradability, especially with existing hydrolysis catalyst such as acid or base. Therefore, the polymers with degradable segments can be degraded naturally  in 5-10 years as estimated or it can be recycled and degraded in factory, in so called tert-recycling meaner.
However, 5 to 10 years degradation time are still too long for plastics in practice for environment protection, especially some special applications, such as agricultural films, disposable food packages and dinnerware, disposable clothes, etc. Therefore, a kind of even more rapid degradable polymers are very necessary to be developed.
On the other hand, toluenesulfonic acid or cation ion exchange resins are often used as hydrolysis catalyst for hydrolysis of esters of small molecules. Sodium dimethyl 5-sulfoisophthalate or its derivatives sodium diethyl 5-sulfoisophthalate or sodium diethyleneglycol 5-sulfoisophthalate are used as co-monomers of polyethylene terephthalate to embrace the sulfoisophthalate into the polymer main chains, which services as binding site of dyes and therefore improves the polyester’s dyeing performance. However, the sulfoisophthalate is not serving as hydrolysis catalyst in the polyester because the ester bonds in polyethylene terephthalate are not easy to be hydrolyzed, even with existing of sulfoisophthalate.
In the present invention both rapid degradable blocks hydroxyl acids ester, which is easily to be hydrolyzed with catalysts, and catalyzing blocks sulfoisophthalate are embraced into the same polyester main chains and therefore to make hydroxyl acid ester hydrolyzing even more quickly and therefore break the polyester main chains much more rapid.
Summary of the invention
In order to resolve above problems for existing technologies, the objective of the present invention is to provide a rapid degradable polyester polymer and their preparation methods and use thereof to reach the goal of rapid degradation at special conditions for polyester polymers such as PET and resolve the environment pollution problems resulted from the application of such kind polymers.
Detailed description of the invention
It is to be understood by one of ordinary skill in the art that the present invention is a  description of exemplary embodiments only and is not intended as limiting the broader aspects of the present invention. Each aspect so described may be combined with any other aspect or aspects unless clearly indicated to the contrary. In particular, any feature indicated as being preferred or advantageous may be combined with any other feature or features indicated as being preferred or advantageous. For the purpose of above objectives of invention, the technical approaches used in the present invention are as following:
In one aspect, the present invention provides a self-catalyzing rapid degradable polyester polymer comprising a repeat unit – [ (A)  n1- (B)  n2- (C)  n3- (D)  n4- (E)  n5n–, which is made by polycondensation of repeat structure units comprising non-degradable rigidity blocks A, degradable soft blocks B, rapid degradable blocks C, soft blocks D and self-catalyzing blocks E, wherein the said non-degradable rigidity blocks A have a structure of Formula (I) :
Figure PCTCN2021080046-appb-000001
the said degradable soft blocks B have a structure of Formula (II) :
Figure PCTCN2021080046-appb-000002
the said rapid degradable blocks C have a structure of Formula (IIIa) , or or (IIIb) or (IIIc) or (IIId) :
Figure PCTCN2021080046-appb-000003
Figure PCTCN2021080046-appb-000004
the said soft blocks D have a structure of Formula (IV)
Figure PCTCN2021080046-appb-000005
the said catalyzing blocks E have a structure of Formula (V) :
Figure PCTCN2021080046-appb-000006
the repeat unit of said polyester polymers – [ (A)  n1- (B) n 2- (C) n 3- (D) n 4- (E) n 5n–, have a structure of Formula (VIa) or (VIb) or (VIc) or ( (VId) :
Figure PCTCN2021080046-appb-000007
wherein, in the repeat unit – [ (A)  n1- (B) n 2- (C) n 3- (D) n 4- (E) n 5n–, the sequence of block A, B, C, D and E is random arranged and any blocks can appear multi times; n, n 1, and n 3 each independently is an integer larger than 0; n 2, n 4 and n 5 each independently is 0, or an integer larger than 0; p, q and y each independently is 0 or 1; r 1, r 2, r 3, s, t, u, v, w, x and z are each independently is an integer larger than 0, less than 50; m is integers larger than 0, less than 200; R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are members independently selected in each structural unit from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted  or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl, substituted or unsubstituted alkoxy, ester, nitro, amine, amide, or thiol; and R’, R”, R”’ and R 4 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl.
In some embodiments, the said R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are independently selected in each structural unit from H or C 1-C 10 alkyls.
In some embodiments, the said R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are independently selected in each structural units from H or methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl; R’, R”, R” and R 4 are selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl.
In some embodiments, the said R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are H; R 9, R 10 are H or methyl; r 1, r 2, r 3, s, t, w, x and z are any integer independently selected from 2, 3, 4; u and v are any integer independently selected from 1, 2, 3 or 4.
In another aspect, the present invention provides a preparation method for preparing the self-catalyzing rapid degradable polyester polymer comprising the following steps:
(a) mixing co-monomers or oligomers of non-degradable rigidity block A, degradable soft blocks B, rapid degradable blocks C, soft blocks D, and catalyzing block E together in the same reactor at same time, and are esterified from 220 ℃ to 260 ℃; and
(b) process the melting polymerization or solution polymerization, preferably melting polymerization.
In preferred embodiments, the step (a) described above can be achieved by:
1) mixing p-terephthalic acid, diol, binary acid, hydroxyl acid or methyl hydroxyl acid ester or ethyl hydroxyl acid ester, or glycolide (1, 4-dioxane-2, 5-dione) , or lactide, polyether and sodium dimethyl 5-sulfoisophthalate as desired molar ratio of MA/MD from 1/1 to 1/5, is stirred and mixed very well with catalysts; wherein MA is combination moles of all acids and esters, and MD is combination moles of all diols;
2) first esterification: the mixtures in step 1) are esterified 220 ℃ to 260 ℃, methyl or ethyl alcohol and H 2O are removed through fractional distillation (Scheme VIIIa to  VIIIf) ; and
3) Secondary esterification: the mixtures in step 2) are continued to be esterified at 220 to 260 ℃, methyl or ethyl alcohol and H 2O are removed through fractional distillation until no more alcohol or H 2O be moved out (Scheme IXa to IXc) .
Figure PCTCN2021080046-appb-000008
Figure PCTCN2021080046-appb-000009
According to the present invention, the method for preparing self-catalyzing rapid degradable polyester polymers can comprise the following steps:
(a) first synthesize the monomers or oligomers of non-degradable blocks A, and
(b) add monomers or oligomers of degradable soft blocks B, rapid degradable blocks C, soft blocks D, and catalyzing blocks E to process the solution polymerization or melting polymerization.
According to the present invention, the method for preparing self-catalyzing rapid degradable polyester polymers can comprise the following steps:
(a) first synthesize monomers or oligomers of non-degradable blocks A, degradable soft blocks  B, rapid degradable blocks C and self-catalyzing blocks E together at same time, and
(b) add soft blocks D to process the melting polymerization or solution polymerization (the reactions are shown in Scheme VIa to Scheme VId) .
Figure PCTCN2021080046-appb-000010
Figure PCTCN2021080046-appb-000011
wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18, n, n 1, n 2, n 3, n 4, n 5, p, q, y, r 1, r 2, r 3, s, t, u, v, w, x, z and m are defined above.
In preferred embodiments, the conditions for melting polymerization in the present invention are polymerization at 200 to 290℃, under vacuum for 2 to 7 hours.
In preferred embodiments, the melting polymerization in the present invention can be processed as follows:
1) pre-polymerization at 200 ℃ to 250 ℃ under vacuum;
2) final polymerization at 200 ℃ to 290 ℃ under high vacuum until reaching desired viscosity.
In preferred embodiments, the desired viscosity described above is 0.6 to 1.2 dL/g.
In some embodiments, the synthesis of monomers or oligomers of said non-degradable rigidity block A, comprising the steps of:
Figure PCTCN2021080046-appb-000012
wherein R’, R 1, R 2, R 3, r 1, and n 1 are defined above.
In some embodiments, the synthesis of monomers or oligomers of said rapid degradable block C can be achieved from alkyl hydroxyl acids esters via Scheme IIIa or Scheme IIIb or Scheme IIIc or Scheme IIId as follows:
Figure PCTCN2021080046-appb-000013
wherein R is independently selected in each structural unit from H or C 1-C 10 alkyls or ethylene glycol (HOCH 2CH 2-) , u, v, R 9, R 10, R 11, R 12 are defined same above;
Figure PCTCN2021080046-appb-000014
wherein R is independently selected in each structural unit from H or C 1-C 10 alkyls or ethylene  glycol (HOCH 2CH 2O-) , u, v, R 9, R 10, R 11, R 12 are defined above; R 4 is selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl;
Figure PCTCN2021080046-appb-000015
wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , u, v, R 9, R 10, R 11, R 12 are defined above; the Catalyst in Scheme (IIIc) is selected from any ester exchange reaction catalysts, such as but not limited to: H 2SO 4 or Lewis Acids or Zinc Acetate or Terabutyl titanate or Butyl (oxo) stannanol or the mixtures of any of them;
Figure PCTCN2021080046-appb-000016
wherein R and R’ are independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , u, v, R 9, R 10, R 11, R 12 are defined above; R 4 is selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl; the Catalyst in Scheme IIId is selected from any ester exchange reaction catalysts, such as but not limited to: H 2SO 4 or Lewis Acids or Zinc Acetate or Terabutyl titanate or Butyl (oxo) stannanol or the mixtures of any of them.
In some embodiments, the synthesis of monomers or oligomers of said degradable soft block B, comprising the steps of:
Figure PCTCN2021080046-appb-000017
wherein R 2, R 3, R 5, R 6, R 7, R 8, r 2, s, and n 2 are defined same as above.
In some embodiments, the synthesis of monomers or oligomers of said catalyzing block E, comprising the steps of:
Figure PCTCN2021080046-appb-000018
wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls, R 15, R 16 and w are defined above, the said Catalyst in Scheme V is selected from one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, preferably a Lewis acid, zinc acetate, tetrabutyl titanate, monobutyltin oxide, calcium carbonate or a mixture thereof.
In some embodiments, the said alkyl hydroxyl acids esters (VII)
Figure PCTCN2021080046-appb-000019
can be prepared by:
Figure PCTCN2021080046-appb-000020
wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , R’ is independently selected from H or methyl or ethyl; the definition of R 9, R 10 and v are all same as those defined above; the catalyst at Scheme VIIa is one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, the solid acid catalyst is specifically cation ion exchange resin, antimony glycol, antimony trioxide, antimony acetate, aluminum glycol, aluminum hydroxide, aluminum chloride, aluminum acetate, aluminum oxide, trimethyl aluminum, triethyl aluminum, and triethyl, oxyaluminum, aluminum triisopropoxide, aluminum stearate, sodium aluminate, aluminum oxide, aluminum sulfate, titanium glycol ethylene glycol, ethyl titanate, tetrabutyl titanate, tetraisopropyl titanate, titanium tetrachloride, potassium hexafluorotitanate, potassium potassium oxalate, lithium titanyl oxalate, titanate, titanium carboxylate, titanium dioxide, titanium acetylacetonate, tetraphenyl titanate, titanium chloride, diisopropoxy-diacetylacetonyl titanium, di-n-butoxy-bis (triethanolamine) titanium, tributyl monoacetyl titanium, triisopropyl monoacetyl titanium, titanium tetrabenzoate, germanium dioxide, tetrabutoxy germanium, stannous oxalate, monobutyltin oxide, stannous octoate, tin acetylacetonate, stannous chloride, tin powder, tin oxide, tin acetate, butylstannic acid, monobutyltin oxide, dibutyl-diisooctyltin, two Methyl tin oxide, dibutyl tin oxide, diphenyl tin oxide, tributyltin vinegar, tributyltin fluoride, triethyltin chloride, triethyltin bromide, One or two  or more of triethyltin acetate, trimethyltin hydroxide, triphenyltin chloride, triphenyltin bromide, triphenyltin acetate, and zinc acetate; preferably, one or two or more of a Lewis acid, monobutyltin oxide, dibutyltin oxide, and tributyltin vinegar; more preferably a sulfuric acid, p-toluenesulfonic acid, cation ion exchange resin, Lewis acid, zinc acetate, tetrabutyl titanate, monobutyltin oxide, or a mixture thereof; said solvent is benzene or toluene, or any other solvent azeotropic with water.
In some embodiments, wherein the said alkyl hydroxyl acids esters (VII)
Figure PCTCN2021080046-appb-000021
can be prepared by:
Figure PCTCN2021080046-appb-000022
wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , R’ is independently selected from H or methyl or ethyl; the definition of R 9, R 10 and v are all same as those defined above; the Catalyst in Scheme VIIb is one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid ; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, the solid acid catalyst is specifically cation ion exchange resin, antimony glycol, antimony trioxide, antimony acetate, aluminum glycol, aluminum hydroxide, aluminum chloride, aluminum acetate, aluminum oxide, trimethyl aluminum, triethyl aluminum, and triethyl, oxyaluminum, aluminum triisopropoxide, aluminum stearate, sodium aluminate, aluminum oxide, aluminum sulfate, titanium glycol ethylene glycol, ethyl titanate, tetrabutyl titanate, tetraisopropyl titanate, Titanium tetrachloride, potassium hexafluorotitanate, potassium potassium oxalate, lithium titanyl oxalate, titanate, titanium carboxylate, titanium dioxide, titanium acetylacetonate, tetraphenyl titanate, titanium chloride, diisopropoxy-Diacetylacetonyl titanium, di-n-butoxy-bis  (triethanolamine) titanium, tributyl monoacetyl titanium, triisopropyl monoacetyl titanium, titanium tetrabenzoate, germanium dioxide, tetrabutoxy germanium, Stannous oxalate, monobutyltin oxide, stannous octoate, tin acetylacetonate, stannous chloride, tin powder, tin oxide, tin acetate, butylstannic acid, monobutyltin oxide, dibutyl-diisooctyltin, two methyl tin oxide, dibutyl tin oxide, diphenyl tin oxide, tributyltin vinegar, tributyltin fluoride, triethyltin chloride, triethyltin bromide, one or two or more of triethyltin acetate, trimethyltin hydroxide, triphenyltin chloride, triphenyltin bromide, triphenyltin acetate, and zinc acetate; preferably, one or two or more of a Lewis acid, monobutyltin oxide, dibutyltin oxide, and tributyltin vinegar; more preferably a sulfuric acid, p-toluenesulfonic acid, cation ion exchange resin, Lewis acid, zinc acetate, tetrabutyl titanate, monobutyltin oxide, or a mixture thereof.
In preferred embodiments, the hydroxyl moles contained in non-degradable rigidity blocks A are larger than the hydroxyl moles contained in rapid degradable blocks C; and the hydroxyl moles contained in degradable blocks C are large than the hydroxyl moles contained in catalyzing blocks E, because the ethylene glycol in the over dosed non-rapid degradable blocks can be removed under vacuum at high temperature and therefore conduct a self-condensation polymerization to form high molecular polymers.
In yet another aspect of this invention, provided is that the use of the self-catalyzing rapid degradable polyester polymer or the method for preparing self-catalyzing rapid degradable polyester polymers in shopping bags, green house films, mulch films, medical devices, beverage package bottle, food package films and other food containers.
Compared with the existing technologies, the polyester polymers disclosed in present invention embraced different structured degradable blocks, soft blocks and catalyzing blocks along the polymer main chains and therefore reduced its crystallinity, make its melting temperature much lower than that of regular polyester polymers; In addition, due to embraced other blocks, soft segments of polymer become longer, the glass transition temperature of the polymer is lower than that of regular polyester polymers also. Thus, the polyester polymers in present invention not only have excellent processing properties, but also can be degraded quickly into many short non-degradable chains in proper environment (such as existing of water) , followed by further complete degradation of non-degradable short segments. It effectively resolved the problems of environment pollution resulted from applications of such  kind of polymers and satisfied the need of wide applications of such kind of polymers. Especially, it can ensure such kind of polymers apply to green house film, mulch film, beverage bottle, food package film, shopping bags and other food package containers; In addition, the method of preparation in present invention is simple, low cost, the raw materials are easy to be obtained at low price. It is suitable to volume production and has practical value and application potentials.
Examples
The following examples are intended to illustrate, but not limit, the scope of the invention. The scope of the invention is not limited by the examples but is defined in the appended claims. All parts and percentages are based on weight unless otherwise stated.
Example 1
1.  Synthesis of co-monomer of catalyzing block (V) : Sodium 1, 3-Diethyleneglycol 5- Sulfoisophthalate.
To a solution of Sodium 1, 3-Dimethyl 5-Sulfoisophthalate (1.0 mole) in ethylene glycol (1.5 mole) was added catalyst CaCO 3 (0.01 mole) and Sodium Acetate (0.0015 mole) . The solution was stirred at a temperature of 130 to 150 ℃ for 5 hours and methyl alcohol (2.0 mole) was collected through fractional distillation. The residue solution is ready to be used for polymerization.
2.  Synthesis of co-monomer of rapid degradable block (IIIa and /or IIIb)
A. To a solution of ethyl lactate or methyl lactate (1 mole) in ethylene glycol (2 mole) was added catalyst monobutyltin oxide (0.2 mole) with stirring, the temperature of solution was raised to 135 to 180 ℃ and the reaction was kept for 3 to 4 hours. The byproduct ethanol or methanol is slowly fractional distilled, and the temperature at the top of the fractionation column is controlled below 80 ℃. The transesterification reaction is a reversible reaction, so there is an excess of reactant ethylene glycol during the reaction, and the reaction byproduct ethanol or methanol should be removed in time to force the reaction to proceed in a positive direction. When ethanol or methanol is no longer distilled off in the  system, excess ethylene glycol and non-reacted ethyl 2-hydroxypropionate are distilled off under reduced pressure; the residue in the reactor is the reaction product, the structural formula is as above, and the boiling point of the reaction product is 274 to 275 ℃, and the yield is 84 to 86%.
B. To the above product (product of step A, 1 mole) was added di-acids such as adipic acid, succinic acid or terephthalic acid (0.5 mole) under protection of N 2 and the pressure was kept at 0.05 MPa, the temperature of mixture was raised to 180 -200 ℃ nd the reaction was kept for 2 –3 hours under pressure of 0.05 MPa. The byproduct H 2O was collected by fractional distillation until no more H 2O can be distilled out. The mixture is ready for polymerization.
3.  Synthesis of co-monomer of degradable block (IIIc)
To a solution of ethylene glycol (1 mole) in ethyl lactate or methyl lactate (2 mole) was added catalyst monobutyltin oxide (0.2 mole) with stirring, the temperature of solution was raised to 135 to 180 ℃ and the reaction was kept for 3 to 4 hours. The byproduct ethanol or methanol is slowly fractional distilled, and the temperature at the top of the fractionation column is controlled below 80 ℃. When ethanol or methanol is no longer distilled off in the system, the residue in the reactor is the reaction product, the structural formula is as above.
4.  Synthesis of co-monomer of degradable block (IIId)
A.  Synthesis of ethylene glycol lactate: same process as in Example 1, step A of 2.
B.  Synthesis of ethylene glycol lactate: To a solution of concentrated H 2SO 4 (98%, 2 ml) in benzene or toluene (100 ml) were added lactic acid (80%, 225 gram) and ethylene glycol (490 gram) . The solution was heated to boiling and H 2O/benzene (toluene) mixture was collected with Dean-Stark or similar apparatus. When there is no more H 2O to be distilled, the temperature of system was raised and the solvent benzene or toluene and excess ethylene glycol was removed in vacuum.
C. Commercially available lactide or glycolide will be used directly
5.  Synthesis of degradable soft block (II)
To a solution of catalyst (e.g. Sb 2O 3, 0.1 wt %) in ethylene glycol (2.0 mole) was added di-acids such as adipic acid or succinic acid (1.0 mole) with stirring. The mixture was reacted at 250 ℃ until no more H 2O is distilled out. The residues are the product.
6. Synthesis of present invented polyester polymers
A.  Esterification of p-terephthalic acid (PTA) : To a solution of catalyst (e.g. Sb 2O 3, 0.1 wt %) and stabilizer (0.05 wt %) in ethylene glycol was added p-terephthalic acid with stirring. The mixture was reacted at 250 ℃ until no more H 2O can be distilled out, more catalyst and stabilizer were added.
B. Prepolymerization: To the above Step A mixture, co-monomers catalyzing block (V) , one of rapid degradable blocks (IIIa, IIIb, IIIc or IIId) , degradable soft block (II) and commercial available soft block (IV, such as polyethylene glycol or polytetrahydrofuran) were added according to desired mole ratios with stirring at 240 ℃ to 250℃, the mixture was polymerized for about 1 hour at 200 to 240 ℃ under vacuum (20 KPa) and then the temperature of the mixture was raised to 210 to 250℃ and reacted for another half an hour under vacuum (10 KPa) . The ethylene glycol was removed through vacuum.
C. Final polymerization: The mixture in step B was further polymerized at 220 to 270 ℃ under very high vacuum (50to 100 Pa) until viscosity reach desired value.
Example 2
1. Synthesis of present invented polyester polymer:
A.  Esterification of nondegradable block A, degradable soft block B, rapid degradable  block C, catalyzing block V together,: To a solution of catalyst (e.g. Sb 2O 3, 0.1 wt %) and stabilizer (0.05 wt %) in ethylene glycol was added p-terephthalic acid, adipic acid or succinic acid , alkyl glycolate or alkyl lactate (where alkyl is methyl or ethyl or any other alkyl group) or ethylene glycol lactate (product of A or B in the step 4 of example 1) or glycolide or lactide, and Sodium 1, 3-dimethyl 5-Sulfoisophthalate or Sodium 1, 3-Diethylene glycol 5-sulfoisophthalate according to desired mole ratio with stirring. The mixture was reacted at 250 ℃ to collect methanol, ethanol and H 2O until no more H 2O can be distilled out, more catalyst and stabilizer, and soft block IV (such as polyethylene glycol  or polytetrahydrofuran ) were added.
B. Prepolymerization: The mixture of step A was polymerized for about 1 hour at 200 to 240 ℃ under vacuum (20 KPa) and then the temperature of the mixture was raised to 210 to 250℃ and reacted for another half an hour under vacuum (10 KPa) . The ethylene glycol was removed through vacuum.
C. Final polymerization: The mixture in step B was further polymerized at 220 to 270 ℃ under very high vacuum (50to 100 Pa) until viscosity reach desired value.
In summary, the polyester polymers provided in the present invention not only have excellent mechanical processing properties but also can be rapid degraded as long as water or moistures existing and therefore effectively resolved the environment pollution problems caused by this kind of polymers. It satisfied the wide application demand and especially it ensured such kind of polymers can be applied in beverage bottle, food package film, agricultural film (green house film and /or mulch film) , shopping bag and other food package containers. In addition, the method of preparation in present invention is simple with low cost, the raw materials are easy to be obtained at low price. It is suitable to volume production and has practical value and application potentials.
Finally, it is necessary to claim here: the above examples are only used to further detail the technical demonstration of the invention, cannot be understand as limitations on the scope of the invention protected, anyone in this field makes any non-essential improvements and adjustments based on the contents of the invention will fall into the scope of protection of the invention.

Claims (18)

  1. A self-catalyzing rapid degradable polyester polymer, comprising a repeat unit – [ (A)  n1- (B)  n2- (C)  n3- (D)  n4- (E)  n5n–, which is made from polycondensation of repeat structure units comprising non-degradable rigidity blocks A, degradable soft blocks B, rapid degradable blocks C, soft blocks D and catalyzing blocks E, wherein:
    the non-degradable rigidity blocks A have a structure of Formula (I) :
    Figure PCTCN2021080046-appb-100001
    the degradable soft blocks B have a structure of Formula (II) :
    Figure PCTCN2021080046-appb-100002
    the rapid degradable blocks C have a structure of Formula (IIIa) or (IIIb) or (IIIc) or (IIId) :
    Figure PCTCN2021080046-appb-100003
    Figure PCTCN2021080046-appb-100004
    the soft blocks D have a structure of Formula (IV)
    Figure PCTCN2021080046-appb-100005
    the catalyzing blocks E have a structure of Formula (V) :
    Figure PCTCN2021080046-appb-100006
    the repeat unit of polyester polymers – [ (A)  n1- (B)  n2- (C)  n3- (D)  n4- (E)  n5n–having a structure of Formula (VIa) or (VIb) or (VIc) or ( (VId) :
    Figure PCTCN2021080046-appb-100007
    wherein:
    In the repeat unit – [ (A)  n1- (B) n 2- (C) n 3- (D) n 4- (E) n 5n--, the sequence of block A, B, C, D and E is random arranged and any blocks can appear multi times;
    n, n 1, and n 3 each independently is an integer larger than 0;
    n 2, n 4 and n 5 each independently is 0, or an integer larger than 0;
    p, q and y each independently is 0 or 1;
    r 1, r 2, r 3, s, t, u, v, w, x and z are each independently is an integer larger than 0, less than 50; m is integers larger than 0, less than 200;
    R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are members  independently selected in each structural unit from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl, substituted or unsubstituted alkoxy, ester, nitro, amine, amide, or thiol; and
    R’, R”, R”’ and R 4 are independently selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl.
  2. The self-catalyzing rapid degradable polyester polymers according to claim 1, wherein said R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are independently selected in each structural unit from H or C 1-C 10 alkyls.
  3. The self-catalyzing rapid degradable polyester polymers according to claim 2, wherein said R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 9, R 10, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are independently selected in each structural unit from H or methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl; R’, R”, R” and R 4 are selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl.
  4. The self-catalyzing rapid degradable polyester polymers according to claim 2, wherein said R 1, R 2, R 3, R 4, R 5, R 6, R 7, R 8, R 11, R 12, R 13, R 14, R 15, R 16, R 17, R 18 are H; R 9, R 10 are H or methyl; r 1, r 2, r 3, s, t, w, x and z are any integer independently selected from 2, 3, 4; u and v are any integer independently selected from 1, 2, 3 or 4.
  5. A method for preparing self-catalyzing rapid degradable polyester polymers according to any one of claims 1 to 4, comprising the following steps:
    (a) mixing co-monomers or oligomers of non-degradable rigidity block A, degradable soft blocks B, rapid degradable blocks C, soft blocks D, and catalyzing block E together in the same reactor at same time, and are esterified from 220 ℃ to 260 ℃; and
    (b) process the melting polymerization or solution polymerization.
  6. A method for preparing self-catalyzing rapid degradable polyester polymers according to claim 5, wherein the step (a) can be achieved by:
    1) mixing p-terephthalic acid, diol, binary acid, hydroxyl acid or methyl hydroxyl acid ester or ethyl hydroxyl acid ester, or glycolide (1, 4-dioxane-2, 5-dione) , or lactide, polyether and sodium dimethyl 5-sulfoisophthalate as desired molar ratio of MA/MD from 1/1 to 1/5, is stirred and mixed very well with catalysts; wherein MA is combination moles of all acids and esters, and MD is combination moles of all diols;
    2) first esterification: the mixtures in step 1) are esterified 220 ℃ to 260 ℃, methyl or ethyl alcohol and H 2O are removed through fractional distillation; and
    3) Secondary esterification: the mixtures in step 2) are continued to be esterified at 220 to 260 ℃, methyl or ethyl alcohol and H 2O are removed through fractional distillation until no more alcohol or H 2O be moved out.
  7. A method for preparing self-catalyzing rapid degradable polyester polymers according to any one of claims 1 to 4, comprising the following steps:
    (a) first synthesize the monomers or oligomers of non-degradable blocks A, and
    (b) add monomers or oligomers of degradable soft blocks B, rapid degradable blocks C, soft blocks D, and catalyzing blocks E to process the solution polymerization or melting polymerization.
  8. A method for preparing self-catalyzing rapid degradable polyester polymers according to any one of claims 1 to 4, comprising the following steps:
    (a) first synthesize monomers or oligomers of non-degradable blocks A, degradable soft blocks B, rapid degradable blocks C and self-catalyzing blocks E together at same time, and
    (b) add soft blocks D to process the melting polymerization or solution polymerization.
  9. A method for preparing self-catalyzing rapid degradable polyester polymers according to any one of claims 5 or 8, wherein, the conditions for melting polymerization are: polymerization at 200 to 290℃, under vacuum for 2 to 7 hours.
  10. A method for preparing self-catalyzing rapid degradable polyester polymers according to 9, the melting polymerization can be processed as follows:
    1) pre-polymerization at 200 ℃ to 250 ℃ under vacuum;
    2) final polymerization at 200 ℃ to 290 ℃ under high vacuum until reaching desired viscosity.
  11. A method for preparing a self-catalyzing rapid degradable polyester polymer according to any one of claims 5 to 8, wherein in the step (a) , the synthesis of monomers or oligomers of said non-degradable rigidity block A, comprising the steps of:
    Figure PCTCN2021080046-appb-100008
    wherein R’, R 1, R 2, R 3, r 1, and n 1 are defined same as in claims 1 to 4.
  12. A method for preparing the self-catalyzing rapid degradable polyester polymer according to any one of claims 5 to 8, wherein, synthesis of a co-monomer of the rapid degradable block C can be achieved from alkyl hydroxyl acids esters via Scheme IIIa or Scheme IIIb or Scheme IIIc or Scheme IIId as follows:
    Figure PCTCN2021080046-appb-100009
    wherein R is independently selected in each structural unit from H or C 1-C 10 alkyls or ethylene glycol (HOCH 2CH 2-) , u, v, R 9, R 10, R 11, R 12 are defined same as in claims 1 to 4;
    Figure PCTCN2021080046-appb-100010
    Figure PCTCN2021080046-appb-100011
    wherein R is independently selected in each structural unit from H or C 1-C 10 alkyls or ethylene glycol (HOCH 2CH 2O-) , u, v, R 9, R 10, R 11, R 12 are defined same as in claims 1-4; R 4 is selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl;
    Figure PCTCN2021080046-appb-100012
    wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , u, v, R 9, R 10, R 11, R 12 are defined same as in claims 1-4; the Catalyst in Scheme IIIc is selected from any ester exchange reaction catalysts
    Figure PCTCN2021080046-appb-100013
    wherein R and R’ are independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , u, v, R 9, R 10, R 11, R 12 are defined same as in claims 1 to 4; R 4 is selected from H, substituted or unsubstituted alkyl, substituted or unsubstituted heteroalkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl; the Catalyst in Scheme IIId is selected from any ester exchange reaction catalysts.
  13. A method for preparing the self-catalyzing rapid degradable polyester polymer according to any one of claims 5 to 8, wherein, synthesis of co-monomer of said degradable soft block B, comprising the steps of:
    Figure PCTCN2021080046-appb-100014
    wherein R 2, R 3, R 5, R 6, R 7, R 8, r 2, s, and n 2 are defined same as in claims 1 to 4.
  14. A method for preparing the self-catalyzing rapid degradable polyester polymer according to any one of claims 5 to 8, wherein, synthesis of said catalyzing block E, comprising the steps of:
    Figure PCTCN2021080046-appb-100015
    wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls, R 15, R 16 and w are defined same as in claims 1 to 4, the said Catalyst in Scheme V is selected from one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, preferably a Lewis acid, zinc acetate, tetrabutyl titanate, monobutyltin oxide, calcium carbonate or a mixture thereof.
  15. A method for preparing the self-catalyzing rapid degradable polyester polymer according to claim 12, wherein the said alkyl hydroxyl acids esters (VII)
    Figure PCTCN2021080046-appb-100016
    can be prepared by:
    Figure PCTCN2021080046-appb-100017
    wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , R’ is independently selected from H or methyl or ethyl; the definition of R 9, R 10 and v are all same as those defined in claim 1 to 5; the catalyst at Scheme VIIa is one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, the solid acid catalyst is specifically cation ion exchange resin, antimony glycol, antimony trioxide, antimony acetate, aluminum glycol, aluminum hydroxide, aluminum chloride, aluminum acetate, aluminum oxide, trimethyl aluminum, triethyl aluminum, and triethyl, oxyaluminum, aluminum triisopropoxide, aluminum stearate, sodium aluminate, aluminum oxide, aluminum sulfate, titanium glycol ethylene glycol, ethyl titanate, tetrabutyl titanate, tetraisopropyl titanate, titanium tetrachloride, potassium hexafluorotitanate, potassium potassium oxalate, lithium titanyl oxalate, titanate, titanium carboxylate, titanium dioxide, titanium acetylacetonate, tetraphenyl titanate, titanium chloride, diisopropoxy-diacetylacetonyl titanium, di-n-butoxy-bis (triethanolamine) titanium, tributyl monoacetyl titanium, triisopropyl monoacetyl titanium, titanium tetrabenzoate, germanium dioxide, tetrabutoxy germanium, stannous oxalate, monobutyltin oxide, stannous octoate, tin acetylacetonate, stannous chloride, tin powder, tin oxide, tin acetate, butylstannic  acid, monobutyltin oxide, dibutyl-diisooctyltin, two Methyl tin oxide, dibutyl tin oxide, diphenyl tin oxide, tributyltin vinegar, tributyltin fluoride, triethyltin chloride, triethyltin bromide, One or two or more of triethyltin acetate, trimethyltin hydroxide, triphenyltin chloride, triphenyltin bromide, triphenyltin acetate, and zinc acetate; preferably, one or two or more of a Lewis acid, monobutyltin oxide, dibutyltin oxide, and tributyltin vinegar; more preferably a sulfuric acid, p-toluenesulfonic acid, cation ion exchange resin, Lewis acid, zinc acetate, tetrabutyl titanate, monobutyltin oxide, or a mixture thereof; said solvent is benzene or toluene, or any other solvent azeotropic with water.
  16. A method for preparing the self-catalyzing rapid degradable polyester polymer according to claim 12, wherein the said alkyl hydroxyl acids esters (VII)
    Figure PCTCN2021080046-appb-100018
    can be prepared by:
    Figure PCTCN2021080046-appb-100019
    wherein R is independently selected from H or methyl or ethyl or C3-C10 alkyls or ethylene glycol (HOCH 2CH 2-) , R’ is independently selected from H or methyl or ethyl; the definition of R 9, R 10 and v are all same as those defined in claim 1 to 5; the Catalyst in Scheme VIIb is one of liquid acids of sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid, p-toluenesulfonic acid or Lewis acid ; or, one or two or more of the solid acid catalysts; or a mixture of one of the liquid acids and one or two or more of the solid acid catalysts, the solid acid catalyst is specifically cation ion exchange resin, antimony glycol, antimony trioxide, antimony acetate, aluminum glycol, aluminum hydroxide, aluminum chloride, aluminum acetate, aluminum oxide, trimethyl aluminum, triethyl aluminum, and triethyl, oxyaluminum, aluminum triisopropoxide, aluminum stearate, sodium aluminate, aluminum oxide, aluminum sulfate, titanium glycol  ethylene glycol, ethyl titanate, tetrabutyl titanate, tetraisopropyl titanate, Titanium tetrachloride, potassium hexafluorotitanate, potassium potassium oxalate, lithium titanyl oxalate, titanate, titanium carboxylate, titanium dioxide, titanium acetylacetonate, tetraphenyl titanate, titanium chloride, diisopropoxy-Diacetylacetonyl titanium, di-n-butoxy-bis (triethanolamine) titanium, tributyl monoacetyl titanium, triisopropyl monoacetyl titanium, titanium tetrabenzoate, germanium dioxide, tetrabutoxy germanium, Stannous oxalate, monobutyltin oxide, stannous octoate, tin acetylacetonate, stannous chloride, tin powder, tin oxide, tin acetate, butylstannic acid, monobutyltin oxide, dibutyl-diisooctyltin, two methyl tin oxide, dibutyl tin oxide, diphenyl tin oxide, tributyltin vinegar, tributyltin fluoride, triethyltin chloride, triethyltin bromide, one or two or more of triethyltin acetate, trimethyltin hydroxide, triphenyltin chloride, triphenyltin bromide, triphenyltin acetate, and zinc acetate; preferably, one or two or more of a Lewis acid, monobutyltin oxide, dibutyltin oxide, and tributyltin vinegar; more preferably a sulfuric acid, p-toluenesulfonic acid, cation ion exchange resin, Lewis acid, zinc acetate, tetrabutyl titanate, monobutyltin oxide, or a mixture thereof.
  17. A method for preparing self-catalyzing rapid degradable polyester polymers according to any one of the preceding claims 5 to 9, wherein the hydroxyl moles contained in non-degradable rigidity blocks A are larger than the hydroxyl moles contained in rapid degradable blocks C; and the hydroxyl moles contained in degradable blocks C are large than the hydroxyl moles contained in catalyzing blocks E.
  18. The use of the self-catalyzing rapid degradable polyester polymer according to claims 1 to 4, or the method for preparing self-catalyzing rapid degradable polyester polymers according to claims 5 to 15 in shopping bags, green house films, mulch films, medical devices, beverage package bottle, food package films and other food containers.
PCT/CN2021/080046 2020-03-11 2021-03-10 Self-catalyzing rapid degradable polyester polymers and preparation method and use thereof WO2021180138A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180034136.2A CN115667361A (en) 2020-03-11 2021-03-10 Autocatalytic rapid degradation polyester polymer and preparation method and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062988367P 2020-03-11 2020-03-11
US62/988,367 2020-03-11

Publications (1)

Publication Number Publication Date
WO2021180138A1 true WO2021180138A1 (en) 2021-09-16

Family

ID=77670464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080046 WO2021180138A1 (en) 2020-03-11 2021-03-10 Self-catalyzing rapid degradable polyester polymers and preparation method and use thereof

Country Status (2)

Country Link
CN (1) CN115667361A (en)
WO (1) WO2021180138A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260470A (en) * 2022-03-23 2022-11-01 旭科新材料(山东)有限责任公司 Composition for preparing polyester film material, polyester film material and application thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712880A2 (en) * 1994-11-17 1996-05-22 Mitsui Toatsu Chemicals, Incorporated Preparation process of degradable block copolyesters
CN1546549A (en) * 2003-12-04 2004-11-17 中国科学院上海有机化学研究所 Bio-degradability polyester block macromolecule copolymer, preparation method and uses
WO2006120422A1 (en) * 2005-05-12 2006-11-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
CN101508827A (en) * 2009-03-12 2009-08-19 华润包装材料有限公司 Oxygen uptake polyester composite material for packaging with isolation performance and method for producing the same
CN102149745A (en) * 2008-09-09 2011-08-10 莫立克股份有限公司 Novel polymers with hydroxyl acid blocks
WO2013071802A1 (en) * 2011-10-12 2013-05-23 苏州莫立克新型材料有限公司 Fast degradable polyester polymer and preparation method and use thereof
CN109880072A (en) * 2019-03-25 2019-06-14 黄山市向荣新材料有限公司 A kind of self-catalysis expediting setting type pure polyester resin and the preparation method and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101492530B (en) * 2009-03-05 2011-06-08 绍兴文理学院 Ion type copolyester and method for preparing the same
CN107573491A (en) * 2016-07-05 2018-01-12 苏州莫立克新型材料有限公司 Adjustable polyester polymer of a kind of capable of being fast degraded and glass transition temperature and preparation method thereof
CN107522852A (en) * 2017-09-07 2017-12-29 王肖桦 The biodegradable three block of bio-based of segment containing dimer acid polyester a kind of, segmented copolymer and its preparation method and application

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0712880A2 (en) * 1994-11-17 1996-05-22 Mitsui Toatsu Chemicals, Incorporated Preparation process of degradable block copolyesters
CN1546549A (en) * 2003-12-04 2004-11-17 中国科学院上海有机化学研究所 Bio-degradability polyester block macromolecule copolymer, preparation method and uses
WO2006120422A1 (en) * 2005-05-12 2006-11-16 Halliburton Energy Services, Inc. Degradable surfactants and methods for use
CN102149745A (en) * 2008-09-09 2011-08-10 莫立克股份有限公司 Novel polymers with hydroxyl acid blocks
CN101508827A (en) * 2009-03-12 2009-08-19 华润包装材料有限公司 Oxygen uptake polyester composite material for packaging with isolation performance and method for producing the same
WO2013071802A1 (en) * 2011-10-12 2013-05-23 苏州莫立克新型材料有限公司 Fast degradable polyester polymer and preparation method and use thereof
CN109880072A (en) * 2019-03-25 2019-06-14 黄山市向荣新材料有限公司 A kind of self-catalysis expediting setting type pure polyester resin and the preparation method and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115260470A (en) * 2022-03-23 2022-11-01 旭科新材料(山东)有限责任公司 Composition for preparing polyester film material, polyester film material and application thereof
CN115260470B (en) * 2022-03-23 2023-11-17 旭科新材料(山东)有限责任公司 Composition for preparing polyester film material, polyester film material and application thereof

Also Published As

Publication number Publication date
CN115667361A (en) 2023-01-31

Similar Documents

Publication Publication Date Title
EP0743963B1 (en) A process for preparing copolyesters
AU2012284305B2 (en) Color-stabilized biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
AU2002336114B2 (en) Biodegradable coating
EP2820063B1 (en) Poly(butylene-co-adipate terephthalate), method of manufacture and uses thereof
TWI449726B (en) Process for the preparation of copolyesters based on 2,2,4,4-tetramethyl-1,3-cyclobutanediol and 1,4-cyclohexanedimethanol
US20020028904A1 (en) Crystalline polyester resins and processes for their preparation
JPS5964658A (en) Polyester melt blend with high gas barrier properties
JP2014524958A (en) Color stabilization method for poly (butylene-co-adipate terephthalate)
EP3526272B1 (en) Process for preparing poly(trimethylene furandicarboxylate)
US20240002593A1 (en) Production method for polyester copolymer comprising recycled monomers
CN110183633B (en) 1, 4; 3, 6-diglycidyl hexachloro-hexane modified furan diformyl random copolymer and preparation method and application thereof
KR20080112341A (en) Process for the preparation of polyesters containing 1,4-cyclohexanedimethanol
US20130018143A1 (en) Color-stabilized biodegradable aliphatic-aromatic copolyesters, methods of manufacture, and articles thereof
JP5598162B2 (en) Copolyester molded product
WO2021180138A1 (en) Self-catalyzing rapid degradable polyester polymers and preparation method and use thereof
US10280257B2 (en) Continuous process for producing poly(trimethylene terephthalate) containing low levels of by-products
US11001694B1 (en) Modification of polyester resins after melt polymerization
JP5045216B2 (en) Method for producing polyester polycondensation catalyst, and method for producing polyester using the catalyst
JP2021532240A (en) Polyester resin and its manufacturing method
CN103113563B (en) A kind of cladodification aliphatic polyester and synthetic method thereof
KR20010045677A (en) Composition of biodegradable polyester resin containing lactic acid
KR102589193B1 (en) Biodegradable polyester copolymer comprising anhydrosugar alcohol and anhydrosugar alcohol based polycarbonate diol and preparation method thereof, and molded article comprising the same
KR102589197B1 (en) Biodegradable polyester copolymer comprising anhydrosugar alcohol based polycarbonate diol and preparation method thereof, and molded article comprising the same
JP2011046859A (en) Copolymerized polyester
KR20240058887A (en) Method for producing copolyester using germanium catalyst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768963

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/01/2023).

122 Ep: pct application non-entry in european phase

Ref document number: 21768963

Country of ref document: EP

Kind code of ref document: A1