WO2021179215A1 - 一种呼吸通气***及方法 - Google Patents

一种呼吸通气***及方法 Download PDF

Info

Publication number
WO2021179215A1
WO2021179215A1 PCT/CN2020/078844 CN2020078844W WO2021179215A1 WO 2021179215 A1 WO2021179215 A1 WO 2021179215A1 CN 2020078844 W CN2020078844 W CN 2020078844W WO 2021179215 A1 WO2021179215 A1 WO 2021179215A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
patient
frequency oscillation
valve
branch
Prior art date
Application number
PCT/CN2020/078844
Other languages
English (en)
French (fr)
Inventor
蔡琨
伍乐平
刘华旺
肖杨
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/078844 priority Critical patent/WO2021179215A1/zh
Priority to EP20923769.2A priority patent/EP4119176A4/en
Priority to CN202080098464.4A priority patent/CN115279438A/zh
Publication of WO2021179215A1 publication Critical patent/WO2021179215A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0096High frequency jet ventilation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/204Proportional used for inhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0066Blowers or centrifugal pumps
    • A61M16/0069Blowers or centrifugal pumps the speed thereof being controlled by respiratory parameters, e.g. by inhalation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/105Filters
    • A61M16/106Filters in a path
    • A61M16/107Filters in a path in the inspiratory path
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/14Preparation of respiratory gases or vapours by mixing different fluids, one of them being in a liquid phase
    • A61M16/16Devices to humidify the respiration air
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/208Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
    • A61M16/209Relief valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0027Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate

Definitions

  • the embodiments of the present invention relate to the technical field of medical devices, and in particular to a respiratory ventilation system and method.
  • Respiratory disorders and failure are one of the main reasons that affect the survival rate of newborns, especially premature infants.
  • using traditional ventilation methods for newborns does not provide effective respiratory support. This is due to the high airway pressure provided by traditional ventilation methods, which may cause lung damage.
  • high-frequency oscillations can be used Ventilation methods provide respiratory support.
  • the high-frequency oscillatory ventilation method has three basic characteristics: the breathing frequency reaches 3-50HZ, the tidal volume is close to the size of the patient's physiological dead space, and the active inhale and exhale.
  • high-frequency oscillatory ventilation can achieve active exhalation, that is, the machine produces a negative effect during the patient's exhalation phase. It helps the patient to breathe out, which is very important for newborns or other patients with lung diseases.
  • the ventilation parameters of high-frequency oscillatory ventilation include oxygen concentration, average pressure, frequency, amplitude, and respiration ratio. These parameters can be set and adjusted according to the patient's own state and treatment needs.
  • high-frequency oscillating ventilation devices that implement high-frequency oscillating ventilation methods, such as high-frequency oscillating ventilator, use an oscillating method similar to a speaker diaphragm, which controls active inhalation and active exhalation by the advance and retreat of the diaphragm
  • the motor drives the diaphragm to control the movement stroke and frequency.
  • the volume of the device is larger, and the larger the oscillation amplitude is required, the larger the volume of the device, and it is difficult to combine traditional ventilation and high-frequency ventilation.
  • the solenoid valve is used to achieve active inhalation, and the venturi negative pressure suction device is used to achieve active exhalation.
  • the venturi negative pressure requires high-pressure gas driving, which is noisy and consumes too much gas source gas.
  • the embodiments of the present invention desirably provide a respiratory ventilation system and method, which use an active exhalation device to extract the patient's exhaled air to generate active exhalation to support the high-frequency ventilation mode.
  • the system is not only small in size, but also reduced Gas consumption and noise.
  • An embodiment of the present invention provides a respiratory ventilation system, which includes: an air source interface, an inhalation branch, a high-frequency oscillation generating device, a ventilation control device, and an active exhalation device;
  • the inhalation branch is respectively connected to the air source interface and the patient pipeline connected to the patient's respiratory system;
  • the high-frequency oscillation generating device generates high-frequency oscillations of the gas in the inhalation branch;
  • the ventilation control device is connected to the inhalation branch, the high-frequency oscillation generating device, and the active exhalation device.
  • the high-frequency oscillation generating device is controlled to adjust the high-frequency oscillation frequency according to the preset high-frequency oscillation frequency.
  • the gas in the inhalation branch generates high-frequency oscillation, and the high-frequency oscillation gas generated by the high-frequency oscillation generating device is output through the inhalation branch and the patient pipeline; in the exhalation phase, the active exhalation is controlled
  • the device actively extracts the gas exhaled by the patient through the patient pipeline according to the preset high-frequency oscillation frequency.
  • the active exhalation device includes: a high-frequency valve and/or an electric gas extraction device;
  • the breathing ventilation system further includes an expiratory branch, which is connected to the patient pipeline to discharge the gas exhaled by the patient;
  • the active exhalation device is arranged on the inhalation branch or the exhalation branch.
  • the high-frequency valve is an on-off valve or a proportional valve.
  • the ventilation control device is also used to control the active exhalation device to close, so as to expel the gas exhaled by the patient through the patient pipeline through the exhalation branch.
  • the ventilation control device controls the opening of the high-frequency valve during the expiration phase, and controls the opening size of the high-frequency valve according to the preset high-frequency oscillation frequency, and the The extraction power of the electric gas extraction device to actively extract the gas exhaled by the patient through the patient pipeline;
  • the extraction power of the electric gas extraction device is adjusted according to the preset high-frequency oscillation frequency to actively extract the gas exhaled by the patient through the patient pipeline.
  • the air source interface includes a first air source interface and a second air source interface
  • the inspiratory branch includes: a first air supply branch, a second air supply branch, and a third air supply branch ,
  • the outlet end of the first air feeding branch and the outlet end of the second air feeding branch are respectively connected to the air inlet end of the third air feeding branch;
  • the outlet end of the third air supply branch is connected to the patient pipeline
  • the air inlet end of the first air supply branch is connected to the first air source interface
  • the air inlet end of the second air supply branch is connected to the second air source interface.
  • the first air delivery branch includes a first inspiratory check valve and a first flow regulating valve that are connected in sequence
  • the second air delivery branch includes a second inspiratory one-way valve that is connected in sequence
  • a second flow regulating valve the third air supply branch includes a third air suction check valve
  • the first air suction check valve is connected to the first air source interface, and the second air suction check valve is connected to the second air source interface.
  • the high-frequency oscillation generating device is connected to the third inhalation check valve in sequence;
  • the first flow regulating valve and the second flow regulating valve are respectively connected to the high-frequency oscillation generating device.
  • the high-frequency oscillation generating device is composed of the first flow regulating valve and the second flow regulating valve.
  • the ventilation control device controls the active exhalation device and the high-frequency oscillation generating device to work together to realize the control of the average airway pressure.
  • the high-frequency oscillation generating device is a high-frequency inhalation valve.
  • the high-frequency inhalation valve is any one of a proportional solenoid valve, a blocking valve, a servo valve, and a turbine.
  • the active exhalation device is connected to the outlet of the third inhalation check valve, or connected to the exhalation branch.
  • the embodiment of the present application provides a breathing and ventilation method, which is applied to the above-mentioned breathing and ventilation system, and is characterized in that the method includes:
  • the high-frequency oscillation generating device is controlled by the ventilation control device to generate high-frequency oscillations in the gas in the inhalation branch according to the preset high-frequency oscillation frequency, and the generated high-frequency oscillating gas passes through the inhalation branch And the patient pipeline is delivered to the patient;
  • the active exhalation device is controlled by the ventilation control device to actively extract the gas exhaled by the patient through the patient pipeline according to the preset high-frequency oscillation frequency.
  • the active exhalation device includes: a high-frequency valve and/or an electric gas extraction device, and in the exhalation phase, the active exhalation device is controlled by the ventilation control device according to the preset
  • the high-frequency oscillation frequency actively extracts the gas exhaled by the patient through the patient pipeline, including:
  • the ventilation control device controls the opening of the high-frequency valve, and controls the opening size of the high-frequency valve according to the preset high-frequency oscillation frequency and the extraction power of the electric gas extraction device , In order to take the initiative to extract the gas exhaled by the patient through the patient pipeline;
  • the ventilation control device adjusts the extraction power of the electric gas extraction device according to the preset high-frequency oscillation frequency, so as to actively extract the gas exhaled by the patient through the patient pipeline.
  • the method further includes:
  • the active exhalation device and the high-frequency oscillation generating device are controlled to work together to realize the control of the average airway pressure.
  • the embodiment of the present invention provides a respiratory ventilation system, including: an air source interface, an inhalation branch, a high-frequency oscillation generating device, a ventilation control device, and an active exhalation device;
  • the inhalation branch is connected to the air source interface and The patient pipeline connected to the patient's respiratory system;
  • high-frequency oscillation generating equipment which generates high-frequency oscillations of the gas in the inhalation branch;
  • ventilation control equipment connected to the inspiratory branch, high-frequency oscillation generating equipment and active exhalation equipment,
  • the high-frequency oscillation generator is controlled to generate high-frequency oscillations in the gas in the inhalation branch according to the preset high-frequency oscillation frequency, and the high-frequency oscillation gas generated by the high-frequency oscillation generator is passed through the inhalation branch and the patient Pipeline output;
  • the active exhalation device is controlled to actively extract the gas exhaled by the patient through the patient pipeline according to the preset high-frequency oscillation frequency.
  • the breathing ventilation system provided
  • Fig. 1 is a structural schematic diagram 1 of a respiratory ventilation system provided by an embodiment of the present invention
  • FIG. 2 is a second structural diagram of a respiratory ventilation system according to an embodiment of the present invention.
  • FIG. 3 is a third structural diagram of a respiratory ventilation system according to an embodiment of the present invention.
  • FIG. 4 is a structural schematic diagram four of a respiratory ventilation system provided by an embodiment of the present invention.
  • FIG. 5 is a structural schematic diagram five of a respiratory ventilation system provided by an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart of a breathing and ventilation method according to an embodiment of the present invention.
  • Fig. 7 is a detailed control schematic diagram of an exemplary ventilation control device provided by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a control flow of an exemplary ventilation control device provided by an embodiment of the present invention.
  • Fig. 1 is a structural schematic diagram 1 of a respiratory ventilation system provided by an embodiment of the present invention.
  • the respiratory ventilation system mainly includes: air source interface 1, inhalation branch 2, high-frequency oscillation generating device 3, ventilation control device 4 (not shown in the figure) and active exhalation device 5;
  • Inspiratory branch 2 respectively connected to the air source interface 1 and the patient pipeline connected to the patient's respiratory system;
  • the high-frequency oscillation generating device 3 generates high-frequency oscillations of the gas in the inhalation branch 2;
  • the ventilation control device 4 is connected to the inhalation branch 2, the high-frequency oscillation generating device 3, and the active exhalation device 5.
  • the high-frequency oscillation generating device 3 is controlled to adjust the inspiratory branch according to the preset high-frequency oscillation frequency.
  • the gas of path 2 generates high-frequency oscillation, and the high-frequency oscillation gas generated by the high-frequency oscillation generating device 3 is output through the inspiratory branch 2 and the patient pipeline; in the exhalation phase, the active exhalation device 5 is controlled according to the preset The high-frequency oscillation frequency actively extracts the gas exhaled by the patient through the patient pipeline.
  • the inhalation branch 2 of the respiratory ventilation system is used to provide a gas delivery path during the inhalation phase.
  • the high-frequency oscillation generating device 3 may be a high-frequency suction valve.
  • the specific high-frequency suction valve can be any one of a proportional solenoid valve, a blocking valve, a servo valve, and a turbine.
  • the high-frequency oscillation generating device 3 may also be other devices that can realize high-frequency gas oscillation, which is not limited in the embodiment of the present invention.
  • the medical staff can determine the preset high-frequency oscillation frequency according to the actual ventilation needs of the patient, and the specific preset high-frequency oscillation frequency may be 3-50 Hz.
  • the embodiment of the present invention Not limited.
  • the high-frequency oscillation generating device 3 is provided in the inhalation branch 2, and the ventilation control device 4 is connected to the inhalation branch 2 and the high-frequency oscillation generating device 3, so that in the inhalation In the stage, the ventilation control device 4 can control the high-frequency oscillation generating device 3 to generate high-frequency oscillations of the gas in the inhalation branch 2 according to the preset high-frequency oscillation frequency.
  • the high-frequency oscillating gas generated by the high-frequency oscillation generating device 3 will flow through the inhalation branch and be delivered to the patient from the patient pipeline to achieve the high frequency of the patient. Inhale.
  • the ventilation control device 4 is also connected to the active exhalation device 5, so that during the exhalation phase, the active exhalation device 5 is controlled to actively perform patient exhalation according to the preset high-frequency oscillation frequency The extraction of gas enables active exhalation.
  • the active exhalation device 5 includes: a high-frequency valve 51 and/or an electric gas extraction device 52; and the breathing ventilation system also includes an exhalation branch 6. , Connected with the patient pipeline to discharge the gas exhaled by the patient; the active exhalation device is set on the inspiratory branch 2 or the expiratory branch 6.
  • the respiratory ventilation system further includes the expiratory branch 6.
  • the expiratory branch 6 is used to provide an expiratory path during the expiratory phase.
  • the high-frequency valve 51 included in the active exhalation device 5 may be an on-off valve, a proportional valve, or the like.
  • the electric gas extraction device 52 can be a turbine or other equipment.
  • the ventilation control device 4 can control the turbine to rotate based on a preset high-frequency oscillation frequency. By controlling the rotation speed of the turbine, the negative force can be controlled to generate an active breath. gas.
  • the patient exhales air actively extracted by the turbine, which generates active exhalation.
  • the specific high-frequency valve 51 and the electric gas extraction device 52 can be selected according to actual conditions, which are not limited in the embodiment of the present invention.
  • the active exhalation device 5 may be arranged on the exhalation branch 6 of the respiratory ventilation system. As shown in Fig. 2, the active exhalation device 5 can also be arranged on the inhalation branch 2 of the respiratory ventilation system.
  • the active exhalation device includes not only a high-frequency valve 51 and an electric gas extraction device 52, but also an exhalation filter 53.
  • the ventilation control device 4 can control the high-frequency valve 51 to open, and control the electric gas extraction device 52, such as the rotation speed of a turbine, by adjusting the current or voltage, so as to extract the patient's exhaled air through the exhalation filter 53.
  • the ventilation control device 4 can also control the exhalation valve of the exhalation branch 6 to open and perform exhaust at the same time, so as to assist the electric gas extraction device 52 to exhaust together.
  • the high-frequency valve 51 can be used to open to achieve active exhalation, or only the electric gas extraction device 52 can be used to achieve active exhalation, or at the same time.
  • the high-frequency valve 51 and the electric gas extraction device 52 are used to realize active exhalation, which is not limited in the embodiment of the present invention.
  • the ventilation control device 4 controls the high-frequency valve 51 to open during the expiration phase, and controls the opening size of the high-frequency valve 51 according to the preset high-frequency oscillation frequency, and the electric gas extraction The extraction power of the device 52 to actively extract the gas exhaled by the patient through the patient pipeline;
  • the extraction power of the electric gas extraction device 52 is adjusted according to a preset high-frequency oscillation frequency to actively extract the gas exhaled by the patient through the patient pipeline.
  • the ventilation control device 4 can control by adjusting the current or voltage according to the preset related parameters and the actual demand of active exhalation.
  • the opening size of the proportional valve For example, in the exhalation phase, when the preset high-frequency oscillation frequency adjustment requires a rapid decrease in airway pressure, the ventilation control device 4 may adopt a faster valve opening control speed, and when the required airway pressure drops to a larger negative direction Under pressure, the ventilation control device 4 can adjust the opening of the proportional valve to a larger size.
  • the ventilation control device 4 can adjust the opening size of the proportional valve according to the size of the low pressure value. In some cases, the ventilation control device 4 needs to reduce the opening of the proportional valve to meet the requirements of ventilation settings.
  • the high-frequency valve 51 when the high-frequency valve 51 and the electric gas extraction device 52 are combined to realize active exhalation according to the preset high-frequency oscillation frequency, the high-frequency valve 51 is a proportional valve.
  • the electric gas extraction device 52 such as a turbine
  • the opening size of the proportional valve can also be adjusted to take advantage of its short response time and fast response, so as to quickly reach the required pressure.
  • the adjustment resolution of the proportional valve is usually higher than that of the turbine, which can achieve more precise ventilation control.
  • the high-frequency valve 51 is composed of a fixed hole structure, and the ventilation control device 4 cannot control its switch and opening size. Therefore, when the ventilation control device 4 controls the active exhalation device 5 to achieve active exhalation, the exhalation The valve will always assist in venting.
  • the ventilation control device 4 cannot adjust the size of its opening.
  • the electric gas extraction device 52 does not need to be activated, it cannot respond to the vibration.
  • the size of the low pressure value is controlled.
  • the active exhalation device 5 may not include the high-frequency valve 51, but only includes the electric gas extraction device 52.
  • the ventilation control device 4 may adjust the turbine and other electric The speed or direction of rotation of the gas extraction device 52 minimizes the leakage of gas from the electric gas extraction device 52.
  • the ventilation control device 4 is also used to control the active exhalation device 5 to close, so as to expel the gas exhaled by the patient through the patient pipeline through the exhalation branch 6.
  • the expiratory branch 6 may include an expiratory flow sensor 61, an expiratory valve 62 and an expiratory one-way valve 63.
  • the expiratory flow sensor 61 is connected to the patient's pipeline, and is used to monitor the flow and tidal volume of the patient's exhaled air.
  • the exhalation valve 62 is connected to the exhalation flow sensor 61, and is used to control the end-expiratory pressure of the patient's exhaled air and prevent the collapse of the alveoli after the patient's exhalation.
  • the exhalation check valve 63 is connected to the exhalation valve 62 and is used to prevent gas from entering the exhalation branch.
  • the ventilation control device 4 controls the high-frequency valve 51 to close, and the patient's exhaled air passes through the exhaled flow sensor 61 of the exhalation branch 6. It is discharged through the exhalation valve 62.
  • the ventilation control device 4 can also control the active exhalation device 5 during the exhalation phase. It is closed, so that the gas exhaled by the patient from the patient pipeline is discharged through the exhalation branch 6.
  • the air source interface 1 includes a first air source interface 11 and a second air source interface 12
  • the inhalation branch 2 includes: a first air supply branch 21, The second aeration branch 22 and the third aeration branch 23,
  • the air outlet end of the first air supply branch 21 and the air outlet end of the second air supply branch 22 are respectively connected to the intake end of the third air supply branch 23;
  • the outlet end of the third air supply branch 23 is connected to the patient pipeline
  • the air inlet end of the first air supply branch 21 is connected to the first air source interface 11;
  • the air inlet end of the second air supply branch 22 is connected to the second air source interface 12.
  • the first gas source interface 11 is used to connect to an oxygen gas source
  • the second gas source interface 12 is used to connect to an air source.
  • the first gas source interface 11 can also be used to connect to an air source
  • the second gas source interface 12 is used to connect to an oxygen source, which is not limited in the embodiment of the present invention.
  • the first air supply branch 21 includes a first inhalation check valve 211 and a first flow regulating valve 212 connected in sequence, and a second air supply branch
  • the path 22 includes a second suction check valve 221 and a second flow regulating valve 222 connected in sequence
  • the third air supply branch 23 includes a third suction check valve 231;
  • the first air suction check valve 211 is connected to the first air source interface 11, and the second air suction check valve 221 is connected to the second air source interface 12.
  • the first air supply branch 21 may not only include a first suction check valve 211 and a first flow regulating valve 212, It may further include a first filter 213, a first pressure sensor 214, a first pressure regulating valve 215, a second filter 216, and a first flow sensor 217.
  • the second air supply branch may not only include a second suction check valve 221 and a second flow regulating valve 222, but also a third filter 223, a second pressure sensor 224, and a second pressure regulating valve 225.
  • the fourth filter 226 and the second flow sensor 227 may not only include a first suction check valve 211 and a first flow regulating valve 212, It may further include a first filter 213, a first pressure sensor 214, a first pressure regulating valve 215, a second filter 216, and a first flow sensor 217.
  • the second air supply branch may not only include a second suction check valve 221 and a second flow regulating valve 222, but also a third filter 223, a second
  • the first filter 213 is connected to the first gas source interface 11 to prevent impurities from flowing into the downstream of the gas passage. , Protect downstream devices.
  • the first pressure sensor 214 is connected to the first filter 213, and is used to monitor the pressure of the oxygen input from the first gas source interface 11, so as to realize an alarm when the pressure exceeds the maximum threshold or is lower than the minimum threshold.
  • the first inhalation check valve 211 is connected to the first pressure sensor 214 to prevent air from entering the branch, and when only the second air supply branch 22 is opened, the air entering the second air supply branch 22 can be prevented from appearing Reverse leakage.
  • the first pressure regulating valve 215 is connected to the first suction check valve 211, which can stabilize the pressure input from the air source and ensure accurate control of downstream flow and pressure.
  • the first flow regulating valve 212 is connected to the first pressure regulating valve 215 for regulating and controlling the flow of oxygen.
  • the second filter 216 is connected to the first flow regulating valve 212 and the first flow sensor 217. The second filter is used to further purify the input oxygen, protect the downstream first flow sensor 217 for smooth and accurate measurement of oxygen, and can also stabilize it. The role of flow rate.
  • the third filter 223 is connected to the second air source interface 12 to prevent impurities from flowing into the downstream of the gas passage. , Protect downstream devices.
  • the second pressure sensor 224 is connected to the third filter 223, and is used to monitor the pressure of the input air from the second air source interface 12, so as to realize an alarm when the pressure exceeds the maximum threshold or falls below the minimum threshold.
  • the second inhalation check valve 221 is connected to the second pressure sensor 224 to prevent oxygen from entering the branch, and when only the first air supply branch 21 is opened, the oxygen entering the first air supply branch 21 can be prevented from appearing Reverse leakage.
  • the second pressure regulating valve 225 is connected to the second suction check valve 221, which can stabilize the pressure input by the air source and ensure accurate control of downstream flow and pressure.
  • the second flow regulating valve 222 is connected to the second pressure regulating valve 225 for regulating and controlling the flow of air.
  • the fourth filter 226 is connected to the second flow regulating valve 222 and the second flow sensor 227. The fourth filter 226 is used to further purify the input air and protect the downstream second flow sensor 227 to accurately measure the oxygen flow. To stabilize the flow rate.
  • the first flow regulating valve 212 and the second flow regulating valve 222 respectively control the flow rates of oxygen and air, so that oxygen and air are mixed in the third air supply branch 23 to obtain When mixing gas, control the oxygen concentration in the mixed gas to meet the ventilation needs of different patients.
  • the high-frequency oscillation generating device 3 is connected to the third air supply branch 23, and the third air supply branch 23 not only includes the third inhalation
  • the one-way valve 231 may also include a safety valve 232 and a humidifier 233.
  • connection includes direct connection and indirect connection.
  • the first flow regulating valve 212 and the second flow regulating valve 222 may be directly connected to the high-frequency oscillation generating device 3 respectively.
  • the first flow regulating valve 212 and the second flow regulating valve 222 can also be indirectly connected to the high-frequency oscillation generating device 3 respectively.
  • the first flow regulating valve 212 can be indirectly connected to the high frequency oscillation generating device 3 via the second filter 216 and/or the first flow sensor 217; the second flow regulating valve 222 can be connected via the fourth filter 226 and/or the first The second flow sensor 227 is indirectly connected to the high-frequency oscillation generating device 3.
  • the high-frequency oscillation generating device 3 can be used to adjust the flow rate of the mixed gas of oxygen and air.
  • the airway pressure is controlled according to the output mixed gas flow rate, where the airway pressure is monitored by the proximal pressure sensor 7.
  • the third inspiratory check valve 231 is connected to the high-frequency oscillation generating device 3, and is used to prevent the exhaled gas from entering the high-frequency oscillation generating device 3 of the third air supply branch 23 and its upstream devices when the patient exhales during the expiration phase .
  • the safety valve 232 is connected to the third suction check valve 231, and is opened when the pressure of the mixed gas reaches the maximum set value during the suction process, so that the gas is discharged and the purpose of pressure relief is achieved.
  • the safety valve 232 can also be opened to use the safety valve 232 to discharge the exhaled gas.
  • the safety valve 232 can also be switched to the atmosphere, and gas can be sucked from the atmosphere to make up for the deficiency.
  • the humidifier 233 is connected with the safety valve 232, and can heat and humidify the mixed gas sent in, and control the temperature and humidity of the mixed gas, so as to ensure the comfort of the patient's inhalation.
  • Fig. 3 is a third structural diagram of a respiratory ventilation system provided by an embodiment of the present invention.
  • Fig. 4 is a fourth structural diagram of a respiratory ventilation system provided by an embodiment of the present invention.
  • the high-frequency oscillation generating device 3 may be composed of a first flow regulating valve 212 and a second flow regulating valve 222.
  • the ventilation control device 4 can control the first flow regulating valve 212 and the second flow regulating valve 222 according to the preset high-frequency oscillation frequency, so that the corresponding air supply branch The gas produced high-frequency oscillation, and further, in the third air supply branch to achieve the mixing of the two gases, and finally delivered to the patient through the patient pipeline.
  • a proximal pressure sensor 7 may be provided on the patient pipeline for real-time monitoring of the proximal pressure of the patient and feedback to the ventilation control device 4. For the ventilation control device 4 to perform related control.
  • the active exhalation device 5 is specifically connected to the exhalation branch 6.
  • the active exhalation device 5 may also be connected to the outlet of the third inhalation check valve 231.
  • the ventilation control device 4 controls the active exhalation device 5 and the high-frequency oscillation generating device 3 to work together to realize the control of the average airway pressure.
  • the ventilation control device 4 controls the high-frequency oscillation generating device 3 to quickly adjust according to the preset high-frequency oscillation frequency, so that the gas in the inhalation branch 2 generates high Frequency oscillation to control the peak pressure of each cycle.
  • the ventilation control device 4 can also control the active exhalation device 5 to work and extract part of the gas in the inspiratory branch 2 so as to control the average airway pressure to reach a preset state.
  • the proximal pressure sensor 7 can monitor the pressure and feed it back to the ventilation control device 4 in time, and the ventilation control device 4 controls the active exhalation device 5 to extract gas according to the feedback pressure.
  • the ventilation control device 4 can also control the active exhalation device 5 and the exhalation valve 62 of the exhalation branch 6 at the same time, and work together with the high-frequency oscillation generating device 3 to control the average Airway pressure.
  • Fig. 5 is a fifth structural schematic diagram of a respiratory ventilation system provided by an embodiment of the present invention.
  • the breathing and ventilation system may not include the exhalation branch 6, and only the active exhalation device 5 can not only realize the active exhalation function, but also can be used in the ventilation control device 4.
  • the passive exhalation function of the exhalation branch 6 is realized under the control of, which is not limited in the embodiment of the present invention.
  • the embodiment of the present invention provides a respiratory ventilation system, including: an air source interface, an inhalation branch, a high-frequency oscillation generating device, a ventilation control device, and an active exhalation device; the inhalation branch is connected to the air source interface and The patient pipeline connected to the patient's respiratory system; high-frequency oscillation generating equipment, which generates high-frequency oscillations of the gas in the inhalation branch; ventilation control equipment, connected to the inspiratory branch, high-frequency oscillation generating equipment and active exhalation equipment,
  • the high-frequency oscillation generator is controlled to generate high-frequency oscillations in the gas in the inhalation branch according to the preset high-frequency oscillation frequency, and the high-frequency oscillation gas generated by the high-frequency oscillation generator is passed through the inhalation branch and the patient Pipeline output; in the exhalation phase, the active exhalation device is controlled to actively extract the gas exhaled by the patient through the patient pipeline according to the preset high-frequency oscillation frequency.
  • the respiratory ventilation system provided
  • Fig. 6 is a schematic flowchart of a breathing ventilation method provided by an embodiment of the present invention. As shown in Figure 6, it mainly includes the following steps:
  • the high-frequency oscillation generating device is controlled by the ventilation control device to generate high-frequency oscillations in the gas in the inhalation branch according to the preset high-frequency oscillation frequency, and pass the generated high-frequency oscillation gas through the inhalation branch And the patient pipeline is delivered to the patient.
  • the respiratory ventilation system can control the high-frequency oscillation generating device 3 through the ventilation control device 4 to generate high-frequency oscillations in the gas in the inhalation branch 2 according to a preset high-frequency oscillation frequency. And the generated high-frequency oscillating gas is delivered to the patient through the inhalation branch 2 and the patient pipeline.
  • the ventilation control device 4 may generate a corresponding operation instruction according to a preset high-frequency oscillation frequency, and transmit it to the high-frequency oscillation generating device 3.
  • the high-frequency oscillation generating device 3 can execute the received operation instruction to realize the high-frequency oscillation of the gas in the inhalation branch 2.
  • the preset high-frequency oscillation frequency can be determined according to the actual needs of the patient, which is not limited in the embodiment of the present invention.
  • the breathing ventilation device can also control the active exhalation device 5 and the high-frequency oscillation generating device 3 to work together through the ventilation control device 4 to realize the control of the average airway pressure.
  • the ventilation control device 4 can control the active exhalation device 5 to work and extract part of the air in the inhalation branch 2 so as to control the average airway pressure to reach a preset state.
  • the proximal pressure sensor 7 on the patient pipeline can monitor the pressure and feed it back to the ventilation control device 4 in time, and the ventilation control device 4 controls the active exhalation device 5 to extract gas according to the feedback pressure.
  • the ventilation control device controls the active exhalation device to actively extract the gas exhaled by the patient through the patient pipeline according to the preset high-frequency oscillation frequency.
  • the breathing ventilation system can control the active exhalation device 5 through the ventilation control device 4 to actively extract the gas exhaled by the patient through the patient pipeline according to the preset high-frequency oscillation frequency.
  • the active exhalation device 5 includes: a high-frequency valve 51 and/or an electric gas extraction device 52.
  • the breathing ventilation device controls the active exhalation device 5 through the ventilation control device 4
  • Actively extracting the patient's exhaled gas through the patient pipeline according to the preset high-frequency oscillation frequency includes: during the expiration stage, the ventilation control device 4 controls the high-frequency valve 51 to open, and controls the high-frequency according to the preset high-frequency oscillation frequency
  • the ventilation control device 4 can control the peak pressure and the minimum pressure of the patient in each cycle during the process of controlling the corresponding device according to the preset high-frequency oscillation frequency for rapid adjustment. And related parameters such as the oxygen concentration of the inhaled gas reach the target parameters.
  • Fig. 7 is a detailed control schematic diagram of an exemplary ventilation control device provided by an embodiment of the present invention.
  • the ventilation control device 4 is mainly responsible for algorithm operation, and the high-frequency oscillation generating device 3, the active exhalation device 5 includes the high-frequency valve 51 and the electric gas extraction device 52 and other core components Control operation.
  • the specific functions of the ventilation control device 4 mainly include high-frequency oxygen mixing control, logic matching of control devices, high-frequency oscillation generating equipment adjustment, high-frequency valve adjustment, and electric gas extraction equipment adjustment.
  • the high-frequency oxygen mixing function is mainly to adjust the flow rate to achieve the desired oxygen concentration target.
  • the logic matching function is mainly to allocate and coordinate the roles of the high-frequency oscillation generating device 3, the high-frequency valve 51 and the electric gas extraction device 52 in the pressure control process to achieve optimal control coordination.
  • the ventilation control device 4 preferentially switches off the high-frequency oscillation generating device 3 to reduce the pressure. If the high-frequency oscillation generating device 3 is cut off and cannot meet the pressure reduction requirement, the high-frequency valve 51 and the electric gas extraction are restarted.
  • the device 52 performs depressurization.
  • the adjustment function of the high-frequency oscillation generating device 3 is mainly responsible for the closed-loop feedback control of the flow rate of the high-frequency oscillation generating device 3 during the pressure oscillation.
  • the high-frequency valve adjustment function is mainly responsible for the control of the opening size and valve opening speed of the high-frequency valve 51.
  • the high-frequency valve 51 adopts a faster valve opening control speed.
  • the high-frequency valve 51 will adjust to a larger opening.
  • the adjustment function of the electric gas extraction device is mainly responsible for the closed loop control of the rotation speed of the electric gas extraction device 52, such as a turbine, to achieve a stable output.
  • the high-frequency oscillation generating device 3, the high-frequency valve 51, and the electric gas extraction device 52 execute corresponding operating instructions according to the target adjustment value to achieve the desired control effect.
  • the oscillation-related parameters for example, the monitoring of pressure or flow rate
  • the sensors set at corresponding positions in the respiratory ventilation system. And feed back to the ventilation control device 4.
  • Fig. 8 is a schematic diagram of a control flow of an exemplary ventilation control device provided by an embodiment of the present invention.
  • the ventilation control device 4 first obtains target parameters, such as target control pressure, according to the system parameter settings, and performs pressure closed-loop feedback control according to the actual patient-side flow rate, and then feedbacks the total target flow rate obtained according to the parameters and the set
  • the target oxygen concentration performs oxygen concentration feedback control
  • the logic matching function will perform control logic matching according to the current control status of the high-frequency oscillation generating device 3, the high-frequency valve 51 and the electric gas extraction device 52, and then the high-frequency oscillation generating device 3, high
  • the frequency valve 51 and the electric gas extraction device 52 respectively adjust relevant parameters such as the oscillation pressure according to the logically matched control sequence and control strength.
  • the ventilation control device 4 will monitor the actual pressure at the patient end in real time. If the target control pressure requirement is reached, the pressure feedback is stopped and the current control state is maintained. Otherwise, continue pressure closed-loop
  • the embodiment of the present invention provides a method of breathing and ventilation, which includes: during the inhalation phase, the high-frequency oscillation generating device is controlled by the ventilation control device to generate high-frequency oscillation in the gas in the inhalation branch according to a preset high-frequency oscillation frequency, and The generated high-frequency oscillating gas is delivered to the patient through the inspiratory branch and the patient pipeline; during the expiration phase, the active exhalation device is controlled by the ventilation control device to actively extract the patient through the patient pipeline according to the preset high-frequency oscillation frequency gas.
  • the breathing ventilation method provided by the embodiment of the present invention uses an active exhalation device to extract the patient's exhaled air to generate active exhalation to support the high-frequency ventilation mode, which not only has a smaller system volume, but also reduces gas consumption and noise.
  • the high-frequency oscillation generating device is controlled by the ventilation control device to generate high-frequency oscillations in the gas in the inhalation branch according to the preset high-frequency oscillation frequency, and the generated high-frequency oscillation
  • the high-frequency oscillating gas is delivered to the patient through the inspiratory branch and the patient pipeline; in the expiration phase, the active exhalation device is controlled by the ventilation control device to actively extract the patient's exhaled gas through the patient pipeline according to the preset high-frequency oscillation frequency.
  • the technical solution provided by the embodiment of the present invention uses an active exhalation device to extract the patient's exhaled air to generate active exhalation to support the high-frequency ventilation mode, which not only has a smaller system volume, but also reduces gas consumption and noise.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Emergency Medicine (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种呼吸通气***,包括:气源接口(1)、吸气支路(2)、高频振荡产生设备(3)、通气控制设备(4)和主动呼气设备(5);吸气支路(2),分别连接气源接口(1)和与患者呼吸***连接的病人管路;高频振荡产生设备(3),将吸气支路(2)的气体产生高频振荡;通气控制设备(4),与吸气支路(2)、高频振荡产生设备(3)和主动呼气设备(5)连接,在吸气阶段,控制高频振荡产生设备(3)按照预设的高频振荡频率将吸气支路(2)的气体产生高频振荡,并将高频振荡产生设备(3)产生的高频振荡气体经吸气支路(2)、病人管路输出;在呼气阶段,控制主动呼气设备(5)按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。该***体积较小,并能降低气体消耗和噪声。

Description

一种呼吸通气***及方法 技术领域
本发明实施例涉及医疗器械技术领域,尤其涉及一种呼吸通气***及方法。
背景技术
呼吸障碍、衰竭是影响新生儿尤其是早产儿存活率的一个主要原因。在某些情况下针对新生儿采用传统通气方法,并不能有效进行呼吸支持,这是由于传统通气方法提供的气道压力较高,可能会导致肺损伤,针对这一情况,可以采用高频振荡通气方法进行呼吸支持。
高频振荡通气方法具备三个基本特征:呼吸频率达到3-50HZ、潮气量接近病人生理死腔大小,以及主动吸气呼气。其中,与传统的只在吸入阶段换气,在呼出阶段依靠人的生理反应来换气的通气方式相反,高频振荡通气可以实现主动呼气,即在病人呼气阶段由机器产生负向作用力,帮助病人呼气,这对于新生儿或者其他患有肺部疾病的病人是非常关键的。此外,高频振荡通气的通气参数包括氧浓度、平均压、频率、振幅和呼吸比,这些参数可以根据病人的自身状态和治疗需求,进行设置和调节。
目前,实现高频振荡通气方法的高频振荡通气装置,例如,高频振荡呼吸机,一种方式为利用类似扬声器膜片的振荡法,由膜片的进退来控制主动吸气和主动呼气,由电机带动膜片控制运动行程和频率,然而,器件的体积较大,要求越大的振荡幅度相应的器件体积越大,并且难以将传统通气和高频通气组合应用,另一种方式为利用电磁阀实现主动吸气,利用文丘里负压吸引装置实现主动呼气,然而,文丘里负压需要高压气体驱动,噪声大且消耗过多气源气体。
发明内容
为解决上述技术问题,本发明实施例期望提供一种呼吸通气***及方法,利用主动呼气设备抽取患者呼出气体产生主动呼气,以支持高频通气模式,不仅***体积较小,而且降低了气体消耗和噪声。
本发明实施例的技术方案可以如下实现:
本发明实施例提供了一种呼吸通气***,所述***包括:气源接口、吸气支路、高频振荡产生设备、通气控制设备和主动呼气设备;
所述吸气支路,分别连接所述气源接口和与患者呼吸***连接的病人管路;
所述高频振荡产生设备,将所述吸气支路的气体产生高频振荡;
所述通气控制设备,与所述吸气支路、高频振荡产生设备和主动呼气设备连接,在吸气阶段,控制所述高频振荡产生设备按照预设的高频振荡频率将所述吸气支路的气体产生高频振荡,并将所述高频振荡产生设备产生的高频振荡气体经所述吸气支路、病人管路输出;在呼气阶段,控制所述主动呼气设备按照所述预设的高频振荡频率主动抽取患者通过所述病人管路呼出的气体。
在上述呼吸通气***中,所述主动呼气设备包括:高频阀和/或电动气体抽取设备;
所述呼吸通气***还包括呼气支路,与所述病人管路连接,将患者呼出的气体排出;
所述主动呼气设备设置在所述吸气支路或所述呼气支路上。
在上述呼吸通气***中,所述高频阀为开关阀或比例阀。
在上述呼吸通气***中,所述通气控制设备,还用于控制所述主动呼气设备关闭,以通过所述呼气支路将患者通过所述病人管路呼出的气体排出。
在上述呼吸通气***中,所述通气控制设备,在呼气阶段,控制所述高频阀打开,并根据所述预设的高频振荡频率控制所述高频阀的开口大小,以及所述电动气体抽取设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体;
或者,根据所述预设的高频振荡频率调节所述高频阀的开口大小,以主动抽取患者通过所述病人管路呼出的气体;
或者,根据所述预设的高频振荡频率调节所述电动气体抽取设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体。
在上述呼吸通气***中,所述气源接口包括第一气源接口和第二气源接口,所述吸气支路包括:第一送气支路、第二送气支路和第三送气支路,
所述第一送气支路的出气端和所述第二送气支路的出气端分别与所述第三送气支路的进气端连接;
所述第三送气支路的出气端与所述病人管路连接;
所述第一送气支路的进气端与所述第一气源接口连接;
所述第二送气支路的进气端与所述第二气源接口连接。
在上述呼吸通气***中,所述第一送气支路包括顺序连接的第一吸气单向阀和第一流量调节阀,所述第二送气支路包括顺序连接的第二吸气单向阀和第二流量调节阀,所述第三送气支路包括第三吸气单向阀;
所述第一吸气单向阀与所述第一气源接口连接,所述第二吸气单向阀与所述第二气源接口连接。
在上述呼吸通气***中,所述高频振荡产生设备与所述第三吸气单向阀顺序连接;
所述第一流量调节阀和所述第二流量调节阀分别与所述高频振荡产生设备连接。
在上述呼吸通气***中,所述高频振荡产生设备由所述第一流量调节阀和所述第二流量调节阀组成。
在上述呼吸通气***中,所述通气控制设备,控制所述主动呼气设备与所述高频振荡产生设备协同工作,以实现对平均气道压的控制。
在上述呼吸通气***中,所述高频振荡产生设备为高频吸气阀。
在上述呼吸通气***中,所述高频吸气阀为比例电磁阀、阻断阀、伺服阀和涡轮中的任意一种。
在上述呼吸通气***中,所述主动呼气设备连接于所述第三吸气单向阀的出口,或者,连接于所述呼气支路。
本申请实施例提供了一种呼吸通气方法,应用于上述呼吸通气***中,其特征在于,所述方法包括:
在吸气阶段,通过通气控制设备控制高频振荡产生设备按照预设的高频振荡频率将吸气支路的气体产生高频振荡,并将产生的高频振荡气体通过所述吸气支路和病人管路输送给患者;
在呼气阶段,通过所述通气控制设备控制主动呼气设备按照所述预设的高频振荡频率主动抽取患者通过所述病人管路呼出的气体。
在上述呼吸通气方法中,所述主动呼气设备包括:高频阀和/或电动气体抽取设备,所述在呼气阶段,通过所述通气控制设备控制主动呼气设备按照所述预设的高频振荡频率主动抽取患者通过所述病人管路呼出的气体,包括:
在呼气阶段,通过所述通气控制设备控制所述高频阀打开,并根据所述预设的高频振荡频率控制所述高频阀的开口大小,以及所述电动气体抽取设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体;
或者,通过所述通气控制设备根据所述预设的高频振荡频率调节所述高频阀的开口大小,以主动抽取患者通过所述病人管路呼出的气体;
或者,通过所述通气控制设备根据所述预设的高频振荡频率调节所述电动气体抽取设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体。
在上述呼吸通气方法中,所述方法还包括:
通过所述通气控制设备,控制所述主动呼气设备与所述高频振荡产生设备协同工作,以实现对平均气道压的控制。
本发明实施例提供了一种呼吸通气***,包括:气源接口、吸气支路、高频振荡产生设备、通气控制设备和主动呼气设备;吸气支路,分别连接气源接口和与患者呼吸***连接的病人管路;高频振荡产生设备,将吸气支路的气体产生高频振荡;通气控制设备,与吸气支路、高频振荡产生设备和主动呼气设备连接,在吸气阶段,控制高频振荡产生设备按照预设的高频振荡频率将吸气支路的气体产生高频振荡,并将高频振荡产生设备产生的高频振荡气体经吸气支路、病人管路输出;在呼气阶段,控制主动呼气设备按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。本发明实施例提供的呼吸通气***,利用主动呼气设备抽取患者呼出气体产生主动呼气,以支持高频通气模式,不仅***体积较小,而且降低了气体消耗和噪声。
附图说明
图1为本发明实施例提供的一种呼吸通气***的结构示意图一;
图2为本发明实施例提供的一种呼吸通气***的结构示意图二;
图3为本发明实施例提供的一种呼吸通气***的结构示意图三;
图4为本发明实施例提供的一种呼吸通气***的结构示意图四;
图5为本发明实施例提供的一种呼吸通气***的结构示意图五;
图6为本发明实施例提供的一种呼吸通气方法的流程示意图;
图7为本发明实施例提供的一种示例性的通气控制设备的详细控制示意图;
图8为本发明实施例提供的一种示例性的通气控制设备的控制流程示意图。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供了一种呼吸通气***。图1为本发明实施例提供的一种呼吸通气***的结构示意图一。如图1所示,呼吸通气***主要包括:气源接口1、吸气支路2、高频振荡产生设备3、通气控制设备4(图中未示出)和主动呼气设备5;
吸气支路2,分别连接气源接口1和与患者呼吸***连接的病人管路;
高频振荡产生设备3,将吸气支路2的气体产生高频振荡;
通气控制设备4,与吸气支路2、高频振荡产生设备3和主动呼气设备5连接,在吸气阶段,控制高频振荡产生设备3按照预设的高频振荡频率将吸气支路2的气体产生高频振荡,并将高频振荡产生设备3产生的高频振荡气体经吸气支路2、病人管路输出;在呼气阶段,控制主动呼气设备5按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。
需要说明的是,在本发明的实施例中,呼吸通气***的吸气支路2,用于在吸气阶段中,提供气体的输送路径。
需要说明的是,在本发明的实施例中,如图1所示,高频振荡产生设备3可以为高频吸气阀。具体的高频吸气阀可以为比例电磁阀、阻断阀、伺服阀和涡轮中的任意一种。当然,高频振荡产生设备3也可以为其他可实现气体高频振荡的设备,本发明实施例不作限定。
需要说明的是,在本发明的实施例中,医护人员可以根据患者的实际通气需求确定预设的高频振荡频率,具体的预设的高频振荡频率可以为3-50Hz,本发明实施例不作限定。
可以理解的是,在本发明的实施例中,高频振荡产生设备3设于吸气 支路2,通气控制设备4与吸气支路2和高频振荡产生设备3连接,从而在吸气阶段,通气控制设备4可以控制高频振荡产生设备3按照预设的高频振荡频率将吸气支路2的气体产生高频振荡。之后,由于吸气支路2还与病人管路连接,因此,高频振荡产生设备3产生的高频振荡气体将流经吸气支路,从病人管路输送给患者,实现患者的高频吸气。
可以理解的是,在本发明的实施例中,通气控制设备4还与主动呼气设备5连接,从而在呼气阶段,控制主动呼气设备5按照预设的高频振荡频率主动进行患者呼出气体的抽取,实现主动呼气。
具体地,在本发明的实施例中,如图1和图2所示,主动呼气设备5包括:高频阀51和/或电动气体抽取设备52;呼吸通气***还包括呼气支路6,与病人管路连接,将患者呼出的气体排出;主动呼气设备设置在吸气支路2或呼气支路6上。
可以理解的是,在本发明的实施例中,呼吸通气***还包括呼气支路6。呼气支路6用于在呼气阶段中,提供呼气路径。
需要说明的是,在本发明的实施例中,主动呼气设备5包括的高频阀51可以为开关阀或比例阀等。电动气体抽取设备52可以为涡轮等设备,在呼气阶段,通气控制设备4可以基于预设的高频振荡频率控制涡轮进行旋转,通过控制涡轮的转速,即可控制负向力,产生主动呼气。涡轮主动抽取出的患者呼出气体,产生主动呼气。具体的高频阀51和电动气体抽取设备52可以根据实际情况选取,本发明实施例不作限定。
在本发明实施例中,如图1所示,主动呼气设备5可以设置在呼吸通气***的呼气支路6上。如图2所示,主动呼气设备5也可以设置在呼吸通气***的吸气支路2上。此外,如图1和图2所示,主动呼气设备不仅包括高频阀51和电动气体抽取设备52,还包括呼出过滤器53。在呼气阶段,通气控制设备4可以控制高频阀51开启,并通过调节电流或电压控制电动气体抽取设备52,如涡轮的转速,从而经由呼出过滤器53抽取患者呼 出气体。此外,通气控制设备4还可以控制呼气支路6的呼气阀开启,同时进行排气,从而协助电动气体抽取设备52一起进行排气。
需要说明的是,在本发明的实施例中,针对不同的实际情况,可以仅利用高频阀51开启以实现主动呼气,也可以仅利用电动气体抽取设备52实现主动呼气,还可以同时利用高频阀51和电动气体抽取设备52实现主动呼气,本发明实施例不作限定。
具体地,在本发明的实施例中,通气控制设备4,在呼气阶段,控制高频阀51打开,并根据预设的高频振荡频率控制高频阀51的开口大小,以及电动气体抽取设备52的抽取动力,以主动抽取患者通过病人管路呼出的气体;
或者,根据预设的高频振荡频率调节高频阀51的开口大小,以主动抽取患者通过病人管路呼出的气体;
或者,根据预设的高频振荡频率调节电动气体抽取设备52的抽取动力,以主动抽取患者通过病人管路呼出的气体。
需要说明的是,在本发明的实施例中,在高频阀51为比例阀的情况下,通气控制设备4可以根据预设的相关参数和主动呼气的实际需求,通过调节电流或电压控制比例阀的开口大小。例如,在呼气阶段,当预设的高频振荡频率调节要求气道压力快速下降时,通气控制设备4可以采用较快的开阀控制速度,当要求气道压力下降到较大的负向压力时,通气控制设备4可以将比例阀的开口调节的较大。此外,在设置的振荡的低压值不足以启动电动气体抽取设备52时,通气控制设备4可以根据该低压值的大小对比例阀的开口大小进行调节。在某些情况下,通气控制设备4需要将比例阀的开口调小,以满足通气设置的需求。
需要说明的是,在本发明的实施例中,当高频阀51和电动气体抽取设备52组合,以按照预设的高频振荡频率实现主动呼气时,在高频阀51为比例阀的情况下,由于电动气体抽取设备52,例如涡轮,调节响应慢,因 此,也可以调整比例阀开口大小,发挥其响应时间短和反应快的优点,从而快速达到需要的压力。此外,比例阀的调节分辨率通常比涡轮更高,可以实现更精准的通气控制。
需要说明的是,在高频阀51由固定孔结构组成,通气控制设备4是无法控制其开关和开口大小,因此,在通气控制设备4控制主动呼气设备5实现主动呼气时,呼气阀将一直进行协助排气。
需要说明的是,在本发明的实施例中,在高频阀51为开关阀的情况下,通气控制设备4不能调节其开口大小,在无需启动电动气体抽取设备52时,就无法对振荡的低压值的大小进行控制。
需要说明的是,在本发明的实施例中,主动呼气设备5可以不包括高频阀51,而仅包括电动气体抽取设备52,在吸气阶段,通气控制设备4可以通过调节涡轮等电动气体抽取设备52的转速或旋转方向,尽可能减少气体从电动气体抽取设备52泄漏。
具体地,在本发明的实施例中,通气控制设备4,还用于控制主动呼气设备5关闭,以通过呼气支路6将患者通过病人管路呼出的气体排出。
需要说明的是,在本发明的实施例中,如图1和图2所示,呼气支路6可以包括呼气流量传感器61、呼气阀62和呼气单向阀63。其中,呼气流量传感器61与病人管路连接,用于监测患者呼出气体的流量大小和潮气量。呼气阀62与呼气流量传感器61连接,用于控制患者呼出气体的呼末压力大小,防止患者呼气后肺泡的塌陷。呼气单向阀63与呼气阀62连接,用于防止从呼气支路进入气体。
需要说明的是,在本发明的实施例中,在呼气阶段,采用常频通气时,通气控制设备4控制高频阀51关闭,患者呼出气体经过呼气支路6的呼出流量传感器61,通过呼气阀62排出。
可以理解的是,在本发明的实施例中,患者的实际状态也可能并不需要在呼气阶段实现主动呼气,因此,通气控制设备4还可以在呼气阶段, 控制主动呼气设备5关闭,从而将患者从病人管路呼出的气体通过呼气支路6排出即可。
在本发明的实施例中,如图1和图2所示,气源接口1包括第一气源接口11和第二气源接口12,吸气支路2包括:第一送气支路21、第二送气支路22和第三送气支路23,
第一送气支路21的出气端和第二送气支路22的出气端分别与第三送气支路23的进气端连接;
第三送气支路23的出气端与病人管路连接;
第一送气支路21的进气端与第一气源接口11连接;
第二送气支路22的进气端与第二气源接口12连接。
需要说明的是,在本发明的实施例中,如图1和图2所示,第一气源接口11用于接入氧气气源,第二气源接口12用于接入空气气源。当然,也可以采用第一气源接口11接入空气气源,相应的,采用第二气源接口12接入氧气气源,本发明实施例不作限定。
具体地,在本发明的实施例中,如图1和图2所示,第一送气支路21包括顺序连接的第一吸气单向阀211和第一流量调节阀212,第二送气支路22包括顺序连接的第二吸气单向阀221和第二流量调节阀222,第三送气支路23包括第三吸气单向阀231;
第一吸气单向阀211与第一气源接口11连接,第二吸气单向阀221与第二气源接口12连接。
需要说明的是,在本发明的实施例中,如图1和图2所示,在第一送气支路21中,不仅可以包括第一吸气单向阀211和第一流量调节阀212,还可以包括第一过滤器213、第一压力传感器214、第一调压阀215、第二过滤器216和第一流量传感器217。此外,在第二送气支路中,不仅可以包括第二吸气单向阀221和第二流量调节阀222,还可以包括第三过滤器223、第二压力传感器224、第二调压阀225、第四过滤器226和第二流量传感器 227。
具体地,在本发明的实施例中,如图1和图2所示,在第一送气支路21中,第一过滤器213与第一气源接口11连接,以防止杂质流入气体通路下游,保护下游的器件。第一压力传感器214与第一过滤器213连接,用于监测第一气源接口11输入氧气的压力,从而在压力超过最大阈值或者低于最小阈值时,实现报警提示。第一吸气单向阀211与第一压力传感器214连接,以防止空气进入支路,并且,在只开启第二送气支路22的情况下,可以避免第二送气支路22进入的空气出现反向泄漏。第一调压阀215与第一吸气单向阀211连接,可以稳定气源输入的压力,保证下游流量和压力的准确控制。第一流量调节阀212与第一调压阀215连接,用于调节和控制氧气的流量。第二过滤器216与第一流量调节阀212和第一流量传感器217连接,第二过滤器用于进一步净化输入的氧气,保护下游第一流量传感器217对于氧气流畅的准确测量,也能起到稳定流速的作用。
具体地,在本发明的实施例中,如图1和图2所示,在第二送气支路22中,第三过滤器223与第二气源接口12连接,以防止杂质流入气体通路下游,保护下游的器件。第二压力传感器224与第三过滤器223连接,用于监测第二气源接口12输入空气的压力,从而在压力超过最大阈值或者低于最小阈值时,实现报警提示。第二吸气单向阀221与第二压力传感器224连接,以防止氧气进入支路,并且,在只开启第一送气支路21的情况下,可以避免第一送气支路21进入的氧气出现反向泄漏。第二调压阀225与第二吸气单向阀221连接,可以稳定气源输入的压力,保证下游流量和压力的准确控制。第二流量调节阀222与第二调压阀225连接,用于调节和控制空气的流量。第四过滤器226与第二流量调节阀222和第二流量传感器227连接,第四过滤器226用于进一步净化输入的空气,保护下游第二流量传感器227对于氧气流量的准确测量,也能起到稳定流速的作用。
可以理解的是,在本发明的实施例中,第一流量调节阀212和第二流 量调节阀222分别控制氧气和空气的流量大小,从而在第三送气支路23进行氧气和空气混合,得到混合气体时,实现混合气体中氧气浓度的控制,以满足不同患者的通气需求。
需要说明的是,在本发明的实施例中,如图1和图2所示,高频振荡产生设备3连接在第三送气支路23上,第三送气支路23不仅包括第三吸气单向阀231,还可以包括安全阀232和湿化器233。
具体的,在本发明的实施例中,如图1和图2所示,高频振荡产生设备3与第三吸气单向阀231顺序连接,第一流量调节阀212和第二流量调节阀222可分别与高频振荡产生设备3连接。在本申请文件中,连接包括直接连接和间接连接。第一流量调节阀212和第二流量调节阀222可分别与高频振荡产生设备3直接连接。当然,第一流量调节阀212和第二流量调节阀222还可分别与高频振荡产生设备3间接连接。例如,第一流量调节阀212可以经第二过滤器216和/或第一流量传感器217与高频振荡产生设备3间接连接;第二流量调节阀222可以经第四过滤器226和/或第二流量传感器227与高频振荡产生设备3间接连接。
需要说明的是,在本发明的实施例中,如图1和图2所示,在第三送气支路23上,高频振荡产生设备3可以用于调节氧气和空气的混合气体的流量大小,根据输出的混合气体流量大小控制气道压力的大小,其中,气道压力的大小由近端压力传感器7监测得到。第三吸气单向阀231与高频振荡产生设备3连接,用于防止患者在呼气阶段进行呼气时,呼出气体进入第三送气支路23的高频振荡产生设备3及其上游器件。安全阀232与第三吸气单向阀231连接,在吸气过程中混合气体的压力达到最大设定值时打开,使气体排出,达到卸放压力的目的。此外,在呼气阶段时如果呼气支路和主动呼气设备5出现故障,无法正常排出呼出气体时,也可以打开安全阀232,以利用安全阀232排出呼出气体。在第三送气支路23中,安全阀232前端并未送入足够的混合气体时,也可以将安全阀232切换向大 气,从大气中吸入气体以弥补不足。湿化器233与安全阀232连接,可以对送入的混合气体进行加温加湿,控制混合气体的温湿度,从而保证患者吸入的舒适度。
图3为本发明实施例提供的一种呼吸通气***的结构示意图三。图4为本发明实施例提供的一种呼吸通气***的结构示意图四。如图3和图4所示,在本发明的实施例中,高频振荡产生设备3可以由第一流量调节阀212和第二流量调节阀222组成。
需要说明的是,在本发明的实施例中,如图3和图4所示,在第一流量调节阀212和第二流量调节阀222组成高频振荡产生设备的情况下,即通气控制设备4与第一流量调节阀212和第二流量调节阀222连接,通气控制设备4可以按照预设高频振荡频率控制第一流量调节阀212和第二流量调节阀222,从而使相应送气支路上的气体产生高频振荡,进一步的,在第三送气支路实现两种气体的混合,最终通过病人管路输送给患者。
需要说明的是,在本发明的实施例中,如图1至图4所示,在病人管路上可以设置有近端压力传感器7,用于实时监测患者近端压力大小,反馈给通气控制设备4,以供通气控制设备4进行相关控制。
需要说明的是,在本发明的实施例中,如图1和图3所示,主动呼气设备5具体连接于呼气支路6。此外,如图2和图4所示,主动呼气设备5还可以连接于第三吸气单向阀231的出口。
具体地,在本发明的实施例中,通气控制设备4,控制主动呼气设备5与高频振荡产生设备3协同工作,以实现对平均气道压的控制。
可以理解的是,在本发明的实施例中,在吸气阶段,通气控制设备4控制高频振荡产生设备3按照预设的高频振荡频率快速调节,使吸气支路2的气体产生高频振荡,控制每个周期的峰值压力。此外,在吸气阶段,通气控制设备4还可以控制主动呼气设备5工作,抽取出吸气支路2的部分气体,从而控制平均气道压达到预设的状态。其中,近端压力传感器7可 以实现压力的监测,并及时反馈给通气控制设备4,通气控制设备4根据反馈的压力,控制主动呼气设备5进行气体抽取。
需要说明的是,在本发明的实施例中,通气控制设备4还可以同时控制主动呼气设备5和呼气支路6的呼气阀62,与高频振荡产生设备3协同工作,控制平均气道压。
图5为本发明实施例提供的一种呼吸通气***的结构示意图五。如图5所示,在本发明的实施例中,呼吸通气***中也可以不包括呼气支路6,仅通过主动呼气设备5不仅可以实现主动呼气功能,也可以在通气控制设备4的控制下实现呼气支路6的被动呼气功能,本发明实施例不作限定。
本发明实施例提供了一种呼吸通气***,包括:气源接口、吸气支路、高频振荡产生设备、通气控制设备和主动呼气设备;吸气支路,分别连接气源接口和与患者呼吸***连接的病人管路;高频振荡产生设备,将吸气支路的气体产生高频振荡;通气控制设备,与吸气支路、高频振荡产生设备和主动呼气设备连接,在吸气阶段,控制高频振荡产生设备按照预设的高频振荡频率将吸气支路的气体产生高频振荡,并将高频振荡产生设备产生的高频振荡气体经吸气支路、病人管路输出;在呼气阶段,控制主动呼气设备按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。本发明实施例提供的呼吸通气***,利用主动呼气设备抽取患者呼出气体产生主动呼气,以支持高频通气模式,不仅***体积较小,而且降低了气体消耗和噪声。
本发明实施例提供了一种呼吸通气方法,通过上述呼吸通气***实现。图6为本发明实施例提供的一种呼吸通气方法的流程示意图。如图6所示,主要包括以下步骤:
S601、在吸气阶段,通过通气控制设备控制高频振荡产生设备按照预设的高频振荡频率将吸气支路的气体产生高频振荡,并将产生的高频振荡气体通过吸气支路和病人管路输送给患者。
在本发明的实施例中,在吸气阶段,呼吸通气***可以通过通气控制设备4控制高频振荡产生设备3按照预设的高频振荡频率将吸气支路2的气体产生高频振荡,并将产生的高频振荡气体通过吸气支路2和病人管路输送给患者。
需要说明的是,在本发明的实施例中,在吸气阶段,通气控制设备4可以根据预设的高频振荡频率生成相应的操作指令,传输至高频振荡产生设备3。高频振荡产生设备3即可执行接收到的操作指令,实现吸气支路2的气体产生高频振荡。
需要说明的是,在本发明的实施例中,预设的高频振荡频率可以根据患者的实际需求确定,本发明实施例不作限定。
需要说明的是,在本发明的实施例中,呼吸通气设备还可以通过通气控制设备4,控制主动呼气设备5与高频振荡产生设备3协同工作,以实现对平均气道压的控制。
具体的,在吸气阶段,通气控制设备4可以控制主动呼气设备5工作,抽取出吸气支路2的部分气体,从而控制平均气道压达到预设的状态。其中,病人管路上的近端压力传感器7可以实现压力的监测,并及时反馈给通气控制设备4,通气控制设备4根据反馈的压力,控制主动呼气设备5进行气体抽取。
S602、在呼气阶段,通过通气控制设备控制主动呼气设备按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。
在本发明的实施例中,在呼气阶段,呼吸通气***可以通过通气控制设备4控制主动呼气设备5按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。
具体地,在本发明的实施例中,主动呼气设备5包括:高频阀51和/或电动气体抽取设备52,在呼气阶段,呼吸通气设备通过通气控制设备4控制主动呼气设备5按照预设的高频振荡频率主动抽取患者通过病人管路 呼出的气体,包括:在呼气阶段,通过通气控制设备4控制高频阀51打开,并根据预设的高频振荡频率控制高频阀51的开口大小,以及电动气体抽取设备52的抽取动力,以主动抽取患者通过病人管路呼出的气体;或者,通过通气控制设备4根据预设的高频振荡频率调节高频阀51的开口大小,以主动抽取患者通过病人管路呼出的气体;或者,通过通气控制设备4根据预设的高频振荡频率调节电动气体抽取设备52的抽取动力,以主动抽取患者通过病人管路呼出的气体。
需要说明的是,在本发明的实施例中,通气控制设备4实现按照预设的高频振荡频率控制相应器件进行快速调节的过程中,可以控制每个周期的病人端的峰值压力、最低压力,以及吸入气体的氧浓度等相关参数达到目标参数。
图7为本发明实施例提供的一种示例性的通气控制设备的详细控制示意图。如图7所示,在高频通气过程中,通气控制设备4主要负责算法运行,以及高频振荡产生设备3、主动呼气设备5包括的高频阀51和电动气体抽取设备52等核心器件的控制操作。通气控制设备4具体功能主要包括高频混氧控制、控制器件的逻辑匹配、高频振荡产生设备调节、高频阀调节,以及电动气体抽取设备调节。其中,高频混氧功能主要是进行流速调节,实现期望的氧浓度目标。逻辑匹配功能主要是对高频振荡产生设备3、高频阀51和电动气体抽取设备52在压力控制过程中的作用进行分配和协调,以实现最优的控制配合。例如,在呼气阶段,通气控制设备4优先采用关断高频振荡产生设备3进行降压,如果高频振荡产生设备3截断不能达到降压需求时,再启动高频阀51及电动气体抽取设备52进行降压。高频振荡产生设备3调节功能,主要负责压力振荡过程中高频振荡产生设备3流速闭环反馈控制。高频阀调节功能,主要负责高频阀51开口大小和开阀速度的控制,当压力要求快速下降时,高频阀51采用较快的开阀控制速度,当压力要求下降到较大的负向压力时,高频阀51会调节到较大的开口。电 动气体抽取设备调节功能,主要负责电动气体抽取设备52,例如涡轮的转速闭环控制,以实现稳定的输出。最终,高频振荡产生设备3、高频阀51及电动气体抽取设备52根据目标调节值执行相应的操作指令,以达到期望的控制效果。
需要说明的是,在本发明的实施例中,如图7所示,高频振荡通气过程中,振荡相关参数,例如,压力或者流速的监测,可以通过呼吸通气***中相应位置设置的传感器获得,并反馈给通气控制设备4。
图8为本发明实施例提供的一种示例性的通气控制设备的控制流程示意图。如图8所示,通气控制设备4首先根据***参数设置获取目标参数,例如目标控制压力,并根据实际的病人端流速进行压力闭环反馈控制,之后,根据参数反馈获取的总目标流速以及设置的目标氧浓度进行氧浓度反馈控制,同时逻辑匹配功能会根据当前高频振荡产生设备3、高频阀51以及电动气体抽取设备52的控制状态进行控制逻辑匹配,接着高频振荡产生设备3、高频阀51以及电动气体抽取设备52根据逻辑匹配的控制顺序及控制强弱分别对振荡压力等相关参数进行调节。在整个振荡压力调节过程中,通气控制设备4会实时对病人端的实际压力进行监测。如果达到目标控制压力要求,则停止压力反馈,维持当前的控制状态。否则,继续进行压力闭环反馈控制。
本发明实施例提供了一种呼吸通气方法,包括:在吸气阶段,通过通气控制设备控制高频振荡产生设备按照预设的高频振荡频率将吸气支路的气体产生高频振荡,并将产生的高频振荡气体通过吸气支路和病人管路输送给患者;在呼气阶段,通过通气控制设备控制主动呼气设备按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。本发明实施例提供的呼吸通气方法,利用主动呼气设备抽取患者呼出气体产生主动呼气,以支持高频通气模式,不仅***体积较小,而且降低了气体消耗和噪声。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保 护范围。
工业实用性
在本发明实施例的技术方案中,在吸气阶段,通过通气控制设备控制高频振荡产生设备按照预设的高频振荡频率将吸气支路的气体产生高频振荡,并将产生的高频振荡气体通过吸气支路和病人管路输送给患者;在呼气阶段,通过通气控制设备控制主动呼气设备按照预设的高频振荡频率主动抽取患者通过病人管路呼出的气体。本发明实施例提供的技术方案,利用主动呼气设备抽取患者呼出气体产生主动呼气,以支持高频通气模式,不仅***体积较小,而且降低了气体消耗和噪声。

Claims (16)

  1. 一种呼吸通气***,其特征在于,所述***包括:气源接口、吸气支路、高频振荡产生设备、通气控制设备和主动呼气设备;
    所述吸气支路,分别连接所述气源接口和与患者呼吸***连接的病人管路;
    所述高频振荡产生设备,将所述吸气支路的气体产生高频振荡;
    所述通气控制设备,与所述吸气支路、高频振荡产生设备和主动呼气设备连接,在吸气阶段,控制所述高频振荡产生设备按照预设的高频振荡频率将所述吸气支路的气体产生高频振荡,并将所述高频振荡产生设备产生的高频振荡气体经所述吸气支路、病人管路输出;在呼气阶段,控制所述主动呼气设备按照所述预设的高频振荡频率主动抽取患者通过所述病人管路呼出的气体。
  2. 根据权利要求1所述的呼吸通气***,其特征在于,所述主动呼气设备包括:高频阀和/或电动气体抽取设备;
    所述呼吸通气***还包括呼气支路,与所述病人管路连接,将患者呼出的气体排出;
    所述主动呼气设备设置在所述吸气支路或所述呼气支路上。
  3. 根据权利要求2所述的呼吸通气***,其特征在于,所述高频阀为开关阀或比例阀。
  4. 根据权利要求2所述的呼吸通气***,其特征在于,
    所述通气控制设备,还用于控制所述主动呼气设备关闭,以通过所述呼气支路将患者通过所述病人管路呼出的气体排出。
  5. 根据权利要求2所述的呼吸通气***,其特征在于,
    所述通气控制设备,在呼气阶段,控制所述高频阀打开,并根据所述预设的高频振荡频率控制所述高频阀的开口大小,以及所述电动气体抽取 设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体;
    或者,根据所述预设的高频振荡频率调节所述高频阀的开口大小,以主动抽取患者通过所述病人管路呼出的气体;
    或者,根据所述预设的高频振荡频率调节所述电动气体抽取设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体。
  6. 根据权利要求1所述的呼吸通气***,其特征在于,所述气源接口包括第一气源接口和第二气源接口,所述吸气支路包括:第一送气支路、第二送气支路和第三送气支路,
    所述第一送气支路的出气端和所述第二送气支路的出气端分别与所述第三送气支路的进气端连接;
    所述第三送气支路的出气端与所述病人管路连接;
    所述第一送气支路的进气端与所述第一气源接口连接;
    所述第二送气支路的进气端与所述第二气源接口连接。
  7. 根据权利要求6所述的呼吸通气***,其特征在于,
    所述第一送气支路包括顺序连接的第一吸气单向阀和第一流量调节阀,所述第二送气支路包括顺序连接的第二吸气单向阀和第二流量调节阀,所述第三送气支路包括第三吸气单向阀;
    所述第一吸气单向阀与所述第一气源接口连接,所述第二吸气单向阀与所述第二气源接口连接。
  8. 根据权利要求7所述的呼吸通气***,其特征在于,
    所述高频振荡产生设备与所述第三吸气单向阀顺序连接;
    所述第一流量调节阀和所述第二流量调节阀分别与所述高频振荡产生设备连接。
  9. 根据权利要求7所述的呼吸通气***,其特征在于,所述高频振荡产生设备包括所述第一流量调节阀和所述第二流量调节阀。
  10. 根据权利要求1所述的呼吸通气***,其特征在于,
    所述通气控制设备,控制所述主动呼气设备与所述高频振荡产生设备协同工作,以实现对平均气道压的控制。
  11. 根据权利要求1所述的呼吸通气***,其特征在于,
    所述高频振荡产生设备为高频吸气阀。
  12. 根据权利要求11所述的呼吸通气***,其特征在于,所述高频吸气阀为比例电磁阀、阻断阀、伺服阀和涡轮中的任意一种。
  13. 根据权利要求7所述的呼吸通气***,其特征在于,
    所述主动呼气设备连接于所述第三吸气单向阀的出口,或者,连接于所述呼气支路。
  14. 一种呼吸通气方法,应用于如权利要求1-13任一项所述的呼吸通气***中,其特征在于,所述方法包括:
    在吸气阶段,通过通气控制设备控制高频振荡产生设备按照预设的高频振荡频率将吸气支路的气体产生高频振荡,并将产生的高频振荡气体通过所述吸气支路和病人管路输送给患者;
    在呼气阶段,通过所述通气控制设备控制主动呼气设备按照所述预设的高频振荡频率主动抽取患者通过所述病人管路呼出的气体。
  15. 根据权利要求14所述的方法,其特征在于,所述主动呼气设备包括:高频阀和/或电动气体抽取设备,所述在呼气阶段,通过所述通气控制设备控制主动呼气设备按照所述预设的高频振荡频率主动抽取患者通过所述病人管路呼出的气体,包括:
    在呼气阶段,通过所述通气控制设备控制所述高频阀打开,并根据所述预设的高频振荡频率控制所述高频阀的开口大小,以及所述电动气体抽取设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体;
    或者,通过所述通气控制设备根据所述预设的高频振荡频率调节所述高频阀的开口大小,以主动抽取患者通过所述病人管路呼出的气体;
    或者,通过所述通气控制设备根据所述预设的高频振荡频率调节所述 电动气体抽取设备的抽取动力,以主动抽取患者通过所述病人管路呼出的气体。
  16. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    通过所述通气控制设备,控制所述主动呼气设备与所述高频振荡产生设备协同工作,以实现对平均气道压的控制。
PCT/CN2020/078844 2020-03-11 2020-03-11 一种呼吸通气***及方法 WO2021179215A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/078844 WO2021179215A1 (zh) 2020-03-11 2020-03-11 一种呼吸通气***及方法
EP20923769.2A EP4119176A4 (en) 2020-03-11 2020-03-11 RESPIRATORY VENTILATION SYSTEM AND METHOD
CN202080098464.4A CN115279438A (zh) 2020-03-11 2020-03-11 一种呼吸通气***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078844 WO2021179215A1 (zh) 2020-03-11 2020-03-11 一种呼吸通气***及方法

Publications (1)

Publication Number Publication Date
WO2021179215A1 true WO2021179215A1 (zh) 2021-09-16

Family

ID=77671741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078844 WO2021179215A1 (zh) 2020-03-11 2020-03-11 一种呼吸通气***及方法

Country Status (3)

Country Link
EP (1) EP4119176A4 (zh)
CN (1) CN115279438A (zh)
WO (1) WO2021179215A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074620A (zh) * 1992-04-18 1993-07-28 北京航空航天大学 一种全过程支持的正负压高频振荡呼吸机的设计方法与仪器
US20080245366A1 (en) * 2007-04-09 2008-10-09 Jen-Shih Lee Modality of flow regulators and mechanical ventilation systems
CN101622036A (zh) * 2006-11-13 2010-01-06 阿利吉安斯公司 呼吸治疗装置和方法
CN102274565A (zh) * 2010-05-17 2011-12-14 深圳迈瑞生物医疗电子股份有限公司 一种连接到呼吸***的压力补偿设备及压力补偿方法
CN103889491A (zh) * 2011-08-17 2014-06-25 康尔福盛207有限公司 高频振荡呼吸机控制***
US20140283834A1 (en) * 2013-03-22 2014-09-25 Breathe Technologies, Inc. Portable ventilator secretion management system
CN104640590A (zh) * 2012-09-21 2015-05-20 马奎特紧急护理公司 阀控高频振荡通气
CN105579089A (zh) * 2013-09-25 2016-05-11 马奎特紧急护理公司 高频振荡通气过程中的神经触发支持通气

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104936644B (zh) * 2013-01-17 2018-08-07 皇家飞利浦有限公司 用于在高频正压通气期间控制气道气体参数的***和方法
EP3419706B1 (en) * 2016-02-22 2022-02-23 Advanced Bio Machines Pte Ltd. Respiratory care apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074620A (zh) * 1992-04-18 1993-07-28 北京航空航天大学 一种全过程支持的正负压高频振荡呼吸机的设计方法与仪器
CN101622036A (zh) * 2006-11-13 2010-01-06 阿利吉安斯公司 呼吸治疗装置和方法
US20080245366A1 (en) * 2007-04-09 2008-10-09 Jen-Shih Lee Modality of flow regulators and mechanical ventilation systems
CN102274565A (zh) * 2010-05-17 2011-12-14 深圳迈瑞生物医疗电子股份有限公司 一种连接到呼吸***的压力补偿设备及压力补偿方法
CN103889491A (zh) * 2011-08-17 2014-06-25 康尔福盛207有限公司 高频振荡呼吸机控制***
CN104640590A (zh) * 2012-09-21 2015-05-20 马奎特紧急护理公司 阀控高频振荡通气
US20140283834A1 (en) * 2013-03-22 2014-09-25 Breathe Technologies, Inc. Portable ventilator secretion management system
CN105579089A (zh) * 2013-09-25 2016-05-11 马奎特紧急护理公司 高频振荡通气过程中的神经触发支持通气

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119176A4 *

Also Published As

Publication number Publication date
EP4119176A4 (en) 2023-04-26
CN115279438A (zh) 2022-11-01
EP4119176A1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
US11654253B2 (en) Systems and methods for therapeutic intrathoracic pressure regulation
JP2021098079A (ja) 呼吸治療装置用の呼吸可能ガス入口制御装置
JP5624467B2 (ja) 呼吸ガスの供給装置、および方法
RU2585137C2 (ru) Аппарат искусственной вентиляции легких с интегрированной воздуходувкой
US20070186928A1 (en) Combined ventilator inexsufflator
CN109303960B (zh) 一种通气治疗设备及控制方法
CN110464951B (zh) 一种高频呼吸机***及通气控制方法
EP2945677B1 (en) System for controlling airway gas parameters during high frequency positive pressure ventilation
CN111821552A (zh) 一种用于医院和家庭环境的多功能呼吸治疗***及方法
WO2023207023A1 (zh) 一种带有二氧化碳补偿功能的呼吸装置
CN110464950B (zh) 一种高频呼吸机***及通气控制方法
CN110464947B (zh) 一种高频呼吸机的***及通气控制方法
CN110464945B (zh) 一种高频呼吸机的***、通气控制方法及装置
WO2021179215A1 (zh) 一种呼吸通气***及方法
WO2021163946A1 (zh) 医用通气设备、控制方法与计算机可读存储介质
CN216222554U (zh) 一种吸入治疗设备
CN110464946B (zh) 一种高频呼吸机***及控制方法
CN110464949B (zh) 一种高频呼吸机***
CN213252237U (zh) 一种自动调节氧气流量的鼻导管
JP3775138B2 (ja) 高頻度人工呼吸器
JP7179407B2 (ja) 搬送用人工呼吸器
WO2014188286A1 (en) Equipment for rehabilitative respiratory physiotherapy
CN110464948B (zh) 一种高频振荡模块的控制方法、装置及高频呼吸机
WO2024138405A1 (zh) 通气设备及其通气控制方法、存储介质
CN116474222A (zh) 一种可实现多种呼吸模式的通气设备及呼吸机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020923769

Country of ref document: EP

Effective date: 20221011