WO2021179545A1 - 输送管和泵送设备 - Google Patents

输送管和泵送设备 Download PDF

Info

Publication number
WO2021179545A1
WO2021179545A1 PCT/CN2020/112014 CN2020112014W WO2021179545A1 WO 2021179545 A1 WO2021179545 A1 WO 2021179545A1 CN 2020112014 W CN2020112014 W CN 2020112014W WO 2021179545 A1 WO2021179545 A1 WO 2021179545A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
boss
wall surface
bosses
delivery pipe
Prior art date
Application number
PCT/CN2020/112014
Other languages
English (en)
French (fr)
Inventor
童政钢
吴益辉
李永久
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2021179545A1 publication Critical patent/WO2021179545A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/06Protection of pipes or objects of similar shape against external or internal damage or wear against wear

Definitions

  • This application relates to the technical field of pipelines, and specifically to a conveying pipe and a pumping device.
  • conveying pipes are pipe fittings used by pumping equipment to convey fluid materials, and are often used to convey viscous materials containing particles such as concrete.
  • the particles in the viscous materials are likely to friction or collide with the inner wall of the pipeline, especially at the bend pipe, the conveying pipe is subject to the greater impact of the concrete, which will accelerate the wear at the bend pipe, thereby shortening the transportation.
  • the service life of the tube compared with the inside of the elbow, the impact on the outside of the elbow is greater, and the concrete mortar is likely to cause wear and even breakage of the outer part of the elbow during the pumping process, which affects the overall reliability of the conveying pipe.
  • This application aims to improve at least one of the technical problems existing in the prior art or related technologies.
  • an object of the present application is to provide a conveying pipe.
  • Another object of the present application is to provide a pumping device.
  • the embodiment of the first aspect of the present application provides a conveying pipe, including: a pipe body; , And a plurality of bosses are arranged at intervals along the circumference of the pipe body; the diversion groove is formed between two adjacent bosses.
  • the conveying pipe provided by this application includes a pipe body, a plurality of bosses and a diversion groove.
  • the bosses extend along the axial direction of the tube body, and the plurality of bosses are arranged at intervals along the circumferential direction of the tube body, so that two adjacent bosses
  • a diversion groove is formed between, so that at least part of the inner wall of the pipe body forms a concave-convex structure, and the fluid flowing through the pipe body is separated by the boss, and the fluid is guided through the diversion groove to guide the fluid to flow in the axial direction of the pipe body.
  • the concrete mortar is guided by the boss to withstand part of the impact and friction, which can alleviate the impact and wear of the concrete mortar on the pipe body and help improve the strength of the pipe body , Reduce the failure rate and prolong the service life.
  • the cross-sectional shape of the boss may be a round-bottomed trapezoid, and the size of the end of the round-bottomed trapezoid close to the inner wall surface of the pipe body is larger than the size of the end far away from the inner wall surface of the pipe body.
  • the cross section of the guide groove between the guide grooves forms a round-bottomed trapezoid shape, that is, the distance between the two side walls of the guide groove gradually increases inward along the radial direction of the pipe body to increase the volume of fluid that the guide groove can contain.
  • cross-sectional shape of the boss is not limited to the round-bottomed trapezoid in this solution, and may also be a round-bottomed rectangle or other shapes.
  • the boss can be provided at a local position on the inner wall surface of the tube body, or can be provided all along the circumference of the tube body.
  • the delivery pipe in the above-mentioned embodiment provided by this application may also have the following additional technical features:
  • the conveying pipe further includes: a convex structure arranged on the bottom wall surface of the diversion groove, and the convex structure includes a plurality of point-shaped protrusions.
  • the bottom wall surface of the diversion groove is provided with a convex structure including a plurality of point-like protrusions, so that the bottom wall surface of the diversion groove forms a concave and convex structure, so that when it comes into contact with particles in the fluid, Especially when it comes into contact with granular objects such as sand and gravel in concrete mortar, the sliding friction between the particles and the pipe body can be converted into rolling friction, which can greatly reduce the friction resistance, and thereby reduce the wear of the particles on the inner wall surface of the pipe body. It is beneficial to improve the reliability and service life of the conveying pipe.
  • the number and size of the dot-shaped protrusions can be determined according to the size of the tube body, and a plurality of dot-shaped protrusions can be arranged continuously or at intervals.
  • convex structure may also have other shapes, such as rectangular, trapezoidal, or elliptical convex structures.
  • the pipe body has a bent pipe structure.
  • the pipe body is defined as a elbow structure for the position where the fluid flow direction changes, the fluid is guided by the boss in the pipe body, and the particles in the fluid are rolled by the convex structure, so as to When the fluid passes through the elbow structure, the impact and friction of the particles of the fluid on the elbow structure are alleviated, and the elbow is protected.
  • the boss and the guide groove are provided on the inner wall surface of the outer tube wall of the tube body; or the boss and the guide groove are provided on the inner wall surface of the inner tube wall of the tube body and the outer tube wall of the tube body. ⁇ The inner wall surface.
  • the pipe body has a bent pipe structure, and the bosses and diversion grooves are provided on the inner wall surface of the outer pipe wall of the pipe body to utilize the bosses and diversion grooves in the direction in which the fluid enters the pipe body. Separate and guide the fluid, and combine the convex structure on the bottom wall of the diversion groove to withstand the impact and friction from the fluid, which can improve the wear resistance and strength of the pipe body while reducing part of the material and processing costs .
  • the bosses are arranged at equal intervals on the inner wall surface of the outer tube wall of the tube body, the outer tube wall of the tube body receives more uniform force.
  • the bosses and diversion grooves protect the inner wall surface of the pipe body as a whole and improve the pipe
  • the overall wear resistance of the body extends the service life of the entire pipe body.
  • the weight difference between the inner side and the outer side of the elbow structure can be reduced, which is beneficial to enhance the stability of the elbow structure.
  • the inner wall surface of the inner tube wall of the tube body is provided with a convex structure.
  • the pipe body has a bent pipe structure. While the bosses and diversion grooves are provided on the inner wall surface of the outer pipe wall of the pipe body, protrusions are provided on the inner wall surface of the inner pipe wall of the pipe body.
  • the structure can further strengthen the abrasion resistance of the inner wall surface of the pipe body, thereby improving the abrasion resistance of the entire pipe body. It can be understood that, relative to the outer tube wall of the tube body, the direct impact force on the inner tube wall is smaller, but the inner tube wall will still be affected by the sliding friction of the particulate matter. The sliding friction force received by the inner wall surface of the pipe wall is converted into rolling friction force, which can effectively reduce the abrasion of the inner pipe wall.
  • both the inner wall surface of the inner tube wall and the inner surface of the outer tube wall are provided with bosses and diversion grooves, and the inner wall surface of the inner tube wall is provided with a convex structure, that is, on the bottom wall surface of the diversion groove
  • a protruding structure to protect the inner wall surface of the tube body as a whole, so that the friction between the particles in the fluid and the inner wall surface of the outer tube wall and the friction with the inner wall surface of the inner tube wall are all caused by sliding friction Change to rolling friction to further improve the wear resistance of the pipe body and extend the service life of the pipe body.
  • the bosses are provided through the pipe body along the axial direction of the pipe body, and the cross section of the bosses is a trapezoidal structure, wherein the convex structures are formed by surfacing welding and are arranged in a matrix.
  • the boss and the diversion groove can protect all the pipe sections in the axial direction.
  • the pipe can be made
  • the force on the inner wall surface of the tube is relatively uniform, which prevents large differences in the degree of wear at different positions of the tube body, which affects the overall service life of the tube body.
  • it can make the structure of the inner wall surface of the entire tube body consistent in the axial direction.
  • the opening size of the diversion groove gradually increases from the bottom surface of the diversion groove to the top, and the cross section is a structure with a large upper and a smaller section, so as to make full use of the space of the diversion groove to facilitate more guidance.
  • Much fluid a plurality of point-shaped protrusions provided with a protrusion structure are formed by surfacing welding to enhance the connection strength between the protrusion structure and the inner wall surface of the tube, which is beneficial to reduce loss.
  • the multiple dot-shaped protrusions of the protruding structure are arranged in a matrix, so that the particles in the fluid are more in contact with the dot-shaped protrusions during the flow process, and the dot-shaped protrusions cause the particles to roll, and The sliding friction between the particles and the inner wall of the tube is transformed into rolling friction, thereby reducing wear.
  • the boss and the pipe body are an integral structure; or the boss and the pipe body are a separate structure, and the boss is fixedly connected to the inner wall surface of the pipe body.
  • the boss and the tube body can be an integral structure or a split structure.
  • the processing steps can be reduced, and the connection strength between the boss and the pipe body is high, and it is not easy to fall off, which is conducive to force transmission.
  • the boss can be integrally formed with the tube body.
  • the processing difficulty of the pipe body and the boss can be reduced, and the processed boss can be fixedly connected to the inner wall surface of the pipe.
  • the tube body and the boss are matched with each other, which has strong applicability and can be disassembled and replaced at the same time.
  • the fixed connection method may be welding, clamping, bonding or other fixed connection methods.
  • the top wall surface of the boss is provided with a convex structure.
  • a convex structure is provided on the top wall surface of the boss, that is, a plurality of point-shaped protrusions are provided on the boss, to further divert the fluid in contact with the top wall surface of the boss , So that the sliding friction between the fluid and the top wall surface of the boss is converted into rolling friction, thereby further reducing the friction force formed by the fluid on the inner wall surface of the tube body.
  • a convex structure is provided on the boss on the inner wall surface of the outer pipe wall of the pipe body, which can further reduce the impact force on the outer pipe wall of the bent pipe.
  • the embodiment of the second aspect of the present application provides a pumping device for pumping viscous materials containing particulate matter, including: a pumping system; a delivery pipe assembly, including a plurality of any of the embodiments of the first aspect described above
  • a pumping system including: a pumping system; a delivery pipe assembly, including a plurality of any of the embodiments of the first aspect described above
  • a plurality of conveying pipes are connected end to end in sequence, and one end of the conveying pipe assembly is connected with the pumping system.
  • the pumping device in the embodiment according to the second aspect of the present application includes a pumping system and a delivery pipe assembly.
  • the conveying pipe assembly includes a plurality of conveying pipes in any one of the embodiments of the first aspect, which are connected end to end by arranging a plurality of conveying pipes, and one end of the conveying pipe assembly is connected with the pumping system to pass through the conveying pipe assembly.
  • Transport the viscous materials including particulates in the pumping system outwards.
  • the viscous material can be divided and guided by the bosses and diversion grooves in the conveying pipe, which is beneficial to reduce the abrasion of the conveying pipe by the particles in the viscous material.
  • this solution should have all the beneficial effects of the delivery pipe in any embodiment of the first aspect described above, which will not be repeated here.
  • the pumping equipment is a concrete pump truck, and the concrete pump truck further includes a vehicle body; the pumping system is connected to the vehicle body.
  • the concrete pump truck also includes a car body, which is connected to the car body by setting a pumping system to carry the pumping system through the driving of the car body to realize the movement of pumping equipment between different stations , And when driving to the target location, the pumping system and the delivery pipe assembly on the vehicle body are used to pump the concrete to pump the concrete in the pumping system to the target location through the delivery pipe assembly.
  • the bosses and diversion grooves in the conveying pipe can divide and guide the concrete material to reduce the wear of the concrete material on the conveying pipe.
  • the inner wall of the outer pipe wall of the elbow needs to bear the concrete
  • the large impact force of the material, the boss and the diversion groove can effectively alleviate the impact force of the concrete material, reduce the wear of the elbow, and help extend the service life of the entire conveying pipe.
  • Fig. 1 shows a schematic structural diagram of a conveying pipe according to an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of a delivery pipe according to an embodiment of the present application
  • Figure 3 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 4 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 5 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 6 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 7 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application.
  • Figure 8 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 9 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application.
  • Figure 10 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 11 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 12 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application
  • Figure 13 shows a cross-sectional view of a delivery pipe according to an embodiment of the present application.
  • a delivery pipe is provided, as shown in FIG.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines.
  • a plurality of bosses 2 are provided on the inner wall of the pipe body 1. Specifically, the number of bosses 2 is three, and each boss 2 extends along the axial direction of the pipe body 1, and is in the circumferential direction of the pipe body 1. Above, the three bosses 2 are arranged at intervals.
  • a diversion groove 3 is formed between two adjacent bosses 2, corresponding to the boss 2, and the diversion groove 3 also extends along the axial direction of the tube body 1.
  • the fluid can be divided and guided when the fluid flows through the conveying pipe. Especially when the fluid is concrete mortar, it can withstand the impact of the particles in the concrete mortar. Impact force and friction force, thereby improving the wear resistance and strength of the conveying pipe, and prolonging the service life of the conveying pipe.
  • the conveying pipe can be a curved pipe structure as shown in Fig. 1 or a straight pipe structure.
  • a delivery pipe is provided, as shown in FIG.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines.
  • a plurality of bosses 2 are provided on the inner wall surface of the tube body 1. Specifically, the number of bosses 2 is three, the cross-sectional shape of bosses 2 is round-bottomed trapezoid, and the distance between the two side walls of bosses 2 It gradually decreases inward along the radial direction of the tube body 1.
  • Each boss 2 extends along the axial direction of the pipe body 1 and penetrates the entire pipe body 1, and in the circumferential direction of the pipe body 1, three bosses 2 are arranged at intervals.
  • a diversion groove 3 is formed between two adjacent bosses 2 corresponding to the boss 2.
  • the diversion groove 3 also extends along the axial direction of the pipe body 1, and the bottom wall of the diversion groove 3 is provided with a convex ⁇ 4.
  • the convex structure 4 includes a plurality of dot-shaped protrusions, so that the bottom wall of the diversion groove 3 forms a concave-convex structure.
  • the number and size of the dot-shaped protrusions can be determined according to the specific size of the tube body 1.
  • the dot-shaped protrusions can be formed by surfacing welding on the inner wall surface of the tube body 1, and a plurality of dot-shaped protrusions are arranged in a matrix.
  • the flow direction of the fluid is guided by the boss 2 and the diversion groove 3, and bears the impact of the particles in the concrete mortar, and at the same time, passes through the convex structure 4
  • the sliding friction force of the particles on the inner wall surface of the pipe body 1 is converted into rolling friction force to alleviate the abrasion of the particles on the inner wall surface of the pipe body 1, thereby improving the wear resistance and strength of the conveying pipe and prolonging the service life of the conveying pipe.
  • the conveying pipe can be a curved pipe structure as shown in Fig. 2 or a straight pipe structure.
  • a delivery pipe is provided. As shown in FIG.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines.
  • a plurality of bosses 2 are provided on the inner wall surface of the outer tube wall 12 of the tube body 1, and each boss 2 extends along the axial direction of the tube body 1 and penetrates the entire tube body 1.
  • the number of the bosses 2 is three, and the bosses 2 and the pipe body 1 are an integral structure.
  • the cross-sectional shape of the boss 2 is a round-bottomed trapezoid, and the distance between the two side walls of the boss 2 gradually decreases inward along the radial direction of the tube body 1.
  • a diversion groove 3 is formed between two adjacent bosses 2 corresponding to the boss 2.
  • the diversion groove 3 also extends along the axial direction of the pipe body 1, and the bottom wall of the diversion groove 3 is provided with a convex ⁇ 4.
  • the convex structure 4 includes a plurality of dot-shaped protrusions, so that the bottom wall of the diversion groove 3 forms a concave-convex structure. The number and size of the dot-shaped protrusions can be determined according to the specific size of the tube body 1.
  • the dot-shaped protrusions can be formed by surfacing welding on the inner wall surface of the tube body 1, and a plurality of dot-shaped protrusions are arranged in a matrix.
  • the flow direction of the fluid is guided by the boss 2 and the diversion groove 3, and bears a certain impact force.
  • the fluid is made by the convex and concave structure.
  • the sliding friction force on the inner wall surface of the pipe body 1 is converted into rolling friction force to reduce the wear on the inner wall surface of the pipe body 1, thereby improving the wear resistance and strength of the conveying pipe and prolonging the service life of the conveying pipe.
  • Fig. 5 shows another implementation form of the conveying pipe in this embodiment.
  • the difference from the conveying pipe shown in Fig. 4 is that the boss 2 and the pipe body 1 are separate structures, and the boss 2 is a wear-resistant steel plate. And welded to the inner wall surface of the outer tube wall 12 of the tube body 1.
  • a delivery pipe is provided. As shown in FIG.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines.
  • a plurality of bosses 2 are provided on the inner wall surface of the outer tube wall 12 of the tube body 1, and each boss 2 extends along the axial direction of the tube body 1 and penetrates the entire tube body 1.
  • the number of the bosses 2 is three, and the bosses 2 and the tube body 1 are an integral structure.
  • the cross-sectional shape of the boss 2 is a round-bottomed trapezoid, and the distance between the two side walls of the boss 2 gradually decreases inward along the radial direction of the tube body 1.
  • three bosses 2 are arranged at equal intervals.
  • a diversion groove 3 is formed between two adjacent bosses 2, corresponding to the boss 2, and the diversion groove 3 also extends along the axial direction of the tube body 1.
  • the bottom wall surface of the diversion groove 3 is provided with a convex structure 4, and the convex structure 4 includes a plurality of point-shaped protrusions, so that the bottom wall of the diversion groove 3 forms a concave-convex structure.
  • the inner wall surface of the inner tube wall 11 of the tube body 1 is also provided with a convex structure 4 including a plurality of point-shaped protrusions. The number and size of the dot-shaped protrusions can be determined according to the specific size of the tube body 1.
  • the dot-shaped protrusions can be formed by surfacing welding on the inner wall surface of the tube body 1, and a plurality of dot-shaped protrusions are arranged in a matrix.
  • the flow direction of the concrete mortar is guided by the boss 2 and the diversion groove 3, and bears the impact force of the particles in the concrete mortar, and at the same time, passes through the point-like protrusions
  • the concave-convex structure converts the sliding friction force of the particles on the inner wall surface of the pipe body 1 into rolling friction force, so as to reduce the wear of the particles on the inner wall surface of the pipe body 1, thereby improving the wear resistance and strength of the conveying pipe, and lengthening the conveying pipe Service life.
  • Fig. 7 shows another implementation form of the conveying pipe of this embodiment.
  • the difference from the conveying pipe shown in Fig. 6 is that the boss 2 and the pipe body 1 are separate structures, and the boss 2 is a wear-resistant steel plate. And welded to the inner wall surface of the outer tube wall 12 of the tube body 1.
  • a delivery pipe is provided, as shown in FIG.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines.
  • a plurality of bosses 2 are provided on the inner wall surface of the pipe body 1, and each boss 2 extends along the axial direction of the pipe body 1 and penetrates the entire pipe body 1.
  • the number of the bosses 2 is six, and the bosses 2 and the tube body 1 are an integral structure.
  • the cross-sectional shape of the boss 2 is a round-bottomed trapezoid, and the distance between the two side walls of the boss 2 gradually decreases inward along the radial direction of the tube body 1.
  • three bosses 2 on the same side are arranged at equal intervals.
  • a diversion groove 3 is formed between two adjacent bosses 2, corresponding to the boss 2, and the diversion groove 3 also extends along the axial direction of the pipe body 1.
  • the bottom wall of the diversion groove 3 is provided with a convex structure 4, the convex structure 4 includes a plurality of point-shaped projections, so that the bottom wall of the diversion groove 3 forms a concave-convex structure.
  • the number and size of the point-shaped projections can be adjusted according to the tube body The specific size of 1 is determined.
  • the dot-shaped protrusions can be formed by surfacing welding on the inner wall surface of the tube body 1, and a plurality of dot-shaped protrusions are arranged in a matrix.
  • the concrete mortar When the fluid passes through the conveying pipe, especially when the fluid is concrete mortar, the concrete mortar is divided and guided by the boss 2 and the diversion groove 3, and bears the impact of the particles in the concrete mortar. At the same time, it passes through the point
  • the convex concave-convex structure converts the sliding friction force of the particles on the inner wall surface of the pipe body 1 into rolling friction force to reduce the wear on the inner wall surface of the pipe body 1, thereby improving the wear resistance and strength of the conveying pipe, and lengthening the conveying pipe Service life.
  • Fig. 9 shows another form of the conveying pipe of this embodiment.
  • the difference from the conveying pipe shown in Fig. 8 is that the boss 2 and the pipe body 1 are separate structures, and the boss 2 is a wear-resistant steel plate. Welded on the inner wall surface of the tube body 1.
  • the conveying pipe in this embodiment may be a curved pipe structure or a straight pipe structure.
  • a delivery pipe is provided. As shown in FIG.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines.
  • a plurality of bosses 2 are provided on the inner wall surface of the outer tube wall 12 of the tube body 1, and each boss 2 extends along the axial direction of the tube body 1 and penetrates the entire tube body 1.
  • the number of bosses 2 is three.
  • the bosses 2 and the tube body 1 are of separate structure, and the bosses 2 are wear-resistant steel plates welded to the inner wall surface of the outer tube wall 12 of the tube body 1.
  • the cross-sectional shape of the boss 2 is a round-bottomed trapezoid, and the distance between the two side walls of the boss 2 gradually decreases inward along the radial direction of the tube body 1.
  • a convex structure 4 including a plurality of point-shaped protrusions is provided on the top wall of each boss 2 so that the top wall surface of the boss 2 forms a concave-convex structure.
  • a diversion groove 3 is formed between two adjacent bosses 2, corresponding to the boss 2, and the diversion groove 3 also extends along the axial direction of the tube body 1.
  • the bottom wall surface of the diversion groove 3 is provided with a convex structure 4, and the convex structure 4 includes a plurality of point-shaped protrusions, so that the bottom wall of the diversion groove 3 forms a concave-convex structure.
  • the number and size of the dot-shaped protrusions can be determined according to the specific size of the tube body 1, and the dot-shaped protrusions can be formed by surfacing welding on the inner wall surface of the tube body 1, and a plurality of dot-shaped protrusions are arranged in a matrix.
  • the concrete mortar is guided by the boss 2 and the diversion groove 3, and bears the impact of the particles in the concrete mortar, reducing the external pipe wall of the pipe. Wear of the inner wall surface.
  • the sliding friction force of the particles on the inner wall surface of the pipe body 1 is converted into rolling friction force through the dot-shaped convex concave-convex structure, so as to reduce the wear on the inner wall surface of the pipe body 1, thereby improving the wear resistance and the wear resistance of the conveying pipe.
  • Strength prolong the service life of the conveying pipe.
  • the inner wall surface of the inner tube wall 11 of the tube body 1 is also provided with a convex structure 4, the convex structure 4 includes a plurality of dot-shaped protrusions, and the dot-shaped protrusions can pass through the inner tube
  • the inner wall surface of the wall 11 is formed by surfacing welding and arranged in a matrix to reduce the abrasion of the inner wall surface of the inner tube wall of the tube body.
  • a delivery pipe is provided, as shown in FIG.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines.
  • a plurality of bosses 2 are provided on the inner wall surface of the pipe body 1, and each boss 2 extends along the axial direction of the pipe body 1 and penetrates the entire pipe body 1.
  • the number of the bosses 2 is six, and the bosses 2 and the tube body 1 are an integral structure.
  • the cross-sectional shape of the boss 2 is a round-bottomed trapezoid, and the distance between the two side walls of the boss 2 gradually decreases inward along the radial direction of the tube body 1.
  • three bosses 2 on the same side are arranged at equal intervals.
  • a convex structure including a plurality of point-shaped protrusions is provided on the top wall of each boss 2 so that the top wall surface of the boss 2 forms a concave-convex structure 4.
  • a diversion groove 3 is formed between two adjacent bosses 2, corresponding to the boss 2, and the diversion groove 3 also extends along the axial direction of the pipe body 1.
  • the bottom wall surface of the diversion groove 3 is provided with a convex structure 4, and the convex structure 4 includes a plurality of point-shaped protrusions, so that the bottom wall of the diversion groove 3 forms a concave-convex structure.
  • the number and size of the dot-shaped protrusions can be determined according to the specific size of the tube body 1, and the dot-shaped protrusions can be formed by surfacing welding on the inner wall surface of the tube body 1, and a plurality of dot-shaped protrusions are arranged in a matrix.
  • the concavo-convex structure converts the sliding friction force of the particles on the inner wall surface of the pipe body 1 into rolling friction force to reduce the wear on the inner wall surface of the pipe body 1, thereby improving the wear resistance and strength of the conveying pipe and prolonging the service life of the conveying pipe .
  • the conveying pipe in this embodiment may be a curved pipe structure or a straight pipe structure.
  • a conveying pipe is provided.
  • the conveying pipe has a bent pipe structure and includes a pipe body 1, a plurality of bosses 2 and a diversion groove 3.
  • the ports at both ends of the pipe body 1 can be communicated with other pipelines, and the outer pipe wall 12 and the inner pipe wall 11 of the pipe body 1 smoothly transition.
  • a plurality of bosses 2 are provided on the inner wall surface of the pipe body 1.
  • the cross-sectional shape of the bosses 2 is a round-bottomed trapezoid, and the distance between the two side walls of the bosses 2 gradually decreases inward along the radial direction of the pipe body 1. small.
  • Each boss 2 extends along the axial direction of the pipe body 1 and penetrates the entire pipe body 1, and in the circumferential direction of the pipe body 1, three bosses 2 are arranged at intervals.
  • a diversion groove 3 is formed between two adjacent bosses 2.
  • the diversion groove 3 also extends along the axial direction of the pipe body 1, and the bottom wall of the diversion groove 3 is provided with a convex ⁇ 4.
  • the convex structure 4 includes a plurality of dot-shaped protrusions, so that the bottom wall of the diversion groove 3 forms a concave-convex structure. Arranged in a matrix.
  • the outer diameter of the tube body 1 is 131mm, and the inner diameter is 125mm; the arc length of the bottom wall of the diversion groove 3 in the circumferential direction is 26mm; the width of the top wall of the boss 2 is 25mm, and the top wall of the boss 2
  • the distance from the outer wall surface of the tube body 1 is 12 mm; the radius of the dot-shaped protrusion is 3 mm, and the distance between two adjacent dot-shaped protrusions is 2 mm.
  • the concavo-convex structure converts the sliding friction force of the particles on the inner wall surface of the pipe body 1 into rolling friction force to reduce the wear on the inner wall surface of the pipe body 1, thereby improving the wear resistance and strength of the conveying pipe and prolonging the service life of the conveying pipe .
  • a pumping device for pumping viscous materials containing particulate matter, and includes a pumping system and a delivery pipe assembly.
  • the conveying pipe assembly includes a plurality of conveying pipes in any of the above embodiments, and the multiple conveying pipes are connected end to end in turn, and one end of the conveying pipe assembly is connected with the pumping system, so that the pumping system is connected to the pumping system through the conveying pipe assembly.
  • Viscous materials including particles are transported outwards.
  • the viscous material can be divided and guided by the bosses and diversion grooves in the conveying pipe, which is beneficial to reduce the abrasion of the conveying pipe by the particles in the viscous material.
  • the pumping equipment in this embodiment also has all the beneficial effects of the delivery pipe in any of the above embodiments, and will not be repeated here.
  • a pumping equipment is provided.
  • the pumping equipment is a concrete pump truck, which includes a vehicle body, a pumping system, and a delivery pipe assembly.
  • the conveying pipe assembly includes a plurality of conveying pipes in any of the foregoing embodiments, which are connected end to end in turn, and one end of the conveying pipe assembly is connected to the pumping system, so that the concrete in the pumping system is transferred to the pumping system through the conveying pipe assembly. Outside delivery.
  • the pumping system is connected to the car body to carry the pumping system through the driving of the car body to realize the movement of the pumping equipment between different stations, and when driving to the target position, the pumping system on the car body
  • the system and the conveying pipe assembly perform pumping operations to pump the concrete in the pumping system to the target location through the conveying pipe assembly.
  • the bosses and diversion grooves in the conveying pipe can divide and guide the concrete, which is beneficial to reduce the wear of the conveying pipe by the concrete.
  • the inner wall surface of the outer pipe wall of the elbow needs to bear the greater impact force of the concrete material.
  • the boss and the diversion groove can effectively alleviate the impact force of the concrete material, reduce the wear of the elbow, and facilitate the extension The overall service life of the delivery pipe.
  • the pumping equipment in this embodiment also has all the beneficial effects of the delivery pipe in any of the above embodiments, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Air Transport Of Granular Materials (AREA)

Abstract

一种输送管,其包括:管体(1),多个凸台(2),设于管体(1)的至少部分内壁面上,凸台(2)沿管体(1)的轴向延伸,且多个凸台(2)沿管体(1)的周向间隔设置;导流槽(3),形成于相邻的两个凸台(2)之间,通过该输送管,可增强输送管内壁面的耐磨性能和强度,降低输送管的磨损,可有效延长输送管的使用寿命,有利于降低成本。同时,一种具有该输送管的泵送设备被公开。

Description

输送管和泵送设备
本申请要求于2020年03月10日提交中国国家知识产权局、申请号为“202010159801.8”、申请名称为“输送管和泵送设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及管道技术领域,具体而言,涉及一种输送管和一种泵送设备。
背景技术
目前,输送管是泵送设备用于输送流体物料的管件,常用于输送混凝土等包含颗粒物的粘稠物料。在输送过程中,粘稠物料中的颗粒物容易与管道的内壁产生摩擦或者碰撞,特别是在弯管处,输送管受到混凝土的冲击力较大,会加速弯管处的磨损,从而缩短了输送管的使用寿命。其中,相对于弯管的内侧来说,弯管的外侧受到的冲击较大,混凝土砂浆在泵送过程中容易造成弯管的外侧部分的磨损甚至破环,影响输送管的整体可靠性。现有技术中对用于混凝土泵送设备的输送管进行了一些改进,通过改进输送管的结构或材质的方式来提高输送管的耐磨性能,例如改变输送管材质、增大弯管外侧的厚度,改进双层弯管或加装耐磨板等,但现有技术中的改进方案中,改进结构的方案存在使用寿命低、可靠性差的问题,而改进材料的方案中,存在工艺复杂、加工难度大,成本偏高的问题。
发明内容
本申请旨在至少改善现有技术或相关技术中存在的技术问题之一。
为此,本申请的一个目的在于提供一种输送管。
本申请的另一个目的在于提供一种泵送设备。
为了实现上述目的,本申请第一方面的实施例提供了一种输送管,包括:管体;多个凸台,设于管体的至少部分内壁面上,凸台沿管体的轴向延伸,且多个凸台沿管体的周向间隔设置;导流槽,形成于相邻的两个凸台之间。
本申请提供的输送管,包括管体、多个凸台和导流槽。通过在管体的至少部分内壁面上设有多个凸台,凸台沿管体的轴向延伸,且多个凸台沿管体的周向方向间隔设置,使得相邻的两个凸台之间形成导流槽,使得管体至少部分内壁形成凹凸结构,通过凸台对流过管体的流体进行分隔,并通过导流槽对流体进行导向,引导流体沿管体的轴向方向流动,减少流体沿周向流动的可能性,加速流体流动。特别是在输送管用于输送混凝土砂浆等特殊流体时,通过凸台对混凝土砂浆进行导向,承受部分冲击力和摩擦力,可缓解混凝土砂浆对管体的冲击和磨损,有利于提高管体的强度,降低故障率,延长使用寿命。具体地,凸台的截面形状可以为圆底梯形,且圆底梯形靠近管体的内壁面的一端的尺寸大于远离管体的内壁面的一端的尺寸,相应地,相邻两个凸台之间的导流槽的截面形成圆底梯形形状,即导流槽两侧壁之间的距离沿管体的径向方向向内逐渐增大,以增大导流槽可容纳的流体的体积。
需要说明的是,凸台的截面形状不仅限于本方案中的圆底梯形,也可以是圆底矩形或其他形状。
需要强调的是,凸台可以设于管体的内壁面的局部位置,也可以沿管体的周向全部设置。
另外,本申请提供的上述实施例中的输送管还可以具有如下附加技术特征:
在上述技术方案中,输送管还包括:凸起结构,设于导流槽的底壁面上,凸起结构包括多个点状凸起。
在该技术方案中,通过在导流槽的底壁面设置括多个点状凸起的凸起结构,使得导流槽的底壁面形成凹凸起伏的结构,以在与流体中的颗粒物接触时,尤其是与混凝土砂浆中的砂石等颗粒状物体接触时,可使得颗粒物与管体之间滑动摩擦转换为滚动摩擦,可大幅降低摩擦阻力,进而降低颗粒物对管体的内壁面的磨损,有利于提高输送管的可靠性和使用寿命。其中,点状凸起的数量和尺寸可根据管体的尺寸而定,多个点状凸起可以连续设置或间隔设置。
需要说明的是,凸起结构也可以是其他形状,例如矩形、梯形、椭圆形的凸起结构。
在上述技术方案中,管体为弯管结构。
在该技术方案中,通过限定管体为弯管结构,用于流体流向发生改变的位置,通过管体内的凸台对流体进行导向,并通过凸起结构使流体中的颗粒物形成滚动,以在流体通过弯管结构时,缓解流体的颗粒物对弯管结构的冲击力和摩擦力,对弯管起到保护作用。
在上述技术方案中,凸台和导流槽设于管体的外侧管壁的内壁面;或凸台和导流槽设于管体的内侧管壁的内壁面和管体的外侧管壁的内壁面。
在该技术方案中,管体为弯管结构,通过将凸台和导流槽设于管体的外侧管壁的内壁面,以在流体进入管体的方向上,利用凸台和导流槽对流体进行分隔和引导,同时结合导流槽底壁上的凸起结构,承受来自流体的冲击力和摩擦力,可以在提高管体的耐磨性能和强度的同时,降低部分材料和加工成本。凸台在管体的外侧管壁的内壁面上等间隔设置时,管体的外侧管壁受力较为均匀。或者,通过在管体的内侧管壁的内壁面和外侧管壁的内壁面均设有凸台和导流槽,以使凸台和导流槽对管体的内壁面整体形成保护,提高管体的整体耐磨性能,延长管体整体的使用寿命。此外,还可以缩减弯管结构的内侧与外侧之间的重量差,有利于增强弯管结构的稳定性。凸台在管体的外侧管壁和内侧管壁上等间隔设置时,管体的整体受力较为均匀。
在上述技术方案中,管体的内侧管壁的内壁面设有凸起结构。
在该技术方案中,管体为弯管结构,通过在管体的外侧管壁的内壁面上设置凸台和导流槽的同时,在管体的内侧管壁的内壁面上设有凸起结构,可进一步加强管体的内侧壁面的耐磨性能,从而提高管体整体的耐磨性能。可以理解,相对于管体的外侧管壁,内侧管壁所受到的直接冲击力较小,但内侧管壁仍会受到颗粒物的滑动摩擦力的影响,通过凸起结构的点状凸起将内侧管壁的内壁面所受到的滑动摩擦力转换为滚动摩擦力,可有效降低内侧管壁的磨损。或者,在管体的内侧管壁的内壁面和外侧管壁的内侧面均设有凸台和导流槽,在内侧管壁的内壁面设置有凸起结构,即在导流槽的底壁面上设有凸起结构,可对管体的内壁面整体形成保护,使流体中的颗粒物与外侧管壁的内壁面之间的摩擦力以及与内侧管壁的内壁面的摩擦力均由滑动摩擦转变为滚动摩擦,以进一步提高管体的耐磨性能,延长管体的使用寿命。
在上述技术方案中,凸台沿管体的轴向贯穿所述管体设置,凸台的截面呈 梯形结构,其中,凸起结构通过堆焊形成,并呈矩阵排布。
在该技术方案中,通过设置凸台沿管体的轴向方向贯穿整个管体,以通过凸台和导流槽对管体沿轴向方向的全部管段形成保护,一方面,可以使管体的内壁面的受力相对均匀,防止管体不同位置的磨损程度产生较大差异,影响管体的整体使用寿命,另一方面,可以使整个管体的内壁面沿轴向方向的结构保持一致,防止存在结构突变位置而造成流体中的颗粒物在结构突变位置发生堆积。通过设置凸台的节目呈梯形,使得导流槽的开口尺寸由导流槽的底面向顶部逐渐增大,截面呈上大下小的结构,以充分利用导流槽的空间,以便于引导更多的流体。其中,通过设置凸起结构的多个点状凸起通过堆焊形成,以增强凸起结构与管体内壁面的连接强度,有利于减少损耗。此外,凸起结构的多个点状凸起呈矩阵排布,以使流体中的颗粒物在流动过程中更多地与点状凸起发生接触,通过点状凸起使颗粒物产生翻滚,并将颗粒物与管体内壁面之间的滑动摩擦转变为滚动摩擦,从而减少磨损。
在上述技术方案中,凸台与管体为一体结构;或凸台与管体为分体式结构,凸台固定连接于管体的内壁面上。
在该技术方案中,凸台与管体可以为一体结构,也可以为分体式结构。在凸台与管体为一体结构时,可减少加工环节的工序,且凸台与管体的连接强度高,不易脱落,有利于受力传导。具体地,凸台可以与管体一体成型。而在凸台与管体为分体结构时,可降低管体以及凸台的加工难度,将加工好的凸台固定连接于管体的内壁面即可,可以根据使用需要,对不同尺寸的管体以及凸台进行搭配,适用性强,同时可进行拆卸更换。其中,固定连接方式可以是焊接、卡接、粘结或其他固定连接方式。
在上述技术方案中,凸台的顶壁面设有凸起结构。
在该技术方案中,通过在凸台的顶壁面上设有凸起结构,即凸台上设有多个点状凸起,以对与凸台的顶壁面相接触的流体进行进一步地导流,使得流体与凸台的顶壁面之间的滑动摩擦转变为滚动摩擦,从而进一步降低流体对管体的内壁面形成的摩擦力。进一步地,在管体为弯管结构时,管体外侧管壁的内壁面的凸台上设置凸起结构,可进一步降低弯管外侧管壁所受到的冲击力。
本申请第二方面的实施例中提供了一种泵送设备,用于泵送包含颗粒物的 粘稠物料,包括:泵送***;输送管组件,包括多个上述第一方面的任一实施例中的输送管,多个输送管首尾依次相连,其中,输送管组件的一端与泵送***相连通。
根据本申请第二方面的实施例中的泵送设备,包括泵送***和输送管组件。其中,输送管组件包括多个上述第一方面的任一实施例中的输送管,通过设置多个输送管首尾依次相连,且输送管组件的一端与泵送***相连通,以通过输送管组件将泵送***中的包括颗粒物的粘稠物料向外输送。其中,通过输送管中的凸台和导流槽可对粘稠物料进行分割和导向,有利于减少粘稠物料中的颗粒物对输送管的磨损。此外,本方案应具有上述第一方面的任一实施例中的输送管的全部有益效果,在此不再赘述。
在上述技术方案中,泵送设备为混凝土泵车,混凝土泵车还包括:车体;泵送***连接于车体上。
在该技术方案中,混凝土泵车还包括车体,通过设置泵送***连接于车体上,以通过车体的行驶对泵送***进行运载,实现泵送设备在不同场站之间的移动,并在行驶至目标位置时,通过车体上的泵送***和输送管组件进行泵送作业,以将泵送***中的混凝土通过输送管组件向目标位置进行泵送。其中,输送管中的凸台和导流槽可对混凝土物料进行分割和导向,以减少混凝土物料对输送管的磨损,特别是在弯管处,弯管的外侧管壁的内壁面需承受混凝土物料较大的冲击力,凸台和导流槽可有效缓解混凝土物料的冲击力,降低弯管的磨损,有利于延长输送管整体的使用寿命。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例的输送管的结构示意图;
图2示出了根据本申请的一个实施例的输送管的结构示意图;
图3示出了根据本申请的一个实施例的输送管的剖视图;
图4示出了根据本申请的一个实施例的输送管的截面图;
图5示出了根据本申请的一个实施例的输送管的截面图;
图6示出了根据本申请的一个实施例的输送管的截面图;
图7示出了根据本申请的一个实施例的输送管的截面图;
图8示出了根据本申请的一个实施例的输送管的截面图;
图9示出了根据本申请的一个实施例的输送管的截面图;
图10示出了根据本申请的一个实施例的输送管的截面图;
图11示出了根据本申请的一个实施例的输送管的截面图;
图12示出了根据本申请的一个实施例的输送管的截面图;
图13示出了根据本申请的一个实施例的输送管的剖视图。
其中,图1至图13中附图标记与部件之间的对应关系如下:
1管体,11内侧管壁,12外侧管壁,2凸台,3导流槽,4凸起结构。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图13描述根据本申请一些实施例的输送管和泵送设备。
实施例一
本实施例中提供了一种输送管,如图1所示,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通。管体1的内壁面上设有多个凸台2,具体地,凸台2的数量为三个,每个凸台2均沿管体1的轴向延伸,且在管体1的圆周方向上,三个凸台2间隔设置。相邻的两个凸台2之间形成有导流槽3,与凸台2相对应,导流槽3也沿管体1的轴向方向延伸。通过设于管体1内壁面的凸台2和导流槽3,以在输送管有流体流过时,对流体进行分割和导向,特别是流体为混凝土砂浆时,可承受混凝土砂浆中的颗粒物的冲 击力和摩擦力,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
需要强调的是,输送管可以是如图1所示的弯管结构,也可以是直管结构。
实施例二
本实施例中提供了一种输送管,如图2所示,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通。管体1的内壁面上设有多个凸台2,具体地,凸台2的数量为三个,凸台2的截面形状为圆底梯形,且凸台2的两侧壁之间的距离沿管体1的径向方向向内逐渐减小。每个凸台2均沿管体1的轴向延伸并贯穿整个管体1,且在管体1的圆周方向上,三个凸台2间隔设置。相邻的两个凸台2之间形成有导流槽3,与凸台2相对应,导流槽3也沿管体1的轴向方向延伸,且导流槽3的底壁面设有凸起结构4。其中,凸起结构4包括多个点状凸起,使导流槽3的底壁形成凹凸结构,点状凸起的数量和尺寸可根据管体1的具体尺寸确定。点状凸起可通过在管体1的内壁面上堆焊形成,且多个点状凸起呈矩阵排布。在流体通过输送管时,特别是在流体为混凝土砂浆时,通过凸台2和导流槽3对流体的流向进行引导,并承受混凝土砂浆中的颗粒物的冲击力,同时,通过凸起结构4使颗粒物对管体1的内壁面的滑动摩擦力转换为滚动摩擦力,以缓解颗粒物对管体1的内壁面的磨损,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
需要强调的是,输送管可以是如图2所示的弯管结构,也可以是直管结构。
实施例三
本实施例中提供了一种输送管,如图3所示,输送管为弯管结构,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通。管体1的外侧管壁12的内壁面上设有多个凸台2,每个凸台2均沿管体1的轴向延伸并贯穿整个管体1。如图4所示,凸台2的数量为三个,凸台2与管体1为一体结构。凸台2的截面形状为圆底梯形,且凸台2的两侧壁之间的距离沿管体1的径向方向向内逐渐减小。且在管体1的圆周方向上,三个凸台2等间隔设置。相邻的两个凸台2之间形成有导流槽3,与凸台2相对应,导流槽3也沿管体1的轴向方向延伸,且导流槽3的底壁面设有凸起结构4。其中,凸起结构4包括多个点状凸起,使导流槽3的底壁形成凹凸结构,点状凸起的数量和尺寸可根据管体1的具体尺寸确定。点状凸起可通过在管体1的内壁面上堆 焊形成,且多个点状凸起呈矩阵排布。在流体通过输送管时,特别是流体为混凝土砂浆时,通过凸台2和导流槽3对流体的流向进行引导,并承受一定的冲击力,同时,通过点状凸起的凹凸结构使流体对管体1的内壁面的滑动摩擦力转换为滚动摩擦力,以降低对管体1的内壁面的磨损,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
图5示出了本实施中的输送管的另一种实现形式,与图4所示的输送管的区别在于,凸台2与管体1为分体结构,凸台2为耐磨钢板,并焊接于管体1的外侧管壁12的内壁面上。
实施例四
本实施例中提供了一种输送管,如图6所示,输送管为弯管结构,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通。管体1的外侧管壁12的内壁面上设有多个凸台2,每个凸台2均沿管体1的轴向延伸并贯穿整个管体1。具体地,凸台2的数量为三个,凸台2与管体1为一体结构。凸台2的截面形状为圆底梯形,且凸台2的两侧壁之间的距离沿管体1的径向方向向内逐渐减小。且在管体1的圆周方向上,三个凸台2等间隔设置。相邻的两个凸台2之间形成有导流槽3,与凸台2相对应,导流槽3也沿管体1的轴向方向延伸。导流槽3的底壁面设有凸起结构4,凸起结构4包括多个点状凸起,使导流槽3的底壁形成凹凸结构。此外,管体1的内侧管壁11的内壁面上也设有包括多个点状凸起的凸起结构4。点状凸起的数量和尺寸可根据管体1的具体尺寸确定。点状凸起可通过在管体1内壁面上堆焊形成,且多个点状凸起呈矩阵排布。在流体通过输送管时,特别是流体为混凝土砂浆时,通过凸台2和导流槽3对混凝土砂浆的流向进行引导,并承受混凝土砂浆中的颗粒物的冲击力,同时,通过点状凸起的凹凸结构使颗粒物对管体1的内壁面的滑动摩擦力转换为滚动摩擦力,以降低颗粒物对管体1的内壁面的磨损,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
图7示出了本实施例的输送管的另一种实现形式,与图6所示的输送管的区别在于,凸台2与管体1为分体结构,凸台2为耐磨钢板,并焊接于管体1的外侧管壁12的内壁面上。
实施例五
本实施例中提供了一种输送管,如图8所示,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通。管体1的内壁面上设有多个凸台2,每个凸台2均沿管体1的轴向延伸并贯穿整个管体1。凸台2的数量为六个,凸台2与管体1为一体结构。凸台2的截面形状为圆底梯形,且凸台2的两侧壁之间的距离沿管体1的径向方向向内逐渐减小。且在管体1的圆周方向上,位于同一侧的三个凸台2等间隔设置。在同一侧的管壁上,相邻的两个凸台2之间形成有导流槽3,与凸台2相对应,导流槽3也沿管体1的轴向方向延伸。导流槽3的底壁面设有凸起结构4,凸起结构4包括多个点状凸起,使导流槽3的底壁形成凹凸结构,点状凸起的数量和尺寸可根据管体1的具体尺寸确定。点状凸起可通过在管体1的内壁面上堆焊形成,且多个点状凸起呈矩阵排布。在流体通过输送管时,特别是在流体为混凝土砂浆时,通过凸台2和导流槽3对混凝土砂浆的进行分割和导向,并承受混凝土砂浆中的颗粒物的冲击力,同时,通过点状凸起的凹凸结构使颗粒物对管体1的内壁面的滑动摩擦力转换为滚动摩擦力,以降低对管体1的内壁面的磨损,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
图9示出了本实施例的输送管的另一种形式,与图8所示的输送管的区别在于,凸台2与管体1为分体结构,凸台2为耐磨钢板,并焊接于管体1的内壁面上。
需要强调的是,本实施例中的输送管可以是弯管结构,也可以是直管结构。
实施例六
本实施例中提供了一种输送管,如图10所示,输送管为弯管结构,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通。管体1的外侧管壁12的内壁面上设有多个凸台2,每个凸台2均沿管体1的轴向延伸并贯穿整个管体1。凸台2的数量为三个,凸台2与管体1为分体结构,且凸台2为耐磨钢板,焊接于管体1的外侧管壁12的内壁面上。凸台2的截面形状为圆底梯形,且凸台2的两侧壁之间的距离沿管体1的径向方向向内逐渐减小。且在管体1的圆周方向上,三个凸台2等间隔设置。在每个凸台2的顶壁上均设有包括多个点状凸起的凸起结构4,使凸台2的顶壁面形成凹凸结构。相邻的两个凸台2之间形成有导流槽3,与凸台2相对应,导流槽3也 沿管体1的轴向方向延伸。导流槽3的底壁面设有凸起结构4,凸起结构4包括多个点状凸起,使导流槽3的底壁形成凹凸结构。点状凸起的数量和尺寸可根据管体1的具体尺寸确定,且点状凸起可通过在管体1的内壁面上堆焊形成,且多个点状凸起呈矩阵排布。在流体通过输送管时,特别是在流体为混凝土砂浆时,通过凸台2和导流槽3对混凝土砂浆进行引导,并承受混凝土砂浆中的颗粒物的冲击力,减少管体的外侧管壁的内壁面的磨损。同时,通过点状凸起的凹凸结构使颗粒物对管体1的内壁面的滑动摩擦力转换为滚动摩擦力,以降低对管体1的内壁面的磨损,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
进一步地,如图11所示,管体1的内侧管壁11的内壁面上也设有凸起结构4,凸起结构4包括多个点状凸起,点状凸起可通过在内侧管壁11的内壁面堆焊形成,并呈矩阵排布,以减少管体的内侧管壁的内壁面的磨损。
实施例七
本实施例中提供了一种输送管,如图12所示,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通。管体1的内壁面上设有多个凸台2,每个凸台2均沿管体1的轴向延伸并贯穿整个管体1。凸台2的数量为六个,凸台2与管体1为一体结构。凸台2的截面形状为圆底梯形,且凸台2的两侧壁之间的距离沿管体1的径向方向向内逐渐减小。且在管体1的圆周方向上,同一侧的三个凸台2等间隔设置。在每个凸台2的顶壁上均设有包括多个点状凸起的凸起结构,使凸台2的顶壁面形成凹凸结构4。在同一侧的管壁上,相邻的两个凸台2之间形成有导流槽3,与凸台2相对应,导流槽3也沿管体1的轴向方向延伸。导流槽3的底壁面设有凸起结构4,凸起结构4包括多个点状凸起,使导流槽3的底壁形成凹凸结构。点状凸起的数量和尺寸可根据管体1的具体尺寸确定,且点状凸起可通过在管体1的内壁面上堆焊形成,且多个点状凸起呈矩阵排布。在流体通过输送管时,特别是流体为混凝土砂浆时,通过凸台2和导流槽3对流体的流向进行引导,并承受混凝土砂浆中的颗粒物的冲击力,同时,通过点状凸起的凹凸结构使颗粒物对管体1的内壁面的滑动摩擦力转换为滚动摩擦力,以降低对管体1的内壁面的磨损,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
需要强调的是,本实施例中的输送管可以为弯管结构,也可以为直管结构。
实施例八
本实施例中提供了一种输送管,如图13所示,输送管为弯管结构,包括管体1、多个凸台2和导流槽3。管体1的两端端口可与其他管路相连通,管体1的外侧管壁12与内侧管壁11之间平滑过渡。管体1的内壁面上设有多个凸台2,凸台2的截面形状为圆底梯形,且凸台2的两侧壁之间的距离沿管体1的径向方向向内逐渐减小。每个凸台2均沿管体1的轴向延伸并贯穿整个管体1,且在管体1的圆周方向上,三个凸台2间隔设置。相邻的两个凸台2之间形成有导流槽3,与凸台2对应地,导流槽3也沿管体1的轴向方向延伸,且导流槽3的底壁面设有凸起结构4。其中,凸起结构4包括多个点状凸起,使导流槽3的底壁形成凹凸结构,点状凸起通过在管体1的内壁面上堆焊形成,且多个点状凸起呈矩阵排布。
具体地,管体1的外径为131mm,内径为125mm;导流槽3的底壁沿圆周方向上的弧长为26mm;凸台2的顶壁的宽度为25mm,凸台2的顶壁距管体1的外壁面的距离为12mm;点状凸起的半径为3mm,相邻两个点状凸起之间的距离为2mm。
在流体通过输送管时,特别是流体为混凝土砂浆时,通过凸台2和导流槽3对流体的流向进行引导,并承受混凝土砂浆中的颗粒物的冲击力,同时,通过点状凸起的凹凸结构使颗粒物对管体1的内壁面的滑动摩擦力转换为滚动摩擦力,以降低对管体1的内壁面的磨损,从而提高输送管的耐磨性能和强度,延长输送管的使用寿命。
实施例九
本实施例中提供了一种泵送设备,用于泵送包含颗粒物的粘稠物料,包括泵送***和输送管组件。其中,输送管组件包括多个上述任一实施例中的输送管,多个输送管首尾依次相连,且输送管组件的一端与泵送***相连通,以通过输送管组件将泵送***中的包括颗粒物的粘稠物料向外输送。其中,通过输送管中的凸台和导流槽可对粘稠物料进行分割和导向,有利于减少粘稠物料中的颗粒物对输送管的磨损。本实施例中的泵送设备还具有上述任一实施例中的输送管的全部有益效果,在此不再赘述。
实施例十
本实施例中提供了一种泵送设备,具体地,泵送设备为混凝土泵车,包括车体、泵送***和输送管组件。输送管组件包括多个上述任一实施例中的输送管,多个输送管首尾依次相连,且输送管组件的一端与泵送***相连通,以通过输送管组件将泵送***中的混凝土向外输送。泵送***连接于车体上,以通过车体的行驶对泵送***进行运载,实现泵送设备在不同场站之间的移动,并在行驶至目标位置时,通过车体上的泵送***和输送管组件进行泵送作业,以将泵送***中的混凝土通过输送管组件向目标位置进行泵送。其中,输送管中的凸台和导流槽可对混凝土进行分割和导向,有利于减少混凝土对输送管的磨损。特别是在弯管处,弯管的外侧管壁的内壁面需承受混凝土物料较大的冲击力,凸台和导流槽可有效缓解混凝土物料的冲击力,降低弯管的磨损,有利于延长输送管整体的使用寿命。本实施例中的泵送设备还具有上述任一实施例中的输送管的全部有益效果,在此不再赘述。
以上结合附图详细说明了本申请的技术方案,可增强输送管内壁面的耐磨性能和强度,降低输送管的磨损,可有效延长输送管的使用寿命,有利于降低成本。
在本申请中,术语“第一”、“第二”、“第三”仅用于描述的目的,而不能理解为指示或暗示相对重要性;术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或单元必须具有特定的方向、以特定的方位构造和操作,因此,不能理解为对本申请的限制。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述 不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种输送管,其中,包括:
    管体(1);
    多个凸台(2),设于所述管体(1)的至少部分内壁面上,所述凸台(2)沿所述管体(1)的轴向延伸,且多个所述凸台(2)沿所述管体(1)的周向间隔设置;
    导流槽(3),形成于相邻的两个所述凸台(2)之间。
  2. 根据权利要求1所述的输送管,其中,还包括:
    凸起结构(4),设于所述导流槽(3)的底壁面上,所述凸起结构(4)包括多个点状凸起。
  3. 根据权利要求2所述的输送管,其中,
    所述管体(1)为弯管结构。
  4. 根据权利要求3所述的输送管,其中,
    所述凸台(2)和所述导流槽(3)设于所述管体(1)的外侧管壁(12)的内壁面;或
    所述凸台(2)和所述导流槽(3)设于所述管体(1)的内侧管壁(11)的内壁面和所述管体(1)的外侧管壁(12)的内壁面。
  5. 根据权利要求3所述的输送管,其中,
    所述管体(1)的内侧管壁(11)的内壁面设有所述凸起结构(4)。
  6. 根据权利要求3所述的输送管,其中,
    所述凸台(2)沿所述管体(1)的轴向贯穿所述管体(1)设置,所述凸台(2)的截面呈梯形结构,
    其中,所述凸起结构(4)通过堆焊形成,并呈矩阵排布。
  7. 根据权利要求2至6中任一项所述的输送管,其中,
    所述凸台(2)与所述管体(1)为一体结构;或
    所述凸台(2)与所述管体(1)为分体式结构,所述凸台(2)固定连接于所述管体(1)的内壁面上。
  8. 根据权利要求7所述的输送管,其中,
    所述凸台(2)的顶壁面设有所述凸起结构(4)。
  9. 一种泵送设备,用于泵送包含颗粒物的粘稠物料,其中,包括:
    泵送***;
    输送管组件,包括多个如权利要求1至8中任一项所述的输送管,多个所述输送管首尾依次相连,
    其中,所述输送管组件的一端与所述泵送***相连通。
  10. 根据权利要求9所述的泵送设备,其中,所述泵送设备为混凝土泵车,所述混凝土泵车还包括:
    车体;
    所述泵送***连接于所述车体上。
PCT/CN2020/112014 2020-03-10 2020-08-28 输送管和泵送设备 WO2021179545A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010159801.8A CN111174013A (zh) 2020-03-10 2020-03-10 输送管和泵送设备
CN202010159801.8 2020-03-10

Publications (1)

Publication Number Publication Date
WO2021179545A1 true WO2021179545A1 (zh) 2021-09-16

Family

ID=70658491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112014 WO2021179545A1 (zh) 2020-03-10 2020-08-28 输送管和泵送设备

Country Status (2)

Country Link
CN (1) CN111174013A (zh)
WO (1) WO2021179545A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115539740A (zh) * 2022-09-16 2022-12-30 集美大学 一种抗冲蚀弯管

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111174013A (zh) * 2020-03-10 2020-05-19 三一汽车制造有限公司 输送管和泵送设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150621A1 (ja) * 2009-06-22 2010-12-29 Parro Marcio 搬送用ホース
CN103206589A (zh) * 2013-03-23 2013-07-17 广州有色金属研究院 一种复合异形管道及其制造方法
CN205606011U (zh) * 2016-04-26 2016-09-28 浙江恒胜消防设备有限公司 塑胶消防管
KR20190062281A (ko) * 2017-11-27 2019-06-05 보성포리테크 주식회사 열변형이 적으며 내마모성이 향상된 석탄회 이송배관 및 이의 제조장치
CN209067974U (zh) * 2018-07-26 2019-07-05 江苏致乐管业科技有限公司 一种高强耐冲击防腐轻质pe实壁管
CN209762474U (zh) * 2019-03-28 2019-12-10 临海市双丰橡塑有限公司 消防水带
CN111174013A (zh) * 2020-03-10 2020-05-19 三一汽车制造有限公司 输送管和泵送设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726492C1 (de) * 1987-08-08 1988-11-10 Flachglas Ag Stroemungskanal fuer die Rauchgase einer Rauchgasreinigungsanlage
CN204004984U (zh) * 2014-07-10 2014-12-10 江阴海陆高压管件有限公司 弯头管件
CN205877558U (zh) * 2016-08-16 2017-01-11 浙江万盾制冷股份有限公司 一种加强型弯头管件
CN206398246U (zh) * 2017-01-20 2017-08-11 平湖市晨人仪表有限公司 一种异径内外螺纹弯头
CN107143717A (zh) * 2017-06-29 2017-09-08 安徽省含山县伟峰通用配件铸造厂 一种结构改良的弯头管件
CN210069222U (zh) * 2019-05-05 2020-02-14 潍坊市长胜管业有限公司 一种可以增大转弯半径的弯头
CN110748733B (zh) * 2019-10-28 2021-03-05 湘潭大学 一种内置仿生堆焊点及导流块的砼泵耐磨弯管及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010150621A1 (ja) * 2009-06-22 2010-12-29 Parro Marcio 搬送用ホース
CN103206589A (zh) * 2013-03-23 2013-07-17 广州有色金属研究院 一种复合异形管道及其制造方法
CN205606011U (zh) * 2016-04-26 2016-09-28 浙江恒胜消防设备有限公司 塑胶消防管
KR20190062281A (ko) * 2017-11-27 2019-06-05 보성포리테크 주식회사 열변형이 적으며 내마모성이 향상된 석탄회 이송배관 및 이의 제조장치
CN209067974U (zh) * 2018-07-26 2019-07-05 江苏致乐管业科技有限公司 一种高强耐冲击防腐轻质pe实壁管
CN209762474U (zh) * 2019-03-28 2019-12-10 临海市双丰橡塑有限公司 消防水带
CN111174013A (zh) * 2020-03-10 2020-05-19 三一汽车制造有限公司 输送管和泵送设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115539740A (zh) * 2022-09-16 2022-12-30 集美大学 一种抗冲蚀弯管

Also Published As

Publication number Publication date
CN111174013A (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2021179545A1 (zh) 输送管和泵送设备
US4865353A (en) Abrasion resistant ceramic elbow
JP5732405B2 (ja) スラリ搬送用の耐摩耗性管継手
JP2009522518A (ja) 固形物を液圧式または空気圧式に搬送するための管路
JP2010501790A (ja) 固形物搬送用の圧送管
WO2016141879A1 (zh) 一种两分或多分双层式耐磨抗冲击管及其制备方法
KR100858340B1 (ko) 엘보우
CN201884855U (zh) 耐磨聚乙烯管道弯头
CN109282096A (zh) 一种连接法兰、其制备方法及输送管道
CN220600804U (zh) 一种带导流功能的hdpe排泥管
RU80915U1 (ru) Колено трубопровода для транспортирования пылевидных материалов
CN209671779U (zh) 一种组合泵管
CN209622220U (zh) 一种耐磨型不锈钢管
CN209385861U (zh) 一种连接法兰及输送管道
KR200440771Y1 (ko) 엘보우
CN217762577U (zh) 混凝土输送弯管及混凝土运输车
KR200276989Y1 (ko) 엘보우관의 보강구조
CN206112365U (zh) 一种新型煤粉耐磨弯头
CN220320537U (zh) 连接稳定的管道
KR100523857B1 (ko) 공압이송 시스템용 엘보 파이프
CN205526692U (zh) 一种球团除尘灰输灰弯头
CN212480527U (zh) 一种耐磨耐腐蚀弯管
CN210424133U (zh) 一种耐磨rtp管接头
CN220412126U (zh) 一种耐磨碳化硅弯板衬套
CN212986346U (zh) 一种连接管、管道连接器及管道组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20924618

Country of ref document: EP

Kind code of ref document: A1