WO2021176623A1 - Crank angle sensor failure detection device - Google Patents

Crank angle sensor failure detection device Download PDF

Info

Publication number
WO2021176623A1
WO2021176623A1 PCT/JP2020/009275 JP2020009275W WO2021176623A1 WO 2021176623 A1 WO2021176623 A1 WO 2021176623A1 JP 2020009275 W JP2020009275 W JP 2020009275W WO 2021176623 A1 WO2021176623 A1 WO 2021176623A1
Authority
WO
WIPO (PCT)
Prior art keywords
crank angle
angle sensor
sensor
crankshaft
failure detection
Prior art date
Application number
PCT/JP2020/009275
Other languages
French (fr)
Japanese (ja)
Inventor
洸一 古里
小林 正樹
克樹 田島
和彦 坂口
優希 鈴木
孝徳 浦
竜輔 玉野井
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2020/009275 priority Critical patent/WO2021176623A1/en
Publication of WO2021176623A1 publication Critical patent/WO2021176623A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a failure detection device for a crank angle sensor, and more particularly to a failure detection device for a crank angle sensor that detects the rotational state of the crankshaft of an engine.
  • Patent Document 1 in an engine that cranks a crankshaft with a starter motor driven by battery power, it is determined that cranking is started when the voltage change of the battery becomes larger than a predetermined value, and then the crank angle sensor is used.
  • a configuration is disclosed in which it is determined that the crank angle sensor has failed when there is no output signal.
  • An object of the present invention is to provide a failure detection device for a crank angle sensor that solves the above-mentioned problems of the prior art and improves the accuracy of failure detection without inviting complication of structure or the like.
  • the present invention comprises a crankshaft (C) of an engine (E), a crankangle sensor (62) that outputs a pulse signal as the crankshaft (C) rotates, and the engine.
  • the control unit (100) has the crankshaft (C) based on the output signal of the cranking determination sensor (60, 64).
  • the first feature is that when it is detected that the crank angle sensor (62) is rotating and no pulse signal is output from the crank angle sensor (62), it is determined that the crank angle sensor (62) is out of order.
  • cranking determination sensor (60) has a second feature in that it is an intake pressure sensor that detects the pressure of the intake pipe (48) of the engine (E).
  • control unit (100) detects that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60), and the pulse signal from the crank angle sensor (62).
  • the third feature is that it is determined that the crank angle sensor (62) is out of order when the first predetermined time (T1) elapses in a state where is not output.
  • the fourth feature is that it is determined that the crank angle sensor (62) is out of order when the pulse signal is not output.
  • control unit (100) has a starter motor (72) for starting the engine (E), and the control unit (100) confirms a voltage drop of the battery (B) that occurs when the starter motor (72) is energized. Immediately after this, when it is detected that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60) and the pulse signal is not output from the crank angle sensor (62), The fifth feature is that it is determined that the crank angle sensor (62) is out of order.
  • cranking determination sensor (64) has a sixth feature in that it is a voltage sensor that detects the voltage of the battery (B).
  • the control unit (100) is rotating the crankshaft (C) based on the output signal of the cranking determination sensor (60, 64).
  • crank angle sensor (62) If it is detected that there is, and no pulse signal is output from the crank angle sensor (62), it is determined that the crank angle sensor (62) is out of order, so there is no pulse signal output from the crank angle sensor. In this case, by estimating and detecting that the crankshaft is rotating by the cranking determination sensor, it is possible to accurately detect that the crank angle sensor is out of order.
  • cranking determination sensor (60) is an intake pressure sensor that detects the pressure of the intake pipe (48) of the engine (E), the sensor output is periodic every cycle. By using a certain intake pressure sensor, it is possible to accurately estimate and detect that the crankshaft is rotating.
  • the control unit (100) detects that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60), and the crank angle sensor.
  • the first predetermined time (T1) elapses in a state where the pulse signal is not output from (62), it is determined that the crank angle sensor (62) has failed.
  • the control unit (100) has a second predetermined time (T2) after detecting the previous pulse signal after the rotation speed of the crankshaft (C) exceeds a predetermined value. If the next pulse signal is not output even after the lapse of time, it is determined that the crank angle sensor (62) is out of order. Therefore, for example, after the engine has reached the idling speed or higher, it has been output until then. When the pulse signal is no longer output, it can be determined that the crank angle sensor has failed.
  • the engine (E) has a starter motor (72) for starting the engine (E), and the control unit (100) is a battery (B) generated when the starter motor (72) is energized. ), Immediately after confirming the voltage drop, it is detected that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60), and a pulse signal is transmitted from the crank angle sensor (62). Is not output, it is determined that the crank angle sensor (62) is out of order, so that it is possible to detect the failure of the crank angle sensor when starting the engine.
  • cranking determination sensor (64) is a voltage sensor that detects the voltage of the battery (B), it is possible to use a voltage sensor having a periodic sensor output for each cycle. , It is possible to accurately guess and detect that the crankshaft is rotating.
  • FIG. 1 is a left side view of a motorcycle 1 as a saddle-type vehicle according to an embodiment of the present invention.
  • the body frame 2 of the motorcycle 1 has a main frame 3 at the center in the vehicle width direction that extends rearward from the head pipe 44 and curves downward.
  • a pivot 56 that swingably supports the swing arm 21 is provided.
  • a steering stem (not shown) is rotatably supported on the head pipe 44, and a top bridge 10 and a bottom bridge 45 that support a pair of left and right front forks 16 are fixed above and below the steering stem.
  • a steering handle 5 having a symmetrically shaped handlebar 7 is fixed to the top bridge 10, and a pair of left and right rearview mirrors 6 are attached to the steering handle 5.
  • a front wheel WF is rotatably supported at the lower end of the front fork 16, and a front fender 15 covering the upper part of the front wheel WF is arranged at an intermediate position of the front fork 16.
  • a pair of left and right upper seat frames 28 and lower seat frames 29 are attached to the rear upper part of the main frame 3.
  • a power unit P in which a single-cylinder 4-cycle engine E and a transmission are integrally formed is attached to the lower part of the main frame 3.
  • the swing arm 21 swingably supported by the pivot 56 is suspended from the lower seat frame 29 by a pair of left and right rear cushions 22.
  • the rotational driving force of the power unit P is transmitted to the rear wheel WR via a drive chain (not shown) covered with the chain cover 20.
  • a throttle body 48 including a throttle valve and a fuel injection device is attached to the rear side of the power unit P, and the combustion gas of the power unit P is guided to the muffler behind the vehicle body via the exhaust pipe 17.
  • the throttle body 48 constitutes an intake pipe connected to the intake port of the engine E.
  • a side stand 18 and a center stand 19 are oscillatingly supported at the lower end of the main frame 3.
  • a front cowl 8 that supports the windbreak screen 9 and the headlight 12 is attached to the front of the head pipe 44.
  • a pair of left and right front flasher lamps 11 are arranged on the outer side of the front cowl 8 in the vehicle width direction.
  • a fuel tank 43 is arranged on the upper part of the main frame 3.
  • a pair of left and right side shrouds 4 are attached to the position near the front front of the fuel tank 43, and a seat 54 in which the front seat and the rear seat are integrally formed is arranged behind the fuel tank 43.
  • a pair of left and right side covers 55 are arranged to cover both sides of an air cleaner box (not shown) connected to the rear of the throttle body 48 in the vehicle width direction.
  • a grab bar 27 is arranged in the upper rear part of the rear cowl 57, and a tail light 26 is attached to the rear end part of the rear cowl 57.
  • a pair of left and right rear flasher lamps 25 and a rear fender 24 that supports the rear license plate 23 are fixed to the lower portion of the rear cowl 57.
  • the throttle body 48 is provided with an intake pressure sensor (PB sensor) 60 for detecting the pressure generated in the intake pipe and a throttle opening sensor 61 for detecting the opening degree of the throttle valve.
  • the power unit P is provided with a crank angle sensor 62 that detects the rotational position (crank stage) of the crankshaft C.
  • a voltage sensor 64 for detecting the battery B and the voltage of the battery B is arranged inside the side cover 55.
  • the intake pressure sensor 60 and the voltage sensor 64 are applied as cranking determination sensors that detect periodic fluctuations that occur during one cycle of the engine E, respectively, depending on the situation.
  • the intake pressure drops while the intake valve is open, and the intake valve is closed.
  • FIG. 2 is a block diagram showing the overall configuration of the failure detection device of the crank angle sensor 62.
  • the control unit 100 is provided with a failure detection unit 101 having a timer 102.
  • the output signals of the ignition switch (IG switch) 70 and the starter switch 71 are input to the control unit 100.
  • IG switch 70 When the IG switch 70 is turned on and the starter switch 71 is operated, electric power is supplied from the battery B to the starter motor 72, and the crankshaft C of the engine E is cranked.
  • the sensor outputs of the crank angle sensor 62, the voltage sensor 64, and the PB sensor (intake pressure sensor) 60 are input to the control unit 100.
  • the crank angle sensor 62 includes a pulsar rotor 62a that rotates synchronously with the crankshaft C, and a pulse generator 62b that detects the passage of pulsar teeth provided on the pulsar rotor 62a and converts it into a pulse signal.
  • the control unit 100 detects a failure of the crank angle sensor 62, the control unit 100 notifies the occupant by a notification means 73 including an indicator, a speaker, or the like.
  • the PB sensor 60 is mainly applied as a cranking determination sensor that detects periodic fluctuations that occur during one cycle of the engine E. Specifically, when the intake pressure detected by the PB sensor 60 continues to fluctuate periodically, it is determined that the crankshaft C is rotating. Then, if it is determined that the crankshaft C is rotating based on the output of the PB sensor 60 and the crank angle sensor 62 does not output a pulse signal, it is determined that the crank angle sensor 62 is out of order.
  • FIG. 3 is a time chart showing the flow of failure detection when the engine is started.
  • a voltage sensor 64 that detects the voltage of the battery B is also applied as a cranking determination sensor.
  • crankshaft C is stopped before the engine is started, and the status of each is power supply voltage: 12 volts, cranking judgment: off, intake pipe negative pressure: no fluctuation, crank pulse signal: none, Timer: Zero, Failure judgment: Normal.
  • cranking is started in response to this voltage drop, and switches the cranking determination to ON.
  • the crank angle sensor 62 is normal, the crank pulse signal is output immediately after the start of cranking.
  • the crank pulse signal is output. Not done.
  • the cyclic fluctuation of the intake pipe negative pressure starts with the rotation of the crankshaft C.
  • This fluctuation in the intake pressure repeats periodic vertical movements along the movement of one cycle of four strokes consisting of intake, compression, explosion, and exhaust of the engine E.
  • the intake pipe negative pressure starts to fluctuate periodically, and the crank pulse signal is not detected for the first predetermined time.
  • T1 it is determined that the crank angle sensor 62 has failed.
  • the crank angle sensor indicates that cranking is not performed due to the failure of the starter motor 72, although the power supply voltage has dropped sharply. It is possible to prevent false detection of the failure of 62.
  • FIG. 4 is a time chart showing the flow of failure detection during engine operation.
  • the time charts a to c show three modes of failure detection. It is conceivable that the failure of the crank angle sensor 62 occurs not only while the engine E is stopped but also during the operation of the engine E at a predetermined rotation speed or more (for example, an idling rotation speed or more).
  • the upper time chart a is in a normal state in which both the crank pulse signal is generated and the periodic negative pressure of the intake pipe is generated.
  • the control unit 100 determines the number of times the intake pipe negative pressure is reversed when the next crank pulse signal is not generated even after a predetermined time (for example, several hundred milliseconds) has elapsed from the last crank pulse signal. It counts and determines that there is a negative pressure fluctuation when there is a predetermined number of inversions.
  • the determination of the reversal of the negative pressure of the intake pipe can be defined as, for example, one reversal when the fluctuation range from the peak of the negative pressure of the intake pipe exceeds a predetermined pressure (for example, 10 kPa). Further, the control unit 100 determines that there is a negative pressure fluctuation when the next crank pulse signal is not generated even after a predetermined time (for example, several hundred milliseconds) has elapsed from the last crank pulse signal. 2 It is also possible to wait for the elapse of T2 for a predetermined time and determine that the crank angle sensor 62 has failed.
  • a predetermined pressure for example, 10 kPa
  • the lower time chart c shows a case where it is not determined that the crank angle sensor 62 is out of order even if the crank pulse signal is lost during the operation of the engine E.
  • the crank pulse signal is lost is that the engine E is stopped due to the lock of the rear wheel WR, so that the normal determination of the crank angle sensor 62 is maintained without causing a negative pressure fluctuation.
  • FIG. 5 is a flowchart showing a procedure for failure detection control of the crank angle sensor.
  • step S1 the starter switch 71 is turned on.
  • step S2 it is determined whether or not the battery voltage suddenly drops due to the operation of the starter switch 71 to supply the power of the battery B to the starter motor 72. If an affirmative determination is made in step S2, the process proceeds to step S3 to determine whether or not there is a negative pressure fluctuation. If a negative determination is made in step S2, the determination returns to step S2.
  • step S3 determines whether or not there is a crank pulse signal output. If a negative determination is made in S3, the determination returns to step S3. If an affirmative judgment is made in step S4, the process proceeds to step S5, and it is determined whether or not the engine speed of the engine E is equal to or higher than the idling speed.
  • step S4 if a negative determination is made in step S4, that is, if it is determined that there is a negative pressure fluctuation immediately after the start of the engine E and there is no pulse output, the process proceeds to step S12 and the timer 102 starts. In the following step S13, it is determined whether or not the first predetermined time T1 has elapsed, and if an affirmative determination is made, the process proceeds to step S10, and it is determined that the crank angle sensor 62 has failed.
  • step S5 determines whether or not there is a pulse output. If it is determined to be negative in step S6, that is, if it is determined that the crank pulse signal was output immediately after the engine was started, but then the crank pulse signal is lost after the idling speed or higher, the step S7 is performed. move on. In step S7, it is determined whether or not there is a negative pressure fluctuation, and if affirmative determination is made, the process proceeds to step S8 and the timer 102 starts. In the following step S9, it is determined whether or not the second predetermined time T2 has elapsed, and if affirmative determination is made, the process proceeds to step S10, and it is determined that the crank angle sensor 62 has failed.
  • step S11 the indicator as the notification means 73 outputs that a failure has occurred in the crank angle sensor 62, and a series of controls is terminated. If an affirmative determination is made in step S6, the series of control is terminated as it is, and if a negative determination is made in steps S7 and S9, the determination returns to the determinations of steps S7 and S9, respectively.
  • the crank shaft C of the engine E the crank angle sensor 62 that outputs a pulse signal with the rotation of the crank shaft C, and the engine E. It includes cranking determination sensors 60 and 64 that determine that the crankshaft is cranking by detecting periodic fluctuations that occur during one cycle, and a control unit 100 that detects a failure of the crank angle sensor 62.
  • the control unit 100 detects that the crankshaft C is rotating based on the output signals of the cranking determination sensors 60 and 64, and outputs a pulse signal from the crank angle sensor 62. If not, it is determined that the crank angle sensor 62 is out of order.
  • cranking determination sensors 60 and 64 (PB sensor 60 and / and the voltage sensor 64) By estimating and detecting that the crankshaft C is rotating, it is possible to accurately detect that the crank angle sensor 62 is defective.
  • the form of the motorcycle, the shape and structure of the crank angle sensor, the setting of the predetermined time, etc. are not limited to the above embodiment, and various changes can be made.
  • the failure detection device of the crank angle sensor according to the present invention is not limited to a saddle-type vehicle such as a motorcycle, and can be applied to an internal combustion engine mounted on any vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Provided is a crank angle sensor failure detection device that detects failures with increased accuracy without increasing the complexity of the structure or the like. The crank angle sensor failure detection device comprises a crank shaft (C) of an engine (E), a crank angle sensor (62) that outputs a pulse signal according to the rotation of the crank shaft (C), a cranking determination sensor (60, 64) that determines that the crank shaft is cranking by detecting a periodic fluctuation which is generated in one cycle of the engine (E), and a control unit (100) that performs failure detection of the crank angle sensor (62), wherein the control unit (100) determines that the crank angle sensor (62) has failed if it is detected, on the basis of the output signal of the cranking determination sensor (60, 64), that the crank shaft (C) is rotating, and no pulse signal is output from the crank angle sensor (62). The cranking determination sensor (60) is an intake pressure sensor that detects the pressure of an intake pipe (48) of the engine (E).

Description

クランク角センサの故障検知装置Crank angle sensor failure detection device
 本発明は、クランク角センサの故障検知装置に係り、特に、エンジンのクランク軸の回転状態を検知するクランク角センサの故障検知装置に関する。 The present invention relates to a failure detection device for a crank angle sensor, and more particularly to a failure detection device for a crank angle sensor that detects the rotational state of the crankshaft of an engine.
 従来から、エンジンのクランク軸の回転状態を検知するクランク角センサの故障を検知するための故障検知装置が知られている。 Conventionally, a failure detection device for detecting a failure of a crank angle sensor that detects the rotational state of the crankshaft of an engine has been known.
 特許文献1には、バッテリ電力で駆動するセルモータでクランク軸をクランキングするエンジンにおいて、バッテリの電圧変化が所定値より大きくなったことでクランキングが開始されたと判断し、その後にクランク角センサの出力信号がない場合にクランク角センサの故障であると判断するようにした構成が開示されている。 According to Patent Document 1, in an engine that cranks a crankshaft with a starter motor driven by battery power, it is determined that cranking is started when the voltage change of the battery becomes larger than a predetermined value, and then the crank angle sensor is used. A configuration is disclosed in which it is determined that the crank angle sensor has failed when there is no output signal.
2001-82240号公報2001-82240
 しかし、特許文献1の技術では、バッテリの電圧変化のみが発生してセルモータが回転しない場合、すなわち、セルモータの故障でクランキングがされずにクランクパルスが出力されない場合であっても、クランク角センサの故障であると誤検知する可能性があり、故障検知の精度をより高めるためには依然として検討の余地があった。 However, in the technique of Patent Document 1, the crank angle sensor is used even when the cell motor does not rotate due to only the voltage change of the battery, that is, even when the crank pulse is not output without cranking due to the failure of the cell motor. There is a possibility of erroneous detection of the failure, and there is still room for consideration in order to improve the accuracy of failure detection.
 本発明の目的は、上記従来技術の課題を解決し、構造の複雑化等を招くことなく故障検知の精度を高めたクランク角センサの故障検知装置を提供することにある。 An object of the present invention is to provide a failure detection device for a crank angle sensor that solves the above-mentioned problems of the prior art and improves the accuracy of failure detection without inviting complication of structure or the like.
 前記目的を達成するために、本発明は、エンジン(E)のクランク軸(C)と、該クランク軸(C)の回転に伴ってパルス信号を出力するクランク角センサ(62)と、前記エンジン(E)の1サイクル中に生じる周期的な変動を検知することでクランク軸クランキングしていることを判定するクランキング判定センサ(60,64)と、前記クランク角センサ(62)の故障検知を行う制御部(100)とを含むクランク角センサの故障検知装置において、前記制御部(100)は、前記クランキング判定センサ(60,64)の出力信号に基づいて前記クランク軸(C)が回転中であることが検知され、かつ前記クランク角センサ(62)からパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断する点に第1の特徴がある。 In order to achieve the above object, the present invention comprises a crankshaft (C) of an engine (E), a crankangle sensor (62) that outputs a pulse signal as the crankshaft (C) rotates, and the engine. Failure detection of the crankshaft determination sensor (60, 64) that determines crankshaft cranking by detecting the periodic fluctuation that occurs during one cycle of (E) and the crank angle sensor (62). In the failure detection device of the crank angle sensor including the control unit (100), the control unit (100) has the crankshaft (C) based on the output signal of the cranking determination sensor (60, 64). The first feature is that when it is detected that the crank angle sensor (62) is rotating and no pulse signal is output from the crank angle sensor (62), it is determined that the crank angle sensor (62) is out of order.
 また、前記クランキング判定センサ(60)は、前記エンジン(E)の吸気管(48)の圧力を検知する吸気圧センサである点に第2の特徴がある。 Further, the cranking determination sensor (60) has a second feature in that it is an intake pressure sensor that detects the pressure of the intake pipe (48) of the engine (E).
 また、前記制御部(100)は、前記クランキング判定センサ(60)の出力に基づいて前記クランク軸(C)が回転中であることが検知され、かつ前記クランク角センサ(62)からパルス信号が出力されない状態で第1所定時間(T1)が経過することで、前記クランク角センサ(62)が故障していると判断する点に第3の特徴がある。 Further, the control unit (100) detects that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60), and the pulse signal from the crank angle sensor (62). The third feature is that it is determined that the crank angle sensor (62) is out of order when the first predetermined time (T1) elapses in a state where is not output.
 また、前記制御部(100)は、前記クランク軸(C)の回転数が所定値を超えた後、前回のパルス信号を検知してから第2所定時間(T2)が経過しても次のパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断する点に第4の特徴がある。 Further, even if the second predetermined time (T2) has elapsed from the detection of the previous pulse signal after the rotation speed of the crankshaft (C) exceeds the predetermined value, the control unit (100) is next. The fourth feature is that it is determined that the crank angle sensor (62) is out of order when the pulse signal is not output.
 また、前記エンジン(E)を始動するためのスタータモータ(72)を有し、前記制御部(100)は、前記スタータモータ(72)に通電する際に生じるバッテリ(B)の電圧降下を確認した直後に、前記クランキング判定センサ(60)の出力に基づいて前記クランク軸(C)が回転中であることを検知し、かつ前記クランク角センサ(62)からパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断する点に第5の特徴がある。 Further, the control unit (100) has a starter motor (72) for starting the engine (E), and the control unit (100) confirms a voltage drop of the battery (B) that occurs when the starter motor (72) is energized. Immediately after this, when it is detected that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60) and the pulse signal is not output from the crank angle sensor (62), The fifth feature is that it is determined that the crank angle sensor (62) is out of order.
 さらに、前記クランキング判定センサ(64)は、バッテリ(B)の電圧を検知する電圧センサである点に第6の特徴がある。 Further, the cranking determination sensor (64) has a sixth feature in that it is a voltage sensor that detects the voltage of the battery (B).
 第1の特徴によれば、エンジン(E)のクランク軸(C)と、該クランク軸(C)の回転に伴ってパルス信号を出力するクランク角センサ(62)と、前記エンジン(E)の1サイクル中に生じる周期的な変動を検知することでクランク軸がクランキングしていることを判定するクランキング判定センサ(60,64)と、前記クランク角センサ(62)の故障検知を行う制御部(100)とを含むクランク角センサの故障検知装置において、前記制御部(100)は、前記クランキング判定センサ(60,64)の出力信号に基づいて前記クランク軸(C)が回転中であることが検知され、かつ前記クランク角センサ(62)からパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断するので、クランク角センサからパルス信号の出力がない場合に、クランキング判定センサによってクランク軸が回転していることを推測検知することで、クランク角センサの故障であることを正確に検知することが可能となる。 According to the first feature, the crankshaft (C) of the engine (E), the crank angle sensor (62) that outputs a pulse signal with the rotation of the crankshaft (C), and the engine (E). A control for detecting a failure of the crankshaft determination sensor (60, 64) that determines that the crankshaft is cranking by detecting periodic fluctuations that occur during one cycle, and the crank angle sensor (62). In the failure detection device of the crank angle sensor including the unit (100), the control unit (100) is rotating the crankshaft (C) based on the output signal of the cranking determination sensor (60, 64). If it is detected that there is, and no pulse signal is output from the crank angle sensor (62), it is determined that the crank angle sensor (62) is out of order, so there is no pulse signal output from the crank angle sensor. In this case, by estimating and detecting that the crankshaft is rotating by the cranking determination sensor, it is possible to accurately detect that the crank angle sensor is out of order.
 第2の特徴によれば、前記クランキング判定センサ(60)は、前記エンジン(E)の吸気管(48)の圧力を検知する吸気圧センサであるので、1サイクル毎に周期的なセンサ出力がある吸気圧センサを用いることで、クランク軸が回転していることを正確に推測検知することが可能となる。 According to the second feature, since the cranking determination sensor (60) is an intake pressure sensor that detects the pressure of the intake pipe (48) of the engine (E), the sensor output is periodic every cycle. By using a certain intake pressure sensor, it is possible to accurately estimate and detect that the crankshaft is rotating.
 第3の特徴によれば、前記制御部(100)は、前記クランキング判定センサ(60)の出力に基づいて前記クランク軸(C)が回転中であることが検知され、かつ前記クランク角センサ(62)からパルス信号が出力されない状態で第1所定時間(T1)が経過することで、前記クランク角センサ(62)が故障していると判断するので、故障検知の条件に所定時間の経過を含めることで、ノイズ等による誤検知を防ぐことが可能となる。 According to the third feature, the control unit (100) detects that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60), and the crank angle sensor. When the first predetermined time (T1) elapses in a state where the pulse signal is not output from (62), it is determined that the crank angle sensor (62) has failed. By including, it is possible to prevent false detection due to noise or the like.
 第4の特徴によれば、前記制御部(100)は、前記クランク軸(C)の回転数が所定値を超えた後、前回のパルス信号を検知してから第2所定時間(T2)が経過しても次のパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断するので、例えば、エンジンがアイドリング回転数以上となった後、それまで出力されていたパルス信号が出力されなくなった場合に、クランク角センサの故障であると判断することが可能となる。 According to the fourth feature, the control unit (100) has a second predetermined time (T2) after detecting the previous pulse signal after the rotation speed of the crankshaft (C) exceeds a predetermined value. If the next pulse signal is not output even after the lapse of time, it is determined that the crank angle sensor (62) is out of order. Therefore, for example, after the engine has reached the idling speed or higher, it has been output until then. When the pulse signal is no longer output, it can be determined that the crank angle sensor has failed.
 第5の特徴によれば、前記エンジン(E)を始動するためのスタータモータ(72)を有し、前記制御部(100)は、前記スタータモータ(72)に通電する際に生じるバッテリ(B)の電圧降下を確認した直後に、前記クランキング判定センサ(60)の出力に基づいて前記クランク軸(C)が回転中であることを検知し、かつ前記クランク角センサ(62)からパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断するので、エンジンを始動する際にクランク角センサの故障検知を行うことが可能となる。 According to a fifth feature, the engine (E) has a starter motor (72) for starting the engine (E), and the control unit (100) is a battery (B) generated when the starter motor (72) is energized. ), Immediately after confirming the voltage drop, it is detected that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60), and a pulse signal is transmitted from the crank angle sensor (62). Is not output, it is determined that the crank angle sensor (62) is out of order, so that it is possible to detect the failure of the crank angle sensor when starting the engine.
 第6の特徴によれば、前記クランキング判定センサ(64)は、バッテリ(B)の電圧を検知する電圧センサであるので、1サイクル毎に周期的なセンサ出力がある電圧センサを用いることで、クランク軸が回転していることを正確に推測検知することが可能となる。 According to the sixth feature, since the cranking determination sensor (64) is a voltage sensor that detects the voltage of the battery (B), it is possible to use a voltage sensor having a periodic sensor output for each cycle. , It is possible to accurately guess and detect that the crankshaft is rotating.
本発明の一実施形態に係る鞍乗型車両としての自動二輪車の左側面図である。It is a left side view of the motorcycle as a saddle-type vehicle which concerns on one Embodiment of this invention. クランク角センサの故障検知装置の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the failure detection device of a crank angle sensor. エンジン始動時における故障検知の流れを示すタイムチャートである。It is a time chart which shows the flow of failure detection at the time of starting an engine. エンジン運転時における故障検知の流れを示すタイムチャートである。It is a time chart which shows the flow of failure detection at the time of engine operation. クランク角センサの故障検知制御の手順を示すフローチャートである。It is a flowchart which shows the procedure of failure detection control of a crank angle sensor.
 以下、図面を参照して本発明の好ましい実施の形態について詳細に説明する。図1は、本発明の一実施形態に係る鞍乗型車両としての自動二輪車1の左側面図である。自動二輪車1の車体フレーム2は、ヘッドパイプ44から車体後方に延出して下方に湾曲する車幅方向中央のメインフレーム3を有する。メインフレーム3の下端部には、スイングアーム21を揺動自在に軸支するピボット56が設けられている。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a left side view of a motorcycle 1 as a saddle-type vehicle according to an embodiment of the present invention. The body frame 2 of the motorcycle 1 has a main frame 3 at the center in the vehicle width direction that extends rearward from the head pipe 44 and curves downward. At the lower end of the main frame 3, a pivot 56 that swingably supports the swing arm 21 is provided.
 ヘッドパイプ44には、不図示のステアリングステムが回転自在に軸支されており、ステアリングステムの上下には、左右一対のフロントフォーク16を支持するトップブリッジ10およびボトムブリッジ45が固定されている。トップブリッジ10には、左右対称形状のハンドルバー7を有する操向ハンドル5が固定されており、操向ハンドル5には、左右一対のバックミラー6が取り付けられている。フロントフォーク16の下端部には、前輪WFが回転自在に軸支されており、フロントフォーク16の中間位置には、前輪WFの上方を覆うフロントフェンダ15が配設されている。 A steering stem (not shown) is rotatably supported on the head pipe 44, and a top bridge 10 and a bottom bridge 45 that support a pair of left and right front forks 16 are fixed above and below the steering stem. A steering handle 5 having a symmetrically shaped handlebar 7 is fixed to the top bridge 10, and a pair of left and right rearview mirrors 6 are attached to the steering handle 5. A front wheel WF is rotatably supported at the lower end of the front fork 16, and a front fender 15 covering the upper part of the front wheel WF is arranged at an intermediate position of the front fork 16.
 メインフレーム3の後方上部には、左右一対の上側シートフレーム28および下側シートフレーム29が取り付けられている。メインフレーム3の下部には、単気筒4サイクルのエンジンEと変速機とを一体に構成したパワーユニットPが取り付けられている。ピボット56に揺動自在に軸支されるスイングアーム21は、左右一対のリヤクッション22によって下側シートフレーム29に吊り下げられている。 A pair of left and right upper seat frames 28 and lower seat frames 29 are attached to the rear upper part of the main frame 3. A power unit P in which a single-cylinder 4-cycle engine E and a transmission are integrally formed is attached to the lower part of the main frame 3. The swing arm 21 swingably supported by the pivot 56 is suspended from the lower seat frame 29 by a pair of left and right rear cushions 22.
 パワーユニットPの回転駆動力は、チェーンカバー20に覆われる不図示のドライブチェーンを介して後輪WRに伝達される。パワーユニットPの背面側にはスロットルバルブおよび燃料噴射装置を含むスロットルボディ48が取り付けられており、パワーユニットPの燃焼ガスは、排気管17を介して車体後方のマフラに導かれる。スロットルボディ48は、エンジンEの吸気ポートに接続される吸気管を構成する。メインフレーム3の下端部にはサイドスタンド18およびセンタスタンド19が揺動自在に軸支されている。 The rotational driving force of the power unit P is transmitted to the rear wheel WR via a drive chain (not shown) covered with the chain cover 20. A throttle body 48 including a throttle valve and a fuel injection device is attached to the rear side of the power unit P, and the combustion gas of the power unit P is guided to the muffler behind the vehicle body via the exhaust pipe 17. The throttle body 48 constitutes an intake pipe connected to the intake port of the engine E. A side stand 18 and a center stand 19 are oscillatingly supported at the lower end of the main frame 3.
 ヘッドパイプ44の前方には、防風スクリーン9およびヘッドライト12を支持するフロントカウル8が取り付けられている。フロントカウル8の車幅方向外側には、左右一対の前側フラッシャランプ11が配設されている。 A front cowl 8 that supports the windbreak screen 9 and the headlight 12 is attached to the front of the head pipe 44. A pair of left and right front flasher lamps 11 are arranged on the outer side of the front cowl 8 in the vehicle width direction.
 メインフレーム3の上部には、燃料タンク43が配設されている。燃料タンク43の前前方寄りの位置には、左右一対のサイドシュラウド4が取り付けられており、燃料タンク43の後方には、前席と後席とを一体に形成したシート54が配設されている。燃料タンク43の下方には、スロットルボディ48の後方に連結されるエアクリーナボックス(不図示)の車幅方向両側を覆う左右一対のサイドカバー55が配設されている。サイドカバー55の後方には、上側シートフレーム28および下側シートフレーム29を覆うリヤカウル57が配設されている。 A fuel tank 43 is arranged on the upper part of the main frame 3. A pair of left and right side shrouds 4 are attached to the position near the front front of the fuel tank 43, and a seat 54 in which the front seat and the rear seat are integrally formed is arranged behind the fuel tank 43. There is. Below the fuel tank 43, a pair of left and right side covers 55 are arranged to cover both sides of an air cleaner box (not shown) connected to the rear of the throttle body 48 in the vehicle width direction. Behind the side cover 55, a rear cowl 57 that covers the upper seat frame 28 and the lower seat frame 29 is arranged.
 リヤカウル57の後方上部にはグラブバー27が配設されており、リヤカウル57の後端部にはテールライト26が取り付けられている。リヤカウル57の下部には、左右一対の後側フラッシャランプ25および後側ライセンスプレート23を支持するリヤフェンダ24が固定されている。 A grab bar 27 is arranged in the upper rear part of the rear cowl 57, and a tail light 26 is attached to the rear end part of the rear cowl 57. A pair of left and right rear flasher lamps 25 and a rear fender 24 that supports the rear license plate 23 are fixed to the lower portion of the rear cowl 57.
 スロットルボディ48には、吸気管に生じる圧力を検知する吸気圧センサ(PBセンサ)60と、スロットルバルブの開度を検知するスロットル開度センサ61とが配設されている。パワーユニットPには、クランク軸Cの回転位置(クランクステージ)を検知するクランク角センサ62が配設されている。サイドカバー55の内側には、バッテリBおよびバッテリBの電圧を検知する電圧センサ64が配設されている。本実施形態では、吸気圧センサ60および電圧センサ64を、それぞれ、状況に応じて、エンジンEの1サイクル中に生じる周期的な変動を検知するクランキング判定センサとして適用する。吸気圧センサ60を用いた1サイクル中に生じる周期的な変動を検知する具体的な方法として、例えば、吸気バルブが開いている間は、吸気圧が下がり、吸気バルブが閉じている間は、吸気圧が上がるという動きを観測することで行う。また、電圧センサ64を用いた1サイクル中に生じる周期的な変動を検知する具体的な方法として、例えば、圧縮工程におけるモーター負荷の上昇による電圧降下や、点火による電圧降下を観測することで行う。 The throttle body 48 is provided with an intake pressure sensor (PB sensor) 60 for detecting the pressure generated in the intake pipe and a throttle opening sensor 61 for detecting the opening degree of the throttle valve. The power unit P is provided with a crank angle sensor 62 that detects the rotational position (crank stage) of the crankshaft C. Inside the side cover 55, a voltage sensor 64 for detecting the battery B and the voltage of the battery B is arranged. In the present embodiment, the intake pressure sensor 60 and the voltage sensor 64 are applied as cranking determination sensors that detect periodic fluctuations that occur during one cycle of the engine E, respectively, depending on the situation. As a specific method of detecting periodic fluctuations occurring during one cycle using the intake pressure sensor 60, for example, the intake pressure drops while the intake valve is open, and the intake valve is closed. This is done by observing the movement of the intake pressure rising. Further, as a specific method of detecting the periodic fluctuation occurring in one cycle using the voltage sensor 64, for example, it is performed by observing a voltage drop due to an increase in the motor load in the compression process and a voltage drop due to ignition. ..
 図2は、クランク角センサ62の故障検知装置の全体構成を示すブロック図である。制御部100には、タイマ102を有する故障検知部101が設けられる。制御部100には、イグニッションスイッチ(IGスイッチ)70およびスタータスイッチ71の出力信号が入力される。IGスイッチ70をオンにして、スタータスイッチ71を操作すると、スタータモータ72にバッテリBから電力が供給されて、エンジンEのクランク軸Cがクランキングされる。 FIG. 2 is a block diagram showing the overall configuration of the failure detection device of the crank angle sensor 62. The control unit 100 is provided with a failure detection unit 101 having a timer 102. The output signals of the ignition switch (IG switch) 70 and the starter switch 71 are input to the control unit 100. When the IG switch 70 is turned on and the starter switch 71 is operated, electric power is supplied from the battery B to the starter motor 72, and the crankshaft C of the engine E is cranked.
 制御部100には、クランク角センサ62、電圧センサ64、PBセンサ(吸気圧センサ)60のセンサ出力が入力される。クランク角センサ62は、クランク軸Cと同期回転するパルサロータ62aと、パルサロータ62aに設けられたパルサ歯の通過を検知してパルス信号に変換するパルス発生器62bとからなる。制御部100は、クランク角センサ62の故障を検知すると、インジケータやスピーカ等からなる報知手段73によって乗員に報知する。 The sensor outputs of the crank angle sensor 62, the voltage sensor 64, and the PB sensor (intake pressure sensor) 60 are input to the control unit 100. The crank angle sensor 62 includes a pulsar rotor 62a that rotates synchronously with the crankshaft C, and a pulse generator 62b that detects the passage of pulsar teeth provided on the pulsar rotor 62a and converts it into a pulse signal. When the control unit 100 detects a failure of the crank angle sensor 62, the control unit 100 notifies the occupant by a notification means 73 including an indicator, a speaker, or the like.
 本実施形態では、エンジンEの1サイクル中に生じる周期的な変動を検知するクランキング判定センサとして、主にPBセンサ60を適用する。具体的には、PBセンサ60によって検知される吸気圧が周期的な変動を継続している場合には、クランク軸Cが回転していると判断する。そして、PBセンサ60の出力に基づいてクランク軸Cが回転していると判断した状態において、クランク角センサ62がパルス信号を出力しない場合は、クランク角センサ62が故障していると判断する。 In the present embodiment, the PB sensor 60 is mainly applied as a cranking determination sensor that detects periodic fluctuations that occur during one cycle of the engine E. Specifically, when the intake pressure detected by the PB sensor 60 continues to fluctuate periodically, it is determined that the crankshaft C is rotating. Then, if it is determined that the crankshaft C is rotating based on the output of the PB sensor 60 and the crank angle sensor 62 does not output a pulse signal, it is determined that the crank angle sensor 62 is out of order.
 図3は、エンジン始動時における故障検知の流れを示すタイムチャートである。エンジン始動時は、PBセンサ60に加えて、バッテリBの電圧を検知する電圧センサ64もクランキング判定センサとして適用する。 FIG. 3 is a time chart showing the flow of failure detection when the engine is started. When the engine is started, in addition to the PB sensor 60, a voltage sensor 64 that detects the voltage of the battery B is also applied as a cranking determination sensor.
 時刻t=0では、エンジン始動前でクランク軸Cが停止しており、それぞれのステータスは、電源電圧:12ボルト、クランキング判定:オフ、吸気管負圧:変動なし、クランクパルス信号:なし、タイマ:ゼロ、故障判定:正常とされている。 At time t = 0, the crankshaft C is stopped before the engine is started, and the status of each is power supply voltage: 12 volts, cranking judgment: off, intake pipe negative pressure: no fluctuation, crank pulse signal: none, Timer: Zero, Failure judgment: Normal.
 時刻t1では、スタータスイッチ71が操作されることにより、スタータモータ72にバッテリ電力が供給されることで、電源電圧が急激に低下する。制御部100は、この電圧低下に応じてクランキングが開始されたと判定し、クランキング判定をオンに切り換える。ここで、クランク角センサ62が正常であれば、クランキング開始直後からクランクパルス信号が出力されるところ、このグラフの例では、クランク角センサ62に故障が生じているため、クランクパルス信号が出力されない。 At time t1, when the starter switch 71 is operated, battery power is supplied to the starter motor 72, so that the power supply voltage drops sharply. The control unit 100 determines that cranking has started in response to this voltage drop, and switches the cranking determination to ON. Here, if the crank angle sensor 62 is normal, the crank pulse signal is output immediately after the start of cranking. However, in the example of this graph, since the crank angle sensor 62 has a failure, the crank pulse signal is output. Not done.
 時刻t2では、クランク軸Cの回転に伴って吸気管負圧の周期的な変動が開始される。この吸気圧の変動は、エンジンEの吸気→圧縮→爆発→排気からなる4行程1サイクルの動きに沿って周期的な上下動を繰り返すものである。 At time t2, the cyclic fluctuation of the intake pipe negative pressure starts with the rotation of the crankshaft C. This fluctuation in the intake pressure repeats periodic vertical movements along the movement of one cycle of four strokes consisting of intake, compression, explosion, and exhaust of the engine E.
 次に、時刻t4では、混合気に着火してエンジンEが始動していることを一定周期確認したにも関わらず、クランクパルス信号が出力されないことから、タイマ102によるカウントが開始される。そして、時刻t5では、タイマ102のカウント値が第1所定時間T1に達したことから、クランク角センサ62に故障が発生しているとして故障判定がオンに切り換えられる。なお、時刻t3では、電源電圧がエンジン始動後の安定状態に移行している。 Next, at time t4, although it was confirmed that the air-fuel mixture was ignited and the engine E was started for a certain period of time, the crank pulse signal was not output, so the counting by the timer 102 was started. Then, at time t5, since the count value of the timer 102 reaches the first predetermined time T1, it is assumed that the crank angle sensor 62 has a failure, and the failure determination is switched on. At time t3, the power supply voltage shifts to a stable state after the engine is started.
 本実施形態では、電源電圧の急激な低下によりクランキングが開始されたことを検知し、かつ吸気管負圧が周期的な変動を開始し、さらにクランクパルス信号が検知されない状態で第1所定時間T1が経過すると、クランク角センサ62の故障と判定する。この構成によれば、PBセンサ60によって吸気管負圧を監視することで、電源電圧の急激な低下はあったもののスタータモータ72の故障によりクランキングが行われていないという状態を、クランク角センサ62の故障と誤検知することを防ぐことができる。 In the present embodiment, it is detected that cranking is started due to a sudden drop in the power supply voltage, the intake pipe negative pressure starts to fluctuate periodically, and the crank pulse signal is not detected for the first predetermined time. When T1 elapses, it is determined that the crank angle sensor 62 has failed. According to this configuration, by monitoring the negative pressure of the intake pipe with the PB sensor 60, the crank angle sensor indicates that cranking is not performed due to the failure of the starter motor 72, although the power supply voltage has dropped sharply. It is possible to prevent false detection of the failure of 62.
 図4は、エンジン運転時における故障検知の流れを示すタイムチャートである。タイムチャートa~cによって故障検知の3態様を示す。クランク角センサ62の故障は、エンジンEの停止中はもとより、所定回転数以上(例えば、アイドリング回転数以上)のエンジンEの運転中に発生することも考えられる。 FIG. 4 is a time chart showing the flow of failure detection during engine operation. The time charts a to c show three modes of failure detection. It is conceivable that the failure of the crank angle sensor 62 occurs not only while the engine E is stopped but also during the operation of the engine E at a predetermined rotation speed or more (for example, an idling rotation speed or more).
 上段のタイムチャートaは、クランクパルス信号の発生と、周期的な吸気管負圧が両方とも発生している正常な状態にある。これに対し、中段のタイムチャートbでは、クランクパルス信号が喪失する一方、周期的な吸気管負圧が継続して発生している状態にあり、これにより、クランク角センサ62の故障が発生したと判定される。本実施形態において、制御部100は、最後のクランクパルス信号から所定時間(例えば、数百ミリ秒)が経過しても次のクランクパルス信号が発生しない場合に、吸気管負圧の反転回数をカウントして、所定回数の反転があった場合に負圧変動があると判定する。この吸気管負圧の反転の判断は、例えば、吸気管負圧のピークからの変動幅が所定圧(例えば、10kPa)を超えた場合に1回反転したと定義できる。また、制御部100は、最後のクランクパルス信号から所定時間(例えば、数百ミリ秒)が経過しても次のクランクパルス信号が発生しない場合に、負圧変動があると判定してから第2所定時間T2が経過するのを待ってクランク角センサ62の故障と判定することもできる。 The upper time chart a is in a normal state in which both the crank pulse signal is generated and the periodic negative pressure of the intake pipe is generated. On the other hand, in the time chart b in the middle stage, while the crank pulse signal is lost, the periodic negative pressure of the intake pipe is continuously generated, which causes the crank angle sensor 62 to fail. Is determined. In the present embodiment, the control unit 100 determines the number of times the intake pipe negative pressure is reversed when the next crank pulse signal is not generated even after a predetermined time (for example, several hundred milliseconds) has elapsed from the last crank pulse signal. It counts and determines that there is a negative pressure fluctuation when there is a predetermined number of inversions. The determination of the reversal of the negative pressure of the intake pipe can be defined as, for example, one reversal when the fluctuation range from the peak of the negative pressure of the intake pipe exceeds a predetermined pressure (for example, 10 kPa). Further, the control unit 100 determines that there is a negative pressure fluctuation when the next crank pulse signal is not generated even after a predetermined time (for example, several hundred milliseconds) has elapsed from the last crank pulse signal. 2 It is also possible to wait for the elapse of T2 for a predetermined time and determine that the crank angle sensor 62 has failed.
 下段のタイムチャートcは、エンジンEの運転中にクランクパルス信号が喪失してもクランク角センサ62の故障とは判定しない場合を示す。実際の現象としては、後輪ブレーキの作動による後輪WRのロック時等が考えられる。この場合、クランクパルス信号が喪失した理由は、後輪WRのロックに伴うエンジンEの停止であるため、負圧変動は生じることなく、クランク角センサ62の正常判定が維持されることとなる。 The lower time chart c shows a case where it is not determined that the crank angle sensor 62 is out of order even if the crank pulse signal is lost during the operation of the engine E. As an actual phenomenon, it is conceivable that the rear wheel WR is locked due to the operation of the rear wheel brake. In this case, the reason why the crank pulse signal is lost is that the engine E is stopped due to the lock of the rear wheel WR, so that the normal determination of the crank angle sensor 62 is maintained without causing a negative pressure fluctuation.
 図5は、クランク角センサの故障検知制御の手順を示すフローチャートである。ステップS1では、スタータスイッチ71がオンにされる。ステップS2では、スタータスイッチ71が操作されてスタータモータ72にバッテリBの電力が供給されることに伴うバッテリ電圧の急低下が生じたか否かが判定される。ステップS2で肯定判定されると、ステップS3に進んで負圧変動があるか否かが判定される。ステップS2で否定判定されると、ステップS2の判定に戻る。 FIG. 5 is a flowchart showing a procedure for failure detection control of the crank angle sensor. In step S1, the starter switch 71 is turned on. In step S2, it is determined whether or not the battery voltage suddenly drops due to the operation of the starter switch 71 to supply the power of the battery B to the starter motor 72. If an affirmative determination is made in step S2, the process proceeds to step S3 to determine whether or not there is a negative pressure fluctuation. If a negative determination is made in step S2, the determination returns to step S2.
 ステップS3で肯定判定されると、ステップS4に進んでクランクパルス信号の出力があるか否かの判定が行われる。S3で否定判定されると、ステップS3の判定に戻る。ステップS4で肯定判定されると、ステップS5に進んで、エンジンEのエンジン回転数がアイドリング回転数以上であるか否かが判定される。 If an affirmative determination is made in step S3, the process proceeds to step S4 to determine whether or not there is a crank pulse signal output. If a negative determination is made in S3, the determination returns to step S3. If an affirmative judgment is made in step S4, the process proceeds to step S5, and it is determined whether or not the engine speed of the engine E is equal to or higher than the idling speed.
 一方、ステップS4で否定判定される、すなわち、エンジンEの始動直後に負圧変動があり、かつパルス出力がないと判定されると、ステップS12に進んで、タイマ102がスタートする。続くステップS13では、第1所定時間T1が経過したか否かが判定され、肯定判定されるとステップS10に進んで、クランク角センサ62の故障と判定される。 On the other hand, if a negative determination is made in step S4, that is, if it is determined that there is a negative pressure fluctuation immediately after the start of the engine E and there is no pulse output, the process proceeds to step S12 and the timer 102 starts. In the following step S13, it is determined whether or not the first predetermined time T1 has elapsed, and if an affirmative determination is made, the process proceeds to step S10, and it is determined that the crank angle sensor 62 has failed.
 ステップS5の判定に戻って、ステップS5で肯定判定されると、ステップS6に進んでパルス出力があるか否かが判定される。ステップS6で否定判定される、すなわち、エンジン始動直後にはクランクパルス信号が出力されていたが、その後、アイドリング回転数以上となってからクランクパルス信号が喪失したと判定されると、ステップS7に進む。ステップS7では、負圧変動があるか否かが判定され、肯定判定されると、ステップS8に進んでタイマ102がスタートする。続くステップS9では、第2所定時間T2が経過したか否かが判定され、肯定判定されるとステップS10に進んで、クランク角センサ62の故障と判定される。 Returning to the determination in step S5, if an affirmative determination is made in step S5, the process proceeds to step S6 to determine whether or not there is a pulse output. If it is determined to be negative in step S6, that is, if it is determined that the crank pulse signal was output immediately after the engine was started, but then the crank pulse signal is lost after the idling speed or higher, the step S7 is performed. move on. In step S7, it is determined whether or not there is a negative pressure fluctuation, and if affirmative determination is made, the process proceeds to step S8 and the timer 102 starts. In the following step S9, it is determined whether or not the second predetermined time T2 has elapsed, and if affirmative determination is made, the process proceeds to step S10, and it is determined that the crank angle sensor 62 has failed.
 続くステップS11では、報知手段73としてのインジケータにクランク角センサ62に故障が発生したことを出力し、一連の制御を終了する。なお、ステップS6で肯定判定されると、そのまま一連の制御を終了し、ステップS7,S9で否定判定された場合は、それぞれステップS7,S9の判定に戻る。 In the following step S11, the indicator as the notification means 73 outputs that a failure has occurred in the crank angle sensor 62, and a series of controls is terminated. If an affirmative determination is made in step S6, the series of control is terminated as it is, and if a negative determination is made in steps S7 and S9, the determination returns to the determinations of steps S7 and S9, respectively.
 上記したように本発明に係るクランク角センサの故障検知装置によれば、エンジンEのクランク軸Cと、該クランク軸Cの回転に伴ってパルス信号を出力するクランク角センサ62と、エンジンEの1サイクル中に生じる周期的な変動を検知することでクランク軸がクランキングしていることを判定するクランキング判定センサ60,64と、クランク角センサ62の故障検知を行う制御部100とを含むクランク角センサの故障検知装置において、制御部100は、クランキング判定センサ60,64の出力信号に基づいてクランク軸Cが回転中であることが検知され、かつクランク角センサ62からパルス信号が出力されない場合に、クランク角センサ62が故障していると判断するので、クランク角センサ62からパルス信号の出力がない場合に、クランキング判定センサ60,64(PBセンサ60または/および電圧センサ64)によってクランク軸Cが回転していることを推測検知することで、クランク角センサ62の故障であることを正確に検知することが可能となる。 As described above, according to the failure detection device of the crank angle sensor according to the present invention, the crank shaft C of the engine E, the crank angle sensor 62 that outputs a pulse signal with the rotation of the crank shaft C, and the engine E. It includes cranking determination sensors 60 and 64 that determine that the crankshaft is cranking by detecting periodic fluctuations that occur during one cycle, and a control unit 100 that detects a failure of the crank angle sensor 62. In the failure detection device of the crank angle sensor, the control unit 100 detects that the crankshaft C is rotating based on the output signals of the cranking determination sensors 60 and 64, and outputs a pulse signal from the crank angle sensor 62. If not, it is determined that the crank angle sensor 62 is out of order. Therefore, when there is no pulse signal output from the crank angle sensor 62, the cranking determination sensors 60 and 64 (PB sensor 60 and / and the voltage sensor 64) By estimating and detecting that the crankshaft C is rotating, it is possible to accurately detect that the crank angle sensor 62 is defective.
 なお、自動二輪車の形態、クランク角センサの形状や構造、所定時間の設定等は、上記実施形態に限られず、種々の変更が可能である。本発明に係るクランク角センサの故障検知装置は、自動二輪車等の鞍乗型車両に限られず、あらゆる車両に搭載される内燃機関に適用することが可能である。 The form of the motorcycle, the shape and structure of the crank angle sensor, the setting of the predetermined time, etc. are not limited to the above embodiment, and various changes can be made. The failure detection device of the crank angle sensor according to the present invention is not limited to a saddle-type vehicle such as a motorcycle, and can be applied to an internal combustion engine mounted on any vehicle.
 1…自動二輪車、48…吸気管、60…吸気圧センサ(クランキング判定センサ)、64…電圧センサ(クランキング判定センサ)、62…クランク角センサ、72…スタータモータ、100…制御部、101…故障検知部、102…タイマ、E…エンジン、C…クランク軸、B…バッテリ、T1…第1所定時間、T2…第2所定時間 1 ... Motorcycle, 48 ... Intake pipe, 60 ... Intake pressure sensor (cranking judgment sensor), 64 ... Voltage sensor (cranking judgment sensor), 62 ... Crank angle sensor, 72 ... Starter motor, 100 ... Control unit, 101 ... Failure detection unit, 102 ... Timer, E ... Engine, C ... Crankshaft, B ... Battery, T1 ... First predetermined time, T2 ... Second predetermined time

Claims (6)

  1.  エンジン(E)のクランク軸(C)と、該クランク軸(C)の回転に伴ってパルス信号を出力するクランク角センサ(62)と、前記エンジン(E)の1サイクル中に生じる周期的な変動を検知することでクランク軸がクランキングしていることを判定するクランキング判定センサ(60,64)と、前記クランク角センサ(62)の故障検知を行う制御部(100)とを含むクランク角センサの故障検知装置において、
     前記制御部(100)は、前記クランキング判定センサ(60,64)の出力信号に基づいて前記クランク軸(C)が回転中であることが検知され、かつ前記クランク角センサ(62)からパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断することを特徴とするクランク角センサの故障検知装置。
    The crankshaft (C) of the engine (E), the crank angle sensor (62) that outputs a pulse signal as the crankshaft (C) rotates, and the periodicity that occurs during one cycle of the engine (E). A crank including a cranking determination sensor (60, 64) that determines that the crankshaft is cranking by detecting fluctuations, and a control unit (100) that detects a failure of the crank angle sensor (62). In the failure detection device of the angle sensor
    The control unit (100) detects that the crankshaft (C) is rotating based on the output signal of the cranking determination sensor (60, 64), and the crank angle sensor (62) pulses the crankshaft (C). A failure detection device for a crank angle sensor, which determines that the crank angle sensor (62) has failed when no signal is output.
  2.  前記クランキング判定センサ(60)は、前記エンジン(E)の吸気管(48)の圧力を検知する吸気圧センサであることを特徴とする請求項1に記載のクランク角センサの故障検知装置。 The failure detection device for a crank angle sensor according to claim 1, wherein the cranking determination sensor (60) is an intake pressure sensor that detects the pressure of the intake pipe (48) of the engine (E).
  3.  前記制御部(100)は、前記クランキング判定センサ(60)の出力に基づいて前記クランク軸(C)が回転中であることが検知され、かつ前記クランク角センサ(62)からパルス信号が出力されない状態で第1所定時間(T1)が経過することで、前記クランク角センサ(62)が故障していると判断することを特徴とする請求項1または2に記載のクランク角センサの故障検知装置。 The control unit (100) detects that the crankshaft (C) is rotating based on the output of the cranking determination sensor (60), and outputs a pulse signal from the crank angle sensor (62). The failure detection of the crank angle sensor according to claim 1 or 2, wherein it is determined that the crank angle sensor (62) has failed when the first predetermined time (T1) elapses in the state where the failure is not performed. Device.
  4.  前記制御部(100)は、前記クランク軸(C)の回転数が所定値を超えた後、前回のパルス信号を検知してから第2所定時間(T2)が経過しても次のパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断することを特徴とする請求項1ないし3のいずれかに記載のクランク角センサの故障検知装置。 The control unit (100) detects the next pulse signal even after the second predetermined time (T2) has elapsed since the previous pulse signal was detected after the rotation speed of the crankshaft (C) exceeded the predetermined value. The failure detection device for the crank angle sensor according to any one of claims 1 to 3, wherein it is determined that the crank angle sensor (62) has failed when is not output.
  5.  前記エンジン(E)を始動するためのスタータモータ(72)を有し、
     前記制御部(100)は、前記スタータモータ(72)に通電する際に生じるバッテリ(B)の電圧降下を確認した直後に、前記クランキング判定センサ(60)の出力に基づいて前記クランク軸(C)が回転中であることを検知し、かつ前記クランク角センサ(62)からパルス信号が出力されない場合に、前記クランク角センサ(62)が故障していると判断することを特徴とする請求項1に記載のクランク角センサの故障検知装置。
    It has a starter motor (72) for starting the engine (E).
    Immediately after confirming the voltage drop of the battery (B) that occurs when the starter motor (72) is energized, the control unit (100) determines the crankshaft (60) based on the output of the cranking determination sensor (60). A claim characterized in that it is determined that the crank angle sensor (62) is out of order when it is detected that the C) is rotating and no pulse signal is output from the crank angle sensor (62). Item 1. The failure detection device for the crank angle sensor according to Item 1.
  6.  前記クランキング判定センサ(64)は、バッテリ(B)の電圧を検知する電圧センサであることを特徴とする請求項1または5に記載のクランク角センサの故障検知装置。 The failure detection device for a crank angle sensor according to claim 1 or 5, wherein the cranking determination sensor (64) is a voltage sensor that detects the voltage of the battery (B).
PCT/JP2020/009275 2020-03-04 2020-03-04 Crank angle sensor failure detection device WO2021176623A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009275 WO2021176623A1 (en) 2020-03-04 2020-03-04 Crank angle sensor failure detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/009275 WO2021176623A1 (en) 2020-03-04 2020-03-04 Crank angle sensor failure detection device

Publications (1)

Publication Number Publication Date
WO2021176623A1 true WO2021176623A1 (en) 2021-09-10

Family

ID=77613205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/009275 WO2021176623A1 (en) 2020-03-04 2020-03-04 Crank angle sensor failure detection device

Country Status (1)

Country Link
WO (1) WO2021176623A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221808A (en) * 1990-01-26 1991-09-30 Nippondenso Co Ltd Failure diagnostic device for rotational angle sensor for engine
JPH0968090A (en) * 1995-08-29 1997-03-11 Mitsubishi Electric Corp Abnormality detecting method for crank angle sensor and abnormality detecting device for crank angle sensor
JP2001082240A (en) * 1999-09-17 2001-03-27 Hitachi Ltd Crank angle sensor breakdown diagnosing device for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03221808A (en) * 1990-01-26 1991-09-30 Nippondenso Co Ltd Failure diagnostic device for rotational angle sensor for engine
JPH0968090A (en) * 1995-08-29 1997-03-11 Mitsubishi Electric Corp Abnormality detecting method for crank angle sensor and abnormality detecting device for crank angle sensor
JP2001082240A (en) * 1999-09-17 2001-03-27 Hitachi Ltd Crank angle sensor breakdown diagnosing device for internal combustion engine

Similar Documents

Publication Publication Date Title
KR100840221B1 (en) Engine start control system
JP5547344B2 (en) Engine control device
JP4405508B2 (en) Fuel pump control device and fuel pump control method
JP5867213B2 (en) Engine stop control device
US10837550B2 (en) Straddled vehicle
JP2010261385A (en) Electronic control throttle valve control apparatus
JP4381246B2 (en) Control device for in-vehicle internal combustion engine
JP2000352327A5 (en)
EP2375040B1 (en) Engine control unit
JP2009185717A (en) Fuel injection control device and vehicle
JP4769739B2 (en) Vehicle acceleration shock reduction control device
WO2021176623A1 (en) Crank angle sensor failure detection device
JP4159006B2 (en) Fuel injection control device for single cylinder engine
JPH04203226A (en) Crank angle detecting device of engine for motorcycle
JP7372440B2 (en) Catalyst deterioration diagnosis device
ITTO20000529A1 (en) DETECTION DEVICE FOR THE SADDLE OF A MOTORCYCLE.
JP2007132270A (en) Engine control device
JP5838877B2 (en) Engine stop control device
JP7490482B2 (en) Fuel injection method and fuel injection device
JP4412646B2 (en) Engine start control device
WO2014010163A1 (en) Engine control device and vehicle including the same
WO2021256050A1 (en) Engine starting device, and saddle-ridden vehicle
JP7255017B2 (en) CONTROL METHOD FOR ENGINE CONTROL DEVICE AND Saddle-riding VEHICLE
JP2007192170A (en) Engine starting system
JP2022020418A (en) Engine ignition method and engine ignition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP