WO2021179183A1 - 信息传输方法、装置及设备 - Google Patents

信息传输方法、装置及设备 Download PDF

Info

Publication number
WO2021179183A1
WO2021179183A1 PCT/CN2020/078670 CN2020078670W WO2021179183A1 WO 2021179183 A1 WO2021179183 A1 WO 2021179183A1 CN 2020078670 W CN2020078670 W CN 2020078670W WO 2021179183 A1 WO2021179183 A1 WO 2021179183A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
uplink channel
channel
information
channels
Prior art date
Application number
PCT/CN2020/078670
Other languages
English (en)
French (fr)
Inventor
林亚男
徐婧
陈文洪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080082834.5A priority Critical patent/CN114747171A/zh
Priority to EP20924867.3A priority patent/EP4102755A4/en
Priority to PCT/CN2020/078670 priority patent/WO2021179183A1/zh
Publication of WO2021179183A1 publication Critical patent/WO2021179183A1/zh
Priority to US17/901,285 priority patent/US20220417967A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to an information transmission method, device, and equipment.
  • UCI Uplink Control Information
  • PUCCH Physical Uplink Control Channel
  • the NR standard Rel-15 supports Ultra-reliable Low Latency (URLLC) services.
  • URLLC Ultra-reliable Low Latency
  • the feature of URLLC services is that the generation of data packets is bursty and random, and requires high latency.
  • the PUCCH based on the sub-slot is supported to transmit Acknowledgement/Negative Acknowledgement (ACK/NACK) information.
  • ACK/NACK Acknowledgement/Negative Acknowledgement
  • the terminal equipment will all The UCI information is multiplexed for transmission in a PUCCH resource, and the PUCCH resource is a sub-slot-based PUCCH, that is, all UCI information is multiplexed and transmitted through the sub-slot-based PUCCH.
  • the sub-slot to which the PUCCH resource belongs may not overlap with other sub-slot-based PUCCHs in the time domain, it is easy to increase the feedback delay; or, on the other hand, all UCI information is reused for this PUCCH resources cause the UCI information in the PUCCH to have a large capacity, which will affect the reliability of transmission.
  • multiplexing all UCI information for transmission on one PUCCH resource is likely to cause problems of increased feedback delay and/or decreased transmission reliability.
  • the embodiments of this application provide an information transmission method, device, and equipment, which are used to solve the current technical solution. Because all UCI information is reused for transmission on one PUCCH resource, it is easy to cause feedback delay increase and/or transmission reliability. The problem of reduced sex.
  • an embodiment of the present application provides an information transmission method, which is applied to a terminal device, and the method includes:
  • the first uplink channel and the plurality of second uplink channels overlap in the time domain, and the plurality of second uplink channels include at least one third uplink channel, if the at least one third uplink channel includes the first Four uplink channels, the first uplink information is transmitted through the fifth uplink channel,
  • the third uplink channel corresponds to at least one downlink control signaling DCI
  • the fourth uplink channel and the first uplink channel meet the first timing constraint
  • the fifth uplink channel and the fourth uplink channel Having a first relationship
  • the multiple second uplink channels do not overlap each other in the time domain.
  • the embodiments of the present application provide another information transmission method, which is applied to a terminal device, and the method includes:
  • the first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels are configured by higher layer signaling
  • the second uplink information is transmitted through the sixth uplink channel; or,
  • the plurality of second uplink channels are transmitted.
  • the multiple second uplink channels do not overlap each other in the time domain.
  • an embodiment of the present application provides an information transmission method, which is applied to a network device, and the method includes:
  • the first uplink channel and the plurality of second uplink channels overlap in the time domain, and the plurality of second uplink channels include at least one third uplink channel, if the at least one third uplink channel includes the first Four uplink channels, the first uplink information is received through the fifth uplink channel,
  • the third uplink channel corresponds to at least one downlink control signaling DCI
  • the fourth uplink channel and the first uplink channel meet the first timing constraint
  • the fifth uplink channel and the fourth uplink channel Having a first relationship
  • the multiple second uplink channels do not overlap each other in the time domain.
  • the embodiments of the present application provide another information transmission method, which is applied to a network device, and the method includes:
  • the multiple second uplink channels are configured by higher layer signaling, if the first uplink channel and the multiple second uplink channels are If the channel meets the second timing constraint, the second uplink information is received through the sixth uplink channel; or, if the first uplink channel and the plurality of second uplink channels do not meet the second timing constraint, then the The multiple second uplink channels receive information, where the multiple second uplink channels do not overlap each other in the time domain.
  • an embodiment of the present application provides an information transmission device, which is applied to a terminal device, and the device includes:
  • the sending module is configured to, when the first uplink channel overlaps with a plurality of second uplink channels in the time domain, and the plurality of second uplink channels include at least one third uplink channel, if the at least one third uplink channel If the fourth uplink channel is included in the uplink channel, the first uplink information is transmitted through the fifth uplink channel,
  • the third uplink channel corresponds to at least one downlink control signaling DCI
  • the fourth uplink channel and the first uplink channel meet the first timing constraint
  • the fifth uplink channel and the fourth uplink channel Having a first relationship
  • the multiple second uplink channels do not overlap each other in the time domain.
  • an embodiment of the present application provides another information transmission device, which is applied to a terminal device, and the device includes:
  • the first sending module is used for when the first uplink channel overlaps with multiple second uplink channels in the time domain, and the multiple second uplink channels are configured by higher layer signaling, if the first uplink channel is If the multiple second uplink channels meet the second timing constraint, the second uplink information is transmitted through the sixth uplink channel; or,
  • the second sending module is configured to transmit the plurality of second uplink channels if the first uplink channel and the plurality of second uplink channels do not satisfy the second timing constraint condition, wherein the plurality of second uplink channels The second uplink channel does not overlap each other in the time domain.
  • an embodiment of the present application provides an information transmission device, which is applied to a network device, and the device includes:
  • the receiving module is configured to, when the first uplink channel overlaps with a plurality of second uplink channels in the time domain, and the plurality of second uplink channels include at least one third uplink channel, if the at least one third uplink channel If the fourth uplink channel is included in the uplink channel, the first uplink information is received through the fifth uplink channel,
  • the third uplink channel corresponds to at least one downlink control signaling DCI
  • the fourth uplink channel and the first uplink channel meet the first timing constraint
  • the fifth uplink channel and the fourth uplink channel Having a first relationship
  • the multiple second uplink channels do not overlap each other in the time domain.
  • an embodiment of the present application provides another information transmission device, which is applied to a network device, and the device includes:
  • the receiving module is used for when the first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels are configured by higher layer signaling, if the first uplink channel and the If the plurality of second uplink channels meet the second timing constraint, the second uplink information is received through the sixth uplink channel; or, if the first uplink channel and the plurality of second uplink channels do not meet the second timing sequence
  • the constraint condition is to receive the information of the multiple second uplink channels, where the multiple second uplink channels do not overlap each other in the time domain.
  • an embodiment of the present application provides a terminal device, including:
  • Processor memory, transmitter and interface for communication with network equipment
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the information transmission method provided in any one of the first aspect or the second aspect.
  • an embodiment of the present application provides a network device, including:
  • Processor memory, receiver and interface for communication with terminal equipment
  • the memory stores computer execution instructions
  • the processor executes the computer-executable instructions stored in the memory, so that the processor executes the information transmission method provided by any one of the third aspect or the fourth aspect.
  • the foregoing processor may be a chip.
  • an embodiment of the present application may provide a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium, which are used to implement the first aspect when the computer-executable instructions are executed by a processor Or the information transmission method provided in any one of the second aspect.
  • the embodiments of the present application may provide a computer-readable storage medium having computer-executable instructions stored in the computer-readable storage medium, which are used to implement the third aspect when the computer-executable instructions are executed by a processor Or the information transmission method provided by any one of the fourth aspect.
  • an embodiment of the present application provides a program, when the program is executed by a processor, it is used to execute the information transmission method provided in any one of the first aspect or the second aspect.
  • the embodiments of the present application provide a program, when the program is executed by a processor, it is used to execute the information transmission method provided in any one of the third aspect or the fourth aspect.
  • an embodiment of the present application provides a computer program product, including program instructions, and the program instructions are used to implement the information transmission method provided in any one of the first aspect or the second aspect.
  • an embodiment of the present application provides a computer program product, including program instructions, and the program instructions are used to implement the information transmission method provided in any one of the third aspect or the fourth aspect.
  • an embodiment of the present application provides a chip, including a processing module and a communication interface, and the processing module can execute the information transmission method provided in any one of the first aspect or the second aspect.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to perform the first aspect. Or the information transmission method provided by any one of the second aspect.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to perform the first aspect. Or the information transmission method provided by any one of the second aspect.
  • an embodiment of the present application provides a chip, which includes a processing module and a communication interface, and the processing module can execute the information transmission method provided in any one of the first aspect or the second aspect.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the third aspect. Or the information transmission method provided by any one of the fourth aspect.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the third aspect.
  • the information transmission method provided by any one of the fourth aspect.
  • the terminal device determines the first uplink channel that satisfies the timing constraint from the multiple second uplink channels.
  • the uplink information to be multiplexed and transmitted is transmitted through the time unit corresponding to the fourth uplink channel or the fifth uplink channel determined by DCI, wherein multiple second uplink channels do not overlap each other in the time domain.
  • the fourth uplink channel that satisfies the timing constraint is determined from the second uplink channel, and the uplink information is transmitted through the time unit corresponding to the fourth uplink channel or the fifth uplink channel determined by DCI, which can limit the channel for multiplexing transmission On one second uplink channel, avoid multiplexing feedback information on multiple second uplink channels for transmission on the same uplink channel, thereby reducing feedback delay and/or improving the reliability of data transmission.
  • Fig. 1 is a schematic diagram of multiplexing and transmitting all UCI on one PUCCH in a technical solution.
  • Figure 2 is a schematic diagram of multiplexing timing constraints in a technical solution.
  • Fig. 3 is a schematic diagram of determining overlapping PUCCH channel sets in a technical solution.
  • Fig. 4 is a schematic diagram of a communication system applied in an embodiment of this application.
  • FIG. 5 is a schematic flowchart of Embodiment 1 of an information transmission method provided by an embodiment of this application.
  • FIG. 6 is a schematic flowchart of Embodiment 2 of an information transmission method provided by an embodiment of this application.
  • FIG. 7 is a schematic diagram of Example 3 of an information transmission method provided by an embodiment of this application.
  • FIG. 8 is a schematic diagram of Embodiment 4 of an information transmission method provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of an information transmission device according to an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of an information transmission apparatus according to an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of Embodiment 3 of an information transmission apparatus provided by some embodiments of this application.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of this application.
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a network device provided by an embodiment of this application.
  • Figure 1 is a schematic diagram of multiplexing and transmitting all UCIs on one PUCCH in a technical solution. As shown in Figure 1, PUCCH0 is a sub-slot-based PUCCH, and PUCCH1 and PUCCH2 are slot-based PUCCHs.
  • the multiplexing channel is PUCCH 3, and PUCCH 3 does not overlap the original PUCCH 1 in the time domain, but the ACK/NACK information in PUCCH 1 is still required to be multiplexed into PUCCH 3 for transmission.
  • the feedback delay of PUCCH 1 is increased; and/or, on the other hand, the UCI capacity in PUCCH 3 is relatively large, which will affect the reliability of transmission.
  • timing constraints must be met before multiplexing can be performed. transmission. Otherwise, the terminal device will judge this situation as an abnormal situation.
  • the timing constraint here is mainly to ensure that the terminal device has enough time to determine whether the information carried by different uplink channels needs to be multiplexed, and the time required for UCI concatenation and encoding during multiplexing transmission.
  • FIG. 2 is a schematic diagram of multiplexing timing constraint conditions in a technical solution.
  • the timing constraint conditions may include one or more of the following conditions (1) to (4):
  • the time difference between the first time domain symbol of the earliest channel sent in the overlapping channel to the last time domain symbol of the PDSCH corresponding to the ACK/NACK information is not less than Time domain symbols, where
  • N 1 is the processing time of the PDSCH, which is determined according to the processing capability information reported by the terminal device .
  • the value of d 1,1 is agreed upon by the protocol and is related to the PDSCH resource allocation.
  • the time difference between the first time domain symbol of the earliest transmitted channel in the overlapping channel and the last time domain symbol of the target PDCCH is not less than Time domain symbols, where, For this time difference, N 2 is the processing time of PUSCH, which is determined according to the processing capability information reported by the terminal device, and the value of d 2,1 is agreed upon by the agreement.
  • the target PDCCH is the following: (1) PDCCH carrying the DCI for scheduling the PUSCH; and (2) scheduling PDSCH or PDCCH indicating SPS PDSCH release, and scheduled PDSCH or indicating SPS PDSCH release corresponding ACK/ NACK information is transmitted through the PUCCH in the overlapping channel.
  • the time difference between the first time domain symbol of the earliest transmitted channel in the overlapping channel and the last time domain symbol of the PDCCH is not less than Time domain symbols, where, For this time difference, Z is the CSI calculation time, which is determined according to the processing capability information reported by the terminal device, and the value of d is agreed upon by the agreement.
  • Fig. 3 is a schematic diagram of determining overlapping PUCCH channel sets in a technical solution.
  • the set of PUCCH channels that overlap in a time unit can be determined by the following steps, for example, multiple second PUCCHs that overlap with the first PUCCH are determined:
  • Step 1 Determine PUCCH A.
  • PUCCH A is the PUCCH with the earliest start symbol in the overlapping channel. If there are multiple PUCCHs with the same starting symbol, the PUCCH with the longest duration is taken as PUCCH A. If the start symbol and duration of the two PUCCHs are both the same, choose one of them.
  • Step 2 Put the PUCCH overlapping with PUCCH A into the set Q.
  • Step 3 Put the PUCCH overlapping with any PUCCH in the set Q into the set Q.
  • Step 4 Multiplexing all UCIs in the set Q into one PUCCH, and determining the PUCCH B according to the number of UCI bits and the PUCCH resource indicator PRI (PUCCH resource indicator, PRI) in the DCI.
  • PRI PUCCH resource indicator
  • Step 5 Determine whether PUCCH B overlaps with other PUCCHs. If yes, repeat steps 1 to 4.
  • an embodiment of the present application provides an information transmission method.
  • the first uplink channel and the multiple second uplink channels overlap in the time domain, if the multiple second uplink channels include at least one third uplink channel, and If at least one third uplink channel includes a fourth uplink channel, the first uplink information is transmitted through the fifth uplink channel, where the third uplink channel corresponds to at least one DCI, and the fourth uplink channel and the first uplink channel meet the first timing constraint ,
  • the multiple second uplink channels do not overlap each other in the time domain, the fifth uplink channel and the fourth uplink channel occupy the same time unit, or the fifth uplink channel and the fourth uplink channel correspond to the first DCI.
  • the terminal device determines the fourth uplink channel that satisfies the timing constraint from the multiple second uplink channels, and passes The time unit corresponding to the fourth uplink channel or the fifth uplink channel determined by the DCI transmits uplink information to be multiplexed and transmitted, wherein the multiple second uplink channels do not overlap each other in the time domain.
  • the fourth uplink channel that satisfies the timing constraint is determined from the second uplink channel, and the uplink information is transmitted through the time unit corresponding to the fourth uplink channel or the fifth uplink channel determined by DCI, which can limit the channel for multiplexing transmission On one second uplink channel, avoid multiplexing feedback information on multiple second uplink channels for transmission on the same uplink channel, thereby reducing feedback delay and/or improving the reliability of data transmission.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • LTE-A Advanced long term evolution
  • NR New Radio
  • NR NR system evolution system
  • LTE on unlicensed frequency bands LTE-based access to unlicensed spectrum, LTE-U
  • NR NR-based access to unlicensed spectrum, NR-U
  • UMTS Universal Mobile Telecommunication System
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • WiMAX Wireless Local Area Networks
  • WLAN Wireless Fidelity
  • NTN next-generation communication systems or other communication systems, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC machine type communication
  • V2V vehicle to vehicle
  • FIG. 4 is a schematic diagram of a communication system applied in an embodiment of this application.
  • the communication system 400 may include a terminal device 410 and a network device 420.
  • Terminal equipment 410 includes, but is not limited to, equipment that communicates via wired lines, such as equipment that communicates via public switched telephone networks (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or via wireless interfaces, such as devices for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitters; and/or
  • Another terminal device is a device configured to receive/send communication signals; and/or an Internet of Things (IoT) device.
  • IoT Internet of Things
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet Internet access, Web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver for personal digital processing (Personal Digital Assistant, PDA); and conventional laptop and/or palmtop receivers Device or other electronic device including a radio telephone transceiver.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • PDA Personal Digital Assistant
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a PDA, a handheld device with wireless communication function, a computing device or a connection
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • the network device 420 may provide communication coverage for a specific geographic area, and may communicate with the terminal device 410 located in the coverage area.
  • the network device 420 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the satellite in the Non-Terrestrial Network (NTN), or the
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, a wearable device, a hub, a switch, a bridge, a router, a network device in a 5G network, or a public land mobile network that will evolve in the future (Public Land Mobile Network). , PLMN) in the network equipment and so on.
  • BTS Base Transceiver Station
  • the terminal devices 410 may perform device-to-device (D2D) communication, that is, the technical solution provided in this application may also be applied to the communication between two terminal devices.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 4 exemplarily shows one network device and two terminal devices.
  • the communication system 400 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 400 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of Embodiment 1 of the information transmission method provided by an embodiment of the application. As shown in FIG. 5, the information transmission method can be applied to terminal equipment and specifically includes the following steps:
  • Step S510 In the case where the first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels include at least one third uplink channel, if the at least one third uplink channel includes the first Four uplink channels, the terminal device transmits the first uplink information through the fifth uplink channel, where the third uplink channel corresponds to at least one DCI, the fourth uplink channel and the first uplink channel meet the first timing constraint, and the fifth uplink channel is The fourth uplink channel has the first relationship or the fifth uplink channel is obtained through the fourth uplink channel, and the multiple second uplink channels do not overlap each other in the time domain.
  • the first uplink channel is a PUCCH used to transmit Channel State Information (CSI) or a scheduling request (Scheduling Request, SR), and the second uplink channel is used to transmit ACK/NACK.
  • PUCCH of information may be a slot-based PUCCH
  • the second uplink channel may be a sub-slot-based PUCCH
  • the first uplink channel and each of the plurality of second uplink channels overlap in the time domain.
  • the first uplink channel may also be other appropriate uplink channels.
  • the first uplink channel may be an uplink channel without a corresponding DCI or an uplink channel configured by higher layer signaling.
  • the first uplink channel may be an uplink channel without a corresponding DCI or an uplink channel configured by higher layer signaling.
  • the plurality of second uplink channels includes at least one third uplink channel, and the third uplink channel corresponds to at least one DCI.
  • the at least one DCI corresponding to the third uplink channel may include: at least one DCI is used to trigger transmission of the third uplink channel; or, at least one DCI is used to schedule transmission of the third uplink channel; or, at least one DCI is used to indicate the third uplink channel transmission; Uplink channel resources.
  • the first timing constraint condition includes: the time interval between the target start position and the first downlink channel is not less than a first value, where the target start position is the earliest of the third uplink channel and the first uplink channel In the starting position, the uplink information corresponding to the first downlink channel is transmitted through the third uplink channel. For example, if the third uplink channel is PUCCH 2, then the first downlink channel is PDSCH 2.
  • the first timing constraint includes: the start position of the first uplink channel and the first downlink channel The time interval is not less than the first value; if the start position of the third uplink channel is earlier than the start position of the first uplink channel, the first timing constraint includes: the start position of the third uplink channel and the first downlink channel The time interval between channels is not less than the first value.
  • first timing constraint condition is not limited to this, and may also include other appropriate timing constraint conditions, for example, one or more of the above timing constraint conditions (1) to (4), which are also in this application Within the scope of protection.
  • the fifth uplink channel and the fourth uplink channel have a first relationship.
  • the fifth uplink channel and the fourth uplink channel have one or more of the following relationships:
  • the channel and the fourth uplink channel occupy the same time unit, and the time unit is one of a time slot, a sub-slot and at least one time domain symbol;
  • the fifth uplink channel and the fourth uplink channel correspond to the first DCI.
  • the fifth uplink channel is determined according to the first DCI and the number of first uplink information bits, where the first uplink information bit number includes the number of uplink information bits carried in the first uplink channel and the number of uplink information bits carried in the fourth uplink channel.
  • the number of upstream information bits is the last DCI in the at least one DCI corresponding to the fourth uplink channel, and the last DCI is the latest DCI in the time domain among the at least one DCI.
  • the terminal device determines a PUCCH resource set according to the number of bits of the first uplink information, and then obtains it from the PUCCH resource set according to the information field of the PUCCH resource indicator (PRI) in the first DCI
  • the corresponding PUCCH resource is the fifth uplink channel.
  • the fifth uplink channel is obtained through the fourth uplink channel, for example, the fifth uplink channel is determined according to the time unit corresponding to the fourth uplink channel, and/or according to the at least one DCI corresponding to the fourth uplink channel
  • the PUCCH PRI information field of the last DCI determines the fifth uplink channel.
  • the terminal device transmits the first uplink information to the network device through the fifth uplink channel, and the first uplink information includes: part or all of the uplink information carried in the fourth uplink channel; or Part or all of the uplink information carried in the uplink channel and part or all of the uplink information carried in the first uplink channel.
  • the terminal device determines from the multiple second uplink channels that the fourth uplink channel satisfies the timing constraint condition.
  • the channel transmits the uplink information to be multiplexed and transmitted through the time unit corresponding to the fourth uplink channel or the fifth uplink channel determined by DCI, wherein the multiple second uplink channels do not overlap each other in the time domain.
  • the fourth uplink channel that satisfies the timing constraint is determined from the second uplink channel, and the uplink information is transmitted through the time unit corresponding to the fourth uplink channel or the fifth uplink channel determined by DCI, which can limit the channel for multiplexing transmission On one second uplink channel, avoid multiplexing feedback information on multiple second uplink channels for transmission on the same uplink channel, thereby reducing feedback delay and/or improving the reliability of data transmission.
  • the fourth uplink channel is not included in the at least one third uplink channel, multiple second uplink channels are transmitted.
  • the first uplink channel may or may not be transmitted. If the first uplink channel is not transmitted, the terminal device can automatically abandon the transmission of CSI information that has a relatively small impact on performance, ensuring reliable transmission of ACK/NACK information, and there is no need to make too many restrictions on the scheduling of network devices.
  • the PUCCH carrying ACK/NACK information i.e. PUCCH based on sub-slot
  • the PUCCH carrying CSI or SR i.e. based on When slot PUCCH
  • the resources of the multiplexed channel are determined according to the total number of multiplexed UCI bits and the PUCCH resource indicator (PRI) indicated in the last DCI information corresponding to ACK/NACK, without DCI
  • the PUCCH configured by high-layer signaling to transmit CSI is used to multiplex and transmit all UCI information.
  • Fig. 6 is a schematic flowchart of the second embodiment of the information transmission method provided by the embodiment of the application. As shown in Fig. 6, the information transmission method can be applied to terminal equipment, and specifically includes the following steps:
  • Step S610 In the case where the first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels are configured by higher layer signaling, if the first uplink channel and the multiple second uplink channels meet the first Second, the timing constraint condition is to transmit the second uplink information through the sixth uplink channel.
  • the first uplink channel is a PUCCH used to transmit Channel State Information (CSI) or a scheduling request (Scheduling Request, SR), and the second uplink channel is PUCCH used to transmit ACK/NACK information or PUCCH configured for higher layer signaling.
  • the first uplink channel may be a slot-based PUCCH
  • the second uplink channel may be a sub-slot-based PUCCH
  • the first uplink channel and each of the plurality of second uplink channels overlap in the time domain.
  • the first uplink channel may also be other appropriate uplink channels.
  • the first uplink channel may be an uplink channel without a corresponding DCI or an uplink channel configured by higher layer signaling.
  • the first uplink channel may be an uplink channel without a corresponding DCI or an uplink channel configured by higher layer signaling.
  • the second timing constraint condition includes: the time interval between the target start position and the end positions of the multiple second downlink channels, such as the second downlink channel, is not less than the first value, wherein the target start position Is the earliest starting position among the first uplink channel and the multiple second uplink channels, and the uplink information corresponding to the second downlink channel is transmitted through the second uplink channel. For example, if the second uplink channel is PUCCH 2, then the second downlink channel is PDSCH 2.
  • the second timing constraint condition is not limited to this, but may also include other appropriate timing constraint conditions, for example, one or more of the above timing constraint conditions (1) to (4), which are also in this application Within the scope of protection.
  • the second uplink information includes part or all of the information carried by the first uplink channel and information carried by multiple second uplink channels.
  • the PUCCH selected for multiplexing transmission cannot be guaranteed to belong to the same sub-slot in this technical solution, all UCIs are multiplexed into one PUCCH, such as a slot-based PUCCH Transmission can avoid the loss of UCI information, thereby improving the reliability of communication system transmission.
  • Step S620 If the first uplink channel and the multiple second uplink channels do not meet the second timing constraint condition, transmit multiple second uplink channels.
  • the terminal device can automatically abandon the transmission of CSI information that has a relatively small impact on performance, ensuring reliable transmission of ACK/NACK information, and there is no need to make too many restrictions on the scheduling of the network device.
  • the sixth uplink channel configuration is used to transmit the third uplink information
  • the first uplink channel is used to transmit the third uplink information
  • the third uplink information is CSI information
  • the first uplink channel is used for Transmit the CSI information.
  • the sixth uplink channel may also be the first uplink channel.
  • the sixth uplink channel is one of at least one PUCCH of the physical uplink control channel PUCCH resource configured by high-layer signaling.
  • the sixth uplink channel is through high-layer signaling multi-CSI-PUCCH-ResourceList or One PUCCH in at least one PUCCH configured by pucch-CSI-ResourceList; or, the first uplink channel is one of at least one PUCCH in the PUCCH resource configured by high-layer signaling, for example, the first uplink channel is through high-layer signaling multi- One PUCCH of at least one PUCCH configured in CSI-PUCCH-ResourceList or PUCCH-CSI-ResourceList.
  • the terminal device is based on At least one third PUCCH determines the fourth PUCCH that meets the multiplexing timing constraint condition or determines the sub-time unit where the fourth PUCCH is located.
  • the fourth PUCCH may be the first PUCCH subject to the full multiplexing timing constraint condition in the at least one third PUCCH described above.
  • determining whether the third PUCCH satisfies the multiplexing timing constraint condition includes: the time interval between the target start position and the first downlink channel is not less than the first value, where the target start The start position is the earliest start symbol in the third PUCCH and the first PUCCH, and the ACK/NACK information corresponding to the first downlink channel is transmitted through the third PUCCH.
  • the first downlink channel may be PDSCH or PDCCH.
  • the terminal device determines the number of UCI bits for multiplex transmission, where the number of UCI bits for multiplex transmission includes the number of bits of information carried in the first PUCCH and the number of bits of information carried in the fourth PUCCH.
  • the terminal device determines the fifth PUCCH according to the number of UCI bits for multiplex transmission and the value indicated by the PUCCH resource indicator (PRI) information field indicated in the last DCI corresponding to the fourth PUCCH.
  • PRI PUCCH resource indicator
  • the terminal device uses the fifth PUCCH to transmit feedback information, and the feedback information includes information carried in the fourth PUCCH and part or all of the information carried in the first PUCCH.
  • the channel for multiplexing transmission can be limited to one second PUCCH, that is, sub-slot, avoiding multiplexing ACK/NACK information on multiple PUCCHs for the same PUCCH for transmission, thereby reducing feedback delay And/or improve the reliability of data transmission.
  • the terminal device transmits multiple second PUCCHs, and does not transmit the first PUCCH. According to this technical solution, the terminal device can automatically abandon the transmission of CSI information that has a relatively small impact on performance, and ensure the reliable transmission of ACK/NACK information, and there is no need to make too many restrictions on the scheduling of the network device.
  • FIG. 7 is a schematic flowchart of a specific implementation manner of the first embodiment, and the first embodiment will be described in detail below with reference to FIG. 7.
  • the PUCCH (ie, the first PUCCH) for transmitting CSI and the four PUCCH (ie, the second PUCCH) for transmitting ACK/NACK overlap in the time domain.
  • PUCCH 1 is used to carry ACK/NACK information corresponding to SPS PDSCH, that is, PUCCH 1 does not have corresponding DCI information, so PUCCH 1 does not belong to the third PUCCH.
  • the PUCCH 2, PUCCH 3, and PUCCH 4 are respectively used to carry the ACK/NACK information corresponding to the dynamically scheduled PDSCH 2, PDSCH 3, and PDSCH 4, that is, PUCCH 2, 3, and 4 belong to the third PUCCH.
  • the terminal device determines that the PUCCH 2 satisfies the timing constraint condition, that is, the end position of the PDSCH 2 and the start position of the first PUCCH (the earliest start position of the first PUCCH and PUCCH 2) is greater than the first value.
  • the terminal device determines to transmit the ACK/NACK information corresponding to CSI and PDSCH 2 through the PUCCH (that is, the fifth PUCCH) in sub-slot 2 (that is, the time domain subunit where PUCCH 2 is located).
  • the terminal device transmits PUCCH 1, PUCCH 2, PUCCH 3, PUCCH 4, and does not transmit the first PUCCH.
  • the first PUCCH and multiple second PUCCHs overlap in the time domain, the first PUCCH and the second PUCCH have the same priority, and the multiple second PUCCHs do not overlap each other, that is, the multiple second PUCCHs belong to different sub-time units.
  • the third PUCCH is not included in the multiple second PUCCHs, and the third PUCCH has a corresponding DCI, that is, the ACK/NACK information carried in the third PUCCH is scheduled/triggered by the DCI. If the multiple second PUCCHs and the first PUCCH meet the multiplexing timing constraint, the sixth PUCCH is used to transmit part or all of the information carried by the multiple second PUCCHs and the information carried by the first PUCCH.
  • the sixth PUCCH is a PUCCH configured for the terminal device to transmit the first information, where: the first PUCCH is used to transmit the first information; the first information is CSI information; the sixth PUCCH is the multi-CSI through high-layer signaling -One of at least one PUCCH configured by PUCCH-ResourceList or pucch-CSI-ResourceList; or the sixth PUCCH is the first PUCCH.
  • the timing constraint condition includes: the time interval from the end position of the downlink channel corresponding to the plurality of second PUCCHs to the earliest start symbol in the plurality of second PUCCHs and the first PUCCH is not less than a first value.
  • the terminal device can voluntarily abandon the transmission of CSI information that has a relatively small impact on performance, and ensure reliable transmission of ACK/NACK information without excessive restrictions on base station scheduling.
  • FIG. 8 is a schematic flowchart of a specific implementation of the second embodiment, and the second embodiment will be described in detail below in conjunction with FIG. 8.
  • the PUCCH (first PUCCH) for transmitting CSI overlaps with two PUCCHs (second PUCCH) for transmitting ACK/NACK.
  • PUCCH 1 and PUCCH 2 are used to carry ACK/NACK information corresponding to SPS PDSCH, that is, PUCCH 1 and PUCCH 2 have no corresponding DCI information. Therefore, PUCCH 1 and PUCCH 2 do not belong to the third PUCCH.
  • the PUCCH1, PUCCH2 and the first PUCCH meet the multiplexing timing constraint condition, and the terminal device transmits part or all of the ACK/NACK information and CSI information carried in the PUCCH1, PUCCH2 through the first PUCCH.
  • the terminal device transmits PUCCH 1, PUCCH 2, but does not transmit the first PUCCH.
  • an information transmission method is also provided.
  • the information transmission method is applied to network equipment, and the method includes:
  • the first uplink channel and the plurality of second uplink channels overlap in the time domain, and the plurality of second uplink channels include at least one third uplink channel, if the at least one third uplink channel includes the first Four uplink channels, the first uplink information is received through the fifth uplink channel,
  • the third uplink channel corresponds to at least one downlink control signaling DCI
  • the fourth uplink channel and the first uplink channel meet the first timing constraint
  • the fifth uplink channel and the fourth uplink channel Having a first relationship
  • the multiple second uplink channels do not overlap each other in the time domain.
  • the method further includes:
  • the fourth uplink channel is not included in the at least one third uplink channel, receiving the information of the multiple second uplink channels.
  • the fourth uplink channel is a channel that satisfies the first timing constraint and has the earliest start time among the at least one third uplink channel.
  • the first timing constraint condition includes: the time interval between the target start position and the first downlink channel is not less than a first value, wherein the target start position is The earliest starting position of the third uplink channel and the first uplink channel, and the uplink information corresponding to the first downlink channel is transmitted through the third uplink channel.
  • the first relationship includes one or more of the following relationships: the fifth uplink channel and the fourth uplink channel belong to the same time unit; the fifth uplink channel The channel and the fourth uplink channel are determined according to the first DCI.
  • the fifth uplink channel is determined according to the first DCI and the number of first uplink information bits, where the number of first uplink information bits includes the number of bits in the first uplink channel The number of bits of uplink information carried and the number of bits of uplink information carried in the fourth uplink channel.
  • the fourth uplink channel is determined according to the number of uplink information bits carried in the first DCI and the fourth uplink channel.
  • the first DCI is the last DCI in at least one DCI corresponding to the fourth uplink channel.
  • the first uplink information includes: part or all of the uplink information carried in the fourth uplink channel; or, part of the uplink information carried in the fourth uplink channel Or all of the information and part or all of the information in the uplink information carried in the first uplink channel.
  • the third uplink channel corresponds to at least one DCI, including: the at least one DCI is used to trigger transmission of the third uplink channel; or, the at least one DCI is used to schedule all The third uplink channel transmission; or, the at least one DCI is used to indicate the third uplink channel resource.
  • the time unit is one of a time slot, a sub-slot, and at least one time domain symbol.
  • the first uplink channel is a PUCCH used to transmit CSI or a PUCCH of SR; or, the first uplink channel does not have a corresponding DCI; or, the first uplink channel has no corresponding DCI; or
  • An uplink channel is configured by high-level signaling.
  • the second uplink channel is a PUCCH used to transmit ACK/NACK information.
  • the information transmission method is applied to network equipment, and the method includes:
  • first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels are configured by higher layer signaling, if the first uplink channel and the multiple second uplink channels are If the channel meets the second timing constraint condition, receive the second uplink information through the sixth uplink channel; or, if the first uplink channel and the plurality of second uplink channels do not meet the second timing constraint condition, receive The information of the plurality of second uplink channels, wherein the plurality of second uplink channels do not overlap each other in the time domain.
  • the second timing constraint condition includes: the time interval between the target start position and the plurality of second downlink channels is not less than a first value, where the target start position is The earliest starting position among the first uplink channel and the plurality of second uplink channels, and the uplink information corresponding to the second downlink channel is transmitted through the second uplink channel.
  • the sixth uplink channel configuration is used to transmit third uplink information
  • the first uplink channel is used to transmit the third uplink information
  • the sixth uplink channel is one of the physical uplink control channel PUCCH resources configured by higher layer signaling; or the first uplink channel is one of the PUCCH resources configured by higher layer signaling one.
  • the first uplink channel is a PUCCH used to transmit CSI or SR; or, the first uplink channel does not have a corresponding DCI; or, the first uplink channel
  • the channel is configured by high-level signaling.
  • the second uplink channel is a PUCCH used to transmit ACK/NACK information
  • the second uplink information includes part or all of the information carried by the first uplink channel and the multiple Information carried by the second uplink channel.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of an information transmission apparatus according to an embodiment of the application. As shown in FIG. 9, the information transmission apparatus 900 is applied to terminal equipment and includes:
  • the sending module 910 is configured to, when the first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels include at least one third uplink channel, if the at least one first uplink channel If the fourth uplink channel is included in the three uplink channels, the first uplink information is transmitted through the fifth uplink channel,
  • the third uplink channel corresponds to at least one downlink control signaling DCI
  • the fourth uplink channel and the first uplink channel meet the first timing constraint
  • the fifth uplink channel and the fourth uplink channel Having a first relationship
  • the multiple second uplink channels do not overlap each other in the time domain.
  • the sending module 910 is configured to:
  • the multiple second uplink channels are transmitted.
  • the fourth uplink channel is a channel that satisfies the first timing constraint and has the earliest start time among the at least one third uplink channel.
  • the first timing constraint condition includes: the time interval between the target start position and the first downlink channel is not less than a first value, wherein the target start position is The earliest starting position of the third uplink channel and the first uplink channel, and the uplink information corresponding to the first downlink channel is transmitted through the third uplink channel.
  • the first relationship includes one or more of the following relationships:
  • the fifth uplink channel and the fourth uplink channel occupy the same time unit;
  • the fifth uplink channel and the fourth uplink channel correspond to the first DCI.
  • the fifth uplink channel is determined according to the first DCI and the number of first uplink information bits, where the number of first uplink information bits includes the number of bits in the first uplink channel The number of bits of uplink information carried and the number of bits of uplink information carried in the fourth uplink channel.
  • the fourth uplink channel is determined according to the number of uplink information bits carried in the first DCI and the fourth uplink channel.
  • the first DCI is the last DCI in at least one DCI corresponding to the fourth uplink channel.
  • the first uplink information includes:
  • the third uplink channel corresponds to at least one DCI, including: the at least one DCI is used to trigger transmission of the third uplink channel; or, the at least one DCI is used to schedule all The third uplink channel transmission; or, the at least one DCI is used to indicate the third uplink channel resource.
  • the time unit is one of a time slot, a sub-slot, and at least one time domain symbol.
  • the first uplink channel is a PUCCH used to transmit CSI or SR; or, the first uplink channel does not have a corresponding DCI; or, the first uplink channel is used by higher-level information. ⁇ Configuration.
  • the second uplink channel is a PUCCH used to transmit ACK/NACK information
  • the second uplink information includes part or all of the information carried by the first uplink channel and the multiple Information carried by the second uplink channel.
  • the information transmission apparatus provided in this embodiment is used to implement the technical solution on the terminal device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • Fig. 10 is a schematic structural diagram of Embodiment 1 of an information transmission device provided by an embodiment of the application. As shown in Fig. 10, the information transmission device 1000 is applied to terminal equipment and includes:
  • the first sending module 1010 is configured to, when the first uplink channel overlaps with multiple second uplink channels in the time domain, and the multiple second uplink channels are configured by higher layer signaling, if the first uplink channel If the second time sequence constraint condition is satisfied with the multiple second uplink channels, the second uplink information is transmitted through the sixth uplink channel; or,
  • the second sending module 1020 is configured to transmit the plurality of second uplink channels if the first uplink channel and the plurality of second uplink channels do not meet the second timing constraint condition, where the plurality of second uplink channels The two second uplink channels do not overlap each other in the time domain.
  • the second timing constraint condition includes: the time interval between the target start position and the plurality of second downlink channels is not less than a first value, where the target start position is The earliest starting position among the first uplink channel and the plurality of second uplink channels, and the uplink information corresponding to the second downlink channel is transmitted through the second uplink channel.
  • the sixth uplink channel configuration is used to transmit third uplink information
  • the first uplink channel is used to transmit the third uplink information
  • the sixth uplink channel is one of at least one PUCCH of the physical uplink control channel PUCCH resource configured by higher layer signaling; or the first uplink channel is the PUCCH configured by higher layer signaling One of at least one PUCCH of the resource.
  • the first uplink channel is a PUCCH used to transmit CSI or SR; or, the first uplink channel does not have a corresponding DCI; or, the first uplink channel is used by higher-level information. ⁇ Configuration.
  • the second uplink channel is a PUCCH used to transmit ACK/NACK information.
  • the information transmission apparatus provided in this embodiment is used to implement the technical solution on the terminal device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 11 is a schematic structural diagram of Embodiment 2 of an information transmission apparatus according to an embodiment of the application. As shown in FIG. 11, the information transmission apparatus 1100 is applied to network equipment and includes:
  • the receiving module 1110 is configured to, when the first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels include at least one third uplink channel, if the at least one first uplink channel If the fourth uplink channel is included in the three uplink channels, the first uplink information is received through the fifth uplink channel,
  • the third uplink channel corresponds to at least one downlink control signaling DCI
  • the fourth uplink channel and the first uplink channel meet the first timing constraint
  • the fifth uplink channel and the fourth uplink channel Having a first relationship
  • the multiple second uplink channels do not overlap each other in the time domain.
  • the receiving module 1110 is configured to:
  • the fourth uplink channel is not included in the at least one third uplink channel, receiving the information of the multiple second uplink channels.
  • the fourth uplink channel is a channel that satisfies the first timing constraint and has the earliest start time among the at least one third uplink channel.
  • the first timing constraint condition includes: the time interval between the target start position and the first downlink channel is not less than a first value, wherein the target start position is The earliest starting position of the third uplink channel and the first uplink channel, and the uplink information corresponding to the first downlink channel is transmitted through the third uplink channel.
  • the first relationship includes one or more of the following relationships: the fifth uplink channel and the fourth uplink channel belong to the same time unit; the fifth uplink channel The channel and the fourth uplink channel are determined according to the first DCI.
  • the fifth uplink channel is determined according to the first DCI and the number of first uplink information bits, where the number of first uplink information bits includes the number of bits in the first uplink channel The number of bits of uplink information carried and the number of bits of uplink information carried in the fourth uplink channel.
  • the fourth uplink channel is determined according to the number of uplink information bits carried in the first DCI and the fourth uplink channel.
  • the first DCI is the last DCI in at least one DCI corresponding to the fourth uplink channel.
  • the first uplink information includes: part or all of the uplink information carried in the fourth uplink channel; or, part of the uplink information carried in the fourth uplink channel Or all of the information and part or all of the information in the uplink information carried in the first uplink channel.
  • the third uplink channel corresponds to at least one DCI, including: the at least one DCI is used to trigger transmission of the third uplink channel; or, the at least one DCI is used to schedule all The third uplink channel transmission; or, the at least one DCI is used to indicate the third uplink channel resource.
  • the time unit is one of a time slot, a sub-slot, and at least one time domain symbol.
  • the first uplink channel is a PUCCH used to transmit CSI or SR; or, the first uplink channel does not have a corresponding DCI; or, the first uplink channel is used by higher-level information. ⁇ Configuration.
  • the second uplink channel is a PUCCH used to transmit ACK/NACK information.
  • the information transmission device provided in this embodiment is used to implement the technical solution on the network device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the information transmission device is applied to network equipment and includes:
  • the receiving module is used for when the first uplink channel and the multiple second uplink channels overlap in the time domain, and the multiple second uplink channels are configured by higher layer signaling, if the first uplink channel and the If the plurality of second uplink channels meet the second timing constraint, the second uplink information is received through the sixth uplink channel; or, if the first uplink channel and the plurality of second uplink channels do not meet the second timing sequence
  • the constraint condition is to receive the information of the multiple second uplink channels, where the multiple second uplink channels do not overlap each other in the time domain.
  • the second timing constraint condition includes: the time interval between the target start position and the plurality of second downlink channels is not less than a first value, where the target start position is The earliest starting position among the first uplink channel and the plurality of second uplink channels, and the uplink information corresponding to the second downlink channel is transmitted through the second uplink channel.
  • the sixth uplink channel configuration is used to transmit third uplink information
  • the first uplink channel is used to transmit the third uplink information
  • the sixth uplink channel is one of at least one PUCCH of the physical uplink control channel PUCCH resource configured by higher layer signaling; or the first uplink channel is the PUCCH configured by higher layer signaling One of at least one PUCCH of the resource.
  • the first uplink channel is a PUCCH used to transmit CSI or SR; or, the first uplink channel does not have a corresponding DCI; or, the first uplink channel is used by higher-level information. ⁇ Configuration.
  • the second uplink channel is a PUCCH used to transmit ACK/NACK information.
  • the information transmission device provided in this embodiment is used to implement the technical solution on the network device side in any of the foregoing method embodiments, and its implementation principles and technical effects are similar, and will not be repeated here.
  • FIG. 12 is a schematic structural diagram of Embodiment 1 of a terminal device according to an embodiment of this application. As shown in FIG. 12, the terminal device 1200 includes:
  • the memory 1230 stores computer execution instructions
  • the processor 1220 executes the computer-executable instructions stored in the memory, so that the processor 1220 executes the technical solution on the terminal device side in any of the foregoing method embodiments.
  • FIG. 13 is a schematic structural diagram of Embodiment 1 of a network device according to an embodiment of this application. As shown in FIG. 13, the network device 1300 includes:
  • the network device 1300 further includes a transmitter 1340;
  • the memory 1320 stores computer execution instructions
  • the processor 1310 executes the computer-executable instructions stored in the memory, so that the processor 1310 executes the technical solution on the network device side as in any of the foregoing method embodiments.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions. When the computer-executable instructions are executed by a processor, they are used to implement the technology on the network device side in any of the foregoing method embodiments. plan.
  • the present application also provides a computer-readable storage medium in which computer-executable instructions are stored, and when the computer-executable instructions are executed by a processor, they are used to implement the technical solutions on the terminal device side in any of the foregoing method embodiments.
  • the embodiment of the present application also provides a program, which is used to execute the technical solution on the network device side in the foregoing method embodiment when the program is executed by the processor.
  • the embodiment of the present application also provides a program, when the program is executed by the processor, it is used to execute the technical solution on the terminal device side in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer program product, including program instructions, which are used to implement the technical solutions on the network device side in the foregoing method embodiments.
  • the embodiments of the present application also provide a computer program product, including program instructions, and the program instructions are used to implement the technical solutions on the terminal device side in the foregoing method embodiments.
  • An embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution on the network device side in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the network device side Technical solutions.
  • the embodiment of the present application also provides a chip, which includes a processing module and a communication interface, and the processing module can execute the technical solution of the terminal device in the foregoing method embodiment.
  • the chip also includes a storage module (such as a memory), the storage module is used to store instructions, the processing module is used to execute the instructions stored in the storage module, and the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • a storage module such as a memory
  • the storage module is used to store instructions
  • the processing module is used to execute the instructions stored in the storage module
  • the execution of the instructions stored in the storage module causes the processing module to execute the terminal device side Technical solutions.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the processor may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), Application Specific Integrated Circuit (ASIC), etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like. The steps in the method disclosed in this application can be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • All or part of the steps in the foregoing method embodiments may be implemented by a program instructing relevant hardware.
  • the aforementioned program can be stored in a readable memory.
  • the program executes the steps that include the foregoing method embodiments; and the foregoing memory (storage medium) includes: Read-Only Memory (ROM), Random Access Memory (RAM), Flash memory, hard disk, solid state hard disk, magnetic tape, floppy disk, optical disk and any combination thereof.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • Flash memory hard disk, solid state hard disk, magnetic tape, floppy disk, optical disk and any combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种信息传输方法、装置及设备,该方法包括:在第一上行信道与多个第二上行信道在时域重叠时,且多个第二上行信道中包括至少一个第三上行信道的情况下,若至少一个第三上行信道中包括第四上行信道,则终端设备通过第五上行信道传输第一上行信息,第三上行信道对应至少一个DCI,第四上行信道与第一上行信道满足第一时序约束条件,第五上行信道与第四上行信道具有第一关系或者第五上行信道通过第四上行信道得到,多个第二上行信道在时域互不重叠。根据本申请实施例中的技术方案,能够避免将多个第二上行信道上的反馈信息复用于同一个上行信道进行传输,从而能够减少反馈时延和/或提高数据传输的可靠性。

Description

信息传输方法、装置及设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种信息传输方法、装置及设备。
背景技术
在新无线(New Radio,NR)标准Rel-15中,在一个时隙slot内的多个物理上行信道在时域上重叠时,若多个物理上行信道满足复用时序约束条件,则终端设备将所有的上行控制信息(Uplink Control Information,UCI)复用在一个物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源上传输。
在NR标准Rel-15中,支持超高可靠低时延通信(Ultra-reliable low latency,URLLC)业务,URLLC业务的特征是数据包的产生具有突发性和随机性,对时延要求高。为了满足URLLC的时延需求,在NR标准Rel-16中,支持采用基于子时隙sub-slot的PUCCH来传输肯定确认/否定确认(Acknowledgement/Negative Acknowledgement,ACK/NACK)信息。在NR标准Rel-16中,如果按照Rel-15的工作机制,基于sub-slot的PUCCH与基于时隙slot的PUCCH在时域重叠时,若满足复用的时序约束条件,则终端设备将所有的UCI信息复用于一个PUCCH资源中传输,该PUCCH资源为基于sub-slot的PUCCH,即通过基于sub-slot的PUCCH复用传输所有的UCI信息。一方面,由于该PUCCH资源所属的sub-slot与其他基于sub-slot的PUCCH在时域上可能不重叠,容易造成反馈时延增加;或者,另一方面,将所有的UCI信息复用于该PUCCH资源,造成该PUCCH中的UCI信息容量较大,会影响传输的可靠性。
因此,在上述技术方案中,将所有的UCI信息复用于一个PUCCH资源上传输,容易造成反馈时延增加和/或传输可靠性降低的问题。
发明内容
本申请实施例提供一种信息传输方法、装置及设备,用于解决目前的技术方案中,由于将所有的UCI信息复用于一个PUCCH资源上传输,容易造成反馈时延增加和/或传输可靠性降低的的问题。
第一方面,本申请实施例提供了一种信息传输方法,应用于终端设备,所述方法包括:
在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道传输第一上行信息,
其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
第二方面,本申请实施例提供了另一种信息传输方法,应用于终端设备,所述方法包括:
在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,
若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道传输第二上行信息;或者,
若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则传输所述多个第二上行信道,
其中,所述多个第二上行信道在时域互不重叠。
第三方面,本申请实施例提供了一种信息传输方法,应用于网络设备,所述方法包括:
在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道接收第一上行信息,
其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行 信道在时域互不重叠。
第四方面,本申请实施例提供了另一种信息传输方法,应用于网络设备,所述方法包括:
在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道接收第二上行信息;或者,若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则通过所述多个第二上行信道接收信息,其中,所述多个第二上行信道在时域互不重叠。
第五方面,本申请实施例提供一种信息传输装置,应用于终端设备,所述装置包括:
发送模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道传输第一上行信息,
其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
第六方面,本申请实施例提供另一种信息传输装置,应用于终端设备,所述装置包括:
第一发送模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道传输第二上行信息;或者,
第二发送模块,用于若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则传输所述多个第二上行信道,其中,所述多个第二上行信道在时域互不重叠。
第七方面,本申请实施例提供了一种信息传输装置,应用于网络设备,所述装置包括:
接收模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道接收第一上行信息,
其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
第八方面,本申请实施例提供了另一种信息传输装置,应用于网络设备,所述装置包括:
接收模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道接收第二上行信息;或者,若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则接收所述多个第二上行信道的信息,其中,所述多个第二上行信道在时域互不重叠。
第九方面,本申请实施例提供了一种终端设备,包括:
处理器、存储器、发送器以及与网络设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行第一方面或第二方面任一项提供的信息传输方法。
第十方面,本申请实施例提供了一种网络设备,包括:
处理器、存储器、接收器以及与终端设备进行通信的接口;
所述存储器存储计算机执行指令;
所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行第三方面或第四方面任一项提供的信息传输方法。
可选地,上述处理器可以为芯片。
第十一方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第一方面或第二方面中任一项提供的信息传输方法。
第十二方面,本申请实施例可提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现第三方面或第四方面任一项提供的信息传输方法。
第十三方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如第一方面或第二方面任一项提供的信息传输方法。
第十四方面,本申请实施例提供一种程序,当该程序被处理器执行时,用于执行如第三方面或第 四方面任一项提供的信息传输方法。
第十五方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第一方面或第二方面任一项提供的信息传输方法。
第十六方面,本申请实施例提供一种计算机程序产品,包括程序指令,程序指令用于实现如第三方面或第四方面任一项提供的信息传输方法。
第十七方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面或第二方面任一项提供的信息传输方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第一方面或第二方面任一项提供的信息传输方法。
第十八方面,本申请实施例提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行第一方面或者第二方面任一项提供的信息传输方法。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行第三方面或第四方面任一项提供的信息传输方法。
本申请实施例提供的信息传输方法、装置及设备,在第一上行信道与多个第二上行信道在时域重叠时,终端设备从多个第二上行信道中确定出满足时序约束条件的第四上行信道,通过第四上行信道对应的时间单元或DCI确定的第五上行信道,对待复用传输的上行信息进行传输,其中,多个第二上行信道在时域互不重叠。一方面,从第二上行信道中确定出满足时序约束条件的第四上行信道,通过第四上行信道对应的时间单元或DCI确定的第五上行信道传输上行信息,能够将复用传输的信道限制在一个第二上行信道上,避免将多个第二上行信道上的反馈信息复用于同一个上行信道进行传输,从而能够减少反馈时延和/或提高数据传输的可靠性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为一种技术方案中的将所有UCI在一个PUCCH上复用传输的示意图。
图2为一种技术方案中的复用时序约束条件的示意图。
图3为一种技术方案中的确定重叠的PUCCH信道集合的示意图。
图4为本申请实施例应用的一种通信***示意图。
图5为本申请实施例提供的信息传输方法实施例一的流程示意图。
图6为本申请实施例提供的信息传输方法实施例二的流程示意图。
图7为本申请实施例提供的信息传输方法实例例三的示意图。
图8为本申请实施例提供的信息传输方法实施例四的示意图。
图9为本申请实施例提供的信息传输装置实施例一的结构示意图。
图10为本申请实施例提供的信息传输装置实施例二的结构示意图。
图11为本申请的一些实施例提供的信息传输装置实施例三的结构示意图。
图12为本申请实施例提供的终端设备实施例一的结构示意图。
图13为本申请实施例提供的网络设备实施例一的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的说明书、权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、***、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚 地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面将结合附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在NR标准Rel-15中,在一个时间单元例如slot内的多个物理上行信道在时域上重叠时,终端设备首先判断多个物理上行信道是否满足复用的时序约束条件。若满足复用的时序约束条件,则终端设备将所有的UCI复用在一个PUCCH资源上传输。具体而言,图1为一种技术方案中的将所有UCI在一个PUCCH上复用传输的示意图,如图1所示,PUCCH0为基于sub-slot的PUCCH,PUCCH1和PUCCH2为基于slot的PUCCH,复用信道为PUCCH 3,PUCCH3与原PUCCH 1在时域上不重叠,但依然要求PUCCH 1中的ACK/NACK信息复用到PUCCH 3中传输。在图1的技术方案中,一方面,增加了PUCCH 1的反馈时延;和/或,另一方面,PUCCH 3中的UCI容量较大,会影响传输的可靠性。
进一步地,在NR标准Rel-15中规定,在多个PUCCH在时域重叠,或者PUCCH与物理上行共享信道(Physical Uplink Shared Channel,PUSCH)在时域重叠时,需满足时序约束条件才能复用传输。否则,终端设备会判断这种情况为异常情况。这里的时序约束条件主要是为了保证终端设备有足够的时间判断不同的上行信道承载的信息是否需要复用,以及复用传输时UCI级联、编码等所需要的时间。
图2为一种技术方案中的复用时序约束条件的示意图,参照图2所示,时序约束条件可以包括以下条件(1)至(4)中的一种或多种:
(1)当重叠信道中有承载ACK/NACK信息的信道时,重叠信道中最早发送的一个信道的第一个时域符号到ACK/NACK信息对应的PDSCH的最后一个时域符号的时间差不小于
Figure PCTCN2020078670-appb-000001
Figure PCTCN2020078670-appb-000002
个时域符号,其中,
Figure PCTCN2020078670-appb-000003
为该时间差,N 1为PDSCH的处理时间,根据终端设备上报的处理能力信息确定,d 1,1的取值由协议约定,且与PDSCH资源分配情况有关。
(2)当重叠信道中有承载指示半永久性调度(Semi-persistent schedule,SPS)PDSCH释放的DCI对应的ACK/NACK信息的信道时,重叠信道中最早发送的一个信道的第一个时域符号到承载SPS PDSCH释放DCI的PDCCH的最后一个时域符号的时间差不小于
Figure PCTCN2020078670-appb-000004
个时域符号,其中,
Figure PCTCN2020078670-appb-000005
为该时间差,N的取值由协议约定,且与终端上报的处理能力及子载波间隔大小有关。、
(3)当重叠信道中有PUSCH,且PUSCH中无非周期CSI上报时,重叠信道中最早发送的一个信道的第一个时域符号到目标PDCCH的最后一个时域符号的时间差不小于
Figure PCTCN2020078670-appb-000006
个时域符号,其中,
Figure PCTCN2020078670-appb-000007
为该时间差,N 2为PUSCH的处理时间,根据终端设备上报的处理能力信息确定,d 2,1的取值由协议约定。其中,目标PDCCH为以下几种:(1)承载调度该PUSCH的DCI的PDCCH;以及,(2)调度PDSCH或指示SPS PDSCH释放的PDCCH,且被调度的PDSCH或指示SPS PDSCH释放对应的ACK/NACK信息通过重叠信道中的PUCCH传输。
(4)当重叠信道中有PUSCH,且PUSCH中有非周期CSI上报时,重叠信道中最早发送的一个信道的第一个时域符号到PDCCH的最后一个时域符号的时间差不小于
Figure PCTCN2020078670-appb-000008
个时域符号,其中,
Figure PCTCN2020078670-appb-000009
为该时间差,Z为CSI计算时间,根据终端设备上报的处理能力信息确定,d的取值由协议约定。
图3为一种技术方案中的确定重叠的PUCCH信道集合的示意图。
参照图3所示,可以通过以下步骤确定一个时间单元中重叠的PUCCH信道集合,例如确定与第一PUCCH重叠的多个第二PUCCH:
步骤1,确定PUCCH A,PUCCH A为重叠信道中起始符号最早的PUCCH。若有多个起始符号相同的PUCCH,则取其中时长最长的PUCCH作为PUCCH A。若两个PUCCH的起始符号与时长两者都相同,任选其一。
步骤2,将与PUCCH A重叠的PUCCH纳入集合Q。
步骤3,将与集合Q中任意PUCCH重叠的PUCCH纳入集合Q。
步骤4,将所有集合Q中的UCI复用于一个PUCCH内,根据UCI的比特数量和DCI中的PUCCH资源指示域PRI(PUCCH resource indicator,PRI)确定PUCCH B。
步骤5,确定PUCCH B是否与其他PUCCH重叠。若是,则重复执行步骤1~4。
基于上述内容,本申请实施例提供一种信息传输方法,在第一上行信道与多个第二上行信道在时域重叠时,若多个第二上行信道中包括至少一个第三上行信道,且至少一个第三上行信道包括第四上 行信道,则通过第五上行信道传输第一上行信息,其中,第三上行信道对应至少一个DCI,第四上行信道与第一上行信道满足第一时序约束条件,多个第二上行信道在时域互不重叠,第五上行信道与第四上行信道占用同一个时间单元,或者第五上行信道与第四上行信道对应第一DCI。
基于本申请实施例的技术方案,在第一上行信道与多个第二上行信道在时域重叠时,终端设备从多个第二上行信道中确定出满足时序约束条件的第四上行信道,通过第四上行信道对应的时间单元或DCI确定的第五上行信道,对待复用传输的上行信息进行传输,其中,多个第二上行信道在时域互不重叠。一方面,从第二上行信道中确定出满足时序约束条件的第四上行信道,通过第四上行信道对应的时间单元或DCI确定的第五上行信道传输上行信息,能够将复用传输的信道限制在一个第二上行信道上,避免将多个第二上行信道上的反馈信息复用于同一个上行信道进行传输,从而能够减少反馈时延和/或提高数据传输的可靠性。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)***、先进的长期演进(Advanced long term evolution,LTE-A)***、新无线(New Radio,NR)***、NR***的演进***、非授权频段上的LTE(LTE-based access to unlicensed spectrum,LTE-U)***、非授权频段上的NR(NR-based access to unlicensed spectrum,NR-U)***、通用移动通信***(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、NTN通信***、下一代通信***或其他通信***等。
通常来说,传统的通信***支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信***将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信、设备与卫星的通信等,本申请实施例的技术方案也可以应用于这些通信***。
图4为本申请实施例应用的一种通信***示意图,如图4所示,该通信***400可以包括终端设备410以及网络设备420。终端设备410包括但不限于经由有线线路通信的设备,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接通信的设备;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器通信的设备;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信***(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位***(Global Positioning System,GPS)接收器的个人数字处理(Personal Digital Assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、PDA、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
网络设备420可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备410进行通信。可选地,该网络设备420可以是GSM***或CDMA***中的基站(Base Transceiver Station,BTS),也可以是WCDMA***中的基站(NodeB,NB),还可以是LTE***中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者为非地面通信网络(Non Terrestrial Network,NTN)中的卫星,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络设备设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
可选地,终端设备410之间可以进行终端直连(Device to Device,D2D)通信,即本申请提供的 技术方案也可以应用在两个终端设备之间的通信中。
可选地,5G***或5G网络还可以称为新无线(New Radio,NR)***或NR网络。
图4示例性地示出了一个网络设备和两个终端设备,可选地,该通信***400可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信***400还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
下面通过几个具体实施例对本申请提供的信息传输方法进行详细的说明。
图5为本申请实施例提供的信息传输方法实施例一的流程示意图,如图5所示,该信息传输方法可应用于终端设备,具体包括以下步骤:
步骤S510:在第一上行信道与多个第二上行信道在时域重叠,且多个第二上行信道中包括至少一个第三上行信道的情况下,若上述至少一个第三上行信道中包括第四上行信道,则终端设备通过第五上行信道传输第一上行信息,其中,第三上行信道对应至少一个DCI,第四上行信道与第一上行信道满足第一时序约束条件,第五上行信道与第四上行信道具有第一关系或者第五上行信道通过第四上行信道得到,多个第二上行信道在时域互不重叠。
在示例实施例中,第一上行信道是用于传输信道状态信息(Channel State Information,CSI)或用于传输调度请求(Scheduling Request,SR)的PUCCH,第二上行信道是用于传输ACK/NACK信息的PUCCH。举例而言,第一上行信道可以为基于slot的PUCCH,第二上行信道可以为基于sub-slot的PUCCH,第一上行信道与多个第二上行信道中的各个上行信道在时域上重叠。
需要说明的是,在示例实施例中,第一上行信道还可以为其他适当的上行信道例如第一上行信道可以为无对应的DCI的上行信道或者由高层信令配置的上行信道等,这同样在本申请的保护范围内。
在示例实施例中,多个第二上行信道中包括至少一个第三上行信道,第三上行信道对应至少一个DCI。进一步地,第三上行信道对应至少一个DCI可以包括:至少一个DCI用于触发第三上行信道传输;或者,至少一个DCI用于调度第三上行信道传输;或者,至少一个DCI用于指示第三上行信道资源。
进一步地,第一时序约束条件包括:目标起始位置与第一下行信道之间的时间间隔不小于第一数值,其中,目标起始位置为第三上行信道与第一上行信道中最早的起始位置,该第一下行信道对应的上行信息通过第三上行信道传输,例如若第三上信道为PUCCH 2,则第一下行信道为PDSCH 2。具体而言,若第一上行信道的起始位置早于第三上行信道的起始位置,则第一时序约束条件包括:第一上行信道的起始位置与该第一下行信道之间的时间间隔不小于第一数值;若第三上行信道的起始位置早于第一上行信道的起始位置,则第一时序约束条件包括:第三上行信道的起始位置与该第一下行信道之间的时间间隔不小于第一数值。
需要说明的是,第一时序约束条件不限于此,还可以包括其他适当的时序约束条件,例如,上述时序约束条件(1)至(4)中的一种或多种,这同样在本申请的保护范围内。
进一步地,在一些实施例中,第五上行信道与第四上行信道具有第一关系,具体而言,第五上行信道与第四上行信道具有如下关系中的一种或多种:第五上行信道与第四上行信道占用同一个时间单元,该时间单元为时隙、子时隙和至少一个时域符号中的一种;第五上行信道与第四上行信道对应第一DCI。例如,第五上行信道根据该第一DCI和第一上行信息比特数量确定得到,其中,第一上行信息比特数量包括第一上行信道中承载的上行信息的比特数量和第四上行信道中承载的上行信息的比特数量。该第一DCI为第四上行信道对应的至少一个DCI中的最后一个DCI,最后一个DCI即为至少一个DCI中时域上最晚的DCI。
具体而言,终端设备根据第一上行信息的比特数量确定一个PUCCH资源集合,然后根据该第一DCI中PUCCH资源指示域(PUCCH resource indicator,PRI)的信息域的指示从该PUCCH资源集合中得到对应的PUCCH资源即第五上行信道。
在另一些实施例中,第五上行信道通过第四上行信道得到,例如根据第四上行信道对应的时间单元确定第五上行信道,和/或,根据第四上行信道对应的至少一个DCI中的最后一个DCI的PUCCH PRI的信息域确定第五上行信道。
进一步地,在示例实施例中,终端设备通过第五上行信道向网络设备传输第一上行信息,第一上行信息包括:第四上行信道中承载的上行信息的部分或全部信息;或者,第四上行信道中承载的上行信息的部分或全部信息和第一上行信道中承载的上行信息中的部分或全部信息。
根据图5的示例实施例中的技术方案,在第一上行信道与多个第二上行信道在时域重叠时,终端设备从多个第二上行信道中确定出满足时序约束条件的第四上行信道,通过第四上行信道对应的时间单元或DCI确定的第五上行信道,对待复用传输的上行信息进行传输,其中,多个第二上行信道在时 域互不重叠。一方面,从第二上行信道中确定出满足时序约束条件的第四上行信道,通过第四上行信道对应的时间单元或DCI确定的第五上行信道传输上行信息,能够将复用传输的信道限制在一个第二上行信道上,避免将多个第二上行信道上的反馈信息复用于同一个上行信道进行传输,从而能够减少反馈时延和/或提高数据传输的可靠性。
此外,在示例实施例中,若上述至少一个第三上行信道中不包括第四上行信道,则传输多个第二上行信道。在该示例实施例中,可以传输第一上行信道,也可以不传输第一上行信道。若不传输第一上行信道,则终端设备能够自动放弃传输对性能影响相对较小的CSI信息,保证ACK/NACK信息的可靠传输,而且不需要对网络设备的调度做过多限制。
进一步地,在示例实施例中,由下行控制信息(Downlink control information,DCI)调度/触发的承载ACK/NACK信息的PUCCH(即基于sub-slot的PUCCH)与承载CSI或SR的PUCCH(即基于slot的PUCCH)重叠时,复用信道的资源根据复用后的UCI的总比特数量以及ACK/NACK对应的最后一个DCI信息中指示的PUCCH资源指示域(PUCCH resource indicator,PRI)确定,无DCI调度/触发(即由高层信令配置的)的承载ACK/NACK信息的PUCCH与承载SR或CSI的PUCCH重叠时,使用高层信令配置的传输CSI的PUCCH复用传输所有UCI信息。
图6为本申请实施例提供的信息传输方法实施例二的流程示意图,如图6所示,该信息传输方法可应用于终端设备,具体包括以下步骤:
步骤S610,在第一上行信道与多个第二上行信道在时域重叠,且多个第二上行信道由高层信令配置的情况下,若第一上行信道与多个第二上行信道满足第二时序约束条件,则通过第六上行信道传输第二上行信息。
在示例实施例中,在示例实施例中,第一上行信道是用于传输信道状态信息(Channel State Information,CSI)或用于传输调度请求(Scheduling Request,SR)的PUCCH,第二上行信道是用于传输ACK/NACK信息的PUCCH或者为高层信令配置的PUCCH。举例而言,第一上行信道可以为基于slot的PUCCH,第二上行信道可以为基于sub-slot的PUCCH,第一上行信道与多个第二上行信道中的各个上行信道在时域上重叠。
需要说明的是,在示例实施例中,第一上行信道还可以为其他适当的上行信道例如第一上行信道可以为无对应的DCI的上行信道或者由高层信令配置的上行信道等,这同样在本申请的保护范围内。
在示例实施例中,第二时序约束条件包括:目标起始位置与多个第二下行信道例如第二下行信道的结束位置之间的时间间隔不小于第一数值,其中,该目标起始位置为第一上行信道与多个第二上行信道中最早的起始位置,第二下行信道对应的上行信息通过第二上行信道传输,例如若第二上信道为PUCCH 2,则第二下行信道为PDSCH 2。
需要说明的是,第二时序约束条件不限于此,还可以包括其他适当的时序约束条件,例如,上述时序约束条件(1)至(4)中的一种或多种,这同样在本申请的保护范围内。
进一步地,在示例实施例中,第二上行信息包括第一上行信道承载的部分或全部信息以及多个第二上行信道承载的信息。根据该实施例中的技术方案,由于在该技术方案中,选用于复用传输的PUCCH无法保证是属于同一个sub-slot,因此,将所有的UCI复用到一个PUCCH例如基于slot的PUCCH中传输,能够避免UCI信息丢失,从而能够提高通信***传输的可靠性。
步骤S620,若第一上行信道与多个第二上行信道不满足第二时序约束条件,则传输多个第二上行信道。
在示例实施例中,若第一上行信道与多个第二上行信道不满足第二时序约束条件,则传输多个第二上行信道,可以不传输第一上行信道。根据该实施例的技术方案,终端设备能够自动放弃传输对性能影响相对较小的CSI信息,保证ACK/NACK信息的可靠传输,而且不需要对网络设备的调度做过多限制。
进一步地,在示例实施例中,第六上行信道配置用于传输第三上行信息,第一上行信道用于传输所述第三上行信息,第三上行信息为CSI信息,第一上行信道用于传输该CSI信息。在一些实施例中,第六上行信道还可以为第一上行信道。
此外,在示例实施例中,第六上行信道是高层信令配置的物理上行控制信道PUCCH资源的至少一个PUCCH中的一个,例如第六上行信道为通过高层信令multi-CSI-PUCCH-ResourceList或pucch-CSI-ResourceList配置的至少一个PUCCH中的一个PUCCH;或者,第一上行信道是高层信令配置的PUCCH资源的至少一个PUCCH中的一个,例如,第一上行信道为通过高层信令multi-CSI-PUCCH-ResourceList或PUCCH-CSI-ResourceList配置的至少一个PUCCH中的一个PUCCH。
在上述实施例的基础上,下面结合附图,通过几个具体实施例,对该信息传输方法具体应用过程中的实现方案进行详细说明。
实施例一
在第一PUCCH与多个第二PUCCH在时域重叠时,其中,第一PUCCH与第二PUCCH的优先级相同,多个第二PUCCH互不重叠即多个第二PUCCH属于不同的子时间单元,若多个第二PUCCH中包括至少一个第三PUCCH,所述第三PUCCH有对应的DCI,即所述第三PUCCH中承载的ACK/NACK信息是由DCI调度/触发的,则终端设备根据至少一个第三PUCCH确定出满足复用时序约束条件的第四PUCCH或确定第四PUCCH所在的子时间单元。该第四PUCCH可以是上述至少一个第三PUCCH中满复用时序约束条件的第一个PUCCH。
进一步地,针对一个第三PUCCH,判断该第三PUCCH是否满足复用时序约束条件,包括:目标起始位置与第一下行信道之间的时间间隔不小于第一数值,其中,该目标起始位置为第三PUCCH与第一PUCCH中最早的起始符号,第一下行信道对应的ACK/NACK信息通过该第三PUCCH传输。第一下行信道可以为PDSCH或PDCCH。
终端设备确定复用传输的UCI比特数量,该复用传输的UCI比特数量包括第一PUCCH内承载的信息的比特数量和第四PUCCH中承载的信息的比特数量。
终端设备根据该复用传输的UCI比特数量和第四PUCCH对应的最后一个DCI中所指示的PUCCH资源指示(PUCCH resource indicator,PRI)的信息域所指示的值确定第五PUCCH。
终端设备使用该第五PUCCH传输反馈信息,该反馈信息包括第四PUCCH内承载的信息,和第一PUCCH中承载的信息中的部分或全部信息。
根据上述技术方案,能够将复用传输的信道限制在一个第二PUCCH即sub-slot上,避免将多个PUCCH上的ACK/NACK信息复用于同一个PUCCH进行传输,从而能够减少反馈时延和/或提高数据传输的可靠性。
进一步地,若没有满足复用时序约束条件的第四PUCCH,则终端设备传输多个第二PUCCH,不传输第一PUCCH。根据该技术方案,终端设备能够自动放弃传输对性能影响相对较小的CSI信息,保证ACK/NACK信息的可靠传输,而且不需要对网络设备的调度做过多限制。
图7为实施例一的一种具体实现方式的流程示意图,下面结合图7对实施例一进行详细的说明。
参照图7所示,传输CSI的PUCCH(即第一PUCCH)与4个传输ACK/NACK的PUCCH(即第二PUCCH)在时域重叠。其中PUCCH 1用于承载SPS PDSCH对应的ACK/NACK信息,即PUCCH 1无对应的DCI信息,因此PUCCH 1不属于所述第三PUCCH。而PUCCH 2、PUCCH3、PUCCH4分别用于承载动态调度的PDSCH 2、PDSCH 3、PDSCH 4对应的ACK/NACK信息,即PUCCH 2、3、4属于第三PUCCH。
终端设备确定PUCCH 2满足时序约束条件,即PDSCH 2的结束位置与第一PUCCH的起始位置(第一PUCCH与PUCCH 2中取最早的起始位置)之间大于第一数值。
终端设备确定通过sub-slot 2(即PUCCH2所在的时域子单元)中的PUCCH(即第五PUCCH)传输CSI和PDSCH 2对应的ACK/NACK信息。
若PUCCH 2、PUCCH3、PUCCH4都不满足复用时序约束条件,则终端设备传输PUCCH 1、PUCCH2、PUCCH 3、PUCCH 4,不传输第一PUCCH。
实施例二
在第一PUCCH与多个第二PUCCH在时域重叠时,其中,第一PUCCH与第二PUCCH的优先级相同,多个第二PUCCH互不重叠即多个第二PUCCH属于不同的子时间单元,多个第二PUCCH中不包括第三PUCCH,第三PUCCH有对应的DCI,即第三PUCCH中承载的ACK/NACK信息是由DCI调度/触发的。若多个第二PUCCH与第一PUCCH满足复用的时序约束条件,则通过第六PUCCH传输多个第二PUCCH承载的信息和第一PUCCH承载的信息的部分或全部信息。
根据该技术方案,由于选用于复用传输的PUCCH无法保证是属于同一个sub-slot,因此,将所有的UCI复用到一个PUCCH例如基于slot的PUCCH中传输,能够避免UCI信息丢失,从而能够提高通信***传输的可靠性。
进一步地,第六PUCCH是配置给终端设备用于传输第一信息的PUCCH,其中:第一PUCCH用于传输第一信息;第一信息为CSI信息;第六PUCCH为通过高层信令multi-CSI-PUCCH-ResourceList或pucch-CSI-ResourceList配置的至少一个PUCCH中的一个;或者第六PUCCH为第一PUCCH。
该时序约束条件包括:多个第二PUCCH对应的下行信道的结束位置到多个第二PUCCH与第一PUCCH中最早起始符号之间的时间间隔不小于第一数值。
由于此时选用于复用传输的PUCCH无法保证属于一个sub-slot,因此将所有的UCI信息复用到一个PUCCH中传输,能够避免UCI信息丢弃,提高通信***的性能和可靠性。
进一步地,若多个第二PUCCH与第一PUCCH不满足复用时序约束,则传输上述多个第二PUCCH, 不传输第一PUCCH。根据该技术方案,终端设备可自行放弃传输对性能影响相对较小的CSI信息,保证ACK/NACK信息的可靠传输,而不需要对基站调度做过多限制。
图8为实施例二的一种具体实现方式的流程示意图,下面结合图8对实施例二进行详细的说明。
参照图8所示,如图8所示,传输CSI的PUCCH(第一PUCCH)与2个传输ACK/NACK的PUCCH(第二PUCCH)重叠。其中PUCCH 1、PUCCH 2都是用于承载SPS PDSCH对应的ACK/NACK信息,即PUCCH 1、PUCCH 2无对应的DCI信息。因此PUCCH 1、PUCCH 2不属于所述第三PUCCH。PUCCH1、PUCCH 2与第一PUCCH满足复用时序约束条件,所述终端设备通过第一PUCCH传输PUCCH 1、PUCCH 2中承载的ACK/NACK信息和CSI信息的部分或全部信息。
若PUCCH 1、PUCCH 2与第一PUCCH不满足复用时序约束条件,则终端设备传输PUCCH 1、PUCCH 2,不传输第一PUCCH。
此外,在本申请的另一些示例实施例,还提供了一种信息传输方法。该信息传输方法应用于网络设备,该方法包括:
在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道接收第一上行信息,
其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
在本申请的一些示例实施例中,所述方法还包括:
若所述至少一个第三上行信道中不包括所述第四上行信道,则接收所述多个第二上行信道的信息。
在本申请的一些示例实施例中,所述第四上行信道是所述至少一个第三上行信道中满足所述第一时序约束条件且起始时间最早的信道。
在本申请的一些示例实施例中,所述第一时序约束条件包括:目标起始位置与第一下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第三上行信道与所述第一上行信道中最早的起始位置,所述第一下行信道对应的上行信息通过所述第三上行信道传输。
在本申请的一些示例实施例中,所述第一关系包括如下关系中的一种或多种:所述第五上行信道与所述第四上行信道属于同一个时间单元;所述第五上行信道与所述第四上行信道根据第一DCI确定得到。
在本申请的一些示例实施例中,所述第五上行信道根据所述第一DCI和第一上行信息比特数量确定得到,其中,所述第一上行信息比特数量包括所述第一上行信道中承载的上行信息的比特数量和所述第四上行信道中承载的上行信息的比特数量。
在本申请的一些示例实施例中,所述第四上行信道根据所述第一DCI和所述第四上行信道中承载的上行信息比特数量确定得到。
在本申请的一些示例实施例中,所述第一DCI为所述第四上行信道对应的至少一个DCI中的最后一个DCI。
在本申请的一些示例实施例中,所述第一上行信息包括:所述第四上行信道中承载的上行信息的部分或全部信息;或者,所述第四上行信道中承载的上行信息的部分或全部信息和所述第一上行信道中承载的上行信息中的部分或全部信息。
在本申请的一些示例实施例中,所述第三上行信道对应至少一个DCI,包括:所述至少一个DCI用于触发所述第三上行信道传输;或者,所述至少一个DCI用于调度所述第三上行信道传输;或者,所述至少一个DCI用于指示所述第三上行信道资源。
在本申请的一些示例实施例中,所述时间单元为时隙、子时隙和至少一个时域符号中的一种。
在本申请的一些示例实施例中,基于上述方案,所述第一上行信道是用于传输CSI的PUCCH或SR的PUCCH;或者,所述第一上行信道无对应的DCI;或者,所述第一上行信道由高层信令配置。
在本申请的一些示例实施例中,所述第二上行信道是用于传输ACK/NACK信息的PUCCH。
由于网络设备端的信息传输方法与上述终端设备端的信息传输方法的实现原理以及技术效果类似,在此不再赘述。
此外,在本申请的另一些示例实施例,还提供了另一种信息传输方法。该信息传输方法应用于网络设备,该方法包括:
在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道接收第二上行信息;或者,若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件, 则接收所述多个第二上行信道的信息,其中,所述多个第二上行信道在时域互不重叠。
在本申请的一些示例实施例中,所述第二时序约束条件包括:目标起始位置与多个第二下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第一上行信道与所述多个第二上行信道中最早的起始位置,所述第二下行信道对应的上行信息通过所述第二上行信道传输。
在本申请的一些示例实施例中,所述第六上行信道配置用于传输第三上行信息,所述第一上行信道用于传输所述第三上行信息。
在本申请的一些示例实施例中,所述第六上行信道是高层信令配置的物理上行控制信道PUCCH资源的中的一个;或者所述第一上行信道是高层信令配置的PUCCH资源中的一个。
在本申请的一些示例实施例中,基于上述方案,所述第一上行信道是用于传输CSI或SR的PUCCH;或者,所述第一上行信道无对应的DCI;或者,所述第一上行信道由高层信令配置。
在本申请的一些示例实施例中,所述第二上行信道是用于传输ACK/NACK信息的PUCCH,所述第二上行信息包括所述第一上行信道承载的部分或全部信息以及所述多个第二上行信道承载的信息。
图9为本申请实施例提供的信息传输装置实施例一的结构示意图,如图9所示,该信息传输装置900应用于终端设备,包括:
发送模块910,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道传输第一上行信息,
其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
在本申请的一些示例实施例中,所述发送模块910被配置为:
若所述至少一个第三上行信道中不包括所述第四上行信道,则传输所述多个第二上行信道。
在本申请的一些示例实施例中,所述第四上行信道是所述至少一个第三上行信道中满足所述第一时序约束条件且起始时间最早的信道。
在本申请的一些示例实施例中,所述第一时序约束条件包括:目标起始位置与第一下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第三上行信道与所述第一上行信道中最早的起始位置,所述第一下行信道对应的上行信息通过所述第三上行信道传输。
在本申请的一些示例实施例中,所述第一关系包括如下关系中的一种或多种:
所述第五上行信道与所述第四上行信道占用同一个时间单元;
所述第五上行信道与所述第四上行信道对应第一DCI。
在本申请的一些示例实施例中,所述第五上行信道根据所述第一DCI和第一上行信息比特数量确定得到,其中,所述第一上行信息比特数量包括所述第一上行信道中承载的上行信息的比特数量和所述第四上行信道中承载的上行信息的比特数量。
在本申请的一些示例实施例中,所述第四上行信道根据所述第一DCI和所述第四上行信道中承载的上行信息比特数量确定得到。
在本申请的一些示例实施例中,所述第一DCI为所述第四上行信道对应的至少一个DCI中的最后一个DCI。
在本申请的一些示例实施例中,所述第一上行信息包括:
所述第四上行信道中承载的上行信息的部分或全部信息;或者,
所述第四上行信道中承载的上行信息的部分或全部信息和所述第一上行信道中承载的上行信息中的部分或全部信息。
在本申请的一些示例实施例中,所述第三上行信道对应至少一个DCI,包括:所述至少一个DCI用于触发所述第三上行信道传输;或者,所述至少一个DCI用于调度所述第三上行信道传输;或者,所述至少一个DCI用于指示所述第三上行信道资源。
在本申请的一些示例实施例中,所述时间单元为时隙、子时隙和至少一个时域符号中的一种。
在本申请的一些示例实施例中,所述第一上行信道是用于传输CSI或SR的PUCCH;或者,所述第一上行信道无对应的DCI;或者,所述第一上行信道由高层信令配置。
在本申请的一些示例实施例中,所述第二上行信道是用于传输ACK/NACK信息的PUCCH,所述第二上行信息包括所述第一上行信道承载的部分或全部信息以及所述多个第二上行信道承载的信息。
本实施例提供的信息传输装置,用于执行前述任一方法实施例中的终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图10为本申请实施例提供的信息传输装置实施例一的结构示意图,如图10所示,该信息传输装 置1000应用于终端设备,包括:
第一发送模块1010,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道传输第二上行信息;或者,
第二发送模块1020,用于若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则传输所述多个第二上行信道,其中,所述多个第二上行信道在时域互不重叠。
在本申请的一些示例实施例中,所述第二时序约束条件包括:目标起始位置与多个第二下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第一上行信道与所述多个第二上行信道中最早的起始位置,所述第二下行信道对应的上行信息通过所述第二上行信道传输。
在本申请的一些示例实施例中,所述第六上行信道配置用于传输第三上行信息,所述第一上行信道用于传输所述第三上行信息。
在本申请的一些示例实施例中,所述第六上行信道是高层信令配置的物理上行控制信道PUCCH资源的至少一个PUCCH中的一个;或者所述第一上行信道是高层信令配置的PUCCH资源的至少一个PUCCH中的一个。
在本申请的一些示例实施例中,所述第一上行信道是用于传输CSI或SR的PUCCH;或者,所述第一上行信道无对应的DCI;或者,所述第一上行信道由高层信令配置。
在本申请的一些示例实施例中,所述第二上行信道是用于传输ACK/NACK信息的PUCCH。
本实施例提供的信息传输装置,用于执行前述任一方法实施例中的终端设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图11为本申请实施例提供的信息传输装置实施例二的结构示意图,如图11所示,该信息传输装置1100应用于网络设备,包括:
接收模块1110,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道接收第一上行信息,
其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
在本申请的一些示例实施例中,所述接收模块1110被配置为:
若所述至少一个第三上行信道中不包括所述第四上行信道,则接收所述多个第二上行信道的信息。
在本申请的一些示例实施例中,所述第四上行信道是所述至少一个第三上行信道中满足所述第一时序约束条件且起始时间最早的信道。
在本申请的一些示例实施例中,所述第一时序约束条件包括:目标起始位置与第一下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第三上行信道与所述第一上行信道中最早的起始位置,所述第一下行信道对应的上行信息通过所述第三上行信道传输。
在本申请的一些示例实施例中,所述第一关系包括如下关系中的一种或多种:所述第五上行信道与所述第四上行信道属于同一个时间单元;所述第五上行信道与所述第四上行信道根据第一DCI确定得到。
在本申请的一些示例实施例中,所述第五上行信道根据所述第一DCI和第一上行信息比特数量确定得到,其中,所述第一上行信息比特数量包括所述第一上行信道中承载的上行信息的比特数量和所述第四上行信道中承载的上行信息的比特数量。
在本申请的一些示例实施例中,所述第四上行信道根据所述第一DCI和所述第四上行信道中承载的上行信息比特数量确定得到。
在本申请的一些示例实施例中,所述第一DCI为所述第四上行信道对应的至少一个DCI中的最后一个DCI。
在本申请的一些示例实施例中,所述第一上行信息包括:所述第四上行信道中承载的上行信息的部分或全部信息;或者,所述第四上行信道中承载的上行信息的部分或全部信息和所述第一上行信道中承载的上行信息中的部分或全部信息。
在本申请的一些示例实施例中,所述第三上行信道对应至少一个DCI,包括:所述至少一个DCI用于触发所述第三上行信道传输;或者,所述至少一个DCI用于调度所述第三上行信道传输;或者,所述至少一个DCI用于指示所述第三上行信道资源。
在本申请的一些示例实施例中,所述时间单元为时隙、子时隙和至少一个时域符号中的一种。
在本申请的一些示例实施例中,所述第一上行信道是用于传输CSI或SR的PUCCH;或者,所述 第一上行信道无对应的DCI;或者,所述第一上行信道由高层信令配置。
在本申请的一些示例实施例中,所述第二上行信道是用于传输ACK/NACK信息的PUCCH。
本实施例提供的信息传输装置,用于执行前述任一方法实施例中的网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
此外,在示例实施例中,还提供了另一种信息传输装置。该信息传输装置应用于网络设备,包括:
接收模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道接收第二上行信息;或者,若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则接收所述多个第二上行信道的信息,其中,所述多个第二上行信道在时域互不重叠。
在本申请的一些示例实施例中,所述第二时序约束条件包括:目标起始位置与多个第二下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第一上行信道与所述多个第二上行信道中最早的起始位置,所述第二下行信道对应的上行信息通过所述第二上行信道传输。
在本申请的一些示例实施例中,所述第六上行信道配置用于传输第三上行信息,所述第一上行信道用于传输所述第三上行信息。
在本申请的一些示例实施例中,所述第六上行信道是高层信令配置的物理上行控制信道PUCCH资源的至少一个PUCCH中的一个;或者所述第一上行信道是高层信令配置的PUCCH资源的至少一个PUCCH中的一个。
在本申请的一些示例实施例中,所述第一上行信道是用于传输CSI或SR的PUCCH;或者,所述第一上行信道无对应的DCI;或者,所述第一上行信道由高层信令配置。
在本申请的一些示例实施例中,基于上述方案,所述第二上行信道是用于传输ACK/NACK信息的PUCCH。
本实施例提供的信息传输装置,用于执行前述任一方法实施例中网络设备侧的技术方案,其实现原理和技术效果类似,在此不再赘述。
图12为本申请实施例提供的终端设备实施例一的结构示意图。如图12所示,该终端设备1200,包括:
处理器1220、存储器1230、发送器1240与网络设备进行通信的接口1250;可选的,该终端设备1200还包括接收器1210。
存储器1230存储计算机执行指令;
处理器1220执行存储器存储的计算机执行指令,使得处理器1220执行如前述任一方法实施例中的终端设备侧的技术方案。
图13为本申请实施例提供的网络设备实施例一的结构示意图,如图13所示,该网络设备1300,包括:
处理器1310、存储器1320、接收器1330、与终端设备进行通信的接口1350,可选的,该网络设备1300还包括发送器1340;
存储器1320存储计算机执行指令;
处理器1310执行存储器存储的计算机执行指令,使得处理器1310执行如前述任一方法实施例中的网络设备侧的技术方案。
本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当计算机执行指令被处理器执行时用于实现第一前述任一方法实施例中网络设备侧的技术方案。
本申请还提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机执行指令,当计算机执行指令被处理器执行时用于实现前述任一方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种程序,当该程序被处理器执行时,用于执行前述方法实施例中终端设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例中网络设备侧的技术方案。
本申请实施例还提供一种计算机程序产品,包括程序指令,程序指令用于实现前述方法实施例中终端设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中网络设备侧的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行网络设备侧的技术方案。
本申请实施例还提供了一种芯片,包括:处理模块与通信接口,该处理模块能执行前述方法实施例中终端设备的技术方案。
进一步地,该芯片还包括存储模块(如,存储器),存储模块用于存储指令,处理模块用于执行存储模块存储的指令,并且对存储模块中存储的指令的执行使得处理模块执行终端设备侧的技术方案。
在本申请所提供的几个实施例中,应该理解到,所揭露的***,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个***,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述网络设备以及终端设备的具体实现中,应理解,处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一可读取存储器中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储器(存储介质)包括:只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、快闪存储器、硬盘、固态硬盘、磁带、软盘、光盘及其任意组合。

Claims (45)

  1. 一种信息传输方法,其特征在于,应用于终端设备,所述方法包括:
    在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道传输第一上行信息,
    其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述至少一个第三上行信道中不包括所述第四上行信道,则传输所述多个第二上行信道。
  3. 根据权利要求1所述的方法,其特征在于,所述第四上行信道是所述至少一个第三上行信道中满足所述第一时序约束条件且起始时间最早的信道。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一时序约束条件包括:目标起始位置与第一下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第三上行信道与所述第一上行信道中最早的起始位置,所述第一下行信道对应的上行信息通过所述第三上行信道传输。
  5. 根据权利要求1所述的方法,其特征在于,所述第一关系包括如下关系中的一种或多种:
    所述第五上行信道与所述第四上行信道占用同一个时间单元;
    所述第五上行信道与所述第四上行信道对应第一DCI。
  6. 根据权利要求5所述的方法,其特征在于,所述第五上行信道根据所述第一DCI和第一上行信息比特数量确定得到,其中,所述第一上行信息比特数量包括所述第一上行信道中承载的上行信息的比特数量和所述第四上行信道中承载的上行信息的比特数量。
  7. 根据权利要求5所述的方法,其特征在于,所述第四上行信道根据所述第一DCI和所述第四上行信道中承载的上行信息比特数量确定得到。
  8. 根据权利要求5至7中任一项所述的方法,其特征在于,所述第一DCI为所述第四上行信道对应的至少一个DCI中的最后一个DCI。
  9. 根据权利要求1所述的方法,其特征在于,所述第一上行信息包括:
    所述第四上行信道中承载的上行信息的部分或全部信息;或者,
    所述第四上行信道中承载的上行信息的部分或全部信息和所述第一上行信道中承载的上行信息中的部分或全部信息。
  10. 根据权利要求1所述的方法,其特征在于,所述第三上行信道对应至少一个DCI,包括:
    所述至少一个DCI用于触发所述第三上行信道传输;或者,
    所述至少一个DCI用于调度所述第三上行信道传输;或者,
    所述至少一个DCI用于指示所述第三上行信道资源。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述时间单元为时隙、子时隙和至少一个时域符号中的一种。
  12. 根据权利要求1至10中任一项所述的方法,其特征在于,
    所述第一上行信道是用于传输信道状态信息CSI或调度请求SR的PUCCH;或者,
    所述第一上行信道无对应的DCI;或者,
    所述第一上行信道由高层信令配置。
  13. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第二上行信道是用于传输肯定确认/否定确认ACK/NACK信息的PUCCH。
  14. 一种信息传输方法,其特征在于,应用于终端设备,所述方法还包括:
    在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,
    若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道传输第二上行信息;或者,
    若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则传输所述多个第二上行信道,
    其中,所述多个第二上行信道在时域互不重叠。
  15. 根据权利要求14所述的方法,其特征在于,所述第二时序约束条件包括:目标起始位置与多个第二下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第一上行信道与所述多个第二上行信道中最早的起始位置,所述第二下行信道对应的上行信息通过所述第二上行信道传输。
  16. 根据权利要求14所述的方法,其特征在于,所述第六上行信道配置用于传输第三上行信息,所述第一上行信道用于传输所述第三上行信息。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,
    所述第六上行信道是高层信令配置的物理上行控制信道PUCCH资源中的一个;或者
    所述第一上行信道是高层信令配置的PUCCH资源中的一个。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,
    所述第一上行信道是用于传输CSI或SR的PUCCH;或者,
    所述第一上行信道无对应的DCI;或者,
    所述第一上行信道由高层信令配置。
  19. 根据权利要求14至17中任一项所述的方法,其特征在于,所述第二上行信道是用于传输ACK/NACK信息的PUCCH,所述第二上行信息包括所述第一上行信道承载的部分或全部信息以及所述多个第二上行信道承载的信息。
  20. 一种信息传输方法,其特征在于,应用于网络设备,所述方法包括:
    在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道接收第一上行信息,
    其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
  21. 一种信息传输方法,其特征在于,应用网络设备,所述方法包括:
    在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道接收第二上行信息;或者,若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则通过所述多个第二上行信道接收信息,其中,所述多个第二上行信道在时域互不重叠。
  22. 一种信息传输装置,其特征在于,应用于终端设备,所述装置包括:
    发送模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道传输第一上行信息,
    其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
  23. 根据权利要求22所述的装置,其特征在于,所述发送模块被配置为:
    若所述至少一个第三上行信道中不包括所述第四上行信道,则传输所述多个第二上行信道。
  24. 根据权利要求22所述的装置,其特征在于,所述第四上行信道是所述至少一个第三上行信道中满足所述第一时序约束条件且起始时间最早的信道。
  25. 根据权利要求22至24中任一项所述的装置,其特征在于,所述第一时序约束条件包括:目标起始位置与第一下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第三上行信道与所述第一上行信道中最早的起始位置,所述第一下行信道对应的上行信息通过所述第三上行信道传输。
  26. 根据权利要求22所述的装置,其特征在于,所述第一关系包括如下关系中的一种或多种:
    所述第五上行信道与所述第四上行信道占用同一个时间单元;
    所述第五上行信道与所述第四上行信道对应第一DCI。
  27. 根据权利要求26所述的装置,其特征在于,所述第五上行信道根据所述第一DCI和第一上行信息比特数量确定得到,其中,所述第一上行信息比特数量包括所述第一上行信道中承载的上行信息的比特数量和所述第四上行信道中承载的上行信息的比特数量。
  28. 根据权利要求26所述的装置,其特征在于,所述第四上行信道根据所述第一DCI和所述第四上行信道中承载的上行信息比特数量确定得到。
  29. 根据权利要求26至28中任一项所述的装置,其特征在于,所述第一DCI为所述第四上行信 道对应的至少一个DCI中的最后一个DCI。
  30. 根据权利要求22所述的装置,其特征在于,所述第一上行信息包括:
    所述第四上行信道中承载的上行信息的部分或全部信息;或者,
    所述第四上行信道中承载的上行信息的部分或全部信息和所述第一上行信道中承载的上行信息中的部分或全部信息。
  31. 根据权利要求22所述的装置,其特征在于,所述第三上行信道对应至少一个DCI,包括:
    所述至少一个DCI用于触发所述第三上行信道传输;或者,
    所述至少一个DCI用于调度所述第三上行信道传输;或者,
    所述至少一个DCI用于指示所述第三上行信道资源。
  32. 根据权利要求22至31中任一项所述的装置,其特征在于,所述时间单元为时隙、子时隙和至少一个时域符号中的一种。
  33. 根据权利要求22至31中任一项所述的装置,其特征在于,
    所述第一上行信道是用于传输CSI或SR的PUCCH;或者,
    所述第一上行信道无对应的DCI;或者,
    所述第一上行信道由高层信令配置。
  34. 根据权利要求22至31中任一项所述的装置,其特征在于,所述第二上行信道是用于传输ACK/NACK信息的PUCCH,所述第二上行信息包括所述第一上行信道承载的部分或全部信息以及所述多个第二上行信道承载的信息。
  35. 一种信息传输装置,其特征在于,应用于终端设备,所述装置还包括:
    第一发送模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道传输第二上行信息;或者,
    第二发送模块,用于若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则传输所述多个第二上行信道,其中,所述多个第二上行信道在时域互不重叠。
  36. 根据权利要求35所述的装置,其特征在于,所述第二时序约束条件包括:目标起始位置与多个第二下行信道之间的时间间隔不小于第一数值,其中,所述目标起始位置为所述第一上行信道与所述多个第二上行信道中最早的起始位置,所述第二下行信道对应的上行信息通过所述第二上行信道传输。
  37. 根据权利要求35所述的装置,其特征在于,所述第六上行信道配置用于传输第三上行信息,所述第一上行信道用于传输所述第三上行信息。
  38. 根据权利要求35至37中任一项所述的装置,其特征在于,
    所述第六上行信道是高层信令配置的物理上行控制信道PUCCH资源中的一个;或者
    所述第一上行信道是高层信令配置的PUCCH资源中的一个。
  39. 根据权利要求35至38中任一项所述的装置,其特征在于,
    所述第一上行信道是用于传输CSI或SR的PUCCH;或者,
    所述第一上行信道无对应的DCI;或者,
    所述第一上行信道由高层信令配置。
  40. 根据权利要求35至38中任一项所述的装置,其特征在于,所述第二上行信道是用于传输ACK/NACK信息的PUCCH。
  41. 一种信息传输装置,其特征在于,应用于网络设备,所述装置包括:
    接收模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道中包括至少一个第三上行信道的情况下,若所述至少一个第三上行信道中包括第四上行信道,则通过第五上行信道接收第一上行信息,
    其中,所述第三上行信道对应至少一个下行控制信令DCI,所述第四上行信道与所述第一上行信道满足第一时序约束条件,所述第五上行信道与所述第四上行信道具有第一关系,所述多个第二上行信道在时域互不重叠。
  42. 一种信息传输装置,其特征在于,应用于网络设备,所述装置包括:
    接收模块,用于在第一上行信道与多个第二上行信道在时域重叠,且所述多个第二上行信道由高层信令配置的情况下,若所述第一上行信道与所述多个第二上行信道满足第二时序约束条件,则通过第六上行信道接收第二上行信息;或者,若所述第一上行信道与所述多个第二上行信道不满足所述第二时序约束条件,则接收所述多个第二上行信道的信息,其中,所述多个第二上行信道在时域互不重叠。
  43. 一种终端设备,其特征在于,包括:
    处理器、存储器、发送器以及与网络设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求1至19中任一项所述的信息传输方法。
  44. 一种网络设备,其特征在于,包括:
    处理器、存储器、接收器以及与终端设备进行通信的接口;
    所述存储器存储计算机执行指令;
    所述处理器执行所述存储器存储的计算机执行指令,使得所述处理器执行如权利要求20或21任一项所述的信息传输方法。
  45. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当所述计算机执行指令被处理器执行时用于实现如权利要求1至19或20至21中任一项所述的信息传输方法。
PCT/CN2020/078670 2020-03-10 2020-03-10 信息传输方法、装置及设备 WO2021179183A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080082834.5A CN114747171A (zh) 2020-03-10 2020-03-10 信息传输方法、装置及设备
EP20924867.3A EP4102755A4 (en) 2020-03-10 2020-03-10 METHOD, APPARATUS AND DEVICE FOR TRANSMITTING INFORMATION
PCT/CN2020/078670 WO2021179183A1 (zh) 2020-03-10 2020-03-10 信息传输方法、装置及设备
US17/901,285 US20220417967A1 (en) 2020-03-10 2022-09-01 Information transmission method and apparatus, and devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078670 WO2021179183A1 (zh) 2020-03-10 2020-03-10 信息传输方法、装置及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/901,285 Continuation US20220417967A1 (en) 2020-03-10 2022-09-01 Information transmission method and apparatus, and devices

Publications (1)

Publication Number Publication Date
WO2021179183A1 true WO2021179183A1 (zh) 2021-09-16

Family

ID=77671087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078670 WO2021179183A1 (zh) 2020-03-10 2020-03-10 信息传输方法、装置及设备

Country Status (4)

Country Link
US (1) US20220417967A1 (zh)
EP (1) EP4102755A4 (zh)
CN (1) CN114747171A (zh)
WO (1) WO2021179183A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115462162A (zh) * 2020-04-27 2022-12-09 Lg电子株式会社 接收下行链路信道的方法、用户设备、处理装置、存储介质和计算机程序及发送下行链路信道的方法和基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798291A (zh) * 2018-08-02 2020-02-14 中兴通讯股份有限公司 一种信息传输的方法、装置、设备和计算机可读存储介质
CN110830213A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 上行控制信道资源确定方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798291A (zh) * 2018-08-02 2020-02-14 中兴通讯股份有限公司 一种信息传输的方法、装置、设备和计算机可读存储介质
CN110830213A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 上行控制信道资源确定方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On multi-TRP/multi-panel transmission", 3GPP DRAFT; R1-1904313_MULTITRP, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Xi’an, China; 20190408 - 20190412, 30 March 2019 (2019-03-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 17, XP051691424 *
INTEL CORPORATION: "Remaining details on NR PUCCH", 3GPP DRAFT; R1-1810755 INTEL PUCCH, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051518159 *
See also references of EP4102755A4 *
VIVO: "Remaining issues on PUCCH", 3GPP DRAFT; R1-1810370_REMAINING ISSUES ON PUCCH-FINAL, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chengdu, China; 20181008 - 20181012, 29 September 2018 (2018-09-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051517779 *

Also Published As

Publication number Publication date
CN114747171A (zh) 2022-07-12
EP4102755A1 (en) 2022-12-14
EP4102755A4 (en) 2023-07-05
US20220417967A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
CN112655262B (zh) 资源分配的方法、终端设备和网络设备
TWI829760B (zh) 用於側行鏈路的通信方法和設備
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2020198983A1 (zh) 一种用于非授权频谱的无线通信方法及装置、通信设备
WO2020191559A1 (zh) 传输数据信道的方法和终端设备
WO2020163986A1 (zh) 一种资源指示方法、终端设备及网络设备
US20230239017A1 (en) Communication method and apparatus, and readable storage medium
CN113766562A (zh) 重传资源配置方法、设备、芯片及计算机程序
WO2021056702A1 (zh) 上行信号的发送和接收方法以及装置
WO2021056135A1 (zh) 传输上行控制信息的方法和终端设备
WO2020143052A1 (zh) 用于传输反馈信息的方法、终端设备和网络设备
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
JP2021536206A (ja) リソース決定及び設定方法、装置、端末、ネットワーク装置
WO2022032654A1 (zh) 无线通信方法、终端设备和网络设备
US20220417967A1 (en) Information transmission method and apparatus, and devices
JP2023542690A (ja) ユーザ装置及びユーザ装置の方法
WO2021068264A1 (zh) 无线通信方法、装置和通信设备
US20220104247A1 (en) Information transmission method, apparatus, device and storage medium
WO2020103316A1 (zh) 一种传输数据的方法和终端设备
TW202015470A (zh) 無線通訊方法和通信設備
WO2021073021A1 (zh) 传输数据的方法、终端设备和网络设备
WO2022032515A1 (zh) 无线通信方法、终端设备和网络设备
WO2021031128A1 (zh) 传输数据的方法、终端设备和网络设备
WO2021030996A1 (zh) 一种信道处理方法、终端设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020924867

Country of ref document: EP

Effective date: 20220906

NENP Non-entry into the national phase

Ref country code: DE