WO2021174412A1 - 发光二极管及其制备方法 - Google Patents

发光二极管及其制备方法 Download PDF

Info

Publication number
WO2021174412A1
WO2021174412A1 PCT/CN2020/077588 CN2020077588W WO2021174412A1 WO 2021174412 A1 WO2021174412 A1 WO 2021174412A1 CN 2020077588 W CN2020077588 W CN 2020077588W WO 2021174412 A1 WO2021174412 A1 WO 2021174412A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
type
emitting diode
light emitting
Prior art date
Application number
PCT/CN2020/077588
Other languages
English (en)
French (fr)
Inventor
庄文荣
孙明
付小朝
卢敬权
Original Assignee
东莞市中麒光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市中麒光电技术有限公司 filed Critical 东莞市中麒光电技术有限公司
Priority to US17/442,278 priority Critical patent/US20220399397A1/en
Priority to PCT/CN2020/077588 priority patent/WO2021174412A1/zh
Priority to EP20922487.2A priority patent/EP3923351A4/en
Priority to CN202080009048.2A priority patent/CN113302754A/zh
Priority to JP2021559496A priority patent/JP7296481B2/ja
Priority to JP2021560150A priority patent/JP7296482B2/ja
Priority to CN202080007265.8A priority patent/CN113614933A/zh
Priority to US17/441,123 priority patent/US20220406964A1/en
Priority to PCT/CN2020/095308 priority patent/WO2021174716A1/zh
Priority to EP20922485.6A priority patent/EP3923350A4/en
Publication of WO2021174412A1 publication Critical patent/WO2021174412A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the embodiments of the present application relate to the field of semiconductor technology, such as a light emitting diode and a manufacturing method thereof.
  • LCD Liquid Crystal Display
  • OLED Organic Light-Emitting Diode
  • Micro LED Micro LED
  • QLED Quantum Dot Light Emitting Diodes
  • quantum dot luminescence technology whether it is photoluminescence or electroluminescence, it is difficult to avoid the influence of water vapor and oxygen on the performance and lifetime of quantum dots.
  • the embodiments of the present application provide a light-emitting diode and a manufacturing method thereof, so as to improve the optical and electrical consistency of the light-emitting diode and enhance the ability of the light-emitting diode to isolate water vapor and oxygen.
  • an embodiment of the present application provides a light-emitting diode, and the light-emitting diode includes:
  • the first type layer includes the first type gallium nitride
  • the second-type layer is located on the light-emitting layer; the second-type layer includes second-type gallium nitride;
  • the electrode layer is located on the second type layer.
  • the embodiments of the present application also provide a method for manufacturing a light-emitting diode, and the method for manufacturing the light-emitting diode includes:
  • the first-type substrate including a substrate and a first-type layer, the first-type layer including the first-type gallium nitride;
  • the second-type layer includes second-type gallium nitride
  • An electrode layer is formed on the second type layer.
  • FIG. 1 is a schematic structural diagram of a light emitting diode provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of another light emitting diode provided by an embodiment of the application.
  • FIG. 3 is a schematic structural diagram of yet another light emitting diode provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of yet another light emitting diode provided by an embodiment of the application.
  • FIG. 5 is a schematic flowchart of a method for manufacturing a light emitting diode according to an embodiment of the application
  • FIG. 6 is a schematic diagram of the structure of the light-emitting diode formed in each step of the method of manufacturing the light-emitting diode in FIG. 5;
  • FIG. 7 is a schematic flowchart of another method for manufacturing a light-emitting diode according to an embodiment of the application.
  • FIG. 8 is a schematic diagram of the structure of the light-emitting diode formed in each step of the manufacturing method of the light-emitting diode in FIG. 7.
  • FIG. 1 is a schematic structural diagram of a light emitting diode provided by an embodiment of the application.
  • the light emitting diode includes: a first type layer 101, a light emitting layer, a second type layer 104 and an electrode layer 105.
  • the first type layer 101 includes the first type gallium nitride; the light emitting layer is located on the first type layer 101; the light emitting layer includes quantum dots 1031; the second type layer 104 is located on the light emitting layer; the second type layer 104 includes the second type layer.
  • Type gallium nitride; the electrode layer 105 is located on the second type layer 104.
  • the form of the first type gallium nitride may be a first type gallium nitride single crystal film or a first type gallium nitride polycrystalline film.
  • Quantum dots 1031 include zinc sulfide, zinc selenide, zinc telluride, cadmium sulfide, cadmium selenide, cadmium telluride, mercury sulfide, mercury selenide, mercury telluride or their core-shell nanostructures; or, quantum dots 1031 include Cadmium selenide-zinc sulfide, cadmium sulfide-zinc sulfide, cadmium sulfide-zinc selenide, cadmium sulfide-zinc selenide or graphene quantum dot 1031, etc.
  • the second type gallium nitride can be formed by a low-temperature deposition process, which is beneficial to ensure that the light-emitting layer formed by the quantum dot 1031 is not damaged by high temperature.
  • the electrode layer 105 may include, for example, ITO (Indium Tin Oxide, indium tin oxide). ITO is a transparent conductive material, which is beneficial to ensure the light output of the light emitting diode. Exemplarily, the electrode layer 105 may be formed by a low-temperature deposition process, which is beneficial to ensure that the light-emitting layer formed by the quantum dots 1031 is not damaged by high temperature.
  • the second-type layer 104 can cover the light-emitting layer.
  • the second-type layer 104 has a good sealing effect on the quantum dots 1031, which is beneficial to avoid water vapor and oxygen from corroding the light-emitting layer, thereby helping to improve the life and performance of the quantum dots 1031;
  • the first Type II gallium nitride can be formed by a low-temperature deposition process, which is beneficial to ensure that the light-emitting layer formed by the quantum dot 1031 is not damaged by high temperature.
  • the main body of the light-emitting layer is the quantum dot 1031, and the light-emitting wavelength of the light-emitting layer is determined only by the size of the quantum dot 1031, which is beneficial to improve the optical and electrical consistency of the light-emitting diode. Therefore, the embodiments of the present application not only improve the optical and electrical consistency of the light-emitting diode, but also avoid the erosion of water vapor and oxygen on the light-emitting layer, and the destruction of the light-emitting layer by a high-temperature environment, thereby improving the performance of the light-emitting diode.
  • FIG. 1 exemplarily shows that the light-emitting layer includes a single quantum dot layer, which is not a limitation of the present application.
  • a composite structure in which the light-emitting layer includes a superlattice quantum well layer 201 and a quantum dot layer can also be provided.
  • the quantum dot layer is located between the superlattice quantum well layer 201 and the second type layer 104, and arranging the light emitting layer to include the superlattice quantum well layer 201 facilitates the mixing of light of multiple colors.
  • the light-emitting layer may emit white light or monochromatic light, and the monochromatic light may be red light, green light or blue light, for example.
  • the light-emitting layer includes a single-layer quantum dot layer
  • the light-emitting color of the light-emitting layer is determined by the quantum dot layer
  • the single-layer quantum dot layer emits at least one of red light, green light, and blue light.
  • the single-layer quantum dot layer only includes red quantum dots
  • the light-emitting layer emits red light
  • the single-layer quantum dot layer includes only green quantum dots
  • the light-emitting layer emits green light
  • the single-emitting layer emits blue light
  • the single-layer quantum dot layer includes mixed red, green, and blue quantum dots
  • the light-emitting layer emits white light.
  • the light-emitting color of the light-emitting layer is jointly determined by the superlattice quantum well layer 201 and the quantum dot layer.
  • the superlattice quantum well layer 201 emits blue light
  • the quantum dot layer emits at least one of red light and green light.
  • the superlattice quantum well layer 201 emits blue light
  • the quantum dot layer includes mixed red quantum dots and green quantum dots, the light-emitting layer emits white light.
  • the thickness of the second-type layer 104 ranges from 20 nm to 300 nm. In this way, on the one hand, the thickness of the second-type layer 104 is avoided, which affects the effect of the second-type layer 104 in isolating water vapor and oxygen; on the other hand, the thickness of the second-type layer 104 is avoided, which increases the time of epitaxial growth; That is, on the basis of ensuring that the second type layer 104 is insulated from water vapor and oxygen, the production efficiency is ensured.
  • the thickness of the quantum dot layer ranges from 2 nm to 20 ⁇ m.
  • FIG. 3 is a schematic structural diagram of another light emitting diode provided by an embodiment of the application.
  • the light emitting diode further includes: a black matrix 1021 and an insulating layer 106.
  • the black matrix 1021 is located between the first type layer 101 and the second type layer 104; the black matrix 1021 includes a first window, and the light-emitting layer is located in the first window; the insulating layer 106 covers the upper surface of the electrode layer 105 and the side of the electrode layer 105 The surface and the side surface of the second type layer 104.
  • the black matrix 1021 plays a role of shading and sealing.
  • the first window in the black matrix 1021 is set to accommodate the light-emitting layer.
  • the first window is a preset area filled with the light-emitting layer.
  • the first window exposes the first-type layer 101 at the bottom so that the light-emitting layer and the first-type layer 101 are in contact .
  • the thickness of the black matrix 1021 is greater than the thickness of the light-emitting layer to facilitate sealing of the light-emitting layer.
  • the insulating layer 106 may be a film with an insulating function, or a film with both an insulating function and a reflection function.
  • the insulating layer 106 includes a single-layer reflective layer or a distributed Bragg reflective layer. The embodiment of the present application is arranged in this way to improve the sealing performance of the light emitting diode.
  • the light emitting diode further includes: a first electrode 1071 and a second electrode 1072.
  • the insulating layer 106 includes a second window, the black matrix 1021 includes a third window; the first electrode 1071 is located in the second window; and the second electrode 1072 is located in the third window.
  • the first electrode 1071 can be an anode
  • the second electrode 1072 can be a cathode
  • the first electrode 1071 and the second electrode 1072 can provide voltage and current for the light emitting diode; the materials and structures of the two electrodes can be the same or different.
  • the first electrode 1071 and the second electrode 1072 are coplanar configuration, that is, the surface heights of the first electrode 1071 and the second electrode 1072 are the same, which facilitates the welding of the light-emitting diode and the driving circuit board, thereby reducing the welding of the light-emitting diode Difficulty.
  • FIG. 4 is a schematic structural diagram of yet another light emitting diode provided by an embodiment of this application.
  • the light-emitting layer in FIG. 4 includes a composite structure of a superlattice quantum well layer 201 and a quantum dot layer.
  • FIG. 5 is a schematic flow chart of a method for manufacturing a light-emitting diode according to an embodiment of the application
  • FIG. 6 is a schematic diagram of a structure of a light-emitting diode formed in each step of the method for manufacturing the light-emitting diode in FIG. 5.
  • the manufacturing method of the light-emitting diode includes step S110 to step S190.
  • a first-type substrate is provided, the first-type substrate includes a first-type layer or the first-type substrate includes a substrate and a first-type layer, and the first-type layer includes a first-type gallium nitride.
  • the first-type substrate when the film thickness of the first-type layer is greater than the preset value, the first-type substrate only includes the first-type layer.
  • the first-type substrate may be made by HVPE (Hydride Vapor Phase Epitaxy).
  • HVPE Hydrophosphide Vapor Phase Epitaxy
  • the first-type substrate may include a composite structure of a substrate and a first-type gallium nitride single crystal thin film; or the first-type substrate may include a substrate and a first-type nitride film.
  • the substrate may include, for example, glass, sapphire, silicon, or silicon carbide, etc., which will be removed in subsequent steps; the first-type gallium nitride single crystal film or the first-type gallium nitride polycrystalline film may pass MOCVD (Metal-organic Chemical Vapor Deposition, metal organic compound chemical vapor deposition) is deposited.
  • MOCVD Metal-organic Chemical Vapor Deposition, metal organic compound chemical vapor deposition
  • step S120 a black matrix is formed on the first type substrate; the black matrix includes a plurality of first windows 1022 arranged at intervals.
  • the material of the black matrix 1021 may be, for example, silicon dioxide, silicon nitride, a single layer of Cr, a multilayer structure composed of Cr and CrOx, a multilayer structure composed of CrOxNy and CrNy, a multilayer structure composed of Si and SiO x , or Black resin.
  • the black matrix 1021 plays a role of shielding and sealing.
  • the first window 1022 in the black matrix 1021 exposes the first type layer 101, and the first window 1022 is configured to accommodate the light-emitting layer.
  • the process of forming the black matrix 1021 is to form a material containing silicon dioxide or silicon nitride on a first-type substrate through a PECVD (Plasma Enhanced Chemical Vapor Deposition) process to form The material layer of the black matrix 1021; then the material layer of the black matrix 1021 is etched by a photolithography process to form a plurality of first windows 1022 arranged at intervals to form the black matrix 1021.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the process of forming the black matrix 1021 is to include a single layer of Cr, Cr, and CrOx, a multi-layer structure composed of CrOxNy and CrNy, or a multi-layer structure composed of Si and SiO x through a sputtering process or an evaporation process.
  • the structural material is formed on the first type substrate to form the black matrix 1021 material layer; then, the black matrix 1021 material layer is etched by a photolithography process to form a plurality of first windows 1022 arranged at intervals to form the black matrix 1021; or
  • the process of forming the black matrix 1021 is to form a material containing black resin on the first type substrate by a spin coating process or a spraying process to form a black matrix 1021 material layer; to etch the black matrix 1021 material layer through a photolithography process to form A plurality of first windows 1022 are arranged at intervals to form a black matrix 1021.
  • step S130 a light-emitting layer is formed on the first-type layer of the first-type substrate; the light-emitting layer includes quantum dots.
  • the position where the light-emitting layer is formed may be in the first window 1022.
  • the side surface of the light-emitting layer is covered with the black matrix 1021, which facilitates the sealing of the light-emitting layer and improves the sealing performance of the light-emitting diode.
  • the thickness of the light-emitting layer is smaller than the thickness of the black matrix 1021 to facilitate sealing of the light-emitting layer. It can be seen from the light-emitting properties of the quantum dot 1031 that the light-emitting color of the quantum dot 1031 is determined by the size of the quantum dot 1031. Exemplarily, as shown in FIG. 6, the light-emitting layer includes a single-layer quantum dot layer.
  • the process of forming the light-emitting layer may be, for example, providing red quantum dots, green quantum dots, or blue quantum dots;
  • a single-layer quantum dot layer is formed on the first-type layer 101 by a process, a transfer process, or a physical vapor deposition process.
  • the light-emitting layer thus formed emits monochromatic light.
  • the process of forming the light-emitting layer may be, for example, mixing red quantum dots, green quantum dots, and blue quantum dots, and then at least one spin coating process, printing process, transfer process or physical vapor deposition process to single-layer quantum dots
  • the layer is formed on the first type layer 101.
  • the light-emitting layer thus formed emits white light.
  • step S140 a second-type layer is formed on the light-emitting layer; the second-type layer includes second-type gallium nitride.
  • the process for forming the second-type layer 104 may be a low-temperature deposition process, for example, PAMBE (Plasma Assisted Molecular Beam Epitaxy, plasma-assisted molecular beam epitaxy), RPCVD (Reduced Pressure Chemical Vapor Deposition, reduced pressure chemical vapor deposition) ), ALD (Atomic Layer Deposition, atomic layer deposition), PEALD (Plasma Enhanced Atomic Layer Deposition, plasma enhanced atomic layer deposition), Laser MBE (Molecular Beam Epitaxy Technology, laser molecular beam epitaxy), PEMOCVD (Plasma Enhanced Metal-Organic) Chemical Vapor Deposition, Plasma Enhanced Metal Organic Chemical Vapor Deposition), ECR-PEMOCVD (Electron Cyclotron Resonance Plasma Enhanced Metal-Organic Chemical Vapor Deposition, Electron Cyclotron Resonance-Plasma Enhanced Metal Organic Chemical Vapor Deposition) or PLD (Pulsed Laser Deposition) Laser de
  • step S150 an electrode layer is formed on the second type layer.
  • the electrode layer 105 may include, for example, ITO (Indium Tin Oxide, indium tin oxide), and ITO is a transparent conductive material, which is beneficial to ensure the light output rate of the light emitting diode.
  • the process of forming the electrode layer 105 may be a low-temperature deposition process, which exemplarily includes a magnetron sputtering process, etc., and does not need to go through a high-temperature annealing process. In this way, the electrode layer 105 can adopt a low-temperature deposition process, which is beneficial to ensure that the light-emitting layer formed by the quantum dots 1031 is not damaged by high temperature.
  • step S160 part of the electrode layer and the second type layer are removed.
  • the remaining electrode layer 105 and the second-type layer 104 correspond to the light-emitting layer, that is, the second-type layer 104 covers the light-emitting layer.
  • the process of removing part of the electrode layer 105 may be, for example, a wet etching process; the process of removing part of the second-type layer 104 may be, for example, a dry etching process.
  • step S170 an insulating layer is formed on the electrode layer, and a window is opened at a position of the insulating layer corresponding to the electrode layer to form a second window; and a window is opened at a position of the black matrix corresponding to the first type layer to form a third window.
  • the insulating layer 106 covers the upper surface of the electrode layer 105, the side surface of the electrode layer 105, and the side surface of the second type layer 104 to seal and insulate the light-emitting layer.
  • the insulating layer 106 may be a film with an insulating function, or a film with both an insulating function and a reflection function.
  • the insulating layer 106 includes a single-layer reflective layer or a distributed Bragg reflective layer.
  • the process of forming the insulating layer 106 is a sputtering process, an evaporation process, or a PECVD process.
  • the process of opening the window to form the second window may be, for example, a wet etching process or a dry etching process to expose the electrode layer 105; the process of opening a window to form the third window may be, for example, a wet etching process or a dry etching process. Process, exposing the first type gallium nitride.
  • step S180 a first electrode is formed in the second window, and a second electrode is formed in the third window to form a light emitting diode array motherboard.
  • the first electrode 1071 can be an anode
  • the second electrode 1072 can be a cathode
  • the first electrode 1071 and the second electrode 1072 can provide voltage and current for the light emitting diode; the materials and structures of the two electrodes can be the same or different.
  • the first electrode 1071 and the second electrode 1072 are arranged coplanar, that is, the surface heights of the first electrode 1071 and the second electrode 1072 are the same, which facilitates the welding of the light-emitting diode and the driving circuit board, thereby reducing the welding of the light-emitting diode Difficulty.
  • the process of forming the first electrode 1071 and the second electrode 1072 includes an electron beam evaporation process or a thermal evaporation process.
  • step S190 the first-type layer is thinned or the substrate on the first-type substrate is removed, and the array mother board is cut to form independent light-emitting diodes.
  • the process of removing the substrate includes: laser stripping the substrate, dissolving and removing the substrate, and so on.
  • the sapphire substrate can be removed by a laser lift-off process
  • the silicon substrate can be removed by acid or alkali etching
  • all types of substrates can be removed by a polishing and polishing process.
  • the process of cutting the array mother board includes a laser cutting process or an ICP (Inductively Coupled Plasma Etching) process to form an independent light emitting diode. It should be noted that the embodiment of the present application does not limit the order in which the steps of thinning the first-type layer or removing the substrate on the first-type substrate and the step of cutting the array mother board are performed.
  • the second-type layer 104 by forming the second-type layer 104 on the light-emitting layer, the second-type layer 104 can cover the light-emitting layer.
  • the second-type layer 104 has a good sealing effect on the quantum dots 1031, which is beneficial to avoid water vapor and oxygen from corroding the light-emitting layer, thereby helping to improve the life and performance of the quantum dots 1031;
  • the first Type II gallium nitride can be formed by a low-temperature deposition process, which is beneficial to ensure that the light-emitting layer formed by the quantum dot 1031 is not damaged by high temperature.
  • the main body of the light-emitting layer is the quantum dot 1031, and the light-emitting wavelength of the light-emitting layer is determined only by the size of the quantum dot 1031, which is beneficial to improve the optical and electrical consistency of the light-emitting diode. Therefore, the embodiments of the present application not only improve the optical and electrical consistency of the light-emitting diode, but also avoid the erosion of water vapor and oxygen on the light-emitting layer, and the destruction of the light-emitting layer by a high-temperature environment, thereby improving the performance of the light-emitting diode.
  • FIG. 7 is a schematic flowchart of another method for manufacturing a light-emitting diode according to an embodiment of the application
  • FIG. 8 is a schematic diagram of a structure of a light-emitting diode formed in each step of the method for manufacturing the light-emitting diode in FIG. 7.
  • the structure of the light-emitting layer in the embodiment of the present application includes a composite structure of a superlattice quantum well layer 201 and a quantum dot layer.
  • the manufacturing method of the light emitting diode includes step S210 to step S2A0.
  • a first-type substrate is provided, the first-type substrate includes a first-type layer or the first-type substrate includes a substrate and a first-type layer, and the first-type layer includes a first-type gallium nitride.
  • step S220 a superlattice quantum well layer is formed on the first type layer of the first type substrate.
  • the superlattice quantum well layer 201 facilitates the mixing of light of multiple colors.
  • the process of forming the superlattice quantum well layer 201 includes MOCVD; then, the superlattice quantum well layer 201 is etched into a block structure through a photolithography process or a dry etching process, and each block structure Corresponds to a light-emitting diode.
  • step S230 a black matrix is formed between the corresponding block structures on the first type substrate.
  • the position corresponding to the block structure is the first window 1022 of the black matrix 1021.
  • the thickness of the black matrix 1021 is greater than the thickness of the superlattice quantum well layer 201 to facilitate the first window 1022 to accommodate the quantum dot layer.
  • step S240 a quantum dot layer is formed on the superlattice quantum well layer.
  • the process of forming the quantum dot layer includes a spin coating process, a printing process, a transfer process or a physical vapor deposition process, etc.
  • the number of executions of the spin coating process, printing process, transfer process or physical vapor deposition process is at least once.
  • a light-emitting layer is formed in the first window 1022 of the black matrix 1021, and the light-emitting layer includes a superlattice quantum well layer 201 and a quantum dot layer.
  • the side surface of the light-emitting layer is covered with a black matrix 1021, which facilitates the sealing of the light-emitting layer and improves the sealing performance of the light-emitting diode.
  • the light-emitting properties of the light-emitting layer show that the light-emitting color of the light-emitting layer is jointly determined by the superlattice quantum well layer 201 and the quantum dot layer.
  • the superlattice quantum well layer 201 emits blue light
  • the quantum dot layer emits at least one of red light and green light.
  • the light-emitting layer emits white light.
  • step S250 a second-type layer is formed on the light-emitting layer; the second-type layer includes second-type gallium nitride.
  • step S260 an electrode layer is formed on the second type layer.
  • step S270 part of the electrode layer and the second type layer are removed.
  • step S280 an insulating layer is formed on the electrode layer, and a window is opened at a position of the insulating layer corresponding to the electrode layer to form a second window; and a window is opened at a position of the black matrix corresponding to the first type layer to form a third window.
  • step S290 a first electrode is formed in the second window, and a second electrode is formed in the third window to form a light emitting diode array motherboard.
  • step S2A0 the first type layer is thinned or the substrate on the first type substrate is removed, and the array mother board is cut to form an independent light emitting diode.
  • the first type is n-type or p-type
  • the second type is p-type or n-type.
  • the first type is n-type
  • the second type is p-type
  • the first type is p-type
  • the second type is p-type
  • the second type is n type.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

本申请实施例公开了一种发光二极管及其制备方法。发光二极管包括:第一型层、发光层、第二型层和电极层;第一型层包括第一型氮化镓;发光层位于所述第一型层之上;所述发光层包括量子点;第二型层位于所述发光层之上;所述第二型层包括第二型氮化镓;电极层位于所述第二型层之上。

Description

发光二极管及其制备方法 技术领域
本申请实施例涉及半导体技术领域,例如一种发光二极管及其制备方法。
背景技术
在显示技术的发展过程中,一直在追求以下方面的性能提升,如大尺寸、能耗、响应速度、色域、分辨率、亮度及可靠性等。在相关显示技术中,液晶显示器(Liquid Crystal Display,LCD)具有尺寸优势,得到大规模普及。有机发光二极管(Organic Light-Emitting Diode,OLED)由于具有能耗、色域及柔性优势,在小尺寸显示,如手机、平板电脑也得到大规模应用,但其在大尺寸方面,如电视,由于成本及可靠性原因并未得到大规模普及。
在下一代的显示技术中,具有较好应用前景的包括两种发光器件,一种是微型LED(Micro LED),一种是量子点发光二极管(Quantum Dot Light Emitting Diodes,QLED)。其中,Micro LED在亮度、对比度、响应速度、色域、寿命、能耗等方面具有优势。但受到外延及芯片工艺影响,Micro LED在光学及电学特性方面的一致性较差。由于量子点的窄带宽发射,应用量子点的电致发光器件尤其是大尺寸商用量子点主动显示亦是有前景的显示技术。其中QLED作为量子点主动显示中最基本的单元,近些年已经被广泛研究,以获得更好的色彩质量和效率,并且整体性能在过去几年中得到了稳步提高。
然而,在相关的量子点发光技术中,不管是光致发光还是电致发光,均难以避免水汽和氧气对量子点的性能及寿命影响。
发明内容
本申请实施例提供一种发光二极管及其制备方法,以提升发光二极管的光学及电学一致性,以及增强发光二极管隔绝水汽和氧气的能力。
第一方面,本申请实施例提供了一种发光二极管,所述发光二极管包括:
第一型层,包括第一型氮化镓;
发光层,位于所述第一型层之上;所述发光层包括量子点;
第二型层,位于所述发光层之上;所述第二型层包括第二型氮化镓;
电极层,位于所述第二型层之上。
第二方面,本申请实施例还提供了一种发光二极管的制备方法,所述发光二极管的制备方法包括:
提供第一型基板,所述第一型基板包括衬底和第一型层,所述第一型层包括第一型氮化镓;
在所述第一型基板的第一型层上形成发光层;所述发光层包括量子点;
在所述发光层上形成第二型层;所述第二型层包括第二型氮化镓;
在所述第二型层上形成电极层。
附图说明
图1为本申请一实施例提供的一种发光二极管的结构示意图;
图2为本申请一实施例提供的另一种发光二极管的结构示意图;
图3为本申请一实施例提供的又一种发光二极管的结构示意图;
图4为本申请一实施例提供的又一种发光二极管的结构示意图;
图5为本申请一实施例提供的一种发光二极管的制备方法的流程示意图;
图6为图5中发光二极管的制备方法各步骤形成的发光二极管的结构示意图;
图7为本申请一实施例提供的另一种发光二极管的制备方法的流程示意图;
图8为图7中发光二极管的制备方法各步骤形成的发光二极管的结构示意图。
具体实施方式
本申请实施例提供了一种发光二极管。图1为本申请一实施例提供的一种发光二极管的结构示意图。参见图1,该发光二极管包括:第一型层101、发光层、第二型层104和电极层105。第一型层101包括第一型氮化镓;发光层位于第一型层101之上;发光层包括量子点1031;第二型层104位于发光层之上;第二型层104包括第二型氮化镓;电极层105位于第二型层104之上。
其中,第一型氮化镓的形式可以是第一型氮化镓单晶薄膜或者第一型氮化镓多晶薄膜。量子点1031包括硫化锌、硒化锌、碲化锌、硫化镉、硒化镉、碲化镉、硫化汞、硒化汞、碲化汞或者他们的核壳纳米结构;或者,量子点1031包括硒化镉-硫化锌、硫化镉-硫化锌、硫化镉-硒化锌、硫化镉-硒化锌或石墨烯 量子点1031等。由量子点1031的发光性质可知,量子点1031的发光颜色由量子点1031的尺寸决定。第二型氮化镓可以采用低温沉积的工艺形成,有利于保证由量子点1031所形成的发光层不受高温破坏。电极层105例如可以包括ITO(Indium Tin Oxide,氧化铟锡),ITO为透明的导电材料,有利于确保发光二极管的出光率。示例性地,电极层105可以采用低温沉积的工艺形成,有利于保证由量子点1031所形成的发光层不受高温破坏。
由此可见,本申请实施例通过设置第二型层104位于发光层上,可以使得第二型层104覆盖发光层。这样,一方面,第二型层104对量子点1031起到了良好的密封作用,有利于避免水汽和氧气对发光层的侵蚀,从而有利于提升量子点1031的寿命和性能;另一方面,第二型氮化镓可以采用低温沉积的工艺形成,有利于保证由量子点1031所形成的发光层不受高温破坏。另外,发光层的主体为量子点1031,发光层的发光波长仅由量子点1031的尺寸决定,有利于提升发光二极管的光学及电学一致性。因此,本申请实施例不仅提升了发光二极管的光学及电学一致性,而且避免了水汽和氧气对发光层的侵蚀、高温环境对发光层的破坏,从而提升了发光二极管的性能。
需要说明的是,图1中示例性地示出了发光层包括单层量子点层,并非对本申请的限定。在其他实施例中,如图2所示,还可以设置发光层包括超晶格量子阱层201和量子点层的复合结构。其中,量子点层位于超晶格量子阱层201和第二型层104之间,设置发光层包括超晶格量子阱层201有利于多种颜色的光混合。
在一实施例中,发光层可以发白光或者单色光,单色光例如可以是红光、绿光或蓝光。
其中,对于发光层包括单层量子点层的情况,发光层的发光颜色由量子点层决定,单层量子点层发红光、绿光和蓝光中的至少一种。其中,在单层量子点层仅包括红色量子点的情况下,发光层发红光;在单层量子点层仅包括绿色量子点的情况下,发光层发绿光;在单层量子点层仅包括蓝色量子点的情况下,发光层发蓝光;在单层量子点层包括混合的红色量子点、绿色量子点和蓝色量子点的情况下,发光层发白光。
对于发光层包括超晶格量子阱层201和量子点层的复合结构的情况,发光层的发光颜色由超晶格量子阱层201和量子点层共同决定。示例性地,超晶格 量子阱层201发蓝光,量子点层发红光和绿光中的至少一种。其中,超晶格量子阱层201发蓝光,量子点层包括混合的红色量子点和绿色量子点时,发光层发白光。
在一实施例中,第二型层104的厚度范围为20nm-300nm。这样,一方面避免了第二型层104的厚度较薄,影响第二型层104隔绝水汽和氧气的效果;另一方面避免了第二型层104的厚度较厚,增加外延生长的时间;即在确保第二型层104隔绝水汽和氧气的基础上,保证生产效率。
在一实施例中,量子点层的厚度范围为2nm-20μm。
在上述各实施例的基础上,本申请实施例还提供了其他结构的发光二极管。图3为本申请一实施例提供的又一种发光二极管的结构示意图。参见图3,在本申请的一种实施例中,发光二极管还包括:黑矩阵1021和绝缘层106。黑矩阵1021位于第一型层101和第二型层104之间;黑矩阵1021包括第一窗口,发光层位于第一窗口内;绝缘层106覆盖电极层105的上表面、电极层105的侧表面和第二型层104的侧表面。
其中,黑矩阵1021起到遮光和密封的作用。黑矩阵1021中的第一窗口设置为容纳发光层,该第一窗口为填充发光层的预设区域,第一窗口暴露底部的第一型层101,以使发光层和第一型层101接触。在一实施例中,黑矩阵1021厚度大于发光层的厚度,以有利于对发光层的密封。绝缘层106可以是具有绝缘功能的膜层,也可以是兼具绝缘功能和反射功能的膜层,示例性地,绝缘层106包括单层反射层或分布式布拉格反射层。本申请实施例这样设置,提升了发光二极管的密封性能。
参见图3,在一实施例中,发光二极管还包括:第一电极1071和第二电极1072。绝缘层106包括第二窗口,黑矩阵1021包括第三窗口;第一电极1071位于第二窗口内;第二电极1072位于第三窗口内。其中,第一电极1071可以为阳极,第二电极1072可以为阴极,第一电极1071和第二电极1072可以为发光二极管提供电压和电流;两电极材质及结构可以相同或不同。示例性的,第一电极1071和第二电极1072共面配置,即第一电极1071和第二电极1072的表面高度一致,从而有利于发光二极管与驱动电路板焊接,从而降低了发光二极管的焊接难度。
图4为本申请一实施例提供的又一种发光二极管的结构示意图。参见图4,与图3不同的是,图4中的发光层包括超晶格量子阱层201和量子点层的复合结构。
本申请实施例还提供了一种发光二极管的制备方法。图5为本申请一实施例提供的一种发光二极管的制备方法的流程示意图,图6为图5中发光二极管的制备方法各步骤形成的发光二极管的结构示意图。参见图5和图6,该发光二极管的制备方法包括步骤S110至步骤S190。
在步骤S110中,提供第一型基板,第一型基板包括第一型层或第一型基板包括衬底和第一型层,第一型层包括第一型氮化镓。
其中,在第一型层的膜层厚度大于预设值的情况下,第一型基板仅包括第一型层,示例性的,第一型基板可以是通过HVPE(Hydride Vapor Phase Epitaxy,氢化物气相外延)方法制备的第一型单晶氮化镓膜层;在第一型层的膜层厚度小于或等于预设值的情况下,第一型基板包括衬底和第一型层,衬底设置为支撑第一型层,示例性的,第一型基板可以包括衬底和第一型氮化镓单晶薄膜的复合结构;或者第一型基板可以包括衬底和第一型氮化镓多晶薄膜的复合结构。衬底例如可以包括玻璃、蓝宝石、硅或碳化硅等,该衬底会在后续步骤中被去除;所述第一型氮化镓单晶薄膜或第一型氮化镓多晶薄膜可以通过MOCVD(Metal-organic Chemical Vapor Deposition,金属有机化合物化学气相沉积)沉积而成。
在步骤S120中,在第一型基板上形成黑矩阵;黑矩阵包括多个间隔设置的第一窗口1022。
其中,黑矩阵1021的材料例如可以是二氧化硅、氮化硅、单层Cr、Cr和CrOx组成的多层结构、CrOxNy和CrNy组成的多层结构、Si和SiO x组成的多层结构或黑色树脂。黑矩阵1021起到遮光和密封的作用,黑矩阵1021中的第一窗口1022暴露出第一型层101,第一窗口1022设置为容纳发光层。示例性地,形成黑矩阵1021的工艺为,通过PECVD(Plasma Enhanced Chemical Vapor Deposition,等离子体增强化学的气相沉积)工艺将包含二氧化硅或氮化硅的材料形成在第一型基板上,形成黑矩阵1021材料层;然后通过光刻工艺刻蚀黑矩阵1021材料层,形成多个间隔设置的第一窗口1022,以形成黑矩阵1021。或者,形成黑矩阵1021的工艺为,通过溅镀工艺或蒸镀工艺将包含单层Cr、Cr 和CrOx组成的多层结构、CrOxNy和CrNy组成的多层结构或Si和SiO x组成的多层结构的材料形成在第一型基板上,形成黑矩阵1021材料层;然后,通过光刻工艺刻蚀黑矩阵1021材料层,形成多个间隔设置的第一窗口1022,以形成黑矩阵1021;或者,形成黑矩阵1021的工艺为,通过旋涂工艺或喷涂工艺将包含黑色树脂的材料形成在第一型基板上,形成黑矩阵1021材料层;通过光刻工艺刻蚀黑矩阵1021材料层,形成多个间隔设置的第一窗口1022,以形成黑矩阵1021。
在步骤S130中,在第一型基板的第一型层上形成发光层;发光层包括量子点。
其中,发光层形成的位置可以为第一窗口1022内,这样,发光层的侧面包覆有黑矩阵1021,有利于对发光层的密封,提升发光二极管的密封性能。在一实施例中,发光层厚度小于黑矩阵1021的厚度,以有利于对发光层的密封。由量子点1031的发光性质可知,量子点1031的发光颜色由量子点1031的尺寸决定。示例性地,如图6所示,发光层包括单层量子点层,形成发光层的工艺例如可以是,提供红色量子点、绿色量子点或者蓝色量子点;通过至少一次旋涂工艺、印刷工艺、转印工艺或物理气相沉积工艺将单层量子点层形成在第一型层101上。这样形成的发光层发单色光。或者,形成发光层的工艺例如可以是,将红色量子点、绿色量子点和蓝色量子点混合,然后通过至少一次旋涂工艺、印刷工艺、转印工艺或物理气相沉积工艺将单层量子点层形成在第一型层101上。这样形成的发光层发白光。
在步骤S140中,在发光层上形成第二型层;第二型层包括第二型氮化镓。
其中,形成第二型层104的工艺可以为低温沉积工艺,示例性的包括PAMBE(Plasma Assisted Molecular Beam Epitaxy,等离子体辅助的分子束外延)、RPCVD(Reduced Pressure Chemical Vapor Deposition,减压化学气相沉积)、ALD(Atomic Layer Deposition,原子层沉积)、PEALD(Plasma Enhanced Atomic Layer Deposition,等离子体增强原子层沉积)、Laser MBE(Molecular Beam Epitaxy Technology,激光分子束外延)、PEMOCVD(Plasma Enhanced Metal-Organic Chemical Vapour Deposition,等离子体增强金属有机化学气相沉积)、ECR-PEMOCVD(Electron Cyclotron Resonance Plasma Enhanced Metal-Organic Chemical Vapour Deposition,电子回旋共振-等离子体增强金属有 机化学气相沉积)或PLD(Pulsed Laser Deposition脉冲激光沉积)等。第二型氮化镓可以采用低温沉积的工艺形成,有利于保证由量子点1031所形成的发光层不受高温破坏。
在步骤S150中,在第二型层上形成电极层。
其中,电极层105例如可以包括ITO(Indium Tin Oxide,氧化铟锡),ITO为透明的导电材料,有利于确保发光二极管的出光率。示例性地,形成电极层105的工艺可以为低温沉积工艺,示例性的包括磁控溅射工艺等,且无须经过高温退火过程。这样,电极层105可以采用低温沉积工艺,有利于保证由量子点1031所形成的发光层不受高温破坏。
在步骤S160中,去除部分电极层和第二型层。
其中,保留的电极层105和第二型层104与发光层对应,即第二型层104覆盖发光层。去除部分电极层105的工艺例如可以是湿法刻蚀工艺;去除部分第二型层104的工艺例如可以是干法刻蚀工艺。
在步骤S170中,在电极层上形成绝缘层,并在绝缘层对应电极层的位置开窗,形成第二窗口;在黑矩阵对应第一型层的位置开窗,形成第三窗口。
其中,绝缘层106覆盖电极层105的上表面、电极层105的侧表面和第二型层104的侧表面,以对发光层进行密封和绝缘。绝缘层106可以是具有绝缘功能的膜层,也可以是兼具绝缘功能和反射功能的膜层,示例性地,绝缘层106包括单层反射层或分布式布拉格反射层。示例性地,形成绝缘层106的工艺为溅镀工艺、蒸镀工艺或PECVD工艺。开窗形成第二窗口的工艺例如可以是湿法刻蚀工艺或干法刻蚀工艺,暴露出电极层105;开窗形成第三窗口的工艺例如可以是湿法刻蚀工艺或干法刻蚀工艺,暴露出第一型氮化镓。
在步骤S180中,在第二窗口内形成第一电极,并在第三窗口内形成第二电极,形成发光二极管阵列母板。
其中,第一电极1071可以为阳极,第二电极1072可以为阴极,第一电极1071和第二电极1072可以为发光二极管提供电压和电流;两电极材质及结构可以相同或不同。示例性的,第一电极1071和第二电极1072共面配置,即第一电极1071和第二电极1072的表面高度一致,从而有利于发光二极管与驱动电路板焊接,从而降低了发光二极管的焊接难度。示例性地,形成第一电极1071 和第二电极1072的工艺包括电子束蒸镀工艺或热蒸镀工艺。
在步骤S190中,减薄第一型层或去除第一型基板上的衬底,并切割阵列母板,形成独立的发光二极管。
其中,在第一型层的膜层厚度大于预设值的情况下,减薄第一型层;在第一型层的膜层厚度小于或等于预设值的情况下,去除第一型基板上的衬底,去除衬底的工艺包括:激光剥离衬底、溶解去除衬底等。示例性的,可以通过激光剥离工艺去除蓝宝石衬底,可以通过酸或碱腐蚀去除硅衬底,可以通过研磨抛工艺去除所有类型衬底。切割阵列母板的工艺包括激光切割工艺或ICP(Inductively Coupled Plasma Etching,感应耦合等离子体刻蚀)工艺形成独立的发光二极管。需要说明的是,本申请实施例对减薄第一型层或去除第一型基板上的衬底的步骤和切割阵列母板的步骤执行的顺序的不做限定。
本申请实施例通过在发光层上形成第二型层104,可以使得第二型层104覆盖发光层。这样,一方面,第二型层104对量子点1031起到了良好的密封作用,有利于避免水汽和氧气对发光层的侵蚀,从而有利于提升量子点1031的寿命和性能;另一方面,第二型氮化镓可以采用低温沉积的工艺形成,有利于保证由量子点1031所形成的发光层不受高温破坏。另外,发光层的主体为量子点1031,发光层的发光波长仅由量子点1031的尺寸决定,有利于提升发光二极管的光学及电学一致性。因此,本申请实施例不仅提升了发光二极管的光学及电学一致性,而且避免了水汽和氧气对发光层的侵蚀、高温环境对发光层的破坏,从而提升了发光二极管的性能。
图7为本申请一实施例提供的另一种发光二极管的制备方法的流程示意图,图8为图7中发光二极管的制备方法各步骤形成的发光二极管的结构示意图。参见图7和图8,与图5不同的是,本申请实施例中发光层的结构包括超晶格量子阱层201和量子点层的复合结构。该发光二极管的制备方法包括步骤S210至步骤S2A0。
在步骤S210中,提供第一型基板,第一型基板包括第一型层或第一型基板包括衬底和第一型层,第一型层包括第一型氮化镓。
在步骤S220中,在第一型基板的第一型层上形成超晶格量子阱层。
其中,超晶格量子阱层201有利于多种颜色的光混合。示例性地,形成超 晶格量子阱层201的工艺包括MOCVD;然后,通过光刻工艺或干法刻蚀工艺,将超晶格量子阱层201刻蚀成块状结构,每一个块状结构对应一个发光二极管。
在步骤S230中,在第一型基板上对应块状结构之间形成黑矩阵。
其中,对应块状结构的位置为黑矩阵1021的第一窗口1022。示例性的,黑矩阵1021的厚度大于超晶格量子阱层201的厚度,以有利于第一窗口1022容纳量子点层。
在步骤S240中,在超晶格量子阱层上形成量子点层。
其中,形成量子点层的工艺包括旋涂工艺、印刷工艺、转印工艺或物理气相沉积工艺等,旋涂工艺、印刷工艺、转印工艺或物理气相沉积工艺的执行次数为至少一次。这样,在黑矩阵1021的第一窗口1022内形成了发光层,该发光层包括超晶格量子阱层201和量子点层。发光层的侧面包覆有黑矩阵1021,有利于对发光层的密封,提升发光二极管的密封性能。该发光层的发光性质可知,发光层的发光颜色由超晶格量子阱层201和量子点层共同决定。示例性地,超晶格量子阱层201发蓝光,量子点层发红光和绿光中的至少一种。在超晶格量子阱层201发蓝光,量子点层包括混合的红色量子点和绿色量子点的情况下,发光层发白光。
在步骤S250中,在发光层上形成第二型层;第二型层包括第二型氮化镓。
在步骤S260中,在第二型层上形成电极层。
在步骤S270中,去除部分电极层和第二型层。
在步骤S280中,在电极层上形成绝缘层,并在绝缘层对应电极层的位置开窗,形成第二窗口;在黑矩阵对应第一型层的位置开窗,形成第三窗口。
在步骤S290中,在第二窗口内形成第一电极,并在第三窗口内形成第二电极,形成发光二极管阵列母板。
在步骤S2A0中,减薄第一型层或去除第一型基板上的衬底,并切割阵列母板,形成独立的发光二极管。
第一型为n型或p型,第二型为p型或n型,在第一型为n型的情况下,第二型为p型,在第一型为p型的情况下,第二型为n型。

Claims (20)

  1. 一种发光二极管,包括:
    第一型层,包括第一型氮化镓;
    发光层,位于所述第一型层之上;所述发光层包括量子点;
    第二型层,位于所述发光层之上;所述第二型层包括第二型氮化镓;
    电极层,位于所述第二型层之上。
  2. 根据权利要求1所述的发光二极管,其中,所述第二型层的厚度范围为20nm-300nm。
  3. 根据权利要求1所述的发光二极管,其中,所述发光层包括单层量子点层。
  4. 根据权利要求3所述的发光二极管,其中,所述单层量子点层发红光、绿光和蓝光中的至少一种。
  5. 根据权利要求1所述的发光二极管,其中,所述发光层包括超晶格量子阱层和量子点层的复合结构。
  6. 根据权利要求5所述的发光二极管,其中,所述超晶格量子阱层发蓝光;所述量子点层发红光和绿光中的至少一种。
  7. 根据权利要求3或5所述的发光二极管,其中,所述量子点层的厚度范围为2nm-20μm。
  8. 根据权利要求1所述的发光二极管,其中,所述电极层包括氧化铟锡ITO。
  9. 根据权利要求1所述的发光二极管,还包括:
    黑矩阵,位于所述第一型层和所述第二型层之间;所述黑矩阵包括第一窗口,所述发光层位于所述第一窗口内;
    绝缘层,覆盖所述电极层的上表面、所述电极层的侧表面和所述第二型层的侧表面。
  10. 根据权利要求9所述的发光二极管,其中,所述绝缘层包括第二窗口,所述黑矩阵包括第三窗口;
    所述发光二极管还包括:
    第一电极,位于所述第二窗口内;
    第二电极,位于所述第三窗口内。
  11. 一种发光二极管的制备方法,包括:
    提供第一型基板,所述第一型基板包括第一型层或所述第一型基板包括衬底和所述第一型层,所述第一型层包括第一型氮化镓;
    在所述第一型基板的第一型层上形成发光层;所述发光层包括量子点;
    在所述发光层上形成第二型层;所述第二型层包括第二型氮化镓;
    在所述第二型层上形成电极层。
  12. 根据权利要求11所述的发光二极管的制备方法,其中,所述发光层包括单层量子点层;在所述第一型基板的第一型层上形成发光层的工艺包括:
    通过旋涂工艺、印刷工艺、转印工艺或物理气相沉积工艺将所述单层量子点层形成在所述第一型层上。
  13. 根据权利要求11所述的发光二极管的制备方法,其中,所述发光层包括超晶格量子阱层和量子点层的复合结构;在所述第一型基板的第一型层上形成发光层的工艺包括:
    通过金属有机化合物化学气相沉积MOCVD工艺将所述超晶格量子阱层形成在所述第一型层上;
    通过旋涂工艺、印刷工艺、转印工艺或物理气相沉积工艺将所述量子点层形成在所述超晶格量子阱层上。
  14. 根据权利要求12或13所述的发光二极管的制备方法,其中,所述旋涂工艺、印刷工艺、转印工艺或物理气相沉积工艺的执行次数为至少一次。
  15. 根据权利要求11所述的发光二极管的制备方法,在所述第一型基板的第一型层上形成发光层之前,还包括:
    在所述第一型基板上形成黑矩阵;所述黑矩阵包括多个间隔设置的第一窗口,所述发光层形成在所述第一窗口内。
  16. 根据权利要求15所述的发光二极管的制备方法,其中,在所述第一型基板上形成黑矩阵的工艺,包括:
    通过等离子体增强化学的气相沉积PECVD工艺将包含二氧化硅或氮化硅的材料形成在所述第一型基板上,形成黑矩阵材料层;
    通过光刻工艺刻蚀所述黑矩阵材料层,形成多个间隔设置的第一窗口,以形成所述黑矩阵;或者,
    通过溅镀工艺或蒸镀工艺将包含单层Cr、Cr和CrOx组成的多层结构、CrOxNy和CrNy组成的多层结构或Si和SiO x组成的多层结构的材料形成在所述第一型基板上,形成黑矩阵材料层;
    通过光刻工艺刻蚀所述黑矩阵材料层,形成多个间隔设置的第一窗口,以形成黑矩阵;或者,
    通过旋涂工艺或喷涂工艺将包含黑色树脂的材料形成在所述第一型基板上,形成黑矩阵材料层;
    通过光刻工艺刻蚀所述黑矩阵材料层,形成多个间隔设置的第一窗口,以形成黑矩阵。
  17. 根据权利要求11所述的发光二极管的制备方法,其中,在所述发光层上形成第二型层的工艺包括:
    等离子体辅助的分子束外延PAMBE、减压化学气相沉积RPCVD、原子层沉积ALD、等离子体增强原子层沉积PEALD、激光分子束外延Laser MBE、等离子体增强金属有机化学气相沉积PEMOCVD、电子回旋共振-等离子体增强金属有机化学气相沉积ECR-PEMOCVD或脉冲激光沉积PLD。
  18. 根据权利要求11所述的发光二极管的制备方法,其中,所述电极层包括氧化铟锡ITO;
    在所述第二型层上形成电极层的工艺包括:磁控溅射工艺。
  19. 根据权利要求11所述的发光二极管的制备方法,在所述第二型层上形成电极层之后,还包括:
    在所述电极层上形成绝缘层,所述绝缘层覆盖所述电极层的上表面、所述电极层的侧表面和所述第二型层的侧表面;
    在所述绝缘层对应所述电极层的位置开窗,形成第二窗口;在所述黑矩阵对应所述第一型层的位置开窗,形成第三窗口;
    在所述第二窗口内形成第一电极,并在所述第三窗口内形成第二电极,形成发光二极管阵列母板。
  20. 根据权利要求19所述的发光二极管的制备方法,在所述第二窗口内形成第一电极,并在所述第三窗口内形成第二电极之后,还包括:
    减薄第一型层或去除所述第一型基板上的衬底,并切割所述阵列母板,形成独立的发光二极管。
PCT/CN2020/077588 2020-03-03 2020-03-03 发光二极管及其制备方法 WO2021174412A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US17/442,278 US20220399397A1 (en) 2020-03-03 2020-03-03 Light emitting diode and preparation method therefor
PCT/CN2020/077588 WO2021174412A1 (zh) 2020-03-03 2020-03-03 发光二极管及其制备方法
EP20922487.2A EP3923351A4 (en) 2020-03-03 2020-03-03 Light emitting diode and manufacturing process therefor
CN202080009048.2A CN113302754A (zh) 2020-03-03 2020-03-03 发光二极管及其制备方法
JP2021559496A JP7296481B2 (ja) 2020-03-03 2020-03-03 発光ダイオード及びその製造方法
JP2021560150A JP7296482B2 (ja) 2020-03-03 2020-06-10 発光ダイオード及びその製造方法
CN202080007265.8A CN113614933A (zh) 2020-03-03 2020-06-10 发光二极管及其制备方法
US17/441,123 US20220406964A1 (en) 2020-03-03 2020-06-10 Light emitting diode and manufacturing method therefor
PCT/CN2020/095308 WO2021174716A1 (zh) 2020-03-03 2020-06-10 发光二极管及其制备方法
EP20922485.6A EP3923350A4 (en) 2020-03-03 2020-06-10 LIGHT EMITTING DIODE AND METHOD OF MANUFACTURING THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077588 WO2021174412A1 (zh) 2020-03-03 2020-03-03 发光二极管及其制备方法

Publications (1)

Publication Number Publication Date
WO2021174412A1 true WO2021174412A1 (zh) 2021-09-10

Family

ID=77318827

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/077588 WO2021174412A1 (zh) 2020-03-03 2020-03-03 发光二极管及其制备方法
PCT/CN2020/095308 WO2021174716A1 (zh) 2020-03-03 2020-06-10 发光二极管及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/095308 WO2021174716A1 (zh) 2020-03-03 2020-06-10 发光二极管及其制备方法

Country Status (5)

Country Link
US (2) US20220399397A1 (zh)
EP (2) EP3923351A4 (zh)
JP (2) JP7296481B2 (zh)
CN (2) CN113302754A (zh)
WO (2) WO2021174412A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414644A (zh) * 2001-10-26 2003-04-30 中国科学院半导体研究所 一种单/多层异质量子点结构的制作方法
CN1601764A (zh) * 2003-09-24 2005-03-30 厦门三安电子有限公司 一种半导体发光二极管
CN102110752A (zh) * 2009-12-29 2011-06-29 Lg伊诺特有限公司 发光器件、发光器件封装
CN102237461A (zh) * 2010-04-28 2011-11-09 Lg伊诺特有限公司 发光器件、发光器件封装以及照明***
KR20120045120A (ko) * 2010-10-29 2012-05-09 엘지이노텍 주식회사 발광 소자
CN104465929A (zh) * 2014-11-07 2015-03-25 中山大学 内嵌有源层的三族氮化物微纳发光器件及制备方法
KR20160086603A (ko) * 2015-01-12 2016-07-20 엘지이노텍 주식회사 발광 소자
CN209947852U (zh) * 2019-05-24 2020-01-14 华南理工大学 基于Tamm等离激元的氮化物绿光器件

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9913950D0 (en) * 1999-06-15 1999-08-18 Arima Optoelectronics Corp Unipolar light emitting devices based on iii-nitride semiconductor superlattices
KR100540548B1 (ko) * 2002-12-10 2006-01-11 엘지이노텍 주식회사 양자점 발광 소자 및 그의 제조 방법
CN1612365A (zh) * 2003-10-30 2005-05-04 新世纪光电股份有限公司 具有宽频谱的氮化铝铟镓发光二极管及固态白光器件
US20050230673A1 (en) * 2004-03-25 2005-10-20 Mueller Alexander H Colloidal quantum dot light emitting diodes
TWI243489B (en) * 2004-04-14 2005-11-11 Genesis Photonics Inc Single chip light emitting diode with red, blue and green three wavelength light emitting spectra
JP2007123731A (ja) 2005-10-31 2007-05-17 Toshiba Corp 半導体発光素子および半導体発光装置
JP2008060132A (ja) * 2006-08-29 2008-03-13 Rohm Co Ltd 半導体発光素子およびその製造方法
US7723719B2 (en) * 2007-12-14 2010-05-25 Palo Alto Research Center Incorporated Light emitting devices with inhomogeneous quantum well active regions
KR20100130990A (ko) * 2008-03-07 2010-12-14 오클랜드 유니서비시즈 리미티드 광전자 발광 구조
US20100065811A1 (en) * 2008-09-18 2010-03-18 Mathieu Xavier Senes SINGLE PHOTON SOURCE WITH AllnN CURRENT INJECTION LAYER
TWI446571B (zh) * 2008-10-14 2014-07-21 Ind Tech Res Inst 發光二極體晶片及其製作方法
CN101825802B (zh) * 2009-03-06 2011-12-28 北京京东方光电科技有限公司 彩膜基板及其制造方法
CN101859817A (zh) * 2009-04-07 2010-10-13 山东璨圆光电科技有限公司 氮化镓系发光二极管的制造方法
KR100974777B1 (ko) 2009-12-11 2010-08-06 엘지이노텍 주식회사 발광 소자
KR101283368B1 (ko) * 2010-04-05 2013-07-15 전북대학교산학협력단 양자점을 이용한 형광공명에너지전달-기반 발광 다이오드
CN102231422A (zh) * 2011-06-16 2011-11-02 清华大学 一种无荧光粉单芯片GaN基发光二极管及其制备方法
JP5468571B2 (ja) * 2011-06-21 2014-04-09 パナソニック株式会社 半導体発光素子
CN102916097B (zh) * 2011-08-01 2017-08-18 潘才法 一种电致发光器件
CN102583228B (zh) * 2012-03-14 2015-05-20 贵州大学 利用可控脉冲激光加工纳米结构的方法及装置
KR102087935B1 (ko) 2012-12-27 2020-03-11 엘지이노텍 주식회사 발광 소자
CN203250777U (zh) * 2013-05-27 2013-10-23 北京京东方光电科技有限公司 一种量子点发光二极管及显示器件
CN103346154B (zh) * 2013-05-27 2016-03-23 北京京东方光电科技有限公司 一种量子点发光二极管及其制备方法、显示器件
KR102194805B1 (ko) 2013-07-22 2020-12-28 엘지이노텍 주식회사 발광소자
CN103427049B (zh) * 2013-08-21 2014-12-03 京东方科技集团股份有限公司 量子点发光元件的制造方法及量子点显示设备
US9711679B2 (en) * 2014-03-11 2017-07-18 Terahertz Device Corporation Front-side emitting mid-infrared light emitting diode fabrication methods
CN104934460A (zh) * 2014-03-18 2015-09-23 联想(北京)有限公司 一种发光器件及其对应设备、制备方法
KR102197082B1 (ko) 2014-06-16 2020-12-31 엘지이노텍 주식회사 발광 소자 및 이를 포함하는 발광소자 패키지
CN105047771B (zh) * 2015-07-10 2018-04-06 厦门市三安光电科技有限公司 一种氮化物发光二极管
CN106449913A (zh) * 2016-10-20 2017-02-22 浙江大学 石墨烯/银量子点/氮化镓双向发光二极管及其制备方法
US10700121B2 (en) * 2017-02-13 2020-06-30 Sct Ltd. Integrated multilayer monolithic assembly LED displays and method of making thereof
CN106707607A (zh) * 2017-03-20 2017-05-24 青岛海信电器股份有限公司 一种量子点彩色滤光片及其制造方法、显示装置
CN108878618B (zh) * 2017-05-11 2020-03-24 Tcl集团股份有限公司 一种qled器件及其制备方法
CN109001936A (zh) * 2017-06-06 2018-12-14 群创光电股份有限公司 光源模块及显示设备
JP2020529729A (ja) 2017-07-31 2020-10-08 イエール ユニバーシティ ナノポーラスマイクロledデバイスおよび製造方法
CN107591431A (zh) * 2017-09-15 2018-01-16 深圳市华星光电半导体显示技术有限公司 一种彩膜基板及显示设备
WO2019071362A1 (en) 2017-10-13 2019-04-18 10644137 Canada Inc. QUANTIC MULTI-LAYER POINT LED AND METHOD FOR MANUFACTURING THE SAME
CN107861181A (zh) * 2017-12-04 2018-03-30 福州大学 一种量子点彩色滤光片及其制作方法
CN109004078B (zh) * 2018-07-27 2020-08-25 上海天马微电子有限公司 微型led显示面板及其制作方法和显示装置
CN110823845B (zh) * 2018-08-08 2021-05-25 京东方科技集团股份有限公司 光谱仪及其制作方法
CN109599467B (zh) * 2018-12-01 2020-09-29 王星河 一种半导体发光元件
CN110211491B (zh) * 2019-06-05 2021-05-14 京东方科技集团股份有限公司 一种彩膜基板、显示面板及显示面板的制备方法
CN110471569B (zh) * 2019-08-16 2023-11-28 京东方科技集团股份有限公司 基板及其制备方法、显示装置
CN110441956A (zh) * 2019-08-20 2019-11-12 苏州星烁纳米科技有限公司 量子点彩膜及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1414644A (zh) * 2001-10-26 2003-04-30 中国科学院半导体研究所 一种单/多层异质量子点结构的制作方法
CN1601764A (zh) * 2003-09-24 2005-03-30 厦门三安电子有限公司 一种半导体发光二极管
CN102110752A (zh) * 2009-12-29 2011-06-29 Lg伊诺特有限公司 发光器件、发光器件封装
CN102237461A (zh) * 2010-04-28 2011-11-09 Lg伊诺特有限公司 发光器件、发光器件封装以及照明***
KR20120045120A (ko) * 2010-10-29 2012-05-09 엘지이노텍 주식회사 발광 소자
CN104465929A (zh) * 2014-11-07 2015-03-25 中山大学 内嵌有源层的三族氮化物微纳发光器件及制备方法
KR20160086603A (ko) * 2015-01-12 2016-07-20 엘지이노텍 주식회사 발광 소자
CN209947852U (zh) * 2019-05-24 2020-01-14 华南理工大学 基于Tamm等离激元的氮化物绿光器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3923351A4 *

Also Published As

Publication number Publication date
WO2021174716A1 (zh) 2021-09-10
EP3923350A1 (en) 2021-12-15
EP3923351A4 (en) 2023-01-04
JP7296481B2 (ja) 2023-06-22
JP2022528154A (ja) 2022-06-08
JP2022527622A (ja) 2022-06-02
CN113614933A (zh) 2021-11-05
US20220399397A1 (en) 2022-12-15
US20220406964A1 (en) 2022-12-22
EP3923350A4 (en) 2022-12-28
CN113302754A (zh) 2021-08-24
JP7296482B2 (ja) 2023-06-22
EP3923351A1 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
US10644195B2 (en) Manufacturing method of light emitting diode device and light emitting diode device having light emitting units with each light emitting unit including second sub light emitting unit in tandem with first sub light emitting unit
US11251223B2 (en) Array substrate, method of manufacturing the same, and display device
CN108878468B (zh) 一种显示基板及其制作方法、显示面板、显示装置
CN110416249A (zh) 一种半导体发光器件及其制作方法
TW202034297A (zh) 顯示面板及其製作方法
CN110911537B (zh) 共阴极led芯片及其制作方法
TWI738263B (zh) 一種顯示面板及其製作方法
CN108133910B (zh) Led制造方法及led、显示屏和电子设备
TWI769622B (zh) Iii族氮化物多波長發光二極體陣列
WO2021174412A1 (zh) 发光二极管及其制备方法
CN112510130A (zh) 一种倒装结构蓝光Mico-LED芯片设计制造方法
CN114975507B (zh) 阵列基板和显示面板
CN113035899B (zh) 一种微led显示面板及其制备方法
CN114005911A (zh) 一种显示器件及其制备方法
US20230387371A1 (en) Display panel and manufacturing method thereof
CN111863871A (zh) 一种显示面板及其制备方法
US11411145B2 (en) Light-emitting element package
TWI755009B (zh) Led陣列及形成led陣列之方法
TWI708104B (zh) 顯示陣列
CN113410363B (zh) Micro LED芯片结构及其制备方法、显示装置
CN213519957U (zh) Micro-LED芯片结构及Micro-LED发光组件
CN112397623B (zh) 一种Micro LED模块、显示屏及制备方法
CN118099338A (zh) 发光器件及其制作方法、显示装置
TW202030880A (zh) 無需巨量轉移之微發光二極體顯示器的形成方法
CN114188458A (zh) 一种发光二极管的制作方法及发光二极管

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020922487

Country of ref document: EP

Effective date: 20210908

ENP Entry into the national phase

Ref document number: 2021559496

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE