WO2021179139A1 - 一种释放上行资源的方法、终端设备、网络设备 - Google Patents

一种释放上行资源的方法、终端设备、网络设备 Download PDF

Info

Publication number
WO2021179139A1
WO2021179139A1 PCT/CN2020/078472 CN2020078472W WO2021179139A1 WO 2021179139 A1 WO2021179139 A1 WO 2021179139A1 CN 2020078472 W CN2020078472 W CN 2020078472W WO 2021179139 A1 WO2021179139 A1 WO 2021179139A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
resource
terminal device
handover
authorized resource
Prior art date
Application number
PCT/CN2020/078472
Other languages
English (en)
French (fr)
Inventor
李海涛
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20924811.1A priority Critical patent/EP4109965A4/en
Priority to CN202080098003.7A priority patent/CN115280841A/zh
Priority to PCT/CN2020/078472 priority patent/WO2021179139A1/zh
Publication of WO2021179139A1 publication Critical patent/WO2021179139A1/zh
Priority to US17/941,243 priority patent/US20230015847A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0079Transmission or use of information for re-establishing the radio link in case of hand-off failure or rejection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • H04W36/00725Random access channel [RACH]-less handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present invention relates to the field of communications, and in particular to a method for releasing uplink resources, terminal equipment, network equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • the target cell can reasonably configure the time domain position of the uplink resource in the handover command during the handover process, so that the terminal device can transmit the handover complete message when accessing the target cell.
  • the uplink resource in the handover command is small, and the main purpose is to allow the terminal device to report the handover complete message, which is not suitable for the uplink transmission of ordinary data. Therefore, how to avoid the waste of uplink transmission resources has become a problem to be solved.
  • embodiments of the present invention provide a method for releasing uplink resources, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • a method for releasing uplink resources including:
  • the terminal device sends a handover complete message through the uplink authorized resource, and if the preset condition is met, the terminal device releases the uplink authorized resource; wherein, the uplink authorized resource is configured in the handover command for Access the uplink resources of the target network equipment;
  • the preset condition includes at least one of the following:
  • the uplink timer expires, the first downlink channel that is scheduled for the newly transmitted uplink transmission resource is monitored, and the indication information for instructing to release the uplink authorized resource is received.
  • a method for releasing uplink resources including:
  • the network device receives the handover complete message sent by the terminal device through the uplink authorized resource in the first type of handover, and the network device recovers the uplink authorized resource released by the terminal device; wherein, the uplink authorized resource is in the handover command
  • the uplink resource configured by the terminal device for accessing the target network device.
  • a terminal device including:
  • the first communication unit sends a handover complete message through the uplink authorized resource in the first type of handover;
  • the first processing unit if the preset condition is met, release the uplink authorized resource; wherein, the uplink authorized resource is the uplink resource configured in the handover command for accessing the target network device;
  • the preset condition includes at least one of the following:
  • the uplink timer expires, the first downlink channel that is scheduled for the newly transmitted uplink transmission resource is monitored, and the indication information for instructing to release the uplink authorized resource is received.
  • a network device including:
  • the second communication unit receives the handover complete message sent by the terminal device through the uplink authorized resource in the first type of handover, and recovers the uplink authorized resource released by the terminal device; wherein, the uplink authorized resource is specified in the handover command.
  • the uplink resource configured by the terminal device for accessing the target network device.
  • a terminal device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the aforementioned method.
  • a network device including: a processor and a memory for storing computer programs that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the aforementioned method.
  • a chip including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the aforementioned method.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program that enables a computer to execute the steps of the aforementioned method.
  • a computer program product including computer program instructions, which cause a computer to execute the aforementioned method.
  • a computer program which causes a computer to execute the method as described above.
  • the terminal device after the terminal device sends the handover complete message, it can determine when to release the uplink authorized resources according to a preset condition. This avoids the problem of resource wastage caused by always occupying the uplink authorized resources configured to transmit the handover complete message.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flow chart 1 of a method for releasing uplink resources provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the second flow of a method for releasing uplink resources provided by an embodiment of the present application
  • Figure 4 is a schematic diagram of a handover process
  • FIG. 5 is a third schematic flowchart of a method for releasing uplink resources provided by an embodiment of the present application.
  • FIG. 6 Schematic diagram 1 of a scenario for releasing uplink resources provided by an embodiment of the present application
  • FIG. 7 is a fourth schematic flowchart of a method for releasing uplink resources provided by an embodiment of the present application.
  • Figure 8 Schematic diagram 2 of a scenario for releasing uplink resources provided by an embodiment of the present application
  • FIG. 9 is a schematic diagram of a processing flow for determining the start time of uplink authorized resources according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a processing scenario for determining the start time of uplink authorized resources according to an embodiment of the present application
  • FIG. 11 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the composition structure of a network device provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 14 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram 2 of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (or referred to as a communication terminal device or a terminal device).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with UEs located in the coverage area.
  • the network equipment 110 may be a network equipment (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a network equipment (NodeB, NB) in a WCDMA system, or an evolution in an LTE system Type network equipment (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB network equipment
  • Evolutional Node B, eNB or eNodeB LTE system Type network equipment
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, In-vehicle devices,
  • the communication system 100 further includes at least one UE 120 located within the coverage area of the network device 110.
  • UE as used herein includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another UE's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a UE set to communicate through a wireless interface may be referred to as a "wireless communication terminal device", a “wireless terminal device” or a "mobile terminal device”.
  • D2D communication may be performed between the UEs 120.
  • the downlink is called Semi-Persistent Scheduling (SPS), and the uplink is called Configured Grant (CG).
  • SPS Semi-Persistent Scheduling
  • CG Configured Grant
  • NR supports the following two types of uplink configuration authorized transmission:
  • the network RRC configures time domain resources, frequency domain resources, period of time domain resources, MCS, number of repetitions, frequency hopping, number of HARQ processes, etc. All transmission resources and transmission parameters. After receiving the RRC configuration, the terminal can immediately use the configured transmission parameters to perform PUSCH transmission on the configured time-frequency resources.
  • PUSCH transmission based on the second type of configuration grant adopts a two-step resource configuration method: first, the network RRC configures the period of time domain resources, the number of repetitions, the frequency hopping, the number of HARQ processes, etc. Transmission resources and transmission parameters; then the second type of PUSCH transmission based on configuration authorization is activated by the PDCCH scrambled using CS-RNTI, and other transmission resources and transmission parameters including time domain resources, frequency domain resources, MCS, etc. are configured at the same time .
  • the UE receives the RRC configuration parameters, it cannot immediately use the resources and parameters configured by the configuration parameters for PUSCH transmission, but must wait for the corresponding PDCCH to be activated and configure other resources and parameters before PUSCH transmission can be performed.
  • the network configures a limited number of HARQ process numbers for it, and the UE uses these HARQ process numbers in a polling manner to perform uplink on CG resources transmission.
  • the HARQ process ID of the CG resource at time t0 and the HARQ process of the CG resource at time t1 are both HARQ ID i
  • the MAC PDU1 is stored in HARQ ID i.
  • the configuration grant timer configuredGrantTimer of the per HARQ process is introduced.
  • the maintenance method of configuredGrantTimer is:
  • the UE If the UE performs uplink transmission on the resources scheduled by the PDCCH, and the HARQ process used for the uplink transmission can be used to configure authorized transmission, the UE starts or restarts the configured GrantTimer corresponding to the HARQ process.
  • the UE If the UE performs uplink transmission on the configured authorized resource, the UE starts or restarts the configuredGrantTimer corresponding to the HARQ process.
  • the UE If the UE receives the PDCCH indicating that the configured grant Type 2 is activated, the UE stops the configured GrantTimer that is running.
  • the MAC PDU stored in the HARQ process cannot be flushed.
  • the embodiment of the present invention provides a method for releasing uplink resources, as shown in FIG. 2, including:
  • Step 21 The terminal device sends a handover complete message through the uplink authorized resource in the first type of handover, and if the preset condition is met, the terminal device releases the uplink authorized resource; wherein, the uplink authorized resource is configured in the handover command The uplink resources used to access the target network equipment;
  • the preset condition includes at least one of the following:
  • the uplink timer expires, the first downlink channel that is scheduled for the newly transmitted uplink transmission resource is monitored, and the indication information for instructing to release the uplink authorized resource is received.
  • this embodiment also provides a method for releasing uplink resources, as shown in FIG. 3, which includes:
  • Step 31 The network device receives the handover completion message sent by the terminal device through the uplink authorized resource in the first type of handover, and the network device recovers the uplink authorized resource released by the terminal device; wherein, the uplink authorized resource is in handover The uplink resource configured for the terminal device to access the target network device in the command.
  • Non Terrestrial Network NTN, non-terrestrial communication network
  • NTN Non Terrestrial Network
  • the network equipment may be a base station (gNB or eNB, etc.) in a terrestrial communication network, or a satellite in an NTN.
  • the NTN uses satellite communication to provide communication services to ground users.
  • satellite communication has many unique advantages.
  • satellite communication is not restricted by the user area.
  • general terrestrial communication cannot cover the ocean, mountains, deserts and other areas where network equipment cannot be installed or because of the sparse population. Satellites can cover a larger ground, and satellites can orbit the earth, so theoretically every corner of the earth can be covered by satellite communications.
  • satellite communication has greater social value. Satellite communication can be covered at a lower cost in remote mountainous areas, poor and backward countries or regions, so that people in these areas can enjoy advanced voice communication and mobile Internet technology, which is conducive to narrowing the digital gap with developed areas and promoting The development of these areas.
  • the satellite communication distance is long, and the communication cost has not increased significantly with the increase of the communication distance; finally, the stability of satellite communication is high, and it is not restricted by natural disasters.
  • LEO Low-Earth Orbit
  • MEO Medium-Earth Orbit
  • GEO Global-Earth Orbit, geosynchronous orbit
  • HEO High Elliptical Orbit (highly elliptical orbit) satellites and so on.
  • the altitude range of low-orbit satellites is 500km-1500km, and the corresponding orbital period is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is generally less than 20ms.
  • the maximum satellite viewing time is 20 minutes.
  • the signal propagation distance is short, the link loss is small, and the requirement for the transmission power of the user terminal is not high.
  • GEO is a geosynchronous orbit satellite with an orbital height of 35786km and a rotation period of 24 hours around the earth.
  • the signal propagation delay of single-hop communication between users is generally 250ms.
  • satellites In order to ensure the coverage of satellites and increase the system capacity of the entire satellite communication system, satellites use multiple beams to cover the ground.
  • a satellite can form dozens or even hundreds of beams to cover the ground; a satellite beam can cover tens to hundreds of kilometers in diameter. Ground area.
  • the first type of handover described in this embodiment may be: Random Access Channel-less (RACH-less, Random Access Channel-less) handover.
  • RACH-less Random Access Channel-less
  • the solution provided in this embodiment is not limited to only being used for RACH-less handover, but is preferably more suitable for RACH-less handover.
  • the handling of the handover process for the NR system supporting connected terminal equipment can include: when the terminal equipment that is using the network service moves from one cell to another cell, or due to wireless transmission traffic load adjustment, activation operation maintenance, equipment failure, etc.
  • the system In order to ensure the continuity of communication and the quality of service, the system must transfer the communication link between the terminal equipment and the original cell to the new cell, that is, perform the handover process.
  • a corresponding switching process is described as an example. The entire switching process is divided into the following three stages, which can be seen in Figure 4, including:
  • Handover preparation stage as shown in the figure 0-5, the target network device and the source network device are processed according to the mobility control information provided by the access and mobility management function entity (AMF, Access and Mobility Management Function); the terminal device performs measurement For control and reporting, the source network device makes a switch decision, and then the source network device makes a switch request, management control, and switch request confirmation to the target network device.
  • the handover confirmation message contains the handover command generated by the target cell, and the source network device is not allowed to make any modification to the handover command generated by the target network device, and the handover command is directly forwarded to the terminal device.
  • Handover execution stage As shown in Figure 6-7, the terminal device immediately executes the handover process after receiving the handover command, which may include the radio access network (RAN, Radio Access Network) handover between the terminal device and the source network device , The terminal device disconnects the source cell and synchronizes with the target cell and establishes a connection (such as performing random access, sending an RRC handover complete message to the target base station, etc.); SN state transfer; it may also include active network device transmission user plane function entities ( UPF, User Plane Function) new data, and transfer the buffered data to the target network device.
  • RAN Radio Access Network
  • UPF User Plane Function
  • Handover completion stage As shown in Figure 8-12, after the RAN handover is completed, the terminal equipment transmits user data between the target network equipment, and the user data is transmitted between the target network equipment and the UPF; then the target network equipment Send a path switch request with AMF, the UPF performs the path switch, and then the AMF informs the target network device of the end of the path switch through the source network device, AMF sends the path switch request confirmation to the target network device, and then the target network device notifies the source network device to perform user data Release.
  • RACH-less HO Random Access Channel Handover
  • the target cell can determine that the TA from the terminal device to the source cell is the same as the TA to the target cell, or The TA from the UE to the target cell is 0), which can specifically include: the target cell (target network device) can configure RACH-skip information in the handover command sent by the source network device, that is, the handover process can be RACH-less HO (no random Access channel switching).
  • the RACH-skip information may include the uplink resources for the terminal device to access the target cell, for the terminal device to send a handover complete message. If the uplink resource is not configured in the handover command, the terminal device needs to monitor the PDCCH of the target cell, wait for the target cell to schedule uplink transmission, and use the scheduled uplink resource to transmit the handover complete message.
  • the uplink resource configuration (ul-Configinfo) may include the following content:
  • numberOfConfUL-Processes represents the number of HARQ processes available for the uplink resource
  • ul-SchedInterval represents the time interval between UL grants
  • ul-StartSubframe represents the number of UL grant start subframes
  • ul-Grant represents PUSCH resources.
  • the propagation delay between the terminal equipment and the network is small.
  • the target cell sends the handover command forwarded by the source cell to the terminal equipment correctly (that is, including X2).
  • the time delay, plus the time delay from receiving the handover command to forwarding the handover command in the source cell, plus the propagation delay of the Uu air interface of the source cell, is not long. According to this delay information, the target cell can reasonably configure the time domain position of the uplink resource in the handover command during the RACH-less handover for the UE to transmit the RRCReconfigurationComplete message (ie, handover complete message) when accessing the target cell.
  • the propagation delay between the terminal equipment and the satellite in NTN is longer.
  • the source cell side may be due to the possibility of forwarding the handover command.
  • RLC retransmission or HARQ retransmission, and the part of the air interface propagation delay that enables the UE to correctly receive the handover command has a wide range of variation. This brings great challenges to the target cell in setting the time domain position of the uplink resource in the RACH-less handover command. If the source cell side experiences multiple RLC retransmissions or multiple HARQ retransmissions before the terminal device correctly receives the handover command, the time for the terminal device to access the target cell will be delayed.
  • the size of the uplink resource in the handover command is small, and the main purpose is to allow the terminal device to report the handover completion message, which is not suitable for the uplink transmission of ordinary data. After the handover complete message is reported successfully, the network needs to reclaim the resource (that is, the terminal device needs to release the resource) for subsequent scheduling and transmission of other data, otherwise it will cause a waste of resources.
  • the terminal device After the uplink authorized resource transmits the handover complete message, the terminal device releases the uplink authorized resource after determining that the handover complete message is successfully transmitted.
  • the terminal device determines that the handover complete message is successfully transmitted according to a preset condition, and then determines to release the uplink authorized resources; where the preset condition may include: the uplink timer expires, and/or, it monitors the scheduling for new transmission The first downlink channel of the uplink transmission resource.
  • Step 51 When the terminal device sends the handover complete message, it starts the uplink timer and monitors the first downlink channel and the second downlink channel.
  • the handover completion command is transmitted through an uplink grant resource
  • the uplink grant (UL grant) resource is configured for the terminal device through a handover command.
  • the first downlink channel is: a physical downlink control channel (PDCCH, Physical Downlink Control Channel) scrambled by a Cell-Radio Network Temporary Identifier (C-RNTI, Cell-Radio Network Temporary Identifier);
  • the second downlink channel is: Configure the scheduled radio network temporary identifier (CS-RNTI, Configured-Radio Network Temporary Identifier) scrambled PDCCH.
  • PDCCH Physical Downlink Control Channel
  • C-RNTI Cell-Radio Network Temporary Identifier
  • CS-RNTI Configured-Radio Network Temporary Identifier
  • the terminal device starts the uplink timer, and starts to monitor the PDCCH scrambled by the CS-RNTI and the C-RNTI.
  • the network device sends a first downlink channel for scheduling uplink transmission resources for newly transmitted and/or a second downlink channel for scheduling uplink transmission resources for retransmission.
  • the network device needs the terminal device to perform retransmission, it can schedule the uplink transmission resource through the second downlink channel and instruct the retransmission; if the handover complete message transmitted by the terminal device has been received, it can be scheduled through the first downlink channel Uplink transmission resources and indicate new transmission.
  • Step 52 In the case of monitoring the second downlink channel scheduling the uplink transmission resource for retransmission, the terminal device performs retransmission according to the uplink resource scheduled by the second downlink channel, and restarts the uplink timer.
  • the terminal device receives the PDCCH scrambled by the CS-RNTI to schedule uplink transmission and instructs to schedule the retransmission, it uses the scheduled uplink resource to perform the retransmission and restarts the uplink timer.
  • step 52 After step 52 is completed, there can be two kinds of processing:
  • step 52 the first downlink channel has not been monitored, then the following step 54 is directly executed;
  • step 52 In another processing, after step 52 is completed, the first downlink channel is monitored again, then the following step 53 is executed.
  • Step 53 In the case that the first downlink channel scheduled for the newly transmitted uplink transmission resource is monitored, the terminal device determines that the handover complete message is correctly received by the network device, and releases the uplink authorized resource.
  • the terminal device receives the C-RNTI scrambled PDCCH scheduled uplink transmission (for example, the new data indicator (NDI) field can be 1), it is considered that the handover complete message is correctly received by the network, and the configuration is released at this time RACH-skip resources (that is, uplink authorization resources).
  • NDI new data indicator
  • step 53 can be performed after step 51, or alternatively, it can be performed after step 52.
  • step will be executed directly after step 51. 53;
  • the terminal device monitors the second downlink channel that schedules the uplink transmission resources for retransmission, completes the retransmission of data and restarts the timer, and then monitors the scheduling of the uplink transmission resources for the new transmission.
  • step 52 is executed after step 51, and then step 53 is executed.
  • step 53 is executed again, as long as the process is executed to step 53, that is, the preset condition is met: the uplink transmission scheduled for new transmission is monitored.
  • the first downlink channel of the resource At this time, the terminal device can consider that the handover complete message is correctly received by the network device. Therefore, the terminal device can release the uplink authorized resource and end the processing.
  • it may also include: when the uplink authorized resource is released, if the uplink timer is running, the terminal device stops the uplink timer.
  • step 53 if the terminal device determines that the handover complete message is correctly received by the network device and releases the uplink authorized resource, there is no need to maintain the timing of the uplink timer. Therefore, the above is completed. After step 53, if the upstream timer is still running, stop the upstream timer.
  • Step 54 When the uplink timer expires, the terminal device determines that the handover complete message is correctly received by the network device, and releases the uplink authorized resource.
  • the terminal device considers that the handover complete message is correctly received by the network, and the terminal device releases the configured RACH-skip resource (that is, the uplink authorized resource) at this time.
  • step 54 can be performed after step 51 or step 52, respectively:
  • step 51 if step 51 has been performed, that is, after the terminal device has not received the first downlink channel nor the second downlink channel after sending the handover complete message on the uplink authorized resource, then it is determined whether the uplink timer has expired, In the case where the uplink timer expires, that is, the preset condition is satisfied, at this time, it can be considered that the handover complete message is correctly received by the network device, and the uplink authorized resources are released directly.
  • step 51 that is, after the terminal device sends the handover complete message on the uplink authorized resource, it does not receive the first downlink channel but receives the second downlink channel, that is, step 52 can be performed.
  • step 54 is executed to determine whether the uplink timer has expired. When the uplink timer expires, that is, the preset condition is met, it can be considered that the handover complete message has been received by the network. The device receives it correctly, and then directly releases the uplink authorized resources.
  • the terminal device may receive the second downlink channel multiple times, that is, before the restarted uplink timer expires (or during the operation of the restarted uplink timer), it may listen again When it comes to the second downlink channel where the uplink transmission resource for retransmission is scheduled, step 52 is executed again, retransmission is performed based on the scheduled uplink transmission resource and the uplink timer is restarted, and so on.
  • the solution provided in this example can be understood as that after the UL grant transmits the handover complete message, the terminal device releases the UL grant resource after determining that the message is successfully transmitted.
  • the condition for determining the success of the transmission may be that the timer expires or until the uplink transmission (new transmission) scheduled by the PDCCH scrambled by the C-RNTI is received.
  • the terminal device transmits the handover completion message on the uplink authorized resource, which is the Hybrid Automatic Repeat reQuest (Hybrid Automatic Repeat reQuest, HARQ) of the Configured Grant (CG) in the figure.
  • Hybrid Automatic Repeat reQuest Hybrid Automatic Repeat reQuest, HARQ
  • CG Configured Grant
  • the uplink timer is started; if the second downlink channel is monitored during the operation of the uplink timer, that is, the CS-RNTI is received.
  • the uplink timer is restarted; while the restarted uplink timer is running, the first downlink channel is monitored, that is, the terminal device receives the C-RNTI scrambled PDCCH for scheduling For uplink transmission (new transmission), the uplink timer is stopped and the uplink grant (UL Grant) resources are released.
  • the handover complete message can be transmitted for the uplink authorized resource configured in the handover command. If a new schedule from the network device is received or the uplink timer expires, the terminal device can consider that the previously transmitted handover complete message is correct by the network Receive and release the pre-configured uplink authorized resources. The released pre-configured uplink authorized resources can be reclaimed by the network device for scheduling other data transmission or re-configured with pre-configured uplink resources of different sizes, thereby avoiding resource waste.
  • the preset condition adopted in this example is: receiving indication information for instructing the release of uplink authorized resources. That is, in this example, the terminal device needs to receive the displayed indication information sent by the network device, and the indication information is used to instruct the terminal device to release the uplink authorized resource pre-configured in the handover command.
  • Step 61 When sending a handover complete message, the terminal device starts the uplink timer, and monitors the first downlink channel and the second downlink channel.
  • Step 62 In the case of monitoring the second downlink channel scheduling the uplink transmission resource for retransmission, the terminal device performs retransmission according to the uplink resource scheduled by the second downlink channel, and restarts the uplink timer.
  • the above two steps can be understood as the terminal device starts the uplink timer after the UL grant transmits the handover complete message, and starts to monitor the CS-RNTI and the PDCCH scrambled by the C-RNTI; if the terminal device receives the CS-RNTI scrambled The PDCCH schedules uplink transmission and instructs to schedule retransmission, then the scheduled uplink resource is used for retransmission, and the uplink timer is restarted.
  • step 61 to step 62 is the same as step 51 to step 52 of the foregoing example, and will not be repeated.
  • Step 61 is the same as the aforementioned step 51 in that, after step 61 is completed, any one of step 62, step 63, and step 64 can be performed according to the actual received information.
  • Step 62 is the same as step 52 in that after step 62 is completed, there can be two types of processing:
  • step 62 After step 62 is completed, the first downlink channel has not been monitored, then the following step 64 is directly executed;
  • step 62 In another processing, after step 62 is completed, the first downlink channel is monitored again, then the following step 63 is executed.
  • step 62 In another processing, after step 62 is completed, the first downlink channel has not been monitored, but the second downlink channel is monitored again, then step 62 can be performed again.
  • Step 63 When the first downlink channel scheduled for the newly transmitted uplink transmission resource is monitored, the terminal device transmits new data according to the uplink resource scheduled by the first downlink channel, and restarts the uplink timer.
  • the terminal device receives the CS-RNTI scrambled PDCCH to schedule uplink transmission and instructs to schedule retransmission, it will use the scheduled uplink resource to perform retransmission and restart the uplink timer.
  • This step is different from step 53 of Example 1 in that when the first downlink channel scheduled for the newly transmitted uplink transmission resource is received in this step, it is not considered as a handover complete message that has been correctly received by the network device. Instead, restart the uplink timer and continue to wait, and step 64 is executed.
  • Step 64 If the terminal device receives the indication information instructing to release the uplink authorized resource, it releases the uplink authorized resource.
  • the terminal device if the terminal device receives the indication information displayed on the network side and instructs the terminal device to release the uplink authorized resources pre-configured in the handover command, the terminal device releases the uplink resources pre-configured in the handover command according to the network instruction.
  • the terminal device can determine that the preset condition is satisfied, and determine to release the uplink authorized resource.
  • the indication information is carried by at least one of the following information: medium access control MAC control element CE, radio resource control RRC signaling, and physical downlink control channel PDCCH.
  • the indication information is carried by RRC signaling, it can be an RRC reconfiguration message;
  • the indication information is carried by MAC signaling, it can be a new MAC CE format
  • the indication information can be indicated by a bit in the DCI, and the value of this bit can be predefined. For example, when the value is the first value, it means to release the uplink authorized resources, and when the second value is not to indicate the release For uplink authorized resources, the first value can be 1, and the second value can be 0. Of course, the reverse is also possible, and the list is not exhaustive here.
  • the terminal equipment may continue to determine to re-execute one of the foregoing steps 62, 63, or 64 according to the information received subsequently. For example, if the terminal device monitors the first downlink channel, it can execute step 63, if it monitors the second downlink channel, it can execute step 62, if it monitors the indication information again, execute step 64, and so on.
  • the terminal device stops the uplink timer. That is, after performing step 64, if the upstream timer is still running, stop the upstream timer.
  • the terminal device transmits the handover completion message on the uplink authorized resource, which is the hybrid automatic repeat request (Hybrid Automatic Repeat reQuest, HARQ) of the configured grant (CG, Configured Grant) in the figure.
  • the hybrid automatic repeat request Hybrid Automatic Repeat reQuest, HARQ
  • CG Configured Grant
  • the uplink timer is started; if the second downlink channel is monitored during the operation of the uplink timer, that is, the CS-RNTI is received.
  • the uplink timer is restarted; while the restarted uplink timer is running, the network release resource indication is received, the uplink timer is stopped, and the uplink grant (UL Grant) resource is released.
  • Example 1 The solution provided in this example is different from Example 1 in that this example introduces a displayed release instruction, that is, the network only instructs the terminal device to release resources when the handover complete message is correctly received, which has better reliability.
  • the solution provided in this embodiment introduces starting SFN information in the uplink resource configuration in the handover command, and related information about the uplink timer for CS-RNTI and UL grant transmission .
  • starting SFN information in the uplink resource configuration in the handover command
  • related information about the uplink timer for CS-RNTI and UL grant transmission .
  • Step 71 The terminal device receives a handover command.
  • the network device when the network device is the target network device of the terminal device for this handover process, the network device generates a handover command, and forwards the handover command to the terminal device through the source network device;
  • the network device In the case that the network device is the source network device in the current switching process of the terminal device, the network device receives the switching command sent by the target network device, and sends the switching command to the terminal device.
  • the handover command includes: random access channel RACH skip skip information, and the RACH skip skip information is used to indicate the uplink authorized resource.
  • the RACH skip Skip information includes at least one of the following:
  • the duration parameter of the uplink timer is the duration parameter of the uplink timer
  • the third parameter representing the number of HARQ processes available for the uplink authorized resource can be represented as numberOfConfUL-Processes;
  • the time interval between adjacent uplink authorized resources can be expressed as ul-SchedInterval
  • the time-frequency resource position of the uplink grant resource may be the time-frequency position of the PUSCH resource.
  • Step 72 The terminal device performs downlink synchronization with the target network device, and determines the start time of the uplink authorized resource based on the first parameter and the second parameter.
  • the terminal device after receiving the handover command, performs downlink synchronization of the target cell, and determines the start time of the UL grant (uplink grant resource) through ul-StartRadioFrame and ul-StartSubframe.
  • the method of specifically determining the location of the uplink authorized resource used to transmit the handover complete message in this embodiment may include:
  • the handover complete message is transmitted on the first available uplink authorized resource
  • the first available uplink authorized resource after the time when the downlink synchronization is completed transmits the handover complete message.
  • the upper part of Figure 10 indicates that if a handover command is received, the time to complete the downlink synchronization with the target cell is later than the start time of the UL grant (that is, the uplink grant resource is determined according to the start frame and subframe information
  • the terminal device uses the first available UL grant (uplink grant) resource after downlink synchronization to transmit the handover complete message; in addition, when the handover complete message is sent, the uplink timer is also started.
  • the upper part of Figure 10 shows: if the handover command is received, the time to complete the downlink synchronization with the target cell is no later than the start time of the UL grant (that is, the start position of the uplink authorized resource is determined according to the start frame and subframe information) , The terminal device uses the first available UL grant resource in the RACH-skip information to transmit the handover complete message. In addition, when the handover complete message is sent, the uplink timer is also started.
  • step 73 when the terminal device sends a handover complete message, it starts the uplink timer, and monitors the first downlink channel and the second downlink channel.
  • the terminal device After the terminal device transmits the handover completion message on the UL grant resource, it starts the uplink transmission timer and starts to monitor the uplink retransmission and C-RNTI increase scheduled by the PDCCH (that is, the second downlink channel) scrambled by the CS-RNTI. Uplink new transmission scheduled by the scrambled PDCCH (that is, the aforementioned first downlink channel). Then, the solution of Example 1 or Example 2 above can be executed, and the description will not be repeated.
  • the introduction of the starting frame information can be combined with the starting subframe to locate the starting time domain of the uplink authorized resource. Location, so that the terminal equipment can find the first available uplink resource.
  • the terminal device after the terminal device sends the handover complete message, it can determine when to release the uplink authorized resources according to a preset condition. This avoids the problem of resource wastage caused by always occupying the uplink authorized resources configured to transmit the handover complete message.
  • the embodiment of the present invention provides a terminal device, as shown in FIG. 11, including:
  • the first communication unit 81 sends a handover complete message through the uplink authorized resource in the first type of handover;
  • the first processing unit 82 releases the uplink authorized resource if the preset condition is met; wherein, the uplink authorized resource is the uplink resource configured in the handover command for accessing the target network device;
  • the preset condition includes at least one of the following:
  • the uplink timer expires, the first downlink channel that is scheduled for the newly transmitted uplink transmission resource is monitored, and the indication information for instructing to release the uplink authorized resource is received.
  • This embodiment also provides a network device, as shown in FIG. 12, including:
  • the second communication unit 91 receives the handover complete message sent by the terminal device through the uplink authorized resource in the first type of handover, and recovers the uplink authorized resource released by the terminal device; wherein, the uplink authorized resource is in the handover command.
  • the uplink resource configured by the terminal device for accessing the target network device.
  • Non-Terrestrial Network non-terrestrial communication network
  • NTN Non-Terrestrial Network
  • the network equipment may be a base station (gNB or eNB, etc.) in a terrestrial communication network, or a satellite in an NTN.
  • the terminal device After the uplink authorized resource transmits the handover complete message, the terminal device releases the uplink authorized resource after determining that the handover complete message is successfully transmitted.
  • the terminal device determines that the handover complete message is successfully transmitted according to a preset condition, and then determines to release the uplink authorized resources; where the preset condition may include: the uplink timer expires, and/or, it monitors the scheduling for new transmission The first downlink channel of the uplink transmission resource.
  • the first processing unit 82 starts the uplink timer and monitors the first downlink channel and the second downlink channel.
  • the handover completion command is transmitted through an uplink grant resource
  • the uplink grant (UL grant) resource is configured for the terminal device through a handover command.
  • the first downlink channel is: a physical downlink control channel (PDCCH, Physical Downlink Control Channel) scrambled by a Cell-Radio Network Temporary Identifier (C-RNTI, Cell-Radio Network Temporary Identifier);
  • the second downlink channel is: Configure the scheduled radio network temporary identifier (CS-RNTI, Configured-Radio Network Temporary Identifier) scrambled PDCCH.
  • PDCCH Physical Downlink Control Channel
  • C-RNTI Cell-Radio Network Temporary Identifier
  • CS-RNTI Configured-Radio Network Temporary Identifier
  • the first communication unit 81 of the terminal device performs retransmission according to the uplink resource scheduled by the second downlink channel when it monitors the second downlink channel that schedules the uplink transmission resource for retransmission;
  • the first processing unit 82 restarts the uplink timer.
  • the first processing unit 82 of the terminal device when the first communication unit 81 monitors the first downlink channel that is scheduled for the newly transmitted uplink transmission resource, determines that the handover complete message is correctly received by the network device, and releases all data.
  • the uplink authorized resources when the first communication unit 81 monitors the first downlink channel that is scheduled for the newly transmitted uplink transmission resource, determines that the handover complete message is correctly received by the network device, and releases all data.
  • the uplink authorized resources when the first communication unit 81 monitors the first downlink channel that is scheduled for the newly transmitted uplink transmission resource, determines that the handover complete message is correctly received by the network device, and releases all data.
  • the uplink authorized resources when the first communication unit 81 monitors the first downlink channel that is scheduled for the newly transmitted uplink transmission resource, determines that the handover complete message is correctly received by the network device, and releases all data.
  • the first processing unit 82 when the uplink timer expires, determines that the handover complete message is correctly received by the network device, and releases the uplink authorized resource. Wherein, releasing the uplink authorized resource may control the first communication unit to release the uplink authorized resource for the first processing unit.
  • the first processing unit releases the uplink authorized resource, if the uplink timer is running, stop the uplink timer.
  • the handover complete message can be transmitted for the uplink authorized resource configured in the handover command. If a new schedule from the network device is received or the uplink timer expires, the terminal device can consider that the previously transmitted handover complete message is correct by the network Receive and release the pre-configured uplink authorized resources. The released pre-configured uplink authorized resources can be reclaimed by the network device for scheduling other data transmission or re-configured with pre-configured uplink resources of different sizes, thereby avoiding resource waste.
  • the preset condition adopted in this example is: receiving indication information for instructing the release of uplink authorized resources. That is, in this example, the terminal device needs to receive the displayed indication information sent by the network device, and the indication information is used to instruct the terminal device to release the uplink authorized resource pre-configured in the handover command.
  • the difference from Example 1 may include: the first communication unit, in the case of monitoring the first downlink channel that is scheduled for the uplink transmission resource for the new transmission, transmits the new uplink resource according to the uplink resource scheduled for the first downlink channel. data;
  • the first processing unit restarts the uplink timer.
  • the first processing unit 82 releases the uplink authorized resource if the first communication unit receives the instruction information instructing to release the uplink authorized resource.
  • the indication information is carried by at least one of the following information: medium access control MAC control element CE, radio resource control RRC signaling, and physical downlink control channel PDCCH.
  • the uplink timer is stopped.
  • Example 1 The solution provided in this example is different from Example 1 in that this example introduces a displayed release instruction, that is, the network only instructs the terminal device to release resources when the handover complete message is correctly received, which has better reliability.
  • the solution provided in this embodiment introduces starting SFN information in the uplink resource configuration in the handover command, and related information about the uplink timer for CS-RNTI and UL grant transmission .
  • the first communication unit 81 of the terminal device receives a handover command.
  • the network device when the network device is the target network device of the terminal device for this handover process, the network device generates a switching command, and the second communication unit 91 of the network device forwards the switching command to the terminal device through the source network device;
  • the second communication unit 91 of the network device receives the switching command sent by the target network device, and sends the switching command to the terminal device.
  • the handover command includes: random access channel RACH skip skip information, and the RACH skip skip information is used to indicate the uplink authorized resource.
  • the RACH skip Skip information includes at least one of the following:
  • the duration parameter of the uplink timer is the duration parameter of the uplink timer
  • the third parameter representing the number of HARQ processes available for the uplink authorized resource can be represented as numberOfConfUL-Processes;
  • the time interval between adjacent uplink authorized resources can be expressed as ul-SchedInterval
  • the time-frequency resource position of the uplink grant resource may be the time-frequency position of the PUSCH resource.
  • the first processing unit of the terminal device performs downlink synchronization with the target network device, and determines the start time of the uplink authorized resource based on the first parameter and the second parameter.
  • the method of specifically determining the location of the uplink authorized resource used to transmit the handover complete message in this embodiment may include:
  • the first processing unit if the time when the downlink synchronization is completed is not later than the start time of the uplink authorized resource, control the first communication unit to transmit a handover complete message on the first available uplink authorized resource;
  • the first communication unit is controlled to transmit the handover complete message on the first available uplink authorized resource after the time when the downlink synchronization is completed.
  • the terminal device after the terminal device sends the handover complete message, it can determine when to release the uplink authorized resources according to a preset condition. This avoids the problem of resource wastage caused by always occupying the uplink authorized resources configured to transmit the handover complete message.
  • FIG. 13 is a schematic structural diagram of a communication device 1400 according to an embodiment of the present invention.
  • the communication device in this embodiment may be specifically a terminal device or a network device in the foregoing embodiment.
  • the communication device 1400 shown in FIG. 13 includes a processor 1410, and the processor 1410 can call and run a computer program from a memory to implement the method in the embodiment of the present invention.
  • the communication device 1400 may further include a memory 1420.
  • the processor 1410 can call and run a computer program from the memory 1420 to implement the method in the embodiment of the present invention.
  • the memory 1420 may be a separate device independent of the processor 1410, or may be integrated in the processor 1410.
  • the communication device 1400 may further include a transceiver 1430, and the processor 1410 may control the transceiver 1430 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1430 may include a transmitter and a receiver.
  • the transceiver 1430 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1400 may specifically be a corresponding process implemented by a terminal device or a network device in the embodiment of the present invention, and for the sake of brevity, details are not described herein again.
  • Fig. 14 is a schematic structural diagram of a chip according to an embodiment of the present invention.
  • the chip 1500 shown in FIG. 14 includes a processor 1510, and the processor 1510 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip 1500 may further include a memory 1520.
  • the processor 1510 can call and run a computer program from the memory 1520 to implement the method in the embodiment of the present invention.
  • the memory 1520 may be a separate device independent of the processor 1510, or may be integrated in the processor 1510.
  • the chip 1500 may further include an input interface 1530.
  • the processor 1510 can control the input interface 1530 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1500 may further include an output interface 1540.
  • the processor 1510 can control the output interface 1540 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the corresponding process implemented by the terminal device or the network device in the embodiment of the present invention.
  • the chip can be applied to the corresponding process implemented by the terminal device or the network device in the embodiment of the present invention.
  • the terminal device or the network device for the sake of brevity, it will not be repeated here.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory. It should be noted that the memories of the systems and methods described herein are intended to include, but are not limited to, these and any other suitable types of memories.
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG. 15 is a schematic block diagram of a communication system 1600 provided by an embodiment of the present application. As shown in FIG. 15, the communication system 1600 includes a network device 1610 and a terminal device 1620.
  • the network device 1610 can be used to implement the corresponding functions implemented by the communication device in the above method, and the terminal device 1620 can be used to implement the corresponding functions implemented by the terminal in the above method. For brevity, details are not described herein again.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or satellite or terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or satellite or terminal device in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention, for It's concise, so I won't repeat it here.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network device or satellite or terminal device in the embodiment of the present invention.
  • the computer program runs on the computer, the computer can execute the network device implementation of each method in the embodiment of the present invention. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种释放上行资源的方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:终端设备在第一类切换中通过上行授权资源发送切换完成消息,若满足预设条件,则所述终端设备释放所述上行授权资源;其中,所述上行授权资源为切换命令中配置的用于接入目标网络设备的上行资源;其中,所述预设条件包括以下至少之一:上行定时器超时、监听到调度用于新传的上行传输资源的第一下行信道、接收到用于指示释放上行授权资源的指示信息。

Description

一种释放上行资源的方法、终端设备、网络设备 技术领域
本发明涉及通信领域,尤其涉及一种释放上行资源的方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在相关技术中,目标小区可以在切换过程中,合理的配置切换命令中的上行资源的时域位置,供终端设备在接入目标小区时传输切换完成消息。切换命令中的上行资源较小,主要目的是为了让终端设备上报切换完成消息,而不适用于普通数据的上行传输,因此如何避免上行传输资源的浪费就成为需要解决的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种释放上行资源的方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种释放上行资源的方法,包括:
终端设备在第一类切换中通过上行授权资源发送切换完成消息,若满足预设条件,则所述终端设备释放所述上行授权资源;其中,所述上行授权资源为切换命令中配置的用于接入目标网络设备的上行资源;
其中,所述预设条件包括以下至少之一:
上行定时器超时、监听到调度用于新传的上行传输资源的第一下行信道、接收到用于指示释放上行授权资源的指示信息。
第二方面,提供了一种释放上行资源的方法,包括:
网络设备接收到终端设备在第一类切换中通过上行授权资源发送的切换完成消息,所述网络设备收回所述终端设备释放的上行授权资源;其中,所述上行授权资源为在切换命令中为所述终端设备配置的用于接入目标网络设备的上行资源。
第三方面,提供了一种终端设备,包括:
第一通信单元,在第一类切换中通过上行授权资源发送切换完成消息;
第一处理单元,若满足预设条件,则释放所述上行授权资源;其中,所述上行授权资源为切换命令中配置的用于接入目标网络设备的上行资源;
其中,所述预设条件包括以下至少之一:
上行定时器超时、监听到调度用于新传的上行传输资源的第一下行信道、接收到用于指示释放上行授权资源的指示信息。
第四方面,提供了一种网络设备,包括:
第二通信单元,接收到终端设备在第一类切换中通过上行授权资源发送的切换完成消息,收回所述终端设备释放的上行授权资源;其中,所述上行授权资源为在切换命令中为所述终端设备配置的用于接入目标网络设备的上行资源。
第五方面,提供了一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如前所述方法的步骤。
第六方面,提供了一种网络设备,包括:处理器和用于存储能够在处理器上运行的 计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如前所述方法的步骤。
第七方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如前所述的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如前所述方法的步骤。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如前所述的方法。
第十方面,提供了一种计算机程序,所述计算机程序使得计算机执行如前所述的方法。
通过采用本实施例提供的方案,就能够在第一类切换处理中,终端设备发送切换完成消息之后,根据预设条件来确定何时释放上行授权资源。从而避免配置用于传输切换完成消息的上行授权资源一直被占用,而带来的资源浪费的问题。
附图说明
图1是本申请实施例提供的一种通信***架构的示意性图一;
图2是本申请实施例提供的一种释放上行资源的方法流程示意图一;
图3是本申请实施例提供的一种释放上行资源的方法流程示意图二;
图4是切换流程示意性图;
图5是本申请实施例提供的一种释放上行资源的方法流程示意图三;
图6本申请实施例提供的一种释放上行资源的场景示意图一
图7是本申请实施例提供的一种释放上行资源的方法流程示意图四;
图8本申请实施例提供的一种释放上行资源的场景示意图二
图9是本申请实施例提供的一种确定上行授权资源起始时间的处理流程示意图;
图10本申请实施例提供的一种确定上行授权资源起始时间的处理场景示意图;
图11是本申请实施例提供的一种终端设备组成结构示意图;
图12是本申请实施例提供的一种网络设备组成结构示意图;
图13为本发明实施例提供的一种通信设备组成结构示意图;
图14是本申请实施例提供的一种芯片的示意性框图;
图15是本申请实施例提供的一种通信***架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信***,例如:全球移动通讯(Global System of Mobile communication,GSM)***、码分多址(Code Division Multiple Access,CDMA)***、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)***、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)***、LTE频分双工(Frequency Division Duplex,FDD)***、LTE时分双工(Time Division Duplex,TDD)、通用移动通信***(Universal Mobile  Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信***或5G***等。
示例性的,本申请实施例应用的通信***100可以如图1所示。该通信***100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端设备、终端设备)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM***或CDMA***中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA***中的网络设备(NodeB,NB),还可以是LTE***中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信***100还包括位于网络设备110覆盖范围内的至少一个UE120。作为在此使用的“UE”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一UE的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的UE可以被称为“无线通信终端设备”、“无线终端设备”或“移动终端设备”。
可选地,UE120之间可以进行终端设备直连(Device to Device,D2D)通信。
为了更好地服务于周期性的业务,引入了预配置的资源的概念,下行称为半持续调度(SPS,Semi-Persistent Scheduling),上行称为配置授权(CG,Configured Grant)。
NR支持以下两类上行配置授权的传输:
基于第一类配置授权(configured grant Type 1)的PUSCH传输:由网络RRC配置包括时域资源,频域资源,时域资源的周期,MCS,重复次数,跳频,HARQ进程数等在内的全部传输资源和传输参数。终端接收到该RRC配置后,可立即使用所配置的传输参数在配置的时频资源上进行PUSCH传输。
基于第二类配置授权(configured grant Type 2)的PUSCH传输:采用两步资源配置的方式:首先,由网络RRC配置包括时域资源的周期,重复次数,跳频,HARQ进程数等在内的传输资源和传输参数;然后由使用CS-RNTI加扰的PDCCH激活第二类基于配置授权的PUSCH传输,并同时配置包括时域资源,频域资源,MCS等在内的其他传输资源和传输参数。UE在接收到RRC配置参数时,不能立即使用该配参数配置的资源和参数进行PUSCH传输,而必须等接收到相应的PDCCH激活并配置其他资源和参数后,才能进行PUSCH传输。
由于对UE来说最大HARQ进程个数为16,对每个CG配置来说,网络为其配置有限个数的HARQ进程号,UE采用轮询的方式使用这些HARQ进程号在CG资源上进行上行传输。假设t0时刻的CG资源的HARQ进程号与t1时刻的CG资源的HARQ进程都为HARQ ID i,当t0时刻UE组包MAC PDU1后,将MAC PDU1存在HARQ ID i中,到t1时刻,由于与t0时刻使用的HARQ进程相同,MAC PDU1将被flush,即使此时MAC PDU1还没有正确传输。因此,引入了per HARQ进程的配置授权定时器configuredGrantTimer。configuredGrantTimer的维护方式为:
如果UE在PDCCH调度的资源上进行上行传输,并且该上行传输使用的HARQ进程可用于配置授权的传输,则UE启动或重启该HARQ进程对应的configuredGrantTimer。
如果UE在配置授权资源上进行上行传输,则UE启动或重启该HARQ进程对应的configuredGrantTimer。
如果UE收到PDCCH指示configured grant Type 2激活,则UE停止正在运行的configuredGrantTimer。
在某个HARQ进程对应的configuredGrantTimer超时前,该HARQ进程中保存的MAC PDU不能被flush。
应理解,本文中术语“***”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供一种释放上行资源的方法,如图2所示,包括:
步骤21:终端设备在第一类切换中通过上行授权资源发送切换完成消息,若满足预设条件,则所述终端设备释放所述上行授权资源;其中,所述上行授权资源为切换命令中配置的用于接入目标网络设备的上行资源;
其中,所述预设条件包括以下至少之一:
上行定时器超时、监听到调度用于新传的上行传输资源的第一下行信道、接收到用于指示释放上行授权资源的指示信息。
在网络设备的处理中,本实施例还提供一种释放上行资源的方法,如图3所示,包括:
步骤31:网络设备接收到终端设备在第一类切换中通过上行授权资源发送的切换完成消息,所述网络设备收回所述终端设备释放的上行授权资源;其中,所述上行授权资源为在切换命令中为所述终端设备配置的用于接入目标网络设备的上行资源。
本申请提供的实施例,可以应用于Non Terrestrial Network(NTN,非地面通信网络)中。当然并不限定于仅能应用于NTN场景中,在其他通信场景(比如NR、LTE等)中也可以应用本实施例的方案。相应的,所述网络设备可以为地面通信网络中的基站(gNB或eNB等等),还可以为NTN中的卫星。
其中,所述NTN采用卫星通信的方式向地面用户提供通信服务。相比地面蜂窝网通信,卫星通信具有很多独特的优点。首先,卫星通信不受用户地域的限制,例如一般的陆地通信不能覆盖海洋、高山、沙漠等无法搭设网络设备或由于人口稀少而不做通信覆盖的区域,而对于卫星通信来说,由于一颗卫星即可以覆盖较大的地面,加之卫星可以围绕地球做轨道运动,因此理论上地球上每一个角落都可以被卫星通信覆盖。其次,卫星通信有较大的社会价值。卫星通信在边远山区、贫穷落后的国家或地区都可以以较低的成本覆盖到,从而使这些地区的人们享受到先进的语音通信和移动互联网技术,有利于缩小与发达地区的数字鸿沟,促进这些地区的发展。再次,卫星通信距离远,且通信距离增大通讯的成本没有明显增加;最后,卫星通信的稳定性高,不受自然灾害的限制。
通信卫星按照轨道高度的不同分为LEO(Low-Earth Orbit,低地球轨道)卫星、MEO(Medium-Earth Orbit,中地球轨道)卫星、GEO(Geostationary Earth Orbit,地球同步轨道)卫星、HEO(High Elliptical Orbit,高椭圆轨道)卫星等等。其中,
LEO,低轨道卫星高度范围为500km~1500km,相应轨道周期约为1.5小时~2小时。用户间单跳通信的信号传播延迟一般小于20ms。最大卫星可视时间20分钟。信号传播距离短,链路损耗少,对用户终端的发射功率要求不高。
GEO,地球同步轨道卫星,轨道高度为35786km,围绕地球旋转周期为24小时。用户间单跳通信的信号传播延迟一般为250ms。
为了保证卫星的覆盖以及提升整个卫星通信***的***容量,卫星采用多波束覆盖 地面,一颗卫星可以形成几十甚至数百个波束来覆盖地面;一个卫星波束可以覆盖直径几十至上百公里的地面区域。
本实施例所述第一类切换可以为:无随机接入信道(RACH-less,Random Access Channel-less)切换。当然,本实施例提供的方案,并不限定于仅能用于RACH-less切换,只是优选的更加适用于RACH-less切换。
下面针对不同类型的切换进行相关说明:
针对NR***支持连接态终端设备的切换过程的处理可以包括:当正在使用网络服务的终端设备从一个小区移动到另一个小区,或由于无线传输业务负荷量调整、激活操作维护、设备故障等原因,为了保证通信的连续性和服务的质量,***要将该终端设备与原小区的通信链路转移到新的小区上,即执行切换过程。以Xn接口切换过程为例所对应的一种切换处理为例进行说明,整个切换过程分为以下三个阶段,可以参见图4所示,包括:
切换准备阶段:如图中所示的0-5,目标网络设备以及源网络设备根据访问和移动性管理功能实体(AMF,Access and Mobility Management Function)提供的移动控制信息进行处理;终端设备进行测量控制及上报,源网络设备进行切换决策,然后由源网络设备向目标网络设备进行切换请求、管理控制以及切换请求确认。其中,在切换确认消息中包含目标小区生成的切换命令,并且不允许源网络设备对目标网络设备生成的切换命令进行任何修改,直接将切换命令转发给终端设备。
切换执行阶段:如图中6-7所示,终端设备在收到切换命令后立即执行切换过程,可以包括有终端设备与源网络设备之间进行无线接入网(RAN,Radio Access Network)切换,终端设备断开源小区并与目标小区进行同步并建立连接(如执行随机接入,发送RRC切换完成消息给目标基站等);SN状态转移;还可以包括有源网络设备传输用户面功能实体(UPF,User Plane Function)的新数据,并且将缓存数据传输至目标网络设备。
切换完成阶段:如图中8-12所示,RAN切换完成之后,终端设备通过目标网络设备之间进行用户数据的传输,并且目标网络设备与UPF之间进行用户数据的传输;然后目标网络设备与AMF发送路径切换请求,由UPF执行路径切换,然后由AMF通过源网络设备通知目标网络设备路径切换结束,AMF向目标网络设备发送路径切换请求确认,然后目标网络设备通知源网络设备进行用户数据的释放。
再一种,与前述切换处理流程不同的RACH-less HO(无随机接入信道切换),针对特定场景(比如,目标小区能判断终端设备到源小区的TA和到目标小区的TA相同,或UE到目标小区的TA为0),具体可以包括:目标小区(目标网络设备)可以在通过源网络设备发送的切换命令中配置RACH-skip信息,即切换过程可以是RACH-less HO(无随机接入信道的切换)。RACH-skip信息中可以包含终端设备接入目标小区的上行资源,供终端设备发送切换完成消息。如果切换命令中没有配置上行资源,则终端设备需要监听目标小区的PDCCH,等待目标小区调度上行传输,用调度的上行资源传输切换完成消息。
在RACH-less切换中,所述上行资源配置(ul-Configinfo)中可以包括以下内容:
Figure PCTCN2020078472-appb-000001
其中,numberOfConfUL-Processes表示该上行资源可用的HARQ进程数,ul-SchedInterval表示UL grant之间的时间间隔,ul-StartSubframe表示UL grant的起始子帧数,ul-Grant表示PUSCH资源。
针对RACH-less切换来说,在NR地面网络中,终端设备与网络之间的传播延时较小,目标小区通过源小区转发的切换命令正确发送给终端设备所需要的时延(即包括X2时延,加上源小区从收到切换命令到转发切换命令的时延,加上源小区Uu空口的传播时延)不长。根据这个时延信息,目标小区可以在RACH-less切换中,合理的配置切换命令中的上行资源的时域位置,供UE在接入目标小区时传输RRCReconfigurationComplete消息(即切换完成消息)。
与传统NR采用的蜂窝网络相比,NTN中终端设备与卫星之间的传播延时较大,针对上述切换命令从目标小区到达终端设备的时延,源小区侧在转发切换命令时可能由于可能RLC重传或者HARQ重传,而使得UE正确接收切换命令的这部分空口传播延时变化范围很大。这样就给目标小区在设置RACH-less切换命令中的上行资源的时域位置带来很大的挑战。如果源小区侧经历多次RLC重传或多次HARQ重传终端设备才正确接收到切换命令,那么终端设备接入目标小区的时间就会推迟。
另外,切换命令中的上行资源大小(size)较小,主要目的是为了让终端设备上报切换完成消息,而不适用于普通数据的上行传输。切换完成消息上报成功后,网络需要将该资源回收(也就是终端设备需要释放该资源),以用于后续其他数据的调度传输,否则会造成资源的浪费。
基于此,结合以下示例对本申请提供的释放上行资源的方法进行说明:
示例1、
上行授权资源传输切换完成消息后,终端设备在确定切换完成消息传输成功后,释放上行授权资源。本示例中,终端设备根据预设条件确定切换完成消息传输成功,进而确定释放上行授权资源;其中,该预设条件可以包括:上行定时器超时,和/或,监听到调度用于新传的上行传输资源的第一下行信道。
结合图5,对本示例的具体实施过程说明如下:
步骤51、终端设备发送切换完成消息时,启动所述上行定时器,以及监听所述第一下行信道和第二下行信道。
其中,所述切换完成命令通过上行授权资源进行传输,该上行授权(UL grant)资源为通过切换命令为终端设备配置的。
所述第一下行信道为:小区无线网络临时标识(C-RNTI,Cell-Radio Network Temporary Identifier)加扰的物理下行控制信道(PDCCH,Physical Downlink Control Channel);所述第二下行信道为:配置调度无线网络临时标识(CS-RNTI,Configured scheduled-Radio Network Temporary Identifier)加扰的PDCCH。
也就是终端设备在UL grant传输完切换完成消息后,启动上行定时器,并开始监听CS-RNTI和C-RNTI加扰的PDCCH。
需要指出的是,在网络设备侧,所述网络设备发送调度用于新传的上行传输资源的第一下行信道和/或调度用于重传的上行传输资源的第二下行信道。
也就是说,网络设备如果需要终端设备进行重传,可以通过第二下行信道调度上行传输资源并指示重传;如果已经接收到终端设备传输的切换完成消息,那么可以通过第一下行信道调度上行传输资源并指示新传。
在此基础上,执行下述步骤52、步骤53或步骤54中之一,具体的:
步骤52:在监听到调度用于重传的上行传输资源的第二下行信道的情况下,所述终端设备根据第二下行信道调度的上行资源进行重传,并重启所述上行定时器。
比如,终端设备如果收到CS-RNTI加扰的PDCCH调度上行传输并指示调度重传,则利用调度的上行资源进行重传,重启上行定时器。
步骤52完成后,可以存在两种处理:
一种处理中,在步骤52完成之后,一直未监听到第一下行信道,那么直接执行以下的步骤54;
另一种处理中,步骤52完成之后,又监听到第一下行信道,那么就执行下述步骤53。
步骤53:在监听到调度用于新传的上行传输资源的第一下行信道的情况下,所述终端设备确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。
也就是,终端设备如果收到C-RNTI加扰的PDCCH调度的上行传输(比如,其中新数据指示符(NDI)字段可以为1),则认为切换完成消息被网络正确接收,此时释放配置的RACH-skip资源(也就是上行授权资源)。
需要指出的是,步骤53可以在步骤51之后执行,又或者,可以在步骤52之后执行。
分别来说,如果终端设备在发送切换完成消息之后,一直未监听到第二下行信道,仅监听到调度用于新传的上行传输资源的第一下行信道,那么就是步骤51之后直接执行步骤53;
如果终端设备在发送切换完成消息之后,监听到调度用于重传的上行传输资源的第二下行信道,完成重传数据并重启定时器之后,又监听到调度用于新传的上行传输资源的第一下行信道,那么就是步骤51之后执行步骤52,进而执行步骤53。
至此,不论执行步骤51后直接执行步骤53,或者步骤51完成后执行了步骤52再执行步骤53,只要流程执行至步骤53,也就是满足预设条件:监听到调度用于新传的上行传输资源的第一下行信道,此时终端设备可以认为切换完成消息在网络设备被正确接收,因此,终端设备可以释放所述上行授权资源,结束处理。
另外,还可以包括:释放所述上行授权资源时,若所述上行定时器运行,则所述终端设备停止所述上行定时器。
也就是说,步骤53中如果所述终端设备确定所述切换完成消息在网络设备正确接收,并释放所述上行授权资源的情况下,就不需要再维持上行定时器的计时,因此,完成上述步骤53后,如果上行定时器仍在运行,则停止上行定时器。
步骤54:所述上行定时器超时的情况下,所述终端设备确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。
也就是说,如果上行定时器超时,则终端设备认为切换完成消息被网络正确接收,此时终端设备释放配置的RACH-skip资源(也就是上行授权资源)。
这里,步骤54可以在步骤51或步骤52之后执行,分别来说:
一种情况下,如果执行完步骤51,也就是终端设备在上行授权资源发送切换完成消息后,未接收到第一下行信道也未接收到第二下行信道,那么判断上行定时器是否超时,在上行定时器超时的情况下,也就是满足了预设条件,此时就可以认为切换完成消息被网络设备正确接收,进而直接释放上行授权资源。
再一种情况下,如果执行完步骤51,也就是终端设备在上行授权资源发送切换完成消息后,未接收到第一下行信道,但是接收到第二下行信道,也就是可以执行步骤52,在完成上行重传以及重启上行定时器之后,执行步骤54,判断上行定时器是否超时,在上行定时器超时的情况下,也就是满足了预设条件,此时就可以认为切换完成消息被网络设备正确接收,进而直接释放上行授权资源。
这种情况中,还有一种可能,就是终端设备可能多次接收到第二下行信道,也就是在重启的上行定时器没有超时之前(或者在重启的上行定时器运行期间),可能又一次监听到调度用于重传的上行传输资源的第二下行信道,那么就再次执行步骤52,基于调度的上行传输资源进行重传并重启上行定时器,如此循环。
本示例提供的方案,可以理解为UL grant传输切换完成消息后,终端设备在确定消息传输成功后,释放UL grant资源。确定传输成功的条件可以是定时器超时,或直到收到C-RNTI加扰的PDCCH调度的上行传输(新传)。
结合图6对本示例提供的一种情况进行说明,终端设备在上行授权资源传输切换完 成消息,也就是图中的配置授权(CG,Configured Grant)的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程的标识为0(也就是HARQ ID 0)的HARQ进程传输切换完成消息的时候,启动上行定时器;若在上行定时器运行期间,监听到第二下行信道,也就是收到CS-RNTI加扰的PDCCH调度的上行重传的时候,重启上行定时器;重启的上行定时器运行期间,监听到第一下行信道,也就是终端设备收到C-RNTI加扰的PDCCH用于调度的上行传输(新传),则停止上行定时器,并释放上行授权(UL Grant)资源。
采用本示例提供的方案,能够针对切换命令中配置的上行授权资源传输切换完成消息,如果收到网络设备的新调度、或者上行定时器超时,终端设备可认为之前传输的切换完成消息被网络正确接收,释放预配置的上行授权资源。该释放的预配置的上行授权资源可供网络设备回收用于调度其他数据传输、或再次配置不同大小的预配置上行资源,从而避免资源浪费。
示例2、
与前述示例不同在于,本示例采用的预设条件为:接收到用于指示释放上行授权资源的指示信息。也就是,本示例中终端设备需要接收网络设备发送的显示的指示信息,该指示信息用于指示终端设备释放切换命令中预配置的上行授权资源。
结合图7,对本示例的具体实施过程说明如下:
步骤61、终端设备发送切换完成消息时,启动所述上行定时器,以及监听所述第一下行信道和第二下行信道。
步骤62、在监听到调度用于重传的上行传输资源的第二下行信道的情况下,所述终端设备根据第二下行信道调度的上行资源进行重传,并重启所述上行定时器。
上述两个步骤可以理解为终端设备在UL grant传输完切换完成消息后,启动上行定时器,并开始监听CS-RNTI以及C-RNTI加扰的PDCCH;终端设备如果收到CS-RNTI加扰的PDCCH调度上行传输并指示调度重传,则利用调度的上行资源进行重传,重启上行定时器。
另外,步骤61-步骤62的具体说明与前述示例的步骤51-步骤52相同,不再对其进行赘述。
步骤61与前述步骤51相同还在于,完成步骤61之后,根据实际接收的信息的情况,可以执行步骤62、步骤63、步骤64中任意之一。
步骤62与步骤52相同之处还在于,完成步骤62后,可以存在两种处理:
一种处理中,在步骤62完成之后,一直未监听到第一下行信道,那么直接执行以下的步骤64;
另一种处理中,步骤62完成之后,又监听到第一下行信道,那么就执行下述步骤63。
还有一种处理中,步骤62完成之后,一直未监听到第一下行信道,但是再次监听到第二下行信道,那么可以再次执行步骤62。
步骤63、在监听到调度用于新传的上行传输资源的第一下行信道的情况下,所述终端设备根据第一下行信道调度的上行资源传输新数据,重启所述上行定时器。
也就是,如果终端设备收到CS-RNTI加扰的PDCCH调度上行传输并指示调度重传,则利用调度的上行资源进行重传,重启上行定时器。
本步骤与示例1的步骤53不同在于,本步骤在收到调度用于新传的上行传输资源的第一下行信道的时候,并不将其认为是切换完成消息已经在网络设备正确接收,而是重启上行定时器继续等待,执行步骤64。
步骤64、若所述终端设备接收到指示释放上行授权资源的指示信息,则释放所述上行授权资源。
具体可以为,如果终端设备收到网络侧的显示的指示信息,指示终端设备释放切换 命令中预配置的上行授权资源,则终端设备按照网络指示释放切换命令中预配置的上行资源。
也就是说,直至终端设备接收到指示释放上行授权资源的指示信息,才可以确定满足预设条件,并确定释放上行授权资源。
进一步地,所述指示信息,由以下信息至少之一携带:介质访问控制MAC控制元素CE、无线资源控制RRC信令、物理下行控制信道PDCCH。
其中,如果指示信息由RRC信令携带,可以为RRC重配置消息;
如果指示信息由MAC信令携带,可以为一种新的MAC CE格式;
如果由PDCCH信令携带,那么指示信息可以为通过DCI中的一个bit指示,该比特的取值可以预先定义,比如为第一值的时候表示释放上行授权资源,第二值的时候不表示释放上行授权资源,第一值可以为1,第二值可以为0,当然,反之亦可,这里不再穷举。
需要指出的是,如果终端设备接收到上述信息指示之一携带的指示信息,但是指示信息并不用于指示终端设备释放切换命令中预配置的上行授权资源,那么也就是不满足预设条件,此时终端设备可以继续根据后续接收到的信息的情况,确定重新执行上述步骤62、63或64中之一。比如,终端设备监听到第一下行信道,那么可以执行步骤63,如果监听到第二下行信道,可以执行步骤62,如果又一次监听到指示信息,执行步骤64,以此类推。
另外,释放所述上行授权资源时,若所述上行定时器运行,则所述终端设备停止所述上行定时器。也就是,执行完步骤64,如果上行定时器仍在运行,则停止上行定时器。
结合图8对本示例提供的一种情况进行说明,终端设备在上行授权资源传输切换完成消息,也就是图中的配置授权(CG,Configured Grant)的混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)进程的标识为0(也就是HARQ ID 0)的HARQ进程传输切换完成消息的时候,启动上行定时器;若在上行定时器运行期间,监听到第二下行信道,也就是收到CS-RNTI加扰的PDCCH调度的上行重传的时候,重启上行定时器;重启的上行定时器运行期间,收到网络释放资源指示,停止上行定时器,释放上行授权(UL Grant)资源。
本示例提供的方案,与示例1不同在于,本示例引入显示的释放指令,也就是网络只有在正确接收到切换完成消息才会指示终端设备释放资源,具有更好的可靠性。
基于前述,下面针对如何确定传输切换完成消息的上行授权资源的位置进行详细说明:
针对传播时延较大的切换场景(例如NTN场景),本实施例提供的方案,在切换命令中的上行资源配置引入起始SFN信息,CS-RNTI和UL grant传输的上行定时器的相关信息。结合图9,具体说明如下:
步骤71、所述终端设备接收切换命令。
相应的,当网络设备为终端设备本次切换处理的目标网络设备的情况下,网络设备生成切换命令,将切换命令通过源网络设备转发给所述终端设备;
在网络设备为终端设备本次切换处理中的源网络设备的情况下,网络设备接收目标网络设备发来的切换命令,将该切换命令发送给终端设备。
其中,所述切换命令中包括:随机接入信道RACH跳过Skip信息,所述RACH跳过Skip信息用于指示所述上行授权资源。
所述RACH跳过Skip信息,包括以下至少之一:
表示所述上行授权资源的起始无线帧的第一参数;可以为ul-StartRadioFrame;
表示所述上行授权资源的起始子帧的第二参数;可以表示为ul-StartSubframe;
上行定时器的时长参数;
CS-RNTI信息;
表示所述上行授权资源的可用HARQ进程数的第三参数;可以将其表示为numberOfConfUL-Processes;
相邻的上行授权资源之间的时间间隔;可以表示为ul-SchedInterval;
上行授权资源的时频资源位置;可以为表示PUSCH资源的时频位置。
步骤72、所述终端设备与目标网络设备进行下行同步,以及基于所述第一参数以及所述第二参数确定上行授权资源的起始时间。
也就是,终端设备收到上述切换命令后,进行目标小区下行同步,并通过ul-StartRadioFrame和ul-StartSubframe确定UL grant(上行授权资源)的起始时间。
基于上述,本实施例中具体确定用于传输切换完成消息的上行授权资源的位置的方式可以包括:
若下行同步完成的时间,不晚于所述上行授权资源的起始时间,则在第一个可用的上行授权资源传输切换完成消息;
若下行同步完成的时间,晚于上行授权资源的起始时间,则在所述下行同步完成的时间之后的第一个可用的上行授权资源传输切换完成消息。
结合图10来说,图10中上半部分表示:如果收到切换命令,与目标小区下行同步完成的时间迟于UL grant的起始时间(也就是根据起始帧和子帧信息确定上行授权资源的起始位置),则终端设备利用下行同步后的第一个可用的UL grant(上行授权)资源传输切换完成消息;另外,完成切换完成消息的发送的时候,还会启动上行定时器。
图10中上半部分表示:如果收到切换命令、与目标小区下行同步完成的时间不迟于UL grant的起始时间(也就是根据起始帧和子帧信息确定上行授权资源的起始位置),则终端设备使用RACH-skip信息中第一个可用的UL grant资源传输切换完成消息。另外,完成切换完成消息的发送的时候,还会启动上行定时器。
进而,与上述两个示例结合的来说,还可以包括步骤73:终端设备发送切换完成消息时,启动所述上行定时器,以及监听所述第一下行信道和第二下行信道。
也就是,终端设备在UL grant资源上传输切换完成消息后,启动上行传输定时器,并开始监听CS-RNTI加扰的PDCCH(也就是第二下行信道)调度的上行重传和C-RNTI加扰的PDCCH(也就是前述第一下行信道)调度的上行新传。然后可以执行上述示例1或示例2的方案,不再重复说明。
采用上述方式,对于传播时延大的场景,只由一个起始子帧并不能准确定位上行授权资源的位置,引入起始帧信息可以结合起始子帧一起定位上行授权资源的起始时域位置,使得终端设备能够找到第一个可用的上行资源。
可见,通过采用上述方案,就能够在第一类切换处理中,终端设备发送切换完成消息之后,根据预设条件来确定何时释放上行授权资源。从而避免配置用于传输切换完成消息的上行授权资源一直被占用,而带来的资源浪费的问题。
本发明实施例提供一种终端设备,如图11所示,包括:
第一通信单元81,在第一类切换中通过上行授权资源发送切换完成消息;
第一处理单元82,若满足预设条件,则释放所述上行授权资源;其中,所述上行授权资源为切换命令中配置的用于接入目标网络设备的上行资源;
其中,所述预设条件包括以下至少之一:
上行定时器超时、监听到调度用于新传的上行传输资源的第一下行信道、接收到用于指示释放上行授权资源的指示信息。
本实施例还提供一种网络设备,如图12所示,包括:
第二通信单元91,接收到终端设备在第一类切换中通过上行授权资源发送的切换完成消息,收回所述终端设备释放的上行授权资源;其中,所述上行授权资源为在切换命令中为所述终端设备配置的用于接入目标网络设备的上行资源。
本申请提供的实施例,可以应用于Non Terrestrial Network(NTN,非地面通信网络) 中。当然并不限定于仅能应用于NTN场景中,在其他通信场景(比如NR、LTE等)中也可以应用本实施例的方案。相应的,所述网络设备可以为地面通信网络中的基站(gNB或eNB等等),还可以为NTN中的卫星。
结合以下示例对本申请提供的释放上行资源的处理进行说明:
示例1、
上行授权资源传输切换完成消息后,终端设备在确定切换完成消息传输成功后,释放上行授权资源。本示例中,终端设备根据预设条件确定切换完成消息传输成功,进而确定释放上行授权资源;其中,该预设条件可以包括:上行定时器超时,和/或,监听到调度用于新传的上行传输资源的第一下行信道。
终端设备的第一通信单元81,发送切换完成消息时,第一处理单元82启动所述上行定时器,以及监听所述第一下行信道和第二下行信道。
其中,所述切换完成命令通过上行授权资源进行传输,该上行授权(UL grant)资源为通过切换命令为终端设备配置的。
所述第一下行信道为:小区无线网络临时标识(C-RNTI,Cell-Radio Network Temporary Identifier)加扰的物理下行控制信道(PDCCH,Physical Downlink Control Channel);所述第二下行信道为:配置调度无线网络临时标识(CS-RNTI,Configured scheduled-Radio Network Temporary Identifier)加扰的PDCCH。
终端设备的第一通信单元81,在监听到调度用于重传的上行传输资源的第二下行信道的情况下,根据第二下行信道调度的上行资源进行重传;
所述第一处理单元82,并重启所述上行定时器。
终端设备的第一处理单元82,在第一通信单元81监听到调度用于新传的上行传输资源的第一下行信道的情况下,确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。
所述第一处理单元82,所述上行定时器超时的情况下,确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。其中,释放上行授权资源,可以为第一处理单元控制第一通信单元释放上行授权资源。
所述第一处理单元,释放所述上行授权资源时,若所述上行定时器运行,则停止所述上行定时器。
采用本示例提供的方案,能够针对切换命令中配置的上行授权资源传输切换完成消息,如果收到网络设备的新调度、或者上行定时器超时,终端设备可认为之前传输的切换完成消息被网络正确接收,释放预配置的上行授权资源。该释放的预配置的上行授权资源可供网络设备回收用于调度其他数据传输、或再次配置不同大小的预配置上行资源,从而避免资源浪费。
示例2、
与前述示例不同在于,本示例采用的预设条件为:接收到用于指示释放上行授权资源的指示信息。也就是,本示例中终端设备需要接收网络设备发送的显示的指示信息,该指示信息用于指示终端设备释放切换命令中预配置的上行授权资源。
关于发送切换完成消息并启动上行定时器、以及监听第二下行信道的处理与示例1相同,不再赘述。
与示例1不同之处可以包括:所述第一通信单元,在监听到调度用于新传的上行传输资源的第一下行信道的情况下,根据第一下行信道调度的上行资源传输新数据;
所述第一处理单元,重启所述上行定时器。
所述第一处理单元82,若所述第一通信单元接收到指示释放上行授权资源的指示信息,则释放所述上行授权资源。
进一步地,所述指示信息,由以下信息至少之一携带:介质访问控制MAC控制元素CE、无线资源控制RRC信令、物理下行控制信道PDCCH。
另外,所述第一处理单元82,释放所述上行授权资源时,若所述上行定时器运行,则停止所述上行定时器。
本示例提供的方案,与示例1不同在于,本示例引入显示的释放指令,也就是网络只有在正确接收到切换完成消息才会指示终端设备释放资源,具有更好的可靠性。
基于前述,下面针对如何确定传输切换完成消息的上行授权资源的位置进行详细说明:
针对传播时延较大的切换场景(例如NTN场景),本实施例提供的方案,在切换命令中的上行资源配置引入起始SFN信息,CS-RNTI和UL grant传输的上行定时器的相关信息。
终端设备的所述第一通信单元81,接收切换命令。
相应的,当网络设备为终端设备本次切换处理的目标网络设备的情况下,网络设备生成切换命令,网络设备的第二通信单元91将切换命令通过源网络设备转发给所述终端设备;
在网络设备为终端设备本次切换处理中的源网络设备的情况下,网络设备的第二通信单元91接收目标网络设备发来的切换命令,并将该切换命令发送给终端设备。
其中,所述切换命令中包括:随机接入信道RACH跳过Skip信息,所述RACH跳过Skip信息用于指示所述上行授权资源。
所述RACH跳过Skip信息,包括以下至少之一:
表示所述上行授权资源的起始无线帧的第一参数;可以为ul-StartRadioFrame;
表示所述上行授权资源的起始子帧的第二参数;可以表示为ul-StartSubframe;
上行定时器的时长参数;
CS-RNTI信息;
表示所述上行授权资源的可用HARQ进程数的第三参数;可以将其表示为numberOfConfUL-Processes;
相邻的上行授权资源之间的时间间隔;可以表示为ul-SchedInterval;
上行授权资源的时频资源位置;可以为表示PUSCH资源的时频位置。
所述终端设备的所述第一处理单元,与目标网络设备进行下行同步,以及基于所述第一参数以及所述第二参数确定上行授权资源的起始时间。
基于上述,本实施例中具体确定用于传输切换完成消息的上行授权资源的位置的方式可以包括:
所述第一处理单元,若下行同步完成的时间,不晚于所述上行授权资源的起始时间,则控制第一通信单元在第一个可用的上行授权资源传输切换完成消息;
若下行同步完成的时间,晚于上行授权资源的起始时间,则控制第一通信单元在所述下行同步完成的时间之后的第一个可用的上行授权资源传输切换完成消息。
可见,通过采用上述方案,就能够在第一类切换处理中,终端设备发送切换完成消息之后,根据预设条件来确定何时释放上行授权资源。从而避免配置用于传输切换完成消息的上行授权资源一直被占用,而带来的资源浪费的问题。
图13是本发明实施例提供的一种通信设备1400示意性结构图,本实施例中的通信设备可以具体为前述实施例中的终端设备或网络设备。图13所示的通信设备1400包括处理器1410,处理器1410可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,图13所示,通信设备1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
可选地,如图13所示,通信设备1400还可以包括收发器1430,处理器1410可以控制该收发器1430与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1430可以包括发射机和接收机。收发器1430还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1400具体可为本发明实施例的终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
图14是本发明实施例的芯片的示意性结构图。图14所示的芯片1500包括处理器1510,处理器1510可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图14所示,芯片1500还可以包括存储器1520。其中,处理器1510可以从存储器1520中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器1520可以是独立于处理器1510的一个单独的器件,也可以集成在处理器1510中。
可选地,该芯片1500还可以包括输入接口1530。其中,处理器1510可以控制该输入接口1530与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1500还可以包括输出接口1540。其中,处理器1510可以控制该输出接口1540与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的终端设备或网络设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为***级芯片,***芯片,芯片***或片上***芯片等。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。应注意,本文描述的***和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图15是本申请实施例提供的一种通信***1600的示意性框图。如图15所示,该通信***1600包括网络设备1610和终端设备1620。
其中,该网络设备1610可以用于实现上述方法中由通信设备实现的相应的功能,以及该终端设备1620可以用于实现上述方法中由终端实现的相应的功能为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络设备或卫星或终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络设备或卫星或终端设备,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络设备或卫星或终端设备,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的***、装置和方法,可以通过其它的方式实现。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种释放上行资源的方法,包括:
    终端设备在第一类切换中通过上行授权资源发送切换完成消息,若满足预设条件,则所述终端设备释放所述上行授权资源;其中,所述上行授权资源为切换命令中配置的用于接入目标网络设备的上行资源;
    其中,所述预设条件包括以下至少之一:
    上行定时器超时、监听到调度用于新传的上行传输资源的第一下行信道、接收到用于指示释放上行授权资源的指示信息。
  2. 根据权利要求1所述的方法,其中,所述第一类切换为无随机接入信道RACH-less切换。
  3. 根据权利要求1或2所述的方法,其中,所述方法还包括:
    终端设备发送切换完成消息时,启动所述上行定时器,以及监听所述第一下行信道和第二下行信道。
  4. 根据权利要求3所述的方法,其中,
    所述第一下行信道为:小区无线网络临时标识C-RNTI加扰的物理下行控制信道PDCCH;
    所述第二下行信道为:配置调度无线网络临时标识CS-RNTI加扰的PDCCH。
  5. 根据权利要求3所述的方法,其中,所述方法还包括:
    在监听到调度用于重传的上行传输资源的第二下行信道的情况下,所述终端设备根据第二下行信道调度的上行资源进行重传,并重启所述上行定时器。
  6. 根据权利要求3-5任一项所述的方法,其中,所述方法还包括:
    所述上行定时器超时的情况下,所述终端设备确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。
  7. 根据权利要求3所述的方法,其中,所述若满足预设条件,则所述终端设备释放所述上行授权资源,还包括:
    在监听到调度用于新传的上行传输资源的第一下行信道的情况下,所述终端设备确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。
  8. 根据权利要求3所述的方法,其中,所述方法还包括:
    在监听到调度用于新传的上行传输资源的第一下行信道的情况下,所述终端设备根据第一下行信道调度的上行资源传输新数据,重启所述上行定时器。
  9. 根据权利要求3-5、8任一项所述的方法,其中,所述若满足预设条件,则所述终端设备释放所述上行授权资源,还包括:
    若所述终端设备接收到指示释放上行授权资源的指示信息,则释放所述上行授权资源。
  10. 根据权利要求9所述的方法,其中,所述指示信息,由以下信息至少之一携带:介质访问控制MAC控制元素CE、无线资源控制RRC信令、物理下行控制信道PDCCH。
  11. 根据权利要求7或9所述的方法,其中,所述方法还包括:
    释放所述上行授权资源时,若所述上行定时器运行,则所述终端设备停止所述上行定时器。
  12. 根据权利要求1-11任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收切换命令;
    其中,所述切换命令中包括:随机接入信道RACH跳过Skip信息,所述RACH跳过Skip信息用于指示所述上行授权资源。
  13. 根据权利要求12所述的方法,其中,所述RACH跳过Skip信息,包括以下至 少之一:
    表示所述上行授权资源的起始无线帧的第一参数;
    表示所述上行授权资源的起始子帧的第二参数;
    上行定时器的时长参数;
    CS-RNTI信息;
    表示所述上行授权资源的可用HARQ进程数的第三参数;
    相邻的上行授权资源之间的时间间隔;
    上行授权资源的时频资源位置。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:
    所述终端设备与目标网络设备进行下行同步,以及基于所述第一参数以及所述第二参数确定上行授权资源的起始时间。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    若下行同步完成的时间,不晚于所述上行授权资源的起始时间,则在第一个可用的上行授权资源传输切换完成消息;
    若下行同步完成的时间,晚于上行授权资源的起始时间,则在所述下行同步完成的时间之后的第一个可用的上行授权资源传输切换完成消息。
  16. 一种释放上行资源的方法,包括:
    网络设备接收到终端设备在第一类切换中通过上行授权资源发送的切换完成消息,所述网络设备收回所述终端设备释放的上行授权资源;其中,所述上行授权资源为在切换命令中为所述终端设备配置的用于接入目标网络设备的上行资源。
  17. 根据权利要求16所述的方法,其中,所述第一类切换为无随机接入信道RACH-less切换。
  18. 根据权利要求16所述的方法,其中,所述方法还包括:
    所述网络设备发送调度用于新传的上行传输资源的第一下行信道和/或调度用于重传的上行传输资源的第二下行信道。
  19. 根据权利要求18所述的方法,其中,
    所述第一下行信道为:小区无线网络临时标识C-RNTI加扰的物理下行控制信道PDCCH;
    所述第二下行信道为:配置调度无线网络临时标识CS-RNTI加扰的PDCCH。
  20. 根据权利要求16-19任一项所述的方法,其中,所述方法还包括:
    所述网络设备向所述终端设备发送指示信息;
    其中,所述指示信息用于指示所述终端设备释放上行授权资源。
  21. 根据权利要求20所述的方法,其中,所述指示信息,由以下信息至少之一携带:介质访问控制MAC控制元素CE、无线资源控制RRC信令、物理下行控制信道PDCCH。
  22. 根据权利要求16-21任一项所述的方法,其中,所述方法还包括:
    所述网络设备向终端设备发送切换命令;
    其中,所述切换命令中包括:随机接入信道RACH跳过Skip信息,所述RACH跳过Skip信息用于指示所述上行授权资源。
  23. 根据权利要求22所述的方法,其中,所述RACH跳过Skip信息,包括以下至少之一:
    表示所述上行授权资源的起始无线帧的第一参数;
    表示所述上行授权资源的起始子帧的第二参数;
    上行定时器的时长参数;
    CS-RNTI信息;
    表示所述上行授权资源的可用HARQ进程数的第三参数;
    相邻的上行授权资源之间的时间间隔;
    上行授权资源位置。
  24. 一种终端设备,包括:
    第一通信单元,在第一类切换中通过上行授权资源发送切换完成消息;
    第一处理单元,若满足预设条件,则释放所述上行授权资源;其中,所述上行授权资源为切换命令中配置的用于接入目标网络设备的上行资源;
    其中,所述预设条件包括以下至少之一:
    上行定时器超时、监听到调度用于新传的上行传输资源的第一下行信道、接收到用于指示释放上行授权资源的指示信息。
  25. 根据权利要求24所述的终端设备,其中,所述第一类切换为无随机接入信道RACH-less切换。
  26. 根据权利要求24或25所述的终端设备,其中,所述第一处理单元,在第一通信单元发送切换完成消息时,启动所述上行定时器,以及通过第一通信单元监听所述第一下行信道和第二下行信道。
  27. 根据权利要求26所述的终端设备,其中,
    所述第一下行信道为:小区无线网络临时标识C-RNTI加扰的物理下行控制信道PDCCH;
    所述第二下行信道为:配置调度无线网络临时标识CS-RNTI加扰的PDCCH。
  28. 根据权利要求26所述的终端设备,其中,所述第一通信单元,在监听到调度用于重传的上行传输资源的第二下行信道的情况下,根据第二下行信道调度的上行资源进行重传;
    所述第一处理单元,并重启所述上行定时器。
  29. 根据权利要求26-28任一项所述的终端设备,其中,所述第一处理单元,所述上行定时器超时的情况下,确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。
  30. 根据权利要求26所述的终端设备,其中,所述第一处理单元,在第一通信单元监听到调度用于新传的上行传输资源的第一下行信道的情况下,确定所述切换完成消息在网络设备正确接收,释放所述上行授权资源。
  31. 根据权利要求26所述的终端设备,其中,所述第一通信单元,在监听到调度用于新传的上行传输资源的第一下行信道的情况下,根据第一下行信道调度的上行资源传输新数据;
    所述第一处理单元,重启所述上行定时器。
  32. 根据权利要求26-28、31任一项所述的终端设备,其中,所述第一处理单元,若所述第一通信单元接收到指示释放上行授权资源的指示信息,则释放所述上行授权资源。
  33. 根据权利要求32所述的终端设备,其中,所述指示信息,由以下信息至少之一携带:介质访问控制MAC控制元素CE、无线资源控制RRC信令、物理下行控制信道PDCCH。
  34. 根据权利要求30或32所述的终端设备,其中,所述第一处理单元,释放所述上行授权资源时,若所述上行定时器运行,则停止所述上行定时器。
  35. 根据权利要求24-34任一项所述的终端设备,其中,所述第一通信单元,接收切换命令;
    其中,所述切换命令中包括:随机接入信道RACH跳过Skip信息,所述RACH跳 过Skip信息用于指示所述上行授权资源。
  36. 根据权利要求35所述的终端设备,其中,所述RACH跳过Skip信息,包括以下至少之一:
    表示所述上行授权资源的起始无线帧的第一参数;
    表示所述上行授权资源的起始子帧的第二参数;
    上行定时器的时长参数;
    CS-RNTI信息;
    表示所述上行授权资源的可用HARQ进程数的第三参数;
    相邻的上行授权资源之间的时间间隔;
    上行授权资源的时频资源位置。
  37. 根据权利要求36所述的终端设备,其中,所述第一处理单元,与目标网络设备进行下行同步,以及基于所述第一参数以及所述第二参数确定上行授权资源的起始时间。
  38. 根据权利要求37所述的终端设备,其中,所述第一处理单元,若下行同步完成的时间,不晚于所述上行授权资源的起始时间,则控制第一通信单元在第一个可用的上行授权资源传输切换完成消息;
    若下行同步完成的时间,晚于上行授权资源的起始时间,则控制第一通信单元在所述下行同步完成的时间之后的第一个可用的上行授权资源传输切换完成消息。
  39. 一种网络设备,包括:
    第二通信单元,接收到终端设备在第一类切换中通过上行授权资源发送的切换完成消息,收回所述终端设备释放的上行授权资源;其中,所述上行授权资源为在切换命令中为所述终端设备配置的用于接入目标网络设备的上行资源。
  40. 根据权利要求39所述的网络设备,其中,所述第一类切换为无随机接入信道RACH-less切换。
  41. 根据权利要求39所述的网络设备,其中,所述第二通信单元,发送调度用于新传的上行传输资源的第一下行信道和/或调度用于重传的上行传输资源的第二下行信道。
  42. 根据权利要求41所述的网络设备,其中,
    所述第一下行信道为:小区无线网络临时标识C-RNTI加扰的物理下行控制信道PDCCH;
    所述第二下行信道为:配置调度无线网络临时标识CS-RNTI加扰的PDCCH。
  43. 根据权利要求39-42任一项所述的网络设备,其中,所述第二通信单元,向所述终端设备发送指示信息;
    其中,所述指示信息用于指示所述终端设备释放上行授权资源。
  44. 根据权利要求43所述的网络设备,其中,所述指示信息,由以下信息至少之一携带:介质访问控制MAC控制元素CE、无线资源控制RRC信令、物理下行控制信道PDCCH。
  45. 根据权利要求39-44任一项所述的网络设备,其中,所述第二通信单元,向终端设备发送切换命令;
    其中,所述切换命令中包括:随机接入信道RACH跳过Skip信息,所述RACH跳过Skip信息用于指示所述上行授权资源。
  46. 根据权利要求45所述的网络设备,其中,所述RACH跳过Skip信息,包括以下至少之一:
    表示所述上行授权资源的起始无线帧的第一参数;
    表示所述上行授权资源的起始子帧的第二参数;
    上行定时器的时长参数;
    CS-RNTI信息;
    表示所述上行授权资源的可用HARQ进程数的第三参数;
    相邻的上行授权资源之间的时间间隔;
    上行授权资源位置。
  47. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-15任一项所述方法的步骤。
  48. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求16-23任一项所述方法的步骤。
  49. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-15中任一项所述的方法。
  50. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求16-23中任一项所述的方法。
  51. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-23任一项所述方法的步骤。
  52. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-23中任一项所述的方法。
  53. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-23中任一项所述的方法。
PCT/CN2020/078472 2020-03-09 2020-03-09 一种释放上行资源的方法、终端设备、网络设备 WO2021179139A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20924811.1A EP4109965A4 (en) 2020-03-09 2020-03-09 METHOD FOR RELEASING AN UPLINK RESOURCE, TERMINAL DEVICE AND NETWORK DEVICE
CN202080098003.7A CN115280841A (zh) 2020-03-09 2020-03-09 一种释放上行资源的方法、终端设备、网络设备
PCT/CN2020/078472 WO2021179139A1 (zh) 2020-03-09 2020-03-09 一种释放上行资源的方法、终端设备、网络设备
US17/941,243 US20230015847A1 (en) 2020-03-09 2022-09-09 Method for releasing uplink resource, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/078472 WO2021179139A1 (zh) 2020-03-09 2020-03-09 一种释放上行资源的方法、终端设备、网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/941,243 Continuation US20230015847A1 (en) 2020-03-09 2022-09-09 Method for releasing uplink resource, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021179139A1 true WO2021179139A1 (zh) 2021-09-16

Family

ID=77670408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078472 WO2021179139A1 (zh) 2020-03-09 2020-03-09 一种释放上行资源的方法、终端设备、网络设备

Country Status (4)

Country Link
US (1) US20230015847A1 (zh)
EP (1) EP4109965A4 (zh)
CN (1) CN115280841A (zh)
WO (1) WO2021179139A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051523A1 (zh) * 2022-09-09 2024-03-14 荣耀终端有限公司 切换方法及装置
WO2024124384A1 (zh) * 2022-12-12 2024-06-20 北京小米移动软件有限公司 确定配置授权cg资源的方法和装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2587651B (en) * 2019-10-03 2022-03-09 Samsung Electronics Co Ltd Methods, apparatus, and systems for supporting a handover

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076417A (zh) * 2016-04-20 2018-12-21 韩国电子通信研究院 切换方法
CN109565721A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 无线通信中的切换
WO2019160342A1 (en) * 2018-02-14 2019-08-22 Lg Electronics Inc. Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130852A1 (ja) * 2016-01-25 2017-08-03 京セラ株式会社 無線端末及び基地局

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076417A (zh) * 2016-04-20 2018-12-21 韩国电子通信研究院 切换方法
CN109565721A (zh) * 2016-08-12 2019-04-02 高通股份有限公司 无线通信中的切换
WO2019160342A1 (en) * 2018-02-14 2019-08-22 Lg Electronics Inc. Method and apparatus for supporting rach-less mobility with pre-allocated beams in wireless communication system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Release of UL grant at RACH-less procedures", 3GPP DRAFT; R2-1701552 RELEASE OF UL GRANT AT RACH-LESS PROCEDURES, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20170213 - 20170217, 3 February 2017 (2017-02-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051222950 *
See also references of EP4109965A4 *
ZTE CORPORATION: "Email discussion report on open issues of mobility enhancement", 3GPP DRAFT; R2-168184 EMAIL DISCUSSION REPORT ON OPEN ISSUES OF MOBILITY ENHANCEMENT, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, Nevada, USA; 20161114 - 20161118, 13 November 2016 (2016-11-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051177852 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024051523A1 (zh) * 2022-09-09 2024-03-14 荣耀终端有限公司 切换方法及装置
WO2024124384A1 (zh) * 2022-12-12 2024-06-20 北京小米移动软件有限公司 确定配置授权cg资源的方法和装置

Also Published As

Publication number Publication date
EP4109965A1 (en) 2022-12-28
CN115280841A (zh) 2022-11-01
EP4109965A4 (en) 2023-03-22
US20230015847A1 (en) 2023-01-19

Similar Documents

Publication Publication Date Title
WO2021159449A1 (zh) 一种定时提前更新方法、终端设备、网络设备
WO2021179139A1 (zh) 一种释放上行资源的方法、终端设备、网络设备
WO2021031089A1 (zh) 资源配置的方法、终端设备和网络设备
US20220159732A1 (en) Random access method and device
US20220408327A1 (en) Transmission control method, terminal device, and network device
WO2022061664A1 (zh) 传输控制方法、装置、设备及存储介质
WO2021184266A1 (zh) 一种数据包重组方法、电子设备及存储介质
US20220124824A1 (en) Method for random access and communication device
WO2022056854A1 (zh) 无线通信方法和设备
CN114731238B (zh) 配置授权定时器的使用方法与装置、终端设备和网络设备
WO2021146865A1 (zh) 通信方法、装置、设备及存储介质
WO2021012283A1 (zh) 无线通信的方法及设备
EP3498011B1 (en) Ul scheduling timing in tdd with 1 ms tti and reduced processing time
CN116192337A (zh) 无线通信的方法及装置
WO2022120747A1 (zh) 无线通信的方法和终端设备
WO2021227030A1 (zh) 一种非连续接收的处理方法、电子设备及存储介质
CN113630860B (zh) 一种信息确认方法、终端设备及网络设备
WO2021142663A1 (zh) 调度请求sr发送方法及相关装置
CN113747532B (zh) 无线通信的方法、终端设备和网络设备
WO2021068224A1 (zh) 无线通信方法、终端设备和网络设备
WO2021184317A1 (zh) 生效时间的确定方法、终端及网络设备
WO2021142824A1 (zh) 信息处理方法、装置、设备及存储介质
WO2021155597A1 (zh) 一种定时器控制方法、终端设备、网络设备
WO2023097421A1 (zh) 信息上报方法、装置、设备、存储介质及程序产品
WO2022227086A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20924811

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020924811

Country of ref document: EP

Effective date: 20220923

NENP Non-entry into the national phase

Ref country code: DE