WO2021179662A1 - 全膝关节置换手术机器人辅助***、控制方法及电子设备 - Google Patents

全膝关节置换手术机器人辅助***、控制方法及电子设备 Download PDF

Info

Publication number
WO2021179662A1
WO2021179662A1 PCT/CN2020/129132 CN2020129132W WO2021179662A1 WO 2021179662 A1 WO2021179662 A1 WO 2021179662A1 CN 2020129132 W CN2020129132 W CN 2020129132W WO 2021179662 A1 WO2021179662 A1 WO 2021179662A1
Authority
WO
WIPO (PCT)
Prior art keywords
osteotomy
knee joint
plane
plan
tracer
Prior art date
Application number
PCT/CN2020/129132
Other languages
English (en)
French (fr)
Inventor
徐子昂
刘春燕
王战
韩佳奇
邓明明
张淼
徐进
周一新
杨德金
唐浩
Original Assignee
北京天智航医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京天智航医疗科技股份有限公司 filed Critical 北京天智航医疗科技股份有限公司
Priority to EP20924230.4A priority Critical patent/EP3954316A4/en
Priority to US17/287,439 priority patent/US20220175453A1/en
Publication of WO2021179662A1 publication Critical patent/WO2021179662A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/14Surgical saws ; Accessories therefor
    • A61B17/15Guides therefor
    • A61B17/154Guides therefor for preparing bone for knee prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/32Surgical robots operating autonomously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/38Joints for elbows or knees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B2017/564Methods for bone or joint treatment
    • A61B2017/565Methods for bone or joint treatment for surgical correction of axial deviation, e.g. hallux valgus or genu valgus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2068Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis using pointers, e.g. pointers having reference marks for determining coordinates of body points
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/46Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor
    • A61F2002/4632Special tools or methods for implanting or extracting artificial joints, accessories, bone grafts or substitutes, or particular adaptations therefor using computer-controlled surgery, e.g. robotic surgery

Definitions

  • the present invention relates to the technical field of medical equipment, in particular to a total knee joint replacement surgery robot auxiliary system, control method, electronic equipment and computer readable medium.
  • TKA total knee arthroplasty
  • surgical robots can perform individualized modeling, measurement, and design before surgery to ensure precise and safe operations during surgery, thereby assisting in completing individualized and precise artificial joint replacements, which greatly reduces patient accuracy.
  • this application aims to provide a robot assist system, control method, electronic equipment, and computer readable medium for total knee replacement surgery with higher accuracy to guide doctors in more accurate osteotomy .
  • a control method of a robot-assisted system for total knee replacement surgery including:
  • the pre-operative planning data includes images of the patient’s knee joints
  • the operation of the surgical robot is controlled according to the adjusted prosthesis plan, and the osteotomy guide is guided to be located at a predetermined position in the plan.
  • the osteotomy guide is installed on the operating end of the robot arm of the surgical robot, and is used to control the osteotomy saw Positioning.
  • the acquiring the dynamic distance force line data of the knee joint under the continuous flexion and extension angle includes:
  • the distance and the line of force angle under the continuous flexion and extension angle of the lower limbs are calculated.
  • the adjusting the prosthesis plan includes:
  • the prosthesis position information includes at least one of a varus angle, an internal and external rotation angle, an anteroposterior inclination angle, a vertical translation distance, and a lateral translation distance.
  • it further includes visually adjusting the preoperative plan before generating the intraoperative plan.
  • it further includes:
  • the manipulator Before the operation of the surgical robot is controlled according to the adjusted prosthesis plan, the manipulator is simulated and guided in the human-computer interaction interface, so that the osteotomy guide reaches the planned position and the slot of the osteotomy guide matches the corresponding Align the osteotomy plane.
  • it further includes:
  • an osteotomy plane is selected from a plurality of osteotomy planes, the plurality of osteotomy planes include a first osteotomy plane and a second osteotomy plane , The third osteotomy plane, the fourth osteotomy plane, the fifth osteotomy plane and the sixth osteotomy plane;
  • the mechanical arm is controlled so that the through slot of the osteotomy guide is aligned with the selected osteotomy plane, and the osteotomy guide is positioned at the corresponding planned position.
  • it further includes:
  • the robotic arm guide the robotic arm so that the through slot of the osteotomy guide is aligned with the selected another osteotomy plane, and the osteotomy guide is positioned at the corresponding planned position .
  • the first osteotomy plane, the second osteotomy plane, the third osteotomy plane, the fourth osteotomy plane, the fifth osteotomy plane, and the sixth osteotomy plane are respectively the distal tibia osteotomy plane and the distal femur osteotomy plane.
  • a robot assist system for total knee replacement surgery including:
  • Pre-operative planning system used to formulate pre-operative planning, pre-operative planning data including knee joint images;
  • An intraoperative planning system for formulating an intraoperative plan, wherein the knee joint image in the preoperative plan is image-registered with the patient's knee joint surface contour determined during the operation; the dynamic distance of the knee joint under continuous flexion and extension angles is obtained Force line data; visually display the dynamic distance force line data graph; according to the visual display of the dynamic distance force line data graph, adjust the prosthesis plan to obtain the intraoperative plan;
  • the execution system wherein, according to the intraoperative plan, the osteotomy guide installed on the operating end of the surgical robot manipulator is located at a predetermined position in the plan, and the osteotomy guide is used to position the osteotomy saw.
  • the execution system is provided in a surgical robot
  • the upper controller sends the intraoperative plan
  • the surgical robot is provided so that the surgical robot can perform corresponding operations according to the plan.
  • the intraoperative planning system includes a positioning system
  • the positioning system includes a femoral tracer, a tibial tracer, and a navigation camera
  • the femoral tracer and the tibial tracer are respectively Set at the femur and tibia of the patient's knee joint
  • the navigation camera cooperates with the tibia tracer and the tibia tracer to collect and record the movement track information of the knee joint during the continuous flexion and extension of the lower limbs
  • the upper controller is communicatively connected with the femur tracer, tibia tracer, and navigation camera, and the upper controller is configured to: calculate the distance and line of force under the continuous flexion and extension angle of the lower limbs according to the motion trajectory information Angle, so as to obtain the dynamic distance force line data of the knee joint under the continuous flexion and extension angle.
  • the positioning system further includes a scanning probe, one end of the scanning probe has a scanning needle tip for scanning the knee joint of the patient, and the other end is provided with a plurality of tracking elements, the A plurality of tracking elements can be recognized by the navigation camera to obtain the movement trajectory of the scanning needle;
  • the upper controller is communicatively connected with the scanning probe and the navigation camera, and the upper controller is configured to obtain knee joint surface contour data according to the movement trajectory of the scanning needle tip, and perform the preoperative planning The image of the knee joint is registered with the contour of the knee joint surface of the patient obtained during the operation.
  • the femoral tracer cooperates with the navigation camera to collect and record the position information of the knee joint
  • the upper controller is configured to formulate the intraoperative plan according to the position data of the knee joint.
  • the positioning system further includes an osteotomy guide tracer, the osteotomy guide tracer is installed on the operating end of the robotic arm, and the osteotomy guide is detachably Installed on the osteotomy guide tracer, the navigation camera cooperates with the osteotomy guide tracer to collect and record the position information of the osteotomy guide;
  • the upper controller is in communication connection with the osteotomy guide tracer and the navigation camera, and the upper controller is configured to formulate the intraoperative plan according to the position data of the osteotomy guide.
  • the upper controller includes a human-computer interaction device for displaying the dynamic distance force line data graph and displaying the adjustment of the prosthesis plan in response to a user operation.
  • the osteotomy guide includes a first through groove and a second through groove intersecting the first through groove, and the through groove is used to accommodate the osteotomy saw.
  • the upper controller is configured as:
  • the plurality of osteotomy planes include a first osteotomy plane and a second osteotomy plane , The third osteotomy plane, the fourth osteotomy plane, the fifth osteotomy plane and the sixth osteotomy plane;
  • the surgical robot controls the movement of the mechanical arm according to the intraoperative plan, so that the slot of the osteotomy guide is aligned with the selected osteotomy plane, and the osteotomy guide is positioned in the corresponding plan Location.
  • the upper-level controller is further configured to:
  • the surgical robot controls the movement of the mechanical arm according to the intraoperative plan, so that the through groove of the osteotomy guide is aligned with the selected other osteotomy plane, and the osteotomy guide Located in the corresponding planned location.
  • the first osteotomy plane, the second osteotomy plane, the third osteotomy plane, the fourth osteotomy plane, the fifth osteotomy plane, and the sixth osteotomy plane are respectively the tibia One of the distal osteotomy plane, the oblique femoral anterior condyle osteotomy plane, the posterior femoral condyle oblique osteotomy plane, the femoral anterior condyle osteotomy plane, and the posterior femoral condyle osteotomy plane.
  • a tracer is installed on the osteotomy saw.
  • a strain gauge is installed on the free end of the osteotomy saw.
  • the osteotomy guide tracer is a circular tracer device.
  • it further includes a knee joint fixing device, which is set on the operating table and is used to fix the knee joint of the patient.
  • the human-computer interaction device includes a display screen having a first window displaying a three-dimensional image of the knee joint and a second window displaying the dynamic gap force line data of the knee joint, the first window In association with the second window, when the prosthesis position information is adjusted through the first window, the second window displays the dynamic gap force diagram of the knee joint at the position.
  • the prosthesis position information includes at least one of a varus angle, an internal and external rotation angle, an anteroposterior inclination angle, a vertical translation distance, and a lateral translation distance.
  • the flexion and extension angle is selected in the second window to display the dynamic gap force line diagram of the knee joint at the current angle, and the first window displays the three-dimensional image of the knee joint and the prosthesis corresponding to the flexion and extension angle.
  • an auxiliary system for a total knee replacement surgery robot including: an upper controller, a surgical robot, a femoral tracer, a tibial tracer, an osteotomy guide tracer, and a scanning probe , Navigation camera,
  • the upper controller provides preoperative planning and intraoperative planning, and sends the intraoperative planning to the surgical robot,
  • the femur tracer and the tibia tracer are respectively arranged at the femur and tibia of the knee joint of the patient, and the navigation camera cooperates with the tibia tracer and the tibia tracer to collect continuous flexion and extension of the lower limbs during the operation Movement track information of the knee joint during the process;
  • the navigation camera cooperates with the scanning probe to collect surface contour data of the patient's knee joint
  • the navigation camera cooperates with the femur tracer to collect the position information of the knee joint of the patient;
  • One end of the osteotomy guide tracer is connected with an osteotomy guide for installing an osteotomy tool, and the other end is connected to the operating end of the robotic arm of the surgical robot.
  • the navigation camera and the osteotomy guide trace Cooperate with the osteotomy guide to collect the position information of the osteotomy guide;
  • the upper controller is in communication connection with the robot, the femoral tracer, the tibial tracer, the osteotomy guide tracer, and the navigation camera, and is configured to: according to the collected knee joint position information, the osteotomy guide Position information, knee joint surface profile data, and motion trajectory information under continuous bending angles to generate the intraoperative plan,
  • the robot receives the intraoperative plan, and controls the robotic arm of the robot according to the intraoperative plan, so that the osteotomy guide is located at a predetermined position in the plan.
  • the auxiliary system includes a human-computer interaction device communicatively connected with the upper controller, and the human-computer interaction device is used to display the dynamic distance force line data graph and respond to the user The operation shows the adjustment of the prosthesis plan.
  • the osteotomy guide includes a plurality of through grooves, each through groove is maintained at a predetermined angle with an adjacent through groove, and the through groove is used for accommodating the osteotomy tool.
  • the upper controller is configured as:
  • an osteotomy plane is selected from a plurality of osteotomy planes determined according to the intraoperative plan, and the plurality of osteotomy planes includes the first section. Bone plane, second osteotomy plane, third osteotomy plane, fourth osteotomy plane, fifth osteotomy plane, and sixth osteotomy plane;
  • the surgical robot controls the movement of the mechanical arm according to the intraoperative plan, so that at least one through slot of the osteotomy guide is aligned with the selected osteotomy plane, and the osteotomy guide is positioned at the corresponding Plan the location.
  • the osteotomy guide includes a first through groove and a second through groove crossing the first through groove.
  • the upper-level controller is further configured to:
  • the surgical robot controls the movement of the mechanical arm according to the intraoperative plan, so that the slot of the osteotomy guide is aligned with the selected other osteotomy plane and the osteotomy guide is positioned In the corresponding planning location.
  • first osteotomy plane, the second osteotomy plane, the third osteotomy plane, the fourth osteotomy plane, the fifth osteotomy plane, and the sixth osteotomy plane are respectively tibia
  • the osteotomy guide tracer is a circular tracer device.
  • it further includes a knee joint fixing device, which is set on the operating table and is used to fix the knee joint of the patient.
  • the human-computer interaction device includes a display screen having a first window displaying a three-dimensional image of the knee joint and a second window displaying the dynamic gap force line data of the knee joint, the first window In association with the second window, when the prosthesis position information is adjusted through the first window, the second window displays the dynamic gap force diagram of the knee joint at the position.
  • the prosthesis position information includes at least one of a varus angle, an internal and external rotation angle, an anteroposterior inclination angle, a vertical translation distance, and a lateral translation distance.
  • the flexion and extension angle is selected in the second window to display the dynamic gap force line diagram of the knee joint at the current angle, and the first window displays the three-dimensional image of the knee joint and the prosthesis corresponding to the flexion and extension angle.
  • a control device for total knee replacement using a surgical robot assist system including:
  • Preoperative planning acquisition module to obtain preoperative planning
  • Intraoperative planning acquisition module to obtain intraoperative planning including:
  • Image registration module to perform image registration between the knee joint image in the preoperative planning data and the knee joint surface contour during the operation
  • a visual display module which displays the registered knee joint image and the dynamic gap force line data graph
  • the adjustment module adjusts the prosthesis plan according to the visual display of the dynamic spacing force line data
  • the operation control module controls the operation of the surgical robot according to the adjusted prosthesis plan, and guides the osteotomy guide to be located at a predetermined position in the plan.
  • the osteotomy guide is installed on the operating end of the robot arm of the surgical robot for Position the osteotomy saw.
  • an electronic device which is characterized in that it includes:
  • One or more processors are One or more processors;
  • Storage device for storing one or more programs
  • the one or more processors When the one or more programs are executed by the one or more processors, the one or more processors implement the method as described above.
  • a computer-readable medium on which a computer program is stored, characterized in that, when the program is executed by a processor, the method as described above is implemented.
  • the robot-assisted system and control method for total knee replacement surgery allow the doctor to adjust the position of the joint prosthesis and the osteotomy plan under the reachable flexion and extension angle of the patient's lower limbs, effectively improving the reconstruction of the force line and the postoperative Soft tissue balance.
  • the robot-assisted system for total knee replacement surgery provided by this application has higher accuracy. Therefore, the surgical robot-assisted system provided by this application can be used to achieve precise positioning and osteotomy of the six osteotomy planes on the tibia and femur corresponding to the prosthesis. The operation avoids the secondary injury of the pin into the femur caused by the osteotomy caused by the traditional auxiliary system using the four-in-one cutting guide device.
  • Fig. 1A is a schematic diagram of a framework of a robot assist system for total knee replacement surgery according to an exemplary embodiment of the present application
  • Fig. 1B is a schematic diagram of an intraoperative planning formulation process according to an exemplary embodiment of the present application
  • Fig. 2 is a schematic diagram of the composition of a robot assist system for total knee replacement surgery according to an exemplary embodiment of the present application
  • Fig. 3 is a first schematic diagram of a human-computer interaction interface according to an exemplary embodiment of the present application
  • Fig. 4 is a dynamic spacing force line diagram according to an exemplary embodiment of the present application.
  • Fig. 5 is a second schematic diagram of a human-computer interaction interface according to an exemplary embodiment of the present application.
  • Fig. 6 is a schematic diagram of a scanning probe according to an exemplary embodiment of the present application.
  • Fig. 7 is a schematic diagram of an osteotomy guide according to an exemplary embodiment of the present application.
  • Fig. 8 is a schematic diagram of an osteotomy guide tracer according to an exemplary embodiment of the present application.
  • Fig. 9A is a schematic diagram of a knee joint fixator according to an exemplary embodiment of the present application.
  • Fig. 9B is a schematic diagram of a clamp assembly used in the knee joint fixator shown in Fig. 9A;
  • Fig. 10 is a schematic diagram of a prosthesis according to an exemplary embodiment of the present application.
  • Fig. 11 is a control flowchart of a robot assist system for total knee replacement surgery according to an exemplary embodiment of the present application
  • Fig. 12 is a control device of a robot assist system for total knee replacement surgery according to an exemplary embodiment of the present application
  • Fig. 13 is a block diagram of an electronic device according to an embodiment of the present invention.
  • FIG. 1A is a schematic diagram of the framework of a robot assisting system for a total knee joint replacement surgery according to an exemplary embodiment of the present application.
  • the present invention provides a robot assistance system for total knee replacement surgery with higher accuracy, including: a preoperative planning system 10, an intraoperative planning system 20 and an execution system 30.
  • the preoperative planning system 10 formulates a preoperative plan, and the preoperative plan can be completed at a front-end workstation.
  • the user engineer inputs the computed tomography (CT) or magnetic resonance imaging (MRI) image data set of the patient obtained from the hospital into the front-end workstation to generate a three-dimensional (3D) model of the patient’s skeletal anatomy;
  • the prosthesis data (3-D computer-aided design model) provided by the body manufacturer is loaded into the front-end workstation.
  • the user can try to place the prosthesis in the 3D model of the bone anatomy to preliminarily select the prosthesis, specify the best position and direction of the prosthesis and the bone, and formulate a preliminary preoperative plan.
  • Preoperative planning is based on the patient's 3D reconstruction model, which has certain errors and can only reflect the static information of the bones. Therefore, it is necessary to adjust the preoperative plan according to the actual bone condition of the patient, including the dynamic state of the bone, that is, to formulate the intraoperative plan.
  • the intraoperative planning is executed by the intraoperative planning system 20, and can be completed by an intraoperative workstation placed in the operating room. During the operation, the preoperative planning is adjusted according to the patient's lower limb force line and lower limb dynamic position information to achieve better surgical results.
  • the existing intraoperative planning adjustment method can provide doctors with information on the force line and spacing of the lower limbs when the flexion and extension angles of the lower limbs are 0 degrees and 90 degrees.
  • the doctor can adjust the planning position of the prosthesis during the operation and optimize the osteotomy plan based on the above information.
  • the range of flexion and extension angles that the knee can reach is -10 degrees to 130 degrees.
  • the intraoperative planning is only adjusted based on the information at the flexion and extension angles of 0 degrees and 90 degrees.
  • the planned position and osteotomy plan obtained are not accurate. This will lead to the final placement of the prosthesis, which cannot make the patient feel comfortable in squatting, sitting, up and down stairs and other postures like normal people.
  • This application allows the doctor to adjust the position of the joint prosthesis and the osteotomy plan by operating the joint prosthesis up and down, left and right translation, and clockwise and counterclockwise rotation within the range of flexion and extension angles that the patient can reach.
  • the dynamic gap force line data chart provides doctors with an intuitive and flexible planning basis, which effectively improves the reconstruction of force lines and postoperative soft tissue balance.
  • FIG. 1B is a schematic diagram of the intraoperative planning formulation process of an exemplary embodiment of the present application
  • FIG. 3 is a schematic diagram of a human-computer interaction interface according to an exemplary embodiment of the present application
  • FIG. 4 is a dynamic distance force line diagram according to an exemplary embodiment of the present application
  • 6 is a schematic diagram of a scanning probe according to an exemplary embodiment of the present application.
  • the robot assist system for total knee replacement surgery includes a preoperative planning system 10, an intraoperative planning system 20 and an execution system 30.
  • the preoperative planning system 10 makes a preoperative plan.
  • the preoperative planning is implemented in the front-end workstation of the operation.
  • the user engineer loads the prosthesis data (3-D computer-aided design model) provided by the prosthesis manufacturer to the front-end workstation, and takes the computed tomography (CT) or magnetic resonance imaging of the patient obtained from the hospital (MRI) image data set is input to the front-end workstation of the operation.
  • CT computed tomography
  • MRI magnetic resonance imaging of the patient obtained from the hospital
  • the skeletal surface of the region of interest (ROI) of the femur and tibia is extracted, and the femur and tibia are separated into two independent 3D models.
  • ROI region of interest
  • the data obtained through preoperative planning includes: prosthesis data such as joint prosthesis model and preliminary osteotomy plan.
  • the prosthesis data further includes the three-dimensional model data of the joint prosthesis and its spatial definition corresponding to the human anatomy.
  • the preliminary osteotomy plan includes the three-dimensional planning of the joint prosthesis and the patient's bone model that matches the planned joint prosthesis and its osteotomy plane.
  • the intraoperative planning system 20 makes an intraoperative plan.
  • the intraoperative planning is implemented by an intraoperative workstation set in the operating room.
  • the intraoperative workstation and the surgical front-end workstation can be combined into one.
  • the upper controller simultaneously completes the work of the intraoperative workstation and the surgical front-end workstation.
  • FIG. 1B is a schematic diagram of the intraoperative planning process.
  • the knee joint image that has been converted in the preoperative planning is registered with the patient's knee joint image.
  • image registration is performed between the preoperative planning image and the contour of the knee joint surface of the patient.
  • the following describes the image registration in conjunction with FIG. 6.
  • the doctor uses the tip 1401 of the scanning probe 1400 as shown in FIG. 6 to touch some positions of the knee joint, such as bony landmarks.
  • An optical tracking device such as the navigation camera 1093 in FIG. 2, tracks the tracking element 1402 on one end of the scanning probe 1400 to show the touched position. If the registration result is accurate, the corresponding point will also be displayed on the image.
  • the precise registration of the articular surfaces of the femur and tibia is achieved through a point cloud registration algorithm. For example, a rough registration of six marking points can be performed first, then a fine registration of multiple points, and finally the registration result can be verified.
  • the dynamic distance force line data of the knee joint under continuous flexion and extension angles are acquired.
  • it includes collecting the motion trajectory information of the knee joint during the continuous flexion and extension of the lower limb; and calculating the distance and the force line angle under the continuous flexion and extension angle of the lower limb according to the motion trajectory information.
  • a tracer is set on the femur and the tibia of the knee joint; during the continuous flexion and extension of the lower limbs, the tracer is continuously tracked through the navigation camera, and the motion trajectory information of the knee joint is collected and recorded.
  • the pitch includes a first pitch and a second pitch.
  • the first distance is the minimum distance between the outer surface of the femoral medial condyle of the prosthesis and the tibial osteotomy plane
  • the second distance is the minimum distance between the outer surface of the prosthesis's femoral lateral condyle and the tibial osteotomy plane.
  • the angle of the line of force is the angle between the mechanical axis of the femur and the mechanical axis of the tibia.
  • the dynamic distance force line data diagram is shown in FIG. 4, which includes a first distance curve 610, a second distance curve 620 and a force line angle change curve 630.
  • the first distance curve 610 is drawn by taking the flexion and extension angle of the lower limbs as the ordinate and the first distance as the abscissa.
  • the second distance curve 620 is drawn by taking the flexion and extension angle of the lower limbs as the ordinate and the second distance as the abscissa.
  • FIG. 3 shows a first schematic diagram of a human-computer interaction interface according to an exemplary embodiment.
  • This interface provides interactively editable prosthesis position information, including varus and valgus angle, internal and external rotation angle, anteroposterior inclination angle, vertical translation distance, and lateral translation distance.
  • the doctor can interactively adjust the position of the prosthesis in the window on the left side of the interface through the visual display interface. According to the received position adjustment information of the prosthesis, the distance force line is recalculated and the dynamic distance force line data graph is refreshed in the right window of the interface.
  • the visual display of prosthesis position adjustment information and dynamic gap force lines provides doctors with intuitive and clear planning adjustment results.
  • the doctor can continuously adjust the position information of the prosthesis according to the visual display of the dynamic distance force line data graph until the information displayed in the dynamic distance force line data graph meets the doctor's requirements.
  • the first distance and the second distance can be obtained in the following manner: First, calculate the lowest point of the outer surface of the prosthetic femur on the vertical axis of the neutral position of the human body. Among them, when calculating the first distance, the outer surface of the medial femoral condyle of the prosthesis is used. When calculating the second distance, the outer surface of the prosthetic femoral lateral condyle is used. Next, calculate the distance from the lowest point to the tibial osteotomy plane. The calculated distance is the distance from a three-dimensional space surface to a three-dimensional space plane, which can more truly reflect the motion state of the knee joint.
  • the force line angle can be calculated using the following method: project the femur and tibia mechanical axis on the neutral coronal plane of the human body to obtain the femoral projection axis and tibia projection axis, and calculate the clamp between the femur projection axis and the tibia projection axis. Horn.
  • the lower limb force line is obtained through a certain algorithm. Specifically, it is necessary to consider the requirements for the center of the femoral head and mark the bony markers to determine the center of the femoral condyle, the center of the tibial plateau, and the center of the ankle point.
  • the center of the femoral head and the center of the femoral condyle determine a line segment
  • the center of the tibial plateau and the center of the ankle point determine a line segment to obtain the true line of force of the lower limbs.
  • the angle formed by the projection of the two line segments on the coronal plane is the angle of force.
  • the data obtained through intraoperative planning includes: prosthesis data such as joint prosthesis model and the final osteotomy plan.
  • the prosthesis data includes the three-dimensional model data of the joint prosthesis and its spatial definition corresponding to the human anatomy.
  • the final osteotomy plan includes the three-dimensional planning of the joint prosthesis and the patient's bone model that matches the planned joint prosthesis and its osteotomy plane.
  • the execution system 30 can be implemented by a surgical robot, wherein the replacement operation is performed according to the adjusted prosthesis plan, and the osteotomy guide installed on the operating end of the surgical robot's manipulator is guided to be located at a predetermined position in the plan, and the osteotomy guide is used for the osteotomy saw Positioning.
  • Fig. 2 shows a schematic composition diagram of a robot assist system for total knee replacement surgery with higher accuracy according to an exemplary embodiment of the present application.
  • the robot assistance system for total knee replacement surgery may include an upper controller 101, a human-computer interaction device 103, a surgical robot 105, a scanning probe 1400, an osteotomy guide 107, a knee joint tracer 109, and Bone guide tracer 1111 and navigation camera 1093.
  • the upper controller 101 can complete the tasks of the front-end and mid-operation workstations in Fig. 1B, including the pre-operative planning system 10 and the intra-operative planning system 20 in Fig. 1, and can respectively formulate pre-operative planning and intra-operative planning,
  • the intraoperative plan is transmitted to the execution system 30, the surgical robot 105, to perform the correct osteotomy operation.
  • the upper controller 101 communicates with the human-computer interaction device 103, the surgical robot 105, and the navigation camera 1093, receives the information transmitted by the human-computer interaction device 103 and the navigation camera 1093, and sends it to the human-computer interaction device 103 and the surgical robot 105. And the navigation camera 1093 sends relevant information or instructions.
  • the upper controller 101 is also in communication connection with the scanning probe 1400, the osteotomy guide 107, the knee joint tracer 109, the osteotomy guide tracer 1111, etc., for example, to control the activation of these components.
  • the knee joint tracer 109, the osteotomy guide tracer 1111, the scanning probe 1400, and the navigation camera 1093 constitute a positioning component.
  • the osteotomy guide tracer 1111 is installed on the operating end of the robotic arm 1051 of the surgical robot 105, and the other end is detachably installed with the osteotomy guide 107.
  • An osteotomy saw is installed on the osteotomy guide 107 to perform osteotomy operations on the femur and tibia.
  • the osteotomy guide tracker 1111 can be provided with tracking elements such as an infrared transmitter or a reflective ball.
  • the navigation camera 1093 includes an optical sensor, which can receive signals from the tracking element of the osteotomy guide tracker 1111.
  • the navigation camera 1093 sends the above-mentioned information to the upper-level controller 101, and the upper-level controller 101 determines the position information of the osteotomy guide 107.
  • the position information will be used as a basis for planning the surgical path of the robotic arm for forming an intraoperative plan.
  • the knee joint tracer 109 includes a femur tracer 1091 and a tibia tracer 1092 respectively set on the femur and tibia.
  • the femoral tracer 1091 and the tibial tracer 1092 can all show the position of the knee joint, usually the femur is used.
  • the tracer 1091 cooperates with the navigation camera 1093 to collect the position information of the knee joint.
  • the navigation camera 1093 sends the above-mentioned information to the upper controller 101, and the upper controller 101 determines the position of the knee joint.
  • the position information will be used as a basis for planning the surgical path of the robotic arm and used to form an intraoperative plan.
  • the femur tracer 1091 and tibia tracer 1092 can also cooperate with the navigation camera 1093 to collect and record the movement trajectory information of the knee joint during the continuous flexion and extension of the lower limbs.
  • the navigation camera 1093 sends the above information to the upper controller 101, and the upper controller 101 calculates the distance and the force line angle of the lower limbs under the continuous flexion and extension angle according to the motion trajectory information according to the aforementioned method, so as to obtain the dynamic distance force of the knee joint under the continuous flexion and extension angle. String.
  • the dynamic distance force line information will be used as an important basis for adjustment planning and used to form intraoperative planning.
  • the scanning probe 1400 cooperates with the navigation camera 1093 to collect the contour data of the knee joint surface of the patient.
  • one end of the scanning probe 1400 has a scanning needle tip 1401 to scan the knee joint of the patient, and the other end is provided with a plurality of tracking elements 142, and the plurality of tracking elements 1402 can be
  • the navigation camera 1093 recognizes.
  • the navigation camera 1093 transmits the above-mentioned information to the upper controller 101, obtains the movement trajectory of the scanning needle 1401, and obtains knee joint surface profile data, which is used for intraoperative image registration to form an intraoperative plan.
  • the formed intraoperative plan includes the final osteotomy plan, which further includes the spatial position, the osteotomy plane, and the final formed joint prosthesis generated by the three-dimensional plan of the joint prosthesis and the patient’s bone model.
  • the surgical path of the osteotomy guide, etc. The surgical path of the osteotomy saw is determined according to the osteotomy plane data, the knee joint position information obtained by the knee joint tracer 109, and the guide position information obtained by the osteotomy guide tracer 1111.
  • the human-computer interaction device 103 has two or more display screens.
  • a display screen 1031 and the upper controller 101 together constitute an upper computer to provide human-computer interaction in the preoperative planning stage; the other display screen 1032 is provided for the doctor to visually adjust the prosthesis planning during the operation.
  • the two display screens can be of the same type or different types.
  • the display screen 1032 mostly uses a touch screen to facilitate the operation of the doctor during the operation.
  • Fig. 3 shows a human-machine interaction interface 1 of the robot assisting system for total knee replacement surgery according to an exemplary embodiment of the present application.
  • the interactive interface includes a left window and a right window.
  • the left window shows three views of the knee joint, representing the state of the knee joint and prosthesis when the flexion and extension angles are 0°, 45°, and 90°.
  • the left window also provides editable prosthesis data parameters for the doctor to adjust the plan. Specifically:
  • Varus angle the femur, tibial prosthesis and bone varus, valgus into an angle (Varus/Valgus).
  • Varus/Valgus the degree of varus is displayed (Varus). If it is 0 degrees, it is displayed as varus or valgus 0 degrees (Varus/Valgus).
  • the degree of valgus is displayed (Valgus).
  • Internal and external rotation angle the internal and external rotation of the femur and tibial prosthesis and the bone (External/Internal).
  • the degree of external rotation is displayed. If it is 0 degrees, it displays internal rotation or external rotation 0 degrees (External/Internal).
  • the degree of internal rotation is displayed.
  • Planned Varus/Valgus The planned angle of the lower limbs under the currently selected flexion and extension angles of the lower limbs.
  • the right window shows the dynamic spacing force line data graph, which will be described in detail in conjunction with Figure 4.
  • the visualized dynamic spacing force line data diagram 600 includes: a first spacing curve 610, a second spacing curve 620, and a force line angle change curve 630.
  • the ordinates of the first distance curve 610, the second distance curve 620, and the force line angle change curve 630 are all lower limb flexion and extension angles.
  • the reachable angle of flexion and extension of the human knee joint is -10° to 130°.
  • the first distance curve 610 takes the first distance as the first abscissa
  • the second distance curve 620 takes the second distance as the second abscissa.
  • the first abscissa and the second abscissa share an origin to form a distance abscissa.
  • the spacing abscissa may be set below the dynamic spacing force line data graph, extending to the left and right sides, and the first spacing curve and the second spacing curve are respectively set on both sides of the origin of the spacing abscissa.
  • the force line angle change curve 630 takes the force line angle as the abscissa.
  • the force line angle abscissa can be set above the dynamic distance force line data graph.
  • the origin is in the middle position, one side of the origin is positive and the other is negative.
  • the angle of the line of force is controlled between -3° and 3°, and the postoperative soft tissue can reach a better balance.
  • Fig. 5 shows a second schematic diagram of a human-computer interaction interface according to an exemplary embodiment of the present application.
  • the surgical robot assistance system according to the exemplary embodiment of the present application not only provides a visual data display for the doctor, but also provides an interactive planning adjustment for the doctor.
  • the interactive interface receives the adjusted prosthetic parameter information and recalculates it through the calculation method described above
  • the first distance, the second distance and the angle of the force line, and the adjusted dynamic distance force line data graph is displayed in the right window of the interactive interface in real time. As shown in Figure 5, it is the interactive interface after adjusting the parameters of the prosthesis.
  • the left window and the right window in the interactive interface are related. As shown in Figure 5, when the prosthesis position information is adjusted through the left window, the right window displays the dynamic gap force diagram of the knee joint at this position. At the same time, you can also select different lower limb flexion and extension angles through the right window, and the left window correspondingly displays three knee joint views at this angle. The doctor can judge whether the prosthesis position is appropriate and the force line based on these knee joint views and the current distance force line diagram. Whether it is ideal or not, you can further adjust the position information of the prosthesis at this angle in the left window.
  • the doctor can adjust the prosthesis plan at any flexion and extension angle within the reach of the lower limbs, so that a prosthesis plan close to the real activity of the human body can be obtained.
  • Joint replacement obviously has higher accuracy.
  • Fig. 7 shows a schematic diagram of an osteotomy guide according to an exemplary embodiment of the present application.
  • the osteotomy guide 107 may include a first through groove 1071 and a second through groove 1073 crossing the first through groove 1071, but the present application is not limited to two through grooves, for example It can be arranged in a plurality of through grooves distributed at a certain angle.
  • the first through groove 1071 and the second through groove 1073 may be 90 degrees, but the application is not limited thereto.
  • the doctor can insert the osteotomy saw into the through groove to manually perform the osteotomy operation.
  • the first through groove 1071 and the second through groove 1073 may be provided in the main body 1070 of the osteotomy guide 107.
  • the general osteotomy guide only has a single guiding path.
  • the osteotomy saw changes multiple directions during the operation, it can only be realized by the movement of the mechanical arm. If the angle of change in multiple directions is large, the motion posture of the robotic arm may block the field of vision of the surgical operator or block the field of view of the navigation camera.
  • the osteotomy saw can be placed in different slots 1071 or 1073 to achieve osteotomy operations in different directions and positions. Therefore, the mechanical arm can maintain as little movement as possible, so that the manipulator mounted on the operating end of the mechanical arm
  • the tracker has a better viewing angle in the space of the navigation camera, which can improve the attitude accuracy of the end of the robotic arm. In addition, the field of vision of the operator is not affected, which facilitates the smooth progress of the operation.
  • FIG. 8 shows an osteotomy guide tracer 1111 that can be provided at the operating end of a surgical robot manipulator according to an example embodiment.
  • the osteotomy guide tracer 1111 may include a base and multiple sets of trace elements.
  • the base may have a plurality of first tracking surfaces 3011 and at least one second tracking surface 3013.
  • the plurality of first tracking surfaces 3011 are located on the side surface of the base, and the at least one second tracking surface 3013 is located on an end surface or a step surface intersecting the side surface of the base.
  • multiple groups of tracking elements are respectively disposed on the plurality of first tracking surfaces 3011 and the at least one second tracking surface 3013.
  • Each group of tracking elements may respectively include at least three non-collinear tracking elements 3031.
  • the multiple groups of tracking elements are distributed along the circumferential direction of the base 301.
  • the normal included angle of any two tracking elements 3031 is less than or equal to 20°.
  • the osteotomy guide tracer 1111 is a circular tracer
  • the main body of the base 301 may be substantially cylindrical or prismatic, including a side surface substantially parallel to the axis, and two end surfaces substantially perpendicular to the side surface.
  • the base may be arranged in a stepped tower shape formed by connecting a plurality of cylinders or prisms with decreasing cross-sectional area to each other.
  • the tracer device provided by the embodiment of the present application expands the range in which the tracer device can be identified by the optical position finder through multiple groups arranged along the circumference of the base. At the same time, it is defined that the normal angle of any two tracking elements 3031 included in the same group of tracking elements 3031 is less than or equal to 20°, which makes it easier for the tracking device to be optically measured during the rotation of the robotic arm.
  • the recognition by the positioner reduces the occurrence of the optical positioner losing the position of the tracking device when the mechanical arm rotates, and improves the accuracy of positioning.
  • the present application adds a knee joint fixator to the traditional surgical robot assisting system, which is indicated by the reference numeral 104 in FIG. 2. As shown in FIG. 2, the knee joint fixator 104 is fixed on the operating table 102.
  • FIG. 9A shows the entirety of a knee joint fixator according to an exemplary embodiment of the present application.
  • Fig. 9B shows a clamp assembly used in the knee joint anchor of Fig. 9A.
  • the knee joint fixator shown in FIG. 9A can be used to fix the knee joint of a patient during surgery.
  • the knee joint fixator includes a base 200, a bracket 300, a femur clamp 400, and a foot clamp 500.
  • the base 200 is located at the lower end of the knee joint fixation device and provides support for other components.
  • the bracket 300 is installed on the base 200, and the bracket 300 includes a supporting column 304 for supporting the knee joint.
  • the femur clamp 400 for clamping the femur is installed on both sides of the top end of the bracket 300.
  • the femoral clamp 400 includes two sets of clamp assemblies 100 (detailed later) and a locking mechanism.
  • the guide frame of the clamp assembly 100 can be locked on the top of the bracket 300, and the guide frame 110 and the support column of the clamp assembly 100 can be locked relative to each other. 304 angle.
  • the locking mechanism can be an existing cam handle locking mechanism.
  • the foot clamp 500 for clamping the foot is movably installed on the base 200.
  • the foot clamp 500 includes a sole frame 501, a foot rest 502, two sets of clamp assemblies 100 and a locking mechanism.
  • the two sets of clamp assemblies 100 are respectively installed on two opposite side walls of the sole frame 501 for clamping the ankle bone.
  • the position of the guide frame 11 of the clamp assembly 100 relative to the sole frame 501 can be locked by the locking mechanism.
  • the knee joint fixation device further includes a tibial clamp 600.
  • the tibia clamp 600 is installed on both sides of the top end of the bracket 300 and includes two sets of clamp assemblies 100 for clamping the tibia.
  • Fig. 9B is a perspective view of a clamp assembly applied to the knee joint anchor shown in Fig. 9A.
  • the clamp assembly 100 includes a guide frame 110, a sliding block 120, a pitch adjusting shaft 130 and an indenter 140.
  • the guide frame 110 is elongated, and a through guide hole 111 is formed on the surface of the guide frame 110.
  • a mounting hole 113 is provided on the outer side of the guide hole 111 and at one end of the guide frame 110 for fixing the guide frame 110.
  • the sliding block 120 is installed in the guide hole 111 and can slide along the guide hole 111.
  • the sliding block 120 is provided with a through shaft hole.
  • the pitch-adjusting shaft 130 is movably installed in the shaft hole of the slider 120, that is, the pitch-adjusting shaft 130 can extend or retract along the axis of the shaft hole.
  • the indenter 140 is hingedly mounted on the end of the pitch adjusting shaft 130 to compress the bones.
  • the knee joint fixator shown in FIG. 9A can be used to completely fix the femur and/or tibia during knee replacement surgery, thereby reducing accidental injury to other tissues during the operation.
  • the use of the knee joint fixator provides convenience for the patient's knee joint positioning and osteotomy operations more accurately.
  • the present application is not limited to the knee joint fixator shown in FIG. 9A, and fixation devices with other structures can also be used, as long as the lower limbs of the patient can be fixed.
  • Fig. 10 is a schematic diagram of the prosthesis. As shown in Fig. 10, the contour of the prosthesis is determined. In order to cooperate with the prosthesis, the patient’s tibia is cut by only one cut, which corresponds to the distal osteotomy plane as shown in Fig. 10; the femur is cut by five cuts, which correspond to the distal osteotomy plane as shown in Fig. 10 respectively.
  • a surgical robot cuts the femur, it first automatically cuts the distal osteotomy plane according to the intraoperative plan, and then installs a four-in-one cutting guide device on the distal osteotomy plane to complete the other four cuts of the femur. operate.
  • the reason for adopting the four-in-one cutting guide device is that the accuracy of the current surgical robot is limited, and it is difficult to ensure the precise positioning and cutting of each osteotomy plane.
  • the positional relationship between the distal osteotomy plane and other osteotomy planes is used to reduce The number of osteotomy planes to be positioned.
  • the accuracy of the other four cuts depends on the distal osteotomy plane. Once the distal osteotomy plane is positioned and cut inaccurately, it will cause errors in the other four osteotomy planes.
  • the purpose of this application is to provide a robot assist system for total knee replacement surgery with higher accuracy.
  • many measures have been taken to improve the accuracy of surgical robots.
  • the accuracy of positioning and osteotomy is ensured by the knee joint fixator, and the positioning accuracy of the osteotomy guide is improved by the circular tracer of the osteotomy guide. Therefore, this application can use the surgical robot assistance system to achieve the accuracy
  • the precise positioning of each osteotomy plane and the osteotomy operation can complete the five-cut osteotomy of the femur, without the need to install a four-in-one cutting guide device on the femur.
  • the installation of the four-in-one cutting guide device requires the pin to be driven into the femur for fixation.
  • This application discards the four-in-one, and uses a five-knife operation on the femur to avoid secondary damage caused by the pin entering the femur.
  • the first osteotomy plane is selected from the multiple osteotomy planes provided on the interactive interface of the human-computer interaction device 103, so that the mechanical arm 1051 of the surgical robot 105 is guided to be fixed to the The through groove of the osteotomy guide 107 at the operating end of the mechanical arm is aligned with the first osteotomy plane, and the osteotomy guide 107 is positioned at a corresponding planned position.
  • the doctor can decide the first osteotomy plane to be performed according to the preoperative planning and on-site conditions.
  • the plane on the tibia corresponding to the osteotomy plane of the distal prosthesis is selected.
  • the surgical robot 105 controls the robotic arm 1051 to guide the osteotomy guide 107 to the planned position according to the intraoperative plan sent by the upper controller 101, and the opening of the osteotomy guide 107 is the same as the first section.
  • the bone planes are aligned so that the doctor can insert the osteotomy saw into the through groove of the osteotomy guide 107 to perform osteotomy.
  • the doctor can determine the second osteotomy plane to be performed next according to the intraoperative plan and the on-site situation.
  • the osteotomy guide 107 is guided to the new planned position by the movement of the mechanical arm 1051, and the slot of the osteotomy guide 107 is aligned with the second osteotomy plane, so that the doctor can Insert the osteotomy saw into the through groove of the osteotomy guide 107 to perform the second osteotomy operation.
  • the second osteotomy plane may be the other one of the distal osteotomy plane, the anterior condyle oblique osteotomy plane, the posterior condyle oblique osteotomy plane, the anterior condyle osteotomy plane, and the posterior condyle osteotomy plane.
  • the robot arm simulation is first performed, and then the osteotomy operation is performed. Specifically, based on the planning data, the mechanical arm 1051 is simulated and guided in the interface of the human-computer interaction device 103, so that the osteotomy guide 107 reaches the planned position and the through grooves of the osteotomy guide 107 are respectively connected to the selected cut The bone plane is aligned. According to the simulation process, the doctor can check the prosthesis plan of the replacement operation, confirm that there will be no interference or collision with other objects during the movement of the robotic arm 1051, and at the same time, verify the positioning of the robotic arm 1051.
  • the intraoperative planning can be adjusted according to the specific situation after osteotomy, and the planning data can be updated. Select the next osteotomy plane in the bone plane to perform osteotomy operations. The osteotomy plan for the next cut is adjusted according to the actual operating conditions, so that the subsequent osteotomy plane is determined more accurately.
  • a tracer such as an infrared reflector or other tracer element, is installed on the osteotomy saw, the navigation camera 1093 obtains the position information of the osteotomy saw in real time through the tracer on the osteotomy saw, and the display screen 1093
  • the upper real-time display shows the relative positional relationship between the osteotomy saw and the patient's bone, so as to guide the doctor's osteotomy operation in an intuitive manner.
  • a strain gauge is installed on the free end of the osteotomy saw, and the upper controller 101 uses the strain gauge to collect the bending variable value of the osteotomy saw and compare it with a pre-stored threshold value. When the variable value exceeds the threshold value When, a warning is issued.
  • Fig. 11 shows a control method for a robot assist system for total knee replacement surgery according to an exemplary embodiment of the present application.
  • the control method includes: S10 generates a preoperative plan; S20 generates an intraoperative plan; S30 controls operation of a surgical robot.
  • preoperative planning is obtained based on the acquired CT or MRI images, including prosthesis data such as joint prosthesis model and preliminary osteotomy plan.
  • an intraoperative plan is generated. Specifically, image registration is performed between the preoperative planning image and the knee joint surface contour of the patient; acquiring the dynamic distance force line data of the knee joint under continuous flexion and extension angles; visually displaying the dynamic distance force line data graph; according to the dynamic distance force Visual display of line data, adjustment of prosthesis planning.
  • image registration is performed between the preoperative planning image and the knee joint surface contour of the patient; acquiring the dynamic distance force line data of the knee joint under continuous flexion and extension angles; visually displaying the dynamic distance force line data graph; according to the dynamic distance force Visual display of line data, adjustment of prosthesis planning.
  • the operation is controlled. Send the adjusted prosthesis plan to the surgical robot to guide the surgical robot's robotic arm so that the osteotomy guide is located at a predetermined position in the plan, and the osteotomy guide is installed on the operating end of the surgical robot's robotic arm, Used for positioning the osteotomy saw.
  • the osteotomy guide is installed on the operating end of the robotic arm through the osteotomy guide tracer.
  • the acquiring the dynamic distance force line data of the knee joint under the continuous flexion and extension angle includes: collecting the motion trajectory information of the knee joint during the continuous flexion and extension of the lower limb; Spacing and angle of force line.
  • the adjustment of the prosthesis plan includes: receiving the position adjustment information of the prosthesis interacted by the user; recalculating the spacing force line and refreshing the dynamic spacing force line data map.
  • the prosthesis position information includes at least one of a varus angle, an internal and external rotation angle, an anteroposterior inclination angle, a vertical translation distance, and a lateral translation distance.
  • it further includes visually adjusting the preoperative plan before generating the intraoperative plan.
  • the preoperative plan after the engineer has designed the preoperative plan, it can be provided to the doctor, and the doctor can operate it in the doctor's office. Doctors make visual adjustments to preoperative planning based on their medical experience, such as using a human-computer interaction interface to adjust the position of the prosthesis, including spacing, angle, and so on.
  • the doctor can also visually adjust the preoperative planning in order to design the prosthesis planning as reasonably as possible.
  • the method further includes: before the operation of the surgical robot is controlled according to the adjusted prosthesis plan, simulating and guiding the mechanical arm in the human-computer interaction interface, so that the osteotomy guide reaches the planned position and the truncation The through slot of the bone guide is aligned with the corresponding osteotomy plane.
  • an osteotomy plane is selected from a plurality of osteotomy planes, and the plurality of osteotomy planes includes a first osteotomy plane, The second osteotomy plane, the third osteotomy plane, the fourth osteotomy plane, the fifth osteotomy plane, and the sixth osteotomy plane; according to the prosthesis plan, the robot arm is controlled so that the through slot of the osteotomy guide It is aligned with the selected osteotomy plane and the osteotomy guide is positioned at the corresponding planned position.
  • it further includes updating planning data; selecting another osteotomy plane from a plurality of osteotomy planes; according to the updated planning data, guiding the robotic arm so that the through groove of the osteotomy guide is selected The other osteotomy plane is aligned and the osteotomy guide is positioned at the corresponding planned position.
  • the first osteotomy plane, the second osteotomy plane, the third osteotomy plane, the fourth osteotomy plane, the fifth osteotomy plane, and the sixth osteotomy plane are respectively the distal tibial osteotomy plane , One of the distal femoral osteotomy plane, the femoral anterior condyle oblique osteotomy plane, the femoral posterior condyle oblique osteotomy plane, the anterior condyle osteotomy plane, and the posterior condyle osteotomy plane.
  • Fig. 12 shows a control device of a robot assist system for a total knee joint replacement surgery according to an exemplary embodiment of the present application.
  • the control device includes: a preoperative planning acquisition module 40, an intraoperative planning acquisition module 50, and an operation control module 60.
  • the pre-operative planning acquisition module 40 obtains the pre-operative planning based on the acquired CT or MRI images, including prosthesis data such as joint prosthesis models and preliminary osteotomy plans.
  • the intraoperative planning acquisition module 50 includes: an image registration module 51, which registers the knee joint image in the preoperative planning data with the intraoperative knee joint image; and a visualization display module 52, which displays the registered knee joint image And the dynamic gap force line data diagram; the adjustment module 53 adjusts the prosthesis plan according to the visual display of the dynamic gap force line data.
  • the operation control module 60 which controls the operation of the surgical robot according to the adjusted prosthesis plan, guides the osteotomy guide to be located at a predetermined position in the plan, and the osteotomy guide is installed on the operating end of the robotic arm of the surgical robot, Used for positioning the osteotomy saw.
  • Fig. 13 shows a block diagram of an electronic device according to an exemplary embodiment of the present application.
  • the electronic device 800 according to this embodiment of the present application will be described below with reference to FIG. 13.
  • the electronic device 800 shown in FIG. 8 is only an example, and should not bring any limitation to the function and scope of use of the embodiments of the present application.
  • the electronic device 800 is represented in the form of a general-purpose computing device.
  • the components of the electronic device 800 may include, but are not limited to: at least one processing unit 810, at least one storage unit 820, a bus 830 connecting different system components (including the storage unit 820 and the processing unit 810), and the like.
  • the storage unit 820 stores program codes, and the program codes can be executed by the processing unit 810, so that the processing unit 810 executes the methods described in this specification according to the embodiments of the present application.
  • the storage unit 820 may include a readable medium in the form of a volatile storage unit, such as a random access storage unit (RAM) 8201 and/or a cache storage unit 8202, and may further include a read-only storage unit (ROM) 8203.
  • RAM random access storage unit
  • ROM read-only storage unit
  • the storage unit 820 may also include a program/utility tool 8204 having a set of (at least one) program module 8205.
  • program module 8205 includes but is not limited to: an operating system, one or more application programs, other program modules, and program data, Each of these examples or some combination may include the implementation of a network environment.
  • the bus 830 may represent one or more of several types of bus structures, including a storage unit bus or a storage unit controller, a peripheral bus, a graphics acceleration port, a processing unit, or a local area using any bus structure among multiple bus structures. bus.
  • the electronic device 800 can also communicate with one or more external devices 8001 (such as a touch screen, a keyboard, a pointing device, a Bluetooth device, etc.), and can also communicate with one or more devices that enable a user to interact with the electronic device 800, and/ Or communicate with any device (such as a router, modem, etc.) that enables the electronic device 800 to communicate with one or more other computing devices. This communication can be performed through an input/output (I/O) interface 850.
  • the electronic device 800 may also communicate with one or more networks (for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet) through the network adapter 860.
  • networks for example, a local area network (LAN), a wide area network (WAN), and/or a public network, such as the Internet
  • the network adapter 860 can communicate with other modules of the electronic device 800 through the bus 830. It should be understood that although not shown in the figure, other hardware and/or software modules can be used in conjunction with the electronic device 800, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives And data backup storage system, etc.
  • the present application also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the above-mentioned method are realized.
  • the embodiments of the present application also provide a computer program product, which is operable to cause a computer to execute part or all of the steps recorded in the above method embodiments.
  • the technical solution of the present application can be implemented by means of software and/or hardware.
  • the "unit” and “module” in this specification refer to software and/or hardware that can independently complete or cooperate with other components to complete specific functions.
  • the hardware may be a Field-Programmable Gate Array (FPGA), for example. , Integrated Circuit (IC), etc.
  • FPGA Field-Programmable Gate Array
  • IC Integrated Circuit
  • the dynamic gap force line data map provides the doctor with an intuitive and flexible planning basis, effectively improves the reconstruction of the force line and postoperative soft tissue balance, and allows the doctor to perform corrections within the reach of the patient's lower limbs.
  • the position of the joint prosthesis and the osteotomy plan can be adjusted to obtain a prosthesis plan that is close to the real activity of the human body, and provides a comfortable degree of movement for the patient after the operation.
  • the osteotomy guide may include a first through groove and a second through groove crossing the first through groove.
  • the osteotomy saw can be placed in different troughs to achieve osteotomy operations in different directions and positions, so the mechanical arm can keep as little movement as possible.
  • the occupied operating space can be reduced, and the requirements for the operating environment are also reduced accordingly.
  • the motion range of the robotic arm can be reduced, the view angle of the tracer in the space of the navigation camera is better, and the posture accuracy of the end of the robotic arm can be improved.
  • the tracer device provided by the embodiment of the present application expands the range in which the tracer device can be identified by the optical position finder through multiple groups arranged along the circumference of the base. At the same time, limit the normal included angle of each tracking element included in the same group of tracking elements to be less than or equal to 20°, so that the tracking device can be more easily identified by the optical position finder during the rotation of the robotic arm, reducing the time when the robotic arm is rotating.
  • the optical position finder loses the position of the tracking device, which improves the accuracy of positioning.
  • the femur and/or tibia can be completely fixed during a knee replacement operation, thereby reducing accidental injury to other tissues during the operation.
  • the use of the knee joint fixator provides convenience for the patient's knee joint positioning and osteotomy operations more accurately.
  • five-cut osteotomy of the femur can be achieved with the help of a surgical robot assist system, without the need to install a four-in-one cutting guide device on the femur, thereby avoiding the use of a pin to nail the four-in-one device into the femur.
  • the second injury came.
  • the technical concept and technical means in this application can not only be used for knee replacement, but also can be applied to a wider range of scenarios: for example, the technical conception of dynamic spacing lines of force for improving the accuracy of prosthesis planning can be used For other joints; the technical idea of setting multiple slots on the osteotomy guide can be used for other osteotomy operations, such as hip joints.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Robotics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Dentistry (AREA)
  • Human Computer Interaction (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Prostheses (AREA)
  • Surgical Instruments (AREA)

Abstract

一种全膝关节置换手术机器人辅助***、控制方法、电子设备(800)以及计算机可读介质。该辅助***包括:术前规划***(10),用于制定术前规划,术前规划数据包括膝关节图像;术中规划***(20),用于制定术中规划,其中,将术前规划中的膝关节图像与术中确定的患者膝关节表面轮廓进行图像配准(S100);获取连续屈伸角度下的膝关节动态间距力线数据(S200);可视化显示动态间距力线数据图(S300);根据动态间距力线数据图的可视化显示,调整假体规划(S400),得到术中规划;执行***(30),根据术中规划,引导安装于手术机器人(105)的机械臂(1051)操作端的截骨引导器(107)位于规划中的预定位置,截骨引导器(107)用于对截骨锯进行定位。

Description

全膝关节置换手术机器人辅助***、控制方法及电子设备 技术领域
本发明涉及医疗设备技术领域,特别涉及一种全膝关节置换手术机器人辅助***、控制方法、电子设备以及计算机可读介质。
背景技术
近年来,全膝关节置换术(total knee arthroplasty,TKA)作为治疗严重膝关节疼痛、畸形、功能障碍的一种有效的临床术式,在国内外得到了广泛的开展。人工关节置换手术的操作往往根据医生的经验和估算来决定,很难保证假体与患者股骨和胫骨配合的精准度。
与传统关节置换手术相比,手术机器人可术前进行个体化建模、测量和设计,保证术中精确安全操作,从而辅助完成个体化、精准化的人工关节置换,极大降低了患者因精准化问题造成的术后两腿长度不一、关节脱位、假体松动等情况的发生率。
医学实践发现,目前手术机器人辅助***尚存在很多不足,例如图像未能完全配准、光学跟踪定位偏差、机器人运动误差等,这些因素导致机器人辅助***最终的操作不准确,不能保证良好力线的重建,造成术后患者的不适感,同时影响假体的寿命。
发明内容
针对现有技术中存在的缺陷,本申请旨在提供一种具有更高精准度的全膝关节置换手术机器人辅助***、控制方法、电子设备以及计算机可读介质,以指导医生更准确地截骨。
本申请的其该用户特性和优点将通过下面的详细描述变得显然,或部分地通过本申请的实践而习得。
根据本申请的一个方面,提供一种全膝关节置换手术机器人辅助***控制方法,包括:
生成术前规划,术前规划数据包括患者膝关节的图像;
生成术中规划,其中,将所述术前规划的膝关节图像与术中确定的患者膝关节表面轮廓进行图像配准;获取连续屈伸角度下的膝关节动态间距力线数据;可视化显示所述动态间距力线数据图;根据所述动态间距力线数据的可视化显示,调整假体规划;
根据调整后的假体规划控制手术机器人的操作,引导截骨引导器位于规划中的预定位置,所述截骨引导器安装于所述手术机器人的机械臂的操作端,用于对截骨锯进行定位。
根据本申请的一些实施例,所述获取连续屈伸角度下的膝关节动态间距力线数据,包括:
采集下肢连续屈伸过程中膝关节的运动轨迹信息;
根据所述运动轨迹信息,计算下肢连续屈伸角度下的间距和力线角度。
根据本申请的一些实施例,所述调整假体规划包括:
接收用户交互的假***置调整信息;
重新计算间距力线并刷新所述动态间距力线数据图。
根据本申请的一些实施例,所述假***置信息包括:内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离中的至少一种。
根据本申请的一些实施例,还包括在生成术中规划之前对术前规划进行可视化调整。
根据本申请的一些实施例,还包括:
在所述根据调整后的假体规划控制手术机器人的操作之前,在人机交互界面中模拟引导机械臂,使得所述截骨引导器到达规划位置且所述截骨引导器的通槽与相应截骨平面对准。
根据本申请的一些实施例,还包括:
在所述根据调整后的假体规划控制手术机器人的操作之前,从多个截骨平面中选定一个截骨平面,所述多个截骨平面包括第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面;
根据假体规划,控制所述机械臂,使得所述截骨引导器的通槽与选定的截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
根据本申请的一些实施例,还包括:
更新假体规划数据;
从多个截骨平面中选定另一个截骨平面;
根据更新的假体规划数据,引导所述机械臂使得所述截骨引导器的通槽与选定的所述另一个截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
根据本申请的一些实施例,其特征在于,
所述第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面分别为胫骨远端截骨平面、股骨远端截骨平面、股骨前髁斜截骨平面、股骨后髁斜截骨平面、股骨前髁截骨平面、股骨后髁截骨平面中的一个。
根据本申请的第二方面,提供一种全膝关节置换手术机器人辅助***,包括:
术前规划***,用于制定术前规划,术前规划数据包括膝关节图像;
术中规划***,用于制定术中规划,其中,将所述术前规划中的膝关节图像与术中确定的患者膝关节表面轮廓进行图像配准;获取连续屈伸角度下的膝关节动态间距力线数据;可视化显示动态间距力线数据图;根据所述动态间距力线数据图的可视化显示,调整假体规划,得到术中规划;
执行***,其中,根据所述术中规划,引导安装于手术机器人机械臂操作端的截骨引导器位于规划中的预定位置,所述截骨引导器用于对截骨锯进行定位。
根据本申请的一些实施例,其中,所述术前规划***和术中规划***设置于上位控制器中,所述执行***设置于手术机器人中,所述上位控制器将所述术中规划发送给所述手术机器人,使得手术机器人能够根据规划执行相应操作。
根据本申请的一些实施例,其中,所述术中规划***包括定位***,所述定位***包括股骨示踪器、胫骨示踪器和导航相机,所述股骨示踪器和胫骨示踪器分别设置在患者膝关节的股骨以及胫骨处,所述导航相机与所述胫骨示踪器和胫骨示踪器配合,采集并记录下肢连续屈伸过程中膝关节的运动轨迹信息;
所述上位控制器与所述股骨示踪器、胫骨示踪器、导航相机通信连接,并且所述上位控制器配置为:根据所述运动轨迹信息,计算下肢连续屈伸角度下的间距和力线角度,从而获取所述连续屈伸角度下的膝关节动态间距力线数据。
根据本申请的一些实施例,其中,所述定位***还包括扫描探针,所述扫描探针的一端具有扫描针尖,对患者膝关节进行扫描,另一端设置有多个示踪元件,所述多个示踪元件能够被所述导航相机识别,获得所述扫描针尖的运动轨迹;
所述上位控制器与所述扫描探针、导航相机通信连接,并且所述上位控制器配置为:根据所述扫描针尖的运动轨迹,得到膝关节表面轮廓数据,并将所述术前规划中的膝关节图像与术中得到的患者膝关节表面轮廓进行图像配准。
根据本申请的一些实施例,其中,所述股骨示踪器与所述导航相机配合,采集并记录膝关节的位置信息;
所述上位控制器配置为:根据所述膝关节的位置数据制定所述术中规划。
根据本申请的一些实施例,其中,所述定位***还包括截骨引导器示踪器,所述截骨引导器示踪器安装在机械臂的操作端,所述截骨引导器可拆卸地安装在所述截骨引导器示踪器上,所述导航相机与所述截骨引导器示踪器配合,采集并记录截骨引导器的位置信息;
所述上位控制器与所述截骨引导器示踪器、导航相机通信连接,并且所述上位控制器配置为:根据所述截骨引导器的位置数据制定所述术中规划。
根据本申请的一些实施例,其中,所述上位控制器包括人机交互装置,用于显示所述动态间距力线数据图,并响应用户操作显示假体规划的调整。
根据本申请的一些实施例,其中,所述截骨引导器包括第一通槽和与所述第一通槽交叉的第二通槽,所述通槽用于容纳所述截骨锯。
根据本申请的一些实施例,其中,所述上位控制器配置为:
在置换操作各阶段响应用户利用所述人机交互装置的操作分别从多个截骨平面中选定一个截骨平面,所述多个截骨平面包括第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面;
将包含选定截骨平面信息的术中规划发送给所述手术机器人;
所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的通槽与选定的截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
根据本申请的一些实施例,其中所述上位控制器还配置为:
更新假体规划数据得到新的术中规划;
响应用户利用所述人机交互装置的操作从多个截骨平面中选定另一个截骨平面;
将包含选定的另一截骨平面信息的术中规划发送给所述手术机器人;
所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的通槽与选定的所述另一个截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
根据本申请的一些实施例,其中,所述第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面分别为胫骨远端截骨平面、股骨前髁斜截骨平面、股骨后髁斜截骨平面、股骨前髁截骨平面、股骨后髁截骨平面中的一个。
根据本申请的一些实施例,其中所述截骨锯上安装有示踪器。
根据本申请的一些实施例,其中所述截骨锯的自由端安装有应变片。
根据本申请的一些实施例,其中所述截骨引导器示踪器为环形示踪装置。
根据本申请的一些实施例,还包括膝关节固定装置,设置于手术台,用于固定患者的膝关节。
根据本申请的一些实施例,其中所述人机交互装置包括显示屏,显示屏具有显示膝关节三维图像的第一窗口和显示膝关节动态间隙力线数据的第二窗口,所述第一窗口与所述第二窗口相关联,通过第一窗口对假***置信息进行调整时,第二窗口显示该位置下的膝关节动态间隙力线图。
根据本申请的一些实施例,其中所述假***置信息包括:内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离中的至少一种。
根据本申请的一些实施例,其中,在第二窗口选择屈伸角度,显示当前角度下的膝关节动态间隙力线图,第一窗口则显示对应屈伸角度的膝关节和假体三维图像。
根据本申请的第三方面,提供一种全膝关节置换手术机器人辅助***,包括:上位控制器、手术机器人、股骨示踪器、胫骨示踪器、截骨引导器示踪器、扫描探针、导航相机,
所述上位控制器提供术前规划和术中规划,并将所述术中规划发送到所述手术机器人,
所述股骨示踪器和所述胫骨示踪器分别设置在患者膝关节的股骨以及胫骨处,所述导航相机与所述胫骨示踪器和胫骨示踪器配合,在术中采集下肢连续屈伸过程中膝关节的运动轨迹信息;
所述导航相机与所述扫描探针配合,采集所述患者膝关节的表面轮廓数据;
所述导航相机与所述股骨示踪器配合,采集所述患者膝关节的位置信息;
所述截骨引导示踪器一端连接有用于安装截骨工具的截骨引导器,另一端连接在所述手术机器人的机械臂的操作端,所述导航相机与所述截骨引导器示踪器配合,采集所述截骨引导器的位置信息;
所述上位控制器与所述机器人、股骨示踪器、胫骨示踪器、截骨引导器示踪器、导航相机通信连接,并且配置为:根据采集的膝关节位置信息、截骨引导器的位置信息、膝关节表面轮廓数据、连续屈身角度下的运动轨迹信息生成所述术中规划,
所述机器人接收所述术中规划,并根据所述术中规划控制所述机器人的机械臂,使得所述截骨引导器位于规划中的预定位置。
根据本申请的一些实施例,其中,所述辅助***包括与所述上位控制器通信连接的人机交互装置,所述人机交互装置用于显示所述动态间距力线数据图,并响应用户操作显示假体规划的调整。
根据本申请的一些实施例,其中,所述截骨引导器包括多个通槽,每个通槽与相邻通槽之间保持预定角度,所述通槽用于容纳所述截骨工具。
根据本申请的一些实施例,其中,所述上位控制器配置为:
在置换操作各阶段,响应用户利用所述人机交互装置的操作,分别从根据术中规划确定的多个截骨平面中选定一个截骨平面,所述多个截骨平面包括第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面、第六截骨平面;
将包含选定截骨平面信息的术中规划发送给所述手术机器人;
所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的至少一个通槽与选定的截骨平面对准,并使得所述截骨引导器位于相应规划位置。
根据本申请的一些实施例,其中,所述截骨引导器包括第一通槽和与所述第一通槽交叉的第二通槽。
根据本申请的一些实施例,其中所述上位控制器还配置为:
更新假体规划数据得到新的术中规划;
响应用户利用所述人机交互装置的操作从多个截骨平面中选定另一个截骨平面;
将包含选定的另一截骨平面信息的术中规划发送给所述手术机器人;
所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的通槽与选定的所述另一个截骨平面对准并使得所述截骨引导器定位于相应规划位置。
根据本申请的一些实施例,其中,所述第一截骨平面、第二截骨平面、第三截骨平 面、第四截骨平面、第五截骨平面、第六截骨平面分别为胫骨远端截骨平面、股骨远端截骨平面、股骨前髁斜截骨平面、股骨后髁斜截骨平面、股骨前髁截骨平面、股骨后髁截骨平面中的一个。
根据本申请的一些实施例,其中所述截骨引导器示踪器为环形示踪装置。
根据本申请的一些实施例,还包括膝关节固定装置,设置于手术台,用于固定患者的膝关节。
根据本申请的一些实施例,其中所述人机交互装置包括显示屏,显示屏具有显示膝关节三维图像的第一窗口和显示膝关节动态间隙力线数据的第二窗口,所述第一窗口与所述第二窗口相关联,通过第一窗口对假***置信息进行调整时,第二窗口显示该位置下的膝关节动态间隙力线图。
根据本申请的一些实施例,其中所述假***置信息包括:内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离中的至少一种。
根据本申请的一些实施例,其中,在第二窗口选择屈伸角度,显示当前角度下的膝关节动态间隙力线图,第一窗口则显示对应屈伸角度的膝关节和假体三维图像。
根据本申请的第四方面,提供一种利用手术机器人辅助***进行全膝关节置换的控制装置,包括:
术前规划获取模块,获得术前规划;
术中规划获取模块,获取术中规划,包括:
图像配准模块,将术前规划数据中的膝关节图像与术中膝关节表面轮廓进行图像配准;
可视化显示模块,显示配准后的膝关节图像和所述动态间隙力线数据图;
调整模块,根据所述动态间距力线数据的可视化显示,调整假体规划;
操作控制模块,根据调整后的假体规划控制手术机器人的操作,引导截骨引导器位于规划中的预定位置,所述截骨引导器安装于所述手术机器人的机械臂的操作端,用于对截骨锯进行定位。
根据本申请的第五方面,提供一种电子设备,其特征在于,包括:
一个或多个处理器;
存储装置,用于存储一个或多个程序;
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如前面所述的方法。
根据本申请的第六方面,提供一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如前面所述的方法。
本申请提供的全膝关节置换手术机器人辅助***和控制方法允许医生在患者下肢可达的屈伸角度下,对关节假体的位置以及截骨方案进行调整,有效改善力线的重建以及术后的软组织平衡。并且本申请提供的全膝关节置换手术机器人辅助***具有更高精准度,因此可以借助本申请提供的手术机器人辅助***实现对应假体的胫骨、股骨上六个截骨平面的精准定位和截骨操作,避免了传统辅助***采用四合一切削导向装置截骨带来的销钉钉入股骨的二次伤害。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
通过参照附图详细描述其示例实施例,本申请的上述和其它目标、特征及优点将变得更加显而易见。
图1A为根据本申请示例实施例的全膝关节置换手术机器人辅助***的框架示意图;
图1B为根据本申请示例实施例的术中规划制定过程示意图;
图2为根据本申请示例实施例的全膝关节置换手术机器人辅助***的组成示意图;
图3为根据本申请示例实施例的人机交互界面示意图一;
图4为根据本申请示例实施例的动态间距力线图;
图5为根据本申请示例实施例的人机交互界面示意图二;
图6为根据本申请示例实施例的扫描探针的示意图;
图7为根据本申请示例实施例的截骨引导器的示意图;
图8为根据本申请示例实施例的截骨引导器示踪器的示意图;
图9A为根据本申请示例实施例的膝关节固定器的示意图;
图9B为应用于图9A所示膝关节固定器中的夹具组件的示意图;
图10为根据本申请示例实施例的假体示意图;
图11为根据本申请示例实施例的全膝关节置换手术机器人辅助***的控制流程图;
图12为根据本申请示例实施例的全膝关节置换手术机器人辅助***的控制装置;
图13为根据本发明根据本发明实施例的电子设备的框图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置或等。在这些情况下,将不详细示出或描述公知结构、方法、装置、实现、材料或者操作。
附图中所示的方框图不一定必须与物理上独立的实体相对应。可以采用软件、或在一个或多个硬件模块和/或可编程模块中实现这些功能实体或功能实体的一部分,或在不同网络和/或处理器装置和/或微控制装置中实现这些功能实体。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、***、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。
下面结合图1A阐述本申请的技术构思。图1A为根据本申请示例实施例的全膝关 节置换手术机器人辅助***的框架示意图。
如图1A所示,本发明提供一种具有更高精度的全膝关节置换手术机器人辅助***,包括:术前规划***10、术中规划***20和执行***30。
术前规划***10制定术前规划,术前规划可在术前端工作站完成。首先,用户(工程师)将从医院获得的患者的计算机断层摄影(CT)或磁共振成像(MRI)图像数据集输入术前端工作站,生成患者的骨骼解剖结构的三维(3D)模型;将假体制造商提供的假体数据(3-D计算机辅助设计模型)加载到术前端工作站。这样,用户可以尝试将假体放置到骨骼解剖结构的3D模型中,以初步选定假体,并指定假体与骨骼的最佳配合位置和方向,制定初步的术前规划。
术前规划依据的是患者的3D重构模型,存在一定的误差且仅能反应出骨骼的静态信息。因此需要根据患者实际的骨骼状况,包括骨骼动态状况,对术前规划进行调整,即制定术中规划。术中规划由术中规划***20执行,可由放置于手术室的术中端工作站完成。在术中根据患者的下肢力线以及下肢动态位置信息对术前规划进行调整,以达到更优的手术效果。
现有的术中规划调整方法能够为医生提供患者下肢屈伸角度为0度和90度两种状态下的下肢力线信息、间距信息。医生可依据上述信息在术中调整假体规划位置、优化截骨方案。然而,膝关节可达的屈伸角度范围为-10度至130度,显然仅仅依据屈伸角度为0度和90度下的信息来调整术中规划,得到的规划位置和截骨方案并不准确,这将导致最终假体的放置,不能使患者像正常人一样在蹲、坐、上下楼梯等姿态具有舒适的感觉。
本申请允许医生在患者下肢可达的屈伸角度范围内,通过对关节假体上下、左右平移,以及顺时针和逆时针的旋转等操作,对关节假体的位置以及截骨方案进行调整。并且,通过动态间隙力线数据图为医生提供了直观、灵活的规划依据,有效改善力线的重建以及术后的软组织平衡。
现在结合附图1A、1B、3、4、6,对本申请示例实施例的方案做整体性介绍。图1B是本申请示例实施例的术中规划制定过程示意图,图3为根据本申请示例实施例的人机交互界面示意图一,图4为根据本申请示例实施例的动态间距力线图,图6是根据本申请示例实施例的扫描探针的示意图。
参见图1A,如前所述,全膝关节置换手术机器人辅助***包括术前规划***10、术中规划***20和执行***30。
术前规划***
术前规划***10制定术前规划。术前规划在术前端工作站实现。首先,用户(工程师)将假体制造商提供的假体数据(3-D计算机辅助设计模型)加载到术前端工作站,并将从医院获得的患者的计算机断层摄影(CT)或磁共振成像(MRI)图像数据集输入术前端工作站。之后,根据获取的CT或MRI图像,将股骨和胫骨感兴趣区域(ROI)的骨骼表面提取出来,并把股骨和胫骨分离开,成为两个独立的3D模型。在3D模型上预生成用于后续图像配准的配准点和校验点(可以是骨性标志点)。将所需关节假体模型放置到骨骼解剖结构的3D模型中。确定出股骨和胫骨的坐标系,并基于坐标系对股骨和胫骨三维图像进行转正。调整关节假体的位置和方向,以实现关节假体与骨骼的术前优化配合,在此基础上得到术前规划。
通过术前规划得到的数据包括:关节假体型号等假体数据以及初步的截骨方案等。假体数据进一步包括关节假体的三维模型数据及其与人体解剖学相应的空间定义。初步截骨方案包括,通过关节假体与患者骨骼模型的三维规划生成的与规划的关节假体相匹配的空间位置及其截骨平面等。
术中规划***
术中规划***20制定术中规划。如图1B所示,术中规划由设置在手术室中的术中端工作站实现。根据本申请一个示例实施例,术中端工作站可以与术前端工作站合二为一,如图2所示,上位控制器同时完成术中端工作站与术前端工作站的工作。
图1B是术中规划制定过程示意图。首先,在图1B所示的S100中,将术前规划中转正的膝关节图像与患者膝关节图像进行图像配准。具体地,将术前规划图像与患者膝关节表面轮廓进行图像配准。下面结合图6对图像配准做相关说明。在手术中,医生使用如图6所示的扫描探针1400的针尖1401点触膝关节一些位置,比如骨性标志点。光学跟踪设备,例如图2中的导航相机1093,跟踪扫描探针1400的一端上的示踪元件1402,从而示出所点触的位置。如果配准结果准确,在图像上也会显示出相应的点,如果配准结果不准确,则需要重新进行配准,直至结果满足相应要求。根据本申请的一个示例实施例,通过点云配准算法,分别实现股骨和胫骨关节表面的精确配准。例如,可先进行六个标记点的粗略配准,然后进行多点的精细配准,最后对配准结果进行校验。
图像配准之后,在图1B所示的S200中,获取连续屈伸角度下的膝关节动态间距力线数据。根据本申请的示例实施例,包括采集下肢连续屈伸过程中膝关节的运动轨迹信息;根据所述运动轨迹信息,计算下肢连续屈伸角度下的间距和力线角度。具体地,例如,在膝关节的股骨以及胫骨处设置示踪器;下肢在连续屈伸过程中,通过导航相机对所述示踪器进行连续跟踪,采集并记录所述膝关节的运动轨迹信息。其中,间距包括第一间距、第二间距。第一间距为假体的股骨内侧髁外表面与胫骨截骨平面的最小间距,第二间距为假体的股骨外侧髁外表面与胫骨截骨平面的最小间距。力线角度为股骨机械轴线与胫骨机械轴线之间的夹角。
接着,在如图1B所示的S300中,显示该动态间距力线数据图,并根据该图,在图1B所示的S400中,可视化调整假体规划,得到术中规划。动态间距力线数据图如图4所示,包括第一间距曲线610、第二间距曲线620和力线角度变化曲线630。第一间距曲线610是以下肢屈伸角度为纵坐标、以所述第一间距为横坐标绘制而成。第二间距曲线620是以下肢屈伸角度为纵坐标、以所述第二间距为横坐标绘制而成。力线角度变化曲线630是以下肢屈伸角度为纵坐标、以所述力线角度为横坐标绘制而成。图3示出根据示例实施例的人机交互界面的示意图一。该界面提供了可交互编辑的假***置信息,包括内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离等。医生可以通过可视化显示界面,在界面左侧的窗***互调整假***置。根据接收的假***置调整信息,重新计算间距力线并在该界面右侧窗口刷新所述动态间距力线数据图。
通过假***置调整信息和动态间隙力线的可视化显示,为医生提供了直观、清晰的规划调整结果。医生可以根据动态间距力线数据图的可视化显示,不断的调整假***置信息,直至动态间距力线数据图显示的信息达到医生的要求为止。
第一间距、第二间距可采取如下方式得到:首先,计算假体股骨外表面曲面在人体中立位垂直轴上的最低点。其中,计算第一间距时,采用的是假体股骨内侧髁的外表面。计算第二间距时,采用的是假体股骨外侧髁的外表面。接下来,计算所述最低点至胫骨截骨平面的距离。由此计算出的距离,是一个三维空间曲面到三维空间平面的距离,更能真实的反应膝关节的运动状态。
力线角度可以采用如下方法计算:分别将股骨、胫骨机械轴线在人体中立位冠状面上进行投影获得股骨投影轴线、胫骨投影轴线,计算所述股骨投影轴线与所述胫骨投影轴线之间的夹角。
根据一些实施例,在获取动态间距力线数据之前,通过一定的算法获取下肢力线。 具体的,需要考虑对股骨头中心的要求,标记出骨性标记点,以确定股骨髁中心、胫骨平台中心以及踝穴中心。股骨头中心和股骨髁中心确定一条线段,胫骨平台中心和踝穴中心确定一条线段,从而获得真实的下肢力线。两个线段在冠状面上的投影所形成的夹角即为力线夹角。
通过术中规划得到的数据包括:关节假体型号等假体数据以及最终的截骨方案等。假体数据包括关节假体的三维模型数据及其与人体解剖学相应的空间定义。最终的截骨方案包括,通过关节假体与患者骨骼模型的三维规划生成的与规划的关节假体相匹配的空间位置及其截骨平面等。
执行***
执行***30可由手术机器人实现,其中,根据调整后的假体规划执行置换操作,引导安装于手术机器人机械臂操作端的截骨引导器位于规划中的预定位置,截骨引导器用于对截骨锯进行定位。
上文对手术机器人辅助***做了整体性介绍,接下来借助图2从实施层面加以说明。图2示出根据本申请示例实施例的一种具有更高精度的全膝关节置换手术机器人辅助***的组成示意图。如图2所示,全膝关节置换手术机器人辅助***可包括上位控制器101、人机交互装置103、手术机器人105、扫描探针1400、截骨引导器107、膝关节示踪器109、截骨引导器示踪器1111以及导航相机1093。
上位控制器101可完成图1B中术前端工作站和术中端工作站的任务,即包括图1中的术前规划***10和术中规划***20,能够分别制定术前规划和术中规划,并将术中规划传送到执行***30——手术机器人105,以进行正确的截骨操作。
具体地,上位控制器101分别与人机交互装置103、手术机器人105及导航相机1093通信连接,接收人机交互装置103及导航相机1093传送的信息,并向人机交互装置103、手术机器人105及导航相机1093发送相关信息或指令。
在一些实施例中,上位控制器101还与扫描探针1400、截骨引导器107、膝关节示踪器109、截骨引导器示踪器1111等通信连接,例如控制这些部件的启用等。
其中,膝关节示踪器109、截骨引导器示踪器1111、扫描探针1400以及导航相机1093构成定位组件。
截骨引导器示踪器1111一端安装在手术机器人105的机械臂1051的操作端,另一端可拆卸地安装有截骨引导器107。截骨引导器107上安装截骨锯,对股骨、胫骨进行截骨操作。截骨引导器示踪器1111可以设置红外发射器或者反光球等示踪元件。导航相机1093包括光学传感器,可以接收截骨引导器示踪器1111的示踪元件发出的信号。导航相机1093将上述信息发送至上位控制器101,上位控制器101确定截骨引导器107的位置信息,该位置信息将作为规划机械臂的手术路径的依据,用于形成术中规划。
膝关节示踪器109包括分别设置在股骨和胫骨上的股骨示踪器1091、胫骨示踪器1092,股骨示踪器1091、胫骨示踪器1092均可示出膝关节的位置,通常使用股骨示踪器1091和导航相机1093配合,采集膝关节的位置信息。导航相机1093将上述信息发送至上位控制器101,上位控制器101确定膝关节的位置,该位置信息将作为规划机械臂的手术路径的依据,用于形成术中规划。
此外,股骨示踪器1091、胫骨示踪器1092还可以和导航相机1093配合,采集并记录下肢连续屈伸过程中膝关节的运动轨迹信息。导航相机1093将上述信息发送至上位控制器101,上位控制器101根据运动轨迹信息,按照前述方法计算下肢连续屈伸角度下的间距和力线角度,从而获取连续屈伸角度下的膝关节动态间距力线。该动态间距力线信 息将作为调整规划的重要依据,用于形成术中规划。
扫描探针1400与导航相机1093相配合,以采集患者膝关节表面轮廓数据。具体的,如图6所示,扫描探针1400的一端具有扫描针尖1401,对患者膝关节进行扫描,另一端设置有多个示踪元件142,所述多个示踪元件1402能够被所述导航相机1093识别。同样的,导航相机1093将上述信息传送至上位控制器101,获得扫描针尖1401的运动轨迹,得到膝关节表面轮廓数据,该数据用于术中的图像配准,以便形成术中规划。
形成的术中规划包括最终的截骨方案,该截骨方案进一步包括通过关节假体与患者骨骼模型的三维规划生成的与规划的关节假体相匹配的空间位置、截骨平面以及最终形成的截骨引导器的手术路径等。其中,截骨锯的手术路径根据截骨平面数据、膝关节示踪器109获得的膝关节位置信息、截骨引导器示踪器1111获得的引导器位置信息确定。
人机交互装置103,例如在一个实施例中,具有两个或多个显示屏。其中,一个显示屏1031与上位控制器101一起构成上位机,提供术前规划阶段的人机交互;另一个显示屏1032在手术过程中提供给医生进行假体规划的可视化调整。这两个显示屏可以采用相同类型,也可采用不同类型。显示屏1032多采用触摸屏,以方便医生术中的操控。
下面结合图3-5说明利用人机交互装置103进行假体规划的调整。
图3示出根据本申请示例实施例的全膝关节置换手术机器人辅助***人机交互界面一。
如图3所示,所述交互界面包括左侧窗口和右侧窗口。左侧窗口显示了三个膝关节视图,分别代表屈伸角度为0°、45°和90°时的膝关节和假体状态。此外,左侧窗口还提供了可编辑的假体数据参数供医生调整规划。具体包括:
内外翻角度:股骨、胫骨假体与骨的内翻、外翻成角(Varus/Valgus)。当假体与骨相对内翻时,显示内翻的度数(Varus)。若为0度,显示为内翻或外翻0度(Varus/Valgus)。当假体与骨相对外翻时,则显示外翻的度数(Valgus)。
内外旋角度:股骨、胫骨假体与骨的内旋、外旋成角(External/Internal)。当假体与骨相对外旋时,显示外旋的度数(External)。若为0度,显示为内旋或外旋0度(External/Internal)。当假体与骨相对内旋时,则显示内旋的度数(Internal)。
规划力线角度(Planned Varus/Valgus):当前选中下肢屈伸角度下规划的下肢力线角度。
右侧窗口显示动态间距力线数据图,将结合图4对其进行详述。
如图4所示,根据本申请提供的可视化动态间距力线数据图600包括:第一间距曲线610、第二间距曲线620以及力线角度变化曲线630。其中,第一间距曲线610、第二间距曲线620、力线角度变化曲线630的纵坐标均为下肢屈伸角度。人体膝关节可达的屈伸角度为-10°至130°。
参见图4,第一间距曲线610以第一间距为第一横坐标,第二间距曲线620以第二间距为第二横坐标。第一横坐标与第二横坐标共用原点形成间距横坐标。间距横坐标可以设置于所述动态间距力线数据图的下方,向左右两侧延伸,所述第一间距曲线与所述第二间距曲线分别设置于所述间距横坐标原点的两侧。
如图4所示,力线角度变化曲线630以力线角度为横坐标。力线角度横坐标可以设置于所述动态间距力线数据图的上方。原点位于中间位置,原点的一侧为正、另一侧为负。力线角度控制在-3°至3°之间,术后软组织可以达到较好的平衡。
图5示出根据本申请示例实施例的人机交互界面示意图二。根据本申请示例实施例的手术机器人辅助***,不仅为医生提供了可视化的数据显示,还为医生提供了可交互 的规划调整。
当医生在图5的左侧窗口调整假体参数信息时,例如调整内外翻角度、内外旋角度等,交互式界面接收到调整后的假体参数信息后,通过在前描述的计算方法重新计算第一间距、第二间距以及力线角度,并将调整后的动态间距力线数据图实时地显示在交互界面的右侧窗口。如图5所示,为假体参数调整后的交互界面。
交互界面中左侧窗口与右侧窗口是相关联的,如图5所示,通过左侧窗口对假***置信息进行调整时,右侧窗口显示该位置下的膝关节动态间隙力线图。同时,也可以通过右侧窗口选择不同下肢屈伸角度,左侧窗口相应显示该角度下三个膝关节视图,医生可以根据这些膝关节视图和当前间距力线图判断假***置是否适当、力线是否理想等,可以在左侧窗口对该角度下假***置信息进一步调整。
可见,根据本申请实施例,医生可以在下肢可达到的屈伸角度范围内的任一屈伸角度对假体规划进行调整,因而能够得到接近人体真实活动下的假体规划,按照该规划进行的膝关节置换,显然具有更高的精准度。
图7示出根据本申请示例实施例的截骨引导器的示意图。参见图7,根据本申请实施例的截骨引导器107可包括第一通槽1071和与所述第一通槽1071交叉的第二通槽1073,但本申请不限于两个通槽,例如可以设置成一定角度分布的多个通槽。根据一些实施例,第一通槽1071与第二通槽1073可成90度,但本申请不限于此。在执行阶段,当第一通槽1071或第二通槽1073定位为与截骨平面对准时,医生可将截骨锯***通槽中,手动执行截骨操作。第一通槽1071和第二通槽1073可设置于截骨引导器107的主体1070。
一般的截骨引导器仅有单一导向路径,手术中截骨锯转换多个方向时,只能依靠机械臂的运动来实现。如果多个方向的变化角度很大,机械臂的运动姿态可能会遮挡住手术操作者的视野或者遮挡住导航相机的视野。而根据本申请,截骨锯可以放置于不同的通槽1071或1073内来实现不同方向和位置的截骨操作,故机械臂可以尽可能地保持较少的运动,使得安装在机械臂操作端的示踪器在导航相机的空间内视角更好,可以提高机械臂末端的姿态精度。此外,不会影响手术操作者的视野,便于手术的顺利进展。
图8示出根据示例实施例的可设置于手术机器人机械臂操作端的截骨引导器示踪器1111。
参见图8,根据示例实施例的截骨引导器示踪器1111可包括基座和多组示踪元件。
根据示例实施例,基座可具有多个第一示踪面3011和至少一个第二示踪面3013。所述多个第一示踪面3011位于所述基座侧面,所述至少一个第二示踪面3013位于与所述基座侧面相交的端面或台阶面。
根据示例实施例,多组示踪元件分别设置于所述多个第一示踪面3011和所述至少一个第二示踪面3013。每组示踪元件可分别包括至少三个不共线的示踪元件3031。多组示踪元件沿基座301的周向分布,同一组示踪元件所包括的各示踪元件3031中,任意两个示踪元件3031的法向夹角小于等于20°。
根据示例实施例,截骨引导器示踪器1111为环形示踪器,基座301的主体可大致为圆柱形或棱柱,包括与轴线基本平行的侧面,以及与侧面基本垂直的两个端面。此外,为了减小手术端的力矩,根据一些实施例,可将基座设置成由多个截面积递减的圆柱或棱柱相互连接而成的阶梯塔状。
本申请实施例提供的示踪设备,通过多组沿基座的周向设置,扩大了示踪设备可以被光学测位仪识别的范围。同时,限定同一组示踪元件所包括的各示踪元件3031中,任 意两个示踪元件3031的法向夹角小于等于20°,使示踪设备在机械臂旋转过程中更容易被光学测位仪所识别,减少机械臂旋转时光学测位仪丢失示踪设备的位置的情况发生,提高了定位的精准度。
此外,本申请相对于传统手术机器人辅助***增加了膝关节固定器,在图2中以附图标记104表示,如图2所示,膝关节固定器104固定在手术台102上。
下面结合图9A、9B对膝关节固定器104进行详述。图9A示出根据本申请示例实施例的膝关节固定器的整体。图9B示出用于图9A中膝关节固定器的夹具组件。
图9A所示的膝关节固定器可用于在术中对患者的膝关节进行固定。如图9A所示,膝关节固定器包括底座200、支架300、股骨夹具400和足夹具500。
底座200位于膝关节固定装置的最下端,为其它各个部件提供支撑。支架300安装在底座200上,支架300包括支撑柱304,用于支撑膝关节。
用于夹紧股骨的股骨夹具400安装在支架300的顶端的两侧。股骨夹具400包括两组夹具组件100(稍候详述)和锁紧机构,可锁紧夹具组件100的导向架于支架300的顶端,并且可以相对锁紧夹具组件100的导向架110与支撑柱304的角度。锁紧机构可选用已有的凸轮手柄式锁紧机构。
用于夹紧足部的足夹具500可移动的安装在底座200上。足夹具500包括足底架501、足托502、两组夹具组件100和锁紧机构。两组夹具组件100分别安装在足底架501的相对的两侧壁上,用于夹紧踝骨。通过锁紧机构可锁定夹具组件100的导向架11相对于足底架501的位向。
根据一个可选的方案,膝关节固定装置还包括胫骨夹具600。胫骨夹具600安装在支架300的顶端的两侧,包括两组夹具组件100,用于夹紧胫骨。
图9B是应用于图9A所示膝关节固定器中的夹具组件的立体图。如图所示,夹具组件100包括:导向架110、滑块120、调距轴130和压头140。
导向架110为长条形,导向架110表面形成有贯通的导向孔111,导向孔111的外侧、于导向架110的一端设有安装孔113,用于固定安装导向架110。滑块120安装在导向孔111中并可沿导向孔111滑动。滑块120上设有贯通的轴孔。调距轴130可移动的安装在滑块120的轴孔内,即调距轴130可沿轴孔的轴线伸出或退回。压头140铰接安装在调距轴130的端部,可对骨头实现压紧。
采用图9A所示的膝关节固定器,能够在膝关节置换手术中对股骨和/或胫骨进行完全的固定,从而减少手术过程中对其他组织的误伤。此外,膝关节固定器的使用为患者膝关节更精准地定位和截骨作业提供了便利。当然本申请不限于图9A所示的膝关节固定器,还可以采用其他结构的固定装置,只要能对患者下肢进行固定即可。
下面结合图10对膝关节平面的切屑做详细说明。
在全膝关节置换手术中,制定术中规划后,根据该规划执行对股骨和胫骨的切削,即截骨操作,最后放置假体,完成整个手术。图10为假体的示意图,如图10所示,假体的轮廓是确定的。为了跟假体配合,置换手术中对患者胫骨仅切削一刀,对应于如图10所示的远端截骨平面;对股骨切削五刀,分别对应于如图10所示的远端截骨平面、前髁斜截骨平面、后髁斜截骨平面、前髁截骨平面、后髁截骨平面。目前,手术机器人在对股骨进行切削时,首先根据术中规划由机器人自动切削远端截骨平面,然后在该远端截骨平面上安装四合一切削导向装置,完成对股骨其他四刀的操作。之所以采取四合一切削导向装置,原因在于目前手术机器人精准度有限,难以保证对每个截骨平面的精准定位和切削,因此利用远端截骨平面和其他截骨平面的位置关系来减少需要定位的截骨 平面的数量。显然,对于此种切削方案,其他四刀的准确性取决于远端截骨平面,一旦远端截骨平面定位和切削不准确,将导致其他四个截骨平面均存在误差。
本申请旨在提供一种具有更高精准度的全膝关节置换手术机器人辅助***,为此采取了诸多改善手术机器人精度的措施,例如在前描述的,通过动态间距力线图改善术中规划的精准度,通过膝关节固定器确保定位和截骨作业的精准,通过截骨引导器的环形示踪器提高截骨引导器的定位准确度等,因此本申请可以借助手术机器人辅助***实现对每一截骨平面的精准定位和截骨操作,从而完成对股骨的五刀截骨,而不需要在股骨上安装四合一切削导向装置。安装四合一切削导向装置需要将销钉打入股骨予以固定,本申请舍弃四合一,而采用对股骨的五刀操作,避免了由于销钉钉入股骨带来的二次伤害。
具体地,在切削作业时,从人机交互装置103的交互界面上提供的多个截骨平面中选定第一截骨平面,从而手术机器人105的机械臂1051被引导,使得固定于所述机械臂操作端的截骨引导器107的通槽与所述第一截骨平面对准,并且所述截骨引导器107定位于相应规划位置。例如,在交互界面上,医生可根据术前规划和现场情况,决定要执行的第一截骨平面,通常选择胫骨上对应假体远端截骨平面的平面。在选定截骨平面之后,手术机器人105根据上位控制器101发送的术中规划,控制机械臂1051将截骨引导器107引导至规划位置,且截骨引导器107的通槽与第一截骨平面对准,从而医生可将截骨锯***截骨引导器107的通槽执行截骨。
在完成对第一截骨平面的切削后,在人机交互装置103的交互界面上,根据术中规划和现场情况,医生可决定接下来要执行的第二截骨平面。在选定第二截骨平面后,通过机械臂1051的运动将截骨引导器107引导至新的规划位置,且截骨引导器107的通槽与第二截骨平面对准,从而医生可将截骨锯***截骨引导器107的通槽中执行第二刀截骨作业。例如,第二截骨平面可以为远端截骨平面、前髁斜截骨平面、后髁斜截骨平面、前髁截骨平面、后髁截骨平面中的另一个。以此类推,经过多次类似的操作,可完成全膝关节置换操作中截骨引导器107相对于多个截骨平面的定位和截骨操作。
根据一些实施例,在选定截骨平面之后,首先实施机械臂模拟,再进行截骨作业。具体的,基于所述规划数据,在人机交互装置103的界面中模拟引导机械臂1051,使得截骨引导器107到达规划位置且所述截骨引导器107的通槽分别与所选择的截骨平面对准。根据模拟过程,医生可检查置换操作的假体规划,确认在机械臂1051移动过程中不会与其他物体发生干涉或碰撞,同时,也对机械臂1051的定位进行核验。
根据一些实施例,在一个截骨平面的执行结束之后,还可根据截骨后的具体情况对术中规划进行调整,并更新规划数据,之后在人机交互装置103的界面上从多个截骨平面中选定下一个截骨平面进行截骨作业。根据实际作业情况对下一刀的截骨作业规划进行调整,使得后续截骨平面的确定更加精准。
在一个实施例中,截骨锯上安装有示踪器,例如红外反射器或其他示踪元件,导航相机1093通过截骨锯上的示踪器实时获取截骨锯的位置信息,显示屏1093上实时显示截骨锯与患者骨骼之间的相对位置关系,从而以直观方式引导医生的截骨操作。
在一个实施例中,截骨锯在自由端安装有应变片,上位控制器101利用应变片采集截骨锯的弯曲变量值,并将其与预先存储的阈值进行比较,当变量值超出该阈值时,发出警告。通过设置应变片,能够确保正在操作的截骨锯的参数符合设定的精度要求,提高截骨准确性。
图11示出根据本申请示例实施例的用于全膝关节置换手术机器人辅助***的控制方法。
该控制方法包括:S10生成术前规划;S20生成术中规划;S30手术机器人的控制操作。
在S10中,根据获取的CT或MRI图像得到术前规划,包括关节假体型号等假体数据以及初步的截骨方案等。
在S20中,生成术中规划。具体地,将术前规划图像与患者膝关节表面轮廓进行图像配准;获取连续屈伸角度下的膝关节动态间距力线数据;可视化显示所述动态间距力线数据图;根据所述动态间距力线数据的可视化显示,调整假体规划。上文已经对各个步骤进行了说明,在此不再赘述。
在S30中,对操作进行控制。将调整后的假体规划发送给手术机器人,引导手术机器人的机械臂,使得截骨引导器位于规划中的预定位置,所述截骨引导器安装于所述手术机器人的机械臂的操作端,用于对截骨锯进行定位。根据一些实施例,截骨引导器通过截骨引导器示踪器安装在机械臂的操作端。
根据一些实施例,所述获取连续屈伸角度下的膝关节动态间距力线数据,包括:采集下肢连续屈伸过程中膝关节的运动轨迹信息;根据所述运动轨迹信息,计算下肢连续屈伸角度下的间距和力线角度。
根据一些实施例,所述调整假体规划包括:接收用户交互的假***置调整信息;重新计算间距力线并刷新所述动态间距力线数据图。
根据一些实施例,所述假***置信息包括:内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离中的至少一种。
根据一些实施例,还包括在生成术中规划之前对术前规划进行可视化调整。如图2所示,在工程师设计了术前规划后,可以提供给医生,由医生在医生办公室操作。医生根据其医疗方面的经验对术前规划进行可视化调整,例如采用人机交互界面调整假体放置的位置,包括间距、角度等。另外,在手术室内,未开始对患者进行手术之前,医生也可以先行对术前规划进行可视化调整,以尽可能合理设计假体规划。
根据一些实施例,还包括:在所述根据调整后的假体规划控制手术机器人的操作之前,在人机交互界面中模拟引导机械臂,使得所述截骨引导器到达规划位置且所述截骨引导器的通槽与相应截骨平面对准。
根据一些实施例,在所述根据调整后的假体规划控制手术机器人的操作之前,从多个截骨平面中选定一个截骨平面,所述多个截骨平面包括第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面;根据假体规划,控制所述机械臂使得所述截骨引导器的通槽与选定的截骨平面对准并使得所述截骨引导器定位于相应规划位置。
根据一些实施例,还包括更新规划数据;从多个截骨平面中选定另一个截骨平面;根据更新的规划数据,引导所述机械臂使得所述截骨引导器的通槽与选定的所述另一个截骨平面对准并使得所述截骨引导器定位于相应规划位置。
根据一些实施例,所述第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面分别为胫骨远端截骨平面、股骨远端截骨平面、股骨前髁斜截骨平面、股骨后髁斜截骨平面、前髁截骨平面、后髁截骨平面中的一个。
图12示出根据本申请示例实施例的全膝关节置换手术机器人辅助***的控制装置。
所述控制装置,包括:术前规划获取模块40、术中规划获取模块50和操作控制模块60。
术前规划获取模块40,其根据获取的CT或MRI图像得到术前规划,包括关节假体型号等假体数据以及初步的截骨方案等。
术中规划获取模块50,包括:图像配准模块51,其将术前规划数据中的膝关节图像与术中膝关节进行图像配准;可视化显示模块52,其显示配准后的膝关节图像和所述动态间隙力线数据图;调整模块53,根据所述动态间距力线数据的可视化显示,调整假体规划。
操作控制模块60,其根据调整后的假体规划控制手术机器人的操作,引导截骨引导器位于规划中的预定位置,所述截骨引导器安装于所述手术机器人的机械臂的操作端,用于对截骨锯进行定位。
图13示出根据本申请示例实施例的电子设备的框图。
下面参照图13来描述根据本申请的这种实施方式的电子设备800。图8显示的电子设备800仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。
如图13所示,电子设备800以通用计算设备的形式表现。电子设备800的组件可以包括但不限于:至少一个处理单元810、至少一个存储单元820、连接不同***组件(包括存储单元820和处理单元810)的总线830等。
存储单元820存储有程序代码,程序代码可以被处理单元810执行,使得处理单元810执行本说明书描述的根据本申请各实施例的方法。
存储单元820可以包括易失性存储单元形式的可读介质,例如随机存取存储单元(RAM)8201和/或高速缓存存储单元8202,还可以进一步包括只读存储单元(ROM)8203。
存储单元820还可以包括具有一组(至少一个)程序模块8205的程序/实用工具8204,这样的程序模块8205包括但不限于:操作***、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。
总线830可以为表示几类总线结构中的一种或多种,包括存储单元总线或者存储单元控制器、***总线、图形加速端口、处理单元或者使用多种总线结构中的任意总线结构的局域总线。
电子设备800也可以与一个或多个外部设备8001(例如触摸屏、键盘、指向设备、蓝牙设备等)通信,还可与一个或者多个使得用户能与该电子设备800交互的设备通信,和/或与使得该电子设备800能与一个或多个其它计算设备进行通信的任何设备(例如路由器、调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口850进行。并且,电子设备800还可以通过网络适配器860与一个或者多个网络(例如局域网(LAN),广域网(WAN)和/或公共网络,例如因特网)通信。网络适配器860可以通过总线830与电子设备800的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备800使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、RAID***、磁带驱动器以及数据备份存储***等。
本申请还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。
本申请实施例还提供一种计算机程序产品,该计算机程序可操作来使计算机执行如上述方法实施例中记载的部分或全部步骤。
本领域的技术人员可以清楚地了解到本申请的技术方案可借助软件和/或硬件来实现。本说明书中的“单元”和“模块”是指能够独立完成或与其他部件配合完成特定功能的软件和/或硬件,其中硬件例如可以是现场可编程门阵列(Field-ProgrammaBLE Gate Array,FPGA)、集成电路(Integrated Circuit,IC)等。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制, 因为依据本申请,某些步骤可以采用其他顺序或者同时进行。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
以上对本申请实施例进行了详细描述和解释。应清楚地理解,本申请描述了如何形成和使用特定示例,但本申请不限于这些示例的任何细节。相反,基于本申请公开的内容的教导,这些原理能够应用于许多其它实施例。
通过对示例实施例的描述,本领域技术人员易于理解,根据本申请实施例的技术方案至少具有以下优点中的一个或多个。
根据一些实施例,通过动态间隙力线数据图为医生提供了直观、灵活的规划依据,有效改善力线的重建以及术后的软组织平衡,并且允许医生在患者下肢可达的屈伸角度范围内对关节假体的位置以及截骨方案进行调整,能够得到接近人体真实活动下的假体规划,提供了术后患者行动的舒适度。
根据一些实施例,截骨引导器可包括第一通槽和与所述第一通槽交叉的第二通槽。这样,截骨锯可以放置于不同的通槽内来实现不同方向和位置的截骨操作,故机械臂可以尽可能地保持较少的运动。而且,占据的操作空间可以减小,对操作环境的要求也相应降低。另外,由于可以减少机械臂的运动幅度,使得示踪器在导航相机的空间内视角更好,可以提高机械臂末端的姿态精度。
根据一些实施例,本申请实施例提供的示踪设备,通过多组沿基座的周向设置,扩大了示踪设备可以被光学测位仪识别的范围。同时,限定同一组示踪元件所包括的各示踪元件的法向夹角小于等于20°,使示踪设备在机械臂旋转过程中更容易被光学测位仪所识别,减少机械臂旋转时光学测位仪丢失示踪设备的位置的情况发生,提高了定位的精准度。
根据一些实施例,通过应用膝关节固定器,能够在膝关节置换手术中对股骨和/或胫骨进行完全的固定,从而减少手术过程中对其他组织的误伤。此外,膝关节固定器的使用为患者膝关节更精准地定位和截骨作业提供了便利。
根据一些实施例,可以借助手术机器人辅助***实现对股骨的五刀截骨,而不需要在股骨上安装四合一切削导向装置,从而避免了使用销钉将四合一装置钉入股骨对患者带来的二次伤害。
需要说明的是,本申请中的技术构思、技术手段不仅可以用于膝关节置换,还可以应用于更广泛的场景:例如,实现假体规划精度改善的动态间距力线的技术构思,可以用于其他关节;截骨引导器上设置多个通槽的技术构思可以用于其他的截骨操作,例如髋关节等。
以上具体地示出和描述了本申请的示例性实施例。应可理解的是,本申请不限于这里描述的详细结构、设置方式或实现方法;相反,本申请意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (42)

  1. 一种全膝关节置换手术机器人辅助***控制方法,包括:
    生成术前规划,术前规划数据包括患者膝关节的图像;
    生成术中规划,其中,将所述术前规划的膝关节图像与术中确定的患者膝关节表面轮廓进行图像配准;获取连续屈伸角度下的膝关节动态间距力线数据;可视化显示所述动态间距力线数据图;根据所述动态间距力线数据的可视化显示,调整假体规划;
    根据调整后的假体规划控制手术机器人的操作,引导截骨引导器位于规划中的预定位置,所述截骨引导器安装于所述手术机器人的机械臂的操作端,用于对截骨锯进行定位。
  2. 根据权利要求1所述的控制方法,所述获取连续屈伸角度下的膝关节动态间距力线数据,包括:
    采集下肢连续屈伸过程中膝关节的运动轨迹信息;
    根据所述运动轨迹信息,计算下肢连续屈伸角度下的间距和力线角度。
  3. 根据权利要求2所述的控制方法,所述调整假体规划包括:
    接收用户交互的假***置调整信息;
    重新计算间距力线并刷新所述动态间距力线数据图。
  4. 根据权利要求3所述的控制方法,所述假***置信息包括:内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离中的至少一种。
  5. 根据权利要求1的控制方法,还包括在生成术中规划之前对术前规划进行可视化调整。
  6. 根据权利要求1的控制方法,还包括:
    在所述根据调整后的假体规划控制手术机器人的操作之前,在人机交互界面中模拟引导机械臂,使得所述截骨引导器到达规划位置且所述截骨引导器的通槽与相应截骨平面对准。
  7. 根据权利要求1所述的控制方法,还包括
    在所述根据调整后的假体规划控制手术机器人的操作之前,从多个截骨平面中选定一个截骨平面,所述多个截骨平面包括第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面;
    根据假体规划,控制所述机械臂,使得所述截骨引导器的通槽与选定的截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
  8. 根据权利要求7所述的控制方法,还包括
    更新假体规划数据;
    从多个截骨平面中选定另一个截骨平面;
    根据更新的假体规划数据,引导所述机械臂使得所述截骨引导器的通槽与选定的所述另一个截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
  9. 根据权利要求7所述的控制方法,其特征在于,
    所述第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面分别为胫骨远端截骨平面、股骨远端截骨平面、股骨前髁斜截骨平面、股骨后髁斜截骨平面、股骨前髁截骨平面、股骨后髁截骨平面中的一个。
  10. 一种全膝关节置换手术机器人辅助***,包括:
    术前规划***,用于制定术前规划,术前规划数据包括膝关节图像;
    术中规划***,用于制定术中规划,其中,将所述术前规划中的膝关节图像与术中确定的患者膝关节表面轮廓进行图像配准;获取连续屈伸角度下的膝关节动态间距力线数据;可视化显示动态间距力线数据图;根据所述动态间距力线数据图的可视化显示,调整假体规划,得到术中规划;
    执行***,其中,根据所述术中规划,引导安装于手术机器人机械臂操作端的截骨引导器位于规划中的预定位置,所述截骨引导器用于对截骨锯进行定位。
  11. 根据权利要求10所述的辅助***,其中,所述术前规划***和术中规划***设置于上位控制器中,所述执行***设置于手术机器人中,所述上位控制器将所述术中规划发送给所述手术机器人,使得手术机器人能够根据规划执行相应操作。
  12. 根据权利要求11所述的辅助***,其中,所述术中规划***包括定位***,所述定位***包括股骨示踪器、胫骨示踪器和导航相机,所述股骨示踪器和胫骨示踪器分别设置在患者膝关节的股骨以及胫骨处,所述导航相机与所述胫骨示踪器和胫骨示踪器配合,采集并记录下肢连续屈伸过程中膝关节的运动轨迹信息;
    所述上位控制器与所述股骨示踪器、胫骨示踪器、导航相机通信连接,并且所述上位控制器配置为:根据所述运动轨迹信息,计算下肢连续屈伸角度下的间距和力线角度,从而获取所述连续屈伸角度下的膝关节动态间距力线数据。
  13. 根据权利要求12所述的辅助***,其中,所述定位***还包括扫描探针,所述扫描探针的一端具有扫描针尖,对患者膝关节进行扫描,另一端设置有多个示踪元件,所述多个示踪元件能够被所述导航相机识别,获得所述扫描针尖的运动轨迹;
    所述上位控制器与所述扫描探针、导航相机通信连接,并且所述上位控制器配置为:根据所述扫描针尖的运动轨迹,得到膝关节表面轮廓数据,并将所述术前规划中的膝关节图像与术中得到的患者膝关节表面轮廓进行图像配准。
  14. 根据权利要求13所述的辅助***,其中,所述股骨示踪器与所述导航相机配合,采集并记录膝关节的位置信息;
    所述上位控制器配置为:根据所述膝关节的位置数据制定所述术中规划。
  15. 根据权利要求14所述的辅助***,其中,所述定位***还包括截骨引导器示踪器,所述截骨引导器示踪器安装在机械臂的操作端,所述截骨引导器可拆卸地安装在所述截骨引导器示踪器上,所述导航相机与所述截骨引导器示踪器配合,采集并记录截骨引导器的位置信息;
    所述上位控制器与所述截骨引导器示踪器、导航相机通信连接,并且所述上位控制器配置为:根据所述截骨引导器的位置数据制定所述术中规划。
  16. 根据权利要求14所述的辅助***,其中,所述上位控制器包括人机交互装置, 用于显示所述动态间距力线数据图,并响应用户操作显示假体规划的调整。
  17. 根据权利要求10所述的辅助***,其中,所述截骨引导器包括第一通槽和与所述第一通槽交叉的第二通槽,所述通槽用于容纳所述截骨锯。
  18. 根据权利要求16所述的辅助***,其中,所述上位控制器配置为:
    在置换操作各阶段响应用户利用所述人机交互装置的操作分别从多个截骨平面中选定一个截骨平面,所述多个截骨平面包括第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面;
    将包含选定截骨平面信息的术中规划发送给所述手术机器人;
    所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的通槽与选定的截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
  19. 根据权利要求18所述的辅助***,其中所述上位控制器还配置为:
    更新假体规划数据得到新的术中规划;
    响应用户利用所述人机交互装置的操作从多个截骨平面中选定另一个截骨平面;
    将包含选定的另一截骨平面信息的术中规划发送给所述手术机器人;
    所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的通槽与选定的所述另一个截骨平面对准,并使得所述截骨引导器定位于相应规划位置。
  20. 根据权利要求18所述的辅助***,其中,所述第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面及第六截骨平面分别为胫骨远端截骨平面、股骨前髁斜截骨平面、股骨后髁斜截骨平面、股骨前髁截骨平面、股骨后髁截骨平面中的一个。
  21. 根据权利要求10所述的辅助***,其中所述截骨锯上安装有示踪器。
  22. 根据权利要求10所述的辅助***,其中所述截骨锯的自由端安装有应变片。
  23. 根据权利要求15所述的辅助***,其中所述截骨引导器示踪器为环形示踪装置。
  24. 根据权利要求15所述的辅助***,还包括膝关节固定装置,设置于手术台,用于固定患者的膝关节。
  25. 根据权利要求16所述的机器人辅助***,其中所述人机交互装置包括显示屏,显示屏具有显示膝关节三维图像的第一窗口和显示膝关节动态间隙力线数据的第二窗口,所述第一窗口与所述第二窗口相关联,通过第一窗口对假***置信息进行调整时,第二窗口显示该位置下的膝关节动态间隙力线图。
  26. 根据权利要求25所述的机器人辅助***,其中所述假***置信息包括:内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离中的至少一种。
  27. 根据权利要求25所述的辅助***,其中,在第二窗口选择屈伸角度,显示当前角度下的膝关节动态间隙力线图,第一窗口则显示对应屈伸角度的膝关节和假体三维 图像。
  28. 一种全膝关节置换手术机器人辅助***,包括:上位控制器、手术机器人、股骨示踪器、胫骨示踪器、截骨引导器示踪器、扫描探针、导航相机,
    所述上位控制器提供术前规划和术中规划,并将所述术中规划发送到所述手术机器人,
    所述股骨示踪器和所述胫骨示踪器分别设置在患者膝关节的股骨以及胫骨处,所述导航相机与所述胫骨示踪器和胫骨示踪器配合,在术中采集下肢连续屈伸过程中膝关节的运动轨迹信息;
    所述导航相机与所述扫描探针配合,采集所述患者膝关节的表面轮廓数据;
    所述导航相机与所述股骨示踪器配合,采集所述患者膝关节的位置信息;
    所述截骨引导示踪器一端连接有用于安装截骨工具的截骨引导器,另一端连接在所述手术机器人的机械臂的操作端,所述导航相机与所述截骨引导器示踪器配合,采集所述截骨引导器的位置信息;
    所述上位控制器与所述机器人、股骨示踪器、胫骨示踪器、截骨引导器示踪器、导航相机通信连接,并且配置为:根据采集的膝关节位置信息、截骨引导器的位置信息、膝关节表面轮廓数据、连续屈身角度下的运动轨迹信息生成所述术中规划,
    所述机器人接收所述术中规划,并根据所述术中规划控制所述机器人的机械臂,使得所述截骨引导器位于规划中的预定位置。
  29. 根据权利要求28所述的辅助***,其中,所述辅助***包括与所述上位控制器通信连接的人机交互装置,所述人机交互装置用于显示所述动态间距力线数据图,并响应用户操作显示假体规划的调整。
  30. 根据权利要求28所述的机器人辅助***,其中,所述截骨引导器包括多个通槽,每个通槽与相邻通槽之间保持预定角度,所述通槽用于容纳所述截骨工具。
  31. 根据权利要求29所述的辅助***,其中,所述上位控制器配置为:
    在置换操作各阶段,响应用户利用所述人机交互装置的操作,分别从根据术中规划确定的多个截骨平面中选定一个截骨平面,所述多个截骨平面包括第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面、第六截骨平面;
    将包含选定截骨平面信息的术中规划发送给所述手术机器人;
    所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的至少一个通槽与选定的截骨平面对准,并使得所述截骨引导器位于相应规划位置。
  32. 根据权利要求30所述的机器人辅助***,其中,所述截骨引导器包括第一通槽和与所述第一通槽交叉的第二通槽。
  33. 根据权利要求31所述的辅助***,其中所述上位控制器还配置为:
    更新假体规划数据得到新的术中规划;
    响应用户利用所述人机交互装置的操作从多个截骨平面中选定另一个截骨平面;
    将包含选定的另一截骨平面信息的术中规划发送给所述手术机器人;
    所述手术机器人根据所述术中规划,控制所述机械臂运动,使得所述截骨引导器的通槽与选定的所述另一个截骨平面对准并使得所述截骨引导器定位于相应规划位置。
  34. 根据权利要求31所述的辅助***,其中,所述第一截骨平面、第二截骨平面、第三截骨平面、第四截骨平面、第五截骨平面、第六截骨平面分别为胫骨远端截骨平面、股骨远端截骨平面、股骨前髁斜截骨平面、股骨后髁斜截骨平面、股骨前髁截骨平面、股骨后髁截骨平面中的一个。
  35. 根据权利要求28所述的辅助***,其中所述截骨引导器示踪器为环形示踪装置。
  36. 根据权利要求28所述的辅助***,还包括膝关节固定装置,设置于手术台,用于固定患者的膝关节。
  37. 根据权利要求29所述的机器人辅助***,其中所述人机交互装置包括显示屏,显示屏具有显示膝关节三维图像的第一窗口和显示膝关节动态间隙力线数据的第二窗口,所述第一窗口与所述第二窗口相关联,通过第一窗口对假***置信息进行调整时,第二窗口显示该位置下的膝关节动态间隙力线图。
  38. 根据权利要求37所述的机器人辅助***,其中所述假***置信息包括:内外翻角度、内外旋角度、前后倾角度、竖向平移距离、横向平移距离中的至少一种。
  39. 根据权利要求37所述的辅助***,其中,在第二窗口选择屈伸角度,显示当前角度下的膝关节动态间隙力线图,第一窗口则显示对应屈伸角度的膝关节和假体三维图像。
  40. 一种利用手术机器人辅助***进行全膝关节置换的控制装置,包括:
    术前规划获取模块,获得术前规划;
    术中规划获取模块,获取术中规划,包括:
    图像配准模块,将术前规划数据中的膝关节图像与术中膝关节表面轮廓进行图像配准;
    可视化显示模块,显示配准后的膝关节图像和所述动态间隙力线数据图;
    调整模块,根据所述动态间距力线数据的可视化显示,调整假体规划;
    操作控制模块,根据调整后的假体规划控制手术机器人的操作,引导截骨引导器位于规划中的预定位置,所述截骨引导器安装于所述手术机器人的机械臂的操作端,用于对截骨锯进行定位。
  41. 一种电子设备,其特征在于,包括:
    一个或多个处理器;
    存储装置,用于存储一个或多个程序;
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-9中所述的方法。
  42. 一种计算机可读介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1-9中所述的方法。
PCT/CN2020/129132 2020-03-13 2020-11-16 全膝关节置换手术机器人辅助***、控制方法及电子设备 WO2021179662A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20924230.4A EP3954316A4 (en) 2020-03-13 2020-11-16 ROBOT-ASSISTED SYSTEM FOR TOTAL KNEE ARHROPLASTY, CONTROL PROCEDURE AND ELECTRONIC DEVICE
US17/287,439 US20220175453A1 (en) 2020-03-13 2020-11-16 Total knee arthroplasty robot auxiliary system, control method and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010177303.6A CN111345895B (zh) 2020-03-13 2020-03-13 全膝关节置换手术机器人辅助***、控制方法及电子设备
CN202010177303.6 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021179662A1 true WO2021179662A1 (zh) 2021-09-16

Family

ID=71188794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129132 WO2021179662A1 (zh) 2020-03-13 2020-11-16 全膝关节置换手术机器人辅助***、控制方法及电子设备

Country Status (4)

Country Link
US (1) US20220175453A1 (zh)
EP (1) EP3954316A4 (zh)
CN (1) CN111345895B (zh)
WO (1) WO2021179662A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115256419A (zh) * 2022-08-12 2022-11-01 中科院南昌高新技术产业协同创新研究院 一种临床手术模拟用机械臂及其模拟方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109688963B (zh) 2016-07-15 2021-08-06 马科外科公司 用于机器人辅助修正程序的***
EP3666228A1 (en) * 2018-12-14 2020-06-17 Howmedica Osteonics Corp. Augmented, just-in-time, patient-specific implant manufacture
CN111249002B (zh) * 2020-01-21 2021-10-08 北京天智航医疗科技股份有限公司 全膝关节置换的术中规划调整方法、装置及设备
CN111345895B (zh) * 2020-03-13 2021-08-20 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助***、控制方法及电子设备
CN111772727B (zh) * 2020-07-01 2024-07-12 北京和华瑞博医疗科技有限公司 一种截骨锯片防抖动的控制方法和***
CN112148006A (zh) * 2020-09-17 2020-12-29 常州锦瑟医疗信息科技有限公司 路径规划辅助调整设备及控制方法
CN112402076B (zh) * 2020-11-19 2022-03-08 北京积水潭医院 一种定位膝关节单髁置换术中假体旋转角度安全区的方法
CN112641511B (zh) * 2020-12-18 2021-09-10 北京长木谷医疗科技有限公司 关节置换手术导航***及方法
CN112641510B (zh) * 2020-12-18 2021-08-17 北京长木谷医疗科技有限公司 关节置换手术机器人导航定位***及方法
CN112914726B (zh) * 2021-01-22 2021-11-26 元化智能科技(深圳)有限公司 一种用于辅助骨外科手术的机器人***
CN112971988B (zh) * 2021-01-25 2022-04-01 杭州柳叶刀机器人有限公司 膝关节置换手术机器人
CN113081272B (zh) * 2021-03-22 2023-02-03 珞石(北京)科技有限公司 虚拟墙引导的膝关节置换手术辅助定位***
CN113662665A (zh) * 2021-07-30 2021-11-19 北京天智航医疗科技股份有限公司 膝关节置换手术机器人***的精度检测方法和装置
CN113440155A (zh) * 2021-08-04 2021-09-28 杭州键嘉机器人有限公司 一种医疗导航***中测量膝关节间隙曲线的方法
CN113633376B (zh) * 2021-08-06 2024-03-15 吉林大学 一种全髋关节裸眼三维虚拟置换方法
CN113842213B (zh) * 2021-09-03 2022-10-11 北京长木谷医疗科技有限公司 手术机器人导航定位方法及***
CN113616338B (zh) * 2021-09-15 2023-10-20 上海微创医疗机器人(集团)股份有限公司 计算机可读存储介质、对准方法及***、手术机器人***
CN113850810B (zh) * 2021-12-01 2022-03-04 杭州柳叶刀机器人有限公司 用于转正股骨的方法及手术***、存储介质以及电子设备
CN116262082A (zh) * 2021-12-14 2023-06-16 北京天智航医疗科技股份有限公司 用于膝关节置换手术的手术上位机及膝关节置换手术***
CN114404047B (zh) * 2021-12-24 2024-06-14 苏州微创畅行机器人有限公司 定位方法、***、装置、计算机设备和存储介质
CN114343844A (zh) * 2021-12-28 2022-04-15 杭州键嘉机器人有限公司 一种关节手术导航***中恢复注册数据的方法和装置
CN116725680A (zh) * 2022-09-02 2023-09-12 北京和华瑞博医疗科技有限公司 末端执行器及手术***
WO2024046425A1 (zh) * 2022-09-02 2024-03-07 北京和华瑞博医疗科技有限公司 快插式传动件、末端执行器及手术***
CN115624366A (zh) * 2022-09-21 2023-01-20 北京长木谷医疗科技有限公司 用于膝关节置换术的定位工具的检测***、方法及装置
CN116919590B (zh) * 2023-07-18 2024-05-31 赛博派(无锡)科技有限责任公司 用于拇外翻微创手术的手术机器人控制方法、设备及介质
CN117204910B (zh) * 2023-09-26 2024-06-25 北京长木谷医疗科技股份有限公司 基于深度学习的膝关节位置实时追踪的自动截骨方法
CN117084787B (zh) * 2023-10-18 2024-01-05 杭州键嘉医疗科技股份有限公司 一种胫骨假体安装的内外旋角的检验方法及相关设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107106239A (zh) * 2014-09-24 2017-08-29 德普伊爱尔兰无限公司 外科规划和方法
CN109496143A (zh) * 2016-05-27 2019-03-19 马科外科公司 术前规划和对手术***的相关术中配准
CN110114019A (zh) * 2016-12-08 2019-08-09 安托踏实公司 用于根据至少一个目标平面切割解剖结构的外科***
CN110123456A (zh) * 2019-05-15 2019-08-16 北京天智航医疗科技股份有限公司 示踪设备和定位***
CN110711029A (zh) * 2019-09-30 2020-01-21 苏州微创畅行机器人有限公司 截骨导向工具的位置校正方法及骨科手术***
US20200046518A1 (en) * 2006-02-27 2020-02-13 Biomet Manufacturing, Llc Patient-specific pre-operative planning
CN111249002A (zh) * 2020-01-21 2020-06-09 北京天智航医疗科技股份有限公司 全膝关节置换的术中规划调整方法、装置及设备
CN111345896A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 截骨执行***及定位、控制和模拟执行方法与电子设备
CN111345895A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助***、控制方法及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708741B1 (en) * 2001-08-28 2010-05-04 Marctec, Llc Method of preparing bones for knee replacement surgery
EP2242453B1 (en) * 2008-02-20 2018-11-28 Mako Surgical Corp. Implant planning using corrected captured joint motion information
US10136952B2 (en) * 2016-06-16 2018-11-27 Zimmer, Inc. Soft tissue balancing in articular surgery
CN113015480A (zh) * 2018-08-17 2021-06-22 史密夫和内修有限公司 患者特定的手术方法和***
CN113208729B (zh) * 2019-11-22 2022-08-02 苏州微创畅行机器人有限公司 截骨导向工具的校验方法、校验***及检测靶标

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200046518A1 (en) * 2006-02-27 2020-02-13 Biomet Manufacturing, Llc Patient-specific pre-operative planning
CN107106239A (zh) * 2014-09-24 2017-08-29 德普伊爱尔兰无限公司 外科规划和方法
CN109496143A (zh) * 2016-05-27 2019-03-19 马科外科公司 术前规划和对手术***的相关术中配准
CN110114019A (zh) * 2016-12-08 2019-08-09 安托踏实公司 用于根据至少一个目标平面切割解剖结构的外科***
CN110123456A (zh) * 2019-05-15 2019-08-16 北京天智航医疗科技股份有限公司 示踪设备和定位***
CN110711029A (zh) * 2019-09-30 2020-01-21 苏州微创畅行机器人有限公司 截骨导向工具的位置校正方法及骨科手术***
CN111249002A (zh) * 2020-01-21 2020-06-09 北京天智航医疗科技股份有限公司 全膝关节置换的术中规划调整方法、装置及设备
CN111345896A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 截骨执行***及定位、控制和模拟执行方法与电子设备
CN111345895A (zh) * 2020-03-13 2020-06-30 北京天智航医疗科技股份有限公司 全膝关节置换手术机器人辅助***、控制方法及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3954316A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115256419A (zh) * 2022-08-12 2022-11-01 中科院南昌高新技术产业协同创新研究院 一种临床手术模拟用机械臂及其模拟方法
CN115256419B (zh) * 2022-08-12 2023-08-04 中科院南昌高新技术产业协同创新研究院 一种临床手术模拟用机械臂及其模拟方法

Also Published As

Publication number Publication date
US20220175453A1 (en) 2022-06-09
EP3954316A1 (en) 2022-02-16
CN111345895A (zh) 2020-06-30
CN111345895B (zh) 2021-08-20
EP3954316A4 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
WO2021179662A1 (zh) 全膝关节置换手术机器人辅助***、控制方法及电子设备
US11844577B2 (en) System and method for verifying calibration of a surgical system
CN113208689B (zh) 截骨导向工具
US20240065770A1 (en) Navigation system and method for joint replacement surgery
WO2022126827A1 (zh) 关于置换手术机器人导航定位***及方法
US10363052B2 (en) System for performing an arthroplasty procedure on a patient bone
AU2005253741B2 (en) An imageless robotized device and method for surgical tool guidance
US6711432B1 (en) Computer-aided orthopedic surgery
JP7253377B2 (ja) 自動化された関節形成プランニング
CN111345896B (zh) 截骨执行***及定位、控制和模拟执行方法与电子设备
WO2021147489A1 (zh) 全膝关节置换的术中规划调整方法、装置及设备
JP2005537818A (ja) 整形外科用固定方法と装置
US10881462B2 (en) Method of determining a contour of an anatomical structure and selecting an orthopaedic implant to replicate the anatomical structure
WO2023029922A1 (zh) 机器人运动区域的限定方法及***
JP2023520934A (ja) デジタイザの較正チェック
US20240024036A1 (en) Method and apparatus for resecting bone using a planer and optionally using a robot to assist with placement and/or installation of guide pins
US20240173096A1 (en) System and method for detecting a potential collision between a bone and an end-effector
EP4197474A1 (en) Method and system for planning an osteotomy procedure
WO2024140645A1 (zh) 辅助安装假体装置和手术导航***
Wang et al. A Series-Parallel Hybrid Pelvic Fracture Reduction Surgical Robotic System Based on Novel 6-DOF Force Amplification Mechanism
Kong et al. Navigation method for mandible reconstruction surgery robot
Tia et al. Building and Analyzing of an Active Robot-assisted Surgical Navigation for Cervical Vertebra Bone Grinding in Spine Surgery
Smith et al. COMPUTER-ASSISTED OBLIQUE OSTEOTOMY PLANNING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020924230

Country of ref document: EP

Effective date: 20211112

NENP Non-entry into the national phase

Ref country code: DE