WO2021179221A1 - 数据传输方法、装置、设备及存储介质 - Google Patents

数据传输方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2021179221A1
WO2021179221A1 PCT/CN2020/078859 CN2020078859W WO2021179221A1 WO 2021179221 A1 WO2021179221 A1 WO 2021179221A1 CN 2020078859 W CN2020078859 W CN 2020078859W WO 2021179221 A1 WO2021179221 A1 WO 2021179221A1
Authority
WO
WIPO (PCT)
Prior art keywords
logical channel
data
uplink
uplink resource
mac pdu
Prior art date
Application number
PCT/CN2020/078859
Other languages
English (en)
French (fr)
Inventor
付喆
杨宁
石聪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/078859 priority Critical patent/WO2021179221A1/zh
Priority to CN202080087924.3A priority patent/CN114830587B/zh
Publication of WO2021179221A1 publication Critical patent/WO2021179221A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application relates to the field of communication technology, and in particular to a data transmission method, device, equipment, and storage medium.
  • Unlicensed spectrum is a kind of shared spectrum. In order to enable various communication devices to coexist friendly on unlicensed spectrum, some countries or regions have stipulated the requirements that need to be met when using unlicensed spectrum. If you need to follow LBT (Listen Before Talk, listen first, then Said) principle, that is, on the unlicensed spectrum, the terminal needs to perform LBT first and then transmit data.
  • LBT Listen Before Talk, listen first, then Said
  • URLLC Ultra Reliable Low Latency Communications
  • the terminal cannot immediately transmit the URLLC data, but waits for the uplink resource LBT corresponding to the URLLC data to succeed before transmitting, which leads to URLLC
  • the data transmission delay is relatively high.
  • the embodiments of the present application provide a data transmission method, device, equipment, and storage medium, which can be used to solve the problem of realizing data transmission.
  • the technical solution is as follows:
  • a data transmission method which is applied to a terminal device, and the method includes:
  • the first uplink resource is transmitted based on the second uplink resource corresponding to the second uplink grant.
  • the deviation value in the time domain between the first uplink resource corresponding to the first uplink grant and the second uplink resource is less than or equal to a first time domain threshold.
  • a data transmission method which is applied to a network device, and the method includes:
  • the device is sent when the LBT of the first uplink authorization corresponding to the first logical channel fails, and the LBT of the second uplink authorization corresponding to the second logical channel succeeds;
  • the deviation value in the time domain between the first uplink resource corresponding to the first uplink grant and the second uplink resource is less than or equal to a first time domain threshold.
  • a data transmission device includes:
  • the transmission module is configured to, when the LBT of the first uplink grant corresponding to the first logical channel fails, and the LBT of the second uplink grant corresponding to the second logical channel succeeds, based on the second uplink resource corresponding to the second uplink grant Transmitting the data of the first logical channel;
  • the deviation value in the time domain between the first uplink resource corresponding to the first uplink grant and the second uplink resource is less than or equal to a first time domain threshold.
  • a data transmission device in another aspect, includes:
  • the receiving module is configured to receive data of a first logical channel transmitted in a second uplink resource corresponding to a second uplink grant, where the second uplink grant is an uplink grant corresponding to a second logical channel, and the data of the first logical channel is The data is sent by the terminal device when the LBT of the first uplink authorization corresponding to the first logical channel fails, and the LBT of the second uplink authorization corresponding to the second logical channel succeeds;
  • the deviation value of the first uplink resource corresponding to the first uplink grant and the second uplink resource in the time domain is less than or equal to the first time domain threshold.
  • a communication system including a terminal device and a network device.
  • the terminal device includes the device described in any one of the foregoing aspects
  • the network device includes the device described in any one of the foregoing other aspects.
  • a terminal device in one aspect, includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is used to be executed by the processor to implement any one of the above aspects. The method described.
  • a network device in another aspect, includes a processor and a memory, the memory stores at least one instruction, and the at least one instruction is used to be executed by the processor to implement the above-mentioned another aspect Any of the methods described.
  • a computer-readable storage medium is provided, and instructions are stored on the computer-readable storage medium, and when the instructions are executed by a processor, the method in any one of the foregoing aspects is implemented.
  • a computer-readable storage medium is provided, and instructions are stored on the computer-readable storage medium, and when the instructions are executed by a processor, the method according to any one of the above-mentioned other aspects is implemented.
  • a computer program product containing instructions, which when run on a computer, causes the computer to execute the method described in any one of the above aspects.
  • a computer program product containing instructions which when run on a computer, causes the computer to execute the method described in any one of the above-mentioned other aspects.
  • the terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource corresponding to the first uplink grant.
  • the terminal device may transmit the first logical channel based on the second uplink resource The data.
  • the terminal device since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced.
  • the transmission delay of the channel's data since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced. The transmission delay of the channel's data.
  • Fig. 1 is a schematic diagram of an implementation environment provided by an exemplary embodiment of the present application
  • Fig. 2 is a flowchart of a data transmission method provided by an exemplary embodiment of the present application
  • Fig. 3 is a schematic diagram of uplink resources provided by an exemplary embodiment of the present application.
  • Fig. 4 is a flowchart of a data transmission method provided by an exemplary embodiment of the present application.
  • Fig. 5 is a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application.
  • Fig. 6 is a schematic diagram of a data transmission method provided by another exemplary embodiment of the present application.
  • Fig. 7 is a flowchart of a data transmission method provided by an exemplary embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a data transmission device provided by an exemplary embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a data transmission device provided by another exemplary embodiment of the present application.
  • Fig. 10 is a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • Unlicensed spectrum is a spectrum that can be used for communication by communication devices divided by countries and regions. This spectrum is usually considered to be a shared spectrum. That is, communication devices in different communication systems meet the requirements of national or regional regulations on the spectrum. The spectrum can be used, and there is no need to apply for a proprietary spectrum authorization from the government.
  • the wireless interface can be divided into three protocol layers, that is, it can be divided into a physical layer, a data link layer, and a network layer.
  • the physical layer is mainly used to provide wireless physical channels for transmission of high-level services.
  • the data link layer includes the MAC (Medium Access Control) sub-layer, RLC (Radio Link Control, radio link control) sub-layer, PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sub-layer, SDAP ( Service Data Adaptation Protocol (Service Data Adaptation Protocol) sublayer.
  • the network layer includes the RRC (Radio Resource Control, radio resource control) sublayer.
  • the source information at the transmitting end is processed through the network layer, data link layer, and physical layer, and then passed through the network to the receiving end, and then through the entire processing process of the physical layer, data link layer, and network layer, which is the channel.
  • channels are divided into logical channels, transmission channels and physical channels.
  • the physical channel is the channel through which the physical layer actually transmits information
  • the transmission channel is the channel between the physical layer and the MAC sublayer
  • the logical channel is the channel between the MAC sublayer and the RLC sublayer.
  • Control channels can be used to transmit control plane information, mainly including BCCH (Broadcast Control Channel), PCCH (Paging Control Channel), CCCH (Common Control Channel), DCCH (Dedicated Control) Channel, dedicated control channel).
  • Service channels can be used to transmit user plane information, and mainly include DTCH (Dedicated Traffic Channel, dedicated traffic channel).
  • the transmission channel can be divided into an uplink transmission channel and a downlink transmission channel.
  • the uplink transmission channel may include UL-SCH (Uplink Shared Channel) and RACH (Random Access Channel, random access channel).
  • the downlink transmission channel may include BCH (Broadcast Channel), DL-SCH (Downlink Shared Channel), and PCH (Paging Channel): used to transmit paging information.
  • the physical channel refers to the channel through which the signal is actually transmitted, and the physical channel can be divided into an uplink physical channel and a downlink physical channel.
  • the uplink physical channels include PUCCH (Physical Uplink Control Channel), PUSCH (Physical Uplink Shared Channel, physical uplink shared channel), and PRACH (Physical Random-Access Channel, physical random access channel).
  • Downlink physical channels include PDCCH (Physical Downlink Control Channel), PDSCH (Physical Downlink Shared Channel, physical downlink shared channel), and PBCH (Physical Broadcast Channel, physical broadcast channel).
  • HARQ is a technology that combines the FEC (Forward Error Correction) mechanism with the ARQ (Automatic Repeat-Request) mechanism.
  • the HARQ process means that after the sender sends data to the receiver, the receiver receives the data. Regardless of whether the receiver successfully receives the data, it needs to send feedback information to the sender.
  • the feedback information is used to indicate to the sender whether the data is successful or not. take over.
  • the successful reception of the data includes the successful reception of the data and the successful demodulation and decoding of the data.
  • Data error reception includes unsuccessfully receiving the data, or successfully receiving the data but failing to demodulate and decode the data.
  • the receiver will feed back an ACK (Acknowledgement) message to the sender, and if the data is received incorrectly, the receiver will feed back a NACK (Negative Acknowledgement) message to the sender.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the terminal device Before the terminal device transmits data on the unlicensed spectrum, it needs to listen to the uplink resource according to the regulations. If the listening is successful, that is, when the uplink resource is available, the terminal device can perform data transmission based on the uplink resource. If the listening fails, that is, when the uplink resource is unavailable, the terminal device needs to back off for a period of time according to the regulations and then continue listening. Until the listening succeeds, data transmission can be performed based on the available uplink resources.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access, code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex system
  • LTE-A Alvanced Long Term Evolution, advanced long-term evolution
  • NR New Redio, new wireless
  • LTE-U LTE-based access
  • NR-U NR-based access to unlicensed spectrum, NR on unlicensed frequency band
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access, global interconnected microwave access
  • WLAN Wireless Local Area Networks
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an eNB (Evolutional Node B, evolved base station), or a wireless controller in CRAN (Cloud Radio Access Network, cloud radio access network), or the network device may be a mobile switch Centers, relay stations, access points, in-vehicle devices, wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in future communication systems, etc.
  • eNB Evolutional Node B, evolved base station
  • CRAN Cloud Radio Access Network
  • the network device may be a mobile switch Centers, relay stations, access points, in-vehicle devices, wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in future communication systems, etc.
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as PSTN (Public Switched Telephone Networks), DSL (Digital Subscriber Line), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, WLAN, digital TV networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters; and/or another A device of a terminal that is set to receive/send a communication signal; and/or an IoT (Internet of Things, Internet of Things) device.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • wireless interface such as for cellular networks, WLAN, digital TV networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters
  • IoT Internet of Things, Internet of Things
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; PCS (Personal Communications System) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with Internet access, web browser, memo pad, calendar, and/or GPS (Global Positioning System) receiver; and conventional laptop and/or palm-type receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, UE (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, SIP (Session Initiation Protocol) phone, WLL (Wireless Local Loop, wireless local loop) station, PDA (Personal Digital Assistant, personal digital processing), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • D2D communication may be performed between the terminal devices 120.
  • the 5G communication system or 5G network may also be referred to as an NR system or NR network.
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices, for example,
  • it usually includes a first network device and a second network device.
  • the first network device is the source network device and the second network device is the target network device. That is, the terminal switches from the first network device to the second network device. .
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 having a communication function and a terminal device 120.
  • the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as network controllers, mobility management entities and other network entities, which are not limited in the embodiment of the present application.
  • FIG. 2 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method may be applied to the implementation environment shown in FIG. 1 above.
  • the data transmission method may include the following At least part of the content:
  • Step 201 In the case that the LBT of the first uplink grant corresponding to the first logical channel fails, and the LBT of the second uplink grant corresponding to the second logical channel succeeds, the first logic is transmitted based on the second uplink resource corresponding to the second uplink grant.
  • Channel data Wherein, the deviation value in the time domain between the first uplink resource and the second uplink resource corresponding to the first uplink grant is less than or equal to the first time domain threshold.
  • the first uplink grant is an uplink grant configured by the network device for the terminal device, and the first uplink grant may be used to indicate the first uplink resource.
  • the second uplink authorization is an uplink authorization configured by the network device for the terminal device, and the second uplink authorization may be used to indicate the second uplink resource.
  • the first uplink resource includes a first uplink time domain resource and/or a first uplink frequency domain resource. That is, the first uplink resource may include the first uplink time domain resource, may also include the first uplink frequency domain resource, and may also include both the first uplink time domain resource and the first uplink frequency domain resource. Not limited.
  • the second uplink resource includes a second uplink time domain resource and/or a second uplink frequency domain resource, which is not limited in this embodiment.
  • first uplink resource and the second uplink resource may be uplink resources in the same cell, or may be uplink resources in different cells, which is not limited in this embodiment. Further, in a case where the first uplink resource and the second uplink resource are uplink resources of the same cell, the first uplink resource and the second uplink resource correspond to different frequency ranges.
  • the deviation value of the first uplink resource and the second uplink resource in the time domain may be the deviation value between the start time of the first uplink resource in the time domain and the start time of the second uplink resource in the time domain , It can also be the difference between the end time of the first uplink resource in the time domain and the end time of the second uplink resource in the time domain, or it can be the end time of the first uplink resource in the time domain and the second
  • the deviation value between the start time of the uplink resource in the time domain, etc., is not limited in this embodiment.
  • the first time domain threshold is predefined, or the first time domain threshold is configured by the network device.
  • the first time domain threshold may be configured by the network device to the terminal device through an RRC (Radio Resource Control, radio resource control) message.
  • RRC Radio Resource Control, radio resource control
  • the deviation of the first uplink resource and the second uplink resource in the time domain is less than or equal to the first time domain threshold, which means that the first uplink resource and the second uplink resource are similar or even overlapped in the time domain.
  • the data transmission delay for the terminal device to transmit data of the first logical channel based on the second uplink resource is similar to the data transmission delay for transmitting the data of the first logical channel based on the first uplink resource.
  • the terminal device When the LBT of the first uplink grant fails, it can indicate that the first uplink resource corresponding to the first uplink grant has been occupied, that is, there may be data of other logical channels to be transmitted based on the first uplink resource. In this case , The terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource.
  • the terminal device may transmit the data of the second logical channel based on the second uplink resource.
  • the terminal device waits for the success of the LBT corresponding to the first logical channel and then transmits the data of the first logical channel, the data transmission delay of the first logical channel will be high.
  • the terminal device can be based on the second uplink resource.
  • the uplink resource transmits data of the first logical channel.
  • the data transmission delay of the terminal device transmitting the data of the first logical channel based on the second uplink resource is different from the data transmission delay of the terminal device transmitting the data of the logical channel based on the second uplink resource.
  • the data transmission delay is similar, so that the data transmission delay of the data of the first logical channel can be guaranteed to be low.
  • the terminal device may transmit the data of the first logical channel based on the second uplink resource.
  • the LBT failure of the first uplink grant may be understood as the LBT failure of the first cell, where the first cell includes the first uplink resource.
  • the LBT of the first cell fails, it means that the current terminal device may not be able to transmit data of the first logical channel based on the first cell.
  • the failure of the LBT of the first uplink authorization can be understood as the failure of the first carrier component (Carrier Component, CC) LBT, where the first carrier component is the carrier component corresponding to the first uplink resource part.
  • the LBT of the first carrier component fails, it means that the current terminal device may not be able to transmit the data of the first logical channel based on the first carrier component.
  • the success of the LBT of the second uplink grant may be understood as the success of the LBT of the second cell, where the second cell includes the second uplink resource.
  • the LBT of the second cell succeeds, it means that the current terminal device can transmit data of the second logical channel based on the second cell.
  • the success of the LBT of the second uplink authorization may be understood as the success of the second carrier component LBT, where the second carrier component is the carrier component corresponding to the second uplink resource.
  • the second carrier component LBT fails, it means that the current terminal device can transmit data of the second logical channel based on the second carrier component.
  • the terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource corresponding to the first uplink grant.
  • the terminal device can be based on the second uplink The resource transmits the data of the first logical channel.
  • the terminal device since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced.
  • the transmission delay of the channel's data since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced. The transmission delay of the channel's data.
  • FIG. 4 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method may be applied to the implementation environment shown in FIG. 1, and the data transmission method may include the following At least part of the content:
  • Step 401 In the case that the LBT of the first uplink grant corresponding to the first logical channel fails, and the LBT of the second uplink grant corresponding to the second logical channel succeeds, the first logic is transmitted based on the second uplink resource corresponding to the second uplink grant.
  • Channel data Wherein, the deviation value in the time domain between the first uplink resource and the second uplink resource corresponding to the first uplink grant is less than or equal to the first time domain threshold.
  • step 201 in the embodiment of FIG. 2, and details are not repeated here.
  • the first logical channel corresponds to the first MAC (Media Access Control) SDU (Service Data Unit), and the first MAC SDU is encapsulated in the first MAC PDU (Protocol Data Unit, Protocol data unit).
  • first MAC Media Access Control
  • Service Data Unit Service Data Unit
  • MAC PDU Protocol Data Unit, Protocol data unit
  • the first MAC PDU includes the first MAC SDU, the MAC subheader corresponding to the first MAC SDU, etc.
  • the first MAC SDU includes data of the first logical channel, and the MAC subheader corresponding to the first MAC SDU includes the first logical channel. Of the logo.
  • the identity of the first logical channel may be an ID (Identity, identity) of the first logical channel.
  • the terminal device transmits the data of the first logical channel based on the second uplink resource, that is, the terminal device transmits the first MAC PDU based on the second uplink resource.
  • the second logical channel corresponds to the second MAC SDU, and the second MAC SDU is encapsulated in the second MAC PDU.
  • the second MAC PDU includes the second MAC SDU, the MAC subheader corresponding to the second MAC SDU, etc.
  • the second MAC SDU includes data of the second logical channel, and the MAC subheader corresponding to the second MAC SDU includes the second logical channel. Of the logo.
  • the identifier of the second logical channel may be the ID of the second logical channel.
  • the terminal device transmits the data of the second logical channel based on the second uplink resource, that is, the terminal device transmits the second MAC PDU based on the second uplink resource.
  • the data of the first logical channel includes first service data
  • the data of the second logical channel includes second service data
  • the priority of the first service data is higher than the priority of the second service data
  • first business data and the second business data are business data with different business types, or the first business data and the second business data are business data with the same business type but different business requirements, which is not the case in this embodiment. Make a limit.
  • the priority of the first service data and the priority of the second service data are set according to actual conditions.
  • the priority of the first service data may be set to be higher. Or, if the first service data is service data that needs to have a higher data transmission rate, the priority of the first service data may be set to be higher. Or, if the first service data is service data that needs to have a higher QoS (Quality of Service, quality of service), the priority of the first service data may be set to be higher.
  • QoS Quality of Service, quality of service
  • the terminal device may preferentially transmit the first service data, that is, the terminal device may preferentially transmit the data of the first logical channel, that is, the terminal The device can transmit the first MAC PDU first.
  • the first service data is URLLC data.
  • the second service data is eMBB (enhance Mobile Broadband, enhanced mobile broadband) data.
  • the URLLC data may be industrial control data, telemedicine data, automatic driving data, etc., which is not limited in this embodiment.
  • URLLC data needs to have a lower data transmission delay.
  • the eMBB data may be ultra-high-definition video data, web browsing data, file download data, etc., which is not limited in this embodiment. Usually eMBB data needs to have a higher data transmission rate.
  • the terminal device may determine that the first service data is URLLC data, and the second service data is eMBB data. Since the priority of the first service data is higher than the priority of the second service data, the terminal device can preferentially transmit URLLC data, that is, the terminal device can preferentially transmit the data of the first logical channel, that is, the terminal device can preferentially transmit the first MAC PDU.
  • the first uplink resource is an uplink resource in the first cell
  • the second uplink resource is an uplink resource in the second cell.
  • the first cell is allowed to transmit data of the first logical channel
  • the second cell is allowed to transmit data of the second logical channel.
  • the first uplink resource corresponding to the first uplink grant is the uplink resource in the first cell
  • the second uplink resource corresponding to the second uplink grant is the uplink resource in the second cell.
  • the uplink authorization has logical channel selection restrictions. According to the logical channel selection restrictions of the uplink authorization, it is possible to determine which logical channel data is allowed to be transmitted in the cell where the uplink resource corresponding to the uplink authorization is located.
  • the logical channel selection restriction of the first uplink authorization allows data of the first logical channel to be transmitted based on the first cell.
  • the logical channel selection restriction of the second uplink grant allows data of the second logical channel to be transmitted based on the second cell.
  • the data of the first logical channel may be transmitted based on the first uplink resource, that is, the first MAC PDU may be transmitted based on the first uplink resource.
  • the data of the second logical channel may be transmitted based on the second uplink resource, that is, the second MAC PDU may be transmitted based on the second uplink resource.
  • the terminal device may also perform the following operations: change the logical channel selection restriction of the second uplink authorization, and the modified logical channel selection restriction of the second uplink authorization allows data of the first logical channel to be transmitted based on the second cell.
  • the logical channel selection restriction of the second uplink grant refers to the restriction on the logical channels that can be transmitted on the second uplink resource indicated by the second uplink grant, that is, the restriction on which logical channel data is allowed to be transmitted based on the second uplink resource. That is, the data of which logical channels are allowed to be transmitted based on the second cell is restricted.
  • the logical channel selection restriction of the second uplink grant allows the data of the second logical channel to be transmitted based on the second uplink resource, and does not allow the data of the first logical channel to be transmitted based on the second uplink resource. That is, the logical channel selection restriction of the second uplink authorization allows the data of the second logical channel to be transmitted based on the second cell, and does not allow the data of the first logical channel to be transmitted based on the second cell.
  • changing the logical channel selection restriction of the second uplink grant refers to changing the restriction on the logical channel that can be transmitted on the second uplink resource indicated by the second uplink grant, that is, when the data of the second logical channel is allowed to be transmitted based on the second uplink resource
  • the data of the first logical channel is also allowed to be transmitted based on the second uplink resource. That is, on the basis of allowing the data of the second logical channel to be transmitted based on the second cell, the data of the first logical channel is also allowed to be transmitted based on the second cell.
  • the terminal device waits for the success of the uplink authorized LBT corresponding to the first logical channel before transmitting the data of the first logical channel, it may cause the first The data transmission delay of the data of the logical channel is relatively high. Therefore, in this case, the logical channel selection restriction of the second uplink authorization can be changed, that is, the data of the first logical channel can be allowed to be transmitted based on the second cell, that is, the first MAC PDU can be allowed to be transmitted based on the second cell. . In this way, the terminal device can transmit the data of the first logical channel based on the second uplink resource in the second cell, so as to reduce the data transmission delay of the data of the first logical channel.
  • the terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource.
  • the logical channel selection restriction of the second uplink authorization can be changed, that is, the data of the first logical channel can be allowed to be transmitted based on the second cell. In this way, the terminal device can transmit the data of the first logical channel based on the second uplink resource in the second cell, so as to reduce the data transmission delay of the data of the first logical channel.
  • the implementation manner of changing the logical channel selection restriction of the second uplink authorization may be: changing the logical channel selection restriction of the second uplink authorization within the first time period.
  • the first time period is predefined, or the first time period is configured by the network device.
  • the start time of the first time period is the time when the LBT of the first uplink grant fails.
  • the duration of the first time period is twice the back-off duration, or the duration of the first time period is multiple times the back-off duration.
  • the backoff duration refers to the duration required for the terminal device to stop performing LBT on the uplink grant corresponding to the first logical channel after the LBT of the first uplink grant fails.
  • the terminal device may transmit data of the first logical channel based on the second uplink resource, and outside the first time period, the terminal device may not be able to transmit data of the first logical channel based on the second uplink resource .
  • the first uplink resource may correspond to a first frequency range
  • the second uplink resource may correspond to a second frequency range, where the first frequency range and the second frequency range are located in the same cell, and the first uplink resource may correspond to the second frequency range.
  • One frequency range allows the data of the first logical channel to be transmitted
  • the second frequency range allows the data of the second logical channel to be transmitted.
  • the first uplink resource corresponds to the first frequency range
  • the second uplink resource corresponds to the second frequency range
  • the uplink grant has a logical channel selection restriction. According to the logical channel selection restriction of the uplink grant, it is possible to determine which logical channel data is allowed to be transmitted in the frequency range corresponding to the uplink resource corresponding to the uplink grant.
  • the logical channel selection restriction of the first uplink grant allows data of the first logical channel to be transmitted based on the first frequency range.
  • the logical channel selection restriction of the second uplink grant allows data of the second logical channel to be transmitted based on the second frequency range.
  • the data of the first logical channel may be transmitted based on the first uplink resource, that is, the first MAC PDU may be transmitted based on the first uplink resource.
  • the data of the second logical channel can be transmitted based on the first uplink resource, that is, the second MAC PDU can be transmitted based on the second uplink resource.
  • the first uplink resource may correspond to the first carrier component
  • the second uplink resource may correspond to the second carrier component.
  • the first carrier component allows the transmission of data of the first logical channel
  • the second carrier component allows the transmission of data of the second logical channel.
  • the first carrier component and the second carrier component are the carrier components allocated by the network equipment to the terminal equipment.
  • the first uplink resource corresponds to the first carrier component
  • the second uplink resource corresponds to the second carrier component
  • the uplink grant has a logical channel selection restriction. According to the logical channel selection restriction of the uplink grant, it is possible to determine which logical channel data is allowed to be transmitted by the carrier component corresponding to the uplink resource corresponding to the uplink grant.
  • the logical channel selection restriction of the first uplink grant allows data of the first logical channel to be transmitted based on the first carrier component.
  • the logical channel selection restriction of the second uplink grant allows the data of the second logical channel to be transmitted based on the second carrier component.
  • the data of the first logical channel may be transmitted based on the first uplink resource, that is, the first MAC PDU may be transmitted based on the first uplink resource.
  • the data of the second logical channel can be transmitted based on the first uplink resource, that is, the second MAC PDU can be transmitted based on the second uplink resource.
  • the terminal device modulates and encodes the first MAC PDU based on the MCS (Modulation and Coding SCheme, modulation and coding strategy) of the first uplink authorization.
  • the terminal device modulates and encodes the first MAC PDU based on the MCS of the second uplink authorization.
  • the MCS of the first uplink authorization may include the modulation mode and coding rate that the terminal device can use when transmitting the first MAC PDU.
  • the MCS of the second uplink authorization may include the modulation mode and coding rate that the terminal device can use when transmitting the second MAC PDU.
  • the modulation method may include QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature Amplitude Modulation, Quadrature Amplitude Modulation), 64QAM, 256QAM, etc., which are not limited in this embodiment.
  • QPSK Quadratture Phase Shift Keying
  • 16QAM Quadrature Amplitude Modulation
  • 64QAM 64QAM
  • 256QAM 256QAM
  • the coding rate may be 1/2, 3/4, and so on.
  • the coding rate can be 1/2, 3/4, and so on.
  • the modulation mode is 64QAM
  • the coding rate can be 2/3, 3/4, 5/6, and so on.
  • the modulation mode is 256QAM
  • the coding rate can be 3/4, 5/6, etc., which is not limited in this embodiment.
  • the terminal device may encode the first MAC PDU corresponding to the first logical channel based on the MCS of the first uplink authorization, and then may be based on the first uplink authorization.
  • the MCS modulates the encoded first MAC PDU, so that the terminal device can transmit the modulated and encoded first MAC PDU.
  • the terminal device may encode the first MAC PDU corresponding to the first logical channel based on the MCS of the second uplink authorization, and then may be based on the MCS of the second uplink authorization.
  • the encoded first MAC PDU is modulated, so that the terminal device can transmit the modulated and encoded first MAC PDU.
  • first MAC PDU modulated and coded by the MCS authorized by the first uplink is more in line with the service requirements of the first service data during transmission
  • second MAC PDU modulated and coded by the MCS authorized by the second uplink is being transmitted. Time is more in line with the business needs of the second business data.
  • the modulation order of the MCS authorized by the first uplink is lower.
  • the first MAC modulated and encoded by the MCS authorized by the first uplink PDU is more in line with the data transmission reliability requirements of URLLC data during transmission.
  • the second service data is eMBB data, corresponding to the service requirements of eMBB data, the modulation order of the second uplink authorized MCS is higher. In this way, the second MAC PDU modulated and coded by the second uplink authorized MCS is transmitted during transmission It is more in line with the data transmission rate requirements of eMBB data.
  • the MCS of the first uplink authorization is predefined, or the MCS of the first uplink authorization is configured by the network device.
  • the MCS of the second uplink authorization is predefined, or the MCS of the second uplink authorization is configured by the network device.
  • the network device may configure the MCS to the terminal device through DCI (Downlink Control Information, downlink control information).
  • DCI Downlink Control Information, downlink control information
  • the network device may configure the first uplink authorized MCS to the terminal device through the first DCI, and the network device may configure the second uplink authorized MCS to the terminal device through the second DCI.
  • the terminal device includes the HARQ entity corresponding to the second MAC PDU, and the terminal device may also perform the following operations: store the first MAC PDU in the HARQ entity.
  • the first MAC PDU includes the first MAC SDU corresponding to the first logical channel
  • the second MAC PDU includes the second MAC SDU corresponding to the second logical channel.
  • the HARQ entity corresponding to the second MAC PDU can be used to store the second MAC PDU.
  • the second MAC stored in the HARQ entity corresponding to the second MAC PDU can be deleted PDU, if the second MAC PDU is received in error, the second MAC PDU stored in the HARQ entity corresponding to the second MAC PDU may be transmitted again.
  • the terminal device When the terminal device transmits the data of the first logical channel based on the second uplink resource, the terminal device can store the first MAC PDU corresponding to the first logical channel in the HARQ entity corresponding to the second MAC PDU, if the first MAC PDU If the reception is successful, the first MAC PDU in the HARQ entity corresponding to the second MAC PDU can be deleted. If the first MAC PDU is received in error, the first MAC PDU in the HARQ entity corresponding to the second MAC PDU can be transmitted again .
  • the terminal device may also delete the second MAC PDU in the HARQ entity corresponding to the second MAC PDU.
  • the terminal device may store the second MAC PDU again in the HARQ entity corresponding to the second MAC PDU.
  • the terminal device may also perform the following operations: receive the HARQ feedback of the first MAC PDU, and the HARQ feedback of the first MAC PDU includes a negative acknowledgement NACK message or a positive acknowledgement ACK message.
  • the first MAC PDU includes the first MAC SDU corresponding to the first logical channel, the NACK message is used to indicate that the first MAC PDU is received incorrectly, and the ACK message is used to indicate that the first MAC PDU is successfully received.
  • the HARQ feedback of the first MAC PDU may be used to indicate whether the terminal device successfully receives the first MAC PDU, that is, the HARQ feedback of the first MAC PDU is used to indicate whether the terminal device successfully receives the data of the first logical channel.
  • the terminal device may wait to receive the HARQ feedback of the first MAC PDU corresponding to the first logical channel. If the HARQ feedback of the first MAC PDU is received, the terminal device may The HARQ feedback of a MAC PDU determines whether the first MAC PDU is successfully received.
  • the terminal device When the terminal device receives the NACK message, it can determine that the first MAC PDU is received incorrectly, that is, it is determined that the data of the first logical channel is received incorrectly. In this case, the terminal device can transmit the data of the first logical channel again, that is, again Transmit the first MAC PDU. When the terminal device receives the ACK message, it can be determined that the first MAC PDU is successfully received, that is, it can be determined that the data of the first logical channel is successfully received. In this case, the terminal device can transmit data of other logical channels, that is, transmit other MACs. PDU.
  • the terminal device may also perform the following operations: receive a third uplink grant, which is used to indicate the third uplink resource in the first cell , The third uplink resource is used to transmit the first MAC PDU again.
  • the terminal device can wait to receive the third uplink authorization. If the third uplink authorization is received, the terminal device can determine the third uplink authorization in the first cell according to the third uplink authorization. Uplink resource, so the terminal device can retransmit the first MAC PDU based on the third uplink resource, that is, retransmit the data of the first logical channel.
  • the terminal device may perform LBT on the third uplink authorization. If the LBT of the third uplink authorization is successful, the terminal device may retransmit the data of the first logical channel based on the third uplink resource, that is, retransmit the first logical channel. One MAC PDU. If the LBT of the third uplink authorization fails, the terminal device may send an SR (Scheduling Request, uplink scheduling request) to request the network device to schedule uplink resources for the first logical channel again.
  • SR Service Request, uplink scheduling request
  • the terminal device can also perform LBT on the uplink authorization corresponding to the second logical channel. If the LBT of the uplink authorization corresponding to the second logical channel is successful, the terminal device can correspond to the second logical channel
  • the uplink resource corresponding to the uplink grant transmits the data of the first logical channel again, that is, transmits the first MAC PDU again.
  • the terminal device may also perform the following operations: receive a fourth uplink grant, which is used to indicate the fourth uplink resource in the second cell , The fourth uplink resource is used to transmit the second MAC PDU.
  • the second MAC PDU includes the second MAC SDU corresponding to the second logical channel.
  • the terminal device Since the terminal device has already transmitted the data of the first logical channel based on the second uplink resource corresponding to the second logical channel, the terminal device may no longer be able to transmit the data of the second logical channel based on the second uplink resource. In this way, the terminal device can wait for the network device The uplink resource used to transmit the data of the second logical channel is scheduled again.
  • the terminal device can wait to receive the third uplink authorization, and can also wait to receive the fourth uplink authorization. If the fourth uplink authorization is received, the terminal device can use the The fourth uplink authorization determines the fourth uplink resource in the second cell, so that the terminal device can transmit data of the second logical channel based on the fourth uplink resource, that is, can transmit the second MAC PDU based on the fourth uplink resource.
  • the terminal device can perform LBT on the fourth uplink grant. If the LBT of the fourth uplink grant is successful, the terminal device can transmit the data of the second logical channel based on the fourth uplink resource, that is, it can be based on the fourth uplink resource. Fourth, the uplink resource transmits the second MAC PDU. If the LBT of the fourth uplink grant fails, the terminal device may send an SR to request the network device to reschedule the uplink resource for the second logical channel.
  • the terminal device may also perform the following operations: receive a fourth uplink grant, which is used to indicate the fourth uplink resource in the second cell ,
  • the fourth uplink resource is used to transmit the second MAC PDU.
  • the second MAC PDU includes the second MAC SDU corresponding to the second logical channel.
  • the terminal device Since the terminal device has already transmitted the data of the first logical channel based on the second uplink resource corresponding to the second logical channel, the terminal device may no longer be able to transmit the data of the second logical channel based on the second uplink resource. In this way, the terminal device can wait for the network device The uplink resource used to transmit the data of the second logical channel is scheduled again.
  • the terminal device may wait to receive the fourth uplink authorization. If the fourth uplink authorization is received, the terminal device may determine the fourth uplink authorization in the second cell according to the fourth uplink authorization. Uplink resources, so that the terminal device can transmit data of the second logical channel based on the fourth uplink resource, that is, can transmit the second MAC PDU based on the fourth uplink resource.
  • the terminal device can perform LBT on the fourth uplink grant. If the LBT of the fourth uplink grant is successful, the terminal device can transmit the data of the second logical channel based on the fourth uplink resource, that is, it can be based on the fourth uplink resource. Fourth, the uplink resource transmits the second MAC PDU. If the LBT of the fourth uplink grant fails, the terminal device may send an SR to request the network device to reschedule the uplink resource for the second logical channel.
  • the terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource corresponding to the first uplink grant.
  • the terminal device can be based on the second uplink The resource transmits the data of the first logical channel.
  • the terminal device since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced.
  • the transmission delay of the channel's data since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced. The transmission delay of the channel's data.
  • the terminal device can change the logical channel selection restriction of the second uplink authorization, that is, allow the data of the first logical channel to be transmitted based on the second cell.
  • the terminal device can transmit the data of the first logical channel based on the second uplink resource in the second cell. In this way, the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the second uplink resource.
  • the data of a logical channel is transmitted using a second uplink resource with a similar time domain, so the data transmission delay of the data of the first logical channel can be reduced.
  • FIG. 7 is a flowchart of a data transmission method according to an exemplary embodiment.
  • the data transmission method may be applied to the implementation environment shown in FIG. 1, and the data transmission method may include the following At least part of the content:
  • Step 701 Receive the data of the first logical channel transmitted in the second uplink resource corresponding to the second uplink grant, the second uplink grant is the uplink grant corresponding to the second logical channel, and the data of the first logical channel is that the terminal device is in the first It is sent when the LBT of the first uplink authorization corresponding to a logical channel fails, and the LBT of the second uplink authorization corresponding to the second logical channel succeeds.
  • the deviation value in the time domain between the first uplink resource and the second uplink resource corresponding to the first uplink grant is less than or equal to the first time domain threshold.
  • the first uplink grant is an uplink grant configured by the network device for the terminal device, and the first uplink grant may be used to indicate the first uplink resource.
  • the second uplink grant is an uplink grant configured by the network device for the terminal device, and the second uplink grant may be used to indicate the second uplink resource.
  • the first uplink resource may include a first uplink time domain resource and/or a first uplink frequency domain resource
  • the second uplink resource may include a second uplink time domain resource and/or a second uplink frequency domain resource.
  • the example does not limit this.
  • first uplink resource and the second uplink resource may be uplink resources in the same cell, or may be uplink resources in different cells, which is not limited in this embodiment. Further, in a case where the first uplink resource and the second uplink resource are uplink resources of the same cell, the first uplink resource and the second uplink resource may correspond to different frequency ranges.
  • the deviation of the first uplink resource and the second uplink resource in the time domain is less than or equal to the first time domain threshold, which means that the first uplink resource and the second uplink resource are similar in the time domain.
  • the terminal The data transmission delay of the device transmitting the data of the first logical channel based on the second uplink resource is similar to the data transmission delay of the terminal device transmitting the data of the first logical channel based on the first uplink resource.
  • the terminal device may send the data of the first logical channel based on the second uplink resource corresponding to the second uplink grant.
  • the network device may receive the data of the first logical channel in the second uplink resource.
  • the first logical channel corresponds to the first MAC SDU, and the first MAC SDU is encapsulated in the first MAC PDU.
  • the first MAC PDU includes the first MAC SDU, the MAC subheader corresponding to the first MAC SDU, etc.
  • the first MAC SDU includes data of the first logical channel, and the MAC subheader corresponding to the first MAC SDU includes the first logical channel. Of the logo.
  • the identifier of the first logical channel may be the ID of the first logical channel.
  • the terminal device transmits the data of the first logical channel based on the second uplink resource, that is, the terminal device transmits the first MAC PDU based on the second uplink resource.
  • the second logical channel corresponds to the second MAC SDU, and the second MAC SDU is encapsulated in the second MAC PDU.
  • the second MAC PDU includes the second MAC SDU, the MAC subheader corresponding to the second MAC SDU, etc.
  • the second MAC SDU includes data of the second logical channel, and the MAC subheader corresponding to the second MAC SDU includes the second logical channel. Of the logo.
  • the identifier of the second logical channel may be the ID of the second logical channel.
  • the terminal device transmits the data of the second logical channel based on the second uplink resource, that is, the terminal device transmits the second MAC PDU based on the second uplink resource.
  • the first time domain threshold is predefined, or the first time domain threshold is configured by the network device.
  • the first time domain threshold is configured by the network device to the terminal device through an RRC message.
  • the data of the first logical channel includes first service data
  • the data of the second logical channel includes second service data
  • the priority of the first service data is higher than the priority of the second service data
  • the first service data is URLLC data.
  • the second service data is eMBB data.
  • the first uplink resource is an uplink resource in the first cell
  • the second uplink resource is an uplink resource in the second cell.
  • the first cell is allowed to transmit data of the first logical channel
  • the second cell is allowed to transmit data of the second logical channel.
  • the first uplink resource corresponding to the first uplink grant is the uplink resource in the first cell
  • the second uplink resource corresponding to the second uplink grant is the uplink resource in the second cell.
  • the uplink grant has a logical channel selection restriction. According to the logical channel selection restriction of the uplink grant, it is possible to determine which logical channel data is allowed to be transmitted in the cell where the uplink resource corresponding to the uplink grant is located.
  • the logical channel selection restriction of the first uplink grant allows data of the first logical channel to be transmitted based on the first cell.
  • the logical channel selection restriction of the second uplink grant allows data of the second logical channel to be transmitted based on the second cell.
  • the data of the first logical channel may be transmitted based on the first uplink resource, that is, the first MAC PDU may be transmitted based on the first uplink resource.
  • the data of the second logical channel may be transmitted based on the second uplink resource, that is, the second MAC PDU may be transmitted based on the second uplink resource.
  • the first uplink resource may correspond to a first frequency range
  • the second uplink resource may correspond to a second frequency range, where the first frequency range and the second frequency range are located in the same cell, and the first uplink resource may correspond to the second frequency range.
  • One frequency range allows the data of the first logical channel to be transmitted
  • the second frequency range allows the data of the second logical channel to be transmitted.
  • the first uplink resource may correspond to the first carrier component
  • the second uplink resource may correspond to the second carrier component.
  • the first carrier component allows the transmission of data of the first logical channel
  • the second carrier component allows the transmission of data of the second logical channel.
  • the network device may also perform the following operations: demodulate and decode the first MAC PDU based on the MCS of the second uplink authorization. And/or demodulate and decode the first MAC PDU based on the MCS of the first uplink authorization.
  • the network device may demodulate and decode the first MAC PDU based on the MCS of the first uplink authorization.
  • the network device may demodulate and decode the first MAC PDU based on the MCS of the second uplink authorization.
  • the network device may demodulate and decode the first MAC PDU based on the MCS of the second uplink authorization.
  • the network device may be based on The MCS authorized by the first uplink demodulates and decodes the first MAC PDU.
  • the MCS of the first uplink authorization is predefined, or the MCS of the first uplink authorization is configured by the network device.
  • the MCS of the second uplink authorization is predefined, or the MCS of the second uplink authorization is configured by the network device.
  • the network device can configure MCS to the terminal device through DCI.
  • the network device may configure the first uplink authorized MCS to the terminal device through the first DCI, and the network device may configure the second uplink authorized MCS to the terminal device through the second DCI.
  • the first MAC SDU can be delivered to the RLC (Radio Link Control) entity corresponding to the first logical channel, that is, the The data of the first logical channel is delivered to the RLC entity.
  • RLC Radio Link Control
  • the RLC entity can be used to forward data.
  • the RLC entity can receive the data submitted by the MAC layer and submit the data submitted by the MAC layer to the PDCP (Packet Data Convergence Protocol) layer.
  • the RLC entity may receive the data submitted by the PDCP layer, and submit the data submitted by the PDCP layer to the MAC layer.
  • PDCP Packet Data Convergence Protocol
  • the network device may also perform the following operations: send the HARQ feedback of the first MAC PDU, and the HARQ feedback of the first MAC PDU includes a negative acknowledgement NACK message or a positive acknowledgement ACK message.
  • the first MAC PDU includes the first MAC SDU corresponding to the first logical channel, the NACK message is used to indicate that the first MAC PDU is received incorrectly, and the ACK message is used to indicate that the first MAC PDU is successfully received.
  • the HARQ feedback of the first MAC PDU may be used to indicate whether the terminal device successfully receives the first MAC PDU, that is, the HARQ feedback of the first MAC PDU is used to indicate whether the terminal device successfully receives the data of the first logical channel.
  • the network device can send the HARQ feedback of the first MAC PDU, so that the HARQ feedback of the first MAC PDU can indicate to the terminal device whether the first MAC PDU is successfully received, that is, the HARQ feedback of the first MAC PDU instructs the terminal device to be the first Whether the data of the logical channel is successfully received.
  • the network device may send a NACK message, and when the data of the first logical channel is successfully received, the network device may send an ACK message.
  • the network device may also perform the following operations: send a third uplink grant, which is used to indicate the third uplink resource in the first cell , The third uplink resource is used to transmit the first MAC PDU again.
  • the network device When the network device receives the data of the first logical channel based on the second uplink resource, the network device can determine that the terminal device needs to transmit the data of the first logical channel. In this way, when the network device receives the data of the first logical channel by mistake, the network device can The third uplink resource is scheduled for the first logical channel. In this way, the terminal device can transmit the data of the first logical channel again based on the third uplink resource, that is, the terminal device can transmit the first MAC PDU based on the third uplink resource.
  • the network device can send the third uplink grant, that is, the third uplink resource can be scheduled in the first cell for the first logical channel, so that the terminal device can be based on the first logical channel.
  • the third uplink resource transmits data of the first logical channel, that is, the terminal device can transmit the first MAC PDU based on the third uplink resource.
  • the network device may also perform the following operations: send a fourth uplink grant, which is used to indicate the fourth uplink resource in the second cell ,
  • the fourth uplink resource is used to transmit the second MAC PDU.
  • the second MAC PDU includes the second MAC SDU corresponding to the second logical channel.
  • the network device may determine that the data of the first logical channel occupies the second uplink resource corresponding to the second logical channel for transmission. In this case, since the data of the second logical channel may need to be transmitted, the network device can schedule the fourth uplink resource for the second logical channel. In this way, the terminal device can transmit the data of the second logical channel based on the fourth uplink resource. Data, that is, the terminal device can transmit the second MAC PDU based on the fourth uplink resource.
  • the network device when the network device receives the data of the first logical channel by mistake, in addition to the third uplink grant, the network device can also send the fourth uplink grant, which means that the second logical channel is scheduled for the second cell in the second cell.
  • the fourth uplink grant which means that the second logical channel is scheduled for the second cell in the second cell.
  • the network device may also perform the following operations: send a fourth uplink grant, which is used to indicate the fourth uplink resource in the second cell ,
  • the fourth uplink resource is used to transmit the second MAC PDU.
  • the second MAC PDU includes the second MAC SDU corresponding to the second logical channel.
  • the network device may determine that the data of the first logical channel occupies the second uplink resource corresponding to the second logical channel for transmission. In this case, since the data of the second logical channel may need to be transmitted, the network device can schedule the fourth uplink resource for the second logical channel. In this way, the terminal device can transmit the data of the second logical channel based on the fourth uplink resource. data.
  • the network device when the network device successfully receives the data of the first logical channel, the network device can send the fourth uplink grant, that is, the fourth uplink resource can be scheduled in the second cell for the second logical channel, so that the terminal device can be based on the first logical channel.
  • the fourth uplink resource transmits data of the second logical channel, that is, the terminal device can transmit the second MAC PDU based on the fourth uplink resource.
  • the terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource corresponding to the first uplink grant.
  • the terminal device does not need to wait for the first uplink resource.
  • the uplink authorized LBT corresponding to the logical channel is successful, the data of the first logical channel can be transmitted, but the second uplink resource with similar time domain can be used for transmission. In this way, the network device can receive the data of the first logical channel on the second uplink resource in time, so the data transmission delay of the data of the first logical channel can be reduced.
  • FIG. 8 is a structural diagram showing a data transmission apparatus according to an exemplary embodiment.
  • the apparatus may be configured in a terminal device, and the apparatus may include:
  • the transmission module 810 is configured to, when the LBT of the first uplink grant corresponding to the first logical channel fails, and the LBT of the second uplink grant corresponding to the second logical channel succeeds, based on the second uplink resource corresponding to the second uplink grant
  • the data of the first logical channel is transmitted; wherein, the deviation value in the time domain between the first uplink resource corresponding to the first uplink grant and the second uplink resource is less than or equal to the first time domain threshold.
  • the data of the first logical channel includes first service data
  • the data of the second logical channel includes second service data
  • the priority of the first service data is higher than that of the second service data.
  • the priority of the business data is higher than that of the second service data.
  • the first uplink resource is an uplink resource in a first cell
  • the second uplink resource is an uplink resource in a second cell; wherein, the first cell allows transmission of the first The data of the logical channel, the second cell is allowed to transmit the data of the second logical channel.
  • the device further includes:
  • the modification module 820 is configured to modify the logical channel selection restriction of the second uplink authorization, and the modified logical channel selection restriction of the second uplink authorization allows data of the first logical channel to be transmitted based on the second cell.
  • the modification module 820 is also used to:
  • the device further includes:
  • the receiving module 830 is configured to receive the HARQ feedback of the hybrid automatic repeat request of the first media access control layer MAC protocol data unit PDU.
  • the HARQ feedback of the first MAC PDU includes a negative acknowledgement NACK message or an acknowledgement ACK message; where the The first MAC PDU includes the first media access control layer MAC service data unit SDU corresponding to the first logical channel, the NACK message is used to indicate that the first MAC PDU is received incorrectly, and the ACK message is used to indicate the first MAC PDU Successfully received.
  • the receiving module 830 is further configured to:
  • a third uplink grant is received, where the third uplink grant is used to indicate a third uplink resource in the first cell, and the third uplink resource is used to retransmit the first MAC PDU.
  • the receiving module 830 is further configured to:
  • Receive a fourth uplink grant where the fourth uplink grant is used to indicate a fourth uplink resource in the second cell, and the fourth uplink resource is used to transmit a second MAC PDU; wherein, the second MAC PDU includes the second logic The second MAC SDU corresponding to the channel.
  • the terminal device includes the HARQ entity corresponding to the second MAC PDU, and the device further includes:
  • the storage module 840 is configured to store the first MAC PDU in the HARQ entity; where the first MAC PDU includes the first MAC SDU corresponding to the first logical channel, and the second MAC PDU includes the second logical channel corresponding to the The second MAC SDU.
  • the first time domain threshold is predefined, or the first time domain threshold is configured by a network device.
  • the first service data is ultra-reliable low-latency communication URLLC data
  • the second service data is enhanced mobile broadband eMBB data.
  • the terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource corresponding to the first uplink grant.
  • the terminal device can be based on the second uplink The resource transmits the data of the first logical channel.
  • the terminal device since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced.
  • the transmission delay of the channel's data since the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the data of the first logical channel, but uses the second uplink resource with similar time domain for transmission, so the first logical channel can be reduced. The transmission delay of the channel's data.
  • the terminal device can change the logical channel selection restriction of the second uplink authorization, that is, allow the data of the first logical channel to be transmitted based on the second cell.
  • the terminal device can transmit the data of the first logical channel based on the second uplink resource in the second cell. In this way, the terminal device does not need to wait for the uplink authorized LBT corresponding to the first logical channel to be successful before transmitting the second uplink resource.
  • the data of a logical channel is transmitted using a second uplink resource with a similar time domain, so the data transmission delay of the data of the first logical channel can be reduced.
  • FIG. 9 is a structural diagram of a data transmission apparatus according to an exemplary embodiment.
  • the apparatus may be configured in a network device, and the apparatus may include:
  • the receiving module 910 is configured to receive data of a first logical channel transmitted in a second uplink resource corresponding to a second uplink grant, where the second uplink grant is an uplink grant corresponding to the second logical channel, and the data of the first logical channel It is sent by the terminal equipment when the LBT of the first uplink authorization corresponding to the first logical channel fails, and the LBT of the second uplink authorization corresponding to the second logical channel is successful; wherein, the first uplink authorization corresponding to the first uplink The time domain deviation value between the resource and the second uplink resource is less than or equal to the first time domain threshold.
  • the data of the first logical channel includes first service data
  • the data of the second logical channel includes second service data
  • the priority of the first service data is higher than that of the second service data.
  • the priority of the business data is higher than that of the second service data.
  • the first uplink resource is an uplink resource in a first cell
  • the second uplink resource is an uplink resource in a second cell; wherein, the first cell allows transmission of the first The data of the logical channel, the second cell is allowed to transmit the data of the second logical channel.
  • the device further includes:
  • the sending module 920 is configured to send the HARQ feedback of the hybrid automatic repeat request of the first media access control layer MAC protocol data unit PDU.
  • the HARQ feedback of the first MAC PDU includes a negative acknowledgement NACK message or an acknowledgement ACK message; where the The first MAC PDU includes the first media access control layer MAC service data unit SDU corresponding to the first logical channel, the NACK message is used to indicate that the first MAC PDU is received incorrectly, and the ACK message is used to indicate the first MAC PDU Successfully received.
  • the sending module 920 is further configured to:
  • Send a third uplink grant where the third uplink grant is used to indicate a third uplink resource in the first cell, and the third uplink resource is used to retransmit the first MAC PDU.
  • the sending module 920 is further configured to:
  • the fourth uplink grant is used to indicate the fourth uplink resource in the second cell, and the fourth uplink resource is used to transmit the second MAC PDU; where the second MAC PDU includes the second logic The second MAC SDU corresponding to the channel.
  • the first time domain threshold is predefined, or the first time domain threshold is configured by the network device.
  • the first service data is ultra-reliable low-latency communication URLLC data
  • the second service data is enhanced mobile broadband eMBB data.
  • the terminal device may not be able to transmit the data of the first logical channel based on the first uplink resource corresponding to the first uplink grant.
  • the terminal device does not need to wait for the first uplink resource.
  • the uplink authorized LBT corresponding to the logical channel is successful, the data of the first logical channel can be transmitted, but the second uplink resource with similar time domain can be used for transmission. In this way, the network device can receive the data of the first logical channel on the second uplink resource in time, so the data transmission delay of the data of the first logical channel can be reduced.
  • FIG. 10 shows a schematic structural diagram of a communication device provided by an exemplary embodiment of the present application.
  • the communication device may be a network device or a terminal device.
  • the communication device includes a processor 1001, a receiver 1002, and a transmitter. 1003, a memory 1004, and a bus 1005.
  • the processor 1001 includes one or more processing cores, and the processor 1001 executes various functional applications and information processing by running software programs and modules.
  • the receiver 1002 and the transmitter 1003 may be implemented as a communication component, and the communication component may be a communication chip.
  • the memory 1004 is connected to the processor 1001 through a bus 1005.
  • the memory 1004 may be used to store at least one instruction, and the processor 1001 is used to execute the at least one instruction, so as to implement each step performed by the first IAB base station in the foregoing method embodiments.
  • the memory 1004 can be implemented by any type of volatile or non-volatile storage device or a combination thereof.
  • the volatile or non-volatile storage device includes, but is not limited to: magnetic disks or optical disks, EEPROM (Electrically Erasable Programmable read only memory, electrically erasable programmable read-only memory), EPROM (Erasable Programmable Read-Only Memory, erasable programmable read-only memory), SRAM (Static Random Access Memory, static access memory at any time), ROM (Read Only Memory, magnetic memory, flash memory, PROM (Programmable Read-Only Memory).
  • the present application provides a computer-readable storage medium in which at least one instruction is stored, and the at least one instruction is loaded and executed by the processor to implement the data transmission method provided by each method embodiment described above.
  • This application also provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the data transmission method provided by the foregoing method embodiments.
  • the functions described in the embodiments of the present application may be implemented by hardware, software, firmware, or any combination thereof. When implemented by software, these functions can be stored in a computer-readable medium or transmitted as one or more instructions or codes on the computer-readable medium.
  • the computer-readable medium includes a computer storage medium and a communication medium, where the communication medium includes any medium that facilitates the transfer of a computer program from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种数据传输方法、装置、设备及存储介质,涉及通信技术领域。所述方法包括:若第一逻辑信道对应的第一上行授权的LBT失败,说明终端设备可能无法基于第一上行授权对应的第一上行资源传输第一逻辑信道的数据,在该种情况下,若第二逻辑信道对应的第二上行授权的LBT成功,且该第二上行授权对应的第二上行资源与该第一上行资源在时域上相近,则终端设备可以基于该第二上行资源传输该第一逻辑信道的数据。如此,由于终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是利用时域相近的第二上行资源进行传输,因此可以降低第一逻辑信道的数据的传输时延。

Description

数据传输方法、装置、设备及存储介质 技术领域
本申请涉及通信技术领域,特别涉及一种数据传输方法、装置、设备及存储介质。
背景技术
非授权频谱是一种共享频谱,为了使得各个通信设备在非授权频谱上能够友好共存,一些国家或地区规定了使用非授权频谱需要满足的要求,如需要遵循LBT(Listen Before Talk,先听后说)原则,即在非授权频谱上,终端需要先进行LBT后再传输数据。
目前,非授权频谱可以用于传输URLLC(Ultra Reliable Low Latency Communications,超可靠低时延通信)数据。通常,为了保证URLLC业务的可靠性,要求URLLC数据的传输时延较短。
然而,在非授权频谱中,如果URLLC数据对应的上行资源LBT失败,则终端无法立即对URLLC数据进行传输,而是要等待对该URLLC数据对应的上行资源LBT成功后再进行传输,如此导致URLLC数据传输时延较高。
发明内容
本申请实施例提供了一种数据传输方法、装置、设备及存储介质,可以用于解决实现数据传输的问题。所述技术方案如下:
一方面,提供了一种数据传输方法,应用于终端设备中,所述方法包括:
在第一逻辑信道对应的第一上行授权的LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下,基于所述第二上行授权对应的第二上行资源传输所述第一逻辑信道的数据;
其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值小于或等于第一时域阈值。
另一方面,提供了一种数据传输方法,应用于网络设备中,所述方法包括:
接收在第二上行授权对应的第二上行资源中传输的第一逻辑信道的数据,所述第二上行授权为第二逻辑信道对应的上行授权,所述第一第一逻辑信道的数据是终端设备在第一逻辑信道对应的第一上行授权的LBT失败,所述第二逻辑信道对应的第二上行授权的LBT成功的情况下发送的;
其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值小于或等于第一时域阈值。
一方面,提供了一种数据传输装置,所述装置包括:
传输模块,用于在第一逻辑信道对应的第一上行授权的LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下,基于所述第二上行授权对应的第二上行资源传输所述第一逻辑信道的数据;
其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值小于或等于第一时域阈值。
另一方面,提供了一种数据传输装置,所述装置包括:
接收模块,用于接收在第二上行授权对应的第二上行资源中传输的第一逻辑信道的数据,所述第二上行授权为第二逻辑信道对应的上行授权,所述第一逻辑信道的数据是终端设备在第一逻辑信道对应的第一上行授权的LBT失败,所述第二逻辑信道对应的第二上行授权的LBT成功的情况下发送的;
其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值 小于或等于第一时域阈值。
一方面,提供了一种通信***,包括终端设备和网络设备,终端设备包括上述一方面任一所述的装置,网络设备包括上述另一方面中任一所述的装置。
一方面,提供了一种终端设备,所述终端设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述一方面中任一所述的方法。
另一方面,提供了一种网络设备,所述网络设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现上述另一方面中任一所述的方法。
一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,所述指令被处理器执行时实现上述一方面中任一所述的方法。
另一方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,所述指令被处理器执行时实现上述另一方面中任一所述的方法。
一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述一方面中任一所述的方法。
另一方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述另一方面中任一所述的方法。
本申请实施例提供的技术方案带来的有益效果至少包括:
若第一逻辑信道对应的第一上行授权的LBT失败,说明终端设备可能无法基于第一上行授权对应的第一上行资源传输第一逻辑信道的数据,在该种情况下,若第二逻辑信道对应的第二上行授权的LBT成功,且该第二上行授权对应的第二上行资源与该第一上行资源在时域上相近,则终端设备可以基于该第二上行资源传输该第一逻辑信道的数据。如此,由于终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是利用时域相近的第二上行资源进行传输,因此可以降低第一逻辑信道的数据的传输时延。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一个示例性实施例提供的实施环境的示意图;
图2是本申请一个示例性实施例提供的数据传输方法的流程图;
图3是本申请一个示例性实施例提供的上行资源的示意图;
图4是本申请一个示例性实施例提供的数据传输方法的流程图;
图5是本申请一个示例性实施例提供的数据传输方法的示意图;
图6是本申请另一个示例性实施例提供的数据传输方法的示意图;
图7是本申请一个示例性实施例提供的数据传输方法的流程图;
图8是本申请一个示例性实施例提供的数据传输装置的结构示意图;
图9是本申请另一个示例性实施例提供的数据传输装置的结构示意图;
图10是本申请一个示例性实施例提供的通信设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在对本申请实施例提供的数据传输方法进行详细介绍之前,先对本申请实施例涉及的 相关术语和实施环境进行简单介绍。
首先,对本申请实施例涉及的相关术语进行简单介绍。
1、非授权频谱
非授权频谱是国家和地区划分的可用于通信设备进行通信的频谱,该频谱通常被认为是共享频谱,即不同通信***中的通信设备只要满足国家或地区在该频谱上设置的法规要求,就可以使用该频谱,不需要向政府申请专有的频谱授权。
2、逻辑信道、传输信道、物理信道
无线接口可以分为三个协议层,即可以分为物理层、数据链路层和网络层。其中,物理层主要用于为高层业务提供传输的无线物理通道。数据链路层包括MAC(Medium Access Control,媒体接入控制)子层、RLC(Radio Link Control,无线链路控制)子层、PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层、SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层。网络层包括RRC(Radio Resource Control,无线资源控制)子层。
通常来讲,发射端信源信息经过网络层、数据链路层、物理层处理,通过网络到接收端,再经过物理层、数据链路层、网络层的整个处理过程,就是信道。按照不同的层之间的环节,信道又分为逻辑信道、传输信道和物理信道。其中,物理信道是物理层实际传输信息的信道,传输信道是物理层与MAC子层之间的信道,逻辑信道是MAC子层和RLC子层之间的信道。
其中,逻辑信道根据信道中传输信息的不同可以分为控制信道和业务信道。控制信道可以用于传输控制面信息,主要包括BCCH(Broadcast Control Channel,广播控制信道)、PCCH(Paging Control Channel,寻呼控制信道)、CCCH(Common Control Channel,公共控制信道)、DCCH(Dedicated Control Channel,专用控制信道)。业务信道可以用于传输用户面信息,主要包括DTCH(Dedicated Traffic Channel,专用业务信道)。
其中,传输信道可以分为上行传输信道和下行传输信道。上行传输信道可以包括UL-SCH(Uplink Shared Channel,上行共享信道)、RACH(Random Access Channel,随机接入信道)。下行传输信道可以包括BCH(Broadcast Channel,广播信道)、DL-SCH(Downlink Shared Channel,下行共享信道)、PCH(Paging Channel,寻呼信道):用于传输寻呼信息。
其中,物理信道是指信号实际传输的通道,物理信道可以分为上行物理信道和下行物理信道。上行物理信道包括PUCCH(Physical Uplink Control Channel,物理上行控制信道)、PUSCH(Physical Uplink Shared Channel,物理上行共享信道)、PRACH(Physical Random-Access Channel,物理随机接入信道)。下行物理信道包括PDCCH(Physical Downlink Control Channel,物理下行控制信道)、PDSCH(Physical Downlink Shared Channel,物理下行共享信道)、PBCH(Physical Broadcast Channel,物理广播信道)。
3、HARQ(Hybrid Automatic Repeat Request,混合自动重传请求)
HARQ是一种结合FEC(Forward Error Correction,前向纠错)机制与ARQ(Automatic Repeat-Request,自动重传请求)机制的技术。
HARQ进程是指发送方向接收方发送数据后,接收方对该数据进行接收,无论接收方是否成功接收该数据,都需要向发送方发送反馈信息,该反馈信息用于指示发送方该数据是否成功接收。
其中,数据成功接收包括成功接收到该数据,并且成功对该数据进行解调解码。数据错误接收包括未成功接收到该数据,或者成功接收到该数据但是对该数据解调解码失败。
通常,若数据成功接收,接收方会向发送方反馈ACK(Acknowledgement,肯定应答)消息,若数据错误接收,接收方会向发送方反馈NACK(Negative Acknowledgement,否认应答)消息。
4、LBT
为了使得各个通信设备在非授权频谱上能够友好共存,一些国家或地区规定了使用非授权频谱需要满足的要求,如需要遵循LBT原则。
也就是,终端设备在非授权频谱上传输数据之前,需要先按照规定对上行资源进行侦听,如果侦听成功,即该上行资源可用时,终端设备可以基于该上行资源进行数据传输。如果侦听失败,即该上行资源不可用时,终端设备需要按照规定回退一段时间再继续侦听,直到侦听成功,才可以基于可用的上行资源进行数据传输。
接下来,对本申请实施例涉及的实施环境进行简单介绍。
本申请实施例的技术方案可以应用于各种通信***,例如:GSM(Global System of Mobile communication,全球移动通讯)***、CDMA(Code Division Multiple Access,码分多址)***、WCDMA(Wideband Code Division Multiple Access,宽带码分多址)***、GPRS(General Packet Radio Service,通用分组无线业务)、LTE(Long Term Evolution,长期演进)***、FDD(Frequency Division Duplex,频分双工)***、TDD(Time Division Duplex,时分双工)***、LTE-A(Aadvanced Long Term Evolution,先进的长期演进)***、NR(New Redio,新无线)***、NR***的演进***、LTE-U(LTE-based access to unlicensed spectrum,非授权频段上的LTE)***、NR-U(NR-based access to unlicensed spectrum,非授权频段上的NR)***、UMTS(Universal Mobile Telecommunication System,通用移动通信***)、WiMAX(Worldwide interoperability for Microwave Access,全球互联微波接入)通信***、WLAN(Wireless Local Area Networks,无线局域网)、WiFi(Wireless Fidelity,无线保真)、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,D2D(Device to Device,设备到设备)通信,M2M(Machine to Machine,机器到机器)通信,MTC(Machine Type Communication,机器类型通信),以及V2V(Vehicle to Vehicle,车辆间)通信等,本申请实施例也可以应用于这些通信***。
本申请实施例描述的***架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
示例性的,本申请实施例应用的通信***100如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是eNB(Evolutional Node B,演进型基站),或者是CRAN(Cloud Radio Access Network,云无线接入网络)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信***中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由PSTN(Public Switched Telephone Networks,公共交换电话网络)、DSL(Digital Subscriber Line,数字用户线路)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、WLAN、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或IoT(Internet of Things,物联网)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的PCS(Personal Communications System,个人通信 ***)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或GPS(Global Positioning System,全球定位***)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、UE(User Equipment,用户设备)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、SIP(Session Initiation Protocol,会话启动协议)电话、WLL(Wireless Local Loop,无线本地环路)站、PDA(Personal Digital Assistant,个人数字处理)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端设备120之间可以进行D2D通信。
可选地,5G通信***或5G网络还可以称为NR***或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信***100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,譬如,在切换场景中,通常包括第一网络设备和第二网络设备,该第一网络设备为源网络设备,该第二网络设备为目标网络设备,即终端从第一网络设备切换至第二网络设备。
可选地,该通信***100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/***中具有通信功能的设备可称为通信设备。以图1示出的通信***100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信***100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
在介绍完本申请实施例涉及的相关术语和实施环境后,接下来将结合附图对本申请实施例提供的数据传输方法进行详细介绍。
请参考图2,该图2是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法可以应用于上述图1所示的实施环境中,该数据传输方法可以包括如下内容中的至少部分内容:
步骤201:在第一逻辑信道对应的第一上行授权的LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下,基于第二上行授权对应的第二上行资源传输第一逻辑信道的数据。其中,第一上行授权对应的第一上行资源与第二上行资源在时域上的偏差值小于或等于第一时域阈值。
可选地,第一上行授权为网络设备为终端设备配置的上行授权,该第一上行授权可以用于指示第一上行资源。
可选地,第二上行授权为网络设备为终端设备配置的上行授权,该第二上行授权可以用于指示第二上行资源。
可选地,第一上行资源包括第一上行时域资源和/或第一上行频域资源。也就是,第一上行资源可以包括第一上行时域资源,也可以包括第一上行频域资源,还可以既包括第一上行时域资源又包括第一上行频域资源,本实施例对此不做限定。
类似的,第二上行资源包括第二上行时域资源和/或第二上行频域资源,本实施例对此不做限定。
需要说明的是,第一上行资源和第二上行资源可以为同一小区中的上行资源,也可以为不同小区中的上行资源,本实施例对此不做限定。进一步地,在第一上行资源和第二上行资源为同一小区的上行资源的情况下,该第一上行资源和该第二上行资源对应于不同的频率范围。
其中,第一上行资源与第二上行资源在时域上的偏差值可以为第一上行资源在时域上的起始时间与第二上行资源在时域上的起始时间之间的偏差值,也可以为第一上行资源在时域上的结束时间与第二上行资源在时域上的结束时间之间的偏差值,还可以为第一上行资源在时域上的结束时间与第二上行资源在时域上的起始时间之间的偏差值等等,本实施例对此不做限定。
作为一种示例,第一时域阈值为预定义的,或者,第一时域阈值为网络设备配置的。
可选地,第一时域阈值可以为网络设备通过RRC(Radio Resource Control,无线资源控制)消息向终端设备配置的。
第一上行资源与第二上行资源在时域上的偏差值小于或等于第一时域阈值,即可以说明第一上行资源与第二上行资源在时域上相近甚至重叠,在该种情况下,终端设备基于第二上行资源传输第一逻辑信道的数据的数据传输时延,与基于第一上行资源传输第一逻辑信道的数据的数据传输时延相近。
当第一上行授权的LBT失败时,可以说明该第一上行授权对应的第一上行资源已被占用,即当前可能存在其他逻辑信道的数据基于该第一上行资源进行传输,在该种情况下,终端设备可能无法基于该第一上行资源传输第一逻辑信道的数据。
当第二上行授权的LBT成功时,可以说明该第二上行授权对应的第二上行资源未被占用,即当前不存在其他逻辑信道的数据基于该第二上行资源进行传输,在该种情况下,终端设备可以基于该第二上行资源传输第二逻辑信道的数据。
当第一上行授权的LBT失败时,若终端设备等待第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,会导致第一逻辑信道的数据传输时延较高。在该种情况下,当第二上行授权的LBT成功时,如果第一上行授权对应的第一上行资源与第二上行授权对应的第二上行资源在时域上相近,终端设备可以基于第二上行资源传输第一逻辑信道的数据。如此,由于该第二上行资源与第一上行资源在时域上相近,所以终端设备基于第二上行资源传输第一逻辑信道的数据的数据传输时延,与终端设备基于传输逻辑信道的数据的数据传输时延相近,从而可以保证第一逻辑信道的数据的数据传输时延较低。
示例性的,如图3所示,若第一时域阈值为0.5ms,当第一上行授权的LBT失败,第二上行授权的LBT成功,且第一上行资源的结束时间与第二上行资源的起始时间之间的偏差值为0.3ms时,终端设备可以基于第二上行资源传输第一逻辑信道的数据。
需要说明的是,在一些实施例中,第一上行授权的LBT失败可以被理解为第一小区LBT失败,其中,第一小区中包括第一上行资源。当第一小区LBT失败时,说明当前终端设备可能无法基于第一小区传输第一逻辑信道的数据。
或者,在载波聚合的情况下,第一上行授权的LBT失败可以被理解为第一载波组成部分(Carrier Component,CC)LBT失败,其中,第一载波组成部分为第一上行资源对应的载波组成部分。当第一载波组成部分LBT失败时,说明当前终端设备可能无法基于第一载波组成部分传输第一逻辑信道的数据。
还需要说明的是,在一些实施例中,第二上行授权的LBT成功可以被理解为第二小区LBT成功,其中,第二小区中包括第二上行资源。当第二小区LBT成功时,说明当前终端设备可以基于第二小区传输第二逻辑信道的数据。
或者,在载波聚合的情况下,第二上行授权的LBT成功可以被理解为第二载波组成部分LBT成功,其中第二载波组成部分为第二上行资源对应的载波组成部分。当第二载波组成部分LBT失败时,说明当前终端设备可以基于第二载波组成部分传输第二逻辑信道的数据。
在本申请实施例中,若第一逻辑信道对应的第一上行授权的LBT失败,说明终端设备可能无法基于第一上行授权对应的第一上行资源传输第一逻辑信道的数据,在该种情况下,若第二逻辑信道对应的第二上行授权的LBT成功,且该第二上行授权对应的第二上行 资源与该第一上行资源在时域上相近,则终端设备可以基于该第二上行资源传输该第一逻辑信道的数据。如此,由于终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是利用时域相近的第二上行资源进行传输,因此可以降低第一逻辑信道的数据的传输时延。
请参考图4,该图4是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法可以应用于上述图1所示的实施环境中,该数据传输方法可以包括如下内容中的至少部分内容:
步骤401:在第一逻辑信道对应的第一上行授权的LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下,基于第二上行授权对应的第二上行资源传输第一逻辑信道的数据。其中,第一上行授权对应的第一上行资源与第二上行资源在时域上的偏差值小于或等于第一时域阈值。
其具体实现方式可以参见图2实施例中的步骤201,这里不再重复赘述。
作为一种示例,第一逻辑信道对应第一MAC(Media Access Control,媒体接入控制层)SDU(Service Data Unit,业务数据单元),第一MAC SDU封装于第一MAC PDU(Protocol Data Unit,协议数据单元)中。
其中,第一MAC PDU包括第一MAC SDU、第一MAC SDU对应的MAC子头等,第一MAC SDU中包括第一逻辑信道的数据,第一MAC SDU对应的MAC子头中包括第一逻辑信道的标识。
示例性的,第一逻辑信道的标识可以为第一逻辑信道的ID(Identity,身份标识)。
在该种情况下,终端设备基于第二上行资源传输第一逻辑信道的数据,也即终端设备基于第二上行资源传输第一MAC PDU。
作为一种示例,第二逻辑信道对应第二MAC SDU,第二MAC SDU封装于第二MAC PDU中。
其中,第二MAC PDU包括第二MAC SDU、第二MAC SDU对应的MAC子头等,第二MAC SDU中包括第二逻辑信道的数据,第二MAC SDU对应的MAC子头中包括第二逻辑信道的标识。
示例性的,第二逻辑信道的标识可以为第二逻辑信道的ID。
在该种情况下,若终端设备基于第二上行资源传输第二逻辑信道的数据,也即终端设备基于第二上行资源传输第二MAC PDU。
在一种可能的实现方式中,第一逻辑信道的数据包括第一业务数据,第二逻辑信道的数据包括第二业务数据,第一业务数据的优先级高于第二业务数据的优先级。
可选地,第一业务数据和第二业务数据为业务类型不同的业务数据,或者,第一业务数据和第二业务数据为业务类型相同但业务需求不同的业务数据,本实施例对此不做限定。
可选地,第一业务数据的优先级和第二业务数据的优先级为根据实际情况进行设置的。
示例性的,若该第一业务数据为需要具有较低的数据传输时延的业务数据,则可以设置该第一业务数据的优先级较高。或者,若该第一业务数据为需要具有较高的数据传输速率的业务数据,则可以设置该第一业务数据的优先级较高。或者,若该第一业务数据为需要具有较高的QoS(Quality of Service,服务质量)的业务数据,则可以设置该第一业务数据的优先级较高。
也就是,在第一业务数据的优先级高于第二业务数据的优先级的情况下,终端设备可以优先传输第一业务数据,即终端设备可以优先传输第一逻辑信道的数据,也即终端设备可以优先传输第一MAC PDU。
作为一种示例,第一业务数据为URLLC数据。第二业务数据为eMBB(enhance Mobile Broadband,增强移动宽带)数据。
其中,URLLC数据可以为工业控制数据、远程医疗数据、自动驾驶数据等等,本实施例对此不做限定。通常URLLC数据需要具有较低的数据传输时延。
其中,eMBB数据可以为超高清视频数据、网页浏览数据、文件下载数据等等,本实施例对此不做限定。通常eMBB数据需要具有较高的数据传输速率。
也就是,终端设备可以确定第一业务数据为URLLC数据,第二业务数据为eMBB数据。由于第一业务数据的优先级高于第二业务数据的优先级,因此终端设备可以优先传输URLLC数据,即终端设备可以优先传输第一逻辑信道的数据,也即终端设备可以优先传输第一MAC PDU。
在一种可能的实现方式中,第一上行资源为第一小区中的上行资源,第二上行资源为第二小区中的上行资源。其中,第一小区允许传输第一逻辑信道的数据,第二小区允许传输第二逻辑信道的数据。
也就是,第一上行授权对应的第一上行资源为第一小区中的上行资源,第二上行授权对应的第二上行资源为第二小区中的上行资源。
示例性的,如图5所示,上行授权具有逻辑信道选择限制,根据上行授权的逻辑信道选择限制,可以确定上行授权对应的上行资源所位于的小区允许传输哪些逻辑信道的数据。
譬如,第一上行授权的逻辑信道选择限制允许第一逻辑信道的数据基于第一小区进行传输。第二上行授权的逻辑信道选择限制允许第二逻辑信道的数据基于第二小区进行传输。
在该种情况下,第一逻辑信道的数据可以基于该第一上行资源进行传输,也即是第一MAC PDU可以基于该第一上行资源进行传输。第二逻辑信道的数据可以基于该第二上行资源进行传输,也即是第二MAC PDU可以基于第二上行资源进行传输。
作为一种示例,终端设备还可以进行如下操作:更改第二上行授权的逻辑信道选择限制,更改后的第二上行授权的逻辑信道选择限制允许第一逻辑信道的数据基于第二小区进行传输。
示例性的,第二上行授权的逻辑信道选择限制是指对第二上行授权指示的第二上行资源能够传输的逻辑信道的限制,即限制哪些逻辑信道的数据允许基于第二上行资源进行传输,也即限制哪些逻辑信道的数据允许基于第二小区进行传输。
譬如,第二上行授权的逻辑信道选择限制允许第二逻辑信道的数据基于第二上行资源进行传输,不允许第一逻辑信道的数据基于第二上行资源进行传输。也即第二上行授权的逻辑信道选择限制允许第二逻辑信道的数据基于第二小区进行传输,不允许第一逻辑信道的数据基于第二小区进行传输。
如此,更改第二上行授权的逻辑信道选择限制是指更改对第二上行授权指示的第二上行资源能够传输的逻辑信道的限制,即在允许第二逻辑信道的数据基于第二上行资源进行传输的基础上,还允许第一逻辑信道的数据基于第二上行资源进行传输。也即在允许第二逻辑信道的数据基于第二小区进行传输的基础上,还允许第一逻辑信道的数据基于第二小区进行传输。
在第一上行授权的LBT失败,第二上行授权的LBT成功的情况下,如果终端设备等待第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,可能会导致第一逻辑信道的数据的数据传输时延较高。因此,在该种情况下,可以更改第二上行授权的逻辑信道选择限制,即可以允许第一逻辑信道的数据基于第二小区进行传输,也即可以允许第一MAC PDU基于第二小区进行传输。如此,终端设备可以基于第二小区中的第二上行资源传输第一逻辑信道的数据,以降低第一逻辑信道的数据的数据传输时延。
也就是,如图6所示,当第一上行授权的LBT失败,第二上行授权的LBT成功时,终端设备可能无法基于第一上行资源传输第一逻辑信道的数据,在该种情况下,可以更改第二上行授权的逻辑信道选择限制,即可以允许第一逻辑信道的数据基于第二小区进行传输。如此,终端设备可以基于第二小区中的第二上行资源传输第一逻辑信道的数据,以降低第一逻辑信道的数据的数据传输时延。
作为一种示例,更改第二上行授权的逻辑信道选择限制的实现方式可以为:在第一时间段内更改第二上行授权的逻辑信道选择限制。其中,第一时间段为预定义的,或者,第一时间段为网络设备配置的。
可选地,第一时间段的起始时间为第一上行授权的LBT失败的时间。
可选地,第一时间段的持续时长为退避时长的一倍,或者,第一时间段的持续时长为退避时长的多倍。退避时长指的是第一上行授权的LBT失败后,终端设备停止对第一逻辑信道对应的上行授权进行LBT所需要的时长。
也就是,在第一时间段内,终端设备可以基于第二上行资源传输第一逻辑信道的数据,在第一时间段外,终端设备可能无法基于该第二上行资源传输第一逻辑信道的数据。
需要说明的是,在一些实施例中,第一上行资源可以对应第一频率范围,第二上行资源可以对应第二频率范围,其中,第一频率范围与第二频率范围位于同一小区中,第一频率范围允许传输第一逻辑信道的数据,第二频率范围允许传输第二逻辑信道的数据。
也就是,第一上行资源对应第一频率范围,第二上行资源对应第二频率范围。
示例性的,上行授权具有逻辑信道选择限制,根据上行授权的逻辑信道选择限制,可以确定上行授权对应的上行资源所对应的频率范围允许传输哪些逻辑信道的数据。
譬如,第一上行授权的逻辑信道选择限制允许第一逻辑信道的数据基于第一频率范围进行传输。第二上行授权的逻辑信道选择限制允许第二逻辑信道的数据基于第二频率范围进行传输。
在该种情况下,第一逻辑信道的数据可以基于该第一上行资源进行传输,也即是第一MAC PDU可以基于该第一上行资源进行传输。第二逻辑信道的数据可以基于该第一上行资源进行传输,也即是第二MAC PDU可以基于第二上行资源进行传输。
或者,在载波聚合的情况下,第一上行资源可以对应于第一载波组成部分,第二上行资源可以对应于第二载波组成部分。其中,第一载波组成部分允许传输第一逻辑信道的数据,第二载波组成部分允许传输第二逻辑信道的数据。
其中,第一载波组成部分和第二载波组成部分为网络设备为终端设备分配的载波组成部分。
也就是,第一上行资源对应于第一载波组成部分,第二上行资源对应于第二载波组成部分。
示例性的,上行授权具有逻辑信道选择限制,根据上行授权的逻辑信道选择限制,可以确定上行授权对应的上行资源所对应的载波组成部分允许传输哪些逻辑信道的数据。
譬如,第一上行授权的逻辑信道选择限制允许第一逻辑信道的数据基于第一载波组成部分进行传输。第二上行授权的逻辑信道选择限制允许第二逻辑信道的数据基于第二载波组成部分进行传输。
在该种情况下,第一逻辑信道的数据可以基于该第一上行资源进行传输,也即是第一MAC PDU可以基于该第一上行资源进行传输。第二逻辑信道的数据可以基于该第一上行资源进行传输,也即是第二MAC PDU可以基于第二上行资源进行传输。
在一种可能的实现方式中,终端设备基于第一上行授权的MCS(Modulation and Coding SCheme,调制与编码策略)对第一MAC PDU进行调制编码。或者,终端设备基于第二上行授权的MCS对第一MAC PDU进行调制编码。
其中,第一上行授权的MCS可以包括终端设备在传输第一MAC PDU时可以使用的 调制方式和编码速率。类似的,第二上行授权的MCS可以包括终端设备在传输第二MAC PDU时可以使用的调制方式和编码速率。
示例性的,调制方式可以包括QPSK(Quadrature Phase Shift Keying,正交相移键控)、16QAM(Quadrature Amplitude Modulation,正交振幅调制)、64QAM、256QAM等等,本实施例对此不做限定。
示例性的,当调制方式为QPSK时,编码速率可以为1/2、3/4等等。当调制方式为16QAM时,编码速率可以为1/2、3/4等等。当调制方式为64QAM时,编码速率可以为2/3、3/4、5/6等等。当调制方式为256QAM时,编码速率可以为3/4、5/6等等,本实施例对此不做限定。
也就是,在终端设备需要传输第一逻辑信道的数据的情况下,终端设备可以基于第一上行授权的MCS对第一逻辑信道对应的第一MAC PDU进行编码,进而可以基于第一上行授权的MCS对编码后的第一MAC PDU进行调制,如此,终端设备可以对调制编码后的第一MAC PDU进行传输。
或者,在终端设备需要传输第一逻辑信道的数据的情况下,终端设备可以基于第二上行授权的MCS对第一逻辑信道对应的第一MAC PDU进行编码,进而可以基于第二上行授权的MCS对编码后的第一MAC PDU进行调制,如此,终端设备可以对调制编码后的第一MAC PDU进行传输。
需要说明的是,经第一上行授权的MCS调制编码后的第一MAC PDU在传输时更符合第一业务数据的业务需求,经第二上行授权的MCS调制编码后的第二MAC PDU在传输时更符合第二业务数据的业务需求。
示例性的,若第一业务数据为URLLC数据,对应于URLLC数据的业务需求,第一上行授权的MCS的调制阶数较低,如此,经第一上行授权的MCS调制编码后的第一MAC PDU在传输时更符合URLLC数据的数据传输可靠性需求。若第二业务数据为eMBB数据,对应于eMBB数据的业务需求,第二上行授权的MCS的调制阶数较高,如此,经第二上行授权的MCS调制编码后的第二MAC PDU在传输时更符合eMBB数据的数据传输速率要求。
作为一种示例,第一上行授权的MCS为预定义的,或者,第一上行授权的MCS为网络设备配置的。第二上行授权的MCS为预定义的,或者,第二上行授权的MCS为网络设备配置的。
可选地,网络设备可以通过DCI(Downlink Control Information,下行控制信息)向终端设备配置MCS。
譬如,网络设备可以通过第一DCI向终端设备配置第一上行授权的MCS,网络设备可以通过第二DCI向终端设备配置第二上行授权的MCS。
作为一种示例,终端设备包括第二MAC PDU对应的HARQ实体,终端设备还可以进行如下操作:将第一MAC PDU存储至HARQ实体中。其中,第一MAC PDU包括第一逻辑信道对应的第一MAC SDU,第二MAC PDU包括第二逻辑信道对应的第二MAC SDU。
可选地,第二MAC PDU对应的HARQ实体可以用于存储第二MAC PDU,常规情况下,若第二MAC PDU成功接收,可以删除该第二MAC PDU对应的HARQ实体中存储的第二MAC PDU,若该第二MAC PDU错误接收,可以再次传输该第二MAC PDU对应的HARQ实体中存储的该第二MAC PDU。
在终端设备基于第二上行资源传输第一逻辑信道的数据的情况下,终端设备可以将第一逻辑信道对应的第一MAC PDU存储至第二MAC PDU对应的HARQ实体,若该第一MAC PDU成功接收,则可以删除该第二MAC PDU对应的HARQ实体中的第一MAC PDU,若该第一MAC PDU错误接收,则可以再次传输该第二MAC PDU对应的HARQ实体中的第一MAC PDU。
当然,在第二MAC PDU对应的HARQ实体中存储有第二MAC PDU的情况下,终端设备还可以删除该第二MAC PDU对应的HARQ实体中的第二MAC PDU。在第一MAC PDU成功接收的情况下,终端设备可以将第二MAC PDU再次存储至第二MAC PDU对应的HARQ实体中。
在一种可能的实现方式中,终端设备还可以进行如下操作:接收第一MAC PDU的HARQ反馈,第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息。其中,第一MAC PDU包括第一逻辑信道对应的第一MAC SDU,NACK消息用于指示第一MAC PDU错误接收,ACK消息用于指示第一MAC PDU成功接收。
可选地,第一MAC PDU的HARQ反馈可以用于指示终端设备第一MAC PDU是否成功接收,即第一MAC PDU的HARQ反馈用于指示终端设备第一逻辑信道的数据是否成功接收。
也就是,在终端设备发送第一逻辑信道的数据之后,终端设备可以等待接收第一逻辑信道对应的第一MAC PDU的HARQ反馈,若接收到第一MAC PDU的HARQ反馈,终端设备可以根据第一MAC PDU的HARQ反馈确定第一MAC PDU是否成功接收。
当终端设备接收到NACK消息时,可以确定该第一MAC PDU错误接收,即确定第一逻辑信道的数据错误接收,在该种情况下,终端设备可以再次传输第一逻辑信道的数据,即再次传输第一MAC PDU。当终端设备接收到ACK消息时,可以确定该第一MAC PDU成功接收,即确定第一逻辑信道的数据成功接收,在该种情况下,终端设备可以传输其他逻辑信道的数据,即传输其他MAC PDU。
作为一种示例,在第一MAC PDU的HARQ反馈包括NACK消息的情况下,终端设备还可以进行如下操作:接收第三上行授权,第三上行授权用于指示第一小区中的第三上行资源,第三上行资源用于再次传输第一MAC PDU。
也就是,当终端设备确定第一MAC PDU错误接收时,终端设备可以等待接收第三上行授权,若接收到第三上行授权,终端设备可以根据该第三上行授权确定第一小区中的第三上行资源,如此终端设备可以基于该第三上行资源再次传输第一MAC PDU,即再次传输第一逻辑信道的数据。
在该种情况下,终端设备可以对该第三上行授权进行LBT,若该第三上行授权的LBT成功,则终端设备可以基于第三上行资源再次传输第一逻辑信道的数据,即再次传输第一MAC PDU。若该第三上行授权的LBT失败,终端设备可以发送SR(Scheduling Request,上行调度请求),以请求网络设备再次为第一逻辑信道调度上行资源。
当然,若第三上行授权的LBT失败,终端设备还可以对第二逻辑信道对应的上行授权进行LBT,若第二逻辑信道对应的上行授权的LBT成功,则终端设备可以基于第二逻辑信道对应的上行授权对应的上行资源再次传输第一逻辑信道的数据,即再次传输第一MAC PDU。
作为一种示例,在第一MAC PDU的HARQ反馈包括NACK消息的情况下,终端设备还可以进行如下操作:接收第四上行授权,第四上行授权用于指示第二小区中的第四上行资源,第四上行资源用于传输第二MAC PDU。其中,第二MAC PDU包括第二逻辑信道对应的第二MAC SDU。
由于终端设备已经基于第二逻辑信道对应的第二上行资源传输第一逻辑信道的数据,因此终端设备可能无法再基于第二上行资源传输第二逻辑信道的数据,如此,终端设备可以等待网络设备再次调度用于传输第二逻辑信道的数据的上行资源。
也就是,当终端设备确定第一MAC PDU错误接收时,终端设备除了可以等待接收第三上行授权之外,还可以等待接收第四上行授权,若接收到第四上行授权,终端设备可以根据该第四上行授权确定第二小区中的第四上行资源,如此终端设备可以基于该第四上行资源传输第二逻辑信道的数据,即可以基于该第四上行资源传输第二MAC PDU。
在该种情况下,终端设备可以对该第四上行授权进行LBT,若该第四上行授权的LBT成功,则终端设备可以基于第四上行资源传输第二逻辑信道的数据,即可以基于该第四上行资源传输第二MAC PDU。若该第四上行授权的LBT失败,则终端设备可以发送SR,以请求网络设备重新为第二逻辑信道调度上行资源。
作为一种示例,在第一MAC PDU的HARQ反馈包括ACK消息的情况下,终端设备还可以进行如下操作:接收第四上行授权,第四上行授权用于指示第二小区中的第四上行资源,第四上行资源用于传输第二MAC PDU。其中,第二MAC PDU包括第二逻辑信道对应的第二MAC SDU。
由于终端设备已经基于第二逻辑信道对应的第二上行资源传输第一逻辑信道的数据,因此终端设备可能无法再基于第二上行资源传输第二逻辑信道的数据,如此,终端设备可以等待网络设备再次调度用于传输第二逻辑信道的数据的上行资源。
也就是,当终端设备确定第一MAC PDU成功接收时,终端设备可以等待接收第四上行授权,若接收到第四上行授权,终端设备可以根据该第四上行授权确定第二小区中的第四上行资源,如此终端设备可以基于该第四上行资源传输第二逻辑信道的数据,即可以基于该第四上行资源传输第二MAC PDU。
在该种情况下,终端设备可以对该第四上行授权进行LBT,若该第四上行授权的LBT成功,则终端设备可以基于第四上行资源传输第二逻辑信道的数据,即可以基于该第四上行资源传输第二MAC PDU。若该第四上行授权的LBT失败,则终端设备可以发送SR,以请求网络设备重新为第二逻辑信道调度上行资源。
在本申请实施例中,若第一逻辑信道对应的第一上行授权的LBT失败,说明终端设备可能无法基于第一上行授权对应的第一上行资源传输第一逻辑信道的数据,在该种情况下,若第二逻辑信道对应的第二上行授权的LBT成功,且该第二上行授权对应的第二上行资源与该第一上行资源在时域上相近,则终端设备可以基于该第二上行资源传输该第一逻辑信道的数据。如此,由于终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是利用时域相近的第二上行资源进行传输,因此可以降低第一逻辑信道的数据的传输时延。
作为一种示例,当第一上行授权的LBT失败,第二上行授权的LBT成功,且第二上行授权对应的第二上行资源与第一上行授权对应的第一上行资源在时域上相近时,终端设备可以更改第二上行授权的逻辑信道选择限制,即允许第一逻辑信道的数据基于第二小区进行传输。在该种情况下,终端设备可以基于第二小区中的第二上行资源传输第一逻辑信道的数据,如此,终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是利用时域相近的第二上行资源进行传输,因此可以降低第一逻辑信道的数据的数据传输时延。
请参考图7,该图7是根据一示例性实施例示出的一种数据传输方法的流程图,该数据传输方法可以应用于上述图1所示的实施环境中,该数据传输方法可以包括如下内容中的至少部分内容:
步骤701:接收在第二上行授权对应的第二上行资源中传输的第一逻辑信道的数据,第二上行授权为第二逻辑信道对应的上行授权,第一逻辑信道的数据是终端设备在第一逻辑信道对应的第一上行授权的LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下发送的。其中,第一上行授权对应的第一上行资源与第二上行资源在时域上的偏差值小于或等于第一时域阈值。
可选地,第一上行授权为网络设备为终端设备配置的上行授权,该第一上行授权可以用于指示第一上行资源。第二上行授权为网络设备为终端设备配置的上行授权,该第二上行授权可以用于指示第二上行资源。
可选地,第一上行资源可以包括第一上行时域资源和/或第一上行频域资源,第二上行资源可以包括第二上行时域资源和/或第二上行频域资源,本实施例对此不做限定。
需要说明的是,第一上行资源和第二上行资源可以为同一小区中的上行资源,也可以为不同小区中的上行资源,本实施例对此不做限定。进一步地,在第一上行资源和第二上行资源为同一小区的上行资源的情况下,该第一上行资源和该第二上行资源可以对应于不同的频率范围。
第一上行资源与第二上行资源在时域上的偏差值小于或等于第一时域阈值,即可以说明第一上行资源与第二上行资源在时域上相近,在该种情况下,终端设备基于第二上行资源传输第一逻辑信道的数据的数据传输时延,与终端设备基于第一上行资源传输第一逻辑信道的数据的数据传输时延相近。
也就是,当第一逻辑信道对应的第一上行授权的LBT失败,第二逻辑信道对应的第二上行授权的LBT成功,且第二上行授权对应的第二上行资源与第一上行资源在时域上相近时,终端设备可以基于第二上行授权对应的第二上行资源发送第一逻辑信道的数据,在该种情况下,网络设备可以在第二上行资源中接收第一逻辑信道的数据。
作为一种示例,第一逻辑信道对应第一MAC SDU,第一MAC SDU封装于第一MAC PDU中。
其中,第一MAC PDU包括第一MAC SDU、第一MAC SDU对应的MAC子头等,第一MAC SDU中包括第一逻辑信道的数据,第一MAC SDU对应的MAC子头中包括第一逻辑信道的标识。
示例性的,第一逻辑信道的标识可以为第一逻辑信道的ID。
在该种情况下,终端设备基于第二上行资源传输第一逻辑信道的数据,也即终端设备基于第二上行资源传输第一MAC PDU。
作为一种示例,第二逻辑信道对应第二MAC SDU,第二MAC SDU封装于第二MAC PDU中。
其中,第二MAC PDU包括第二MAC SDU、第二MAC SDU对应的MAC子头等,第二MAC SDU中包括第二逻辑信道的数据,第二MAC SDU对应的MAC子头中包括第二逻辑信道的标识。
示例性的,第二逻辑信道的标识可以为第二逻辑信道的ID。
在该种情况下,若终端设备基于第二上行资源传输第二逻辑信道的数据,也即终端设备基于第二上行资源传输第二MAC PDU。
作为一种示例,第一时域阈值为预定义的,或者,第一时域阈值为网络设备配置的。
可选地,第一时域阈值为网络设备通过RRC消息向终端设备配置的。
在一种可能的实现方式中,第一逻辑信道的数据包括第一业务数据,第二逻辑信道的数据包括第二业务数据,第一业务数据的优先级高于第二业务数据的优先级。
其具体内容可以参见图4实施例中的步骤401,这里不再重复赘述。
作为一种示例,第一业务数据为URLLC数据。第二业务数据为eMBB数据。
其具体内容可以参见图4实施例中的步骤401,这里不再重复赘述。
在一种可能的实现方式中,第一上行资源为第一小区中的上行资源,第二上行资源为第二小区中的上行资源。其中,第一小区允许传输第一逻辑信道的数据,第二小区允许传输第二逻辑信道的数据。
也就是,第一上行授权对应的第一上行资源为第一小区中的上行资源,第二上行授权对应的第二上行资源为第二小区中的上行资源。
示例性的,上行授权具有逻辑信道选择限制,根据上行授权的逻辑信道选择限制,可以确定上行授权对应的上行资源所位于的小区允许传输哪些逻辑信道的数据。
譬如,第一上行授权的逻辑信道选择限制允许第一逻辑信道的数据基于第一小区进行 传输。第二上行授权的逻辑信道选择限制允许第二逻辑信道的数据基于第二小区进行传输。
在该种情况下,第一逻辑信道的数据可以基于该第一上行资源进行传输,也即是第一MAC PDU可以基于该第一上行资源进行传输。第二逻辑信道的数据可以基于该第二上行资源进行传输,也即是第二MAC PDU可以基于第二上行资源进行传输。
需要说明的是,在一些实施例中,第一上行资源可以对应第一频率范围,第二上行资源可以对应第二频率范围,其中,第一频率范围与第二频率范围位于同一小区中,第一频率范围允许传输第一逻辑信道的数据,第二频率范围允许传输第二逻辑信道的数据。
其具体内容可以参见图4实施例中的步骤401,这里不再重复赘述。
或者,在载波聚合的情况下,第一上行资源可以对应于第一载波组成部分,第二上行资源可以对应于第二载波组成部分。其中,第一载波组成部分允许传输第一逻辑信道的数据,第二载波组成部分允许传输第二逻辑信道的数据。
其具体内容可以参见图4实施例中的步骤401,这里不再重复赘述。
在一种可能的实现方式中,网络设备还可以进行如下操作:基于第二上行授权的MCS对第一MAC PDU进行解调解码。和/或,基于第一上行授权的MCS对第一MAC PDU进行解调解码。
示例性的,网络设备可以基于第一上行授权的MCS对第一MAC PDU进行解调解码。
示例性的,网络设备可以基于第二上行授权的MCS对第一MAC PDU进行解调解码。
示例性的,网络设备可以基于第二上行授权的MCS对第一MAC PDU进行解调解码,在基于第二上行授权的MCS对第一MAC PDU进行解调解码失败的情况下,网络设备可以基于第一上行授权的MCS对第一MAC PDU进行解调解码。
作为一种示例,第一上行授权的MCS为预定义的,或者,第一上行授权的MCS为网络设备配置的。第二上行授权的MCS为预定义的,或者,第二上行授权的MCS为网络设备配置的。
可选地,网络设备可以通过DCI向终端设备配置MCS。
譬如,网络设备可以通过第一DCI向终端设备配置第一上行授权的MCS,网络设备可以通过第二DCI向终端设备配置第二上行授权的MCS。
作为一种示例,在网络设备对第一MAC PDU解调解码成功的情况下,可以向第一逻辑信道对应的RLC(Radio Link Control,无线链路控制)实体递交第一MAC SDU,即可以将第一逻辑信道的数据递交至该RLC实体。
其中,该RLC实体可以用于对数据进行转发,示例性的,RLC实体可以接收MAC层递交的数据,并将该MAC层递交的数据递交至PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)层,或者,RLC实体可以接收PDCP层递交的数据,并将该PDCP层递交的数据递交至MAC层。
作为一种示例,网络设备还可以进行如下操作:发送第一MAC PDU的HARQ反馈,第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息。其中,第一MAC PDU包括第一逻辑信道对应的第一MAC SDU,NACK消息用于指示第一MAC PDU错误接收,ACK消息用于指示第一MAC PDU成功接收。
可选地,第一MAC PDU的HARQ反馈可以用于指示终端设备第一MAC PDU是否成功接收,即第一MAC PDU的HARQ反馈用于指示终端设备第一逻辑信道的数据是否成功接收。
也就是,网络设备可以发送第一MAC PDU的HARQ反馈,从而可以通过第一MAC PDU的HARQ反馈指示终端设备第一MAC PDU是否成功接收,即通过第一MAC PDU的HARQ反馈指示终端设备第一逻辑信道的数据是否成功接收。
示例性的,当第一逻辑信道的数据错误接收时,网络设备可以发送NACK消息,当第 一逻辑信道的数据成功接收时,网络设备可以发送ACK消息。
作为一种示例,在第一MAC PDU的HARQ反馈包括NACK消息的情况下,网络设备还可以进行如下操作:发送第三上行授权,第三上行授权用于指示第一小区中的第三上行资源,第三上行资源用于再次传输第一MAC PDU。
当网络设备基于第二上行资源接收第一逻辑信道的数据时,网络设备可以确定终端设备需要传输第一逻辑信道的数据,如此,当网络设备错误接收第一逻辑信道的数据时,网络设备可以为该第一逻辑信道调度第三上行资源,如此,终端设备可以基于该第三上行资源再次传输第一逻辑信道的数据,即终端设备可以基于该第三上行资源传输第一MAC PDU。
也就是,当网络设备错误接收第一逻辑信道的数据时,网络设备可以发送第三上行授权,即可以为第一逻辑信道在第一小区中调度第三上行资源,从而终端设备可以基于该第三上行资源传输第一逻辑信道的数据,即终端设备可以基于该第三上行资源传输第一MAC PDU。
作为一种示例,在第一MAC PDU的HARQ反馈包括NACK消息的情况下,网络设备还可以进行如下操作:发送第四上行授权,第四上行授权用于指示第二小区中的第四上行资源,第四上行资源用于传输第二MAC PDU。其中,第二MAC PDU包括第二逻辑信道对应的第二MAC SDU。
当网络设备基于第二上行资源接收第一逻辑信道的数据时,网络设备可以确定第一逻辑信道的数据占用第二逻辑信道对应的第二上行资源进行传输。在该种情况下,由于第二逻辑信道的数据可能需要传输,所以网络设备可以为该第二逻辑信道调度第四上行资源,如此,终端设备可以基于该第四上行资源传输第二逻辑信道的数据,即终端设备可以基于该第四上行资源传输第二MAC PDU。
也就是,当网络设备错误接收第一逻辑信道的数据时,网络设备除了可以发送第三上行授权之外,还可以发送第四上行授权,即可以为第二逻辑信道在第二小区中调度第四上行资源,从而终端设备可以基于该第四上行资源传输第二逻辑信道的数据,即终端设备可以基于该第四上行资源传输第二MAC PDU。
作为一种示例,在第一MAC PDU的HARQ反馈包括ACK消息的情况下,网络设备还可以进行如下操作:发送第四上行授权,第四上行授权用于指示第二小区中的第四上行资源,第四上行资源用于传输第二MAC PDU。其中,第二MAC PDU包括第二逻辑信道对应的第二MAC SDU。
当网络设备基于第二上行资源接收第一逻辑信道的数据时,网络设备可以确定第一逻辑信道的数据占用第二逻辑信道对应的第二上行资源进行传输。在该种情况下,由于第二逻辑信道的数据可能需要传输,所以网络设备可以为该第二逻辑信道调度第四上行资源,如此,终端设备可以基于该第四上行资源传输第二逻辑信道的数据。
也就是,当网络设备成功接收第一逻辑信道的数据时,网络设备可以发送第四上行授权,即可以为第二逻辑信道在第二小区中调度第四上行资源,从而终端设备可以基于该第四上行资源传输第二逻辑信道的数据,即终端设备可以基于该第四上行资源传输第二MAC PDU。
在本申请实施例中,若第一逻辑信道对应的第一上行授权的LBT失败,说明终端设备可能无法基于第一上行授权对应的第一上行资源传输该第一逻辑信道的数据,在该种情况下,若第二逻辑信道对应的第二上行授权的LBT成功,且该第二上行授权对应的第二上行资源与第一上行资源在时域上相近,则终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是可以利用时域相近的第二上行资源进行传输。如此,网络设备可以在第二上行资源上及时接收到第一逻辑信道的数据,因此可以降低第一逻辑信道的数据的数据传输时延。
请参考图8,该图8是根据一示例性实施例示出的一种数据传输装置的结构图,该装置可以配置于终端设备中,该装置可以包括:
传输模块810,用于在第一逻辑信道对应的第一上行授权的LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下,基于该第二上行授权对应的第二上行资源传输该第一逻辑信道的数据;其中,该第一上行授权对应的第一上行资源与该第二上行资源在时域上的偏差值小于或等于第一时域阈值。
在本申请一种可能的实现方式中,该第一逻辑信道的数据包括第一业务数据,该第二逻辑信道的数据包括第二业务数据,该第一业务数据的优先级高于该第二业务数据的优先级。
在本申请一种可能的实现方式中,该第一上行资源为第一小区中的上行资源,该第二上行资源为第二小区中的上行资源;其中,该第一小区允许传输该第一逻辑信道的数据,该第二小区允许传输该第二逻辑信道的数据。
在本申请一种可能的实现方式中,该装置还包括:
更改模块820,用于更改该第二上行授权的逻辑信道选择限制,该更改后的第二上行授权的逻辑信道选择限制允许该第一逻辑信道的数据基于该第二小区进行传输。
在本申请一种可能的实现方式中,该更改模块820还用于:
在第一时间段内更改该第二上行授权的逻辑信道选择限制;其中,该第一时间段为预定义的,或者,该第一时间段为网络设备配置的。
在本申请一种可能的实现方式中,该装置还包括:
接收模块830,用于接收第一媒体接入控制层MAC协议数据单元PDU的混合自动重传请求HARQ反馈,该第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息;其中,该第一MAC PDU包括该第一逻辑信道对应的第一媒体接入控制层MAC业务数据单元SDU,该NACK消息用于指示该第一MAC PDU错误接收,该ACK消息用于指示该第一MAC PDU成功接收。
在本申请一种可能的实现方式中,在该第一MAC PDU的HARQ反馈包括该NACK消息的情况下,该接收模块830还用于:
接收第三上行授权,该第三上行授权用于指示该第一小区中的第三上行资源,该第三上行资源用于再次传输该第一MAC PDU。
在本申请一种可能的实现方式中,在该第一MAC PDU的HARQ反馈包括该NACK消息或该ACK消息的情况下,该接收模块830还用于:
接收第四上行授权,该第四上行授权用于指示该第二小区中的第四上行资源,该第四上行资源用于传输第二MAC PDU;其中,该第二MAC PDU包括该第二逻辑信道对应的第二MAC SDU。
在本申请一种可能的实现方式中,该终端设备包括第二MAC PDU对应的HARQ实体,该装置还包括:
存储模块840,用于将第一MAC PDU存储至该HARQ实体中;其中,该第一MAC PDU包括该第一逻辑信道对应的第一MAC SDU,该第二MAC PDU包括该第二逻辑信道对应的第二MAC SDU。
在本申请一种可能的实现方式中,该第一时域阈值为预定义的,或者,该第一时域阈值为网络设备配置的。
在本申请一种可能的实现方式中,该第一业务数据为超可靠低时延通信URLLC数据;该第二业务数据为增强移动宽带eMBB数据。
在本申请实施例中,若第一逻辑信道对应的第一上行授权的LBT失败,说明终端设备可能无法基于第一上行授权对应的第一上行资源传输第一逻辑信道的数据,在该种情况 下,若第二逻辑信道对应的第二上行授权的LBT成功,且该第二上行授权对应的第二上行资源与该第一上行资源在时域上相近,则终端设备可以基于该第二上行资源传输该第一逻辑信道的数据。如此,由于终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是利用时域相近的第二上行资源进行传输,因此可以降低第一逻辑信道的数据的传输时延。
作为一种示例,当第一上行授权的LBT失败,第二上行授权的LBT成功,且第二上行授权对应的第二上行资源与第一上行授权对应的第一上行资源在时域上相近时,终端设备可以更改第二上行授权的逻辑信道选择限制,即允许第一逻辑信道的数据基于第二小区进行传输。在该种情况下,终端设备可以基于第二小区中的第二上行资源传输第一逻辑信道的数据,如此,终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是利用时域相近的第二上行资源进行传输,因此可以降低第一逻辑信道的数据的数据传输时延。
请参考图9,该图9是根据一示例性实施例示出的一种数据传输装置的结构图,该装置可以配置于网络设备中,该装置可以包括:
接收模块910,用于接收在第二上行授权对应的第二上行资源中传输的第一逻辑信道的数据,该第二上行授权为第二逻辑信道对应的上行授权,该第一逻辑信道的数据是终端设备在第一逻辑信道对应的第一上行授权的LBT失败,该第二逻辑信道对应的第二上行授权的LBT成功的情况下发送的;其中,该第一上行授权对应的第一上行资源与该第二上行资源在时域上的偏差值小于或等于第一时域阈值。
在本申请一种可能的实现方式中,该第一逻辑信道的数据包括第一业务数据,该第二逻辑信道的数据包括第二业务数据,该第一业务数据的优先级高于该第二业务数据的优先级。
在本申请一种可能的实现方式中,该第一上行资源为第一小区中的上行资源,该第二上行资源为第二小区中的上行资源;其中,该第一小区允许传输该第一逻辑信道的数据,该第二小区允许传输该第二逻辑信道的数据。
在本申请一种可能的实现方式中,该装置还包括:
发送模块920,用于发送第一媒体接入控制层MAC协议数据单元PDU的混合自动重传请求HARQ反馈,该第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息;其中,该第一MAC PDU包括该第一逻辑信道对应的第一媒体接入控制层MAC业务数据单元SDU,该NACK消息用于指示该第一MAC PDU错误接收,该ACK消息用于指示该第一MAC PDU成功接收。
在本申请一种可能的实现方式中,在该第一MAC PDU的HARQ反馈包括该NACK消息的情况下,该发送模块920还用于:
发送第三上行授权,该第三上行授权用于指示该第一小区中的第三上行资源,该第三上行资源用于再次传输该第一MAC PDU。
在本申请一种可能的实现方式中,在该第一MAC PDU的HARQ反馈包括该NACK消息或该ACK消息的情况下,该发送模块920还用于:
发送第四上行授权,该第四上行授权用于指示该第二小区中的第四上行资源,该第四上行资源用于传输第二MAC PDU;其中,该第二MAC PDU包括该第二逻辑信道对应的第二MAC SDU。
在本申请一种可能的实现方式中,该第一时域阈值为预定义的,或者,该第一时域阈值为该网络设备配置的。
在本申请一种可能的实现方式中,该第一业务数据为超可靠低时延通信URLLC数据;该第二业务数据为增强移动宽带eMBB数据。
在本申请实施例中,若第一逻辑信道对应的第一上行授权的LBT失败,说明终端设备可能无法基于第一上行授权对应的第一上行资源传输该第一逻辑信道的数据,在该种情况下,若第二逻辑信道对应的第二上行授权的LBT成功,且该第二上行授权对应的第二上行资源与第一上行资源在时域上相近,则终端设备不需要等待该第一逻辑信道对应的上行授权的LBT成功后再传输第一逻辑信道的数据,而是可以利用时域相近的第二上行资源进行传输。如此,网络设备可以在第二上行资源上及时接收到第一逻辑信道的数据,因此可以降低第一逻辑信道的数据的数据传输时延。
请参考图10,其示出了本申请一个示例性实施例提供的通信设备的结构示意图,该通信设备可以为网络设备或终端设备,该通信设备包括:处理器1001、接收器1002、发射器1003、存储器1004和总线1005。
处理器1001包括一个或者一个以上处理核心,处理器1001通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。
接收器1002和发射器1003可以实现为一个通信组件,该通信组件可以是一块通信芯片。
存储器1004通过总线1005与处理器1001相连。
存储器1004可用于存储至少一个指令,处理器1001用于执行该至少一个指令,以实现上述各个方法实施例中的第一IAB基站执行的各个步骤。
此外,存储器1004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,易失性或非易失性存储设备包括但不限于:磁盘或光盘,EEPROM(Electrically Erasable Programmable read only memory,电可擦除可编程只读存储器),EPROM(Erasable Programmable Read-Only Memory,可擦除可编程只读存储器),SRAM(Static Random Access Memory,静态随时存取存储器),ROM(Read Only Memory,只读存储器),磁存储器,快闪存储器,PROM(Programmable Read-Only Memory,可编程只读存储器)。
本申请提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由所述处理器加载并执行以实现上述各个方法实施例提供的数据传输方法。
本申请还提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述各个方法实施例提供的数据传输方法。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (41)

  1. 一种数据传输方法,其特征在于,应用于终端设备中,所述方法包括:
    在第一逻辑信道对应的第一上行授权的先听后说LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下,基于所述第二上行授权对应的第二上行资源传输所述第一逻辑信道的数据;
    其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值小于或等于第一时域阈值。
  2. 如权利要求1所述的方法,其特征在于,所述第一逻辑信道的数据包括第一业务数据,所述第二逻辑信道的数据包括第二业务数据,所述第一业务数据的优先级高于所述第二业务数据的优先级。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一上行资源为第一小区中的上行资源,所述第二上行资源为第二小区中的上行资源;
    其中,所述第一小区允许传输所述第一逻辑信道的数据,所述第二小区允许传输所述第二逻辑信道的数据。
  4. 如权利要求3所述的方法,其特征在于,所述方法还包括:
    更改所述第二上行授权的逻辑信道选择限制,所述更改后的第二上行授权的逻辑信道选择限制允许所述第一逻辑信道的数据基于所述第二小区进行传输。
  5. 如权利要求4所述的方法,其特征在于,所述更改所述第二上行授权的逻辑信道选择限制,包括:
    在第一时间段内更改所述第二上行授权的逻辑信道选择限制;
    其中,所述第一时间段为预定义的,或者,所述第一时间段为网络设备配置的。
  6. 如权利要求4或5所述的方法,其特征在于,所述方法还包括:
    接收第一媒体接入控制层MAC协议数据单元PDU的混合自动重传请求HARQ反馈,所述第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息;
    其中,所述第一MAC PDU包括所述第一逻辑信道对应的第一媒体接入控制层MAC业务数据单元SDU,所述NACK消息用于指示所述第一MAC PDU错误接收,所述ACK消息用于指示所述第一MAC PDU成功接收。
  7. 如权利要求6所述的方法,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息的情况下,所述方法还包括:
    接收第三上行授权,所述第三上行授权用于指示所述第一小区中的第三上行资源,所述第三上行资源用于再次传输所述第一MAC PDU。
  8. 如权利要求6或7所述的方法,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息或所述ACK消息的情况下,所述方法还包括:
    接收第四上行授权,所述第四上行授权用于指示所述第二小区中的第四上行资源,所述第四上行资源用于传输第二MAC PDU;
    其中,所述第二MAC PDU包括所述第二逻辑信道对应的第二MAC SDU。
  9. 如权利要求1所述的方法,其特征在于,所述终端设备包括第二MAC PDU对应的HARQ实体,所述方法还包括:
    将第一MAC PDU存储至所述HARQ实体中;
    其中,所述第一MAC PDU包括所述第一逻辑信道对应的第一MAC SDU,所述第二MAC PDU包括所述第二逻辑信道对应的第二MAC SDU。
  10. 如权利要求1所述的方法,其特征在于,所述第一时域阈值为预定义的,或者,所述第一时域阈值为网络设备配置的。
  11. 如权利要求2所述的方法,其特征在于,
    所述第一业务数据为超可靠低时延通信URLLC数据;
    所述第二业务数据为增强移动宽带eMBB数据。
  12. 一种数据传输方法,其特征在于,应用于网络设备中,所述方法包括:
    接收在第二上行授权对应的第二上行资源中传输的第一逻辑信道的数据,所述第二上行授权为第二逻辑信道对应的上行授权,所述第一逻辑信道的数据是终端设备在第一逻辑信道对应的第一上行授权的先听后说LBT失败,所述第二逻辑信道对应的第二上行授权的LBT成功的情况下发送的;
    其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值小于或等于第一时域阈值。
  13. 如权利要求12所述的方法,其特征在于,所述第一逻辑信道的数据包括第一业务数据,所述第二逻辑信道的数据包括第二业务数据,所述第一业务数据的优先级高于所述第二业务数据的优先级。
  14. 如权利要求12或13所述的方法,其特征在于,所述第一上行资源为第一小区中的上行资源,所述第二上行资源为第二小区中的上行资源;
    其中,所述第一小区允许传输所述第一逻辑信道的数据,所述第二小区允许传输所述第二逻辑信道的数据。
  15. 如权利要求14所述的方法,其特征在于,所述方法还包括:
    发送第一媒体接入控制层MAC协议数据单元PDU的混合自动重传请求HARQ反馈,所述第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息;
    其中,所述第一MAC PDU包括所述第一逻辑信道对应的第一媒体接入控制层MAC业务数据单元SDU,所述NACK消息用于指示所述第一MAC PDU错误接收,所述ACK消息用于指示所述第一MAC PDU成功接收。
  16. 如权利要求15所述的方法,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息的情况下,所述方法还包括:
    发送第三上行授权,所述第三上行授权用于指示所述第一小区中的第三上行资源,所述第三上行资源用于再次传输所述第一MAC PDU。
  17. 如权利要求15或16所述的方法,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息或所述ACK消息的情况下,所述方法还包括:
    发送第四上行授权,所述第四上行授权用于指示所述第二小区中的第四上行资源,所述第四上行资源用于传输第二MAC PDU;
    其中,所述第二MAC PDU包括所述第二逻辑信道对应的第二MAC SDU。
  18. 如权利要求12所述的方法,其特征在于,所述第一时域阈值为预定义的,或者,所述第一时域阈值为所述网络设备配置的。
  19. 如权利要求13所述的方法,其特征在于,
    所述第一业务数据为超可靠低时延通信URLLC数据;
    所述第二业务数据为增强移动宽带eMBB数据。
  20. 一种数据传输装置,其特征在于,配置于终端设备中,所述装置包括:
    传输模块,用于在第一逻辑信道对应的第一上行授权的先听后说LBT失败,第二逻辑信道对应的第二上行授权的LBT成功的情况下,基于所述第二上行授权对应的第二上行资源传输所述第一逻辑信道的数据;
    其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值小于或等于第一时域阈值。
  21. 如权利要求20所述的装置,其特征在于,所述第一逻辑信道的数据包括第一业务数据,所述第二逻辑信道的数据包括第二业务数据,所述第一业务数据的优先级高于所述第二业务数据的优先级。
  22. 如权利要求20或21所述的装置,其特征在于,所述第一上行资源为第一小区中的上行资源,所述第二上行资源为第二小区中的上行资源;
    其中,所述第一小区允许传输所述第一逻辑信道的数据,所述第二小区允许传输所述第二逻辑信道的数据。
  23. 如权利要求22所述的装置,其特征在于,所述装置还包括:
    更改模块,用于更改所述第二上行授权的逻辑信道选择限制,所述更改后的第二上行授权的逻辑信道选择限制允许所述第一逻辑信道的数据基于所述第二小区进行传输。
  24. 如权利要求23所述的装置,其特征在于,所述更改模块还用于:
    在第一时间段内更改所述第二上行授权的逻辑信道选择限制;
    其中,所述第一时间段为预定义的,或者,所述第一时间段为网络设备配置的。
  25. 如权利要求23或24所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收第一媒体接入控制层MAC协议数据单元PDU的混合自动重传请求HARQ反馈,所述第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息;
    其中,所述第一MAC PDU包括所述第一逻辑信道对应的第一媒体接入控制层MAC业务数据单元SDU,所述NACK消息用于指示所述第一MAC PDU错误接收,所述ACK消息用于指示所述第一MAC PDU成功接收。
  26. 如权利要求25所述的装置,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息的情况下,所述接收模块还用于:
    接收第三上行授权,所述第三上行授权用于指示所述第一小区中的第三上行资源,所述第三上行资源用于再次传输所述第一MAC PDU。
  27. 如权利要求25或26所述的装置,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息或所述ACK消息的情况下,所述接收模块还用于:
    接收第四上行授权,所述第四上行授权用于指示所述第二小区中的第四上行资源,所述第四上行资源用于传输第二MAC PDU;
    其中,所述第二MAC PDU包括所述第二逻辑信道对应的第二MAC SDU。
  28. 如权利要求20所述的装置,其特征在于,所述终端设备包括第二MAC PDU对应的HARQ实体,所述装置还包括:
    存储模块,用于将第一MAC PDU存储至所述HARQ实体中;
    其中,所述第一MAC PDU包括所述第一逻辑信道对应的第一MAC SDU,所述第二MAC PDU包括所述第二逻辑信道对应的第二MAC SDU。
  29. 如权利要求20所述的装置,其特征在于,所述第一时域阈值为预定义的,或者,所述第一时域阈值为网络设备配置的。
  30. 如权利要求21所述的装置,其特征在于,
    所述第一业务数据为超可靠低时延通信URLLC数据;
    所述第二业务数据为增强移动宽带eMBB数据。
  31. 一种数据传输装置,其特征在于,配置于网络设备中,所述装置包括:
    接收模块,用于接收在第二上行授权对应的第二上行资源中传输的第一逻辑信道的数据,所述第二上行授权为第二逻辑信道对应的上行授权,所述第一逻辑信道的数据是终端设备在第一逻辑信道对应的第一上行授权的先听后说LBT失败,所述第二逻辑信道对应的第二上行授权的LBT成功的情况下发送的;
    其中,所述第一上行授权对应的第一上行资源与所述第二上行资源在时域上的偏差值小于或等于第一时域阈值。
  32. 如权利要求31所述的装置,其特征在于,所述第一逻辑信道的数据包括第一业务数据,所述第二逻辑信道的数据包括第二业务数据,所述第一业务数据的优先级高于所述第二 业务数据的优先级。
  33. 如权利要求31或32所述的装置,其特征在于,所述第一上行资源为第一小区中的上行资源,所述第二上行资源为第二小区中的上行资源;
    其中,所述第一小区允许传输所述第一逻辑信道的数据,所述第二小区允许传输所述第二逻辑信道的数据。
  34. 如权利要求33所述的装置,其特征在于,所述装置还包括:
    发送模块,用于发送第一媒体接入控制层MAC协议数据单元PDU的混合自动重传请求HARQ反馈,所述第一MAC PDU的HARQ反馈包括否定应答NACK消息或肯定应答ACK消息;
    其中,所述第一MAC PDU包括所述第一逻辑信道对应的第一媒体接入控制层MAC业务数据单元SDU,所述NACK消息用于指示所述第一MAC PDU错误接收,所述ACK消息用于指示所述第一MAC PDU成功接收。
  35. 如权利要求34所述的装置,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息的情况下,所述发送模块还用于:
    发送第三上行授权,所述第三上行授权用于指示所述第一小区中的第三上行资源,所述第三上行资源用于再次传输所述第一MAC PDU。
  36. 如权利要求34或35所述的装置,其特征在于,在所述第一MAC PDU的HARQ反馈包括所述NACK消息或所述ACK消息的情况下,所述发送模块还用于:
    发送第四上行授权,所述第四上行授权用于指示所述第二小区中的第四上行资源,所述第四上行资源用于传输第二MAC PDU;
    其中,所述第二MAC PDU包括所述第二逻辑信道对应的第二MAC SDU。
  37. 如权利要求31所述的装置,其特征在于,所述第一时域阈值为预定义的,或者,所述第一时域阈值为所述网络设备配置的。
  38. 如权利要求32所述的装置,其特征在于,
    所述第一业务数据为超可靠低时延通信URLLC数据;
    所述第二业务数据为增强移动宽带eMBB数据。
  39. 一种通信设备,其特征在于,所述通信设备包括处理器和存储器,所述存储器存储有至少一条指令,所述至少一条指令用于被所述处理器执行以实现权利要求1-11任一项方法的步骤,或者,用于实现权利要求12-19任一项方法的步骤。
  40. 一种通信***,其特征在于,包括终端设备和网络设备,所述终端设备包括权利要求20-30任一项所述的装置,所述网络设备包括权利要求31-38任一项所述的装置。
  41. 一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,其特征在于,所述指令被处理器执行时实现权利要求1-11任一项方法的步骤,或者,用于实现权利要求12-19任一项方法的步骤。
PCT/CN2020/078859 2020-03-11 2020-03-11 数据传输方法、装置、设备及存储介质 WO2021179221A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/078859 WO2021179221A1 (zh) 2020-03-11 2020-03-11 数据传输方法、装置、设备及存储介质
CN202080087924.3A CN114830587B (zh) 2020-03-11 2020-03-11 数据传输方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078859 WO2021179221A1 (zh) 2020-03-11 2020-03-11 数据传输方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2021179221A1 true WO2021179221A1 (zh) 2021-09-16

Family

ID=77670890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078859 WO2021179221A1 (zh) 2020-03-11 2020-03-11 数据传输方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN114830587B (zh)
WO (1) WO2021179221A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026723A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种传输上行控制信息的方法和设备
CN108282278A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN109565381A (zh) * 2018-10-31 2019-04-02 北京小米移动软件有限公司 信息反馈方法及装置
US20190373607A1 (en) * 2018-06-05 2019-12-05 Qualcomm Incorporated Feedback window to provide early feedback for transmissions in a set of consecutive transmission time intervals
CN110651524A (zh) * 2017-05-30 2020-01-03 华为技术有限公司 非授权频带中基于授权的上行传输

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026723A (zh) * 2016-02-02 2017-08-08 电信科学技术研究院 一种传输上行控制信息的方法和设备
CN108282278A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 传输数据的方法、终端设备和网络设备
CN110651524A (zh) * 2017-05-30 2020-01-03 华为技术有限公司 非授权频带中基于授权的上行传输
US20190373607A1 (en) * 2018-06-05 2019-12-05 Qualcomm Incorporated Feedback window to provide early feedback for transmissions in a set of consecutive transmission time intervals
CN109565381A (zh) * 2018-10-31 2019-04-02 北京小米移动软件有限公司 信息反馈方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "The remaining issues for UL LBT failure", 3GPP DRAFT; R2-2000999, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG2, no. e-Meeting; 20200224 - 20200306, 13 February 2020 (2020-02-13), XP051848699 *

Also Published As

Publication number Publication date
CN114830587B (zh) 2023-12-05
CN114830587A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US20210076376A1 (en) Data transmission method, terminal device, and network device
JP2018509834A (ja) 簡略化されたharq管理
US12022478B2 (en) Wireless communication method and communication device
CN113412595B (zh) 无线通信方法、终端设备和网络设备
US20220353853A1 (en) Harq-ack codebook feedback method and apparatus, device, and storage medium
WO2020051919A1 (zh) 一种资源确定及配置方法、装置、终端、网络设备
WO2020056559A1 (zh) 一种信息传输方法、设备及存储介质
WO2021161720A1 (en) Signaling and timeline requirements for multiplexing between harq-ack codebooks with different priorities
US20230180340A1 (en) Method and apparatus for small data transmission
CN111988117B (zh) 一种时隙聚合处理方法及通信设备
US20220045794A1 (en) Method for transmitting sidelink data, and terminal device
WO2021179221A1 (zh) 数据传输方法、装置、设备及存储介质
WO2022009702A1 (en) Multiplexing of harq-ack with different priorities on pucch
CA3037910A1 (en) Systems and methods for determining frame structure and association timing
WO2021062874A1 (zh) 竞争窗口大小的确定方法,网络设备,终端设备
WO2019237259A1 (zh) 传输信息的方法和装置
WO2020056554A1 (zh) 一种反馈时序的确定方法、终端设备及网络设备
WO2021147077A1 (zh) Harq-ack码本的确定方法、装置、设备及存储介质
RU2796198C1 (ru) Способ осуществления информационной обратной связи и соответствующее устройство
WO2023132206A1 (en) Enhancements of high priority sr multiplexing on lp pusch
WO2023132204A1 (en) Enhancements of high priority sr multiplexing on lp pusch
WO2023132205A1 (en) Channel resolution for pucch with high priority harq-ack, pucch with high priority sr and a lp pusch
CN114270748B (zh) 一种重复传输方法、电子设备及存储介质
CN113039851B (zh) 无线通信方法、网络设备和终端设备
WO2023048015A1 (en) Methods of collision resolution between multiple high priority harq-acks and a high priority pusch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923798

Country of ref document: EP

Kind code of ref document: A1