WO2021179696A1 - 一种数据处理方法及设备 - Google Patents

一种数据处理方法及设备 Download PDF

Info

Publication number
WO2021179696A1
WO2021179696A1 PCT/CN2020/132746 CN2020132746W WO2021179696A1 WO 2021179696 A1 WO2021179696 A1 WO 2021179696A1 CN 2020132746 W CN2020132746 W CN 2020132746W WO 2021179696 A1 WO2021179696 A1 WO 2021179696A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical network
psync
network unit
state
data stream
Prior art date
Application number
PCT/CN2020/132746
Other languages
English (en)
French (fr)
Inventor
吴徐明
聂世玮
王旭
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20924857.4A priority Critical patent/EP4090041A4/en
Publication of WO2021179696A1 publication Critical patent/WO2021179696A1/zh
Priority to US17/940,209 priority patent/US12009918B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0047Decoding adapted to other signal detection operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1694Allocation of channels in TDM/TDMA networks, e.g. distributed multiplexers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring

Definitions

  • This application relates to the field of data transmission technology, and in particular to a data processing method and equipment.
  • a passive optical network consists of an optical line terminal (OLT) on the office side, an optical network unit (ONU) on the user side, or an optical network terminal (ONT) And optical distribution network (optical distribution network, ODN) composition.
  • the OLT provides a network-side interface for the PON system to connect one or more ODNs.
  • the ONU or ONT provides a user-side interface for the PON system and is connected to the ODN.
  • ODN is a network composed of optical fibers and passive optical splitting devices, used to connect OLT and ONU (hereinafter, OLT or ONU will be collectively represented by ONU), and used to distribute or multiplex data signals between OLT and ONU.
  • OLT optical line terminal
  • ONT optical network terminal
  • ODN optical distribution network
  • the ONU when the OLT transmits downstream data to the ONU, the ONU often needs to determine whether to enter the synchronization state. After the ONU enters the synchronization state, the ONU can analyze the data in the data frame. At present, in the process of determining whether the ONU enters the synchronization state, it searches for a specific synchronization sequence at the head of the data frame in the continuous data stream, searches for the synchronization sequence, and continues to search for another synchronization sequence at intervals of the length of a data frame. During the sequence, it can be determined that the synchronization state can be entered.
  • each data frame has only one specific sequence, and the duration of each data frame is long, it often takes a long time to find at least two synchronization sequences in a continuous data stream, which leads to a long time. Time can enter the synchronization state.
  • the embodiments of the present application provide a data processing method and device, which determine whether to enter the pre-synchronization state by verifying the physical synchronization sequence (Psync) and the superframe counter (SFC) in the data stream, and after entering the pre-synchronization state , Determine the position of the forward error correction (FEC) codeword in the data stream, and enter the synchronization state when the FEC codeword decoding verification passes; because there is a synchronization state between any two Psyncs in the data stream There are multiple FEC codewords. Therefore, by determining whether the FEC codeword is decoded to determine whether to enter the synchronization state, the synchronization state can be entered in a relatively short time, and the efficiency of entering the synchronization state can be improved.
  • Psync physical synchronization sequence
  • SFC superframe counter
  • the first aspect of the embodiments of the present application provides a data processing method that can be applied to an optical network unit that receives a downlink data frame.
  • the method includes: after the optical network unit enters a pre-synchronization state, the optical network unit is According to the position of the Psync field in the data stream, the position of the FEC codeword boundary in the data stream is determined, and the FEC codeword decoding test is performed; if there are N consecutive FEC codewords in the data stream If the FEC codeword that passes the decoding check is entered, the optical network unit enters the synchronization state, and the N is an integer greater than or equal to 1.
  • the boundary position of the FEC codeword can be determined according to Psync, thereby determining the FEC codeword in the data stream ;
  • the method further includes: the optical network unit searches for a field matching the preset Psync in the received data stream; if the optical network unit searches for a field matching the preset Psync in the data stream If the preset Psync matches the Psync field, the optical network unit verifies whether the first field of the preset number of bits after the Psync field constitutes a valid SFC structure; if the first field constitutes a valid SFC structure, Then the optical network unit enters the pre-synchronization state.
  • the method further includes: the optical network unit according to the position of the first field , Determining the SFC field located after the first field in the data stream; the optical network unit verifies the SFC field, and the verification result of the SFC field is that the SFC verification is successful. That is to say, after the optical network unit enters the pre-synchronization state, the optical network unit needs to perform SFC verification in addition to the FEC code word verification in the data stream. When the FEC code word verification is passed and the SFC verification is successful, the optical network unit The unit enters the synchronization state from the pre-synchronization state. Therefore, by further verifying whether the SFC field is valid, the accuracy of synchronization can be improved, and the probability of false synchronization can be reduced.
  • the method further includes: if there is no FEC codeword that has passed the decoding check among the N consecutive FEC codewords in the data stream, the optical network unit will The pre-synchronization state returns to the search state, and the N is an integer greater than or equal to 1. In other words, if none of the N consecutive FEC codewords in the data stream has a FEC codeword that has passed the decoding check, it can be considered that the optical network unit has entered pre-synchronization by mistake, and the optical network unit can return to search from the pre-synchronization state. Status, search for matching Psync field and SFC field again.
  • the method further includes: after the optical network unit enters the synchronization state, if there are M consecutive FEC codewords in the data stream that fail to pass the decoding check, the optical network unit The network unit transitions from the synchronization state to the resynchronization state; if there are FEC codewords that pass the decoding check among the M consecutive FEC codewords in the data stream, the optical network unit maintains the synchronization state; M is an integer greater than or equal to 1.
  • the optical network unit may enter the synchronization state by mistake.
  • the optical network unit can enter the resynchronization state to resynchronize; if there are FEC codewords that pass the decoding check among the M consecutive FEC codewords in the data stream, the optical network unit can maintain the synchronization state.
  • the method further includes: after the optical network unit enters the resynchronization state, if there is an FEC that passes the decoding verification among the S consecutive FEC code words in the data stream Codeword, the optical network unit transitions from the resynchronization state to the synchronization state, and the S is an integer greater than or equal to 1. That is to say, after the optical network unit enters the resynchronization state, it can determine whether to re-enter the synchronization state by decoding and checking the FEC code words in the data stream, so as to avoid mistakenly jumping out of synchronization due to errors in the data stream. state.
  • the method further includes: after the optical network unit enters the resynchronization state, if there are no S consecutive FEC codewords in the data stream that pass the decoding verification FEC codeword, the optical network unit transitions from the resynchronization state to the search state.
  • the method further includes: the optical network unit decodes the FEC codeword in the data stream to obtain the decoded codeword payload; the optical network unit according to The decoded codeword payload obtains the decoded Psync, and the decoded Psync is located in the decoded codeword payload; if the decoded Psync is the same as the preset If the Psync matches, the optical network unit verifies whether the second field of the preset number of bits after the decoded Psync constitutes a valid SFC structure; if the second field constitutes a valid SFC structure, the The optical network unit enters the synchronization state or maintains the synchronization state from the pre-synchronization state.
  • the optical network unit can also verify the decoded Psync and verify the SFC to determine whether to enter synchronization Status, which improves the flexibility of program realization.
  • the method further includes: after the optical network unit enters the synchronization state, if there is a mismatch between the decoded Psync and the preset Psync or the SFC verification fails, the The optical network unit transitions from the synchronization state to the resynchronization state; if there is a match between the decoded Psync and the preset Psync and the SFC verification succeeds, the optical network unit is maintained in the synchronization state.
  • the method further includes: after the optical network unit enters the resynchronization state, for the consecutive P data frames in the data stream, if there is a Psync after decoding and all the data frames If the preset Psync matching and SFC verification succeed, the optical network unit transitions from the resynchronization state to the synchronization state; the P is an integer greater than 1. That is to say, after the optical network unit enters the resynchronization state, if there is a Psync match after decoding and the SFC verification is successful in multiple consecutive data frames in the data stream, the optical network unit can migrate from the resynchronization state to Synchronization status.
  • the method further includes: after the optical network unit enters the resynchronization state, for consecutive P data frames in the data stream, if there is a decoded synchronization sequence If it does not match the preset Psync or the SFC verification fails, the optical network unit transitions from the resynchronization state to the search state. That is to say, after the optical network unit enters the resynchronization state, if there is no Psync match after decoding or SFC verification succeeds in multiple consecutive data frames in the data stream, the optical network unit migrates from the resynchronization state to Search status.
  • a second aspect of the present application provides an optical network unit, including: a processing unit configured to: after entering a pre-synchronization state, determine the FEC in the data stream according to the position of the Psync field in the data stream The position of the codeword boundary and the FEC codeword decoding test, where the Psync field is a field in the data stream that matches the preset Psync; if there are N consecutive FEC codewords in the data stream If there is an FEC codeword that passes the decoding check, the synchronization state is entered, and the N is an integer greater than or equal to 1.
  • the processing unit is further configured to: search for a field matching the preset Psync in the received data stream; if a field matching the preset Psync is found in the data stream The Psync field is used to verify whether the first field with a preset number of digits after the Psync field constitutes a valid SFC structure; if the first field constitutes a valid SFC structure, the pre-synchronization state is entered.
  • the processing unit is further configured to: determine the SFC field located after the first field in the data stream according to the position of the first field; and verify the SFC field , And the verification result of the SFC field is that the SFC field constitutes a valid SFC structure.
  • the processing unit is further configured to: if there is no FEC codeword that has passed the decoding check among the N consecutive FEC codewords in the data stream, start from the pre-synchronization The state returns to the search state, and the N is an integer greater than or equal to 1.
  • the processing unit is further configured to: after entering the synchronization state, if there are M consecutive FEC codewords in the data stream that fail to pass the decoding check, then transition from the synchronization state to the re Synchronization state; if there are FEC codewords that pass the decoding verification in the M consecutive FEC codewords in the data stream, the synchronization state is maintained; the M is an integer greater than or equal to 1.
  • the processing unit is further configured to: after entering the resynchronization state, if there are FEC codewords that pass the decoding check among the S consecutive FEC codewords in the data stream, Then transition from the resynchronization state to the synchronization state, and the S is an integer greater than or equal to 1.
  • the processing unit is further configured to: after entering the resynchronization state, if there is no FEC codeword that has passed the decoding check among the S consecutive FEC codewords in the data stream , Then transition from the resynchronization state to the search state.
  • the processing unit is further configured to: decode the FEC codeword in the data stream to obtain the decoded codeword payload; according to the decoded codeword The payload obtains the decoded Psync, and the decoded Psync is located in the decoded codeword payload; if the decoded Psync matches the preset Psync, it is verified that the Psync is located in the Whether the second field of the preset number of bits after the decoded Psync constitutes a valid SFC structure; if the second field constitutes a valid SFC structure, the synchronization state is entered from the pre-synchronization state or maintained in the synchronization state.
  • the processing unit is further configured to: after entering the synchronization state, if there is a mismatch between the decoded Psync and the preset Psync or the SFC verification fails, then transition from the synchronization state to Resynchronization state; if there is a match between the decoded Psync and the preset Psync and the SFC verification succeeds, the synchronization state is maintained.
  • the processing unit is further configured to: after entering the resynchronization state, for consecutive P data frames in the data stream, if there are Psync after decoding and the preset If the Psync matching and SFC verification are successful, it will transition from the resynchronization state to the synchronization state; the P is an integer greater than 1.
  • the processing unit is further configured to: after entering the resynchronization state, for the consecutive P data frames in the data stream, if there is a decoded synchronization sequence that is not consistent with all the P consecutive data frames. If the preset Psync matches or the SFC verification fails, it will transition from the resynchronization state to the search state.
  • a third aspect of the present application provides an optical network unit, including: a processor and a memory, wherein the operation instruction is stored in the memory, and the processor reads the operation instruction in the memory to implement the above-mentioned first The method of any one of the aspects.
  • the fourth aspect of the present application provides an optical network system, including an optical line terminal, an optical distribution network, and an optical network unit according to any one of the second aspect or the third aspect.
  • the fifth aspect of the present application provides a computer program product containing instructions.
  • the instructions When the instructions are executed on a computer, the computer executes the method of any one of the first aspect or the second aspect.
  • a sixth aspect of the present application provides a computer-readable storage medium, including computer program instructions, which when the computer program instructions run on a computer, cause the computer to execute the method of any one of the first aspect or the second aspect.
  • optical network unit of the second aspect is used to implement the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the beneficial effects in the corresponding methods provided above, which will not be repeated here.
  • the position of the FEC codeword in the data stream is determined, and when the FEC codeword decoding check passes, the synchronization state is entered; because any two Psync codes in the data stream There are multiple FEC codewords in between. Therefore, by determining whether the FEC codeword is decoded to determine whether to enter the synchronization state, the synchronization state can be entered in a relatively short time, and the efficiency of entering the synchronization state can be improved.
  • FIG. 1 is an example diagram of a network architecture of a passive optical network provided by an embodiment of the application
  • 2A is a schematic diagram of an example of the structure of a downlink data frame provided by an embodiment of this application;
  • 2B is a schematic diagram of another example of the structure of a downlink data frame provided by an embodiment of the application.
  • 3A is a schematic diagram of a downlink data frame structure provided by an embodiment of this application.
  • 3B is a schematic diagram of another downlink data frame structure provided by an embodiment of this application.
  • FIG. 4 is a schematic flowchart of a data processing method 400 provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a state transition process of an optical network unit according to an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a data processing method 600 provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of a state transition process of an optical network unit according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of an optical network unit 800 provided by an embodiment of this application.
  • the naming or numbering of steps appearing in this application does not mean that the steps in the method flow must be executed in the time/logical sequence indicated by the naming or numbering.
  • the named or numbered process steps can be implemented according to the The technical purpose changes the execution order, as long as the same or similar technical effects can be achieved.
  • the division of units presented in this application is a logical division. In actual applications, there can be other divisions. For example, multiple units can be combined or integrated in another system, or some features can be ignored , Or not to execute, in addition, the displayed or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection between the units may be in electrical or other similar forms. There are no restrictions in the application.
  • the units or subunits described as separate components may or may not be physically separate, may or may not be physical units, or may be distributed to multiple circuit units, and some or all of them may be selected according to actual needs. Unit to achieve the purpose of this application program.
  • the passive optical network 100 shown in this embodiment includes one or more optical line terminals (OLT) 110, an optical distribution network (ODN) 120, and multiple optical network units (ONUs).
  • OLT optical line terminals
  • ODN optical distribution network
  • ONUs optical network units
  • the OLT 110 is connected to multiple ONUs in a point-to-multipoint manner through the ODN 120.
  • the passive optical network 100 includes an OLT 101 as an example for illustrative description. This embodiment does not limit the specific number of ONUs, as long as the number of ONUs is multiple, for example, as shown in this embodiment
  • the passive optical network includes n ONUs, namely ONU1301, ONU1302...ONU130n.
  • the direction from the OLT 110 to the ONU shown in this application is defined as the downlink direction
  • the direction from the ONU to the OLT 101 is defined as the uplink direction.
  • the passive optical network can be a communication network that does not require any active devices to realize the communication between the OLT110 and the ONU1301, ONU1302...ONU130n. Specifically, the communication between the OLT110 and the ONU1301, ONU1302...ONU130n can pass through the ODN120 Passive optical devices are implemented, where passive optical devices include but are not limited to optical splitters or multiplexers.
  • the OLT110 is usually located in a central office (CO), and the OLT110 can manage ONU1301, ONU1302...ONU130n in a unified manner.
  • the OLT 110 can act as an intermediary between ONU 1301, ONU 1302...ONU 130n and the upper network.
  • the OLT 110 uses the data received from the upper network as downstream service data, and forwards it to ONU1301, ONU1302...ONU130n through the downstream wavelength channel.
  • the OLT 110 forwards the upstream service data received from the ONU 1301, ONU 1302...ONU 130n to the upper network through the upstream wavelength channel.
  • the ODN 120 may be a data distribution system, which may include optical fibers, optical couplers, optical splitters, optical multiplexers, and/or other devices.
  • optical fibers, optical couplers, optical splitters, optical multiplexers and/or other devices may be passive optical devices, specifically, optical fibers, optical couplers, optical splitters, and optical multiplexers And/or other devices may be devices that distribute data signals between OLT110 and ONU1301, ONU1302...ONU130n without power support.
  • the ODN 120 may also include one or more processing devices, for example, an optical amplifier or a relay device.
  • the ODN 120 may specifically extend from the OLT 110 to multiple ONUs 1301, ONUs 1302...ONUs 130n, but may also be configured in any other point-to-multipoint structure, which is specifically not limited in this embodiment.
  • ONU1301, ONU1302...ONU130n can be distributed in user-side locations (such as user premises). ONU1301, ONU1302...ONU130n may be network devices used to communicate with the OLT 110 and users. Specifically, ONU1301, ONU1302...ONU130n can act as an intermediary between the OLT110 and the user, for example, ONU1301, ONU1302...ONU130n can forward the downlink service data received from the OLT110 to the user, and the data received from the user It is forwarded to OLT110 as upstream service data.
  • the ONU when the OLT transmits downstream data to the ONU, the ONU often needs to delimit the downstream data frame. After the ONU completes the delimitation of the downstream data frame, the ONU can analyze the data in the data frame.
  • the downstream data is usually in units of 125 microseconds, and every 125 microseconds of data constitutes a complete downstream data frame.
  • the PSBd includes a Psync, SFC structure, and a passive optical network identification (PON-id) structure.
  • the ONU In the process of delimiting the downstream data frame, the ONU needs to search for Psync in the continuous data stream, and verify whether the SFC is correct after Psync is found. After Psync and SFC are successfully verified at the same time, the ONU enters the pre-synchronization state. If the ONU finds repeated Psync and SFC by the length of one or more downstream data frames in the data stream, the ONU enters the synchronization state from the pre-synchronization state. . In other words, the ONU needs to find at least two PSBd in the continuous data stream, and the Psync and SFC in the two PSBd are verified successfully before the ONU can enter the synchronization state. Obviously, since each data frame has only one PSBd, and the time length of each data frame is fixed (for example, 125 microseconds), the current frame delimitation method is inefficient and takes a long time to enter the synchronization state. .
  • bit error rates of Psync and SFC are relatively high. Once Psync or SFC has a certain bit error, it may be difficult for the ONU to be within a short period of time. Find the matching Psync and SFC, thereby extending the time to enter the synchronization state.
  • an embodiment of the present application provides a data processing method that determines whether to enter the pre-synchronization state by verifying Psync and SFC in the data stream, and after entering the pre-synchronization state, determines the position of the FEC codeword in the data stream, And when the FEC codeword is decoded and verified, it enters the synchronization state; because there are multiple FEC codewords between any two Psync in the data stream, it is determined whether to enter by determining whether the FEC codeword is decoded or not.
  • the synchronization state can enter the synchronization state in a short time, and the efficiency of entering the synchronization state is improved.
  • the data processing method provided by the embodiments of the present application can be applied to PON systems at various rates, for example, it can be a 10G PON system or a high-speed PON system, where the high-speed PON system can refer to For 50G PON systems or higher-speed PON systems, there is no specific limitation here.
  • the data processing method provided by the embodiments of this application can be applied to the delimitation of the downlink data frame, that is, the ONU determines the boundary position in the downlink data frame; the data processing method can also be applied to the delimitation of the uplink data frame, that is, the OLT determines the upstream data The position of the boundary in the frame.
  • the following will take a data processing method applied to downlink data frame delimitation as an example to describe in detail the data processing method provided in the embodiment of the present application.
  • the data processing method provided in the embodiments of the present application can be applied to processing downlink data with different frame structures.
  • the frame structure of downlink data can include the following two situations:
  • PSBd is not in the FEC codeword.
  • the downlink data stream is composed of continuous downlink data frames, and each downlink data frame is composed of multiple FEC codewords. There is a PSBd at the frame header of each downlink data frame, and the PSBd is located outside the FEC codeword.
  • FIG. 3A is a schematic diagram of a downlink data frame structure provided by an embodiment of the application, where the downlink data frame 1 and the downlink data frame 2 are two consecutive downlink data frames.
  • the downlink data frame 1 and the downlink data frame 2 are two consecutive downlink data frames.
  • there are 300 FEC codewords ie FEC codeword 1 to FEC codeword 300
  • PSBd is in the FEC codeword.
  • the downlink data stream is composed of continuous downlink data frames, and each downlink data frame is composed of multiple FEC codewords.
  • FIG. 3B is a schematic diagram of another downlink data frame structure provided by an embodiment of the application, where the downlink data frame 1 and the downlink data frame 2 are two consecutive downlink data frames.
  • both downlink data frame 1 and downlink data frame 2 there are 300 FEC codewords (ie FEC codeword 1 to FEC codeword 300), and a PSBd is included in the first FEC codeword of the downlink data frame , That is, the PSBd is located in the first FEC codeword.
  • FIG. 4 is a schematic flowchart of a data processing method 400 according to an embodiment of the application.
  • the data processing method 400 provided by the embodiment of the present application includes:
  • the optical network unit searches for a field matching the preset Psync in the received data stream.
  • the optical network unit After the optical network unit is started, the optical network unit enters the search state, that is, the optical network unit searches for a field matching the preset Psync in the received downstream data stream.
  • the preset Psync may be preset, and is a specific sequence in the data stream for realizing the synchronization of the downlink data frame.
  • the optical network unit If the optical network unit searches for a Psync field matching the preset Psync in the data stream, the optical network unit verifies whether the first field with the preset number of bits located after the Psync field constitutes a valid SFC structure.
  • the optical network unit searches for the same field as the preset Psync in the data stream, it can be considered that the optical network unit searches for the Psync field matching the preset Psync in the data stream, and the optical network unit can continue to verify that it is located after the Psync field Whether the first field can constitute a valid SFC structure.
  • the first field may be a field with a preset number of bits after the Psync field. For example, when the SFC is 64 bits, the first field may be, for example, a 64-bit field after the Psync field. Simply put, the number of digits in the first field is the same as that of the SFC.
  • the optical network unit enters a pre-synchronization state.
  • the optical network unit has searched for the PSBd located at the frame head position of the downlink data frame, and the optical network unit can enter the pre-synchronization state.
  • the pre-synchronization state is the state entered before the optical network unit enters the synchronization state.
  • the optical network unit can continue to perform further inspections on the data stream, so that the optical network unit can migrate from the pre-synchronization state to the synchronization state. Status, or return to search status from pre-synchronization status.
  • the optical network unit continues to perform step 401, that is, continues to search for matches with the preset Psync Field.
  • the optical network unit After the optical network unit enters the pre-synchronization state, the optical network unit determines the position of the FEC codeword boundary in the data stream according to the position of the Psync field in the data stream, and performs FEC codeword decoding verification.
  • the PSBd is located at the header position of the data frame of the downlink data stream, and the FEC codeword is located after the PSBd. Therefore, after the Psync field in the PSBd is determined, the position of the FEC codeword boundary in the downlink data stream can be determined according to the position of the Psync field. For example, corresponding to the downlink data frame structure in Figure 3A, after the Psync field in PSBd is determined, since the number of bits of PSBd is fixed, the end position of PSBd can be determined, and the end position of PSBd is the first The start position of a FEC codeword. Since the length of each FEC codeword (the number of data bits) in the downlink data frame is also fixed, the boundary of each FEC codeword in the downlink data frame can also be determined according to the start position of the first FEC codeword Location.
  • the FEC codeword located after the PSBd can be decoded and checked, that is, the FEC codeword is decoded by the decoder, and the judgment is made according to the instruction of the decoder Whether the FEC codeword can be decoded successfully. Because in the downlink data frame, only the boundary of the FEC codeword can be determined to get the correct FEC codeword, then the FEC codeword will be decoded successfully; if the boundary of the FEC codeword is determined incorrectly, It cannot be determined that the correct FEC codeword is obtained, and the wrong FEC codeword is usually a decoding failure.
  • the FEC codeword can be decoded successfully, it can be judged whether the determined boundary position of the FEC codeword is correct.
  • the boundary position of the FEC codeword is determined according to the PSBd. Therefore, by judging whether the FEC codeword can be decoded successfully, it can be judged whether the searched PSBd is the correct PSBd.
  • the optical network unit enters a synchronization state, and N is an integer greater than or equal to 1.
  • the first FEC codeword may not pass the decoding test; and there is no data in the second FEC codeword after PSBd.
  • the second FEC code word can pass the decoding check.
  • the optical network unit in order to avoid incorrectly determining that the correct PSBd is not found due to errors in FEC codewords, in this embodiment, it is possible to determine whether there is a translation in N consecutive FEC codewords in the downstream data stream.
  • the FEC codeword passed by the code inspection is used to determine whether to enter the synchronization state. If there are FEC codewords that pass the decoding check among the N consecutive FEC codewords in the downstream data stream, the optical network unit enters the synchronization state.
  • the optical network unit enters the synchronization state; that is, as long as Any one of the first FEC codeword, the second FEC codeword, or the third FEC codeword in the downstream data stream after the PSBd can pass the decoding test, and the optical network unit can enter the synchronization state.
  • the optical network unit can enter the synchronization state after discovering that the FEC codeword has passed the decoding test, without waiting until the decoding test is performed on all three FEC codewords and it is found that there is an FEC code that has passed the decoding test.
  • the word enters the synchronization state.
  • the synchronization state is the state in which the optical network unit performs normal data processing, that is, after the optical network unit enters the synchronization state, it can analyze the downlink data frame to obtain the valid data transmitted in the downlink data frame.
  • the downstream data stream is scrambled, that is, the downstream data stream is obtained after certain operations are performed on the original signal (for example, the downstream data stream is obtained after a polynomial is performed on the original signal). Therefore, The optical network unit needs to descramble the data before performing FEC decoding. Because in the process of descrambling, the optical network unit needs to use the data content in the SFC, and the SFC field itself has a certain error correction capability, as long as the number of errors in the SFC field is less than 2 bits (bits), the SFC can be correct It is recovered and used for descrambling of downlink data frames. Therefore, before performing FEC decoding, the optical network unit may descramble the downstream data stream according to the above-mentioned first field, and then perform FEC decoding.
  • the method 400 further includes: if there is no FEC code word that has passed the decoding check among the N consecutive FEC code words in the data stream, the optical network unit returns to the search state from the pre-synchronization state, N is an integer greater than or equal to 1. In other words, if none of the N consecutive FEC codewords in the data stream has a FEC codeword that has passed the decoding check, it can be considered that the optical network unit has entered the pre-synchronization state by mistake, and the optical network unit can return from the pre-synchronization state. Search status, re-search for matching Psync field and SFC field.
  • N is a preset value, specifically an integer greater than or equal to 1, for example, it can be 3 or 4.
  • the value of N can be specifically set according to actual conditions, and is not specifically limited here.
  • the method 400 further includes: the optical network unit according to the position of the first field , Determine the SFC field located after the first field in the data stream; the optical network unit verifies the SFC field, and if the verification result of the SFC field is that the SFC verification is successful, the optical network unit enters the synchronization state.
  • the The position and the length of the downlink data frame determine the SFC field located after the first field, that is, the position of the next SFC structure is determined.
  • the optical network unit After the optical network unit verifies that the first field constitutes a valid SFC structure, the optical network unit stores the SFC value of the first field locally and enters the pre-synchronization state. Then, after the optical network unit enters the pre-synchronization state, and before the optical network unit verifies the above-mentioned SFC field, the optical network unit adds 1 to the locally stored SFC value (that is, adds 1 to the locally stored SFC value). Therefore, the verification of the SFC field by the optical network unit specifically includes: the optical network unit verifies whether the SFC field constitutes a valid SFC structure, and verifies whether the SFC value corresponding to the SFC field is equal to the locally stored SFC value. If the SFC field constitutes a valid SFC structure, and the SFC value corresponding to the SFC field is equal to the locally stored SFC value, it is determined that the verification result of the SFC field is that the SFC field constitutes a valid SFC structure.
  • the optical network unit needs to perform SFC verification in addition to the FEC code word verification in the data stream.
  • the optical network unit The unit enters the synchronization state from the pre-synchronization state. Therefore, by further verifying the SFC field based on the FEC codeword verification, the accuracy of synchronization can be improved, and the probability of false synchronization can be reduced.
  • the method 400 further includes: after the optical network unit enters the synchronization state, if there are M consecutive FEC codewords in the data stream that fail to pass the decoding check, the optical network unit migrates from the synchronization state to Resynchronization state, M is an integer greater than or equal to 1.
  • M is an integer greater than or equal to 1.
  • the optical network unit After the optical network unit enters the synchronization state, if any M consecutive FEC codewords in the data stream have FEC codewords that pass the decoding check, the optical network unit maintains the synchronization state.
  • M is a preset value, specifically an integer greater than or equal to 1, for example, it can be 3 or 4.
  • the value of M can be specifically set according to actual conditions, and there is no specific limitation here. In a possible implementation, M may be equal to N mentioned above.
  • the optical network unit determines whether to maintain the synchronization state by verifying the Psync and SFC in the downstream data stream.
  • the Psync and SFC are prone to errors due to errors.
  • the code causes the verification to fail, which easily causes the optical network unit to jump out of the synchronization state by mistake.
  • it is determined whether to maintain the synchronization state by verifying whether there are multiple consecutive FEC codewords in the downstream data stream that have FEC codewords that have passed the decoding verification. The network unit frequently jumps out of the synchronization state.
  • the optical network unit may continue to decode and check the FEC codeword in the downstream data stream to determine whether to return to the synchronization state from the resynchronization state.
  • the method 400 further includes: after the optical network unit enters the resynchronization state, the optical network unit performs decoding inspection on the FEC codeword in the downstream data stream, if there are S consecutive FEC codewords in the downstream data stream If there is an FEC codeword that passes the decoding check, the optical network unit transitions from the resynchronization state to the synchronization state, and S is an integer greater than or equal to 1. That is to say, after the optical network unit enters the resynchronization state, it can determine whether to re-enter the synchronization state by decoding and checking the FEC code words in the data stream, so as to avoid mistakenly jumping out of synchronization due to errors in the data stream. state.
  • S is a preset value, specifically an integer greater than or equal to 1, for example, it can be 3 or 4.
  • the value of S can be specifically set according to actual conditions, and is not specifically limited here. In a possible implementation, S may be equal to N and/or M mentioned above.
  • the method further includes: after the optical network unit enters the resynchronization state, if there is no FEC codeword that passes the decoding verification among the S consecutive FEC codewords in the data stream, then the optical network The unit migrates from the resynchronization state to the search state.
  • the optical network unit can decide to return to the synchronization state or transition to the search state by continuing to decode and check the FEC codeword.
  • the optical network unit After the optical network unit enters the synchronization state, if M consecutive FEC codewords in the downstream data stream have errors, it may cause the optical network unit to enter the resynchronization state; the optical network unit can be resynchronized The state continues to perform decoding verification on multiple consecutive FEC codewords. If the FEC codeword decoding verification is passed, it can be considered that the optical network unit has entered the resynchronization state by mistake, so the optical network unit returns to the synchronization state from the resynchronization state; if If the FEC code word test fails, it can be considered that the optical network unit has entered the synchronization state by mistake, and therefore the optical network unit migrates from the resynchronization state to the search state.
  • FIG. 5 is a schematic diagram of a state transition process of an optical network unit according to an embodiment of the application.
  • the optical network unit When the optical network unit is in hunt state, the optical network unit searches the downstream data stream for the Psync field that matches the preset Psync; after the optical network unit searches for the Psync field that matches the preset Psync, the optical network unit Verify whether the field after the Psync can form a valid SFC structure. If the field after the Psync field can form a valid SFC structure, it means that the Psync in the downstream data stream matches and the SFC structure is valid, and the optical network unit migrates from the search state to Pre-sync state (pre-sync state).
  • the N consecutive FEC codewords there are FEC codewords that have passed the decoding check, that is, at least one of the N consecutive FEC codewords has been successfully decoded and checked.
  • the optical network unit determines the boundary position of the FEC codeword according to the above-mentioned Psync field in the downstream data stream, and then performs decoding inspection on the FEC codeword. If there are FEC codewords that pass the decoding check among the N consecutive FEC codewords in the downstream data stream, the optical network unit transitions from the pre-synchronization state to the synchronization state (sync state). Wherein, N is an integer greater than or equal to 1.
  • the optical network unit determines the boundary position of the FEC codeword according to the above-mentioned Psync field in the downstream data stream, and then performs decoding inspection on the FEC codeword. If there is no FEC code word that passes the decoding check among the N consecutive FEC code words in the downstream data stream, the optical network unit returns to the search state from the pre-synchronization state.
  • the optical network unit When the optical network unit is in a synchronized state, the optical network unit continues to decode and check the FEC codeword in the downstream data stream. If there are FEC codewords that pass the decoding check among the M consecutive FEC codewords in the downstream data stream, the optical network unit is maintained in a synchronized state.
  • M is an integer greater than or equal to 1.
  • the optical network unit When the optical network unit is in a synchronized state, the optical network unit continues to decode and check the FEC codeword in the downstream data stream. If none of the M consecutive FEC codewords in the downstream data stream has an FEC codeword that has passed the decoding check, the optical network unit transitions from the synchronization state to the re-sync state (re-sync state).
  • the optical network unit When the optical network unit is in the resynchronization state, the optical network unit continues to decode and check the FEC codeword in the downstream data stream. If there are FEC codewords that pass the decoding check in the S consecutive FEC codewords in the downstream data stream, the optical network unit transitions from the resynchronization state to the synchronization state.
  • M is an integer greater than or equal to 1.
  • the optical network unit When the optical network unit is in the resynchronization state, the optical network unit continues to decode and check the FCE codeword in the downstream data stream. When the optical network unit detects that the FEC codewords in the downstream data stream fails to be checked, and the number of FEC codewords detected by the optical network unit does not reach S, the optical network unit maintains the resynchronization state and continues to check the downstream data stream. The next FEC codeword is decoded and checked.
  • the optical network unit When the optical network unit is in the resynchronization state, the optical network unit continues to decode and check the FEC codeword in the downstream data stream. If none of the S consecutive FEC codewords in the downstream data stream has an FEC codeword that passes the decoding check, the optical network unit transitions from the resynchronization state to the search state.
  • FIG. 6 is a schematic flowchart of a data processing method 600 according to an embodiment of the application.
  • the data processing method 600 provided by the embodiment of the present application includes:
  • the optical network unit searches for a field matching the preset Psync in the received data stream.
  • step 601 is similar to step 401 described above.
  • step 401 described above.
  • the optical network unit If the optical network unit searches for a Psync field matching the preset Psync in the data stream, the optical network unit verifies whether the first field with the preset number of bits located after the Psync field constitutes a valid SFC structure.
  • step 602 is similar to step 402 described above. For details, reference may be made to the description of step 402, which will not be repeated here.
  • the optical network unit enters a pre-synchronization state.
  • step 603 is similar to step 403 described above. For details, reference may be made to the description of step 403, which will not be repeated here.
  • the optical network unit After the optical network unit enters the pre-synchronization state, the optical network unit decodes the FEC codeword in the data stream to obtain the decoded codeword payload.
  • the decoded codeword payload refers to the effective data part of the FEC codeword obtained after decoding the FEC codeword. It should be noted that, thanks to the error correction capability of the FEC codeword itself, when an error occurs in individual data bits of the FEC codeword, for example, if one or two bits of data in the FEC codeword has an error, it can be used in FEC In the decoding process of the codeword, the errored data bit is corrected, so as to realize the correction of the error in the FEC codeword.
  • the optical network unit obtains a decoded Psync according to the decoded codeword payload, and the decoded Psync is located in the decoded codeword payload.
  • PSBd Since PSBd is located in the first FEC codeword of the downlink data frame, after decoding the FEC codeword to obtain the decoded codeword payload, the decoding can be found according to the decoded codeword payload After Psync. Since the decoded Psync has been decoded, the data bits that may have been erroneous in the Psync field have been corrected by the FEC decoder during the decoding process. Therefore, the Psync is checked for matching at this time. Can improve the success rate of matching.
  • the optical network unit verifies whether the second field of the preset number of bits after the decoded Psync constitutes a valid SFC structure.
  • the optical network unit determines whether the decoded Psync matches the preset Psync. If the decoded Psync matches the preset Psync, the optical network unit continues to verify the decoded Psync Whether the second field of the preset number of bits afterwards constitutes a valid SFC structure.
  • the second field may be a field with a preset number of bits after the decoded Psync field.
  • the second field may be, for example, a field after the decoded Psync field. 64-bit field. Simply put, the number of digits in the second field is the same as that of the SFC.
  • the optical network unit enters the synchronization state from the pre-synchronization state.
  • the optical network unit enters the synchronization state from the pre-synchronization state.
  • Psync can achieve error correction during the decoding process, so it can improve the matching success rate of Psync, thereby increasing the probability of the optical network unit entering the synchronization state from the pre-synchronization state, and avoiding the difficulty of the optical network unit due to Psync errors. Enter the synchronization state.
  • the method 600 further includes: after the optical network unit enters the synchronization state, if there is a mismatch between the decoded Psync and the preset Psync or the SFC verification fails, the optical network unit migrates from the synchronization state to Resynchronization state; if there is a match between the decoded Psync and the preset Psync and the SFC verification is successful, the optical network unit is maintained in the synchronization state.
  • the optical network unit continues to verify the decoded Psync and SFC in the downstream data stream, and the decoded Psync does not match the preset Psync or the SFC verification fails. In this case, the optical network unit migrates from the synchronization state to the resynchronization state. In the case where the decoded Psync does not match the preset Psync and the SFC verification succeeds, the optical network unit remains in a synchronized state.
  • the method 600 further includes: after the optical network unit enters the resynchronization state, for consecutive P data frames in the data stream, if there is a match between the decoded Psync and the preset Psync and SFC verification If successful, the optical network unit migrates from the resynchronization state to the synchronization state; P is an integer greater than 1.
  • the optical network unit verifies the decoded Psync and SFC in the downstream data stream. If there are multiple downstream data frames in the downstream data stream, When the decoded Psync in a certain downlink data frame matches and the SFC verification succeeds, the optical network unit can transition from the resynchronization state to the synchronization state.
  • the method 600 further includes: after the optical network unit enters the resynchronization state, for consecutive P data frames in the data stream, if there is a synchronization sequence after decoding that does not match the preset Psync Or the SFC verification fails, the optical network unit transitions from the resynchronization state to the search state.
  • the optical network unit verifies the decoded Psync and SFC in the downstream data stream. If in multiple consecutive downstream data frames in the downstream data stream, each If there is a Psync mismatch or SFC verification failure after decoding in all the downlink data frames, the optical network unit transitions from the resynchronization state to the search state.
  • FIG. 7 is a schematic diagram of a state transition process of an optical network unit according to an embodiment of the application.
  • the state transition process of an optical network unit shown in FIG. 7 can be applied to a downlink data frame as shown in FIG. 3B.
  • the optical network unit When the optical network unit is in hunt state, the optical network unit searches the downstream data stream for the Psync field that matches the preset Psync; after the optical network unit searches for the Psync field that matches the preset Psync, the optical network unit Verify whether the field after the Psync can form a valid SFC structure. If the field after the Psync field can form a valid SFC structure, it means that the Psync in the downstream data stream matches and the SFC structure is valid, and the optical network unit migrates from the search state to Pre-sync state (pre-sync state).
  • the optical network unit When the optical network unit is in the pre-synchronization state, the optical network unit decodes the FEC codeword in the downstream data stream to obtain the decoded codeword payload, and obtains the decoded codeword payload according to the decoded codeword payload Psync. After obtaining the decoded Psync, the optical network unit determines whether the decoded Psync matches the preset Psync. If the decoded Psync matches the preset Psync, the optical network unit continues to verify the decoded Psync Whether the subsequent SFC structure is valid. When the decoded Psync matches the preset Psync and the SFC structure is valid, the optical network unit transitions from the pre-synchronized state to the synchronized state.
  • the optical network unit When the optical network unit is in the pre-synchronization state, the optical network unit decodes the FEC codeword in the downstream data stream to obtain the decoded codeword payload, and obtains the decoded codeword payload according to the decoded codeword payload Psync. After obtaining the decoded Psync, the optical network unit determines whether the decoded Psync matches the preset Psync. If the decoded Psync matches the preset Psync, the optical network unit continues to verify the decoded Psync Whether the subsequent SFC structure is valid.
  • the optical network unit When the decoded Psync does not match the preset Psync, or the SFC structure is invalid (that is, the decoded Psync and/or SFC verification fails), the optical network unit returns to the search state from the pre-synchronized state.
  • the optical network unit When the optical network unit is in a synchronized state, the optical network unit continues to verify the decoded Psync and SFC in the downstream data stream.
  • the decoded Psync in the downstream data stream matches the preset Psync and the SFC structure is valid. In this case, the optical network unit remains in a synchronized state.
  • the optical network unit When the optical network unit is in a synchronized state, the optical network unit continues to verify the decoded Psync and SFC in the downstream data stream, and the decoded Psync in the downstream data stream does not match the preset Psync, and/or When the SFC structure is invalid, the optical network unit will migrate from the synchronization state to the resynchronization state.
  • the optical network unit When the optical network unit is in the resynchronization state, the optical network unit continues to verify the decoded Psync and SFC in the downstream data stream. If there is a Psync match after decoding in a certain downlink data frame in the P consecutive downlink data frames in the downlink data stream and the SFC verification succeeds, the optical network unit can migrate from the resynchronization state to the synchronization state.
  • P is an integer greater than or equal to 1.
  • the optical network unit When the optical network unit is in the resynchronization state, the optical network unit verifies the decoded Psync and SFC in the downstream data stream. When the optical network unit detects that the decoded Psync and/or SFC verification in a certain downlink data frame fails, and the number of downlink data frames detected by the optical network unit does not reach P, the optical network unit maintains the resynchronization state, And continue to verify the Psync and SFC after decoding the next downlink data frame in the downlink data stream.
  • Psync and/or SFC verification fails after decoding.
  • the optical network unit When the optical network unit is in the resynchronization state, the optical network unit verifies the decoded Psync and SFC in the downstream data stream. If there are multiple consecutive downstream data frames in the downstream data stream, each downstream data frame If there is a Psync mismatch or SFC verification failure after decoding, the optical network unit transitions from the resynchronization state to the search state.
  • FIG. 8 is a schematic structural diagram of an optical network unit 800 provided by an embodiment of this application.
  • the optical network unit 800 is used to execute the process performed by the data receiving end in the above method embodiment.
  • the optical network unit can be applied to an optical network unit that receives a downlink data frame, or it can be applied to an optical network unit that receives an uplink data frame.
  • the specific execution process and beneficial effects in the optical line terminal please refer to the above method embodiment for details.
  • An optical network unit 800 provided by an embodiment of the present application includes a processing unit 801, which is configured to search for a field matching the preset Psync in the received data stream; Set the Psync field matched by Psync, verify whether the first field with the preset number of bits after the Psync field constitutes a valid SFC structure; if the first field constitutes a valid SFC structure, enter the pre-synchronization state; enter the pre-synchronization state Then, according to the position of the Psync field in the data stream, determine the position of the forward error correction FEC codeword boundary in the data stream, and perform FEC codeword decoding inspection; if there are N consecutive FEC codewords in the data stream If there is an FEC codeword that passes the decoding check, it enters the synchronization state, and N is an integer greater than or equal to 1.
  • the processing unit 801 is further configured to: determine the SFC field behind the first field in the data stream according to the position of the first field; verify the SFC field, and the verification result of the SFC field is SFC The fields constitute a valid SFC structure.
  • the processing unit 801 is further configured to: if there is no FEC code word that has passed the decoding check among the N consecutive FEC code words in the data stream, return to the search state from the pre-synchronization state, N is an integer greater than or equal to 1.
  • the processing unit 801 is further configured to: after entering the synchronization state, if there are M consecutive FEC codewords in the data stream that fail the decoding check, then transition from the synchronization state to the resynchronization state; If there are FEC codewords that pass the decoding check among the M consecutive FEC codewords in the data stream, the synchronization state is maintained; M is an integer greater than or equal to 1.
  • the processing unit 801 is further configured to: after entering the resynchronization state, if there are FEC codewords that pass the decoding check among the S consecutive FEC codewords in the data stream, then resynchronize The state transitions to the synchronized state, and S is an integer greater than or equal to 1.
  • the processing unit 801 is further configured to: after entering the resynchronization state, if there is no FEC codeword that has passed the decoding verification among the S consecutive FEC codewords in the data stream, then resynchronize The synchronization state is moved to the search state.
  • the processing unit 801 is also used to: decode the FEC codeword in the data stream to obtain the decoded codeword payload; and obtain the decoded codeword payload according to the decoded codeword payload.
  • the decoded Psync is located in the decoded codeword payload; if the decoded Psync matches the preset Psync, verify the second field of the preset number of bits after the decoded Psync Whether it constitutes a valid SFC structure; if the second field constitutes a valid SFC structure, enter the synchronization state from the pre-synchronization state or maintain the synchronization state.
  • the processing unit 801 is further configured to: after entering the synchronization state, if there is a mismatch between the decoded Psync and the preset Psync or the SFC verification fails, then transition from the synchronization state to the resynchronization state ; If there is a match between the decoded Psync and the preset Psync and the SFC verification is successful, the synchronization state is maintained.
  • the processing unit 801 is further configured to: after entering the resynchronization state, for consecutive P data frames in the data stream, if there is a Psync after decoding that matches the preset Psync and SFC verification If it succeeds, it will migrate from the resynchronization state to the synchronization state; P is an integer greater than 1.
  • the processing unit 801 is further configured to: after entering the resynchronization state, for P consecutive data frames in the data stream, if there are all the decoded synchronization sequences that do not match the preset Psync Or if the SFC verification fails, it will transition from the resynchronization state to the search state.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种数据处理方法及设备,能够提高光网络单元进入同步状态的效率。本实施例提供的方法,包括:在光网络单元进入预同步状态之后,光网络单元在数据流中根据Psync字段的位置,确定数据流中前向错误纠正FEC码字边界的位置,以及进行FEC码字译码检验;若数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元进入同步状态,N为大于或等于1的整数。

Description

一种数据处理方法及设备
本申请要求于2020年3月9日提交中国国家知识产权局、申请号为202010157877.7、发明名称为“一种数据处理方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据传输技术领域,尤其涉及一种数据处理方法及设备。
背景技术
无源光网络(passive optical network,PON)由局侧的光线路终端(optical line terminal,OLT)、用户侧的光网络单元(optical network unit,ONU)或者光网络终端(optical network terminal,ONT)以及光分配网络(optical distribution network,ODN)组成。OLT为PON***提供网络侧接口,连接一个或多个ODN。ONU或ONT为PON***提供用户侧接口,与ODN相连。ODN是由光纤和无源分光器件组成的网络,用于连接OLT和ONU(下文将OLT或ONU统一用ONU代表),用于分发或复用OLT和ONU之间的数据信号。在PON中,从OLT到ONU称为下行;反之,从ONU到OLT称为上行。
在PON***中,OLT向ONU传输下行数据时,ONU往往需要确定是否进入同步状态。在ONU进入同步状态之后,ONU就可以解析数据帧内的数据。目前,ONU在确定是否进入同步状态的过程中,是在连续的数据流中搜寻数据帧头部特定的同步序列,在搜寻到该同步序列,并且间隔一个数据帧的长度继续搜寻到另一个同步序列时,即可确定可以进入同步状态。
然而,由于每个数据帧只有一个特定序列,而每个数据帧的持续时间较长,在连续的数据流中搜寻到至少两个同步序列往往需要耗费较长的时间,导致需要耗费较长的时间才能进入同步状态。
发明内容
本申请实施例提供一种数据处理方法及设备,通过验证数据流中的物理同步序列(Psync)以及超帧计数器(superframe counter,SFC)来决定是否进入预同步状态,并且在进入预同步状态之后,确定数据流中的前向错误纠正(forward error correction,FEC)码字的位置,并且在有FEC码字译码检验通过时,进入同步状态;由于在数据流中任意两个Psync之间包括有多个FEC码字,因此,通过确定FEC码字是否译码通过来决定是否进入同步状态,能够在耗费较短时间的情况下进入同步状态,提高进入同步状态的效率。
本申请实施例第一方面提供一种数据处理方法,可以应用于接收下行数据帧的光网络单元,该方法包括:在所述光网络单元进入预同步状态之后,所述光网络单元在所述数据流中根据所述Psync字段的位置,确定所述数据流中FEC码字边界的位置,以及进行FEC码字译码检验;若所述数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字, 则所述光网络单元进入同步状态,所述N为大于或等于1的整数。也就是说,在光网络单元进入预同步状态之后,由于Psync的位置与FEC码字的位置是相对固定的,因此可以根据Psync确定FEC码字的边界位置,从而确定数据流中的FEC码字;最后,通过对FEC码字进行译码检验,在数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字时,从预同步状态进入同步状态,从而实现快速进入同步状态。
本申请实施例中,通过验证数据流中Psync以及SFC来决定是否进入预同步状态,并且在进入预同步状态之后,确定数据流中的FEC码字的位置,并且在有FEC码字译码检验通过时,进入同步状态;由于在数据流中任意两个Psync之间包括有多个FEC码字,因此,通过确定FEC码字是否译码通过来决定是否进入同步状态,能够在耗费较短时间的情况下进入同步状态,提高进入同步状态的效率。
在一种可能的实现方式中,所述方法还包括:光网络单元在接收到的数据流中搜寻与预设Psync匹配的字段;若所述光网络单元在所述数据流中搜寻到与所述预设Psync匹配的Psync字段,则所述光网络单元验证位于所述Psync字段之后的预设位数的第一字段是否构成有效的SFC结构;若所述第一字段构成有效的SFC结构,则所述光网络单元进入预同步状态。
在一种可能的实现方式中,在所述光网络单元进入预同步状态之后,所述光网络单元进入同步状态之前,所述方法还包括:所述光网络单元根据所述第一字段的位置,确定所述数据流中位于所述第一字段后的SFC字段;所述光网络单元对所述SFC字段进行验证,且所述SFC字段的验证结果为SFC验证成功。也就是说,在光网络单元进入预同步状态之后,光网络单元除了需要在数据流中进行FEC码字检验,还需要进行SFC的验证,在FEC码字检验通过且SFC验证成功时,光网络单元从预同步状态进入同步状态。由此,通过进一步验证SFC字段是否有效,可以提高同步的准确率,降低误同步的概率。
在一种可能的实现方式中,所述方法还包括:若所述数据流中的N个连续的FEC码字中不存在有译码检验通过的FEC码字,则所述光网络单元从所述预同步状态返回搜寻状态,所述N为大于或等于1的整数。也就是说,如果数据流中的N个连续的FEC码字中都没有译码检验通过的FEC码字,则可以认为光网络单元误进入了预同步,光网络单元可以从预同步状态返回搜寻状态,重新搜寻匹配的Psync字段以及SFC字段。
在一种可能的实现方式中,所述方法还包括:在所述光网络单元进入同步状态之后,若所述数据流中有M个连续的FEC码字译码检验不通过,则所述光网络单元从同步状态迁移至重同步状态;若所述数据流中的M个连续的FEC码字中存在有译码检验通过的FEC码字,则所述光网络单元维持在同步状态;所述M为大于或等于1的整数。也就是说,在光网络单元进入同步状态之后,如果数据流中的M个连续的FEC码字中都没有译码检验通过的FEC码字,则光网络单元可能误进入了同步状态,因此,此时光网络单元可以进入重同步状态,以重新进行同步;如果数据流中的M个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元可以维持在同步状态。
在一种可能的实现方式中,所述方法还包括:在所述光网络单元进入重同步状态之后,若所述数据流中的S个连续的FEC码字中存在有译码检验通过的FEC码字,则所述光网络 单元从重同步状态迁移至同步状态,所述S为大于或等于1的整数。也就是说,在光网络单元进入重同步状态之后,可以通过对数据流中的FEC码字进行译码检验来决定是否重新进入同步状态,从而避免由于数据流中存在有误码而误跳出同步状态。
在一种可能的实现方式中,所述方法还包括:在所述光网络单元进入重同步状态之后,若所述数据流中的S个连续的FEC码字中不存在有译码检验通过的FEC码字,则所述光网络单元从重同步状态迁移至搜寻状态。
在一种可能的实现方式中,所述方法还包括:所述光网络单元对所述数据流中的FEC码字进行译码,得到译码后的码字净荷;所述光网络单元根据所述译码后的码字净荷得到译码后的Psync,所述译码后的Psync位于所述译码后的码字净荷中;若所述译码后的Psync与所述预设Psync匹配,则所述光网络单元验证位于所述译码后的Psync之后的预设位数的第二字段是否构成有效的SFC结构;若所述第二字段构成有效的SFC结构,则所述光网络单元从预同步状态进入同步状态或维持在同步状态。也就是说,在Psync位于FEC码字中的情况下,在光网络单元进入预同步状态之后,光网络单元还可以通过对译码后的Psync进行验证以及对SFC进行验证,来决定是否进入同步状态,提高了方案实现的灵活性。
在一种可能的实现方式中,所述方法还包括:在所述光网络单元进入同步状态之后,若存在有译码后的Psync与所述预设Psync不匹配或者SFC验证失败,则所述光网络单元从同步状态迁移至重同步状态;若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则所述光网络单元维持在同步状态。
在一种可能的实现方式中,所述方法还包括:在所述光网络单元进入重同步状态之后,对于所述数据流中的连续P个数据帧,若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则所述光网络单元从重同步状态迁移至同步状态;所述P为大于1的整数。也就是说,在光网络单元进入重同步状态之后,如果在数据流中的连续多个数据帧内,存在有译码后的Psync匹配且SFC验证成功,则光网络单元可以从重同步状态迁移至同步状态。
在一种可能的实现方式中,所述方法还包括:在所述光网络单元进入重同步状态之后,对于所述数据流中的连续P个数据帧,若均存在有译码后的同步序列不与所述预设Psync匹配或者SFC验证失败,则所述光网络单元从重同步状态迁移至搜寻状态。也就是说,在光网络单元进入重同步状态之后,如果在数据流中的连续多个数据帧内,均没有存在译码后的Psync匹配或者SFC验证成功,则光网络单元从重同步状态迁移至搜寻状态。
本申请第二方面提供一种光网络单元,包括:处理单元,所述处理单元用于:在进入预同步状态之后,在所述数据流中根据Psync字段的位置,确定所述数据流中FEC码字边界的位置,以及进行FEC码字译码检验,其中,所述Psync字段为所述数据流中与预设Psync匹配的字段;若所述数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则进入同步状态,所述N为大于或等于1的整数。
在一种可能的实现方式中,所述处理单元还用于:在接收到的数据流中搜寻与预设Psync匹配的字段;若在所述数据流中搜寻到与所述预设Psync匹配的Psync字段,则验证位于所述Psync字段之后的预设位数的第一字段是否构成有效的SFC结构;若所述第一 字段构成有效的SFC结构,则进入预同步状态。
在一种可能的实现方式中,所述处理单元还用于:根据所述第一字段的位置,确定所述数据流中位于所述第一字段后的SFC字段;对所述SFC字段进行验证,且所述SFC字段的验证结果为所述SFC字段构成有效的SFC结构。
在一种可能的实现方式中,所述处理单元还用于:若所述数据流中的N个连续的FEC码字中不存在有译码检验通过的FEC码字,则从所述预同步状态返回搜寻状态,所述N为大于或等于1的整数。
在一种可能的实现方式中,所述处理单元还用于:在进入同步状态之后,若所述数据流中有M个连续的FEC码字译码检验不通过,则从同步状态迁移至重同步状态;若所述数据流中的M个连续的FEC码字中存在有译码检验通过的FEC码字,则维持在同步状态;所述M为大于或等于1的整数。
在一种可能的实现方式中,所述处理单元还用于:在进入重同步状态之后,若所述数据流中的S个连续的FEC码字中存在有译码检验通过的FEC码字,则从重同步状态迁移至同步状态,所述S为大于或等于1的整数。
在一种可能的实现方式中,所述处理单元还用于:在进入重同步状态之后,若所述数据流中的S个连续的FEC码字中不存在有译码检验通过的FEC码字,则从重同步状态迁移至搜寻状态。
在一种可能的实现方式中,所述处理单元还用于:对所述数据流中的FEC码字进行译码,得到译码后的码字净荷;根据所述译码后的码字净荷得到译码后的Psync,所述译码后的Psync位于所述译码后的码字净荷中;若所述译码后的Psync与所述预设Psync匹配,则验证位于所述译码后的Psync之后的预设位数的第二字段是否构成有效的SFC结构;若所述第二字段构成有效的SFC结构,则从预同步状态进入同步状态或维持在同步状态。
在一种可能的实现方式中,所述处理单元还用于:在进入同步状态之后,若存在有译码后的Psync与所述预设Psync不匹配或者SFC验证失败,则从同步状态迁移至重同步状态;若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则维持在同步状态。
在一种可能的实现方式中,所述处理单元还用于:在进入重同步状态之后,对于所述数据流中的连续P个数据帧,若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则从重同步状态迁移至同步状态;所述P为大于1的整数。
在一种可能的实现方式中,所述处理单元还用于:在进入重同步状态之后,对于所述数据流中的连续P个数据帧,若均存在有译码后的同步序列不与所述预设Psync匹配或者SFC验证失败,则从重同步状态迁移至搜寻状态。
本申请第三方面提供一种光网络单元,包括:处理器和存储器,其中,所述存储器内存储有所述操作指令,所述处理器读取所述存储器内的操作指令用于实现上述第一方面任一项所述的方法。
本申请第四方面提供一种光网络***,包括光线路终端、光分配网络和如第二方面或第三方面任一项的光网络单元。
本申请第五方面提供一种包含指令的计算机程序产品,当指令在计算机上运行时,使得计算机执行如第一方面或第二方面中任一项的方法。
本申请第六方面提供一种计算机可读存储介质,包括计算机程序指令,当计算机程序指令在计算机上运行时,使得计算机执行如第一方面或第二方面中任一项的方法。
可以理解的是,上述提供的第二方面的光网络单元,第三方面的光网络单元,第四方面的光网络***,第五方面的计算机程序产品,以及第六方面的计算机可读存储介质均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,通过在进入预同步状态之后,确定数据流中的FEC码字的位置,并且在有FEC码字译码检验通过时,进入同步状态;由于在数据流中任意两个Psync之间包括有多个FEC码字,因此,通过确定FEC码字是否译码通过来决定是否进入同步状态,能够在耗费较短时间的情况下进入同步状态,提高进入同步状态的效率。
附图说明
图1为本申请实施例提供的无源光网络的网络架构一种示例图;
图2A为本申请实施例提供的下行数据帧的结构的一示例示意图;
图2B为本申请实施例提供的下行数据帧的结构的另一示例示意图;
图3A为本申请实施例提供的一种下行数据帧结构的示意图;
图3B为本申请实施例提供的另一种下行数据帧结构的示意图;
图4为本申请实施例提供的数据处理方法400的流程示意图;
图5为本申请实施例提供的一种光网络单元进行状态迁移的过程示意图;
图6为本申请实施例提供的数据处理方法600的流程示意图;
图7为本申请实施例提供的一种光网络单元进行状态迁移的过程示意图;
图8为本申请实施例提供的一种光网络单元800的结构示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着新应用场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含, 例如,包含了一系列步骤或模块的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。在本申请中出现的对步骤进行的命名或者编号,并不意味着必须按照命名或者编号所指示的时间/逻辑先后顺序执行方法流程中的步骤,已经命名或者编号的流程步骤可以根据要实现的技术目的变更执行次序,只要能达到相同或者相类似的技术效果即可。本申请中所出现的单元的划分,是一种逻辑上的划分,实际应用中实现时可以有另外的划分方式,例如多个单元可以结合成或集成在另一个***中,或一些特征可以忽略,或不执行,另外,所显示的或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元之间的间接耦合或通信连接可以是电性或其他类似的形式,本申请中均不作限定。并且,作为分离部件说明的单元或子单元可以是也可以不是物理上的分离,可以是也可以不是物理单元,或者可以分布到多个电路单元中,可以根据实际的需要选择其中的部分或全部单元来实现本申请方案的目的。
以下首先结合图1所示对本申请所示的数据处理方法所应用的无源光网络的网络架构进行示例性说明:
如图1所示,本实施例所示的无源光网络100包括一个或多个光线路终端(OLT)110、光分配网络(ODN)120以及多个光网络单元(ONU)。
其中,OLT110通过ODN120以点到多点的方式连接到多个ONU。本实施例以无源光网络100包括有一个OLT101为例进行示例性说明,本实施例对ONU的具体数量不做限定,只要ONU的数量为多个即可,例如,本实施例所示的无源光网络包括有n个ONU,即ONU1301、ONU1302……ONU130n。
为更好的说明本申请所示的上下行业务数据的通信过程,则本申请所示从OLT110到ONU的方向定义为下行方向,而从ONU到OLT101的方向定义为上行方向。
无源光网络可以是不需要任何有源器件来实现OLT110与ONU1301、ONU1302……ONU130n之间的通信的通信网络,具体的,OLT110与ONU1301、ONU1302……ONU130n之间的通信可以通过ODN120中的无源光器件来实现,其中,无源光器件包括但不限于分光器或者复用器。
OLT110通常位于中心局(central office,CO),OLT110可以统一管理ONU1301、ONU1302……ONU130n。OLT110可以充当ONU1301、ONU1302……ONU130n与上层网络之间的媒介。如在下行方向,OLT110将从上层网络接收到的数据作为下行业务数据,通过下行波长通道转发到ONU1301、ONU1302……ONU130n。又如在上行方向,OLT110将从ONU1301、ONU1302……ONU130n接收到的上行业务数据,通过上行波长通道转发到上层网络。
ODN120可以是一个数据分发***,其可以包括光纤、光耦合器、光分路器、光复用器和/或其他设备。在一个实施例中,光纤、光耦合器、光分路器、光复用器和/或其他设备可以是无源光器件,具体来说,光纤、光耦合器、光分路器、光复用器和/或其他设备可以是在OLT110和ONU1301、ONU1302……ONU130n之间分发数据信号是不需要电源支持的器件。另外,在其他实施例中,该ODN120还可以包括一个或多个处理设备,例如,光放大器或者中继设备(relay device)。ODN120具体可以从OLT110延伸到多个ONU1301、 ONU1302……ONU130n,但也可以配置成其他任何点到多点的结构,具体在本实施例中不做限定。
ONU1301、ONU1302……ONU130n可以分布式地设置在用户侧位置(比如用户驻地)。ONU1301、ONU1302……ONU130n可以为用于与OLT110和用户进行通信的网络设备。具体而言,ONU1301、ONU1302……ONU130n可以充当OLT110与用户之间的媒介,例如,ONU1301、ONU1302……ONU130n可以将从OLT110接收到的下行业务数据转发到用户,以及将从用户接收到的数据作为上行业务数据转发到OLT110。
目前,在PON***中,OLT向ONU传输下行数据时,ONU往往需要进行下行数据帧定界。在ONU完成下行数据帧定界之后,ONU就可以解析数据帧内的数据。以下行速率为10Gbit/s,上行速率为2.5Gbit/s或10Gbit/s的10G PON***为例。如图2A所示,在10G PON***中,下行的数据通常以125微秒为单位,每125微秒的数据构成1个完整的下行数据帧。在下行数据帧的头部有一个24字节的物理同步块(physical layer synchronization block,PSBd)。如图2B所示,在PSBd中包括有Psync,SFC结构以及无源光网络标识(PON-id)结构。
ONU在进行下行数据帧定界的过程中,需要在连续的数据流中搜寻Psync,搜到了Psync之后再验证SFC是否正确。在Psync和SFC同时验证成功后,ONU则进入预同步状态,如果ONU在数据流中间隔一个或多个下行数据帧的长度搜寻到了重复出现的Psync和SFC,ONU则从预同步状态进入同步状态。也就是说,ONU需要在连续的数据流中搜寻到至少两个PSBd,且两个PSBd中的Psync和SFC均验证成功,ONU才能够进入同步状态。显然,由于每个数据帧只有一个PSBd,且每个数据帧的时间长度是固定的(例如是125微秒),目前的帧定界方式效率较低,需要耗费较长的时间来进入同步状态。
此外,在一些误码率较高的PON***(例如高速率PON***)中,Psync以及SFC的误码率偏高,一旦Psync或者SFC存在一定的误码,则ONU可能难以在短时间之内找到匹配的Psync以及SFC,从而延长进入同步状态的时间。
有鉴于此,本申请实施例提供一种数据处理方法,通过验证数据流中Psync以及SFC来决定是否进入预同步状态,并且在进入预同步状态之后,确定数据流中的FEC码字的位置,并且在有FEC码字译码检验通过时,进入同步状态;由于在数据流中任意两个Psync之间包括有多个FEC码字,因此,通过确定FEC码字是否译码通过来决定是否进入同步状态,能够在耗费较短时间的情况下进入同步状态,提高进入同步状态的效率。
需要说明的是,本申请实施例提供的数据处理方法可以应用于各种速率下的PON***,例如可以是10G PON***或者是高速率(high speed)PON***,其中,高速PON***可以是指50G PON***或者速率更高的PON***,此处不做具体限定。
本申请实施例提供的数据处理方法可以应用于下行数据帧定界,即由ONU确定下行数据帧中的边界位置;数据处理方法也可以是应用于上行数据帧定界,即由OLT确定上行数据帧中的边界位置。为了便于叙述,以下将以数据处理方法应用于下行数据帧定界为例,对本申请实施例提供的数据处理方法进行详细的描述。
此外,本申请实施例提供的数据处理方法可以应用于处理不同帧结构的下行数据。具 体地,下行数据的帧结构可以包括以下两种情况:
1、PSBd不在FEC码字内。
在下行数据流中,下行数据流由连续的下行数据帧构成,每个下行数据帧由多个FEC码字构成。在每个下行数据帧的帧头位置处有一个PSBd,该PSBd位于FEC码字外。
如图3A所示,图3A为本申请实施例提供的一种下行数据帧结构的示意图,其中,下行数据帧1和下行数据帧2为连续的两个下行数据帧。在下行数据帧1和下行数据帧2中,均包括有300个FEC码字(即FEC码字1至FEC码字300),且在下行数据帧的帧头位置处有一个PSBd,即该PSBd位于第一个FEC码字的前面,该PSBd不在FEC码字内。
2、PSBd在FEC码字内。
在下行数据流中,下行数据流由连续的下行数据帧构成,每个下行数据帧由多个FEC码字构成。在每个下行数据帧的帧头位置处有一个PSBd,该PSBd位于下行数据帧的第一个FEC码字内。
如图3B所示,图3B为本申请实施例提供的另一种下行数据帧结构的示意图,其中,下行数据帧1和下行数据帧2为连续的两个下行数据帧。在下行数据帧1和下行数据帧2中,均包括有300个FEC码字(即FEC码字1至FEC码字300),且在下行数据帧的第一个FEC码字内包括有一个PSBd,即该PSBd位于第一个FEC码字内。
可以参阅图4,图4为本申请实施例提供的数据处理方法400的流程示意图。如图4所示,本申请实施例提供的数据处理方法400,包括:
401、光网络单元在接收到的数据流中搜寻与预设Psync匹配的字段。
在光网络单元启动之后,光网络单元进入搜寻状态,即光网络单元在接收到的下行数据流中搜寻与预设Psync匹配的字段。其中,该预设Psync可以是预先设定好的,是该数据流中用于实现下行数据帧同步的特定序列。
402、若光网络单元在数据流中搜寻到与预设Psync匹配的Psync字段,则光网络单元验证位于Psync字段之后的预设位数的第一字段是否构成有效的SFC结构。
如果光网络单元在数据流中搜寻到了与该预设Psync相同的字段,即可以认为光网络单元在数据流中搜寻到与预设Psync匹配的Psync字段,光网络单元可以继续验证位于Psync字段之后的第一字段是否能够构成有效的SFC结构。其中,第一字段可以是位于该Psync字段之后的预设位数的字段,例如在SFC为64比特的情况下,第一字段例如可以为位于该Psync字段之后的64比特的字段。简单来说,第一字段的位数与SFC的位数相同。
403、若第一字段构成有效的SFC结构,则光网络单元进入预同步状态。
如果位于该Psync字段之后的第一字段构成了有效的SFC结构,则可以认为光网络单元搜寻到了位于下行数据帧的帧头位置处的PSBd,光网络单元可以进入预同步状态。其中,预同步状态是光网络单元进入同步状态之前所进入的状态,在预同步状态下,光网络单元可以继续对数据流进行进一步的检测,以使得光网络单元可以由预同步状态迁移至同步状态,或者由预同步状态返回至搜寻状态。
相反,如果位于该Psync字段之后的第一字段没有构成有效的SFC结构,则可以认为光网络单元所搜寻到的与预设Psync匹配的Psync字段并非是PSBd中的Psync,而可能是 下行数据流中的其他数据误码所致,即下行数据流中的一些数据位由于误码而变成与预设Psync匹配的Psync字段,因此光网络单元继续执行步骤401,即继续搜寻与预设Psync匹配的字段。
404、在光网络单元进入预同步状态之后,光网络单元在数据流中根据Psync字段的位置,确定数据流中FEC码字边界的位置,以及进行FEC码字译码检验。
本实施例中,由于PSBd位于下行数据流的数据帧的帧头位置处,且FEC码字位于PSBd之后。因此,在确定了PSBd中的Psync字段之后,可以根据该Psync字段的位置确定下行数据流中FEC码字边界的位置。例如,对应图3A中的下行数据帧结构来说,在确定了PSBd中的Psync字段之后,由于PSBd的位数是固定的,因此可以确定PSBd的结束位置,该PSBd的结束位置即为第一个FEC码字的开始位置。由于下行数据帧中的每个FEC码字的长度(数据位的位数)也是固定的,因此,同样可以根据第一个FEC码字的开始位置确定下行数据帧中每一个FEC码字的边界位置。
在确定了下行数据帧中FEC码字的边界位置之后,可以对位于PSBd之后的FEC码字进行译码检验,即通过译码器对FEC码字进行译码,并且根据译码器的指示判断FEC码字是否能够译码成功。由于在下行数据帧中,只有正确地确定了FEC码字的边界,才能够确定得到正确的FEC码字,这时FEC码字才会译码成功;如果错误地确定了FEC码字的边界,则不能够确定得到正确的FEC码字,而错误的FEC码字通常是译码失败的。因此,通过判断FEC码字是否能够译码成功,可以判断所确定的FEC码字的边界位置是否是正确的。而FEC码字的边界位置又是根据PSBd来确定的,因此,通过判断FEC码字是否能够译码成功,可以判断所搜寻的到的PSBd是否是正确的PSBd。
405、若数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元进入同步状态,N为大于或等于1的整数。
应理解,由于在下行数据帧中可能会存在有FEC码字发生误码的情况,因此,可能会导致部分FEC码字无法通过译码检验。例如,在PSBd之后的第一个FEC码字中有多个数据位发生误码时,第一个FEC码字可能无法通过译码检验;而在PSBd之后的第二个FEC码字中没有数据位或者只有极少的数据位发生误码时,第二个FEC码字则可以通过译码检验。
因此,为了避免由于FEC码字发生误码,而导致错误地判定没有搜寻到正确的PSBd,在本实施例中,可以通过判定下行数据流中的N个连续的FEC码字中是否存在有译码检验通过的FEC码字,来决定是否进入同步状态。如果下行数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元进入同步状态。例如,在N为3的情况下,如果下行数据流中位于PSBd之后的连续3个FEC码字中存在有译码检验通过的FEC码字,则光网络单元进入同步状态;也就是说,只要下行数据流中位于PSBd之后的第一个FEC码字、第二个FEC码字或者第三个FEC码字中的任意一个FEC码字能够通过译码检验,光网络单元即可进入同步状态。具体地,光网络单元可以在发现有FEC码字通过译码检验之后,即进入同步状态,而不需要等到对3个FEC码字均进行了译码检验且发现有译码检验通过的FEC码字才进入同步状态。其中,同步状态是光网络单元进行正常的数据处理的状态,即光网络单元在进入同步状态之后,可以对下行数据帧进行解析,以获得下行数据帧中所 传输的有效数据。
应理解,下行数据流是经过扰动处理(Scramble)的,即下行数据流是对原始信号做一定的运算之后所得到的(例如通过一个多项式对原始信号进行运算后得到下行数据流),因此,光网络单元在进行FEC译码之前需要对数据进行解扰(Descramble)。由于在解扰的过程中,光网络单元需要采用SFC中的数据内容,而SFC字段本身具有一定的纠错能力,只要SFC字段内的误码个数小于2比特(bits),SFC就可以正确恢复并用于下行数据帧的解扰。因此,光网络单元在进行FEC译码之前,可以根据上述第一字段对下行数据流进行解扰,然后再进行FEC译码。
在一个可能的实施方式中,方法400还包括:若数据流中的N个连续的FEC码字中不存在有译码检验通过的FEC码字,则光网络单元从预同步状态返回搜寻状态,N为大于或等于1的整数。也就是说,如果数据流中的N个连续的FEC码字中都没有译码检验通过的FEC码字,则可以认为光网络单元误进入了预同步状态,光网络单元可以从预同步状态返回搜寻状态,重新搜寻匹配的Psync字段以及SFC字段。
其中,N为预设设定的数值,具体为大于或等于1的整数,例如可以为3或4。N的数值具体可以根据实际情况进行设置,在此不做具体限定。
本实施例中,通过验证数据流中Psync以及SFC来决定是否进入预同步状态,并且在进入预同步状态之后,确定数据流中的FEC码字的位置,并且在有FEC码字译码检验通过时,进入同步状态;由于在数据流中任意两个Psync之间包括有多个FEC码字,因此,通过确定FEC码字是否译码通过来决定是否进入同步状态,能够在耗费较短时间的情况下进入同步状态,提高进入同步状态的效率。
在一个可能的实施方式中,光网络单元在数据流中的N个连续的FEC码字中发现有译码检验通过的FEC码字之后,方法400还包括:光网络单元根据第一字段的位置,确定数据流中位于第一字段后的SFC字段;光网络单元对SFC字段进行验证,若SFC字段的验证结果为SFC验证成功,则光网络单元进入同步状态。其中,由于下行数据流中每个数据帧的长度都是固定的,并且SFC结构在每个下行数据帧中的位置也是固定的,因此,在确定了第一字段之后,可以根据第一字段的位置以及下行数据帧的长度确定位于第一字段之后的SFC字段,即确定下一个SFC结构的位置。
需要说明的是,在光网络单元验证到第一字段构成有效的SFC结构之后,光网络单元会将第一字段的SFC值存储在本地,并且进入预同步状态。那么,在光网络单元进入预同步状态之后,光网络单元对上述的SFC字段进行验证之前,光网络单元将本地存储的SFC值执行加1操作(即将本地存储的SFC值加1)。因此,光网络单元对SFC字段进行验证具体包括:光网络单元验证SFC字段是否构成有效的SFC结构,并且验证该SFC字段对应的SFC值是否等于本地所存储的SFC值。如果该SFC字段构成有效的SFC结构,且该SFC字段对应的SFC值等于本地所存储的SFC值,则确定SFC字段的验证结果为SFC字段构成有效的SFC结构。
简单来说,在光网络单元进入预同步状态之后,光网络单元除了需要在数据流中进行FEC码字检验,还需要进行SFC的验证,在FEC码字检验通过且SFC验证成功时,光网络 单元从预同步状态进入同步状态。由此,通过在FEC码字检验的基础上,进一步对SFC字段进行验证,可以提高同步的准确率,降低误同步的概率。
在一个可能的实施方式中,方法400还包括:在光网络单元进入同步状态之后,若数据流中有M个连续的FEC码字译码检验均不通过,则光网络单元从同步状态迁移至重同步状态,M为大于或等于1的整数。也就是说,在光网络单元进入同步状态之后,如果数据流中的M个连续的FEC码字中都没有译码检验通过的FEC码字,则光网络单元可能误进入了同步状态,因此,此时光网络单元可以进入重同步状态,以重新进行同步,也就是说,重同步状态是用于重新进行同步的状态。
相反,在光网络单元进入同步状态以后,若数据流中的任意M个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元维持在同步状态。
其中,M为预设设定的数值,具体为大于或等于1的整数,例如可以为3或4。M的数值具体可以根据实际情况进行设置,在此不做具体限定。在一个可能的实施方式中,M可以与上述的N相等。
需要说明的是,在现有的技术中,光网络单元是通过验证下行数据流中的Psync以及SFC来决定是否维持在同步状态,在误码率较高的情况下,Psync以及SFC容易由于误码而导致验证失败,从而容易导致光网络单元误跳出同步状态。而本实施例中,通过验证下行数据流中的多个连续的FEC码字是否存在有译码检验通过的FEC码字来决定是否维持在同步状态,可以降低误跳出同步状态的几率,避免光网络单元频繁跳出同步状态。
在一个可能的实施方式中,如果光网络单元进入了重同步状态,则光网络单元可以通过继续对下行数据流中的FEC码字进行译码检验,来决定是否从重同步状态返回同步状态。
具体地,方法400还包括:在光网络单元进入重同步状态之后,光网络单元对下行数据流中的FEC码字进行译码检验,若下行数据流中的S个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元从重同步状态迁移至同步状态,S为大于或等于1的整数。也就是说,在光网络单元进入重同步状态之后,可以通过对数据流中的FEC码字进行译码检验来决定是否重新进入同步状态,从而避免由于数据流中存在有误码而误跳出同步状态。
其中,S为预设设定的数值,具体为大于或等于1的整数,例如可以为3或4。S的数值具体可以根据实际情况进行设置,在此不做具体限定。在一个可能的实施方式中,S可以与上述的N和/或M相等。
在一个可能的实施方式中,方法还包括:在光网络单元进入重同步状态之后,若数据流中的S个连续的FEC码字中不存在有译码检验通过的FEC码字,则光网络单元从重同步状态迁移至搜寻状态。
也就是说,在光网络单元进入重同步状态之后,光网络单元可以通过继续对FEC码字进行译码检验来决定返回同步状态或者迁移至搜寻状态。
可以理解的是,在光网络单元进入同步状态之后,如果下行数据流中连续M个FEC码字均发生了误码,则可能导致光网络单元进入重同步状态;光网络单元则可以在重同步状态继续对多个连续的FEC码字进行译码检验,如果FEC码字译码检验通过,则可以认为光 网络单元是误进入了重同步状态,因此光网络单元从重同步状态返回同步状态;如果FEC码字检验没有通过,则可以认为光网络单元误进入了同步状态,因此光网络单元从重同步状态迁移至搜寻状态。
为了便于理解,以下将结合图5对本实施例提供的数据处理方法进行详细的描述。如图5所示,图5为本申请实施例提供的一种光网络单元进行状态迁移的过程示意图。
501、Psync匹配以及SFC有效。
当光网络单元处于搜寻状态(hunt state)时,光网络单元在下行数据流中搜寻与预设Psync匹配的Psync字段;在光网络单元搜寻到与预设Psync匹配的Psync字段之后,光网络单元验证位于Psync之后的字段是否能够构成有效的SFC结构,如果位于Psync字段之后的字段能够构成有效的SFC结构,则代表下行数据流中的Psync匹配且SFC结构有效,光网络单元从搜寻状态迁移至预同步状态(pre-sync state)。
502、N个连续的FEC码字中有译码检验通过的FEC码字,即N个连续的FEC码字中至少有一个FEC码字译码检验成功。
当光网络单元处于预同步状态时,光网络单元在下行数据流中根据上述的Psync字段确定FEC码字的边界位置,然后对FEC码字进行译码检验。如果下行数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元从预同步状态迁移至同步状态(sync state)。其中,N为大于或等于1的整数。
503、N个连续的FEC码字中没有译码检验通过的FEC码字,即N个连续的FEC码字均译码检验失败。
当光网络单元处于预同步状态时,光网络单元在下行数据流中根据上述的Psync字段确定FEC码字的边界位置,然后对FEC码字进行译码检验。如果下行数据流中的N个连续的FEC码字中并不存在有译码检验通过的FEC码字,则光网络单元从预同步状态返回搜寻状态。
504、M个连续的FEC码字中有译码检验通过的FEC码字,即M个连续的FEC码字中至少有一个FEC码字译码检验成功。
当光网络单元处于同步状态时,光网络单元持续对下行数据流中的FEC码字进行译码检验。如果下行数据流中的M个连续的FEC码字中存在有译码检验通过的FEC码字,则光网络单元维持在同步状态。其中,M为大于或等于1的整数。
505、M个连续的FEC码字中没有译码检验通过的FEC码字,即M个连续的FEC码字均译码检验失败。
当光网络单元处于同步状态时,光网络单元持续对下行数据流中的FEC码字进行译码检验。如果下行数据流中的M个连续的FEC码字中均没有译码检验通过的FEC码字,则光网络单元从同步状态迁移至重同步状态(re-sync state)。
506、S个连续的FEC码字中有译码检验通过的FEC码字,即S个连续的FEC码字中至少有一个FEC码字译码检验成功。
当光网络单元处于重同步状态时,光网络单元持续对下行数据流中的FEC码字进行译码检验。如果下行数据流中的S个连续的FEC码字中存在有译码检验通过的FEC码字,则 光网络单元从重同步状态迁移至同步状态。其中,M为大于或等于1的整数。
507、FEC码字译码检验失败。
当光网络单元处于重同步状态时,光网络单元持续对下行数据流中的FCE码字进行译码检验。在光网络单元检测到下行数据流中的FEC码字检验失败,且光网络单元已检测的FEC码字数量没达到S个时,光网络单元维持在重同步状态,并且继续对下行数据流中的下一个FEC码字进行译码检验。
508、S个连续的FEC码字中均没有译码检验通过的FEC码字,即S个连续的FEC码字中没有FEC码字译码检验成功。
在光网络单元处于重同步状态时,光网络单元持续对下行数据流中的FEC码字进行译码检验。如果下行数据流中的S个连续的FEC码字中均没有译码检验通过的FEC码字,则光网络单元从重同步状态迁移至搜寻状态。
上文的实施例均可应用于图3A以及图3B所示的下行数据帧结构中,下文将针对图3B所示的下行数据帧结构,提供另一种数据处理方法的实施例。
可以参阅图6,图6为本申请实施例提供的数据处理方法600的流程示意图。如图6所示,本申请实施例提供的数据处理方法600,包括:
601、光网络单元在接收到的数据流中搜寻与预设Psync匹配的字段。
本实施例中,步骤601与上述的步骤401类似,具体可参考步骤401的描述,在此不再赘述。
602、若光网络单元在数据流中搜寻到与预设Psync匹配的Psync字段,则光网络单元验证位于Psync字段之后的预设位数的第一字段是否构成有效的SFC结构。
本实施例中,步骤602与上述的步骤402类似,具体可参考步骤402的描述,在此不再赘述。
603、若第一字段构成有效的SFC结构,则光网络单元进入预同步状态。
本实施例中,步骤603与上述的步骤403类似,具体可参考步骤403的描述,在此不再赘述。
604、在光网络单元进入预同步状态之后,光网络单元对数据流中的FEC码字进行译码,得到译码后的码字净荷。
其中,译码后的码字净荷指的是对FEC码字进行译码后所得到的FEC码字有效数据部分。需要说明的是,得益于FEC码字本身的纠错能力,在FEC码字的个别数据位发生误码时,例如FEC码字中有1比特或者2比特的数据发生误码,可以在FEC码字的译码过程中纠正发生误码的数据位,从而实现FEC码字中误码的纠正。
605、光网络单元根据译码后的码字净荷得到译码后的Psync,该译码后的Psync位于译码后的码字净荷中。
由于PSBd位于下行数据帧的第一个FEC码字中,因此,在对FEC码字进行译码得到译码后的码字净荷之后,可以根据该译码后的码字净荷找到译码后的Psync。由于译码后的Psync已经经过了译码处理,Psync字段中原来可能发生了误码的数据位已经在译码过程中 被FEC译码器纠正了,因此,此时对Psync进行匹配校验,可以提高匹配的成功率。
606、若译码后的Psync与预设Psync匹配,则光网络单元验证位于译码后的Psync之后的预设位数的第二字段是否构成有效的SFC结构。
在得到译码后的Psync之后,光网络单元判断译码后的Psync是否与预设Psync匹配,如果该译码后的Psync与预设Psync匹配,则光网络单元继续验证位于译码后的Psync之后的预设位数的第二字段是否构成有效的SFC结构。其中,第二字段可以是位于该译码后的Psync字段之后的预设位数的字段,例如在SFC为64比特的情况下,第二字段例如可以为位于该译码后的Psync字段之后的64比特的字段。简单来说,第二字段的位数与SFC的位数相同。
607、若第二字段构成有效的SFC结构,则光网络单元从预同步状态进入同步状态同步状态。
在第二字段能够构成有效的SFC结构的情况下,光网络单元则从预同步状态进入同步状态。
本实施例中,通过验证数据流中Psync以及SFC来决定是否进入预同步状态,并且在进入预同步状态之后,通过验证译码后的Psync以及SFC来决定是否进入同步状态;由于译码后的Psync在译码过程中可以实现误码的纠正,因此能够提高Psync的匹配成功率,从而提高了光网络单元从预同步状态进入同步状态的几率,避免了由于Psync误码而导致光网络单元难以进入同步状态。
在一个可能的实施方式中,方法600还包括:在光网络单元进入同步状态之后,若存在有译码后的Psync与预设Psync不匹配或者SFC验证失败,则光网络单元从同步状态迁移至重同步状态;若存在有译码后的Psync与预设Psync匹配以及SFC验证成功,则光网络单元维持在同步状态。
也就是说,在光网络单元进入同步状态之后,光网络单元持续对下行数据流中的译码后的Psync以及SFC进行验证,在译码后的Psync与预设Psync不匹配或者SFC验证失败的情况下,光网络单元则从同步状态迁移至重同步状态。在译码后的Psync与预设Psync不匹配且SFC验证成功的情况下,光网络单元则维持在同步状态。
在一个可能的实施方式中,方法600还包括:在光网络单元进入重同步状态之后,对于数据流中的连续P个数据帧,若存在有译码后的Psync与预设Psync匹配以及SFC验证成功,则光网络单元从重同步状态迁移至同步状态;P为大于1的整数。
也就是说,在光网络单元进入重同步状态之后,光网络单元对下行数据流中的译码后的Psync以及SFC进行验证,如果在下行数据流中的连续多个下行数据帧内,存在有某个下行数据帧中的译码后的Psync匹配且SFC验证成功,则光网络单元可以从重同步状态迁移至同步状态。
在一个可能的实施方式中,方法600还包括:在光网络单元进入重同步状态之后,对于数据流中的连续P个数据帧,若均存在有译码后的同步序列不与预设Psync匹配或者SFC验证失败,则光网络单元从重同步状态迁移至搜寻状态。
也就是说,在光网络单元进入重同步状态之后,光网络单元对下行数据流中的译码后 的Psync以及SFC进行验证,如果在下行数据流中的连续多个下行数据帧中,每个下行数据帧中均存在有译码后的Psync不匹配或者SFC验证失败的情况,则光网络单元从重同步状态迁移至搜寻状态。
为了便于理解,以下将结合图7对本实施例提供的数据处理方法进行详细的描述。如图7所示,图7为本申请实施例提供的一种光网络单元进行状态迁移的过程示意图,图7所示的光网络单元进行状态迁移的过程可以应用于下行数据帧为图3B所示的数据帧结构的场景中。
701、Psync匹配以及SFC有效。
当光网络单元处于搜寻状态(hunt state)时,光网络单元在下行数据流中搜寻与预设Psync匹配的Psync字段;在光网络单元搜寻到与预设Psync匹配的Psync字段之后,光网络单元验证位于Psync之后的字段是否能够构成有效的SFC结构,如果位于Psync字段之后的字段能够构成有效的SFC结构,则代表下行数据流中的Psync匹配且SFC结构有效,光网络单元从搜寻状态迁移至预同步状态(pre-sync state)。
702、译码后的Psync匹配以及SFC有效。
当光网络单元处于预同步状态时,光网络单元对下行数据流中的FEC码字进行译码,得到译码后的码字净荷,并且根据译码后的码字净荷得到译码后的Psync。在得到译码后的Psync之后,光网络单元判断译码后的Psync是否与预设Psync匹配,如果该译码后的Psync与预设Psync匹配,则光网络单元继续验证位于译码后的Psync之后的SFC结构是否有效。在译码后的Psync与预设Psync匹配,且SFC结构有效的情况下,光网络单元则从预同步状态迁移至同步状态。
703、译码后的Psync和/或SFC验证失败。
当光网络单元处于预同步状态时,光网络单元对下行数据流中的FEC码字进行译码,得到译码后的码字净荷,并且根据译码后的码字净荷得到译码后的Psync。在得到译码后的Psync之后,光网络单元判断译码后的Psync是否与预设Psync匹配,如果该译码后的Psync与预设Psync匹配,则光网络单元继续验证位于译码后的Psync之后的SFC结构是否有效。在译码后的Psync不与预设Psync匹配,或者是SFC结构无效的情况下(即译码后的Psync和/或SFC验证失败),光网络单元则从预同步状态返回搜寻状态。
704、译码后的Psync匹配以及SFC有效。
当光网络单元处于同步状态时,光网络单元持续对下行数据流中的译码后的Psync以及SFC进行验证,在下行数据流中的译码后的Psync与预设Psync匹配且SFC结构有效的情况下,光网络单元则维持在同步状态。
705、译码后的Psync和/或SFC验证失败。
当光网络单元处于同步状态时,光网络单元持续对下行数据流中的译码后的Psync以及SFC进行验证,在下行数据流中的译码后的Psync不与预设Psync匹配,和/或SFC结构无效的情况下,光网络单元则从同步状态迁移至重同步状态。
706、连续P个数据帧中存在有译码后的Psync以及SFC验证成功。
当光网络单元处于重同步状态时,光网络单元持续对下行数据流中的译码后的Psync 以及SFC进行验证。如果下行数据流中的P个连续的下行数据帧中,存在有某个下行数据帧中的译码后的Psync匹配且SFC验证成功,则光网络单元可以从重同步状态迁移至同步状态。其中,P为大于或等于1的整数。
707、译码后的Psync和/或SFC验证失败。
当光网络单元处于重同步状态时,光网络单元对下行数据流中的译码后的Psync以及SFC进行验证。在光网络单元检测到某一个下行数据帧中译码后的Psync和/或SFC验证失败,且光网络单元已检测的下行数据帧数量没达到P个时,光网络单元维持在重同步状态,并且继续对下行数据流中的下一个下行数据帧进行译码后的Psync以及SFC进行验证。
708、连续P个数据帧中,译码后的Psync和/或SFC验证失败。
在光网络单元处于重同步状态时,光网络单元对下行数据流中的译码后的Psync以及SFC进行验证,如果在下行数据流中的连续多个下行数据帧中,每个下行数据帧中均存在有译码后的Psync不匹配或者SFC验证失败的情况,则光网络单元从重同步状态迁移至搜寻状态。
可以参阅图8,图8为本申请实施例提供的一种光网络单元800的结构示意图。其中,光网络单元800用于执行上述方法实施例中,由数据接收端所执行的流程,例如光网络单元可以应用于接收下行数据帧的光网络单元中,也可以应用于接收上行数据帧的光线路终端中,具体执行过程和有益效果的说明,请详见上述方法实施例所示。
本申请实施例提供的一种光网络单元800,包括:处理单元801,处理单元801用于:在接收到的数据流中搜寻与预设Psync匹配的字段;若在数据流中搜寻到与预设Psync匹配的Psync字段,则验证位于Psync字段之后的预设位数的第一字段是否构成有效的SFC结构;若第一字段构成有效的SFC结构,则进入预同步状态;在进入预同步状态之后,在数据流中根据Psync字段的位置,确定数据流中前向错误纠正FEC码字边界的位置,以及进行FEC码字译码检验;若数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则进入同步状态,N为大于或等于1的整数。
在一种可能的实现方式中,处理单元801还用于:根据第一字段的位置,确定数据流中位于第一字段后的SFC字段;对SFC字段进行验证,且SFC字段的验证结果为SFC字段构成有效的SFC结构。
在一种可能的实现方式中,处理单元801还用于:若数据流中的N个连续的FEC码字中不存在有译码检验通过的FEC码字,则从预同步状态返回搜寻状态,N为大于或等于1的整数。
在一种可能的实现方式中,处理单元801还用于:在进入同步状态之后,若数据流中有M个连续的FEC码字译码检验不通过,则从同步状态迁移至重同步状态;若所述数据流中的M个连续的FEC码字中存在有译码检验通过的FEC码字,则维持在同步状态;M为大于或等于1的整数。
在一种可能的实现方式中,处理单元801还用于:在进入重同步状态之后,若数据流中的S个连续的FEC码字中存在有译码检验通过的FEC码字,则从重同步状态迁移至同步 状态,S为大于或等于1的整数。
在一种可能的实现方式中,处理单元801还用于:在进入重同步状态之后,若数据流中的S个连续的FEC码字中不存在有译码检验通过的FEC码字,则从重同步状态迁移至搜寻状态。
在一种可能的实现方式中,处理单元801还用于:对数据流中的FEC码字进行译码,得到译码后的码字净荷;根据译码后的码字净荷得到译码后的Psync,译码后的Psync位于译码后的码字净荷中;若译码后的Psync与预设Psync匹配,则验证位于译码后的Psync之后的预设位数的第二字段是否构成有效的SFC结构;若第二字段构成有效的SFC结构,则从预同步状态进入同步状态或维持在同步状态。
在一种可能的实现方式中,处理单元801还用于:在进入同步状态之后,若存在有译码后的Psync与预设Psync不匹配或者SFC验证失败,则从同步状态迁移至重同步状态;若存在有译码后的Psync与预设Psync匹配以及SFC验证成功,则维持在同步状态。
在一种可能的实现方式中,处理单元801还用于:在进入重同步状态之后,对于数据流中的连续P个数据帧,若存在有译码后的Psync与预设Psync匹配以及SFC验证成功,则从重同步状态迁移至同步状态;P为大于1的整数。
在一种可能的实现方式中,处理单元801还用于:在进入重同步状态之后,对于数据流中的连续P个数据帧,若均存在有译码后的同步序列不与预设Psync匹配或者SFC验证失败,则从重同步状态迁移至搜寻状态。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部 或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (24)

  1. 一种数据处理方法,其特征在于,包括:
    在光网络单元进入预同步状态之后,所述光网络单元在接收到的数据流中根据物理同步序列Psync字段的位置,确定所述数据流中前向错误纠正FEC码字边界的位置,以及进行FEC码字译码检验,其中,所述Psync字段为所述数据流中与预设Psync匹配的字段;
    若所述数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则所述光网络单元进入同步状态,所述N为大于或等于1的整数。
  2. 根据权利要求1所述的数据处理方法,其特征在于,所述方法还包括:
    所述光网络单元在接收到的数据流中搜寻与所述预设Psync匹配的字段;
    若所述光网络单元在所述数据流中搜寻到与所述预设Psync匹配的Psync字段,则所述光网络单元验证位于所述Psync字段之后的预设位数的第一字段是否构成有效的超帧计数器SFC结构;
    若所述第一字段构成有效的SFC结构,则所述光网络单元进入预同步状态。
  3. 根据权利要求2所述的数据处理方法,其特征在于,在所述光网络单元进入预同步状态之后,所述光网络单元进入同步状态之前,所述方法还包括:
    所述光网络单元根据所述第一字段的位置,确定所述数据流中位于所述第一字段后的SFC字段;
    所述光网络单元对所述SFC字段进行验证,且所述SFC字段的验证结果为SFC验证成功。
  4. 根据权利要求1至3任意一项所述的数据处理方法,其特征在于,所述方法还包括:
    若所述数据流中的N个连续的FEC码字中不存在有译码检验通过的FEC码字,则所述光网络单元从所述预同步状态返回搜寻状态,所述N为大于或等于1的整数。
  5. 根据权利要求1至3任意一项所述的数据处理方法,其特征在于,所述方法还包括:
    在所述光网络单元进入同步状态之后,若所述数据流中有M个连续的FEC码字译码检验不通过,则所述光网络单元从同步状态迁移至重同步状态;
    若所述数据流中的M个连续的FEC码字中存在有译码检验通过的FEC码字,则所述光网络单元维持在同步状态;
    所述M为大于或等于1的整数。
  6. 根据权利要求5所述的数据处理方法,其特征在于,所述方法还包括:
    在所述光网络单元进入重同步状态之后,若所述数据流中的S个连续的FEC码字中存在有译码检验通过的FEC码字,则所述光网络单元从重同步状态迁移至同步状态,所述S为大于或等于1的整数。
  7. 根据权利要求6所述的数据处理方法,其特征在于,所述方法还包括:
    在所述光网络单元进入重同步状态之后,若所述数据流中的S个连续的FEC码字中不存在有译码检验通过的FEC码字,则所述光网络单元从重同步状态迁移至搜寻状态。
  8. 根据权利要求1所述的数据处理方法,其特征在于,所述方法还包括:
    所述光网络单元对所述数据流中的FEC码字进行译码,得到译码后的码字净荷;
    所述光网络单元根据所述译码后的码字净荷得到译码后的Psync,所述译码后的Psync位于所述译码后的码字净荷中;
    若所述译码后的Psync与所述预设Psync匹配,则所述光网络单元验证位于所述译码后的Psync之后的预设位数的第二字段是否构成有效的SFC结构;
    若所述第二字段构成有效的SFC结构,则所述光网络单元从预同步状态进入同步状态或维持在同步状态。
  9. 根据权利要求8所述的数据处理方法,其特征在于,所述方法还包括:
    在所述光网络单元进入同步状态之后,若存在有译码后的Psync与所述预设Psync不匹配或者SFC验证失败,则所述光网络单元从同步状态迁移至重同步状态;
    若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则所述光网络单元维持在同步状态。
  10. 根据权利要求9所述的数据处理方法,其特征在于,所述方法还包括:
    在所述光网络单元进入重同步状态之后,对于所述数据流中的连续P个数据帧,若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则所述光网络单元从重同步状态迁移至同步状态;
    所述P为大于1的整数。
  11. 根据权利要求10所述的数据处理方法,其特征在于,所述方法还包括:
    在所述光网络单元进入重同步状态之后,对于所述数据流中的连续P个数据帧,若均存在有译码后的同步序列不与所述预设Psync匹配或者SFC验证失败,则所述光网络单元从重同步状态迁移至搜寻状态。
  12. 一种光网络单元,其特征在于,包括:处理单元,所述处理单元用于:
    在进入预同步状态之后,在所述数据流中根据Psync字段的位置,确定所述数据流中FEC码字边界的位置,以及进行FEC码字译码检验,其中,所述Psync字段为所述数据流中与预设Psync匹配的字段;
    若所述数据流中的N个连续的FEC码字中存在有译码检验通过的FEC码字,则进入同步状态,所述N为大于或等于1的整数。
  13. 根据权利要求12所述的光网络单元,其特征在于,所述处理单元还用于:
    在接收到的数据流中搜寻与所述预设Psync匹配的字段;
    若在所述数据流中搜寻到与所述预设Psync匹配的Psync字段,则验证位于所述Psync字段之后的预设位数的第一字段是否构成有效的SFC结构;
    若所述第一字段构成有效的SFC结构,则进入预同步状态。
  14. 根据权利要求13所述的光网络单元,其特征在于,所述处理单元还用于:
    根据所述第一字段的位置,确定所述数据流中位于所述第一字段后的SFC字段;
    对所述SFC字段进行验证,且所述SFC字段的验证结果为所述SFC字段构成有效的SFC结构。
  15. 根据权利要求12至14任意一项所述的光网络单元,其特征在于,所述处理单元还用于:
    若所述数据流中的N个连续的FEC码字中不存在有译码检验通过的FEC码字,则从所述预同步状态返回搜寻状态,所述N为大于或等于1的整数。
  16. 根据权利要求12至14任意一项所述的光网络单元,其特征在于,所述处理单元还用于:
    在进入同步状态之后,若所述数据流中有M个连续的FEC码字译码检验不通过,则从同步状态迁移至重同步状态;
    若所述数据流中的M个连续的FEC码字中存在有译码检验通过的FEC码字,则维持在同步状态;
    所述M为大于或等于1的整数。
  17. 根据权利要求16所述的光网络单元,其特征在于,所述处理单元还用于:
    在进入重同步状态之后,若所述数据流中的S个连续的FEC码字中存在有译码检验通过的FEC码字,则从重同步状态迁移至同步状态,所述S为大于或等于1的整数。
  18. 根据权利要求17所述的光网络单元,其特征在于,所述处理单元还用于:
    在进入重同步状态之后,若所述数据流中的S个连续的FEC码字中不存在有译码检验通过的FEC码字,则从重同步状态迁移至搜寻状态。
  19. 根据权利要求12所述的光网络单元,其特征在于,所述处理单元还用于:
    对所述数据流中的FEC码字进行译码,得到译码后的码字净荷;
    根据所述译码后的码字净荷得到译码后的Psync,所述译码后的Psync位于所述译码后的码字净荷中;
    若所述译码后的Psync与所述预设Psync匹配,则验证位于所述译码后的Psync之后的预设位数的第二字段是否构成有效的SFC结构;
    若所述第二字段构成有效的SFC结构,则从预同步状态进入同步状态或维持在同步状态。
  20. 根据权利要求19所述的光网络单元,其特征在于,所述处理单元还用于:
    在进入同步状态之后,若存在有译码后的Psync与所述预设Psync不匹配或者SFC验证失败,则从同步状态迁移至重同步状态;
    若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则维持在同步状态。
  21. 根据权利要求20所述的光网络单元,其特征在于,所述处理单元还用于:
    在进入重同步状态之后,对于所述数据流中的连续P个数据帧,若存在有译码后的Psync与所述预设Psync匹配以及SFC验证成功,则从重同步状态迁移至同步状态;
    所述P为大于1的整数。
  22. 根据权利要求21所述的光网络单元,其特征在于,所述处理单元还用于:
    在进入重同步状态之后,对于所述数据流中的连续P个数据帧,若均存在有译码后的同步序列不与所述预设Psync匹配或者SFC验证失败,则从重同步状态迁移至搜寻状态。
  23. 一种光网络单元,其特征在于,包括:处理器和存储器,其中,所述存储器内存储有所述操作指令,所述处理器读取所述存储器内的操作指令用于实现权利要求1至11中 任意一项所述的方法。
  24. 一种光网络***,其特征在于,包括:光线路终端、光分配网络和权利要求12至23任意一项所述的光网络单元。
PCT/CN2020/132746 2020-03-09 2020-11-30 一种数据处理方法及设备 WO2021179696A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20924857.4A EP4090041A4 (en) 2020-03-09 2020-11-30 DATA PROCESSING METHOD AND DEVICE
US17/940,209 US12009918B2 (en) 2020-03-09 2022-09-08 Data processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010157877.7 2020-03-09
CN202010157877.7A CN113382319A (zh) 2020-03-09 2020-03-09 一种数据处理方法及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/940,209 Continuation US12009918B2 (en) 2020-03-09 2022-09-08 Data processing method and device

Publications (1)

Publication Number Publication Date
WO2021179696A1 true WO2021179696A1 (zh) 2021-09-16

Family

ID=77568484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132746 WO2021179696A1 (zh) 2020-03-09 2020-11-30 一种数据处理方法及设备

Country Status (4)

Country Link
US (1) US12009918B2 (zh)
EP (1) EP4090041A4 (zh)
CN (1) CN113382319A (zh)
WO (1) WO2021179696A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208631A1 (en) * 2003-04-15 2004-10-21 Jae-Yeon Song GTC frame structure and method for transmission of ONT management control information in GPON
CN101409708A (zh) * 2008-11-08 2009-04-15 浙江工业大学 基于fpga的gpon gtc成帧子层
WO2011050529A1 (zh) * 2009-10-30 2011-05-05 华为技术有限公司 在光网络中发送下行帧的方法及相关装置
CN104363531A (zh) * 2009-12-16 2015-02-18 华为技术有限公司 一种无源光网络成帧方法和设备
WO2018014161A1 (zh) * 2016-07-18 2018-01-25 华为技术有限公司 一种下行数据帧的传输方法和设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178713B1 (en) * 2006-11-28 2015-11-03 Marvell International Ltd. Optical line termination in a passive optical network
US7983308B1 (en) * 2006-11-28 2011-07-19 Marvell International Ltd. Method and apparatus for data frame synchronization
US8630548B2 (en) 2009-06-10 2014-01-14 Alcatel Lucent Method and apparatus for improved upstream frame synchronization in a passive optical network
CN102195738B (zh) * 2010-03-02 2015-06-10 中兴通讯股份有限公司 用于吉比特无源光网络***下行帧同步的处理方法及装置
KR101696926B1 (ko) 2016-05-27 2017-01-17 라이트웍스 주식회사 수동형 광네트워크를 위한 프레임 동기화 장치 및 방법
US11750290B2 (en) * 2019-12-13 2023-09-05 Intel Corporation Receiver synchronization for higher speed passive optical networks
EP3852384B1 (en) * 2020-01-14 2023-11-08 Nokia Solutions and Networks Oy An optical line terminal and an optical network unit and methods therefor
CN115606123A (zh) * 2020-03-23 2023-01-13 华为技术有限公司(Cn) 无源光网络(pon)中的帧编码和光网络单元(onu)同步

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208631A1 (en) * 2003-04-15 2004-10-21 Jae-Yeon Song GTC frame structure and method for transmission of ONT management control information in GPON
CN101409708A (zh) * 2008-11-08 2009-04-15 浙江工业大学 基于fpga的gpon gtc成帧子层
WO2011050529A1 (zh) * 2009-10-30 2011-05-05 华为技术有限公司 在光网络中发送下行帧的方法及相关装置
CN104363531A (zh) * 2009-12-16 2015-02-18 华为技术有限公司 一种无源光网络成帧方法和设备
WO2018014161A1 (zh) * 2016-07-18 2018-01-25 华为技术有限公司 一种下行数据帧的传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4090041A4

Also Published As

Publication number Publication date
US20230006766A1 (en) 2023-01-05
US12009918B2 (en) 2024-06-11
CN113382319A (zh) 2021-09-10
EP4090041A4 (en) 2023-07-19
EP4090041A1 (en) 2022-11-16

Similar Documents

Publication Publication Date Title
RU2531874C2 (ru) Структура синхронизации фрейма нисходящего канала передачи данных десятигигабитной пассивной оптической сети защищенной контролем ошибок в заголовке
KR101050810B1 (ko) Pon 시스템에서 업스트림 버스트 데이터를 송신하는 방법, 장치 및 시스템
JP5457553B2 (ja) 受動光ネットワークにおける改良型アップストリームフレーム同期化のための方法及び装置
JP5312467B2 (ja) 受動光ネットワークにおけるデータ同期のための方法及びシステム
US10855397B2 (en) Downstream data frame transmission method and device
US8560914B2 (en) Method and device for indicating an uncorrectable data block
WO2012014365A1 (ja) 通信装置、通信システム、通信方法、プログラム
US7953324B2 (en) System and method for data synchronization in passive optical networks
US11750290B2 (en) Receiver synchronization for higher speed passive optical networks
US20230179896A1 (en) Downstream Synchronization State Machine for Optical Line Terminal (OLT)-Configurable Bit Interleaving in High-Speed Passive Optical Networks (PONs)
BRPI0924751B1 (pt) método de reajuste de receptor de rajadas, receptor de rajadas e método de transmissão em rajadas
JPWO2010098266A1 (ja) 局側終端装置、加入者側終端装置、光通信システム、エラー訂正方法、およびプログラム
US20110311225A1 (en) Method and device for sending upstream transfer frame in passive optical network
WO2021179696A1 (zh) 一种数据处理方法及设备
JP2004266524A (ja) フレーム同期方法
CN114765528B (zh) 帧同步方法、装置、设备及可读存储介质
WO2024055651A1 (zh) 无源光网络的数据同步方法、装置及数据同步***
US20150326346A1 (en) System and method for setting downstream forward error correction code in time division multiplexing passive optical network
JP5977202B2 (ja) 光通信システム及び光通信方法
CN113225155A (zh) 一种帧定界方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924857

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020924857

Country of ref document: EP

Effective date: 20220812

NENP Non-entry into the national phase

Ref country code: DE