WO2021177337A1 - Sodium transition metal polyanion - Google Patents

Sodium transition metal polyanion Download PDF

Info

Publication number
WO2021177337A1
WO2021177337A1 PCT/JP2021/008099 JP2021008099W WO2021177337A1 WO 2021177337 A1 WO2021177337 A1 WO 2021177337A1 JP 2021008099 W JP2021008099 W JP 2021008099W WO 2021177337 A1 WO2021177337 A1 WO 2021177337A1
Authority
WO
WIPO (PCT)
Prior art keywords
sodium
transition metal
secondary battery
less
natp
Prior art date
Application number
PCT/JP2021/008099
Other languages
French (fr)
Japanese (ja)
Inventor
高橋健一
岡田昌樹
千葉和幸
修 松永
小林 渉
高原俊也
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Publication of WO2021177337A1 publication Critical patent/WO2021177337A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a novel sodium transition metal polyanion and a method for producing the same.
  • Sodium secondary batteries are attracting attention as post-lithium secondary batteries because they do not use lithium, which is a rare metal.
  • a sodium transition metal-containing material containing sodium and a counter anion such as a transition metal oxide, polyanion or fluoride has been studied.
  • the sodium transition metal-containing materials the sodium-containing transition metal polyanion is expected to exhibit a high charge / discharge capacity.
  • iron sodium phosphate (NaFePO 4 ), which is a sodium transition metal phosphate compound having an olivine structure, has been reported to carry out a reversible insertion / elimination reaction of Na cations (for example, Patent Document 1). ..
  • the obtained discharge capacity remains as low as about 60 mAh / g.
  • a novel sodium transition metal polyanion is found, which can be used as a positive electrode active material of a sodium secondary battery, and further, a sodium secondary battery using the sodium transition metal polyanion as a positive electrode material is more than a conventional sodium secondary battery. It has been found that a high discharge capacity is exhibited.
  • the present invention is as described in the claims, and the gist of the present disclosure is as follows.
  • [1] Has a powder X-ray diffraction pattern represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (where M is 1 or more selected from the group of Fe, Mn, Ni and Co).
  • a sodium transition metal polyanion characterized by a monoclinic crystal structure.
  • the transition metal source is an oxide containing one or more selected from the group of Fe, Mn, Ni and Co, hydroxide, oxyhydroxide, phosphate, sulfite, sulfate, nitrate, chloride.
  • a sodium secondary battery comprising a positive electrode containing the sodium transition metal polyanion according to any one of the above [1] to [5], a negative electrode, and an electrolytic solution.
  • the electrolytic solution is a non-aqueous electrolytic solution.
  • the figure which shows the discharge capacity profile of the non-aqueous sodium secondary battery which provided the sodium iron poly anion of Example 1 as a positive electrode active material in the measurement example 1 in the figure, the solid line is the discharge capacity of the first cycle, and the broken line is 10 cycles.
  • Eye discharge capacity Discharge curve of the aqueous sodium secondary battery provided with NaTP of Example 1 in Measurement Example 2 (1st cycle)
  • the sodium transition metal polyanion of the present embodiment is a powder X represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co). It is a sodium transition metal polyanion characterized by having a linear diffraction pattern and having a monoclinic crystal structure.
  • sodium transition-metal polyanion (hereinafter, also referred to as” NaTP ", and when the transition metal is iron, etc., also referred to as” sodium iron polyanion “or” NaFeP ", etc.)
  • NaTP sodium transition-metal polyanion
  • NaFeP sodium iron polyanion
  • the transition metal contained in NaTP of the present embodiment is one or more selected from the group of iron (Fe), manganese (Mn), nickel (Ni) and cobalt (Co), and is selected from the group of iron, manganese and nickel. 1 or more, and at least one of iron and manganese, and more preferably iron.
  • the NaTP of the present embodiment preferably contains iron, and may contain one or more selected from the group of manganese, nickel, and cobalt, iron, and at least one of manganese and cobalt, and iron. , May be included. Furthermore, the NaTP of the present embodiment may contain at least one or more selected from the group of manganese, nickel and cobalt.
  • Anion, at least phosphate ion (PO 4 3-) and hydroxide ions (OH -) Includes, phosphate ions, hydrogen phosphate ions (HPO 4 2-) and hydroxide ions (OH -) Is preferable.
  • chloride ion (Cl -), bromide ion (Br -) - does not contain one or more anions selected from the group of, Sulfate ion (SO 4 2-) and nitrate ion (NO 3) It is preferable, and it is more preferable that it does not contain chloride ions.
  • the NaTP of this embodiment is a powder X-ray diffraction pattern represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co).
  • the XRD pattern may be measured using a general powder X-ray diffractometer. The following conditions can be exemplified as preferable measurement conditions for the XRD pattern.
  • Measurement mode Step scan Scan condition: 20 ° / min Measurement time: 3 seconds 2 ⁇ : 5 ° to 90 °
  • An XRD pattern represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co) (hereinafter, also referred to as “main XRD pattern”). ) Is present and present by comparison (fitting) between the main XRD pattern obtained by simulation (hereinafter, also referred to as “simulation pattern”) and the measured XRD pattern of NaTP of the present embodiment by Rietveld analysis. You can check the abundance ratio.
  • the simulation pattern is for a compound in which the V of Na 3 V (OH) (HPO 4 ) (PO 4 ) is replaced with an arbitrary transition metal (M, that is, one or more selected from the group of Fe, Mn, Ni and Co).
  • M transition metal
  • Any XRD pattern obtained by calculation may be used.
  • a preferred simulation pattern used in the NaTP fitting of this embodiment Inorg. Chem. , 2008, 47, 20062-10066 , crystal data (Table. 1) of Na 3 V (OH) (HPO 4 ) (PO 4 ), coordination numbers and atomic arrangements of constituent elements (Table. 2).
  • an XRD pattern obtained by substituting V with Fe can be mentioned.
  • the XRD pattern can be used as a simulation pattern in the fitting of NaTP containing at least Fe.
  • "having a main XRD pattern” means that the main XRD pattern can be confirmed in the XRD pattern obtained by XRD measuring the NaTP of the present embodiment, that is, the main XRD pattern is included. Is.
  • the NaTP of the present embodiment has a ratio of the main XRD pattern (hereinafter, also referred to as “purity”) to the XRD pattern of 80% or more, preferably 85% or more, and preferably 90% or more. Is more preferable, and 99% or more is further preferable.
  • the purity is 100%. It is permissible for NaTP in this embodiment to contain a trace amount of by-product phase, i.e., a by-product phase that does not inhibit the elimination and insertion of sodium. Therefore, the purity may be 100% or less, and further less than 100%.
  • the purity in this embodiment can be determined by the reference intensity ratio (hereinafter, also referred to as “RIR”) method. Specifically, the purity may be determined by the ratio of the area strength in the comparison between the XRD pattern and the simulation pattern by Rietveld analysis.
  • RIR reference intensity ratio
  • the NaTP of the present embodiment preferably has a monoclinic crystal structure and is a monoclinic crystal belonging to the space group C2 / m.
  • a single oblique crystal has a crystal structure in which lattice constants a, b, and c have different values, ⁇ , and ⁇ are all 90 °, and ⁇ has a different value (that is, other than 90 °).
  • the lattice constants of NaTP in this embodiment are such that a is 15.35 ⁇ or more and 15.55 ⁇ or less, preferably 15.40 ⁇ or more and 15.50 ⁇ or less, and b is 7.19 ⁇ or more and 7.35 ⁇ or less, preferably 7.20 ⁇ . 7.30 ⁇ or less, c is 6.95 ⁇ or more and 7.12 ⁇ or less, preferably 7.00 ⁇ or more and 7.10 ⁇ or less, and ⁇ is 95.8 ° or more and 97.5 ° or less, preferably 96. It can be mentioned that it is 0.3 ° or more and 97.0 ° or less.
  • a is 15.45 ⁇ or more and 15.55 ⁇ or less
  • b is 7.27 ⁇ or more and 7.35 ⁇ or less
  • c is 7.04 ⁇ or more and 7.12 ⁇ or less. Yes, and ⁇ is 95.9 ° or more and 96.7 ° or less.
  • a is 15.50 ⁇ or more and 15.55 ⁇ or less
  • b is 7.30 ⁇ or more and 7.35 ⁇ or less
  • c is 7.05 ⁇ or more and 7.12 ⁇ or less.
  • is 95.8 ° or more and 96.5 ° or less
  • a is 15.50 ⁇ or more and 15.55 ⁇ or less
  • b is 7. It can be exemplified that .30 ⁇ or more and 7.40 ⁇ or less
  • c is 7.04 ⁇ or more and 7.12 ⁇ or less
  • is 95.9 ° or more and 96.7 ° or less.
  • the NaTP of the present embodiment easily inserts and desorbs sodium ions as compared with the conventional NaTP, and thus exhibits high charge / discharge characteristics. You can expect to do it.
  • the crystallite diameter of NaTP in the present embodiment is preferably 20 ⁇ or more and 1500 ⁇ or less, for example, the crystallite diameter of NaTP containing Fe is 20 ⁇ or more or 30 ⁇ or more, and 200 ⁇ or less, 150 ⁇ or less or 100 ⁇ or less. Is mentioned.
  • the NaTP of the present embodiment facilitates the insertion and desorption of sodium more efficiently, and the positive electrode of the sodium secondary battery. High charge / discharge capacity can be expected as an active material.
  • the "crystallizer diameter” belongs to the XRD pattern of the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co). It is a diameter (hereinafter, also referred to as “WH diameter”) obtained by the Williamson-Hall method from two or more XRD peaks. Specifically, two or more XRD peaks that can be attributed to the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co), preferably two or more XRD peaks.
  • the following plots are shown for all XRD peaks that can be attributed to the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group Fe, Mn, Ni and Co). conduct.
  • the following first-order approximation formula is obtained by the least squares method of the obtained plot of a plurality of points, and the reciprocal of the y-intercept of the first-order approximation formula is the crystallite diameter.
  • First-order approximation formula> Y 2 ⁇ ⁇ X + (1 / ⁇ ) ⁇ ⁇ ⁇ (1 formula)
  • is the full width at half maximum (°)
  • is the diffraction angle (°)
  • is the wavelength of the radiation source (nm)
  • is the heterogeneous strain
  • the crystallite diameter ( ⁇ ).
  • 1 / ⁇ in the linear approximation formula is the y-intercept.
  • the XRD peak to be used is not particularly limited, and for example, all XRD peaks belonging to NaTP may be used.
  • the NaTP of the present embodiment is one or more layers selected from the group of metals, fluorine, fluoride, phosphorus, phosphorus compounds, metal oxides, carbons, compounds containing carbons, and conductive polymers on a part or all of the surface. (Hereinafter, also referred to as “coating layer”) may be provided.
  • the coating layer tends to increase the conductivity of NaTP.
  • the coating layer is preferably one or more layers selected from the group of carbon-containing compounds, carbon and conductive polymers, and more preferably a carbon layer. The coating layer does not have to cover the entire surface of NaTP.
  • the shape of NaTP in this embodiment is arbitrary, and one or more selected from the group of powders, granules and molded articles can be exemplified, and powders are preferable.
  • NaTP of the present embodiment facilitates insertion and desorption of sodium ions (Na + ), it can be used as an adsorbent, an ion exchanger, a hydrogen ion conductor, a solid electrolyte, and a battery material, and further.
  • the NaTP of the present embodiment is a step of hydrothermally treating a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less at 80 ° C. or more and 180 ° C. or less. It can be obtained by a production method, which is characterized by having.
  • a step of hydrothermally treating a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less (hereinafter, also referred to as “raw material composition”).
  • raw material composition a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less
  • hydrothermally treatment step a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less
  • the sodium source is at least one of a compound containing sodium (Na) or sodium, and is preferably a water-soluble sodium salt.
  • a preferred sodium source one or more selected from the group of sodium fluoride, sodium chloride, sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium sulfite, sodium sulfate, sodium hydrogen carbonate and sodium carbonate, or One or more selected from the group of sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium sulfite, sodium sulfate, sodium hydrogen carbonate and sodium carbonate, and further, sodium phosphate, sodium hydrogen phosphate and phosphate.
  • One or more selected from the group of disodium hydrogen hydrogen can be exemplified.
  • the phosphate source is a compound containing phosphate ions, and at least one of water-soluble phosphate and phosphate is preferable.
  • a phosphoric acid source one or more selected from the group of orthophosphoric acid, sodium phosphate, disodium hydrogen phosphate, ammonium phosphate, lithium phosphate and potassium phosphate, and further, orthophosphoric acid, sodium phosphate, phosphoric acid.
  • One or more selected from the group of sodium hydrogen hydrogen and disodium hydrogen phosphate can be exemplified.
  • the raw material composition preferably contains sodium phosphate as a source of phosphoric acid and sodium.
  • the transition metal source is a compound containing at least one selected from the group of iron (Fe), manganese (Mn), nickel (Ni) or cobalt (Co), a compound containing at least one of iron, manganese and nickel, iron or A compound containing at least one of manganese or a compound containing iron.
  • Transition metal sources include oxides, hydroxides, oxyhydroxides, sulfites, sulfates, phosphates, carbonates, nitrates, chlorides containing one or more selected from the group of iron, manganese, nickel and cobalt. And one or more selected from the group of acetates, more preferably at least one of sulfates, phosphates, and carbonates, and more preferably phosphates.
  • the transition metal contained in the transition metal source is one or more selected from the group of iron, manganese, nickel and cobalt, preferably one or more selected from the group of iron, manganese and nickel, and at least one of iron or manganese. It is preferably either, and more preferably iron.
  • the raw material composition preferably contains at least one transition metal phosphate as a phosphoric acid source and a transition metal source.
  • water examples include pure water, ion-exchanged water, and water derived from other raw materials (for example, hydrate, structural water, or solvent for an aqueous solution).
  • the raw material composition may contain an additive in addition to the raw materials of the sodium source, the transition metal source and the phosphoric acid source, and water.
  • Additives are one or more selected from the group of oxalic acid, ascorbic acid, sulfite, sodium sulfite, thiosulfate, sodium thiosulfate, sodium hydrogen monosulfide, hydrazine and sodium hypochlorite, or ascorbic acid, sulfite, sulfite.
  • One or more selected from the group of sodium, thiosulfate, sodium thiosulfate, sodium hydrogen monosulfide and sodium hypochlorite can be exemplified.
  • the pH of the raw material composition is 4.0 or more and 11.0 or less, preferably 5.0 or more and 10.0 or less, more preferably 6.0 or more and 9.0 or less, still more preferably 6.5 or more and 8.5 or less. It is as follows.
  • the raw material composition is obtained by mixing so that the composition becomes uniform, and is obtained by mixing these raw materials, water and, if necessary, additives by an arbitrary method.
  • the hydrothermal treatment is preferably performed by filling the reaction vessel with the raw material composition.
  • the reaction vessel is not particularly limited as long as it can be used in the raw material composition used in the present embodiment and the hydrothermal treatment step, and examples thereof include a closed pressure-resistant vessel whose inner surface is coated with Teflon (registered trademark) resin or fluororesin. can.
  • the hydrothermal treatment temperature is 80 ° C. or higher and 180 ° C. or lower, preferably 90 ° C. or higher and 170 ° C. or lower, and more preferably 100 ° C. or higher and 160 ° C. or lower. Further, when the pH of the raw material composition is 6.0 or more and 9.0 or less, the hydrothermal treatment temperature is preferably 100 ° C. or more and 180 ° C. or less, and more preferably 100 ° C. or more and 150 ° C. or less.
  • Preferred hydrothermal conditions are exemplified by a hydrothermal treatment temperature of 100 ° C. or higher and 180 ° C. or lower, and a pH of more than 7.5 and 8.5 or lower. can.
  • the hydrothermal treatment time depends on the hydrothermal treatment temperature. For example, when the hydrothermal treatment temperature is 100 ° C. or lower, it may be 10 hours or more and 200 hours or less. When the hydrothermal treatment temperature exceeds 100 ° C., it may be 3 hours or more and 100 hours or less. Further, when the hydrothermal treatment temperature is 120 ° C. or higher or 130 ° C. or higher, crystallization is further promoted, and crystallization of NaTP of the present embodiment can occur in 20 hours or less.
  • the production method of the present embodiment may include at least one selected from the group of cleaning step, separation step and drying step.
  • the cleaning step is a step of removing impurities from NaTP.
  • the cleaning method is arbitrary, but a treatment of dispersing NaTP in a sufficient amount of pure water can be exemplified. The process may be performed a plurality of times.
  • the separation step is a step of separating NaTP and the solvent.
  • the separation method is arbitrary and may include, for example, one or more selected from the group of centrifugal sedimentation, filtration and filter press.
  • the drying step is a step of removing the water adsorbed on NaTP.
  • the drying method is arbitrary, and treatment in the air or in vacuum at 80 ° C. or higher and 120 ° C. or lower for 1 hour or more and 24 hours or less is mentioned, and treatment in vacuum is preferable.
  • the production method of the present embodiment may include a coating step of forming a coating layer on NaTP.
  • the method for forming the coating layer on NaTP is not particularly limited, and examples thereof include a method of mechanically milling the precursor of the coating layer and NaTP, and a method of thermally decomposing the coating layer.
  • a carbon layer is formed on the surface of NaTP as a coating layer, acetylene black and NaTP are mechanically milled in an inert atmosphere, or after mixing NaTP and sucrose (C 12 H 22 O 11). It can be exemplified that the heat treatment is performed in an inert atmosphere.
  • ⁇ Positive electrode active material> Next, an example of the embodiment of the positive electrode active material containing the sodium transition metal polyanion of the present disclosure will be described.
  • the "positive electrode active material” is the electrode active material of the pole having a high potential among the electrodes constituting the electrochemical device, and in particular, the electrode active material of the positive electrode of the sodium secondary battery.
  • the positive electrode active material of the present embodiment may contain only the NaTP of the present embodiment and may contain only the NaTP of the present embodiment, but may contain a sodium transition metal compound other than the NaTP of the present embodiment. May be good.
  • the mass ratio of NaTP to the mass of the positive electrode active material of the present embodiment is 80% by mass or more and 100% by mass or less, preferably 90% by mass or more and 100% by mass or less, and more preferably 100% by mass (only NaTP is the positive electrode active material). There is).
  • the positive electrode active material of the present embodiment may have a carbon layer or a coating layer, preferably a conductive coating layer, on a part or all of the surface of the positive electrode active material.
  • sodium secondary battery including a positive electrode containing the sodium transition metal polyanion of the present disclosure, a negative electrode, and an electrolytic solution.
  • the "sodium secondary battery” is an electrochemical device that is charged and discharged by inserting and removing sodium ions (Na + ), and is a sodium secondary battery, a sodium ion secondary battery, a sodium ion battery, and sodium. It is synonymous with a storage battery, a Na secondary battery, a Na ion battery, a Na storage battery, and the like.
  • non-aqueous electrolyte solution is an electrolytic solution containing a non-aqueous solvent as a solvent
  • aqueous electrolyte solution is an electrolytic solution containing an aqueous solvent as a solvent
  • non-aqueous sodium secondary battery is a sodium secondary battery having a non-aqueous electrolyte solution as an electrolytic solution
  • a “aqueous sodium secondary battery” is a sodium secondary battery having a non-aqueous electrolyte solution as an electrolytic solution. ..
  • the positive electrode may include a positive electrode mixture containing the positive electrode active material containing NaTP of the present disclosure and a current collector.
  • the positive electrode mixture contains a positive electrode active material, a binder and a conductive material, and optionally an additive.
  • binders, conductive materials and additives can be used respectively.
  • the binder is one or more selected from the group of fluororesin, polyethylene, polypropylene, SBR material and imide material, and further from the group of polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) and ethylene tetrafluoroethylene (ETFE).
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • ETFE ethylene tetrafluoroethylene
  • the conductive material examples include one or more selected from conductive fibers such as carbon materials and metal fibers, metal powders such as copper, silver, nickel and aluminum, and organic conductive materials such as porphenylene derivatives.
  • Preferred carbon materials include graphite, soft carbon, hard carbon, carbon black, Ketjen black, acetylene black, graphite, activated carbon, carbon nanotubes, carbon fiber, and mesoporous carbon.
  • the positive electrode mixture may be produced by a known method, and the positive electrode active material, the binder and the conductive material may be mixed in a desired ratio.
  • the negative electrode may include a negative electrode mixture containing a negative electrode active material, a current collector, and an additive if necessary.
  • the negative electrode mixture contains a negative electrode active material, a binder and a conductive material, and optionally an additive.
  • the negative electrode active material may contain a material that does not interfere with the insertion and desorption of sodium ions in the positive electrode active material, and includes platinum, zinc, carbon material, a material that forms an alloy with sodium, a sodium-containing transition metal oxide, and One or more selected from the group of sodium-containing polyanionic materials can be exemplified.
  • Preferred negative electrode active materials include one or more selected from the group of carbon materials, polyimides, transition metal-containing cyano compounds and transition metal-containing polyanionic compounds, and examples thereof include activated carbon, Na 2 Mn [Mn (CN) 6 ] and NaTi 2 (PO). 4 ) It is preferably 1 or more selected from the group of 3 , and more preferably NaTi 2 (PO 4 ) 3 .
  • the binder and the conductive material may be known, and are the same as the binder and the conductive material that can be used in the above-mentioned positive electrode mixture.
  • the negative electrode mixture may be produced by a known method, and the negative electrode active material, the binder and the conductive material may be mixed in a desired ratio.
  • the electrolytic solution is either a non-aqueous electrolytic solution or an aqueous electrolytic solution, and is preferably an aqueous electrolytic solution.
  • the electrolyte is a sodium salt, preferably a soluble sodium salt.
  • Preferred electrolytes include one or more selected from the group of NaCl, Na 2 SO 4 , Na NO 3 , NaCl O 4 , NaOH and Na 2 S. From the viewpoint of ease of handling, the electrolyte is preferably one or more selected from the group of NaCl, Na 2 SO 4 , Na NO 3 and NaCl O 4 , and preferably contains NaCl O 4 .
  • the electrolyte concentration in the electrolyte is not particularly limited, but from the viewpoint of increasing the energy density of the sodium secondary battery, the electrolyte concentration (sodium salt concentration) in the electrolyte is preferably high, and the sodium salt concentration is 1 mol / kg. A concentration of (1 m) or more and a saturation solubility or less can be exemplified.
  • the electrolytic solution may contain additives.
  • Additives are not particularly limited, but are succinic acid, glutamic acid, maleic acid, citraconic acid, gluconic acid, itaconic acid, diglycol, cyclohexanedicarboxylic acid, cyclopentanetetracarboxylic acid, 1,3-propanesulton, 1,4-.
  • One or more selected from the group of butane sulton, methyl methanesulfonate, sulfolane, dimethylsulfone and N, N-dimethylmethanesulfonamide can be exemplified.
  • the content of the additive is 0.01% by mass or more and 10% by mass or less as the mass ratio of the additive to the mass of the electrolytic solution.
  • other components such as positive electrode and negative electrode current collectors and separators, known ones used in sodium secondary batteries and lithium secondary batteries can be used.
  • the sodium secondary battery of the present disclosure is represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co).
  • a positive electrode containing a sodium transition metal polyanion, a negative electrode, and an electrolytic solution are provided.
  • the negative electrode contains at least NaTi 2 (PO 4 ) 3 and contains.
  • a sodium secondary battery in which the electrolytic solution contains at least NaClO 4 can be mentioned.
  • the sodium secondary battery of the present disclosure is represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co).
  • a sodium secondary battery comprising a positive electrode containing a sodium transition metal polyanion, a negative electrode, and an electrolytic solution, wherein the negative electrode contains at least NaTi 2 (PO 4 ) 3 and the electrolytic solution is an aqueous electrolytic solution containing at least NaClO 4. , Can be mentioned.
  • the sodium secondary battery provided with the positive electrode containing NaTP of the present embodiment exhibits a higher charge / discharge capacity than the conventional sodium secondary battery, particularly the conventional aqueous sodium secondary battery.
  • the composition ratio of the transition metal and the sodium metal was analyzed by Rietvelt using the data processing software (product name: PDXL-2) attached to the X-ray diffractometer, and the crystal phase of the product was identified.
  • the simulation pattern in the Rietvelt analysis the XRD pattern in which the V of Na 3 V (OH) (HPO 4 ) (PO 4 ) in the reference is replaced with an arbitrary M (that is, Fe) is calculated using the data processing software. Then, the simulation pattern was identified by comparing the measured XRD pattern. The purity of NaTP was determined by the RIR method from the abundance ratio (area intensity ratio) of the main XRD pattern.
  • WH diameter using all the XRD peaks attributed to NaTP was determined and used as the crystallite diameter.
  • Example 1 Iron phosphate (FePO 4 ⁇ n-hydrate .n 7), were mixed sodium dodecahydrate phosphate (Na 3 PO 4 ⁇ 12H 2 O), which in 85% orthophosphoric acid (H 3 PO 4 ) and it was added pure water (H 2 O) to obtain a composition having the following composition.
  • Iron phosphate 2.36 g
  • Sodium Phosphate 12 Hydrate 4.80 g 85% orthophosphoric acid: 0.36 g
  • Pure water 15 g
  • the pH of the composition was 8.0.
  • composition was filled and sealed in a Teflon (registered trademark) resin container with a lid, placed in a constant temperature bath, and subjected to hydrothermal treatment under the following conditions.
  • Teflon registered trademark
  • Hydrothermal treatment temperature 100 ° C
  • Hydrothermal treatment time 120 hours
  • Hydrothermal treatment pressure After hydrothermal treatment under spontaneous pressure, the product is washed with pure water and filtered, dried in a vacuum atmosphere at 120 ° C. for 4 hours, and then crushed into powdered sodium iron polyanion.
  • the obtained sodium iron polyanion has 100% purity (that is, the XRD pattern of the sodium iron polyanion is only the XRD pattern represented by Na 3 Fe (OH) (HPO 4 ) (PO 4 )), and the crystal structure is It was a monoclinic crystal attributed to the space group C2 / m.
  • the lattice constants are 15.464 (9) ⁇ for a, 7.273 (6) ⁇ for b, 7.049 (1) ⁇ for c, and 96.692 (5) ° for ⁇ , respectively.
  • the child diameter was 42 ⁇ .
  • Example 2 The sodium iron polyanion of this example was obtained in the same manner as in Example 1 except that the raw material composition had the following composition.
  • Iron phosphate 2.36 g
  • Sodium Phosphate 12 Hydrate 4.80 g 85% orthophosphoric acid: 0.72g
  • Pure water 15 g
  • the pH of the composition was 7.0.
  • FIG. 2 shows the XRD pattern of the obtained sodium iron polyanion.
  • the obtained sodium iron polyanion had a purity of 99.9%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m.
  • the lattice constants are 15.476 (6) ⁇ for a, 7.280 (1) ⁇ for b, 7.048 (3) ⁇ for c, and 96.692 (9) ° for ⁇ , respectively.
  • the diameter was 37 ⁇ .
  • Example 3 A sodium iron polyanion was obtained in the same manner as in Example 1 except that the hydrothermal treatment temperature was 150 ° C. and the hydrothermal treatment time was 16 hours.
  • FIG. 3 shows the XRD pattern of the obtained sodium iron polyanion.
  • the obtained sodium iron polyanion had a purity of 86.4%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m.
  • the lattice constants are 15.471 (7) ⁇ for a, 7.273 (9) ⁇ for b, 7.044 (2) ⁇ for c, and 96.688 (1) ° for ⁇ , respectively.
  • the diameter was 147 ⁇ .
  • Example 4 Iron and manganese were added to Fe: Mn in the same manner as in Example 1 except that the raw material composition had the following composition, the hydrothermal treatment temperature was 150 ° C., and the hydrothermal treatment time was 16 hours.
  • the obtained sodium iron manganese polyanion had a purity of 99.9%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m.
  • the lattice constants are 15.502 (4) ⁇ for a, 7.331 (2) ⁇ for b, 7.118 (2) ⁇ for c, and 95.932 (9) ° for ⁇ , respectively.
  • the child diameter was 97 ⁇ .
  • the obtained sodium iron cobalt polyanion had a purity of 99.9%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m.
  • the lattice constants are 15.513 (6) ⁇ for a, 7.340 (0) ⁇ for b, 7.113 (3) ⁇ for c, and 96.324 (1) ° for ⁇ , respectively.
  • the child diameter was 248 ⁇ .
  • NaTP having a carbon layer and a conductive binder (product name: TAB-2, manufactured by Hosen Co., Ltd.) were weighed so as to have a weight ratio of 2: 1 and mixed in an agate mortar to prepare a positive electrode mixture.
  • the obtained positive electrode mixture was placed on a SUS mesh (SUS316) having a diameter of 8 mm, and this was uniaxially pressed at 1 ton / cm 2 to obtain positive electrode mixture pellets.
  • the positive electrode mixture pellet was dried under reduced pressure at 150 ° C. for 2 hours, and this was used as a positive electrode.
  • Test electrode Positive electrode
  • Counter electrode Platinum (Pt) plate
  • Reference electrode Saturated caromel electrode
  • Electrolyte (Electrolyte) NaPF 6 1 mol / dm 3 (Solvent)
  • Ethylene carbonate (EC): Dimethyl carbonate (DMC) 1: 1 (volume ratio)
  • a constant current charge / discharge test was evaluated using a non-aqueous sodium secondary battery.
  • the evaluation conditions are as follows. Temperature: Room temperature (24.5 ⁇ 2.5 ° C) Electrode potential: -2.18 to 2.02 V (based on saturated calomel electrode) Current value: Constant current value of 1 mA / cm 2 Number of charge / discharge cycles: 10 cycles The potential of the saturated calomel electrode reference is equivalent to 0.76 to 4.98 V of the sodium electrode reference.
  • the discharge capacity at the 10th cycle was 153 mAh / g for the non-aqueous sodium secondary battery having NaTP of Example 1 as the positive electrode active material, and NaTP of Example 2 as the positive electrode active material, respectively.
  • the non-aqueous sodium secondary battery was 148 mAh / g
  • the non-aqueous sodium secondary battery provided with NaTP of Example 3 as the positive electrode active material was 121 mAh / g.
  • FIG. 4 shows the discharge capacities of the non-aqueous sodium secondary battery provided with NaTP of Example 1 as the positive electrode active material in the first cycle and the tenth cycle.
  • the discharge capacity in the first cycle was 161 mAh / g.
  • Measurement Example 2 Evaluation of water-based sodium secondary battery (Formation of coating layer) Using the NaTP obtained in Examples 1 and 2, a carbon layer (coating layer) was formed on the surface of NaTP in the same manner as in Measurement Example 1 to obtain NaTP having a carbon layer.
  • NaTP having a carbon layer was used as a positive electrode active material, and AB and PTFE were mixed at a weight ratio of 60:30 to 10 to obtain a pellet-shaped positive electrode mixture having a diameter of 4 mm.
  • a positive electrode mixture is used for the working electrode (positive electrode), a plate-shaped zinc metal (Zn) is used for the counter electrode (negative electrode), a silver chloride electrode (Ag / AgCl) is used for the reference electrode, and an electrolyte concentration (NaClO 4 concentration) of 15.5 m is used for the electrolytic solution.
  • An aqueous sodium secondary battery containing an aqueous solution of NaClO 4 was prepared. The aqueous sodium secondary battery was charged and discharged under the following conditions, and its discharge capacity was measured.
  • FIG. 5 shows the discharge curve (first cycle) of the aqueous sodium-ion secondary battery provided with NaTP of Example 1.
  • Measurement Example 3 Evaluation of water-based sodium secondary battery
  • NaTP of Examples 1 and 3 was used and a negative electrode using NaTi 2 (PO 4 ) 3 synthesized by the Pechini method as a negative electrode active material was used as the negative electrode.
  • Water-based sodium battery characteristics were evaluated.
  • the method for manufacturing the negative electrode is shown below. (Preparation of negative electrode) 40 ml of a solution of Ti (OCH 2 CH 2 CH 2 CH 3 ) 4 in a 30% aqueous solution of hydrogen peroxide, 15 ml of 28% aqueous ammonia, and 10 ml of a nitric acid solution of citric acid in an amount twice as much as Na 2 CO 3 and Ti.
  • the obtained NaTi 2 (PO 4 ) 3 and acetylene black (AB) are mixed so as to have a weight ratio of 70:30, and then treated using a planetary ball mill at 400 rpm for 1 hour under Ar atmosphere. By doing so, NaTi 2 (PO 4 ) 3 was carbon-coated and used as a negative electrode active material.
  • the obtained negative electrode active material and PTFE were mixed at a weight ratio of 90:10 and molded into pellets having a diameter of 4 mm to prepare a negative electrode mixture.
  • Measurement Example 4 Evaluation of water-based sodium secondary battery
  • 0.70 g of NaTP obtained in Examples 4 and 5 and 0.05 g of acetylene black (manufactured by Denka Corporation, Li-435) are mixed using a planetary ball mill at 600 rpm for 1 hour under an argon atmosphere. Was carried out to obtain a mixed powder. 0.25 g of acetylene black was added to the obtained mixed powder, and the mixture was mixed in an argon atmosphere at 200 rpm for 0.5 hours using a planetary ball mill, and the weight ratio of NaTP: acetylene black was 70:30. The positive electrode active material of was obtained.
  • the obtained positive electrode active material and PTFE were mixed at a weight ratio of 90:10 and rolled, and then pellets having a diameter of 4 mm and a mass of 4 mg were cut out and used as a positive electrode.
  • the discharge capacities of the cells using NaTP in Examples 4 and 5 in the first cycle were 76 mAh / g in Example 5 and 78 mAh / g in Example 6, respectively. rice field.
  • Comparative measurement example non-aqueous sodium ion secondary battery
  • NaFePO 4 sodium-containing transition metal phosphoric acid compound having an olivine structure
  • a pellet-shaped positive electrode mixture was obtained in the same manner as in Measurement Example 2 except that the obtained NaFePO 4 was used as the positive electrode active material.
  • a non-aqueous sodium secondary battery was prepared by the same method as in Measurement Example 2 except that the obtained positive electrode mixture was used, and a charge / discharge test was conducted. As a result, the discharge capacity in the first cycle was 60 mAh / g.
  • the NaTP of this example exhibits a discharge capacity more than twice as much as the positive electrode active material of the non-aqueous sodium secondary battery as compared with the olivine-based sodium-containing transition metal phosphoric acid compound. can. Further, from Measurement Examples 1 and 2, the discharge capacity of the positive electrode active material is lower in the aqueous sodium secondary battery than in the non-aqueous sodium secondary battery. Nevertheless, the NaTP of this example can be used as a positive electrode active material for an aqueous sodium secondary battery as well as a non-aqueous sodium ion secondary battery using a conventional olivine sodium-containing transition metal phosphate compound as a positive electrode active material. It can be confirmed that the discharge capacity is equal to or higher than that.
  • the sodium transition metal polyanions of the present disclosure are suitably used as adsorbents, ion exchangers, hydrogen ion conductors, solid electrolytes, battery materials, particularly active materials for electrochemical devices, and positive electrode active materials for sodium secondary batteries. can.

Abstract

The present invention provides at least one of: a novel sodium transition metal polyanion; a positive electrode active material containing this sodium transition metal polyanion; a sodium secondary battery; and production methods thereof. A sodium transition metal polyanion which is characterized by having a powder X-ray diffraction pattern represented by general formula Na3M(OH)(HPO4)(PO4) (wherein M represents at least one element selected from the group consisting of Fe, Mn, Ni and Co) and by having a monoclinic crystal structure. It is preferable that this sodium transition metal polyanion is obtained by a production method which is characterized by having a step wherein a composition that contains a sodium source, a transition metal source, a phosphoric acid source and water, while having a pH of from 4.0 to 11.0 is subjected to a hydrothermal treatment at a temperature of from 80°C to 180°C.

Description

ナトリウム遷移金属ポリアニオンSodium transition metal polyanion
 本開示は、新規のナトリウム遷移金属ポリアニオンとその製造方法に関する。 The present disclosure relates to a novel sodium transition metal polyanion and a method for producing the same.
 ナトリウム二次電池は、レアメタルであるリチウムを使用しないため、ポストリチウム二次電池として注目を集めている。ナトリウム二次電池の正極活物質として、遷移金属酸化物、ポリアニオン又はフッ化物などの対アニオンとナトリウムとを含有するナトリウム遷移金属含有材料が検討されている。ナトリウム遷移金属含有材料の中でもナトリウム含有遷移金属ポリアニオンは、高い充放電容量の発現が期待されている。 Sodium secondary batteries are attracting attention as post-lithium secondary batteries because they do not use lithium, which is a rare metal. As a positive electrode active material for a sodium secondary battery, a sodium transition metal-containing material containing sodium and a counter anion such as a transition metal oxide, polyanion or fluoride has been studied. Among the sodium transition metal-containing materials, the sodium-containing transition metal polyanion is expected to exhibit a high charge / discharge capacity.
 例えば、オリビン構造を有するナトリウム遷移金属リン酸化合物であるナトリウムリン酸鉄(NaFePO)などは、Naカチオンの可逆的な挿入脱離反応を行うことが報告されている(例えば、特許文献1)。しかしながら、得られる放電容量は60mAh/g程度の低い容量に留まっている。 For example, iron sodium phosphate (NaFePO 4 ), which is a sodium transition metal phosphate compound having an olivine structure, has been reported to carry out a reversible insertion / elimination reaction of Na cations (for example, Patent Document 1). .. However, the obtained discharge capacity remains as low as about 60 mAh / g.
日本国特開2009-206085号公報Japanese Patent Application Laid-Open No. 2009-206085
 本開示は、新規のナトリウム遷移金属ポリアニオン、これを含む正極活物質及びナトリウム二次電池、並びに、これらの製造方法の少なくともいずれかを提供することを目的とする。 It is an object of the present disclosure to provide a novel sodium transition metal polyanion, a positive electrode active material and a sodium secondary battery containing the same, and at least one of these manufacturing methods.
 本開示では新規なナトリウム遷移金属ポリアニオンを見出し、これがナトリウム二次電池の正極活物質として使用できること、更には当該ナトリウム遷移金属ポリアニオンを正極材とするナトリウム二次電池が、従来のナトリウム二次電池より高い放電容量を発現することを見出した。 In the present disclosure, a novel sodium transition metal polyanion is found, which can be used as a positive electrode active material of a sodium secondary battery, and further, a sodium secondary battery using the sodium transition metal polyanion as a positive electrode material is more than a conventional sodium secondary battery. It has been found that a high discharge capacity is exhibited.
 すなわち、本発明は特許請求の範囲の記載のとおりであり、本開示の要旨は以下のとおりである。
[1] 一般式NaM(OH)(HPO)(PO)(但し、MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表される粉末X線回折パターンを有し、結晶構造が単斜晶であることを特徴とするナトリウム遷移金属ポリアニオン。
[2] 前記単斜晶が、空間群C2/mに属する単斜晶である、上記[1]に記載のナトリウム遷移金属ポリアニオン。
[3] 前記ナトリウム遷移金属ポリアニオンの粉末X線回折パターンに占める、一般式NaM(OH)(HPO)(PO)(但し、MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表される粉末X線回折パターンの割合が、80%以上である、上記[1]又は[2]に記載のナトリウム遷移金属ポリアニオン。
[4] 格子定数が、それぞれ、aが15.35Å以上15.55Å以下、bが7.19Å以上7.35Å以下、cが6.95Å以上7.12Å以下、及び、βが95.8°以上97.5°以下である、上記[1]乃至[3]のいずれかひとつに記載のナトリウム遷移金属ポリアニオン。
[5] 被覆層を含む上記[1]乃至[4]のいずれかひとつに記載のナトリウム遷移金属ポリアニオン。
[6] ナトリウム源、遷移金属源、リン酸源及び水を含有し、pHが4.0以上11.0以下である組成物を80℃以上180℃以下で水熱処理する工程、を有することを特徴とする上記[1]乃至[5]のいずれかひとつに記載のナトリウム遷移金属ポリアニオンの製造方法。
[7] 前記pHが6.0以上9.0以下である、上記[6]に記載の製造方法。
[8] 遷移金属源が、Fe、Mn、Ni及びCoの群から選ばれる1以上を含む酸化物、水酸化物、オキシ水酸化物、リン酸塩、亜硫酸塩、硫酸塩、硝酸塩、塩化物、酢酸塩、臭化物及びフッ化物の群から選ばれる1以上である、上記[6]又は[7]に記載の製造方法。
[9] 上記[1]乃至[5]のいずれかひとつに記載のナトリウム遷移金属ポリアニオンを含む正極活物質。
[10] 上記[1]乃至[5]のいずれかひとつに記載のナトリウム遷移金属ポリアニオンを含む正極と、負極及び電解液を備えることを特徴とするナトリウム二次電池。
[11] 前記負極が、少なくともNaTi(POを含む上記[10]に記載のナトリウム二次電池
[12] 前記電解液が、少なくともNaClOを含む上記[10]又は[11]に記載のナトリウム二次電池。
[13] 前記電解液が、水系電解液である上記[10]乃至[12]のいずれかひとつに記載のナトリウム二次電池。
[14] 前記電解液が、非水系電解液である上記[10]乃至[12]のいずれかひとつに記載のナトリウム二次電池。
That is, the present invention is as described in the claims, and the gist of the present disclosure is as follows.
[1] Has a powder X-ray diffraction pattern represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (where M is 1 or more selected from the group of Fe, Mn, Ni and Co). A sodium transition metal polyanion characterized by a monoclinic crystal structure.
[2] The sodium transition metal polyanion according to the above [1], wherein the monoclinic crystal is a monoclinic crystal belonging to the space group C2 / m.
[3] The general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (where M is selected from the group of Fe, Mn, Ni and Co) in the powder X-ray diffraction pattern of the sodium transition metal polyanion. The sodium transition metal polyanion according to the above [1] or [2], wherein the ratio of the powder X-ray diffraction pattern represented by (1 or more) is 80% or more.
[4] The lattice constants are as follows: a is 15.35 Å or more and 15.55 Å or less, b is 7.19 Å or more and 7.35 Å or less, c is 6.95 Å or more and 7.12 Å or less, and β is 95.8 °. The sodium transition metal polyanion according to any one of the above [1] to [3], which is 97.5 ° or less.
[5] The sodium transition metal polyanion according to any one of the above [1] to [4], which comprises a coating layer.
[6] Having a step of hydrothermally treating a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less at 80 ° C. or more and 180 ° C. or less. The method for producing a sodium transition metal polyanion according to any one of the above [1] to [5].
[7] The production method according to the above [6], wherein the pH is 6.0 or more and 9.0 or less.
[8] The transition metal source is an oxide containing one or more selected from the group of Fe, Mn, Ni and Co, hydroxide, oxyhydroxide, phosphate, sulfite, sulfate, nitrate, chloride. The production method according to the above [6] or [7], which is one or more selected from the group of acetates, bromides and fluorides.
[9] The positive electrode active material containing the sodium transition metal polyanion according to any one of the above [1] to [5].
[10] A sodium secondary battery comprising a positive electrode containing the sodium transition metal polyanion according to any one of the above [1] to [5], a negative electrode, and an electrolytic solution.
[11] The sodium secondary battery [12] according to the above [10], wherein the negative electrode contains at least NaTi 2 (PO 4 ) 3, and the above [10] or [11], wherein the electrolytic solution contains at least NaClO 4. The sodium secondary battery described.
[13] The sodium secondary battery according to any one of the above [10] to [12], wherein the electrolytic solution is an aqueous electrolytic solution.
[14] The sodium secondary battery according to any one of the above [10] to [12], wherein the electrolytic solution is a non-aqueous electrolytic solution.
 本開示により、新規のナトリウム遷移金属ポリアニオン、これを含む正極活物質、ナトリウム二次電池及びこれらの製造方法の少なくともいずれか提供することができる。 According to the present disclosure, it is possible to provide at least one of a novel sodium transition metal polyanion, a positive electrode active material containing the same, a sodium secondary battery, and a method for producing these.
実施例1のナトリウム鉄ポリアニオンの粉末X線回折パターン。The powder X-ray diffraction pattern of the sodium iron polyanion of Example 1. 実施例2のナトリウム鉄ポリアニオンの粉末X線回折パターン。The powder X-ray diffraction pattern of the sodium iron polyanion of Example 2. 実施例3のナトリウム鉄ポリアニオンの粉末X線回折パターン。The powder X-ray diffraction pattern of the sodium iron polyanion of Example 3. 測定例1における、実施例1のナトリウム鉄ポリアニオンを正極活物質として備えた非水系ナトリウム二次電池の放電容量プロファイルを示す図(図中、実線は1サイクル目の放電容量、及び破線は10サイクル目の放電容量)The figure which shows the discharge capacity profile of the non-aqueous sodium secondary battery which provided the sodium iron poly anion of Example 1 as a positive electrode active material in the measurement example 1 (in the figure, the solid line is the discharge capacity of the first cycle, and the broken line is 10 cycles. Eye discharge capacity) 測定例2における、実施例1のNaTPを備えた水系ナトリウム二次電池の放電曲線(1サイクル目)Discharge curve of the aqueous sodium secondary battery provided with NaTP of Example 1 in Measurement Example 2 (1st cycle) 測定例3における、実施例3のNaTPを備えた水系ナトリウム二次電池の放電曲線(1サイクル目)Discharge curve of the aqueous sodium secondary battery provided with NaTP of Example 3 in Measurement Example 3 (1st cycle)
<ナトリウム遷移金属ポリアニオン>
 以下、本開示のナトリウム遷移金属ポリアニオンについて実施形態の一例を示して説明する。
<Sodium transition metal polyanion>
Hereinafter, an example of the embodiment of the sodium transition metal polyanion of the present disclosure will be described.
 本実施形態のナトリウム遷移金属ポリアニオンは、一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表される粉末X線回折パターンを有し、なおかつ、結晶構造が単斜晶であることを特徴とするナトリウム遷移金属ポリアニオンである。 The sodium transition metal polyanion of the present embodiment is a powder X represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co). It is a sodium transition metal polyanion characterized by having a linear diffraction pattern and having a monoclinic crystal structure.
 本実施形態において「ナトリウム遷移金属ポリアニオン(Sodium Transition-Metal Polyanion;以下、「NaTP」ともいい、遷移金属が鉄である場合等は、それぞれ「ナトリウム鉄ポリアニオン」又は「NaFeP」等ともいう。)」は、ナトリウム(Na)、遷移金属及び2以上のアニオンからなる化合物であり、人工的に合成された化合物、すなわち合成ナトリウム遷移金属ポリアニオン、であることが好ましい。 In the present embodiment, "sodium transition-metal polyanion (hereinafter, also referred to as" NaTP ", and when the transition metal is iron, etc., also referred to as" sodium iron polyanion "or" NaFeP ", etc.)". Is a compound composed of sodium (Na), a transition metal and two or more anions, and is preferably an artificially synthesized compound, that is, a synthetic sodium transition metal polyanion.
 本実施形態のNaTPに含まれる遷移金属は、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)及びコバルト(Co)の群から選ばれる1以上であり、鉄、マンガン及びニッケルの群から選ばれる1以上、更には鉄及びマンガンの少なくともいずれか、また更には鉄であることが好ましい。本実施形態のNaTPは、鉄を含んでいることが好ましく、マンガン、ニッケル及びコバルトの群から選ばれる1以上と、鉄と、を含んでいてもよく、マンガン及びコバルトの少なくともいずれかと、鉄と、を含んでいてもよい。更には、本実施形態のNaTPは、少なくとも、マンガン、ニッケル及びコバルトの群から選ばれる1以上を含んでいてもよい。 アニオンは、少なくともリン酸イオン(PO 3-)及び水酸化物イオン(OH)を含んでおり、リン酸イオン、リン酸水素イオン(HPO 2-)及び水酸化物イオン(OH)であることが好ましい。 The transition metal contained in NaTP of the present embodiment is one or more selected from the group of iron (Fe), manganese (Mn), nickel (Ni) and cobalt (Co), and is selected from the group of iron, manganese and nickel. 1 or more, and at least one of iron and manganese, and more preferably iron. The NaTP of the present embodiment preferably contains iron, and may contain one or more selected from the group of manganese, nickel, and cobalt, iron, and at least one of manganese and cobalt, and iron. , May be included. Furthermore, the NaTP of the present embodiment may contain at least one or more selected from the group of manganese, nickel and cobalt. Anion, at least phosphate ion (PO 4 3-) and hydroxide ions (OH -) Includes, phosphate ions, hydrogen phosphate ions (HPO 4 2-) and hydroxide ions (OH -) Is preferable.
 本実施形態のNaTPは、塩化物イオン(Cl)、臭化物イオン(Br)、硫酸イオン(SO 2-)及び硝酸イオン(NO )の群から選ばれる1以上のアニオンを含まないことが好ましく、塩化物イオンを含まないことがより好ましい。 NaTP of this embodiment, chloride ion (Cl -), bromide ion (Br -) - does not contain one or more anions selected from the group of, Sulfate ion (SO 4 2-) and nitrate ion (NO 3) It is preferable, and it is more preferable that it does not contain chloride ions.
 本実施形態のNaTPは、一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表される粉末X線回折パターン(以下、「XRDパターン」ともいう。)を有する。XRDパターンは、一般的な粉末X線回折装置を使用して測定すればよい。XRDパターンの好ましい測定条件として、以下の条件が例示できる。
      線源     : CuKα線(λ=1.5405Å)
      測定モード  : ステップスキャン
      スキャン条件 : 20°/分
      計測時間   : 3秒
      2θ     : 5°から90°
The NaTP of this embodiment is a powder X-ray diffraction pattern represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co). (Hereinafter, also referred to as "XRD pattern"). The XRD pattern may be measured using a general powder X-ray diffractometer. The following conditions can be exemplified as preferable measurement conditions for the XRD pattern.
Radioactive source: CuKα ray (λ = 1.5405Å)
Measurement mode: Step scan Scan condition: 20 ° / min Measurement time: 3 seconds 2θ: 5 ° to 90 °
 一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表されるXRDパターン(以下、「メインXRDパターン」ともいう。)は、シミュレーションにより得られるメインXRDパターン(以下、「シミュレーションパターン」ともいう。)と、測定された本実施形態のNaTPのXRDパターンと、のRietveld解析による対比(フィッティング)によって、その存在及び存在割合を確認すればよい。シミュレーションパターンは、NaV(OH)(HPO)(PO)のVを任意の遷移金属(M、すなわち、Fe、Mn、Ni及びCoの群から選ばれる1以上)に置換した化合物の計算により求まるXRDパターンであればよい。本実施形態のNaTPのフィッティングで使用する好ましいシミュレーションパターンとして、Inorg.Chem.,2008,47,10062-10066に記載のNaV(OH)(HPO)(PO)の、結晶データ(Table.1)並びに、構成元素の配位数及び原子配置(Table.2)(以下、「参照文献」ともいう。)において、VをFeに置換して得られるXRDパターンが挙げられる。本実施形態において、該XRDパターンは、少なくともFeを含むNaTPのフィッティングにおけるシミュレーションパターンとして使用することができる。 An XRD pattern represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co) (hereinafter, also referred to as “main XRD pattern”). ) Is present and present by comparison (fitting) between the main XRD pattern obtained by simulation (hereinafter, also referred to as “simulation pattern”) and the measured XRD pattern of NaTP of the present embodiment by Rietveld analysis. You can check the abundance ratio. The simulation pattern is for a compound in which the V of Na 3 V (OH) (HPO 4 ) (PO 4 ) is replaced with an arbitrary transition metal (M, that is, one or more selected from the group of Fe, Mn, Ni and Co). Any XRD pattern obtained by calculation may be used. As a preferred simulation pattern used in the NaTP fitting of this embodiment, Inorg. Chem. , 2008, 47, 20062-10066 , crystal data (Table. 1) of Na 3 V (OH) (HPO 4 ) (PO 4 ), coordination numbers and atomic arrangements of constituent elements (Table. 2). (Hereinafter, also referred to as “reference document”), an XRD pattern obtained by substituting V with Fe can be mentioned. In this embodiment, the XRD pattern can be used as a simulation pattern in the fitting of NaTP containing at least Fe.
 本実施形態のNaTPにおいて「メインXRDパターンを有する」とは、本実施形態のNaTPをXRD測定して得られるXRDパターンにおいて、メインXRDパターンが確認できること、すなわちメインXRDパターンが含まれていること、である。 In the NaTP of the present embodiment, "having a main XRD pattern" means that the main XRD pattern can be confirmed in the XRD pattern obtained by XRD measuring the NaTP of the present embodiment, that is, the main XRD pattern is included. Is.
 本実施形態のNaTPは、そのXRDパターンに占める、メインXRDパターンの割合(以下、「純度」ともいう。)が80%以上であり、85%以上であることが好ましく、90%以上であることがより好ましく、99%以上であることが更に好ましい。本実施形態のNaTPのXRDパターンが、メインXRDパターンのみである場合、純度は100%となる。本実施形態のNaTPは微量の副生相、すなわちナトリウムの脱離及び挿入を阻害しない程度の副生相、を含むことは許容される。そのため、純度は100%以下、更には100%未満であればよい。本実施形態おける純度は、参照強度比(以下、「RIR」ともいう。)法から求めることができる。具体的には、XRDパターンと、シミュレーションパターンとのRietveld解析による対比における面積強度の割合によって、純度を求めればよい。 The NaTP of the present embodiment has a ratio of the main XRD pattern (hereinafter, also referred to as “purity”) to the XRD pattern of 80% or more, preferably 85% or more, and preferably 90% or more. Is more preferable, and 99% or more is further preferable. When the XRD pattern of NaTP in this embodiment is only the main XRD pattern, the purity is 100%. It is permissible for NaTP in this embodiment to contain a trace amount of by-product phase, i.e., a by-product phase that does not inhibit the elimination and insertion of sodium. Therefore, the purity may be 100% or less, and further less than 100%. The purity in this embodiment can be determined by the reference intensity ratio (hereinafter, also referred to as “RIR”) method. Specifically, the purity may be determined by the ratio of the area strength in the comparison between the XRD pattern and the simulation pattern by Rietveld analysis.
 本実施形態のNaTPは結晶構造が単斜晶であり、空間群C2/mに属する単斜晶であることが好ましい。単斜晶は、格子定数a、b及びcがそれぞれ異なる値であり、なおかつ、α、γがいずれも90°であり、βが異なる値(すなわち90°以外)となる結晶構造である。 The NaTP of the present embodiment preferably has a monoclinic crystal structure and is a monoclinic crystal belonging to the space group C2 / m. A single oblique crystal has a crystal structure in which lattice constants a, b, and c have different values, α, and γ are all 90 °, and β has a different value (that is, other than 90 °).
 本実施形態のNaTPの格子定数は、それぞれ、aが15.35Å以上15.55Å以下、好ましくは15.40Å以上15.50Å以下、bが7.19Å以上7.35Å以下、好ましくは7.20Å以上7.30Å以下、及び、cが6.95Å以上7.12Å以下、好ましくは7.00Å以上7.10Å以下であり、なおかつ、βが95.8°以上97.5°以下、好ましくは96.3°以上97.0°以下であることが挙げられる。例えば、本実施形態のNaFeP(ナトリウム鉄ポリアニオン)の格子定数として、aが15.45Å以上15.55Å以下、bが7.27Å以上7.35Å以下、cが7.04Å以上7.12Å以下であり、なおかつ、βが95.9°以上96.7°以下であることが挙げられる。また本実施形態のNaFeMnP(ナトリウム鉄マンガンポリアニオン)の格子定数として、aが15.50Å以上15.55Å以下、bが7.30Å以上7.35Å以下、cが7.05Å以上7.12Å以下であり、なおかつ、βが95.8°以上96.5°以下であること、本実施形態のNaFeCoP(ナトリウム鉄コバルトポリアニオン)の格子定数として、aが15.50Å以上15.55Å以下、bが7.30Å以上7.40Å以下、cが7.04Å以上7.12Å以下であり、なおかつ、βが95.9°以上96.7°以下であること、が例示できる。 The lattice constants of NaTP in this embodiment are such that a is 15.35 Å or more and 15.55 Å or less, preferably 15.40 Å or more and 15.50 Å or less, and b is 7.19 Å or more and 7.35 Å or less, preferably 7.20 Å. 7.30 Å or less, c is 6.95 Å or more and 7.12 Å or less, preferably 7.00 Å or more and 7.10 Å or less, and β is 95.8 ° or more and 97.5 ° or less, preferably 96. It can be mentioned that it is 0.3 ° or more and 97.0 ° or less. For example, as the lattice constant of NaFeP (sodium iron polyanion) of the present embodiment, a is 15.45 Å or more and 15.55 Å or less, b is 7.27 Å or more and 7.35 Å or less, and c is 7.04 Å or more and 7.12 Å or less. Yes, and β is 95.9 ° or more and 96.7 ° or less. Further, as the lattice constant of NaFeMnP (sodium iron manganese polyanion) of the present embodiment, a is 15.50 Å or more and 15.55 Å or less, b is 7.30 Å or more and 7.35 Å or less, and c is 7.05 Å or more and 7.12 Å or less. Yes, β is 95.8 ° or more and 96.5 ° or less, and as the lattice constant of NaFeCoP (sodium iron cobalt polyanion) of this embodiment, a is 15.50 Å or more and 15.55 Å or less, and b is 7. It can be exemplified that .30 Å or more and 7.40 Å or less, c is 7.04 Å or more and 7.12 Å or less, and β is 95.9 ° or more and 96.7 ° or less.
 本実施形態のNaTPは、このような純度及び結晶構造を兼備することで、従来のNaTPと比べて、ナトリウムイオンの挿入及び脱離が容易に生じやすくなること、これによる高い充放電特性を発現することが期待できる。 By combining such purity and crystal structure, the NaTP of the present embodiment easily inserts and desorbs sodium ions as compared with the conventional NaTP, and thus exhibits high charge / discharge characteristics. You can expect to do it.
 本実施形態のNaTPの結晶子径は、20Å以上1500Å以下であることが好ましく、例えば、Feを含むNaTPの結晶子径として20Å以上又は30Å以上であり、また、200Å以下、150Å以下又は100Å以下であることが挙げられる。純度が80%以上であり、なおかつ、結晶子径がこの範囲であることで、本実施形態のNaTPは、ナトリウムの挿入及び脱離がより効率的に進行しやすくなり、ナトリウム二次電池の正極活物質として高い充放電容量の発現が期待できる。 The crystallite diameter of NaTP in the present embodiment is preferably 20 Å or more and 1500 Å or less, for example, the crystallite diameter of NaTP containing Fe is 20 Å or more or 30 Å or more, and 200 Å or less, 150 Å or less or 100 Å or less. Is mentioned. When the purity is 80% or more and the crystallite diameter is in this range, the NaTP of the present embodiment facilitates the insertion and desorption of sodium more efficiently, and the positive electrode of the sodium secondary battery. High charge / discharge capacity can be expected as an active material.
 本実施形態において「結晶子径」は、一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)のXRDパターンに帰属される2以上のXRDピークから、Williamson-Hall法により求まる径(以下、「WH径」ともいう。)である。具体的には、一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)に帰属できる2以上のXRDピーク、好ましくは一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)に帰属できる全てのXRDピーク、について、それぞれ、以下のプロットを行う。得られる複数点のプロットの最小二乗法により以下の一次近似式を求め、該一次近似式のy切片の逆数が結晶子径である。 In this embodiment, the "crystallizer diameter" belongs to the XRD pattern of the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co). It is a diameter (hereinafter, also referred to as “WH diameter”) obtained by the Williamson-Hall method from two or more XRD peaks. Specifically, two or more XRD peaks that can be attributed to the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co), preferably two or more XRD peaks. The following plots are shown for all XRD peaks that can be attributed to the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group Fe, Mn, Ni and Co). conduct. The following first-order approximation formula is obtained by the least squares method of the obtained plot of a plurality of points, and the reciprocal of the y-intercept of the first-order approximation formula is the crystallite diameter.
 <プロット>
     Y=(β・sinθ)/λ
     X=sinθ/λ
 <一次近似式>
     Y=2η・X+(1/ε) ・・・(1式)
 これらの式において、βは半値幅(°)、θは回折角(°)、λは線源の波長(nm)、ηは不均一歪及びεは結晶子径(Å)であり、なおかつ、一次近似式における1/εがy切片である。なお、本実施形態におけるWH径の算出に当たり、使用するXRDピークには特に制限はなく、例えば、NaTPに帰属される全てのXRDピークを使用すればよい。
<Plot>
Y = (β · sinθ) / λ
X = sinθ / λ
<First-order approximation formula>
Y = 2η ・ X + (1 / ε) ・ ・ ・ (1 formula)
In these equations, β is the full width at half maximum (°), θ is the diffraction angle (°), λ is the wavelength of the radiation source (nm), η is the heterogeneous strain, and ε is the crystallite diameter (Å). 1 / ε in the linear approximation formula is the y-intercept. In calculating the WH diameter in the present embodiment, the XRD peak to be used is not particularly limited, and for example, all XRD peaks belonging to NaTP may be used.
 本実施形態のNaTPは、表面の一部又は全部に金属、フッ素、フッ化物、リン、リン化合物、金属酸化物、炭素、炭素を含む化合物及び導電性高分子の群から選ばれる1以上の層(以下、「被覆層」ともいう。)を有していてもよい。被覆層により、NaTPの導電性が高くなりやすい。被覆層は、炭素を含む化合物、炭素及び導電性高分子の群から選ばれる1以上の層であることが好ましく、炭素の層であることがより好ましい。被覆層はNaTPの全面を覆っていなくてもよい。 The NaTP of the present embodiment is one or more layers selected from the group of metals, fluorine, fluoride, phosphorus, phosphorus compounds, metal oxides, carbons, compounds containing carbons, and conductive polymers on a part or all of the surface. (Hereinafter, also referred to as “coating layer”) may be provided. The coating layer tends to increase the conductivity of NaTP. The coating layer is preferably one or more layers selected from the group of carbon-containing compounds, carbon and conductive polymers, and more preferably a carbon layer. The coating layer does not have to cover the entire surface of NaTP.
 本実施形態のNaTPの形状は任意であり、粉末、顆粒及び成形体の群から選ばれる1以上が例示でき、粉末であることが好ましい。 The shape of NaTP in this embodiment is arbitrary, and one or more selected from the group of powders, granules and molded articles can be exemplified, and powders are preferable.
 本実施形態のNaTPは、ナトリウムイオン(Na)の挿入及び脱離が容易に進行するため、吸着剤、イオン交換体、水素イオン伝導体、固体電解質、電池材料に使用することができ、更には、電気化学デバイスの活物質、特にナトリウム二次電池の正極活物質、更には水系ナトリウム二次電池の正極活物質、として使用することができる。
<ナトリウム遷移金属ポリアニオンの製造方法>
 以下、本実施形態のナトリウム遷移金属ポリアニオンの製造方法について説明する。
Since NaTP of the present embodiment facilitates insertion and desorption of sodium ions (Na + ), it can be used as an adsorbent, an ion exchanger, a hydrogen ion conductor, a solid electrolyte, and a battery material, and further. Can be used as an active material for an electrochemical device, particularly a positive electrode active material for a sodium secondary battery, and further as a positive electrode active material for an aqueous sodium secondary battery.
<Manufacturing method of sodium transition metal polyanion>
Hereinafter, the method for producing the sodium transition metal polyanion of the present embodiment will be described.
 本実施形態のNaTPは、ナトリウム源、遷移金属源、リン酸源及び水を含有し、pHが4.0以上11.0以下である組成物を80℃以上180℃以下で水熱処理する工程、を有することを特徴とする製造方法、により得ることができる。 The NaTP of the present embodiment is a step of hydrothermally treating a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less at 80 ° C. or more and 180 ° C. or less. It can be obtained by a production method, which is characterized by having.
 ナトリウム源、遷移金属源、リン酸源及び水を含有し、pHが4.0以上11.0以下である組成物(以下、「原料組成物」ともいう。)を水熱処理する工程(以下、「水熱処理工程」ともいう。)により、副生相の生成を著しく抑制することができ、本実施形態のNaTPを得ることができる。 A step of hydrothermally treating a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less (hereinafter, also referred to as “raw material composition”) (hereinafter, also referred to as “raw material composition”). By the "hydrothermal treatment step"), the formation of a by-product phase can be remarkably suppressed, and NaTP of the present embodiment can be obtained.
 ナトリウム源は、ナトリウム(Na)を含む化合物又はナトリウムの少なくともいずれかであり、水溶性のナトリウム塩であることが好ましい。好ましいナトリウム源として、フッ化ナトリウム、塩化ナトリウム、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、亜硫酸ナトリウム、硫酸ナトリウム、炭酸水素ナトリウム及び炭酸ナトリウムの群から選ばれる1以上、又は、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸二水素ナトリウム、亜硫酸ナトリウム、硫酸ナトリウム、炭酸水素ナトリウム及び炭酸ナトリウムの群から選ばれる1以上、更には、リン酸ナトリウム、リン酸水素ナトリウム及びリン酸水素二ナトリウムの群から選ばれる1以上が例示できる。 The sodium source is at least one of a compound containing sodium (Na) or sodium, and is preferably a water-soluble sodium salt. As a preferred sodium source, one or more selected from the group of sodium fluoride, sodium chloride, sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium sulfite, sodium sulfate, sodium hydrogen carbonate and sodium carbonate, or One or more selected from the group of sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, sodium sulfite, sodium sulfate, sodium hydrogen carbonate and sodium carbonate, and further, sodium phosphate, sodium hydrogen phosphate and phosphate. One or more selected from the group of disodium hydrogen hydrogen can be exemplified.
 リン酸源は、リン酸イオンを含む化合物であり、水溶性のリン酸及びリン酸塩の少なくともいずれかが好ましい。好ましいリン酸源として、オルトリン酸、リン酸ナトリウム、リン酸水素二ナトリウム、リン酸アンモニウム、リン酸リチウム及びリン酸カリウムの群から選ばれる1以上、更には、オルトリン酸、リン酸ナトリウム、リン酸水素ナトリウム及びリン酸水素二ナトリウムの群から選ばれる1以上が例示できる。 The phosphate source is a compound containing phosphate ions, and at least one of water-soluble phosphate and phosphate is preferable. As a preferable phosphoric acid source, one or more selected from the group of orthophosphoric acid, sodium phosphate, disodium hydrogen phosphate, ammonium phosphate, lithium phosphate and potassium phosphate, and further, orthophosphoric acid, sodium phosphate, phosphoric acid. One or more selected from the group of sodium hydrogen hydrogen and disodium hydrogen phosphate can be exemplified.
 原料組成物は、リン酸及びナトリウム源として、リン酸ナトリウムを含むことが好ましい。 The raw material composition preferably contains sodium phosphate as a source of phosphoric acid and sodium.
 遷移金属源は、鉄(Fe)、マンガン(Mn)、ニッケル(Ni)又はコバルト(Co)の群から選ばれる1以上を含む化合物、鉄、マンガン及びニッケルの少なくともいずれかを含む化合物、鉄又はマンガンの少なくともいずれかを含む化合物、若しくは、鉄を含む化合物である。遷移金属源は、鉄、マンガン、ニッケル及びコバルトの群から選ばれる1以上を含む酸化物、水酸化物、オキシ水酸化物、亜硫酸塩、硫酸塩、リン酸塩、炭酸塩、硝酸塩、塩化物及び酢酸塩の群から選ばれる1以上であることが好ましく、硫酸塩、リン酸塩、及び炭酸塩の少なくともいずれかであることがより好ましく、リン酸塩であることがより好ましい。 The transition metal source is a compound containing at least one selected from the group of iron (Fe), manganese (Mn), nickel (Ni) or cobalt (Co), a compound containing at least one of iron, manganese and nickel, iron or A compound containing at least one of manganese or a compound containing iron. Transition metal sources include oxides, hydroxides, oxyhydroxides, sulfites, sulfates, phosphates, carbonates, nitrates, chlorides containing one or more selected from the group of iron, manganese, nickel and cobalt. And one or more selected from the group of acetates, more preferably at least one of sulfates, phosphates, and carbonates, and more preferably phosphates.
 遷移金属源に含まれる遷移金属は、鉄、マンガン、ニッケル及びコバルトの群から選ばれる1以上であり、鉄、マンガン及びニッケルの群から選ばれる1以上であることが好ましく、鉄又はマンガンの少なくともいずれかであることが好ましく、鉄であることが更に好ましい。 The transition metal contained in the transition metal source is one or more selected from the group of iron, manganese, nickel and cobalt, preferably one or more selected from the group of iron, manganese and nickel, and at least one of iron or manganese. It is preferably either, and more preferably iron.
 原料組成物は、リン酸源及び遷移金属源として、遷移金属のリン酸塩を1種以上含むことが好ましい。 The raw material composition preferably contains at least one transition metal phosphate as a phosphoric acid source and a transition metal source.
 水は、純水、イオン交換水、他の原料に由来する水(例えば、水和物、構造水又は水溶液の溶媒など)が例示できる。 Examples of water include pure water, ion-exchanged water, and water derived from other raw materials (for example, hydrate, structural water, or solvent for an aqueous solution).
 原料組成物はナトリウム源、遷移金属源及びリン酸源の各原料、並びに、水に加えて添加剤を含んでいてもよい。添加剤は、シュウ酸、アスコルビン酸、亜硫酸、亜硫酸ナトリウム、チオ硫酸、チオ硫酸ナトリウム、一硫化水素ナトリウム、ヒドラジン及び次亜塩素酸ナトリウムの群から選ばれる1以上、又は、アスコルビン酸、亜硫酸、亜硫酸ナトリウム、チオ硫酸、チオ硫酸ナトリウム、一硫化水素ナトリウム及び次亜塩素酸ナトリウムの群から選ばれる1以上が例示できる。 The raw material composition may contain an additive in addition to the raw materials of the sodium source, the transition metal source and the phosphoric acid source, and water. Additives are one or more selected from the group of oxalic acid, ascorbic acid, sulfite, sodium sulfite, thiosulfate, sodium thiosulfate, sodium hydrogen monosulfide, hydrazine and sodium hypochlorite, or ascorbic acid, sulfite, sulfite. One or more selected from the group of sodium, thiosulfate, sodium thiosulfate, sodium hydrogen monosulfide and sodium hypochlorite can be exemplified.
 原料組成物のpHは4.0以上11.0以下であり、好ましくは5.0以上10.0以下、より好ましくは6.0以上9.0以下、更に好ましくは6.5以上8.5以下である。 The pH of the raw material composition is 4.0 or more and 11.0 or less, preferably 5.0 or more and 10.0 or less, more preferably 6.0 or more and 9.0 or less, still more preferably 6.5 or more and 8.5 or less. It is as follows.
 原料組成物は、その組成が均一となるように混合することで得られ、これらの原料、水及び必要に応じて添加剤を、任意の方法で混合することで得られる。 The raw material composition is obtained by mixing so that the composition becomes uniform, and is obtained by mixing these raw materials, water and, if necessary, additives by an arbitrary method.
 水熱処理は原料組成物を反応容器に充填して行うことが好ましい。反応容器は本実施形態において使用する原料組成物および水熱処理工程で使用できるものであれば特に制限はなく、例えば、テフロン(登録商標)樹脂或いはフッ素樹脂で内表面を被覆した密閉耐圧容器が例示できる。 The hydrothermal treatment is preferably performed by filling the reaction vessel with the raw material composition. The reaction vessel is not particularly limited as long as it can be used in the raw material composition used in the present embodiment and the hydrothermal treatment step, and examples thereof include a closed pressure-resistant vessel whose inner surface is coated with Teflon (registered trademark) resin or fluororesin. can.
 水熱処理温度は80℃以上180℃以下であり、好ましくは90℃以上170℃以下、より好ましくは100℃以上160℃以下である。さらに、原料組成物のpHが6.0以上9.0以下である場合、水熱処理温度は100℃以上180℃以下、更には100℃以上150℃以下であることが好ましい。 The hydrothermal treatment temperature is 80 ° C. or higher and 180 ° C. or lower, preferably 90 ° C. or higher and 170 ° C. or lower, and more preferably 100 ° C. or higher and 160 ° C. or lower. Further, when the pH of the raw material composition is 6.0 or more and 9.0 or less, the hydrothermal treatment temperature is preferably 100 ° C. or more and 180 ° C. or less, and more preferably 100 ° C. or more and 150 ° C. or less.
 好ましい水熱処理条件、特に鉄を含む原料組成物の水熱処理条件、として、水熱処理温度が100℃以上180℃以下であり、なおかつ、pHが7.5を超え8.5以下であることが例示できる。 Preferred hydrothermal conditions, particularly those of the raw material composition containing iron, are exemplified by a hydrothermal treatment temperature of 100 ° C. or higher and 180 ° C. or lower, and a pH of more than 7.5 and 8.5 or lower. can.
 水熱処理の時間は水熱処理温度に依存する。例えば、水熱処理温度が100℃以下である場合は10時間以上200時間以下が挙げられる。また、水熱処理温度が100℃を超える場合は、3時間以上100時間以下、が挙げられる。また、水熱処理温度が120℃以上又は130℃以上であることで結晶化がより促進され、20時間以下で本実施形態のNaTPの結晶化が生じ得る。 The hydrothermal treatment time depends on the hydrothermal treatment temperature. For example, when the hydrothermal treatment temperature is 100 ° C. or lower, it may be 10 hours or more and 200 hours or less. When the hydrothermal treatment temperature exceeds 100 ° C., it may be 3 hours or more and 100 hours or less. Further, when the hydrothermal treatment temperature is 120 ° C. or higher or 130 ° C. or higher, crystallization is further promoted, and crystallization of NaTP of the present embodiment can occur in 20 hours or less.
 本実施形態の製造方法は、洗浄工程、分離工程及び乾燥工程の群から選ばれる少なくとも1つを含んでいてもよい。 The production method of the present embodiment may include at least one selected from the group of cleaning step, separation step and drying step.
 洗浄工程は、NaTPから不純物を除去する工程である。洗浄方法は任意であるが、十分量の純水にNaTPを分散させる処理が例示できる。当該処理は複数回行ってもよい。 The cleaning step is a step of removing impurities from NaTP. The cleaning method is arbitrary, but a treatment of dispersing NaTP in a sufficient amount of pure water can be exemplified. The process may be performed a plurality of times.
 分離工程は、NaTPと溶媒とを分離する工程である。分離方法は任意であり、例えば、遠心沈降、ろ過及びフィルタープレスの群から選ばれる1以上を挙げることができる。 The separation step is a step of separating NaTP and the solvent. The separation method is arbitrary and may include, for example, one or more selected from the group of centrifugal sedimentation, filtration and filter press.
 乾燥工程は、NaTPに吸着した水分の除去を行う工程である。乾燥方法は任意であり、大気中又は真空中、80℃以上120℃以下で1時間以上24時間以下処理することが挙げられ、真空中で処理することが好ましい。 The drying step is a step of removing the water adsorbed on NaTP. The drying method is arbitrary, and treatment in the air or in vacuum at 80 ° C. or higher and 120 ° C. or lower for 1 hour or more and 24 hours or less is mentioned, and treatment in vacuum is preferable.
 本実施形態の製造方法は、NaTPに被覆層を形成する、被覆工程を有していてもよい。NaTPに被覆層を形成する方法は特に制限はないが、例えば、被覆層の前駆体とNaTPを、メカニカルミリング処理する方法や、熱分解する方法が例示できる。また、NaTPの表面に被覆層として炭素の層を形成する場合、アセチレンブラックとNaTPを、不活性雰囲気下でメカニカルミリング処理する方法や、NaTPとスクロース(C122211)を混合した後、不活性雰囲気下で熱処理を施すことが例示できる。
<正極活物質>
 次に、本開示のナトリウム遷移金属ポリアニオンを含む正極活物質について実施形態の一例を示して説明する。
The production method of the present embodiment may include a coating step of forming a coating layer on NaTP. The method for forming the coating layer on NaTP is not particularly limited, and examples thereof include a method of mechanically milling the precursor of the coating layer and NaTP, and a method of thermally decomposing the coating layer. When a carbon layer is formed on the surface of NaTP as a coating layer, acetylene black and NaTP are mechanically milled in an inert atmosphere, or after mixing NaTP and sucrose (C 12 H 22 O 11). It can be exemplified that the heat treatment is performed in an inert atmosphere.
<Positive electrode active material>
Next, an example of the embodiment of the positive electrode active material containing the sodium transition metal polyanion of the present disclosure will be described.
 本実施形態において「正極活物質」とは、電気化学デバイスを構成する電極のうち電位の高い極の電極活物質であり、特にナトリウム二次電池の正極の電極活物質である。 In the present embodiment, the "positive electrode active material" is the electrode active material of the pole having a high potential among the electrodes constituting the electrochemical device, and in particular, the electrode active material of the positive electrode of the sodium secondary battery.
 本実施形態の正極活物質は、本実施形態のNaTPを含んでいればよく、本実施形態のNaTPのみからなっていてもよいが、本実施形態のNaTP以外のナトリウム遷移金属化合物を含んでいてもよい。本実施形態の正極活物質の質量に対するNaTPの質量割合は、80質量%以上100質量%以下、好ましくは90質量%以上100質量%以下、より好ましくは100質量%(正極活物質がNaTPのみであること)である。 The positive electrode active material of the present embodiment may contain only the NaTP of the present embodiment and may contain only the NaTP of the present embodiment, but may contain a sodium transition metal compound other than the NaTP of the present embodiment. May be good. The mass ratio of NaTP to the mass of the positive electrode active material of the present embodiment is 80% by mass or more and 100% by mass or less, preferably 90% by mass or more and 100% by mass or less, and more preferably 100% by mass (only NaTP is the positive electrode active material). There is).
 本実施形態の正極活物質は、炭素層その他、正極活物質の表面の一部又は全部に被覆層、好ましくは導電性を有する被覆層、を有していてもよい。 The positive electrode active material of the present embodiment may have a carbon layer or a coating layer, preferably a conductive coating layer, on a part or all of the surface of the positive electrode active material.
<ナトリウム二次電池>
 次に、本開示のナトリウム遷移金属ポリアニオンを含む正極と、負極及び電解液を備えることを特徴とするナトリウム二次電池について、実施形態の一例を示して説明する。
 本実施形態において「ナトリウム二次電池」とは、ナトリウムイオン(Na)の挿入脱離により充放電が生じる電気化学デバイスであり、ナトリウム二次電池、ナトリウムイオン二次電池、ナトリウムイオン電池、ナトリウム蓄電池、Na二次電池、Naイオン電池又はNa蓄電池等と同義である。
<Sodium secondary battery>
Next, an example of an embodiment will be described of a sodium secondary battery including a positive electrode containing the sodium transition metal polyanion of the present disclosure, a negative electrode, and an electrolytic solution.
In the present embodiment, the "sodium secondary battery" is an electrochemical device that is charged and discharged by inserting and removing sodium ions (Na + ), and is a sodium secondary battery, a sodium ion secondary battery, a sodium ion battery, and sodium. It is synonymous with a storage battery, a Na secondary battery, a Na ion battery, a Na storage battery, and the like.
 「非水系電解液」は溶媒として非水溶媒を含む電解液であり、「水系電解液」は溶媒として水溶媒を含む電解液である。 The "non-aqueous electrolyte solution" is an electrolytic solution containing a non-aqueous solvent as a solvent, and the "aqueous electrolyte solution" is an electrolytic solution containing an aqueous solvent as a solvent.
 「非水系ナトリウム二次電池」は、電解液として非水系電解液を備えるナトリウム二次電池であり、「水系ナトリウム二次電池」は、電解液として非水系電解液を備えるナトリウム二次電池である。 A "non-aqueous sodium secondary battery" is a sodium secondary battery having a non-aqueous electrolyte solution as an electrolytic solution, and a "aqueous sodium secondary battery" is a sodium secondary battery having a non-aqueous electrolyte solution as an electrolytic solution. ..
<正極>
 正極は、本開示のNaTP含む正極活物質を含む正極合剤と、集電体とを備えていればよい。
 正極合剤は、正極活物質、バインダー及び導電材、並びに、必要に応じて添加剤、を含む。バインダー、導電材及び添加剤は、それぞれ、公知のものを使用することができる。
<Positive electrode>
The positive electrode may include a positive electrode mixture containing the positive electrode active material containing NaTP of the present disclosure and a current collector.
The positive electrode mixture contains a positive electrode active material, a binder and a conductive material, and optionally an additive. Known binders, conductive materials and additives can be used respectively.
 バインダーは、フッ素樹脂、ポリエチレン、ポリプロピレン、SBR材料及びイミド材料の群から選ばれる1以上、更にはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)及びエチレンテトラフルオロエチレン(ETFE)の群から選ばれる1以上が例示できる。 The binder is one or more selected from the group of fluororesin, polyethylene, polypropylene, SBR material and imide material, and further from the group of polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) and ethylene tetrafluoroethylene (ETFE). One or more selected can be exemplified.
 導電材は、炭素材料、金属繊維などの導電性繊維、銅、銀、ニッケル、アルミニウムなどの金属粉末、ポルフェニレン誘導体等の有機導電性材料から選ばれる1以上が例示できる。好ましい炭素材料として、黒鉛、ソフトカーボン、ハードカーボン、カーボンブラック、ケッチェンブラック、アセチレンブラック、グラファイト、活性炭、カーボンナノチューブ、カーボンファイバー、メソポーラスカーボンが例示できる。 Examples of the conductive material include one or more selected from conductive fibers such as carbon materials and metal fibers, metal powders such as copper, silver, nickel and aluminum, and organic conductive materials such as porphenylene derivatives. Preferred carbon materials include graphite, soft carbon, hard carbon, carbon black, Ketjen black, acetylene black, graphite, activated carbon, carbon nanotubes, carbon fiber, and mesoporous carbon.
 正極合剤は公知の方法で製造すればよく、正極活物質、バインダー及び導電材を所望の比率で混合すればよい。 The positive electrode mixture may be produced by a known method, and the positive electrode active material, the binder and the conductive material may be mixed in a desired ratio.
<負極>
 負極は、負極活物質を含む負極合剤と、集電体、必要に応じて添加剤を備えていればよい。
 負極合剤は、負極活物質、バインダー及び導電材、並びに、必要に応じて添加剤、を含む。
<Negative electrode>
The negative electrode may include a negative electrode mixture containing a negative electrode active material, a current collector, and an additive if necessary.
The negative electrode mixture contains a negative electrode active material, a binder and a conductive material, and optionally an additive.
 負極活物質は、正極活物質のナトリウムイオンの挿入脱離を妨げない材料を含んでいればよく、白金、亜鉛、炭素材料、ナトリウムと合金を形成する材料、ナトリウム含有遷移金属酸化物、及び、ナトリウム含有ポリアニオン材料の群から選ばれる1以上が例示できる。好ましい負極活物質として、炭素材料、ポリイミド、遷移金属含有シアノ化合物及び遷移金属含有ポリアニオン化合物の群から選ばれる1以上が例示でき、活性炭、NaMn[Mn(CN)]及びNaTi(POの群から選ばれる1以上であることが好ましく、NaTi(POであることがより好ましい。 The negative electrode active material may contain a material that does not interfere with the insertion and desorption of sodium ions in the positive electrode active material, and includes platinum, zinc, carbon material, a material that forms an alloy with sodium, a sodium-containing transition metal oxide, and One or more selected from the group of sodium-containing polyanionic materials can be exemplified. Preferred negative electrode active materials include one or more selected from the group of carbon materials, polyimides, transition metal-containing cyano compounds and transition metal-containing polyanionic compounds, and examples thereof include activated carbon, Na 2 Mn [Mn (CN) 6 ] and NaTi 2 (PO). 4 ) It is preferably 1 or more selected from the group of 3 , and more preferably NaTi 2 (PO 4 ) 3 .
 バインダー及び導電材は公知のものであればよく、上記の正極合剤で使用できるバインダー及び導電材と同様である。 The binder and the conductive material may be known, and are the same as the binder and the conductive material that can be used in the above-mentioned positive electrode mixture.
 負極合剤は公知の方法で製造すればよく、負極活物質、バインダー及び導電材を所望の比率で混合すればよい。 The negative electrode mixture may be produced by a known method, and the negative electrode active material, the binder and the conductive material may be mixed in a desired ratio.
<電解液>
 電解液は、非水系電解液又は水系電解液のいずれかであり、水系電解液であることが好ましい。
 電解質は、ナトリウム塩であり、可溶性のナトリウム塩が好ましい。好ましい電解質として、NaCl、NaSO、NaNO、NaClO、NaOH及びNaSの群から選ばれる1以上が例示できる。取り扱いの容易性から、電解質はNaCl、NaSO、NaNO及びNaClOの群から選ばれる1つ以上が好ましく、NaClOを含むことが好ましい。
<Electrolyte>
The electrolytic solution is either a non-aqueous electrolytic solution or an aqueous electrolytic solution, and is preferably an aqueous electrolytic solution.
The electrolyte is a sodium salt, preferably a soluble sodium salt. Preferred electrolytes include one or more selected from the group of NaCl, Na 2 SO 4 , Na NO 3 , NaCl O 4 , NaOH and Na 2 S. From the viewpoint of ease of handling, the electrolyte is preferably one or more selected from the group of NaCl, Na 2 SO 4 , Na NO 3 and NaCl O 4 , and preferably contains NaCl O 4 .
 電解液中の電解質濃度は特に制限はないが、ナトリウム二次電池としてのエネルギー密度を高くする観点から、電解液における電解質濃度(ナトリウム塩濃度)は高いことが好ましく、ナトリウム塩濃度として1mol/kg(1m)以上、飽和溶解度以下の濃度、が例示できる。 The electrolyte concentration in the electrolyte is not particularly limited, but from the viewpoint of increasing the energy density of the sodium secondary battery, the electrolyte concentration (sodium salt concentration) in the electrolyte is preferably high, and the sodium salt concentration is 1 mol / kg. A concentration of (1 m) or more and a saturation solubility or less can be exemplified.
 電解液は添加剤を含んでいてもよい。添加剤は、特に限定されないが、コハク酸、グルタミン酸、マレイン酸、シトラコン酸、グルコン酸、イタコン酸、ジグリコール、シクロヘキサンジカルボン酸、シクロペンタンテトラカルボン酸、1,3‐プロパンスルトン、1,4‐ブタンスルトン、メタンスルホン酸メチル、スルホラン、ジメチルスルホン及びN,N‐ジメチルメタンスルホンアミドの群から選ばれる1以上が例示できる。添加剤の含有量は、電解液の質量に対する添加剤の質量割合として0.01質量%以上10質量%以下であることが例示できる。
<その他の構成>
 正極及び負極の集電体、セパレータなどの他の構成要素は、ナトリウム二次電池やリチウム二次電池で使用される公知のものが使用できる。
The electrolytic solution may contain additives. Additives are not particularly limited, but are succinic acid, glutamic acid, maleic acid, citraconic acid, gluconic acid, itaconic acid, diglycol, cyclohexanedicarboxylic acid, cyclopentanetetracarboxylic acid, 1,3-propanesulton, 1,4-. One or more selected from the group of butane sulton, methyl methanesulfonate, sulfolane, dimethylsulfone and N, N-dimethylmethanesulfonamide can be exemplified. For example, the content of the additive is 0.01% by mass or more and 10% by mass or less as the mass ratio of the additive to the mass of the electrolytic solution.
<Other configurations>
As other components such as positive electrode and negative electrode current collectors and separators, known ones used in sodium secondary batteries and lithium secondary batteries can be used.
 本開示のナトリウム二次電池の他の実施形態として、一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表されるナトリウム遷移金属ポリアニオンを含む正極と、負極及び電解液を備え、
   前記負極が少なくともNaTi(POを含み、
   前記電解液が少なくともNaClOを含むナトリウム二次電池、が挙げられる。
As another embodiment of the sodium secondary battery of the present disclosure, it is represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co). A positive electrode containing a sodium transition metal polyanion, a negative electrode, and an electrolytic solution are provided.
The negative electrode contains at least NaTi 2 (PO 4 ) 3 and contains.
A sodium secondary battery in which the electrolytic solution contains at least NaClO 4 can be mentioned.
 本開示のナトリウム二次電池の他の実施形態として、一般式NaM(OH)(HPO)(PO)(MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表されるナトリウム遷移金属ポリアニオンを含む正極と、負極及び電解液を備え、前記負極が少なくともNaTi(POを含み、前記電解液が少なくともNaClOを含む水系電解液であるナトリウム二次電池、が挙げられる。 As another embodiment of the sodium secondary battery of the present disclosure, it is represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (M is one or more selected from the group of Fe, Mn, Ni and Co). A sodium secondary battery comprising a positive electrode containing a sodium transition metal polyanion, a negative electrode, and an electrolytic solution, wherein the negative electrode contains at least NaTi 2 (PO 4 ) 3 and the electrolytic solution is an aqueous electrolytic solution containing at least NaClO 4. , Can be mentioned.
 本実施形態のNaTPを含む正極を備えたナトリウム二次電池は、従来のナトリウム二次電池、特に従来の水系ナトリウム二次電池と比べ、高い充放電容量を示す。 The sodium secondary battery provided with the positive electrode containing NaTP of the present embodiment exhibits a higher charge / discharge capacity than the conventional sodium secondary battery, particularly the conventional aqueous sodium secondary battery.
 以下、実施例を挙げて本開示を具体的に説明する。しかしながら、本開示はこれらの実施例に限定されるものではない。
<結晶相の同定と組成分析>
 実施例で得られたNaTPの結晶相は、粉末X線回折により測定した。粉末X線回折は、一般的なX線回折装置(装置名:SmartLab、リガク社製)を使用し、以下の条件で測定した。
      線源     : CuKα線(λ=1.5405Å)
      測定モード  : ステップスキャン
      スキャン条件 : 20°/分
      計測時間   : 3秒
      測定範囲   : 2θ=5°から90°
Hereinafter, the present disclosure will be specifically described with reference to examples. However, the present disclosure is not limited to these examples.
<Identification of crystal phase and composition analysis>
The crystal phase of NaTP obtained in the examples was measured by powder X-ray diffraction. The powder X-ray diffraction was measured under the following conditions using a general X-ray diffractometer (device name: SmartLab, manufactured by Rigaku Co., Ltd.).
Radioactive source: CuKα ray (λ = 1.5405Å)
Measurement mode: Step scan Scan condition: 20 ° / min Measurement time: 3 seconds Measurement range: 2θ = 5 ° to 90 °
 遷移金属とナトリウム金属の組成比は、X線回折装置に付属のデータ処理ソフト(製品名:PDXL-2)により、Rietvelt解析を行い、生成物の結晶相を同定した。Rietvelt解析におけるシミュレーションパターンは、該データ処理ソフトを使用して参照文献のNaV(OH)(HPO)(PO)のVを任意のM(すなわち、Fe)に置換したXRDパターンを計算し、当該シミュレーションパターンと、測定されたXRDパターンとを対比することで同定した。また、NaTPの純度はRIR法によってメインXRDパターンの存在割合(面積強度比)から求めた。 The composition ratio of the transition metal and the sodium metal was analyzed by Rietvelt using the data processing software (product name: PDXL-2) attached to the X-ray diffractometer, and the crystal phase of the product was identified. For the simulation pattern in the Rietvelt analysis, the XRD pattern in which the V of Na 3 V (OH) (HPO 4 ) (PO 4 ) in the reference is replaced with an arbitrary M (that is, Fe) is calculated using the data processing software. Then, the simulation pattern was identified by comparing the measured XRD pattern. The purity of NaTP was determined by the RIR method from the abundance ratio (area intensity ratio) of the main XRD pattern.
 また、NaTPに帰属される全てのXRDピークを使用したWH径を求め、結晶子径とした。 Further, the WH diameter using all the XRD peaks attributed to NaTP was determined and used as the crystallite diameter.
 実施例1
 リン酸鉄(FePO・n水和物。n=7)、リン酸ナトリウム12水和物(NaPO・12HO)を混合した後、これに85%オルトリン酸(HPO)と純水(HO)を加えて以下の組成を有する組成物を得た。
Example 1
Iron phosphate (FePO 4 · n-hydrate .n = 7), were mixed sodium dodecahydrate phosphate (Na 3 PO 4 · 12H 2 O), which in 85% orthophosphoric acid (H 3 PO 4 ) and it was added pure water (H 2 O) to obtain a composition having the following composition.
   リン酸鉄         :  2.36g
   リン酸ナトリウム12水和物:  4.80g
   85%オルトリン酸    :  0.36g
   純水           :  15g
 当該組成物のpHは8.0であった。
Iron phosphate: 2.36 g
Sodium Phosphate 12 Hydrate: 4.80 g
85% orthophosphoric acid: 0.36 g
Pure water: 15 g
The pH of the composition was 8.0.
 当該組成物を、テフロン(登録商標)樹脂性の蓋付き容器に充填及び密閉した後、これを恒温槽に設置し、以下の条件で水熱処理を施した。 The composition was filled and sealed in a Teflon (registered trademark) resin container with a lid, placed in a constant temperature bath, and subjected to hydrothermal treatment under the following conditions.
   水熱処理温度    :100℃
   水熱処理時間    :120時間
   水熱処理圧力    :自生圧下
 水熱処理後、生成物を純水で洗浄及びろ過した後、真空雰囲気下、120℃で4時間乾燥した後、粉砕して粉末状のナトリウム鉄ポリアニオンを得た。
Hydrothermal treatment temperature: 100 ° C
Hydrothermal treatment time: 120 hours Hydrothermal treatment pressure: After hydrothermal treatment under spontaneous pressure, the product is washed with pure water and filtered, dried in a vacuum atmosphere at 120 ° C. for 4 hours, and then crushed into powdered sodium iron polyanion. Got
 得られたナトリウム鉄ポリアニオンは純度が100%(すなわち、ナトリウム鉄ポリアニオンのXRDパターンが、NaFe(OH)(HPO)(PO)で表されるXRDパターンのみ)であり、結晶構造は空間群C2/mで帰属される単斜晶であった。格子定数はそれぞれ、aが15.464(9)Å、bが7.273(6)Å、及び、cが7.049(1)Åでβが96.692(5)°であり、結晶子径は42Åであった。 The obtained sodium iron polyanion has 100% purity (that is, the XRD pattern of the sodium iron polyanion is only the XRD pattern represented by Na 3 Fe (OH) (HPO 4 ) (PO 4 )), and the crystal structure is It was a monoclinic crystal attributed to the space group C2 / m. The lattice constants are 15.464 (9) Å for a, 7.273 (6) Å for b, 7.049 (1) Å for c, and 96.692 (5) ° for β, respectively. The child diameter was 42 Å.
 実施例2
 原料組成物を以下の組成としたこと以外は実施例1と同様な方法で本実施例のナトリウム鉄ポリアニオンを得た。
Example 2
The sodium iron polyanion of this example was obtained in the same manner as in Example 1 except that the raw material composition had the following composition.
   リン酸鉄         :  2.36g
   リン酸ナトリウム12水和物:  4.80g
   85%オルトリン酸    :  0.72g
   純水           :  15g
 当該組成物のpHは7.0であった。
Iron phosphate: 2.36 g
Sodium Phosphate 12 Hydrate: 4.80 g
85% orthophosphoric acid: 0.72g
Pure water: 15 g
The pH of the composition was 7.0.
 図2に得られたナトリウム鉄ポリアニオンのXRDパターンを示す。得られたナトリウム鉄ポリアニオンは純度が99.9%であり、結晶構造は空間群C2/mで帰属される単斜晶であった。格子定数はそれぞれ、aが15.476(6)Å、bが7.280(1)Å、及び、cが7.048(3)Åでβが96.692(9)°あり、結晶子径は37Åであった。 FIG. 2 shows the XRD pattern of the obtained sodium iron polyanion. The obtained sodium iron polyanion had a purity of 99.9%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m. The lattice constants are 15.476 (6) Å for a, 7.280 (1) Å for b, 7.048 (3) Å for c, and 96.692 (9) ° for β, respectively. The diameter was 37 Å.
 実施例3
 水熱処理温度を150℃としたこと、及び、水熱処理時間を16時間としたこと以外は実施例1と同様な方法でナトリウム鉄ポリアニオンを得た。
Example 3
A sodium iron polyanion was obtained in the same manner as in Example 1 except that the hydrothermal treatment temperature was 150 ° C. and the hydrothermal treatment time was 16 hours.
 図3に得られたナトリウム鉄ポリアニオンのXRDパターンを示す。得られたナトリウム鉄ポリアニオンは純度が86.4%であり、結晶構造は空間群C2/mで帰属される単斜晶であった。格子定数はそれぞれ、aが15.471(7)Å、bが7.273(9)Å、及び、cが7.044(2)Åでβが96.688(1)°あり、結晶子径は147Åであった。 FIG. 3 shows the XRD pattern of the obtained sodium iron polyanion. The obtained sodium iron polyanion had a purity of 86.4%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m. The lattice constants are 15.471 (7) Å for a, 7.273 (9) Å for b, 7.044 (2) Å for c, and 96.688 (1) ° for β, respectively. The diameter was 147 Å.
 実施例4
 原料組成物を以下の組成としたこと、水熱処理温度を150℃としたこと、及び、水熱処理時間を16時間としたこと以外は実施例1と同様な方法で、鉄とマンガンをFe:Mn=3:1で含む、本実施例のナトリウム鉄マンガンポリアニオンを得た。
Example 4
Iron and manganese were added to Fe: Mn in the same manner as in Example 1 except that the raw material composition had the following composition, the hydrothermal treatment temperature was 150 ° C., and the hydrothermal treatment time was 16 hours. The sodium iron manganese polyanion of this example containing = 3: 1 was obtained.
   リン酸鉄         :  1.79g
   リン酸マンガン1水和物  :  0.72g
   リン酸ナトリウム12水和物:  4.56g
   純水           :  15g
 当該組成物のpHは8.0であった。
Iron phosphate: 1.79 g
Manganese phosphate monohydrate: 0.72 g
Sodium Phosphate 12 Hydrate: 4.56g
Pure water: 15 g
The pH of the composition was 8.0.
 得られたナトリウム鉄マンガンポリアニオンは、純度が99.9%であり、結晶構造は空間群C2/mで帰属される単斜晶であった。格子定数はそれぞれ、aが15.502(4)Å、bが7.331(2)Å、及び、cが7.118(2)Åでβが95.932(9)°であり、結晶子径は97Åであった。 The obtained sodium iron manganese polyanion had a purity of 99.9%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m. The lattice constants are 15.502 (4) Å for a, 7.331 (2) Å for b, 7.118 (2) Å for c, and 95.932 (9) ° for β, respectively. The child diameter was 97 Å.
 実施例5
 原料組成物を以下の組成としたこと以外は実施例4と同様な方法で、鉄とコバルトをFe:Co=3:1で含む、本実施例のナトリウム鉄マンガンポリアニオンを得た。
Example 5
The sodium iron-manganese polyanion of this example containing iron and cobalt at Fe: Co = 3: 1 was obtained in the same manner as in Example 4 except that the raw material composition had the following composition.
   リン酸鉄         :  1.79g
   リン酸コバルト8水和物  :  0.57g
   リン酸ナトリウム12水和物:  4.56g
   純水           :  15g
 当該組成物のpHは7.9であった。
Iron phosphate: 1.79 g
Cobalt phosphate octahydrate: 0.57 g
Sodium Phosphate 12 Hydrate: 4.56g
Pure water: 15 g
The pH of the composition was 7.9.
 得られたナトリウム鉄コバルトポリアニオンは、純度が99.9%であり、結晶構造は空間群C2/mで帰属される単斜晶であった。格子定数はそれぞれ、aが15.513(6)Å、bが7.340(0)Å、及び、cが7.113(3)Åでβが96.324(1)°であり、結晶子径は248Åであった。 The obtained sodium iron cobalt polyanion had a purity of 99.9%, and the crystal structure was a monoclinic crystal attributed to the space group C2 / m. The lattice constants are 15.513 (6) Å for a, 7.340 (0) Å for b, 7.113 (3) Å for c, and 96.324 (1) ° for β, respectively. The child diameter was 248 Å.
 測定例1(非水系ナトリウム二次電池の評価)
(被覆層の形成)
 実施例1乃至3で得られたNaTPを使用し、NaTPのモル比に対するセルロースのモル比が0.05~0.07になるようにスクロースを添加し、メノウ乳鉢で混合した。混合後、250℃で3時間、窒素気流下で加熱処理を行い、NaTPの表面に炭素からなる被覆層(炭素層)を形成し、炭素層を有するNaTPを得た。
(非水系ナトリウム二次電池特性の評価)
 炭素層を有するNaTPと導電性バインダー(製品名:TAB-2,宝泉株式会社製)を重量比2:1となるように秤量し、これをメノウ乳鉢で混合して正極合剤とした。得られた正極合剤を直径8mmのSUS製メッシュ(SUS316)上に配置し、これを1ton/cmで一軸プレスすることで正極合剤ペレットとした。正極合剤ペレットを150℃、2時間の減圧乾燥し、これを正極とした。
Measurement Example 1 (Evaluation of non-aqueous sodium secondary battery)
(Formation of coating layer)
Using the NaTP obtained in Examples 1 to 3, sucrose was added so that the molar ratio of cellulose to the molar ratio of NaTP was 0.05 to 0.07, and the mixture was mixed in an agate mortar. After mixing, heat treatment was carried out at 250 ° C. for 3 hours under a nitrogen stream to form a coating layer (carbon layer) made of carbon on the surface of NaTP to obtain NaTP having a carbon layer.
(Evaluation of non-aqueous sodium secondary battery characteristics)
NaTP having a carbon layer and a conductive binder (product name: TAB-2, manufactured by Hosen Co., Ltd.) were weighed so as to have a weight ratio of 2: 1 and mixed in an agate mortar to prepare a positive electrode mixture. The obtained positive electrode mixture was placed on a SUS mesh (SUS316) having a diameter of 8 mm, and this was uniaxially pressed at 1 ton / cm 2 to obtain positive electrode mixture pellets. The positive electrode mixture pellet was dried under reduced pressure at 150 ° C. for 2 hours, and this was used as a positive electrode.
 得られた正極を用い、以下の構成を備えた非水系ナトリウム二次電池を作製した。 Using the obtained positive electrode, a non-aqueous sodium secondary battery having the following configuration was produced.
   試験極  :正極
   対極   :白金(Pt)板
   参照極  :飽和カロメル電極
   電解液
    :(電解質)NaPF 1mol/dm
     (溶媒)エチレンカーボネート(EC):ジメチルカーボネート(DMC)
                               =1:1(体積比)
Test electrode: Positive electrode Counter electrode: Platinum (Pt) plate Reference electrode: Saturated caromel electrode Electrolyte: (Electrolyte) NaPF 6 1 mol / dm 3
(Solvent) Ethylene carbonate (EC): Dimethyl carbonate (DMC)
= 1: 1 (volume ratio)
 非水系ナトリウム二次電池を用いて、定電流充放電試験の評価を行った。評価条件は以下のとおりである。
    温度     :室温(24.5±2.5℃)
    電極電位   :-2.18~2.02V(飽和カロメル電極基準)
    電流値    :1mA/cmの一定電流値
    充放電回数  :10サイクル
 上記の飽和カロメル電極基準の電位はナトリウム電極基準の0.76~4.98Vに相当する。
A constant current charge / discharge test was evaluated using a non-aqueous sodium secondary battery. The evaluation conditions are as follows.
Temperature: Room temperature (24.5 ± 2.5 ° C)
Electrode potential: -2.18 to 2.02 V (based on saturated calomel electrode)
Current value: Constant current value of 1 mA / cm 2 Number of charge / discharge cycles: 10 cycles The potential of the saturated calomel electrode reference is equivalent to 0.76 to 4.98 V of the sodium electrode reference.
 放電容量の測定結果、10サイクル目の放電容量は、それぞれ、正極活物質として実施例1のNaTPを備えた非水系ナトリウム二次電池が153mAh/g、正極活物質として実施例2のNaTPを備えた非水系ナトリウム二次電池が148mAh/g、及び、正極活物質として実施例3のNaTPを備えた非水系ナトリウム二次電池が121mAh/gであった。 As a result of measuring the discharge capacity, the discharge capacity at the 10th cycle was 153 mAh / g for the non-aqueous sodium secondary battery having NaTP of Example 1 as the positive electrode active material, and NaTP of Example 2 as the positive electrode active material, respectively. The non-aqueous sodium secondary battery was 148 mAh / g, and the non-aqueous sodium secondary battery provided with NaTP of Example 3 as the positive electrode active material was 121 mAh / g.
 図4に、正極活物質として実施例1のNaTPを備えた非水系ナトリウム二次電池の1サイクル目及び10サイクル目の放電容量を示す。1サイクル目の放電容量は161mAh/gであった。 FIG. 4 shows the discharge capacities of the non-aqueous sodium secondary battery provided with NaTP of Example 1 as the positive electrode active material in the first cycle and the tenth cycle. The discharge capacity in the first cycle was 161 mAh / g.
 測定例2(水系ナトリウム二次電池の評価)
(被覆層の形成)
 実施例1及び2で得られたNaTPを使用し、測定例1と同様な方法でNaTPの表面に炭素層(被覆層)を形成し、炭素層を有するNaTPを得た。
(水系ナトリウム電池特性の評価)
 炭素層を有するNaTPを正極活物質とし、これと、AB及びPTFEを、重量比60:30:10で混合して直径4mmのペレット状の正極合剤を得た。作用極(正極)に正極合剤、対極(負極)に板状の亜鉛金属(Zn)、参照極に塩化銀電極(Ag/AgCl)、電解液に電解質濃度(NaClO濃度)15.5mのNaClO水溶液を備えた水系ナトリウム二次電池を作製した。当該水系ナトリウム二次電池を、以下の条件で充放電させ、その放電容量を測定した。
Measurement Example 2 (Evaluation of water-based sodium secondary battery)
(Formation of coating layer)
Using the NaTP obtained in Examples 1 and 2, a carbon layer (coating layer) was formed on the surface of NaTP in the same manner as in Measurement Example 1 to obtain NaTP having a carbon layer.
(Evaluation of water-based sodium battery characteristics)
NaTP having a carbon layer was used as a positive electrode active material, and AB and PTFE were mixed at a weight ratio of 60:30 to 10 to obtain a pellet-shaped positive electrode mixture having a diameter of 4 mm. A positive electrode mixture is used for the working electrode (positive electrode), a plate-shaped zinc metal (Zn) is used for the counter electrode (negative electrode), a silver chloride electrode (Ag / AgCl) is used for the reference electrode, and an electrolyte concentration (NaClO 4 concentration) of 15.5 m is used for the electrolytic solution. An aqueous sodium secondary battery containing an aqueous solution of NaClO 4 was prepared. The aqueous sodium secondary battery was charged and discharged under the following conditions, and its discharge capacity was measured.
    電流密度 :2mA/cm
    電圧   :-1.2V~1.3V(vs Ag/AgCl参照極)
    充放電温度:室温
 1サイクル目の放電容量は、それぞれ、実施例1のNaTPを備えた水系ナトリウム二次電池が79mAh/g、及び、実施例2のNaTPを備えた水系ナトリウム二次電池が75mAh/gであった。図5に、実施例1のNaTPを備えた水系ナトリウム二次電池の放電曲線(1サイクル目)を示す。
Current density: 2mA / cm 2
Voltage: -1.2V to 1.3V (vs Ag / AgCl reference electrode)
Charge / discharge temperature: Room temperature The discharge capacity of the first cycle is 79 mAh / g for the aqueous sodium-ion battery with NaTP of Example 1 and 75 mAh for the aqueous sodium-ion battery with NaTP of Example 2, respectively. It was / g. FIG. 5 shows the discharge curve (first cycle) of the aqueous sodium-ion secondary battery provided with NaTP of Example 1.
 測定例3(水系ナトリウム二次電池の評価)
 実施例1及び3のNaTPを使用したこと、及び、負極としてPechini法で合成されたNaTi(POを負極活物質とする負極を使用したこと以外は測定例2と同様な方法で、水系ナトリウム電池特性を評価した。負極の作製方法を以下に示す。
(負極の作製)
 過酸化水素30%溶液にTi(OCHCHCHCHを溶解した溶液40mlと、28%アンモニア水15ml、NaCO及びTiの2倍モル量のクエン酸の硝酸溶液10ml、NHPO水溶液10ml、並びにエチレングリコールを混合してえられた混合溶液を、80℃で1~2時間で蒸発乾固させた。その後、大気中、140℃で加熱して茶色のゲル状組成物を得た。これを大気中、350℃で焼成した後、大気中、800℃で焼成することでNaTi(POを得た。
Measurement Example 3 (Evaluation of water-based sodium secondary battery)
The same method as in Measurement Example 2 except that NaTP of Examples 1 and 3 was used and a negative electrode using NaTi 2 (PO 4 ) 3 synthesized by the Pechini method as a negative electrode active material was used as the negative electrode. , Water-based sodium battery characteristics were evaluated. The method for manufacturing the negative electrode is shown below.
(Preparation of negative electrode)
40 ml of a solution of Ti (OCH 2 CH 2 CH 2 CH 3 ) 4 in a 30% aqueous solution of hydrogen peroxide, 15 ml of 28% aqueous ammonia, and 10 ml of a nitric acid solution of citric acid in an amount twice as much as Na 2 CO 3 and Ti. , NH 4 H 2 PO 4 aqueous solution 10 ml, and a mixed solution obtained by mixing ethylene glycol were evaporated to dryness at 80 ° C. for 1 to 2 hours. Then, it was heated at 140 ° C. in the air to obtain a brown gel-like composition. This was calcined in the air at 350 ° C. and then calcined in the air at 800 ° C. to obtain NaTi 2 (PO 4 ) 3.
 得られたNaTi(POとアセチレンブラック(AB)を重量比が70:30となるように混合し後、遊星ボールミルを使用して、400rpm、1時間、Ar雰囲気下の条件で処理することで、NaTi(POをカーボンコーティングし、これを負極活物質とした。得られた負極活物質とPTFEを重量比90:10で混合し、直径4mmのペレット状に成型したものを負極合剤とした。 The obtained NaTi 2 (PO 4 ) 3 and acetylene black (AB) are mixed so as to have a weight ratio of 70:30, and then treated using a planetary ball mill at 400 rpm for 1 hour under Ar atmosphere. By doing so, NaTi 2 (PO 4 ) 3 was carbon-coated and used as a negative electrode active material. The obtained negative electrode active material and PTFE were mixed at a weight ratio of 90:10 and molded into pellets having a diameter of 4 mm to prepare a negative electrode mixture.
 測定例4(水系ナトリウム二次電池の評価)
 (被覆層の形成)
 実施例4及び5で得られたNaTPの0.70gとアセチレンブラック(デンカ株式会社製、Li-435)の0.05gを、遊星ボールミルを使用して、600rpm、1時間、アルゴン雰囲気下で混合を行い、混合粉末を得た。得られた混合粉末にアセチレンブラックを0.25g加えて、遊星ボールミルを使用して、200rpm、0.5時間、アルゴン雰囲気下で混合を行い、NaTP:アセチレンブラックの重量比が70:30の割合の正極活物質を得た。得られた正極活物質とPTFEを、重量比90:10で混合し圧延した後、直径4mm及び質量4mgのペレットを切り出し、これを正極とした。
(水系ナトリウム二次電池評価)
 実施例4及び5のNaTPを使用したこと、及び、負極としてPechini法で合成されたNaTi(POを負極活物質とする負極を使用したこと以外は測定例3と同様な方法で、水系ナトリウム電池特性を評価した。
Measurement Example 4 (Evaluation of water-based sodium secondary battery)
(Formation of coating layer)
0.70 g of NaTP obtained in Examples 4 and 5 and 0.05 g of acetylene black (manufactured by Denka Corporation, Li-435) are mixed using a planetary ball mill at 600 rpm for 1 hour under an argon atmosphere. Was carried out to obtain a mixed powder. 0.25 g of acetylene black was added to the obtained mixed powder, and the mixture was mixed in an argon atmosphere at 200 rpm for 0.5 hours using a planetary ball mill, and the weight ratio of NaTP: acetylene black was 70:30. The positive electrode active material of was obtained. The obtained positive electrode active material and PTFE were mixed at a weight ratio of 90:10 and rolled, and then pellets having a diameter of 4 mm and a mass of 4 mg were cut out and used as a positive electrode.
(Evaluation of aqueous sodium secondary battery)
The same method as in Measurement Example 3 except that NaTP of Examples 4 and 5 was used and a negative electrode using NaTi 2 (PO 4 ) 3 synthesized by the Pechini method as a negative electrode active material was used as the negative electrode. , Water-based sodium battery characteristics were evaluated.
 水系ナトリウム二次電池評価の結果、実施例4及び5のNaTPを使用したセルの1サイクル目の放電容量は、それぞれ、実施例5が76mAh/g、及び、実施例6が78mAh/gであった。 As a result of the evaluation of the aqueous sodium secondary battery, the discharge capacities of the cells using NaTP in Examples 4 and 5 in the first cycle were 76 mAh / g in Example 5 and 78 mAh / g in Example 6, respectively. rice field.
 比較測定例(非水系ナトリウムイオン二次電池)
 特開2009-206085号公報の実施例1を準じた方法により、オリビン構造を有するナトリウム含有遷移金属リン酸化合物(NaFePO)を合成した。得られたNaFePOを正極活物質としたこと以外は測定例2と同様な方法で、ペレット状の正極合剤を得た。
Comparative measurement example (non-aqueous sodium ion secondary battery)
A sodium-containing transition metal phosphoric acid compound (NaFePO 4 ) having an olivine structure was synthesized by a method according to Example 1 of JP-A-2009-206085. A pellet-shaped positive electrode mixture was obtained in the same manner as in Measurement Example 2 except that the obtained NaFePO 4 was used as the positive electrode active material.
 得られた正極合剤を使用したこと以外は測定例2と同様な方法で、非水系ナトリウム二次電池を作製し、充放電試験を行った。その結果、1サイクル目の放電容量は60mAh/gであった。 A non-aqueous sodium secondary battery was prepared by the same method as in Measurement Example 2 except that the obtained positive electrode mixture was used, and a charge / discharge test was conducted. As a result, the discharge capacity in the first cycle was 60 mAh / g.
 これらの結果より、本実施例のNaTPは、オリビン系のナトリウム含有遷移金属リン酸化合物と比較して、非水系ナトリウム二次電池の正極活物質としては2倍以上の放電容量を示すことが確認できる。さらに、測定例1及び2より、非水系ナトリウム二次電池と比べ、水系ナトリウム二次電池においては、正極活物質の放電容量が低下する。それにも関わらず、本実施例のNaTPは、水系ナトリウム二次電池の正極活物質としても、従来のオリビン系のナトリウム含有遷移金属リン酸化合物を正極活物質とする非水系ナトリウムイオン二次電池と同等以上の放電容量を示すことが確認できる。 From these results, it was confirmed that the NaTP of this example exhibits a discharge capacity more than twice as much as the positive electrode active material of the non-aqueous sodium secondary battery as compared with the olivine-based sodium-containing transition metal phosphoric acid compound. can. Further, from Measurement Examples 1 and 2, the discharge capacity of the positive electrode active material is lower in the aqueous sodium secondary battery than in the non-aqueous sodium secondary battery. Nevertheless, the NaTP of this example can be used as a positive electrode active material for an aqueous sodium secondary battery as well as a non-aqueous sodium ion secondary battery using a conventional olivine sodium-containing transition metal phosphate compound as a positive electrode active material. It can be confirmed that the discharge capacity is equal to or higher than that.
 本開示のナトリウム遷移金属ポリアニオンは、吸着剤、イオン交換体、水素イオン伝導体、固体電解質、電池材料、特に、電気化学デバイスの活物質、更にはナトリウム二次電池の正極活物質として好適に使用できる。 The sodium transition metal polyanions of the present disclosure are suitably used as adsorbents, ion exchangers, hydrogen ion conductors, solid electrolytes, battery materials, particularly active materials for electrochemical devices, and positive electrode active materials for sodium secondary batteries. can.
 本出願は、2020年3月4日に出願された日本特許出願である特願2020-036484号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2020-0364884, which is a Japanese patent application filed on March 4, 2020, and incorporates all the contents of the Japanese patent application.

Claims (14)

  1.  一般式NaM(OH)(HPO)(PO)(但し、MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表される粉末X線回折パターンを有し、結晶構造が単斜晶であることを特徴とするナトリウム遷移金属ポリアニオン。 It has a powder X-ray diffraction pattern represented by the general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) (where M is 1 or more selected from the group of Fe, Mn, Ni and Co) and crystallizes. A sodium transition metal polyanion characterized by a monoclinic structure.
  2.  前記単斜晶が、空間群C2/mに属する単斜晶である、請求項1に記載のナトリウム遷移金属ポリアニオン。 The sodium transition metal polyanion according to claim 1, wherein the monoclinic crystal is a monoclinic crystal belonging to the space group C2 / m.
  3.  前記ナトリウム遷移金属ポリアニオンの粉末X線回折パターンに占める、一般式NaM(OH)(HPO)(PO)(但し、MはFe、Mn、Ni及びCoの群から選ばれる1以上)で表される粉末X線回折パターンの割合が、80%以上である、請求項1又は2に記載のナトリウム遷移金属ポリアニオン。 The general formula Na 3 M (OH) (HPO 4 ) (PO 4 ) occupying the powder X-ray diffraction pattern of the sodium transition metal polyanion (where M is one or more selected from the group of Fe, Mn, Ni and Co). The sodium transition metal polyanion according to claim 1 or 2, wherein the ratio of the powder X-ray diffraction pattern represented by is 80% or more.
  4.  格子定数が、それぞれ、aが15.35Å以上15.55Å以下、bが7.19Å以上7.35Å以下、及び、cが6.95Å以上7.12Å以下、βが95.8°以上97.5°以下である、請求項1乃至3のいずれか一項に記載のナトリウム遷移金属ポリアニオン。 The lattice constants are as follows: a is 15.35 Å or more and 15.55 Å or less, b is 7.19 Å or more and 7.35 Å or less, c is 6.95 Å or more and 7.12 Å or less, and β is 95.8 ° or more and 97. The sodium transition metal polyanion according to any one of claims 1 to 3, which is 5 ° or less.
  5.  被覆層を含む請求項1乃至4のいずれか一項に記載のナトリウム遷移金属ポリアニオン。 The sodium transition metal polyanion according to any one of claims 1 to 4, which includes a coating layer.
  6.  ナトリウム源、遷移金属源、リン酸源及び水を含有し、pHが4.0以上11.0以下である組成物を80℃以上180℃以下で水熱処理する工程、を有することを特徴とする請求項1乃至5のいずれか一項に記載のナトリウム遷移金属ポリアニオンの製造方法。 It is characterized by having a step of hydrothermally treating a composition containing a sodium source, a transition metal source, a phosphoric acid source and water and having a pH of 4.0 or more and 11.0 or less at 80 ° C. or more and 180 ° C. or less. The method for producing a sodium transition metal polyanion according to any one of claims 1 to 5.
  7.  前記pHが6.0以上9.0以下である、請求項6に記載の製造方法。 The production method according to claim 6, wherein the pH is 6.0 or more and 9.0 or less.
  8.  遷移金属源が、Fe、Mn、Ni及びCoの群から選ばれる1以上を含む酸化物、水酸化物、オキシ水酸化物、リン酸塩、亜硫酸塩、硫酸塩、硝酸塩、塩化物、酢酸塩、臭化物又はフッ化物の群から選ばれる1以上である、請求項6又は7に記載の製造方法。 The transition metal source is an oxide containing one or more selected from the group of Fe, Mn, Ni and Co, hydroxide, oxyhydroxide, phosphate, sulfite, sulfate, nitrate, chloride, acetate. The production method according to claim 6 or 7, wherein the production method is one or more selected from the group of bromide or fluoride.
  9.  請求項1乃至5のいずれか一項に記載のナトリウム遷移金属ポリアニオンを含む正極活物質。 A positive electrode active material containing the sodium transition metal polyanion according to any one of claims 1 to 5.
  10.  請求項1乃至5のいずれか一項に記載のナトリウム遷移金属ポリアニオンを含む正極と、負極及び電解液を備えることを特徴とするナトリウム二次電池。 A sodium secondary battery comprising a positive electrode containing the sodium transition metal polyanion according to any one of claims 1 to 5, a negative electrode, and an electrolytic solution.
  11.  前記負極が、少なくともNaTi(POを含む請求項10に記載のナトリウム二次電池 The sodium secondary battery according to claim 10, wherein the negative electrode contains at least NaTi 2 (PO 4 ) 3.
  12.  前記電解液が、少なくともNaClOを含む請求項10又は11に記載のナトリウム二次電池。 The sodium secondary battery according to claim 10 or 11, wherein the electrolytic solution contains at least NaClO 4.
  13.  前記電解液が、水系電解液である請求項10乃至12のいずれか一項に記載のナトリウム二次電池。 The sodium secondary battery according to any one of claims 10 to 12, wherein the electrolytic solution is an aqueous electrolytic solution.
  14.  前記電解液が、非水系電解液である請求項10乃至12のいずれか一項に記載のナトリウム二次電池。 The sodium secondary battery according to any one of claims 10 to 12, wherein the electrolytic solution is a non-aqueous electrolytic solution.
PCT/JP2021/008099 2020-03-04 2021-03-03 Sodium transition metal polyanion WO2021177337A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-036484 2020-03-04
JP2020036484 2020-03-04

Publications (1)

Publication Number Publication Date
WO2021177337A1 true WO2021177337A1 (en) 2021-09-10

Family

ID=77613546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/008099 WO2021177337A1 (en) 2020-03-04 2021-03-03 Sodium transition metal polyanion

Country Status (2)

Country Link
JP (1) JP2021138608A (en)
WO (1) WO2021177337A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797917A (en) * 2022-04-27 2022-07-29 中国地质大学(武汉) High-activity cobalt-based catalyst with pH self-buffering capacity and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086402A (en) * 2009-10-13 2011-04-28 Toyota Central R&D Labs Inc Aqueous solution secondary battery
WO2014073702A1 (en) * 2012-11-12 2014-05-15 国立大学法人九州大学 Positive electrode active material and secondary battery using same
JP2014146457A (en) * 2013-01-28 2014-08-14 Kyocera Corp Secondary battery
JP2019125547A (en) * 2018-01-19 2019-07-25 日本電気硝子株式会社 Solid electrolyte powder, electrode mixture using the same, and all-solid sodium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086402A (en) * 2009-10-13 2011-04-28 Toyota Central R&D Labs Inc Aqueous solution secondary battery
WO2014073702A1 (en) * 2012-11-12 2014-05-15 国立大学法人九州大学 Positive electrode active material and secondary battery using same
JP2014146457A (en) * 2013-01-28 2014-08-14 Kyocera Corp Secondary battery
JP2019125547A (en) * 2018-01-19 2019-07-25 日本電気硝子株式会社 Solid electrolyte powder, electrode mixture using the same, and all-solid sodium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797917A (en) * 2022-04-27 2022-07-29 中国地质大学(武汉) High-activity cobalt-based catalyst with pH self-buffering capacity and preparation method and application thereof

Also Published As

Publication number Publication date
JP2021138608A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US10910640B2 (en) Cathode active material for lithium ion secondary battery, and process for its production
KR101810259B1 (en) Method for producing lithium manganese iron phosphate particulate powder, lithium manganese iron phosphate particulate powder and non-aqueous electrolyte secondary battery using that particulate powder
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
CN110870113B (en) Battery with novel composition
CN110870102B (en) Battery with acidified cathode and lithium anode
JP5950389B2 (en) Lithium silicate compound, positive electrode active material, method for producing positive electrode active material, non-aqueous electrolyte secondary battery and vehicle equipped with the same
CN110945689B (en) Battery cell having novel composition
Zhou et al. Comparative study of LiMnPO 4 cathode materials synthesized by solvothermal methods using different manganese salts
KR20110119738A (en) Anode active material for use in non-aqueous electrolyte battery, production method thereof, non-aqueous electrolyte battery, and battery pack
HWANG et al. Electrochemical sodiation-desodiation of maricite NaFePO4 in ionic liquid electrolyte
US20150221932A1 (en) Positive-electrode active material for lithium secondary battery, manufacturing method therefor, positive electrode for lithium secondary battery, and lithium secondary battery provided with said positive electrode
JP5765780B2 (en) Lithium silicate compound, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery using the same
WO2021177337A1 (en) Sodium transition metal polyanion
WO2021177338A1 (en) Sodium transition metal polyanion
WO2014036513A1 (en) Power storage devices using mixed-valent manganese oxide
WO2016036091A1 (en) Electrode material mixture additive for secondary battery, method for preparing same, electrode for secondary battery comprising same, and secondary battery
EP2999035B1 (en) Active material, nonaqueous electrolyte battery, and battery pack
EP3846260A1 (en) Positive electrode active material and battery provided with same
Hwang et al. Rapid microwave-enhanced ion exchange process for the synthesis of LiNi 0.5 Mn 0.5 O 2 and its characterization as the cathode material for lithium batteries
WO2022138702A1 (en) Spinel-type lithium manganese, method for producing same, and use of same
JP6505561B2 (en) Battery active material, non-aqueous electrolyte battery and battery pack
JP7409923B2 (en) Positive electrode active material for multilayer lithium ion secondary battery and method for producing the same
WO2015130228A1 (en) Cathode materials containing olivine structured nanocomposites
EP3978429A1 (en) Aqueous sodium ion secondary battery
JP2021136206A (en) Manufacturing method of positive electrode active material composite for lithium ion secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21763494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21763494

Country of ref document: EP

Kind code of ref document: A1