WO2021172369A1 - Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element - Google Patents

Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element Download PDF

Info

Publication number
WO2021172369A1
WO2021172369A1 PCT/JP2021/006902 JP2021006902W WO2021172369A1 WO 2021172369 A1 WO2021172369 A1 WO 2021172369A1 JP 2021006902 W JP2021006902 W JP 2021006902W WO 2021172369 A1 WO2021172369 A1 WO 2021172369A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
containing polymer
film
temperature
organic
Prior art date
Application number
PCT/JP2021/006902
Other languages
French (fr)
Japanese (ja)
Inventor
岳文 阿部
薫 鶴岡
下平 哲司
早希 中村
祥太朗 別府
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022503657A priority Critical patent/JPWO2021172369A1/ja
Priority to CN202180017316.XA priority patent/CN115175947A/en
Priority to KR1020227027079A priority patent/KR20220147075A/en
Priority to EP21761065.8A priority patent/EP4112655A1/en
Publication of WO2021172369A1 publication Critical patent/WO2021172369A1/en
Priority to US17/817,132 priority patent/US20220372186A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/262Tetrafluoroethene with fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/14Esterification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/22Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a fluorine-containing polymer, a film, a method for producing a film, and an organic photoelectron device.
  • an organic photoelectron element organic electroluminescence element, hereinafter referred to as an organic EL element
  • a self-luminous element organic photoelectron element
  • the basic structure of an organic EL element is such that a plurality of types of layers such as a light emitting layer, an electron transporting layer, and a hole transporting layer are laminated between a pair of electrodes.
  • Fluororesin may be used as a material for a plurality of types of layers constituting an organic EL element. Fluororesin is used for various purposes such as a low refractive index material for lowering the refractive index of a layer and a buffer for an electrode.
  • an organic EL device having an anode buffer layer made of a fluororesin is known (see Patent Document 1). In the organic EL device described in Patent Document 1, an anode buffer layer is formed by depositing a fluororesin.
  • Patent Document 1 it is described that the fluororesin is vapor-deposited under reduced pressure in a vacuum chamber.
  • the pressure in the chamber which was 8 ⁇ 10 -3 Pa at the start of film formation, has increased to 1 to 3 ⁇ 10 -2 Pa at the end of film formation. It is considered that this is because the fluororesin used is thermally decomposed under the vapor deposition conditions, and the generated small molecule decomposition products are vaporized to increase the pressure in the chamber.
  • Patent Document 1 when a fluororesin that thermally decomposes during vapor deposition is used, it is expected that it is difficult to secure desired vapor deposition conditions. Therefore, even if an organic EL element is obtained, the quality may not be stable, and improvement has been required.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a fluorine-containing polymer suitable for vapor deposition. Another object of the present invention is to provide a film containing such a fluorine-containing polymer as a material. Another object of the present invention is to provide a method for producing a film capable of easily producing such a film. Another object of the present invention is to provide an organic photoelectron element having such a film in its structure.
  • a fluorine-containing polymer that satisfies the following (1) to (3).
  • the melting point is 200 ° C. or higher.
  • the thermogravimetric reduction rate when the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 ⁇ 10 -3 Pa reaches substantially 100% at 400 ° C. or lower.
  • the temperature range from the temperature at which the thermogravimetric reduction rate is 10% to the temperature at which the temperature is 90% is 100 ° C.
  • [7] A film containing the fluorine-containing polymer according to any one of [1] to [6] and an organic semiconductor.
  • [8] The film according to [7], wherein the ratio of the fluorine-containing polymer to the total of the fluorine-containing polymer and the organic semiconductor is 20 to 80% by volume.
  • a method for producing a film which comprises a step of co-depositing the fluorine-containing polymer according to any one of [1] to [6] and an organic semiconductor.
  • An organic photoelectron device including the film according to any one of [7] to [10].
  • the hole transport layer and the hole injection layer arranged between the hole transport layer and the anode are provided, and at least one layer of the hole transport layer and the hole injection layer is said.
  • the organic photoelectron element according to [13] which is a film.
  • the electron transport layer and the electron injection layer arranged between the electron transport layer and the cathode are provided, and at least one layer of the electron transport layer and the electron injection layer is the film. 13] or the organic photoelectron element according to [14].
  • a fluorine-containing polymer suitable for vapor deposition it is possible to provide a film containing such a fluorine-containing polymer as a material. Further, it is possible to provide a method for producing a film capable of easily producing such a film. Further, it is possible to provide an organic photoelectron element having such a film in its structure.
  • FIG. 1 is a schematic diagram illustrating the requirements (2) and (3) of the fluorine-containing polymer.
  • FIG. 2 is a schematic cross-sectional view showing the film of the first embodiment.
  • FIG. 3 is a schematic view showing a process of manufacturing the film 10.
  • FIG. 4 is a schematic view showing a process of manufacturing the film 10.
  • FIG. 5 is a schematic view showing a process of manufacturing the film 10.
  • FIG. 6 is a schematic cross-sectional view showing an organic photoelectronic device (organic EL device) 100 according to a second embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of the organic EL element 200 according to the third embodiment of the present invention.
  • the "unit" constituting the polymer in the present specification means a portion derived from one monomer molecule (that is, a monomer unit) that exists in the polymer and constitutes the polymer.
  • a unit derived from an individual monomer may be referred to by adding a "unit" to the monomer name.
  • the "main chain" of the polymer constitutes a carbon-carbon unsaturated double bond in the monomer generated by addition polymerization of the monomer having a carbon-carbon unsaturated double bond.
  • the "aliphatic ring" in the present specification includes not only a carbocyclic ring structure in which the ring skeleton is composed of only carbon atoms, but also a heterocyclic ring structure in which the ring skeleton contains atoms other than carbon atoms (heteroatoms). means.
  • the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom and the like.
  • the fluorine-containing polymer of the present embodiment satisfies the following requirements (1) to (3).
  • Requirements (1) The melting point is 200 ° C or higher.
  • Requirement (2) The thermogravimetric reduction rate when the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 ⁇ 10 -3 Pa reaches substantially 100% at 400 ° C. or lower.
  • Requirement (3) When the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 ⁇ 10 -3 Pa, the temperature range from the temperature at which the thermogravimetric reduction rate becomes 10% to the temperature at which the temperature decreases to 90% is 100. It is within ° C.
  • Fluorine-containing polymers that satisfy the above requirements (1) to (3) have physical properties suitable for vapor deposition, and a vapor-deposited film can be suitably formed. Hereinafter, they will be described in order.
  • the unit of the fluorine-containing polymer of the present embodiment is not particularly limited as long as it has high crystallinity and a melting point in a desired range.
  • the fluorine-containing polymer is preferably a polymer having a unit derived from a fluoroolefin. More specifically, the fluorine-containing polymer preferably has at least a unit derived from tetrafluoroethylene (TFE) (that is, a TFE unit).
  • TFE tetrafluoroethylene
  • a fluorine-containing polymer can obtain high crystallinity when it contains a TFE unit or a unit derived from chlorotrifluoroethylene (CTFE) (that is, a CTFE unit) in a high ratio. Therefore, it is preferable that the fluorine-containing polymer of the present embodiment also contains TFE units and CTFE units in a high ratio.
  • CTFE chlorotrifluoroethylene
  • the ratio of the TFE unit and the CTFE unit to the entire fluorine-containing polymer is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more.
  • the fluorine-containing polymer contains both TFE units and CTFE units, it is preferable that the sum of the ratio of TFE units and the ratio of CTFE units is equal to or greater than the above-mentioned content ratio.
  • the upper limit of the content rate is 100 mol%.
  • the fluoropolymer of the present embodiment may be a homopolymer of TFE or CTFE, and is a copolymer of two or more kinds of monomers selected from the group consisting of TFE or CTFE and other monomers. May be good.
  • the other monomer is not particularly limited as long as it can be copolymerized with TFE or CTFE.
  • the other monomer may be a hydrocarbon-based monomer or a fluorine-containing monomer.
  • hydrocarbon-based monomer examples include hydrocarbon-based monomers such as ethylene, propylene, and styrene.
  • hydrocarbon-based monomers such as ethylene, propylene, and styrene.
  • the ratio of the units derived from the other monomer to all the units of the fluorine-containing polymer is preferably 50 mol% or less, preferably 30 mol% or less. Is more preferable, and 10 mol% or less is further preferable.
  • the fluorine-containing monomer is preferable as the other monomer.
  • a perfluoro compound is preferable.
  • the fluorine-containing monomer which is another monomer, may be a monomer that becomes a unit having an aliphatic ring structure in the main chain by polymerization, but the main chain of such a fluorine-containing polymer may be used. It is preferably not a monomer that provides an aliphatic ring structure.
  • the fluorinated polymer having no aliphatic ring structure in the main chain has higher crystallinity than the fluorinated polymer having an aliphatic ring structure in the main chain, and the melting point of the fluorinated polymer is controlled within a desired range. It's easy to do.
  • Examples of the monomer that becomes a unit having an aliphatic ring structure in the main chain by polymerization include perfluorocyclic monoene and perfluorodiene that can be cyclized and polymerized, which will be described later.
  • Examples of the fluorine-containing monomer other than the perfluoro compound include trifluoroethylene (TrFE), vinylidene fluoride (VdF), 1,2-difluoroethylene, 1-fluoroethylene and the like.
  • perfluoro compound among the fluorine-containing monomers examples include the following perfluoroolefins, perfluoroalkyl vinyl ethers, perfluorocyclic monoenes, perfluorodienes capable of cyclization polymerization, and the like.
  • Perfluoroolefin hexafluoropropene (HFP), etc.
  • Perfluoroalkyl vinyl ether perfluoromethyl vinyl ether (PMVE), perfluoroethyl vinyl ether (PEVE), perfluoropropyl vinyl ether (PPVE), etc.
  • Perfluorocyclic monoene perfluoro (4-methoxy-1,3-dioxol) ), Perfluoro (2,2-dimethyl-1,3-dioxol), Perfluoro (4-methyl-2-methylene-1,3-dioxolane), etc.
  • Perfluorodiene capable of cyclization polymerization Perfluoro (3-butenyl vinyl ether) etc
  • the fluorine-containing polymer preferably has a perfluoroalkyl vinyl ether unit.
  • the fluorine-containing polymer preferably has PPVE units.
  • the melting point of the fluorine-containing polymer changes when the content of PPVE units changes. Specifically, as the content of PPVE units with respect to the fluorine-containing polymer increases, the melting point of the fluorine-containing polymer tends to decrease.
  • the content of PPVE units with respect to the fluorine-containing polymer is preferably less than 14 mol%, more preferably 10 mol% or less.
  • the upper limit of the content of PPVE units with respect to the fluorine-containing polymer is not particularly limited, but is preferably more than 0 mol%, more preferably 1 mol% or more.
  • the upper limit value and the lower limit value can be arbitrarily combined.
  • the content is preferably 1 to 12 mol%.
  • Each of the above-mentioned monomers is usually polymerized by radical polymerization using a radical polymerization initiator.
  • the structure at the end of the molecular chain (main chain) of the fluoropolymer at the end of polymerization is a structure to which a fragment of the radical polymerization initiator used in the polymerization is added.
  • the structure at the end of the molecular chain (main chain) can be a structure to which a fragment of the chain transfer agent is added.
  • the terminal structure may be converted into another structure.
  • the structure at the end of the main chain becomes a methyl ester group.
  • the methyl ester group can be converted from a highly reactive acid fluoride by a simple methanol treatment. Therefore, it is preferable because the stability of the obtained fluorine-containing polymer can be easily improved.
  • the structure at the end of the main chain becomes a trifluoromethyl group.
  • the fluorination treatment include the treatment method described in paragraph 0040 of JP-A-11-152310.
  • the trifluoromethyl group is preferable because it has high heat resistance and the heat resistance of the obtained fluorine-containing polymer can be easily improved.
  • the fluorine-containing polymer when the structure at the end of the main chain is a methyl ester group or a trifluoromethyl group, the intermolecular interaction at the end of the main chain is small and vapor deposition is easy, which is preferable.
  • the structure at the end of the main chain described above can be confirmed by infrared spectroscopic analysis.
  • the fluorine-containing polymer of the present embodiment preferably has crystallinity. Since the fluorine-containing polymer has crystallinity, the melting point tends to be 200 ° C. or higher.
  • the melting point of the fluorine-containing polymer of the present embodiment is preferably 215 ° C. or higher, more preferably 225 ° C. or higher, and even more preferably 240 ° C. or higher.
  • the upper limit of the melting point of the fluorine-containing polymer of the present embodiment is not particularly limited, but is preferably 350 ° C. or lower, more preferably 320 ° C. or lower, and even more preferably 300 ° C. or lower.
  • the upper limit value and the lower limit value of the melting point of the fluorine-containing polymer can be arbitrarily combined.
  • the melting point of the fluorine-containing polymer may be 200 to 350 ° C., 215 to 320 ° C., or 225 to 300 ° C.
  • the melting point adopts a value measured using a differential scanning calorimeter (for example, manufactured by NETZSCH: DSC 204 F1 Phoenix). 9 mg of the fluorine-containing polymer is charged in a sample container, the heat capacity when the temperature is raised from ⁇ 70 ° C. to 350 at 10 ° C. per minute is measured, and the melting point is determined from the obtained melting peak.
  • a differential scanning calorimeter for example, manufactured by NETZSCH: DSC 204 F1 Phoenix.
  • thermogravimetric reduction rate adopts a value measured using a vacuum differential thermal balance (manufactured by Advance Riko Co., Ltd .: VPE-9000). Specifically, the fluorine-containing weight when 50 mg of the fluorine-containing polymer was charged into a cell having an inner diameter of 7 mm and the temperature was raised from room temperature to 500 ° C. at 2 ° C. per minute at a vacuum degree of 1 ⁇ 10 -3 Pa. The weight loss rate (%) with respect to the initial weight (50 mg) of the coalescence is measured.
  • “Substantially” in the requirement (2) means that in the above-mentioned method for measuring the thermogravimetric rate, the thermogravimetric decrease in the temperature range exceeding 400 ° C. is below the lower limit of detection, and the thermogravimetric decrease cannot be confirmed. Means that.
  • the fluorinated polymer of the present embodiment satisfies the above requirement (2), the lower the molecular weight (degree of polymerization). If an attempt is made to heat a fluorinated polymer that does not satisfy the above requirement (2) in a temperature range exceeding 400 ° C., the fluorinated polymer may be thermally decomposed. In that case, the product produced by thermal decomposition may increase the internal pressure of the vacuum chamber used for vapor deposition. When the internal pressure of the vacuum chamber rises in this way, the vapor deposition conditions become unstable, and the quality of the vapor deposition film may not be stable. In addition, the partially thermally decomposed fluorine-containing polymer may be mixed in the vapor-deposited film, and the quality of the vapor-deposited film may be impaired.
  • the fluorine-containing polymer satisfying the above requirement (2) when used as a vapor deposition material performed under vacuum, it can be suitably vapor-deposited by heating at a temperature lower than 400 ° C. As a result, there is no risk of thermal decomposition described above, and the vapor deposition process can be performed under stable vapor deposition conditions.
  • the heat resistance of the fluorine-containing polymer can be evaluated as follows, focusing on the change in the internal pressure of the vacuum chamber.
  • a fluorine-containing polymer having an increase ratio of more than 2 times is likely to undergo thermal decomposition and can be judged to be unsuitable for use in vapor deposition. Further, when the fluorine-containing polymer is thermally decomposed so that the increase ratio of the chamber pressure exceeds 10 times, the quality of the vapor-deposited film to be produced may not be stable due to the product produced by the thermal decomposition.
  • the fluorine-containing polymer of the present embodiment has a thermogravimetric reduction rate of substantially 100% at 350 ° C. or lower when the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 ⁇ 10 -3 Pa. It is preferable to reach.
  • the fluorine-containing polymer of the present embodiment has a temperature at which the thermogravimetric reduction rate changes from 10% to 90% when the temperature is raised at a temperature rising rate of 2 ° C./min under a pressure of 1 ⁇ 10 -3 Pa.
  • the temperature range up to is within 100 ° C.
  • the fluorinated polymer of the present embodiment has a narrower molecular weight distribution as the temperature range satisfying the above requirement (3) is narrower.
  • the molecular weight of the fluorine-containing polymer deposited at the beginning of vapor deposition and the molecular weight of the fluorine-containing polymer deposited at the end of vapor deposition In the same vapor-deposited film, the molecular weight of the fluorine-containing polymer changes in the thickness direction of the thin-film film, and the physical properties of the thin-film film may not be stable.
  • the quality of the produced film-deposited film may vary from lot to lot. If a fluorine-containing polymer that does not satisfy the requirement (3) is used as described above, the vapor deposition conditions may become unstable and the quality of the vapor deposition film may not be stable.
  • the difference between the molecular weight of the fluorine-containing polymer deposited at the beginning of vapor deposition and the molecular weight of the fluorine-containing polymer deposited at the end of vapor deposition is small, and the vapor deposition is carried out.
  • the change in the molecular weight of the fluorine-containing polymer is small in the thickness direction of the film. Therefore, the physical characteristics of the obtained thin-film film are likely to be stable.
  • the vapor-deposited film is continuously produced under the same conditions, it is possible to suppress quality variation between lots of the produced vapor-film film. Therefore, when a fluorine-containing polymer satisfying the requirement (3) is used, the quality of the vapor-deposited film is likely to be stable.
  • the fluorine-containing polymer of the present embodiment has a temperature at which the thermogravimetric reduction rate changes from 10% to 90% when the temperature is raised at a temperature rising rate of 2 ° C./min under a pressure of 1 ⁇ 10 -3 Pa.
  • the temperature range up to is preferably 70 ° C. or less.
  • FIG. 1 is a schematic diagram for explaining the requirements (2) and (3), and is a graph showing the correspondence relationship between the thermogravimetric reduction rate and the measured temperature.
  • the horizontal axis of FIG. 1 is the measurement temperature (unit: ° C.), and the vertical axis is the thermogravimetric reduction rate (unit:%).
  • the behavior of the fluorinated polymer satisfying the requirements (2) and (3) is indicated by reference numeral P
  • the behavior of the fluorinated polymer not satisfying the requirements (2) and (3) is indicated by reference numeral Px.
  • the graph P showing the behavior of the fluorine-containing polymer of the present embodiment shows that the thermogravimetric reduction rate reaches 100% at a temperature (T d100) lower than 400 ° C.
  • the thermogravimetric reduction rate does not reach 100% at 400 ° C.
  • the value W of T d90- T d10 is 100 ° C. or less. From FIG. 1, it can be seen that the fluorine-containing polymer of the present embodiment causes a sharp decrease in thermogravimetric analysis between the temperature T d10 and the temperature T d90.
  • a fluorine-containing polymer satisfying the above requirements (2) and (3) can be obtained by fractionating the molecular weight of the polymer.
  • the polymer subject to molecular weight fractionation may be referred to as a "raw material polymer”.
  • Examples of the method of molecular weight fractionation include a method of fractionating the molecular weight by sublimation purification or supercritical extraction to prepare a polymer satisfying the requirements (2) and (3).
  • sublimation purification In sublimation purification, the purification target (raw material polymer) is heated under reduced pressure to sublimate or evaporate a part or all of the purification target, and then the precipitation temperature difference of the compound contained in the purification target in a gaseous state is measured. This is a method for separating and recovering a target compound as a solid.
  • Such sublimation purification has a charging section for charging the object to be purified and a collecting section for separating the purified object in a gaseous state at each precipitation temperature and collecting it as a solid, and maintains a high degree of vacuum. It can be carried out using a sublimation purification apparatus capable of this.
  • the structure of the sublimation purification device is not particularly limited, but for example, a so-called Mill-type sublimation purification device consisting of a glass cooling tube, a flask-shaped glass container surrounding the cooling tube, and a vacuum exhaust device for depressurizing the inside of the glass container.
  • the sublimation refining device includes a cylindrical glass sublimation tube, a heating device that houses the sublimation tube inside to heat the sublimation tube, and a high vacuum exhaust device that depressurizes the inside of the sublimation tube.
  • a glass tube type sublimation purification device can also be used.
  • a method for sublimation purification of a fluorine-containing polymer and a method for fractionating the molecular weight by sublimation purification will be described using a glass tube type sublimation purification apparatus as an example.
  • the raw material polymer is charged in the preparation part of the sublimation tube, and the vacuum degree in the sublimation tube is raised to, for example, 1 ⁇ 10 -3 Pa or less by using a high vacuum exhaust device.
  • the preparation part is heated using a heating device.
  • the fluorine-containing polymer contained in the raw material polymer is sublimated or evaporated.
  • the area corresponding to the exhaust side of the high vacuum exhaust device from the preparation part corresponds to the "collection part".
  • the collecting part is set to a temperature lower than the heating temperature of the charging part.
  • the fluorine-containing polymer sublimated or evaporated from the raw material polymer in the charging section is precipitated and solidified on the wall surface of the collecting section and collected.
  • the collection temperature of the collection unit corresponds to the temperature at which the fluorine-containing polymer sublimates from a gas to a solid (the temperature at which it precipitates), and corresponds to the molecular weight of the fluorine-containing polymer.
  • the raw material polymer can be fractionated into fluorine-containing polymers having different molecular weights. For example, specifically, when the charging portion is heated to A ° C. and the collecting portion is heated to B ° C. and C ° C. from the side closer to the charging portion (A>B> C), the trapping portion is set to B ° C.
  • a fluorine-containing polymer having a molecular weight range that becomes a gas at A ° C and a solid at B ° C is collected.
  • a fluorine-containing polymer in a molecular weight range that becomes a gas at B ° C and a solid at C ° C is collected. That is, in the collection section set to C ° C., among the fluorine-containing polymers contained in the raw material polymer, the fluorine-containing weight having a collection temperature range of B ° C.—C ° C. which is a gas at B ° C. and a solid at C ° C. The coalescence is collected.
  • the above-mentioned requirement (3) can be satisfied by controlling the collection temperature range as described above, for example, by collecting in a collection section having a collection temperature range of 100 ° C. It should be noted that it is confirmed whether or not the collected fluorine-containing polymer satisfies the requirement (3), and if the requirement (3) is not satisfied, the temperature condition of the collecting portion is controlled and the collecting temperature range is adjusted. It is good to narrow it.
  • the fluorine-containing polymer collected in the lower set temperature region has a lower temperature at which the thermogravimetric reduction rate reaches 100% under a pressure of 1 ⁇ 10 -3 Pa, that is, has a smaller molecular weight. It becomes a polymer.
  • the collection temperature range is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and even more preferably 40 ° C. or lower.
  • the smaller the collection temperature range the less the fluctuation of the vapor deposition conditions, and the more likely it is that a homogeneous phase-separated structure is formed in the film thickness direction.
  • the fluorinated polymer fractionated by molecular weight may be a mixture of a plurality of fluorinated polymers having different collection temperature ranges as long as the requirements (2) and (3) are satisfied.
  • Supercritical extraction is a technique for obtaining an extract by utilizing the high solubility and diffusivity of a supercritical fluid.
  • supercritical extraction for example, supercritical CO 2 is used as a supercritical fluid, and a fluorine-containing polymer having a relatively low molecular weight is dissolved in the supercritical CO 2 to obtain an extract.
  • a fluorine-containing solvent as an additive (entrainer) for the supercritical fluid, the solubility of the fluorine-containing polymer in the supercritical fluid can be enhanced.
  • the fluorine-containing solvent used as the entrainer is not particularly limited.
  • a fluorinated solvent is preferred
  • Fluorophilic parameter P F calculated by the following method is one or more. (Parent fluorine parameter P F) 30 ⁇ L of the fluorine-containing solvent was added dropwise to a two-phase system of 3 g of toluene and 3 g of perfluoromethylcyclohexane, mixed well and allowed to stand overnight, and then the fluorine-containing solvent contained in the toluene and the perfluoromethyl were added. The fluorine-containing solvent contained in cyclohexane is measured by gas chromatography.
  • the extraction step can be carried out using, for example, supercritical CO 2 under the conditions of an extraction pressure of 7.4 MPa or more and an extraction temperature of 31 ° C. or more.
  • the extraction pressure is preferably 30 MPa or more, more preferably 50 MPa or more, and even more preferably 70 MPa or more.
  • the upper limit of the extraction pressure is not particularly limited, but is preferably 100 MPa or less.
  • the upper limit value and the lower limit value of the extraction pressure can be arbitrarily combined.
  • the extraction temperature is preferably 40 ° C. or higher, more preferably 80 ° C. or higher.
  • the extraction temperature is preferably 300 ° C. or lower, more preferably 200 ° C. or lower, and even more preferably 100 ° C. or lower.
  • the upper limit value and the lower limit value of the extraction temperature can be arbitrarily combined. Within the above range, the molecular weight fractionation of the target fluorine-containing polymer can be efficiently performed.
  • the fluorine-containing polymer of the present embodiment preferably satisfies the following requirements (4) and (5).
  • Requirement (4) a storage modulus at 25 ° C. is 1 ⁇ 10 7 Pa or higher.
  • Requirement (5) When the fluorine-containing polymer is cooled at a temperature lowering rate of 2 ° C./min, the temperature at which the storage elastic modulus is less than 1 ⁇ 10 6 Pa is 120 ° C. or higher.
  • the fluorine-containing polymer satisfies the above requirements (4) and (5), the heat resistance of the fluorine-containing polymer becomes high.
  • the fluorine-containing polymer satisfying the above requirements (4) and (5) can be obtained, for example, by changing the content rate of the PPVE unit contained in the fluorine-containing polymer. As the content of PPVE units increases, the storage elastic modulus tends to decrease.
  • the storage elastic modulus is measured using a dynamic viscoelasticity measuring device (for example, Anton Pearl Co., Ltd., MCR502) and a heating furnace for a viscoelasticity measuring device (for example, Anton Pearl Co., Ltd., CTD450).
  • Adopt a value Specifically, after heating the sample (fluorine-containing polymer) to a melting point or higher, the temperature is lowered at 2 ° C./min in the constant-speed temperature lowering mode.
  • the storage elastic modulus (G') is measured under the conditions of a strain of 0.01% and a frequency of 1 Hz.
  • FIG. 2 is a schematic cross-sectional view showing the film of the present embodiment.
  • the film 10 shown in FIG. 2 is a co-deposited film of an organic semiconductor and a fluorine-containing polymer, and is formed on the substrate 50.
  • the organic semiconductor and the fluorine-containing polymer are phase-separated, and include the domain 51b of the organic semiconductor and the domain 52b of the fluorine-containing polymer described above.
  • the domain 51b and the domain 52b are continuous in the film thickness direction.
  • the size D of the domain 52b in the plane direction of the film 10 is, for example, about 10 nm to 20 nm.
  • the above-mentioned phase-separated structure of the membrane 10 may be referred to as a nanodomain structure.
  • the fluorine-containing polymer used in the present embodiment has a melting point of 200 ° C. or higher and has high crystallinity.
  • a film having high heat resistance can be obtained.
  • a film formed by using a material having high crystallinity tends to have a high haze and low transparency because the crystallized portion scatters visible light. For this reason, it has been difficult to apply a film formed using a material having high crystallinity to a photoelectron device or the like that requires transparency.
  • the film 10 has a nanodomain structure that is sufficiently small with respect to visible light. Even if a part of the fluorine-containing polymer contained in such a film 10 is crystallized, the size of the crystallized part is a size that fits in the nanodomain structure. Therefore, the film 10 is less likely to scatter visible light and exhibits high transparency. Further, the film 10 has high heat resistance based on the high crystallinity of the fluorine-containing polymer. Therefore, the film 10 retains the nanodomain structure even when exposed to a high temperature, and can maintain high transparency.
  • the haze of the film 10 and its heat resistance can be measured by the following method.
  • ⁇ -NPD and a fluorine-containing polymer are co-deposited on a glass substrate to form a 100 nm co-deposited film to obtain a sample for haze measurement.
  • the total deposition rate of the two materials is 0.2 nm / sec.
  • the vapor deposition rate is adjusted so that the volume ratio of ⁇ -NPD to the fluorine-containing polymer in the co-deposited film is a desired ratio.
  • Haze measurement is performed using a haze meter (Haze Guard K50-290 manufactured by Toyo Seiki Co., Ltd.). After measuring the initial haze of the haze measurement sample, the sample sample is heated on a hot plate heated to 100 ° C. for 1 hour. After returning the sample to room temperature, measure the haze again. Further, the sample is heated on a hot plate heated to 120 ° C. for 1 hour, and the haze is measured in the same manner.
  • a haze meter Haze Guard K50-290 manufactured by Toyo Seiki Co., Ltd.
  • the obtained haze is evaluated as follows. ⁇ : Less than 0.2, ⁇ : 0.2 or more and less than 0.5 ⁇ : 0.5 or more
  • the ratio of the fluorinated polymer to the total of the fluorinated polymer constituting the film 10 and the organic semiconductor is equal to the volume of the domain 52b with respect to the entire film 10.
  • the ratio of the domain 52b to the entire membrane 10 is preferably 20 to 80% by volume.
  • the proportion of the fluorine-containing polymer is 20% by volume or more, the film has a sufficiently low refractive index as compared with the film of the organic semiconductor having no fluorine-containing polymer. Further, when the proportion of the fluorine-containing polymer is 80% by volume or less, the conductivity of the film 10 can be sufficiently ensured.
  • the refractive index of the film 10 can be measured by the following method using a sample prepared by the following method.
  • ⁇ -NPD and a fluorine-containing polymer are co-deposited on a silicon substrate to form a 100 nm co-deposited film to obtain a sample for refractive index measurement.
  • the total deposition rate of the two materials is 0.2 nm / sec.
  • the vapor deposition rate is adjusted so that the volume ratio of ⁇ -NPD to the fluorine-containing polymer in the co-deposited film is a desired ratio.
  • the organic semiconductor includes a hole injection material that constitutes a hole injection layer of an organic EL device, an electron injection material that constitutes an electron injection layer, a hole transport material that constitutes a hole transport layer, and an electron transport layer.
  • the organic semiconductor includes a hole injection material that constitutes a hole injection layer of an organic EL device, an electron injection material that constitutes an electron injection layer, a hole transport material that constitutes a hole transport layer, and an electron transport layer. Examples of electron transport materials, host materials and guest materials constituting the light emitting layer can be exemplified.
  • an aromatic amine derivative can be preferably exemplified. Specific examples include, but are not limited to, the following ⁇ -NPD, TAPC, PDA, TPD, m-MTDATA, and the like.
  • Examples of the hole injection material other than the above include the following semiconductor materials, organometallic complex materials, arylamine materials, polymer semiconductor materials, and the like.
  • Semiconductor materials Metal oxides such as molybdenum oxide and tungsten oxide, metal fluorides such as aluminum fluoride and magnesium fluoride
  • Organic metal complex materials Copper phthalocyanines, etc.
  • Aarylamine materials N, N'-diphenyl-N, N'- Bis- [4- (phenyl-m-tolyl-amino) -phenyl] -biphenyl-4,4'-diamine (DNTPD), N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine ( NPB), 4,4', 4 "-tris (N, N-diphenylamino) triphenylamine (TDATA), dipyrazino [2,3-f: 2', 3'-h] quinoxalin-2,3,6 , 7,10,11-Hexacarbonitrile (HAT-CN), 9,9', 9 "-triphenyl-9H, 9'H, 9"H-3,3':6', 3 "-tercarbazole (Tris-PCz), 4,4', 4 "-Tris (N, N-2-naphthylphenylamino) Triphenylamine (2
  • Polymer semiconductor materials Polyaniline / dodecylbenzenesulfonic acid (PANI / DBSA) ), Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate) (PEDOT / PSS), Polyaniline camphorsulfonic acid (PANI / CSA), or Polyaniline / Poly (4-styrenesulfonate) (PANI / PSS) etc.
  • PANI / DBSA Polyaniline / dodecylbenzenesulfonic acid
  • PEDOT / PSS Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate)
  • PANI / CSA Polyaniline camphorsulfonic acid
  • PANI / PSS Polyaniline / Poly (4-styrenesulfonate
  • N- (diphenyl-4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazoyl-3yl) phenyl) -9H-fluoren-2-amine hereinafter referred to as "HT211"
  • HTM081 manufactured by Merck
  • HTM163 manufactured by Merck
  • HTM222 manufactured by Merck
  • NHT-5 manufactured by NoValed
  • NHT-18 manufactured by NoValed
  • NHT- 49 manufactured by NoValed
  • NHT-51 manufactured by NoValed
  • NDP-2 manufactured by NoValed
  • NDP-9 manufactured by NoValed
  • the hole injection material illustrated can be purchased commercially. As these hole injection materials, commercially available products or synthetic products may be used. Further, the hole injection material may be used alone or in combination of two or more.
  • the electron injection material a known material can be used. Specific examples include inorganic compounds such as LiF, Cs 2 CO 3 , CsF, and the following Alq 3 , PBD, TAZ, BND, OXD-7, 8-hydroxyquinolinolato-lithium (Liq), and the like. , Not limited to these. In addition, commercially available products such as NDN-1 (manufactured by NoValed) and NDN-26 (manufactured by NoValed) can be used.
  • NDN-1 manufactured by NoValed
  • NDN-26 manufactured by NoValed
  • Examples of the material of the hole transport layer include, but are not limited to, the hole injection material.
  • the hole injection material 4,4', 4 "-tri (9-carbazoyl) trifemilamine (TCTA), 2,2', 7,7'-tetrakis (N, N) other than those listed as the hole injection materials.
  • TCTA 4,4', 4 "-tri (9-carbazoyl) trifemilamine
  • N, N 2,2', 7,7'-tetrakis
  • Arylamine materials such as 9,9'-spirobifluorene (Spiro-MeOTAD) can be used as the hole transport material.
  • Hole-transporting materials other than those listed as the hole-injecting materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, and oxazole derivatives. , Styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilben derivative, silazane derivative and the like. Among them, it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound. As these hole transporting materials, commercially available products or synthetic products may be used. Further, the hole transporting material may be used alone or in combination of two or more.
  • the electron transport material As the material of the electron transport layer (electron transport material), a known material can be used.
  • the electron transport material includes, but is not limited to, the electron injection material.
  • Examples of the electron transporting material other than those listed as the electron injecting material include 2,2', 2''-(1,3,5-benzinetriyl) -tris (1-phenyl-1-H-benzimidazole).
  • TPBi 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BCP 2- (4-tert-butylphenyl) -5- (4-biphenylyl) -1,3,4-
  • oxadiazole t-Bu-PBD
  • silol derivative having a silol ring.
  • electron transport materials commercially available products or synthetic products may be used. Further, the electron transport material may be used alone or in combination of two or more.
  • the material for forming the light emitting layer known materials such as a fluorescent material, a thermal activated delayed fluorescence (TADF) material, and a phosphorescent material can be adopted.
  • TADF thermal activated delayed fluorescence
  • examples of the material for forming the light emitting layer include (E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-iriden) malononitrile (DCM) and 4- (dicyano).
  • Luminescent guest materials such as methylene) -2-methyl-6-juloridyl-9-enyl-4H-pyran (DCM 2 ), rubrene, polymer6, Ir (ppy) 3 , (ppy) 2 Ir (acac), 4, 4 Phosphorescent host material such as'-bis (9H-carbazole-9-yl) biphenyl (CBP), 3,3'-di (9H-carbazole-9-yl) -1,1'-biphenyl (mCBP), ADN , Fluorescent host materials such as Alq3, and polymer materials such as polyphenylene vinylene (PPV) and MEH-PPV, but are not limited thereto.
  • DCM 2 -2-methyl-6-juloridyl-9-enyl-4H-pyran
  • Phosphorescent host material such as'-bis (9H-carbazole-9-yl) biphenyl (CBP), 3,3'-di (9H-carbazole-9-yl
  • the material for forming the light emitting layer may be used alone or in combination of two or more.
  • the material for forming the light emitting layer is appropriately selected according to the desired emission wavelength.
  • the organic semiconductor that is the material for forming the film 10 preferably has a molecular weight of 300 to 1000.
  • the molecular weight of the organic semiconductor is more preferably 400 or more. Further, the molecular weight of the organic semiconductor is more preferably 900 or less.
  • the molecular weight of the organic semiconductor is 300 or more, the glass transition point (Tg) of the organic semiconductor becomes high, and the heat resistance of the organic semiconductor film is improved.
  • the molecular weight is 1000 or less, the vapor pressure of the organic semiconductor becomes high, and the vapor deposition can be performed at the thermal decomposition temperature or less.
  • the upper limit value and the lower limit value of the molecular weight of the organic semiconductor can be arbitrarily combined.
  • the molecular weight of the organic semiconductor may be 300 to 900, 400 to 1000, or 400 to 900.
  • the molecular weight of the organic semiconductor can be determined by measurement using TOF-SIMS (Time-of-Flight Second Method Ion Mass Spectrometry).
  • the film 10 may further contain a dopant.
  • a dopant a known one can be used, and an appropriate material can be selected according to the function of the apparatus provided with the film 10 of the present embodiment. By including the dopant, the film 10 can be made more conductive.
  • NDP-2 Novaled Co.
  • examples of the dopant used as the electron injection material include 8-hydroxyquinolinolato-lithium (Liq), NDN-1 (manufactured by Novaled), NDN-26 (manufactured by Novaled) and the like.
  • FIG. 3 to 5 are schematic views showing a process of manufacturing the above-mentioned film 10.
  • a substrate 50 on which the film 10 is formed is prepared.
  • Such a substrate 50 is installed in the chamber 500 of the vacuum vapor deposition apparatus, and the organic semiconductor 51a and the fluorine-containing polymer 52a are provided from the organic semiconductor vapor deposition source (rutsubo) 51 and the fluorine-containing polymer vapor deposition source (rutsubo) 52. Is supplied and co-deposited.
  • FIG. 3 shows that the organic semiconductor and the fluorine-containing polymer are vapor-deposited from different vapor deposition sources, they may be vapor-deposited from the same vapor deposition source.
  • the organic semiconductor 51a and the fluorine-containing polymer 52a the organic semiconductor and the fluorine-containing polymer constituting the above-mentioned film 10 can be used, respectively.
  • the vapor deposition conditions are set so that the ratio of the fluorine-containing polymer to the total of the fluorine-containing polymer and the organic semiconductor is 20 to 80% by volume in the co-deposited film formed on the substrate 50.
  • the organic semiconductor 51a is preferably one that does not decompose by heating during vapor deposition.
  • the fact that the organic semiconductor is not decomposed by heating during vapor deposition can be determined by determining the weight reduction rate of the organic semiconductor to be used by the following method.
  • thermogravimetric differential thermal analyzer manufactured by Hitachi High-Tech Science Co., Ltd .: STA7200
  • the weight loss rate at normal pressure at T d50 is 1% or less, it is determined that the reason for the weight loss at T d50 under reduced pressure is not thermal decomposition but sublimation. It can be determined that such an organic semiconductor does not decompose by heating during vapor deposition, that is, it is a material suitable for vapor deposition. On the other hand, when the weight loss rate at normal pressure at T d50 exceeds 1%, it is determined that the reason for the weight loss at T d50 under reduced pressure is thermal decomposition. Since such an organic semiconductor is decomposed by heating during vapor deposition, it can be judged that it is not suitable for vapor deposition.
  • the organic semiconductor and the fluorine-containing polymer are co-deposited, the organic semiconductor and the fluorine-containing polymer are phase-separated on the substrate, and the domain 51b of the organic semiconductor and the domain of the fluorine-containing polymer are separated. It is considered that 52b and 52b are formed. It is considered that the size (diameter) of the domain 52b of the fluorine-containing polymer falls within a certain numerical range with a small variation depending on the relationship between the surface energy of the substrate 50 to be co-deposited and the surface energy of the fluorine-containing polymer. Be done.
  • the domain 52b is considered to be large and easily spread, and when the fluorine-containing polymer is difficult to spread on the surface of the substrate 50, the domain 52b is spread. It is thought that the diameter tends to be small.
  • the organic semiconductor 51a sublimated from the vapor deposition source 51 is energetically more stable than the deposition in the domain 52b, so that it is considered that the organic semiconductor 51a is deposited in the domain 51b of the organic semiconductor.
  • the fluorine-containing polymer 52a sublimated from the vapor deposition source 52 is more energetically stable than depositing in the domain 51b, it is considered that the fluorine-containing polymer 52a is deposited in the domain 52b of the fluorine-containing polymer.
  • the domain 51b of the organic semiconductor continuous in the film thickness direction of the co-deposited film and the domain 52b of the fluorine-containing polymer continuous in the film thickness direction of the co-deposited film are formed.
  • the diameter of the domain 52b does not change significantly in the film thickness direction of the co-deposited film, and is the size of the first domain 52b formed on the surface of the substrate 50. It will reflect the above.
  • the fluorine-containing polymer constituting the domain 52b has a narrow molecular weight, and the difference in physical properties between the initial stage and the final stage of vapor deposition becomes small. Therefore, the quality of the obtained film 10 is likely to be stable.
  • the film 10 is manufactured as described above.
  • the domains 52b are easily moved by the heating, and the adjacent domains 52b may coalesce and the nanodomain structure of the film 10 may be destroyed.
  • the fluorine-containing polymer used satisfies the above-mentioned requirements (4) and (5), the domain 52b is difficult to unite, and the film 10 easily maintains the nanodomain structure.
  • the fluorine-containing polymer having the above-mentioned structure it is possible to provide a fluorine-containing polymer having high heat resistance and suitable for vapor deposition. Further, according to the film having the above-mentioned structure, the film has a low refractive index, high transparency, high heat resistance, and stable quality. Further, according to the method for producing a film having the above-mentioned structure, such a film can be easily produced.
  • the fluorine-containing polymer of the present embodiment and the organic semiconductor are co-deposited to form the film 10, but the present invention is not limited to this.
  • the film containing the fluorine-containing polymer and the organic semiconductor of the present embodiment may be produced by a wet process such as coating.
  • FIG. 6 is a schematic cross-sectional view showing an organic photoelectronic device (organic EL device) 100 according to a second embodiment of the present invention.
  • the organic EL element 100 has a structure in which a substrate 110, an anode 111, a hole injection layer 112, a hole transport layer 113, a light emitting layer 114, an electron transport layer 115, an electron injection layer 116, and a cathode 117 are laminated in this order. There is.
  • the organic EL element 100 of the present embodiment employs a top emission method in which the light L generated in the light emitting layer 114 is emitted to the outside via the cathode 117.
  • the substrate 110 may or may not have light transmission.
  • an inorganic substance such as glass, quartz glass, or silicon nitride, or an organic polymer (resin) such as a polyimide resin, an acrylic resin, or a polycarbonate resin can be used.
  • an organic polymer such as a polyimide resin, an acrylic resin, or a polycarbonate resin
  • a metal material can be adopted as a material for forming the substrate 110.
  • the substrate 110 includes various wirings and driving elements (not shown) that are electrically connected to the organic EL element.
  • the anode 111 is formed on the substrate 110 and supplies holes to the hole transport layer 113. Further, the anode 111 has a light reflectivity that reflects the light emitted from the light emitting layer 114.
  • a conductive metal oxide such as ITO (Indium Tin Oxide: indium-doped tin oxide) or IZO (Indium Zinc Oxide: indium-doped zinc oxide) can be used.
  • a reflective film made of a metal material is provided on the substrate 110 side of the anode 111. That is, the anode 111 has a laminated structure of a layer made of a conductive metal oxide as a forming material and a reflective film. Further, silver may be used as a material for forming the anode 111.
  • the thickness of the anode 111 is not particularly limited, but is preferably 30 to 300 nm.
  • the thickness of the anode 111 is, for example, 100 nm.
  • the hole injection layer 112 is formed between the anode 111 and the hole transport layer 113.
  • the hole injection layer 112 has a function of facilitating the injection of holes from the anode 111 into the hole transport layer 113.
  • the hole injection layer 112 does not have to be formed.
  • the hole injection layer 112 can be formed by using the hole injection material described above.
  • the thickness of the hole injection layer 112 is not particularly limited, but is preferably 1 to 100 nm.
  • the thickness of the hole injection layer 112 is, for example, 5 nm.
  • the hole transport layer 113 is formed on the hole injection layer 112.
  • the hole transport layer 113 has a function of satisfactorily transporting the holes injected from the anode 111 toward the light emitting layer 114.
  • the hole transport layer 113 can be formed by using the hole transport material described above.
  • the hole transport layer 113 may be a single layer, or may have a configuration in which a plurality of layers of hole transport materials are laminated.
  • the hole transport materials constituting each layer may be the same or different from each other.
  • Hole transport layer 113 is preferably an absorption coefficient in the wavelength range 450 ⁇ 800 nm is 5000 cm -1 or less, more preferably 1000 cm -1 or less, to have no absorption band in the wavelength region in particular preferable.
  • the absorption coefficient of each layer constituting the hole transport layer 113 exceeds 5000 cm-1 , once the light passes through the hole transport layer having a thickness of 100 nm, it is 5% compared to the case where the total amount of light before passing is 100%. Light is absorbed. Inside the organic EL element, the loss due to the absorption of light when passing through the hole transport layer 113 is accumulated due to the multiple interference of light. Therefore, light absorption when passing through the hole transport layer becomes a factor that greatly reduces the light extraction efficiency.
  • the thickness of the hole transport layer 113 is not particularly limited, but is preferably 10 to 250 nm, more preferably 20 to 150 nm.
  • the light emitting layer 114 is formed on the hole transport layer 113. In the light emitting layer 114, the holes injected from the anode 111 and the electrons injected from the cathode 117 are recombined to emit photons to emit light. The emission wavelength at that time is determined according to the material for forming the light emitting layer 114.
  • the light emitting layer 114 corresponds to the "active layer" in the present invention.
  • the light emitting layer 114 can be formed by using the above-mentioned material for forming the light emitting layer.
  • the material for forming the light emitting layer may be used alone or in combination of two or more, and is appropriately selected according to a desired emission wavelength.
  • the thickness of the light emitting layer 114 is not particularly limited, but is preferably 10 to 30 nm.
  • the thickness of the light emitting layer 114 is, for example, 15 nm.
  • the electron transport layer 115 is formed on the light emitting layer 114.
  • the electron transport layer 115 has a function of satisfactorily transporting the electrons injected from the cathode 117 toward the light emitting layer 114.
  • the electron transport layer 115 can be formed by using the electron transport material described above.
  • the thickness of the electron transport layer 115 is not particularly limited, but is preferably 30 to 80 nm.
  • the thickness of the electron transport layer 115 is, for example, 60 nm.
  • the electron injection layer 116 is provided between the cathode 117 and the electron transport layer 115.
  • the electron injection layer 116 has a function of facilitating the injection of electrons from the cathode 117 into the electron transport layer 115.
  • the above-mentioned electron injection material can be used as the material for forming the electron injection layer 116.
  • the electron injection layer 116 does not have to be formed.
  • the thickness of the electron injection layer 116 is not particularly limited, but is preferably 0.5 to 2 nm.
  • the thickness of the electron injection layer 116 is, for example, 1 nm.
  • the cathode 117 is formed on the electron injection layer 116.
  • the cathode 117 has a function of injecting electrons into the electron injection layer 116.
  • a material for forming the cathode 117 a known material can be adopted.
  • examples of the material for forming the cathode 117 include an MgAg electrode and an Al electrode.
  • a buffer layer such as LiF may be formed on the surface of the cathode 117.
  • the cathode 117 is a semi-transmissive film formed thin enough to reflect a part of the light emitted from the light emitting layer 114 as a whole and pass through the rest.
  • the thickness of the cathode 117 is not particularly limited, but is preferably 5 to 30 nm.
  • the thickness of the cathode 117 is, for example, 5 nm.
  • the anode 111 and the cathode 117 form an optical resonance structure (microcavity) in which light is resonated between the anode 111 and the cathode 117.
  • the light generated by the light emitting layer 114 is repeatedly reflected between the anode 111 and the cathode 117, and the light having a wavelength matching the optical path length between the anode 111 and the cathode 117 is resonated and amplified.
  • light having a wavelength that does not match the optical path length between the anode 111 and the cathode 117 is attenuated.
  • the "optical path length" referred to here is calculated using the wavelength of the desired light emitted to the outside of the device and the refractive index of each layer at the desired wavelength of the light.
  • the optical path length between the anode 111 and the cathode 117 is set to, for example, an integral multiple of the center wavelength of the light L generated in the light emitting layer 114.
  • the light L emitted by the light emitting layer 114 is amplified as it is closer to the center wavelength, attenuated as it is farther from the center wavelength, and is emitted to the outside of the organic EL element 100.
  • the light L emitted from the organic EL element 100 has a narrow half-value width of the emission spectrum and improved color purity.
  • the microcavity structure utilizes resonance due to fixed-end reflection with the cathode and anode at both ends. Therefore, "the optical path length from the light emitting position to the anode is an integral multiple of 1/4 of the wavelength ⁇ of the desired light emitted to the outside of the element", and “the optical path length from the light emitting position to the cathode is outside the element”. If it is "an integral multiple of 1/4 of the wavelength ⁇ of the desired light emitted into the light", the desired microcavity structure can be formed.
  • the organic EL device 100 of the present embodiment contains the above-mentioned fluorine-containing polymer in any one or more layers described above.
  • the organic EL device 100 of the present embodiment preferably contains the above-mentioned fluorine-containing polymer in at least one of the hole injection layer 112 and the hole transport layer 113.
  • the hole transport layer 113 is a laminate of layers of hole transport materials, at least one of the layers contains the above-mentioned fluorine-containing polymer.
  • the organic EL element 100 of the present embodiment preferably contains the above-mentioned fluorine-containing polymer in at least one of the electron transport layer 115 and the electron injection layer 116.
  • the electron transport layer 115 is a laminate of layers of electron transport materials
  • at least one of the layers contains the above-mentioned fluorine-containing polymer.
  • the organic EL device 100 of the present embodiment contains the above-mentioned fluorine-containing polymer in at least one of the hole injection layer 112 and the hole transport layer 113, and at least one of the electron transport layer 115 and the electron injection layer 116. Is preferable.
  • each layer containing the above-mentioned fluorine-containing polymer has a lower refractive index than the case where these layers do not contain the above-mentioned fluorine-containing polymer. Therefore, the organic EL element 100 of the present embodiment improves the light extraction efficiency and the external quantum efficiency. As a result, the organic EL element 100 of the present embodiment can obtain the same amount of light emission as the conventional organic EL element with a smaller input power as compared with the conventional organic EL element that does not contain the above-mentioned fluorine-containing polymer. In addition, each layer containing the above-mentioned fluorine-containing polymer has high heat resistance. Therefore, the organic EL element 100 of the present embodiment is a highly reliable organic EL element 100.
  • the heat resistance of the organic EL element 100 can be evaluated by the following method.
  • ⁇ Heat resistance evaluation 1> Manufacturing of element 1 for conducting conductivity evaluation
  • a glass substrate on which ITO (indium tin oxide) is formed in a 2 mm wide strip is used.
  • the substrate is ultrasonically cleaned with a neutral detergent, acetone, and isopropanol, and then boiled and washed in isopropanol, and then the deposits on the surface of the ITO film are removed by ozone treatment.
  • the washed substrate is placed in a vacuum vapor deposition machine, the pressure is reduced to 10 -4 Pa or less, and molybdenum trioxide is vapor-deposited on the substrate.
  • the vapor deposition rate is 0.1 nm / sec, and a 5 nm film is formed to prepare a hole injection layer.
  • ⁇ -NPD and a fluorine-containing polymer are co-deposited on the hole injection layer.
  • the total vapor deposition rate of the two materials is 0.2 nm / sec, and a 100 nm film is formed to prepare a charge transport layer.
  • the vapor deposition rate is adjusted so that the volume ratio of ⁇ -NPD to the fluorine-containing polymer in the charge transport layer is a desired ratio.
  • the N 2 atmosphere heating 60 minutes element 1 at 80 ° C. on a hot plate. After returning the element 1 to room temperature, the current flowing through the element is measured again to obtain the current density (J) (unit: mA / cm 2) with respect to the electric field (E) (unit: MV / cm). Then, the N 2 atmosphere, the same element 1 is heated 60 minutes at 90 ° C. on a hot plate. After returning the element 1 to room temperature, the current flowing through the element is measured again to obtain the current density (J) (unit: mA / cm 2) with respect to the electric field (E) (unit: MV / cm).
  • the heat resistance of the element 1 is evaluated as follows. ⁇ : After heating to 80 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ : After heating to 90 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ : Heating to 90 ° C. After that, the current density of 0.4 MV / cm is 90% or more of the initial value.
  • HAT-CN was used instead of molybdenum trioxide
  • HT211 was used instead of ⁇ -NPD. ..
  • the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ ⁇ : After heating to 130 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ ⁇ ⁇ : After heating to 130 ° C, 0 .4 MV / cm current density is 90% or more of the initial value
  • the above-mentioned fluorine-containing polymer may be introduced into each layer as a co-deposited film co-deposited with the organic semiconductors constituting each layer at the time of production.
  • the hole injection layer 112 and the hole transport layer 113 both contain the above-mentioned fluorine-containing polymer
  • the hole injection material and the fluorine-containing polymer are co-deposited to form a co-deposit film.
  • the hole transport material and the fluorine-containing polymer may be co-deposited to form the co-deposited film (second film).
  • the organic EL device 100 having the above configuration, since at least one of the hole injection layer 112 and the hole transport layer 113 contains the above-mentioned fluorine-containing polymer, the external quantum efficiency is improved and the power consumption is increased. There are few organic EL elements.
  • FIG. 7 is an explanatory diagram of the organic EL element 200 according to the third embodiment of the present invention, and is a diagram corresponding to FIG.
  • the organic EL element 200 has a structure in which a substrate 210, an anode 211, a hole injection layer 112, a hole transport layer 113, a light emitting layer 114, an electron transport layer 115, an electron injection layer 116, and a cathode 217 are laminated in this order. There is.
  • the organic EL element 200 of the present embodiment employs a bottom emission method in which the light L generated in the light emitting layer 114 is emitted to the outside via the anode 211 and the substrate 210.
  • the substrate 210 has light transmission.
  • an inorganic substance such as glass, quartz glass, or silicon nitride, or an organic polymer (resin) such as a polyimide resin, an acrylic resin, or a polycarbonate resin can be used. Further, if it has light transmission property, a composite material formed by laminating or mixing the above materials can also be used.
  • the anode 211 is formed on the substrate 210 and supplies holes to the hole transport layer 113.
  • a conductive metal oxide having light transmittance such as ITO and IZO can be used.
  • the cathode 217 is formed on the electron injection layer 116.
  • the cathode 217 has a function of injecting electrons into the electron injecting layer 116. Further, the cathode 217 has a function of reflecting the light L emitted isotropically in the light emitting layer 114 and directing the light L toward the anode 211.
  • a material for forming the cathode 217 MgAg, Ag, Al and the like can be used.
  • a buffer layer such as LiF may be formed on the surface of the cathode 217.
  • the thickness of the cathode 217 is not particularly limited, but is preferably 30 to 300 nm. The thickness of the cathode 217 is, for example, 100 nm.
  • the organic EL element 200 having such a configuration preferably contains the above-mentioned fluorine-containing polymer in any one or more layers described above. Specifically, the organic EL element 200 preferably contains the above-mentioned fluorine-containing polymer in at least one layer of the hole injection layer 112 and the hole transport layer 113. Further, the organic EL element 200 preferably contains the above-mentioned fluorine-containing polymer in at least one layer of the electron transport layer 115 and the electron injection layer 116.
  • the organic EL element 200 preferably contains the above-mentioned fluorine-containing polymer in at least one of the hole injection layer 112 and the hole transport layer 113, and at least one of the electron transport layer 115 and the electron injection layer 116.
  • the organic EL element 200 has improved light extraction efficiency as compared with the conventional organic EL element that does not contain a fluorine-containing polymer.
  • the organic EL element 200 of the present embodiment is a highly reliable organic EL element 200.
  • the heat resistance of the organic EL element 200 can be evaluated by the same method as the heat resistance of the organic EL element 100 described above.
  • the organic EL element 100 or the organic EL element 200 may have other functional layers arranged between the layers. For example, a hole block layer or an electron block layer may be arranged between the light emitting layer and the charge transport layer, or an adjusting layer for forming the above-mentioned microcavity structure may be arranged.
  • a wavelength conversion layer containing quantum dots may be arranged in the light emission direction. By having such a wavelength conversion layer, it becomes an organic EL element in which the color purity of the emitted light is improved.
  • quantum dots may be used as a material for forming the light emitting layer 114.
  • colloidal quantum dots that can be dispersed in a solution can also be used.
  • colloidal quantum dots can be formed by using a general wet coating technique.
  • the type of quantum dots is not particularly limited, and perovskite quantum dots, carbon-based quantum dots, alloy-type quantum dots, core-shell type quantum dots, and core-type quantum dots can be used.
  • the organic EL device has been described as an example of the organic photoelectronic device, but the organic photoelectronic device to which the film containing the fluorine-containing polymer of the present invention is applied is not limited to the organic EL device.
  • the organic photoelectronic device of the present invention may be, for example, an organic semiconductor laser. A known configuration can be adopted as the organic semiconductor laser. By adopting a film containing the above-mentioned fluorine-containing polymer as one of the films made of organic semiconductors constituting the organic semiconductor laser, the organic semiconductor laser having improved external quantum efficiency can be obtained.
  • the organic photoelectron element of the present invention may be, for example, a light receiving element such as an optical sensor or a solar cell.
  • optical sensor and the solar cell can be adopted for the optical sensor and the solar cell.
  • An optical sensor with improved detection performance and a solar cell with improved power generation efficiency by adopting a film containing the above-mentioned fluorine-containing polymer as one of the films composed of an optical sensor and an organic semiconductor constituting a solar cell. It becomes.
  • thermogravimetric reduction rate of fluorine-containing polymer under vacuum The measurement was performed using a vacuum differential thermal balance (manufactured by Advance Riko Co., Ltd .: VPE-9000). Were charged fluoropolymer 50mg to the cells of the inner diameter 7 mm, at 1 ⁇ 10 -3 Pa vacuum degree, when the temperature was raised per minute 2 °C to 500 ° C. from room temperature, the initial weight of the fluoropolymer ( The weight loss rate (%) with respect to 50 mg) was measured. The temperature at which the weight loss rate was 100% (T d100 ), the temperature at which the weight loss rate was 10% (T d10 ), and the temperature at which the weight loss rate was 90% (T d90 ) were determined.
  • the storage elastic modulus adopts a value measured using a dynamic viscoelasticity measuring device (manufactured by Anton Pearl Co., Ltd., MCR502) and a heating furnace for a viscoelasticity measuring device (manufactured by Anton Pearl Co., Ltd., CTD450). .. Specifically, the sample (fluorine-containing polymer) was heated to a temperature equal to or higher than the melting point, and then cooled at 2 ° C./min in a constant-speed temperature lowering mode.
  • the storage elastic modulus (G') was measured under the conditions of a strain of 0.01% and a frequency of 1 Hz, and the temperature at which G'and G'at 25 ° C. became less than 1 ⁇ 10 6 Pa was determined.
  • the temperature of the polymerization tank was maintained at 60 ° C., and 18.9 mL of a 0.53 mass% solution (solvent: AE-3000) of t-butylperoxypivalate (PBPV) was charged to initiate polymerization. Since the polymerization pressure decreases as the polymerization progresses during the polymerization, TFE was continuously introduced into the polymerization tank so that the polymerization pressure became substantially constant.
  • the polymerization pressure was maintained at 1.04 ⁇ 0.04 MPaG (gauge pressure).
  • the "gauge pressure” is a relative pressure with an atmospheric pressure of 0 MPaG, and refers to a difference from an absolute pressure with a vacuum of zero.
  • TFE unit 2:98 (mol%).
  • the obtained polymer was heated in an oven at 330 ° C., immersed in methanol, and heated in an oven at 75 ° C. for 40 hours to replace the terminal group with a methyl ester group to obtain the fluorine-containing polymer A. Obtained.
  • the obtained fluorine-containing polymer A 44 g was charged into the raw material charging section of the above-mentioned glass tube type sublimation purification apparatus, and the pressure inside the collecting section was reduced to 3.0 ⁇ 10 -3 Pa.
  • the raw material charging portion was gradually heated to 330 ° C. to sublimate the fluorine-containing polymer A.
  • the collecting portion was heated at set temperatures of 310 ° C., 280 ° C., and 250 ° C. from the side closer to the charging portion. Of these, the substance precipitated in the collection section at the set temperature of 280 ° C. was recovered to obtain 4 g of the purified fluorine-containing polymer A1.
  • the fluorinated polymer B was sublimated in the same manner as in Synthesis Example 1 except that 20 g of the fluorinated polymer B was used. The substance precipitated in the collection section at a set temperature of 250 ° C. was recovered to obtain 2 g of purified fluorine-containing polymer B1.
  • the terminal group of the fluorine-containing polymer was replaced with a methyl ester group in the same manner as in Synthesis Example 1 to obtain a fluorine-containing polymer D.
  • the fluorine-containing polymer D was sublimated in the same manner as in Synthesis Example 1.
  • the substance precipitated in the collection section at the set temperature of 250 ° C. and 280 ° C. was recovered to obtain 5 g of the purified fluorine-containing polymer D1.
  • the terminal group of the fluorine-containing polymer was replaced with 3 -CF groups under the same conditions as in Synthesis Example 3 to obtain a fluorine-containing polymer E.
  • the fluorine-containing polymer E was sublimated in the same manner as in Synthesis Example 2 to obtain 4 g of the purified fluorine-containing polymer E1.
  • the terminal group of the fluorine-containing polymer was replaced with a methyl ester group in the same manner as in Synthesis Example 1 to obtain a fluorine-containing polymer F.
  • the fluorine-containing polymer F was sublimated in the same manner as in Synthesis Example 1 to obtain 4 g of the purified fluorine-containing polymer F1.
  • the terminal group of the fluorine-containing polymer was replaced with 3 -CF groups under the same conditions as in Synthesis Example 3 to obtain a fluorine-containing polymer G.
  • the fluorine-containing polymer G was sublimated in the same manner as in Synthesis Example 3.
  • the substance precipitated in the collection section at the set temperature of 250 ° C., 280 ° C. and 310 ° C. was recovered to obtain 6 g of the purified fluorine-containing polymer G1.
  • the obtained fluorine-containing polymer was heated in an oven at 330 ° C., then immersed in methanol and heated in an oven at 75 ° C. for 40 hours to replace the terminal group with a methyl ester group, and the fluorine-containing polymer was used.
  • the fluorine-containing polymer H was sublimated in the same manner as in Synthesis Example 1 to obtain 4 g of the purified fluorine-containing polymer H1.
  • the obtained polymer was heated in an oven at 300 ° C., then immersed in methanol and heated in an oven at 75 ° C. for 20 hours to replace the terminal group with a methyl ester group to obtain the fluorine-containing polymer I. Obtained.
  • the fluorine-containing polymer I was sublimated and purified in the same manner as in Synthesis Example 4 to obtain 4 g of the purified fluorine-containing polymer I1.
  • TFE Since the pressure in the polymerization tank decreases as the polymerization progresses, TFE was continuously charged so that the polymerization pressure became almost constant. The polymerization pressure was maintained at 1.34 MPaG. A 1.5% by mass solution (solvent: R113) of bis (perfluorobutyryl) peroxide was intermittently charged in the polymerization tank, and the polymerization was terminated when 86 g of TFE was consumed to obtain a fluorine-containing copolymer J. .. The amount of TFE consumed was determined from the amount of mass loss of the TFE gas cylinder.
  • the fluorine-containing polymer J was sublimated in the same manner as in Synthesis Example 4 to obtain 4 g of the purified fluorine-containing polymer J1.
  • Fluoron PFA AGC's Fluoron PFA P-63
  • the physical properties of the synthesized fluorine-containing polymer were measured by the above-mentioned method. The measured physical properties are shown in Table 1.
  • the fluorine-containing resins A1 to G1 and J1 satisfy the requirements (1) to (3) shown in the above-described embodiment, while the fluorine-containing polymers B, H and FluonPFA satisfy the requirement (2). ), (3), it can be seen that the fluorine-containing polymers I1, H1 and H do not satisfy the requirement (1). Since the fluorine-containing polymer I1 is amorphous and has no crystallinity, its melting point was not detected.
  • Evaluations 1 to 5 were carried out below using the fluorine-containing polymers shown in Table 1.
  • Increase ratio of chamber pressure during vapor deposition Maximum pressure during vapor deposition / Initial pressure before vapor deposition Fluorine-containing polymers whose chamber pressure increase ratio is 2 times or less are evaluated as “good products” and the increase ratio exceeds 2 times. The fluorine-containing polymer was evaluated as "defective”.
  • ⁇ Evaluation 2 Refractive index> [Preparation of sample for refractive index measurement] An organic semiconductor ⁇ -NPD and a fluorine-containing polymer were co-deposited on a silicon substrate to form a 100 nm co-deposited film to obtain a sample for refractive index measurement. The total deposition rate of the two materials was 0.2 nm / sec. The vapor deposition rate was adjusted so that the volume ratio of ⁇ -NPD to the fluorine-containing polymer in the co-deposited film was set to a desired ratio.
  • ⁇ Evaluation 3 Haze> [Preparation of sample for haze measurement] ⁇ -NPD and a fluorine-containing polymer were co-deposited on a glass substrate to form a 100 nm co-deposited film to obtain a sample for haze measurement. The total deposition rate of the two materials was 0.2 nm / sec. The vapor deposition rate was adjusted so that the volume ratio of ⁇ -NPD to the fluorine-containing polymer in the co-deposited film was set to a desired ratio.
  • the haze measurement was performed using a haze meter (Haze Guard K50-290, manufactured by Toyo Seiki Co., Ltd.). After measuring the initial haze of the haze measurement sample, the sample was heated on a hot plate heated to 100 ° C. for 1 hour. After returning the sample to room temperature, the haze was measured again. Further, the sample was heated on a hot plate heated to 120 ° C. for 1 hour, and the haze was measured in the same manner.
  • a haze meter Haze Guard K50-290, manufactured by Toyo Seiki Co., Ltd.
  • the obtained haze was evaluated as follows. ⁇ : Less than 0.2 ⁇ : 0.2 or more and less than 0.5 ⁇ : 0.5 or more
  • ⁇ Evaluation 4 Heat resistance 1> [Manufacturing of element 1 for conducting conductivity evaluation] A glass substrate on which ITO (indium tin oxide) was formed into a strip having a width of 2 mm was used. The substrate was ultrasonically cleaned with a neutral detergent, acetone, and isopropanol, and then boiled and washed in isopropanol, and then the deposits on the surface of the ITO film were removed by ozone treatment. The washed substrate was placed in a vacuum vapor deposition machine, the pressure was reduced to 10 -4 Pa or less, and molybdenum trioxide was vapor-deposited on the substrate. The vapor deposition rate was 0.1 nm / sec, and a 5 nm film was formed to prepare a hole injection layer.
  • ITO indium tin oxide
  • ⁇ -NPD and a fluorine-containing polymer were co-deposited on the hole injection layer.
  • the total vapor deposition rate of the two materials was 0.2 nm / sec, and a 100 nm film was formed to prepare a charge transport layer.
  • the vapor deposition rate was adjusted so that the volume ratio of ⁇ -NPD to the fluorine-containing polymer in the charge transport layer was set to a desired ratio.
  • aluminum was deposited on the charge transport layer in the form of a strip having a width of 2 mm.
  • the strip-shaped aluminum film was orthogonal to the ITO film in the field of view seen from the vertical direction of the substrate.
  • the heat resistance of the element 1 was evaluated as follows. ⁇ : After heating to 80 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ : After heating to 90 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ : Heating to 90 ° C. After that, the current density of 0.4 MV / cm is 90% or more of the initial value.
  • the heating temperature was set to 100 ° C., 110 ° C., 120 ° C., and 130 ° C., and the heating time was set to 15 minutes, respectively.
  • the current density (J) (unit: mA / cm 2 ) was determined.
  • the heat resistance of the element 2 was evaluated as follows. ⁇ : After heating to 100 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ : After heating to 110 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ : Heating to 120 ° C. After, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ ⁇ : After heating to 130 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value ⁇ ⁇ ⁇ : After heating to 130 ° C, 0 .4 MV / cm current density is 90% or more of the initial value
  • Evaluations 1 to 3 and 5 described above were carried out using the fluorine-containing polymer A1.
  • the vapor deposition rate was adjusted in the co-evaporation of the organic semiconductor and the fluorine-containing polymer, and the volume ratio of the organic semiconductor and the fluorine-containing polymer was set to 50:50.
  • Example 2 In the sample preparation, the evaluation was carried out in the same manner as in Example 1 except that the vapor deposition rate was adjusted and the volume ratio of the organic semiconductor to the fluorine-containing polymer was 80:20.
  • Example 3 The evaluation was carried out in the same manner as in Example 1 except that the vapor deposition rate was adjusted in the sample preparation and the volume ratio of the organic semiconductor to the fluorine-containing polymer was set to 20:80.
  • Evaluations 1 to 5 described above were carried out using the fluorine-containing polymer B1.
  • the vapor deposition rate was adjusted in the co-evaporation of the organic semiconductor and the fluorine-containing polymer, and the volume ratio of the organic semiconductor and the fluorine-containing polymer was set to 50:50.
  • Example 5 The evaluation was carried out in the same manner as in Example 1 except that B2 was used as the fluorine-containing polymer.
  • Example 6 The evaluation was carried out in the same manner as in Example 1 except that C1 was used as the fluorine-containing polymer.
  • Example 7 The evaluation was carried out in the same manner as in Example 4 except that D1 was used as the fluorine-containing polymer.
  • Example 8 The evaluation was carried out in the same manner as in Example 1 except that E1 was used as the fluorine-containing polymer.
  • Example 9 The evaluation was carried out in the same manner as in Example 1 except that F1 was used as the fluorine-containing polymer.
  • Example 10 The evaluation was carried out in the same manner as in Example 1 except that G1 was used as the fluorine-containing polymer.
  • Example 11 The evaluation was carried out in the same manner as in Example 1 except that J1 was used as the fluorine-containing polymer.
  • Example 12 The evaluation was carried out in the same manner as in Example 4 except that H1 was used as the fluorine-containing polymer.
  • Example 13 The evaluation was carried out in the same manner as in Example 1 except that B was used as the fluorine-containing polymer.
  • Example 14 The evaluation was carried out in the same manner as in Example 1 except that H was used as the fluorine-containing polymer.
  • Evaluations 1 to 4 were performed using the fluorine-containing polymer I1.
  • the vapor deposition rate was adjusted in the co-evaporation of the organic semiconductor and the fluorine-containing polymer, and the volume ratio of the organic semiconductor and the fluorine-containing polymer was set to 50:50.
  • Example 16 Using a commercially available fluorine-containing polymer, Fluon PTFE, evaluation 1: change in chamber pressure during vapor deposition was evaluated. In Evaluation 1, the rise in the chamber during vapor deposition was extremely large, so no other evaluation requiring co-deposition was performed.
  • Example 17 As an example in which the fluorine-containing polymer was not used, evaluations 2 to 4 described above were carried out using a sample in which a single film of ⁇ -NPD was formed at a vapor deposition rate of 0.1 nm / sec.
  • Example 18 As an example in which the fluorine-containing polymer was not used, evaluation 5 was performed using a sample in which a single film of HT211 was formed at a vapor deposition rate of 0.1 nm / sec.
  • Examples 1 to 18 correspond to Examples, and Examples 12 to 18 correspond to Comparative Examples. The results are shown in Table 2.
  • Example 1 As a result of the evaluation, it was found that in Examples 1 to 11, stable vapor deposition was possible without an increase in the chamber internal pressure during vapor deposition. Further, in Examples 1 to 11, it was found that the increase in haze was suppressed even when heated. Further, it was found that the elements 1 and 2 of Examples 1 to 11 are excellent in heat resistance. On the other hand, in Examples 13, 14 and 16, it was found that an increase in the chamber internal pressure during vapor deposition was observed, and the vapor deposition state may become unstable. Further, in Examples 12, 14, 15 and 17, it was found that the haze was increased by heating. In Example 17, it is considered that ⁇ -NPD was melted by heating and then crystallization proceeded to generate a scattering source.
  • Examples 12, 14 and 15 it is considered that the nanodomain structure of the co-deposited film was changed by heating and a scattering source was generated inside the co-deposited film. Further, in Examples 12, 14 and 15, it was found that the heat resistance of the elements 1 and 2 was low. From the above results, it was confirmed that the present invention is useful.
  • the entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2020-030460 filed on February 26, 2020 are cited here as disclosure of the specification of the present invention. It is something to incorporate.

Abstract

Provided is a fluorine-containing polymer that is suitable for vapor deposition. Also provided is a film that contains such a fluorine-containing polymer as a material. Also provided is a film manufacturing method with which such a film can be easily manufactured. Also provided is an organic opto-electronic element having such a film in the structure thereof. The fluorine-containing polymer satisfies (1)-(3). (1) The melting point is at least 200°C. (2) The thermogravimetric reduction rate when the temperature is increased at a heating rate of 2°C/min at a pressure of 1×10-3Pa reaches essentially 100% at a temperature of at most 400°C. (3) The temperature range from the temperature at which the thermogravimetric reduction rate is 10% to the temperature at which the thermogravimetric reduction rate is 90% when the temperature is increased at a heating rate of 2°C/min at a pressure of 1×10-3Pa is within 100°C.

Description

含フッ素重合体、膜、膜の製造方法および有機光電子素子Fluorine-containing polymer, film, film manufacturing method and organic photoelectron device
 本発明は、含フッ素重合体、膜、膜の製造方法および有機光電子素子に関する。 The present invention relates to a fluorine-containing polymer, a film, a method for producing a film, and an organic photoelectron device.
 従来、自発光型の素子として、有機光電子素子(有機エレクトロルミネッセンス素子。以下、有機EL素子。)が知られている。有機EL素子は、一対の電極間に、発光層、電子輸送層、正孔輸送層等の複数種の層が積層された構成を基本構造としている。 Conventionally, an organic photoelectron element (organic electroluminescence element, hereinafter referred to as an organic EL element) is known as a self-luminous element. The basic structure of an organic EL element is such that a plurality of types of layers such as a light emitting layer, an electron transporting layer, and a hole transporting layer are laminated between a pair of electrodes.
 有機EL素子を構成する複数種の層の材料として、フッ素樹脂が用いられることがある。フッ素樹脂は、層を低屈折率化するための低屈折率材料、電極のバッファーなど、種々の目的で用いられている。
 例えば、フッ素樹脂を材料とする陽極バッファー層を有する有機EL素子が知られている(特許文献1参照)。特許文献1に記載の有機EL素子では、フッ素樹脂を蒸着させることにより、陽極バッファー層を形成している。
Fluororesin may be used as a material for a plurality of types of layers constituting an organic EL element. Fluororesin is used for various purposes such as a low refractive index material for lowering the refractive index of a layer and a buffer for an electrode.
For example, an organic EL device having an anode buffer layer made of a fluororesin is known (see Patent Document 1). In the organic EL device described in Patent Document 1, an anode buffer layer is formed by depositing a fluororesin.
中国特許第100557852号明細書Chinese Patent No. 100575852
 特許文献1の実施例においては、真空チャンバー内において、減圧下フッ素樹脂を蒸着させることが記載されている。特許文献1の実施例では、成膜開始時に8×10-3Paであったチャンバー内圧力が、成膜終了時には1~3×10-2Paにまで上昇している。これは、用いたフッ素樹脂が蒸着条件において熱分解し、生じた低分子の分解物が気化することにより、チャンバー内圧力を上げていると考えられる。
 特許文献1に記載のように、蒸着中に熱分解してしまうフッ素樹脂を用いると、所望の蒸着条件を担保しにくいことが予想される。そのため、たとえ有機EL素子が得られたとしても、品質が安定しないおそれがあり、改善が求められていた。
In the embodiment of Patent Document 1, it is described that the fluororesin is vapor-deposited under reduced pressure in a vacuum chamber. In the example of Patent Document 1, the pressure in the chamber, which was 8 × 10 -3 Pa at the start of film formation, has increased to 1 to 3 × 10 -2 Pa at the end of film formation. It is considered that this is because the fluororesin used is thermally decomposed under the vapor deposition conditions, and the generated small molecule decomposition products are vaporized to increase the pressure in the chamber.
As described in Patent Document 1, when a fluororesin that thermally decomposes during vapor deposition is used, it is expected that it is difficult to secure desired vapor deposition conditions. Therefore, even if an organic EL element is obtained, the quality may not be stable, and improvement has been required.
 本発明はこのような事情に鑑みてなされたものであって、蒸着に適した含フッ素重合体を提供することを目的とする。また、このような含フッ素重合体を材料として含む膜を提供することを併せて目的とする。また、このような膜を容易に製造可能する膜の製造方法を提供することをあわせて目的とする。さらに、このような膜を構造に有する有機光電子素子を提供することを併せて目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a fluorine-containing polymer suitable for vapor deposition. Another object of the present invention is to provide a film containing such a fluorine-containing polymer as a material. Another object of the present invention is to provide a method for producing a film capable of easily producing such a film. Another object of the present invention is to provide an organic photoelectron element having such a film in its structure.
 上記の課題を解決するため、本発明は、以下の態様を包含する。
[1]下記(1)~(3)を満たす含フッ素重合体。
(1)融点が200℃以上である。(2)1×10-3Paの圧力下において昇温速度2℃/分で昇温させたときの熱重量減少率が、400℃以下で実質的に100%に達する。(3)1×10-3Paの圧力下において昇温速度2℃/分で昇温させたとき、熱重量減少率が10%となる温度から90%になる温度までの温度幅が100℃以内である。
[2]25℃における貯蔵弾性率が1×10Pa以上であり、降温速度2℃/分で降温させたときに変化する貯蔵弾性率が1×10Pa未満になる温度は120℃以上である、[1]に記載の含フッ素重合体。
[3]フルオロオレフィンに由来する単位を有する、[1]または[2]に記載の含フッ素重合体。
[4]少なくともテトラフルオロエチレンに由来する単位を有する、[3]に記載の含フッ素重合体。
[5]ペルフルオロアルキルビニルエーテルに由来する単位を有する、[3]または[4]に記載の含フッ素重合体。
[6]前記ペルフルオロアルキルビニルエーテルがペルフルオロプロピルビニルエーテルである、[5]に記載の含フッ素重合体。
In order to solve the above problems, the present invention includes the following aspects.
[1] A fluorine-containing polymer that satisfies the following (1) to (3).
(1) The melting point is 200 ° C. or higher. (2) The thermogravimetric reduction rate when the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa reaches substantially 100% at 400 ° C. or lower. (3) When the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa, the temperature range from the temperature at which the thermogravimetric reduction rate is 10% to the temperature at which the temperature is 90% is 100 ° C. Within.
[2] The storage elastic modulus at 25 ° C. is 1 × 10 7 Pa or more, and the temperature at which the storage elastic modulus that changes when the temperature is lowered at a temperature lowering rate of 2 ° C./min is less than 1 × 10 6 Pa is 120 ° C. or more. The fluorine-containing polymer according to [1].
[3] The fluorine-containing polymer according to [1] or [2], which has a unit derived from a fluoroolefin.
[4] The fluorine-containing polymer according to [3], which has at least a unit derived from tetrafluoroethylene.
[5] The fluorine-containing polymer according to [3] or [4], which has a unit derived from perfluoroalkyl vinyl ether.
[6] The fluorine-containing polymer according to [5], wherein the perfluoroalkyl vinyl ether is a perfluoropropyl vinyl ether.
[7]前記[1]から[6]のいずれかに記載の含フッ素重合体と有機半導体とを含む膜。
[8]前記含フッ素重合体と前記有機半導体との合計に対する前記含フッ素重合体の割合が、20~80体積%である、[7]に記載の膜。
[9]ドーパントをさらに含む、[7]または[8]に記載の膜。
[10]前記含フッ素重合体と前記有機半導体との共蒸着膜である、[1]から[9]のいずれかに記載の膜。
[11]前記[1]から[6]のいずれかに記載の含フッ素重合体と有機半導体とを共蒸着させる工程を有する、膜の製造方法。
[12]前記共蒸着させる工程において、ドーパントをあわせて共蒸着させる、[11]に記載の膜の製造方法。
[7] A film containing the fluorine-containing polymer according to any one of [1] to [6] and an organic semiconductor.
[8] The film according to [7], wherein the ratio of the fluorine-containing polymer to the total of the fluorine-containing polymer and the organic semiconductor is 20 to 80% by volume.
[9] The film according to [7] or [8], further comprising a dopant.
[10] The film according to any one of [1] to [9], which is a co-deposited film of the fluorine-containing polymer and the organic semiconductor.
[11] A method for producing a film, which comprises a step of co-depositing the fluorine-containing polymer according to any one of [1] to [6] and an organic semiconductor.
[12] The method for producing a film according to [11], wherein in the step of co-depositing, a dopant is also co-deposited.
[13]前記[7]から[10]のいずれかに記載の膜を含む有機光電子素子。
[14]基板と、前記基板に設けられた陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配置された活性層と、前記活性層と前記陽極との間に配置された正孔輸送層と、前記正孔輸送層と前記陽極との間に配置された正孔注入層と、を備え、前記正孔輸送層および前記正孔注入層の少なくとも一方の層が前記膜である、[13]に記載の有機光電子素子。
[15]基板と、前記基板に設けられた陽極と、前記陽極に対向する陰極と、前記陽極と前記陰極との間に配置された活性層と、前記活性層と前記陰極との間に配置された電子輸送層と、前記電子輸送層と前記陰極との間に配置された電子注入層と、を備え、前記電子輸送層および前記電子注入層の少なくとも一方の層が前記膜である、[13]または[14]に記載の有機光電子素子。
[13] An organic photoelectron device including the film according to any one of [7] to [10].
[14] A substrate, an anode provided on the substrate, a cathode facing the anode, an active layer arranged between the anode and the anode, and an arrangement between the active layer and the anode. The hole transport layer and the hole injection layer arranged between the hole transport layer and the anode are provided, and at least one layer of the hole transport layer and the hole injection layer is said. The organic photoelectron element according to [13], which is a film.
[15] A substrate, an anode provided on the substrate, a cathode facing the anode, an active layer arranged between the anode and the cathode, and arranged between the active layer and the cathode. The electron transport layer and the electron injection layer arranged between the electron transport layer and the cathode are provided, and at least one layer of the electron transport layer and the electron injection layer is the film. 13] or the organic photoelectron element according to [14].
 本発明によれば、蒸着に適した含フッ素重合体を提供できる。また、このような含フッ素重合体を材料として含む膜を提供できる。また、このような膜を容易に製造可能する膜の製造方法を提供できる。さらに、このような膜を構造に有する有機光電子素子を提供できる。 According to the present invention, it is possible to provide a fluorine-containing polymer suitable for vapor deposition. Further, it is possible to provide a film containing such a fluorine-containing polymer as a material. Further, it is possible to provide a method for producing a film capable of easily producing such a film. Further, it is possible to provide an organic photoelectron element having such a film in its structure.
図1は、含フッ素重合体の要件(2)(3)を説明する模式図である。FIG. 1 is a schematic diagram illustrating the requirements (2) and (3) of the fluorine-containing polymer. 図2は、第1実施形態の膜を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the film of the first embodiment. 図3は、膜10を製造する工程を示す模式図である。FIG. 3 is a schematic view showing a process of manufacturing the film 10. 図4は、膜10を製造する工程を示す模式図である。FIG. 4 is a schematic view showing a process of manufacturing the film 10. 図5は、膜10を製造する工程を示す模式図である。FIG. 5 is a schematic view showing a process of manufacturing the film 10. 図6は、本発明の第2実施形態に係る有機光電子素子(有機EL素子)100を示す断面模式図である。FIG. 6 is a schematic cross-sectional view showing an organic photoelectronic device (organic EL device) 100 according to a second embodiment of the present invention. 図7は、本発明の第3実施形態に係る有機EL素子200の説明図である。FIG. 7 is an explanatory diagram of the organic EL element 200 according to the third embodiment of the present invention.
 本明細書における重合体を構成する「単位」とは、重合体中に存在して重合体を構成する、単量体1分子に由来する部分(すなわち、単量体単位)を意味する。以下、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ場合がある。 The "unit" constituting the polymer in the present specification means a portion derived from one monomer molecule (that is, a monomer unit) that exists in the polymer and constitutes the polymer. Hereinafter, a unit derived from an individual monomer may be referred to by adding a "unit" to the monomer name.
 本明細書において重合体の「主鎖」とは、炭素-炭素不飽和二重結合を有する単量体の付加重合により生じる、単量体において炭素-炭素不飽和二重結合を構成していた炭素原子から構成される炭素原子鎖をいう。 In the present specification, the "main chain" of the polymer constitutes a carbon-carbon unsaturated double bond in the monomer generated by addition polymerization of the monomer having a carbon-carbon unsaturated double bond. A carbon atom chain composed of carbon atoms.
 本明細書における「脂肪族環」は、環骨格が炭素原子のみから構成される炭素環構造のものに加えて、環骨格に炭素原子以外の原子(ヘテロ原子)を含む複素環構造のものも意味する。ヘテロ原子としては酸素原子、窒素原子、硫黄原子等が挙げられる。 The "aliphatic ring" in the present specification includes not only a carbocyclic ring structure in which the ring skeleton is composed of only carbon atoms, but also a heterocyclic ring structure in which the ring skeleton contains atoms other than carbon atoms (heteroatoms). means. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom and the like.
[第1実施形態]
 以下、図1~図5を参照しながら、本発明の第1実施形態に係る含フッ素重合体、膜、膜の製造方法について説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。
[First Embodiment]
Hereinafter, a method for producing a fluorine-containing polymer, a membrane, and a membrane according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5. In all the drawings below, the dimensions and ratios of the components are appropriately different in order to make the drawings easier to see.
(含フッ素重合体)
 本実施形態の含フッ素重合体は、下記の要件(1)~(3)を満たす。
 要件(1)融点が200℃以上である。
 要件(2)1×10-3Paの圧力下において昇温速度2℃/分で昇温させたときの熱重量減少率が、400℃以下で実質的に100%に達する。
 要件(3)1×10-3Paの圧力下において昇温速度2℃/分で昇温させたとき、熱重量減少率が10%となる温度から90%になる温度までの温度幅が100℃以内である。
(Fluorine-containing polymer)
The fluorine-containing polymer of the present embodiment satisfies the following requirements (1) to (3).
Requirements (1) The melting point is 200 ° C or higher.
Requirement (2) The thermogravimetric reduction rate when the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa reaches substantially 100% at 400 ° C. or lower.
Requirement (3) When the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa, the temperature range from the temperature at which the thermogravimetric reduction rate becomes 10% to the temperature at which the temperature decreases to 90% is 100. It is within ° C.
 上記要件(1)~(3)を満たす含フッ素重合体は、蒸着に適した物性を有し、好適に蒸着膜を形成可能となる。
 以下、順に説明する。
Fluorine-containing polymers that satisfy the above requirements (1) to (3) have physical properties suitable for vapor deposition, and a vapor-deposited film can be suitably formed.
Hereinafter, they will be described in order.
(含フッ素重合体の構造)
 本実施形態の含フッ素重合体としては、高い結晶性を有し、所望の範囲の融点を有する重合体であれば単位に特に制限はない。
(Structure of fluorine-containing polymer)
The unit of the fluorine-containing polymer of the present embodiment is not particularly limited as long as it has high crystallinity and a melting point in a desired range.
 含フッ素重合体は、フルオロオレフィンに由来する単位を有する重合体が好ましい。より具体的には、含フッ素重合体は、少なくともテトラフルオロエチレン(TFE)に由来する単位(すなわち、TFE単位)を有することが好ましい。 The fluorine-containing polymer is preferably a polymer having a unit derived from a fluoroolefin. More specifically, the fluorine-containing polymer preferably has at least a unit derived from tetrafluoroethylene (TFE) (that is, a TFE unit).
 含フッ素重合体は、一般に、TFE単位や、クロロトリフルオロエチレン(CTFE)に由来する単位(すなわち、CTFE単位)を高い比率で含有すると、高い結晶性を得られることが知られている。そのため、本実施形態の含フッ素重合体も、TFE単位や、CTFE単位を高い比率で含有することが好ましい。 It is generally known that a fluorine-containing polymer can obtain high crystallinity when it contains a TFE unit or a unit derived from chlorotrifluoroethylene (CTFE) (that is, a CTFE unit) in a high ratio. Therefore, it is preferable that the fluorine-containing polymer of the present embodiment also contains TFE units and CTFE units in a high ratio.
 含フッ素重合体全体に対するTFE単位およびCTFE単位の割合は、50mol%以上であることが好ましく、70mol%以上であることがより好ましく、90mol%以上であることがさらに好ましい。含フッ素重合体が、TFE単位とCTFE単位との両方を含む場合は、TFE単位の割合と、CTFE単位の割合との和が、上記含有率以上であると好ましい。
 上記含有率の上限値は、100mol%である。
The ratio of the TFE unit and the CTFE unit to the entire fluorine-containing polymer is preferably 50 mol% or more, more preferably 70 mol% or more, and further preferably 90 mol% or more. When the fluorine-containing polymer contains both TFE units and CTFE units, it is preferable that the sum of the ratio of TFE units and the ratio of CTFE units is equal to or greater than the above-mentioned content ratio.
The upper limit of the content rate is 100 mol%.
 本実施形態の含フッ素重合体は、TFEまたはCTFEの単独重合体でもよく、TFEまたはCTFEと他の単量体とからなる群から選ばれる2種以上の単量体の共重合体であってもよい。
 上記他の単量体は、TFEまたはCTFEと共重合可能であれば特に制限はない。他の単量体は、炭化水素系単量体でもよく、含フッ素単量体でもよい。
The fluoropolymer of the present embodiment may be a homopolymer of TFE or CTFE, and is a copolymer of two or more kinds of monomers selected from the group consisting of TFE or CTFE and other monomers. May be good.
The other monomer is not particularly limited as long as it can be copolymerized with TFE or CTFE. The other monomer may be a hydrocarbon-based monomer or a fluorine-containing monomer.
 上記他の単量体としての炭化水素系単量体としては、例えば、エチレン、プロピレン、スチレン等の炭化水素系単量体が挙げられる。
 他の単量体として炭化水素系単量体を用いる場合、含フッ素重合体の全単位に対する、他の単量体に由来する単位の割合は、50mol%以下であることが好ましく、30mol%以下であることがより好ましく、10mol%以下であることがさらに好ましい。
Examples of the hydrocarbon-based monomer as the other monomer include hydrocarbon-based monomers such as ethylene, propylene, and styrene.
When a hydrocarbon-based monomer is used as the other monomer, the ratio of the units derived from the other monomer to all the units of the fluorine-containing polymer is preferably 50 mol% or less, preferably 30 mol% or less. Is more preferable, and 10 mol% or less is further preferable.
 得られる含フッ素重合体の屈折率が相対的に小さくなるため、上記他の単量体としては、含フッ素単量体が好ましい。含フッ素単量体としては、ペルフルオロ化合物が好ましい。
 他の単量体である含フッ素単量体としては、重合により主鎖に脂肪族環構造を有する単位となる単量体であってもよいが、このような含フッ素重合体の主鎖に脂肪族環構造をもたらす単量体ではないことが好ましい。主鎖に脂肪族環構造を有しない含フッ素重合体は、主鎖に脂肪族環構造を有する含フッ素重合体と比較して結晶性が高く、含フッ素重合体の融点を所望の範囲に制御しやすい。
 重合により主鎖に脂肪族環構造を有する単位となる単量体としては、後述のペルフルオロ環状モノエンや環化重合し得るペルフルオロジエンが挙げられる。
 ペルフルオロ化合物以外の含フッ素単量体としては、例えば、トリフルオロエチレン(TrFE)、ビニリデンフルオライド(VdF)、1,2-ジフルオロエチレン、1-フルオロエチレン等が挙げられる。
Since the refractive index of the obtained fluorine-containing polymer is relatively small, the fluorine-containing monomer is preferable as the other monomer. As the fluorine-containing monomer, a perfluoro compound is preferable.
The fluorine-containing monomer, which is another monomer, may be a monomer that becomes a unit having an aliphatic ring structure in the main chain by polymerization, but the main chain of such a fluorine-containing polymer may be used. It is preferably not a monomer that provides an aliphatic ring structure. The fluorinated polymer having no aliphatic ring structure in the main chain has higher crystallinity than the fluorinated polymer having an aliphatic ring structure in the main chain, and the melting point of the fluorinated polymer is controlled within a desired range. It's easy to do.
Examples of the monomer that becomes a unit having an aliphatic ring structure in the main chain by polymerization include perfluorocyclic monoene and perfluorodiene that can be cyclized and polymerized, which will be described later.
Examples of the fluorine-containing monomer other than the perfluoro compound include trifluoroethylene (TrFE), vinylidene fluoride (VdF), 1,2-difluoroethylene, 1-fluoroethylene and the like.
 含フッ素単量体のうちペルフルオロ化合物としては、例えば、下記の、ペルフルオロオレフィン、ペルフルオロアルキルビニルエーテル、ペルフルオロ環状モノエン、環化重合し得るペルフルオロジエン等が挙げられる。
 ペルフルオロオレフィン:ヘキサフルオロプロペン(HFP)等
 ペルフルオロアルキルビニルエーテル:ペルフルオロメチルビニルエーテル(PMVE)、ペルフルオロエチルビニルエーテル(PEVE)、ペルフルオロプロピルビニルエーテル(PPVE)等
 ペルフルオロ環状モノエン:ペルフルオロ(4-メトキシ-1,3-ジオキソール)、ペルフルオロ(2,2-ジメチル-1,3-ジオキソール)、ペルフルオロ(4-メチル-2-メチレン-1,3-ジオキソラン)等
 環化重合し得るペルフルオロジエン:ペルフルオロ(3-ブテニルビニルエーテル)等
Examples of the perfluoro compound among the fluorine-containing monomers include the following perfluoroolefins, perfluoroalkyl vinyl ethers, perfluorocyclic monoenes, perfluorodienes capable of cyclization polymerization, and the like.
Perfluoroolefin: hexafluoropropene (HFP), etc. Perfluoroalkyl vinyl ether: perfluoromethyl vinyl ether (PMVE), perfluoroethyl vinyl ether (PEVE), perfluoropropyl vinyl ether (PPVE), etc. Perfluorocyclic monoene: perfluoro (4-methoxy-1,3-dioxol) ), Perfluoro (2,2-dimethyl-1,3-dioxol), Perfluoro (4-methyl-2-methylene-1,3-dioxolane), etc. Perfluorodiene capable of cyclization polymerization: Perfluoro (3-butenyl vinyl ether) etc
 なかでも、含フッ素重合体としては、ペルフルオロアルキルビニルエーテル単位を有することが好ましい。特に、含フッ素重合体は、PPVE単位を有することが好ましい。
 含フッ素重合体は、PPVE単位の含有率が変化すると、融点が変化する。具体的には、含フッ素重合体に対するPPVE単位の含有率が増えると、含フッ素重合体の融点が下がる傾向にある。
Among them, the fluorine-containing polymer preferably has a perfluoroalkyl vinyl ether unit. In particular, the fluorine-containing polymer preferably has PPVE units.
The melting point of the fluorine-containing polymer changes when the content of PPVE units changes. Specifically, as the content of PPVE units with respect to the fluorine-containing polymer increases, the melting point of the fluorine-containing polymer tends to decrease.
 含フッ素重合体に対するPPVE単位の含有率は、14mol%未満が好ましく、10mol%以下がより好ましい。
 含フッ素重合体に対するPPVE単位の含有率は、上限は特に制限されないが、0mol%を超えることが好ましく、1mol%以上がより好ましい。
 含フッ素重合体に対するPPVE単位の含有率について、上限値と下限値とは、任意に組み合わせることができる。例えば、上記含有率は、1~12mol%が好ましい。
The content of PPVE units with respect to the fluorine-containing polymer is preferably less than 14 mol%, more preferably 10 mol% or less.
The upper limit of the content of PPVE units with respect to the fluorine-containing polymer is not particularly limited, but is preferably more than 0 mol%, more preferably 1 mol% or more.
Regarding the content of PPVE units with respect to the fluorine-containing polymer, the upper limit value and the lower limit value can be arbitrarily combined. For example, the content is preferably 1 to 12 mol%.
 上述した各単量体は、通常、ラジカル重合開始剤を用いたラジカル重合により重合される。この場合、重合終了時の含フッ素重合体は、分子鎖(主鎖)の末端の構造が、重合で用いたラジカル重合開始剤のフラグメントが付加した構造であることが考えられる。また、重合に際して連鎖移動剤を用いた場合、分子鎖(主鎖)の末端の構造は、連鎖移動剤のフラグメントが付加した構造を取り得る。
 含フッ素重合体は、上記末端の構造が他の構造に変換されてもよい。例えば、上述した重合終了時の含フッ素重合体について300℃以上に熱処理することにより、主鎖の末端の構造は、-C(=O)-Fとなり、含フッ素重合体は酸フッ化物となる。
Each of the above-mentioned monomers is usually polymerized by radical polymerization using a radical polymerization initiator. In this case, it is considered that the structure at the end of the molecular chain (main chain) of the fluoropolymer at the end of polymerization is a structure to which a fragment of the radical polymerization initiator used in the polymerization is added. When a chain transfer agent is used in the polymerization, the structure at the end of the molecular chain (main chain) can be a structure to which a fragment of the chain transfer agent is added.
In the fluorine-containing polymer, the terminal structure may be converted into another structure. For example, by heat-treating the above-mentioned fluorine-containing polymer at the end of polymerization to 300 ° C. or higher, the structure at the end of the main chain becomes -C (= O) -F, and the fluorine-containing polymer becomes acid fluoride. ..
 上記酸フッ化物をメタノール処理することにより、主鎖の末端の構造は、メチルエステル基となる。メチルエステル基は、簡便なメタノール処理により、反応性が高い酸フッ化物から変換可能である。そのため、得られる含フッ素重合体の安定性を向上させやすいため好ましい。 By treating the acid fluoride with methanol, the structure at the end of the main chain becomes a methyl ester group. The methyl ester group can be converted from a highly reactive acid fluoride by a simple methanol treatment. Therefore, it is preferable because the stability of the obtained fluorine-containing polymer can be easily improved.
 さらに、上記酸フッ化物をフッ化処理することで、主鎖の末端の構造は、トリフルオロメチル基となる。フッ化処理としては、例えば、特開平11-152310号公報の段落0040に記載された処理方法を挙げることができる。トリフルオロメチル基は、耐熱性が高く、得られる含フッ素重合体の耐熱性が向上しやすいため好ましい。
 また、含フッ素重合体は、主鎖の末端の構造がメチルエステル基やトリフルオロメチル基であると、主鎖の末端における分子間相互作用が小さく、蒸着しやすくなるため好ましい。
 上述した主鎖の末端の構造は、赤外線分光分析により確認できる。
Further, by fluorinating the acid fluoride, the structure at the end of the main chain becomes a trifluoromethyl group. Examples of the fluorination treatment include the treatment method described in paragraph 0040 of JP-A-11-152310. The trifluoromethyl group is preferable because it has high heat resistance and the heat resistance of the obtained fluorine-containing polymer can be easily improved.
Further, in the fluorine-containing polymer, when the structure at the end of the main chain is a methyl ester group or a trifluoromethyl group, the intermolecular interaction at the end of the main chain is small and vapor deposition is easy, which is preferable.
The structure at the end of the main chain described above can be confirmed by infrared spectroscopic analysis.
(要件(1))
 本実施形態の含フッ素重合体は、結晶性を有することが好ましい。含フッ素重合体が結晶性を有すことにより、融点が200℃以上となりやすい。本実施形態の含フッ素重合体の融点は、215℃以上が好ましく、225℃以上がより好ましく、240℃以上がさらに好ましい。
 また、本実施形態の含フッ素重合体の融点は、上限は特に制限されないが、350℃以下であることが好ましく、320℃以下であることがより好ましく、300℃以下がさらに好ましい。
 含フッ素重合体の融点の上限値と下限値とは、任意に組み合わせることができる。例えば、含フッ素重合体の融点は、200~350℃であってもよく、215~320℃であってもよく、225~300℃であってもよい。
(Requirement (1))
The fluorine-containing polymer of the present embodiment preferably has crystallinity. Since the fluorine-containing polymer has crystallinity, the melting point tends to be 200 ° C. or higher. The melting point of the fluorine-containing polymer of the present embodiment is preferably 215 ° C. or higher, more preferably 225 ° C. or higher, and even more preferably 240 ° C. or higher.
The upper limit of the melting point of the fluorine-containing polymer of the present embodiment is not particularly limited, but is preferably 350 ° C. or lower, more preferably 320 ° C. or lower, and even more preferably 300 ° C. or lower.
The upper limit value and the lower limit value of the melting point of the fluorine-containing polymer can be arbitrarily combined. For example, the melting point of the fluorine-containing polymer may be 200 to 350 ° C., 215 to 320 ° C., or 225 to 300 ° C.
 本実施形態において、融点は、示差走査熱量計(例えば、NETZSCH製:DSC 204 F1 Phoenix)を用いて測定する値を採用する。含フッ素重合体9mgを試料容器に仕込み、-70℃から350まで毎分10℃で昇温させた際の熱容量を測定し、得られた融解ピークより融点を求める。 In the present embodiment, the melting point adopts a value measured using a differential scanning calorimeter (for example, manufactured by NETZSCH: DSC 204 F1 Phoenix). 9 mg of the fluorine-containing polymer is charged in a sample container, the heat capacity when the temperature is raised from −70 ° C. to 350 at 10 ° C. per minute is measured, and the melting point is determined from the obtained melting peak.
(要件(2))
 本実施形態において、熱重量減少率は、真空示差熱天秤(アドバンス理工社製:VPE-9000)を用いて測定する値を採用する。具体的には、含フッ素重合体50mgを内径7mmのセルに仕込み、1×10-3Paの真空度にて、室温から500℃まで毎分2℃で昇温させた際の、含フッ素重合体の初期重量(50mg)に対する重量減少率(%)を測定する。
(Requirement (2))
In the present embodiment, the thermogravimetric reduction rate adopts a value measured using a vacuum differential thermal balance (manufactured by Advance Riko Co., Ltd .: VPE-9000). Specifically, the fluorine-containing weight when 50 mg of the fluorine-containing polymer was charged into a cell having an inner diameter of 7 mm and the temperature was raised from room temperature to 500 ° C. at 2 ° C. per minute at a vacuum degree of 1 × 10 -3 Pa. The weight loss rate (%) with respect to the initial weight (50 mg) of the coalescence is measured.
 要件(2)における「実質的に」とは、上述した熱重量減少率の測定方法において、400℃を超えた温度範囲での熱重量減少が検出下限を下回っており、熱重量減少が確認できないことを意味する。 “Substantially” in the requirement (2) means that in the above-mentioned method for measuring the thermogravimetric rate, the thermogravimetric decrease in the temperature range exceeding 400 ° C. is below the lower limit of detection, and the thermogravimetric decrease cannot be confirmed. Means that.
 本実施形態の含フッ素重合体は、上記要件(2)を満たす温度が低いほど分子量(重合度)が低いということができる。上記要件(2)を満たさない含フッ素重合体を蒸着させようと、400℃を超えた温度範囲での加熱を試みると、含フッ素重合体が熱分解するおそれがある。その場合、熱分解で生じた生成物が、蒸着で用いる真空チャンバーの内部圧力を上昇させるおそれがある。このように、真空チャンバーの内部圧力が上昇すると、蒸着条件が不安定となり、蒸着膜の品質が安定しないおそれがある。また、部分的に熱分解した含フッ素重合体が蒸着膜中に混入し、蒸着膜の品質が損なわれるおそれがある。 It can be said that the lower the temperature at which the fluorine-containing polymer of the present embodiment satisfies the above requirement (2), the lower the molecular weight (degree of polymerization). If an attempt is made to heat a fluorinated polymer that does not satisfy the above requirement (2) in a temperature range exceeding 400 ° C., the fluorinated polymer may be thermally decomposed. In that case, the product produced by thermal decomposition may increase the internal pressure of the vacuum chamber used for vapor deposition. When the internal pressure of the vacuum chamber rises in this way, the vapor deposition conditions become unstable, and the quality of the vapor deposition film may not be stable. In addition, the partially thermally decomposed fluorine-containing polymer may be mixed in the vapor-deposited film, and the quality of the vapor-deposited film may be impaired.
 一方、上記要件(2)を満たす含フッ素重合体は、真空下で行う蒸着材料として用いたとき、400℃よりも低い温度で加熱することで、好適に蒸着させることが可能となる。これにより、上述した熱分解のおそれがなく、安定した蒸着条件で蒸着処理が可能となる。 On the other hand, when the fluorine-containing polymer satisfying the above requirement (2) is used as a vapor deposition material performed under vacuum, it can be suitably vapor-deposited by heating at a temperature lower than 400 ° C. As a result, there is no risk of thermal decomposition described above, and the vapor deposition process can be performed under stable vapor deposition conditions.
 含フッ素重合体の耐熱性は、真空チャンバーの内部圧力の変化に着目すると、以下のように評価できる。 The heat resistance of the fluorine-containing polymer can be evaluated as follows, focusing on the change in the internal pressure of the vacuum chamber.
[蒸着時のチャンバー圧変化の評価法]
 真空蒸着機に含フッ素重合体を0.1g仕込み、チャンバー内の圧力を10-4Pa以下に減圧した上で、含フッ素重合体を蒸着速度0.1nm/秒で200nm成膜する。この際にチャンバー内の圧力をモニターし、蒸着時における圧力の最大値を計測する。
 下記計算式より求められるチャンバー圧力の上昇倍率が2倍以下の含フッ素重合体は、好適に蒸着させることが可能となる。
 蒸着時のチャンバー圧力の上昇倍率=蒸着中の最大圧力/蒸着前の初期圧力
[Evaluation method of chamber pressure change during vapor deposition]
0.1 g of the fluorine-containing polymer is charged into a vacuum vapor deposition machine, the pressure in the chamber is reduced to 10 -4 Pa or less, and then the fluorine-containing polymer is deposited at a vapor deposition rate of 0.1 nm / sec to 200 nm. At this time, the pressure in the chamber is monitored and the maximum value of the pressure at the time of vapor deposition is measured.
A fluorine-containing polymer having a chamber pressure increase rate of 2 times or less, which is obtained from the following formula, can be suitably vapor-deposited.
Increase rate of chamber pressure during vapor deposition = maximum pressure during vapor deposition / initial pressure before vapor deposition
 上昇倍率が2倍を超える含フッ素重合体は、熱分解が進みやすく、蒸着に用いるには不適と判断できる。
 さらに、チャンバー圧力の上昇倍率が10倍を超えるほど含フッ素重合体が熱分解する場合、熱分解で生じた生成物により、製造する蒸着膜の品質が安定しないおそれがある。
A fluorine-containing polymer having an increase ratio of more than 2 times is likely to undergo thermal decomposition and can be judged to be unsuitable for use in vapor deposition.
Further, when the fluorine-containing polymer is thermally decomposed so that the increase ratio of the chamber pressure exceeds 10 times, the quality of the vapor-deposited film to be produced may not be stable due to the product produced by the thermal decomposition.
 本実施形態の含フッ素重合体は、1×10-3Paの圧力下において昇温速度2℃/分で昇温させたときの熱重量減少率が、350℃以下で実質的に100%に達することが好ましい。 The fluorine-containing polymer of the present embodiment has a thermogravimetric reduction rate of substantially 100% at 350 ° C. or lower when the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa. It is preferable to reach.
(要件(3))
 本実施形態の含フッ素重合体は、1×10-3Paの圧力下において昇温速度2℃/分で昇温させたとき、熱重量減少率が10%となる温度から90%になる温度までの温度幅が100℃以内である。
(Requirement (3))
The fluorine-containing polymer of the present embodiment has a temperature at which the thermogravimetric reduction rate changes from 10% to 90% when the temperature is raised at a temperature rising rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa. The temperature range up to is within 100 ° C.
 本実施形態の含フッ素重合体は、上記要件(3)を満たす温度幅が狭いほど分子量分布が狭いということができる。
 上記要件(3)を満たさない含フッ素重合体を用い蒸着膜を製造しようとすると、蒸着の始期に蒸着される含フッ素重合体の分子量と、蒸着の終期に蒸着される含フッ素重合体の分子量との差が大きく、同じ蒸着膜において、蒸着膜の厚み方向で含フッ素重合体の分子量が変化し、蒸着膜の物性が安定しないおそれがある。
 また、同条件で連続的に蒸着膜を製造する場合、上記要件(3)を満たさない含フッ素重合体を用いると、製造される蒸着膜の品質がロット間でばらつくおそれがある。
 このように、要件(3)を満たさない含フッ素重合体を用いると、蒸着条件が不安定となり、蒸着膜の品質が安定しないおそれがある。
It can be said that the fluorinated polymer of the present embodiment has a narrower molecular weight distribution as the temperature range satisfying the above requirement (3) is narrower.
When an attempt is made to produce a vapor-deposited film using a fluorine-containing polymer that does not satisfy the above requirement (3), the molecular weight of the fluorine-containing polymer deposited at the beginning of vapor deposition and the molecular weight of the fluorine-containing polymer deposited at the end of vapor deposition. In the same vapor-deposited film, the molecular weight of the fluorine-containing polymer changes in the thickness direction of the thin-film film, and the physical properties of the thin-film film may not be stable.
Further, when the vapor-deposited film is continuously produced under the same conditions, if a fluorine-containing polymer that does not satisfy the above requirement (3) is used, the quality of the produced film-deposited film may vary from lot to lot.
If a fluorine-containing polymer that does not satisfy the requirement (3) is used as described above, the vapor deposition conditions may become unstable and the quality of the vapor deposition film may not be stable.
 一方、上記要件(3)を満たす含フッ素重合体は、蒸着の始期に蒸着される含フッ素重合体の分子量と、蒸着の終期に蒸着される含フッ素重合体の分子量との差が小さく、蒸着膜の厚み方向において含フッ素重合体の分子量の変化が小さい。そのため、得られる蒸着膜の物性が安定しやすい。
 また、同条件で連続的に蒸着膜を製造する場合、製造される蒸着膜のロット間の品質ばらつきを抑制できる。
 これらにより、要件(3)を満たす含フッ素重合体を用いると、蒸着膜の品質が安定しやすい。
On the other hand, in the fluorine-containing polymer satisfying the above requirement (3), the difference between the molecular weight of the fluorine-containing polymer deposited at the beginning of vapor deposition and the molecular weight of the fluorine-containing polymer deposited at the end of vapor deposition is small, and the vapor deposition is carried out. The change in the molecular weight of the fluorine-containing polymer is small in the thickness direction of the film. Therefore, the physical characteristics of the obtained thin-film film are likely to be stable.
Further, when the vapor-deposited film is continuously produced under the same conditions, it is possible to suppress quality variation between lots of the produced vapor-film film.
Therefore, when a fluorine-containing polymer satisfying the requirement (3) is used, the quality of the vapor-deposited film is likely to be stable.
 本実施形態の含フッ素重合体は、1×10-3Paの圧力下において昇温速度2℃/分で昇温させたとき、熱重量減少率が10%となる温度から90%になる温度までの温度幅が70℃以内であることが好ましい。 The fluorine-containing polymer of the present embodiment has a temperature at which the thermogravimetric reduction rate changes from 10% to 90% when the temperature is raised at a temperature rising rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa. The temperature range up to is preferably 70 ° C. or less.
 図1は、要件(2)(3)を説明する模式図であり、測定温度に対する熱重量減少率の対応関係を示すグラフである。図1の横軸は測定温度(単位:℃)、縦軸は熱重量減少率(単位%)である。図1においては、要件(2)(3)を満たす含フッ素重合体の挙動を符号Pで示し、要件(2)(3)を満たさない含フッ素重合体の挙動を符号Pxで示す。 FIG. 1 is a schematic diagram for explaining the requirements (2) and (3), and is a graph showing the correspondence relationship between the thermogravimetric reduction rate and the measured temperature. The horizontal axis of FIG. 1 is the measurement temperature (unit: ° C.), and the vertical axis is the thermogravimetric reduction rate (unit:%). In FIG. 1, the behavior of the fluorinated polymer satisfying the requirements (2) and (3) is indicated by reference numeral P, and the behavior of the fluorinated polymer not satisfying the requirements (2) and (3) is indicated by reference numeral Px.
 図1においては、本実施形態の含フッ素重合体の挙動について示すグラフPは、400℃よりも低い温度(Td100)で熱重量減少率が100%に達している。対して、要件(2)(3)を満たさない含フッ素重合体の挙動について示すグラフPxは、400℃において熱重量減少率が100%に達していない。
 また、図1において、本実施形態の含フッ素重合体の挙動について示すグラフPは、Td90-Td10の値Wが100℃以下である。
 図1からは、本実施形態の含フッ素重合体は、温度Td10と温度Td90との間で急峻に熱重量減少を生じることが分かる。
In FIG. 1, the graph P showing the behavior of the fluorine-containing polymer of the present embodiment shows that the thermogravimetric reduction rate reaches 100% at a temperature (T d100) lower than 400 ° C. On the other hand, in the graph Px showing the behavior of the fluorine-containing polymer that does not satisfy the requirements (2) and (3), the thermogravimetric reduction rate does not reach 100% at 400 ° C.
Further, in FIG. 1, in the graph P showing the behavior of the fluorine-containing polymer of the present embodiment, the value W of T d90- T d10 is 100 ° C. or less.
From FIG. 1, it can be seen that the fluorine-containing polymer of the present embodiment causes a sharp decrease in thermogravimetric analysis between the temperature T d10 and the temperature T d90.
(分子量分画)
 上記要件(2)(3)を満たす含フッ素重合体は、重合体を分子量分画することで得られる。以下の説明では、分子量分画の対象となる重合体を、「原料重合体」と称することがある。
 分子量分画の方法としては、例えば、昇華精製や超臨界抽出により、分子量を分画し、要件(2)(3)を満たす重合体に調整する方法が挙げられる。
(Molecular weight fraction)
A fluorine-containing polymer satisfying the above requirements (2) and (3) can be obtained by fractionating the molecular weight of the polymer. In the following description, the polymer subject to molecular weight fractionation may be referred to as a "raw material polymer".
Examples of the method of molecular weight fractionation include a method of fractionating the molecular weight by sublimation purification or supercritical extraction to prepare a polymer satisfying the requirements (2) and (3).
(昇華精製)
 昇華精製は、減圧下で精製対象物(原料重合体)を加熱して精製対象物の一部または全部を昇華または蒸発させた後に、気体状態の精製対象物に含まれる化合物の析出温度差を利用して、目的の化合物を固体として分離し、回収する手法である。このような昇華精製は、精製対象物を仕込む仕込み部と、気体状態の精製対象物を析出温度ごとに分離して固体として捕集する捕集部を有し、かつ高い真空度を保つことのできる昇華精製装置を用いて行うことができる。
 昇華精製装置の構造は特に限定されないが、例えばガラス製の冷却管と冷却管を囲うフラスコ状のガラス容器と、ガラス容器の内部を減圧する真空排気装置からなる、いわゆるミル氏式の昇華精製装置を用いることができる。また、昇華精製装置としては、円筒状のガラス製の昇華管と、昇華管を内部に収容して昇華管を加熱する加熱装置と、昇華管の内部を減圧する高真空排気装置と、を備えたガラスチューブ式の昇華精製装置を用いることもできる。
 以下、ガラスチューブ式の昇華精製装置を例に、含フッ素重合体の昇華精製および昇華精製による分子量の分画方法を説明する。
(Sublimation purification)
In sublimation purification, the purification target (raw material polymer) is heated under reduced pressure to sublimate or evaporate a part or all of the purification target, and then the precipitation temperature difference of the compound contained in the purification target in a gaseous state is measured. This is a method for separating and recovering a target compound as a solid. Such sublimation purification has a charging section for charging the object to be purified and a collecting section for separating the purified object in a gaseous state at each precipitation temperature and collecting it as a solid, and maintains a high degree of vacuum. It can be carried out using a sublimation purification apparatus capable of this.
The structure of the sublimation purification device is not particularly limited, but for example, a so-called Mill-type sublimation purification device consisting of a glass cooling tube, a flask-shaped glass container surrounding the cooling tube, and a vacuum exhaust device for depressurizing the inside of the glass container. Can be used. Further, the sublimation refining device includes a cylindrical glass sublimation tube, a heating device that houses the sublimation tube inside to heat the sublimation tube, and a high vacuum exhaust device that depressurizes the inside of the sublimation tube. A glass tube type sublimation purification device can also be used.
Hereinafter, a method for sublimation purification of a fluorine-containing polymer and a method for fractionating the molecular weight by sublimation purification will be described using a glass tube type sublimation purification apparatus as an example.
 含フッ素重合体の昇華精製では、昇華管の仕込み部に原料重合体を仕込み、高真空排気装置を用いて、例えば、圧力を1×10-3Pa以下まで昇華管内の真空度を上げた後、加熱装置を用いて仕込み部を加熱する。これにより、原料重合体に含まれる含フッ素重合体が昇華または蒸発する。
 昇華管のうち、仕込み部よりも高真空排気装置による排気側にあたる領域は、「捕集部」に該当する。捕集部は、仕込み部の加熱温度よりも低い温度に設定されている。仕込み部で原料重合体から昇華または蒸発させた含フッ素重合体は、捕集部の壁面で析出し固化して、捕集される。
In the sublimation purification of the fluorine-containing polymer, the raw material polymer is charged in the preparation part of the sublimation tube, and the vacuum degree in the sublimation tube is raised to, for example, 1 × 10 -3 Pa or less by using a high vacuum exhaust device. , The preparation part is heated using a heating device. As a result, the fluorine-containing polymer contained in the raw material polymer is sublimated or evaporated.
Of the sublimation pipes, the area corresponding to the exhaust side of the high vacuum exhaust device from the preparation part corresponds to the "collection part". The collecting part is set to a temperature lower than the heating temperature of the charging part. The fluorine-containing polymer sublimated or evaporated from the raw material polymer in the charging section is precipitated and solidified on the wall surface of the collecting section and collected.
 捕集部の捕集温度は、含フッ素重合体が気体から固体へ昇華する温度(析出する温度)に対応し、含フッ素重合体の分子量に対応する。昇華管において捕集温度を異ならせた複数の捕集部を設けることにより、原料重合体を、分子量の異なる含フッ素重合体に分画できる。
 例えば、具体的には、仕込み部をA℃に加熱し、捕集部を仕込み部に近い側からB℃とC℃とに加熱した場合(A>B>C)、B℃に設定した捕集部では、A℃では気体、B℃では固体となる分子量範囲の含フッ素重合体が捕集される。
 同様に、C℃に設定した捕集部では、B℃では気体、C℃では固体となる分子量範囲の含フッ素重合体が捕集される。すなわち、C℃に設定した捕集部では、原料重合体に含まれる含フッ素重合体のうち、B℃では気体でありC℃では固体となる捕集温度幅B℃-C℃の含フッ素重合体が捕集される。
The collection temperature of the collection unit corresponds to the temperature at which the fluorine-containing polymer sublimates from a gas to a solid (the temperature at which it precipitates), and corresponds to the molecular weight of the fluorine-containing polymer. By providing a plurality of collection portions having different collection temperatures in the sublimation tube, the raw material polymer can be fractionated into fluorine-containing polymers having different molecular weights.
For example, specifically, when the charging portion is heated to A ° C. and the collecting portion is heated to B ° C. and C ° C. from the side closer to the charging portion (A>B> C), the trapping portion is set to B ° C. At the collecting part, a fluorine-containing polymer having a molecular weight range that becomes a gas at A ° C and a solid at B ° C is collected.
Similarly, in the collection section set to C ° C, a fluorine-containing polymer in a molecular weight range that becomes a gas at B ° C and a solid at C ° C is collected. That is, in the collection section set to C ° C., among the fluorine-containing polymers contained in the raw material polymer, the fluorine-containing weight having a collection temperature range of B ° C.—C ° C. which is a gas at B ° C. and a solid at C ° C. The coalescence is collected.
 上述の要件(3)は、上述のように捕集温度幅を制御し、例えば捕集温度幅100℃となる捕集部で捕集することで満たすことができる。なお、捕集した含フッ素重合体について、要件(3)を満たすか否かを確認し、要件(3)を満たさない場合には、捕集部の温度条件を制御し、捕集温度幅を狭くするとよい。
 捕集部において、低い設定温度の領域で捕集された含フッ素重合体ほど、1×10-3Paの圧力下における熱重量減少率が100%に達する温度が低い、すなわち分子量が小さい含フッ素重合体となる。
The above-mentioned requirement (3) can be satisfied by controlling the collection temperature range as described above, for example, by collecting in a collection section having a collection temperature range of 100 ° C. It should be noted that it is confirmed whether or not the collected fluorine-containing polymer satisfies the requirement (3), and if the requirement (3) is not satisfied, the temperature condition of the collecting portion is controlled and the collecting temperature range is adjusted. It is good to narrow it.
In the collection section, the fluorine-containing polymer collected in the lower set temperature region has a lower temperature at which the thermogravimetric reduction rate reaches 100% under a pressure of 1 × 10 -3 Pa, that is, has a smaller molecular weight. It becomes a polymer.
 捕集温度幅は、100℃以下であることが好ましく、70℃以下であることがより好ましく、40℃以下であることがさらに好ましい。捕集温度幅が小さいほど、蒸着条件の変動が少なくなり、また、膜厚方向において均質な相分離構造が形成されやすい。 The collection temperature range is preferably 100 ° C. or lower, more preferably 70 ° C. or lower, and even more preferably 40 ° C. or lower. The smaller the collection temperature range, the less the fluctuation of the vapor deposition conditions, and the more likely it is that a homogeneous phase-separated structure is formed in the film thickness direction.
 分子量分画した含フッ素重合体は、要件(2)(3)を満たすならば、捕集温度幅の異なる複数の含フッ素重合体を混合してもよい。 The fluorinated polymer fractionated by molecular weight may be a mixture of a plurality of fluorinated polymers having different collection temperature ranges as long as the requirements (2) and (3) are satisfied.
(超臨界抽出)
 超臨界抽出は、超臨界流体の高い溶解性と拡散性を利用して抽出物を得る技術である。超臨界抽出では、例えば、超臨界流体として超臨界COを用い、超臨界COに相対的に低分子量の含フッ素重合体を溶解させ、抽出物として得ることができる。
 また、超臨界流体に対する添加剤(エントレーナー)として、含フッ素溶媒を用いることで、超臨界流体に対する含フッ素重合体の溶解性を高めることができる。
(Supercritical extraction)
Supercritical extraction is a technique for obtaining an extract by utilizing the high solubility and diffusivity of a supercritical fluid. In supercritical extraction, for example, supercritical CO 2 is used as a supercritical fluid, and a fluorine-containing polymer having a relatively low molecular weight is dissolved in the supercritical CO 2 to obtain an extract.
Further, by using a fluorine-containing solvent as an additive (entrainer) for the supercritical fluid, the solubility of the fluorine-containing polymer in the supercritical fluid can be enhanced.
 エントレーナーとして用いる含フッ素溶媒は、特に限定されない。例えば、下記方法で求める親フッ素パラメータPが1以上である含フッ素溶媒が好ましい。(親フッ素パラメータP
 3gのトルエンと3gのペルフルオロメチルシクロヘキサンとの二相系に、30μLの前記含フッ素溶媒を滴下してよく混合し一晩静置した後、前記トルエンに含まれる前記含フッ素溶媒と、前記ペルフルオロメチルシクロヘキサンに含まれる前記含フッ素溶媒とをガスクロマトグラフィーにより測定する。前記トルエン中の前記含フッ素溶媒の濃度(単位:mL/L)をM、前記ペルフルオロメチルシクロヘキサン中の前記含フッ素溶媒の濃度(単位:mL/L)をMとしたとき、下記式(A)で求められる値を親フッ素パラメータPとする。
 P=M/M…(A)
The fluorine-containing solvent used as the entrainer is not particularly limited. For example, a fluorinated solvent is preferred Fluorophilic parameter P F calculated by the following method is one or more. (Parent fluorine parameter P F)
30 μL of the fluorine-containing solvent was added dropwise to a two-phase system of 3 g of toluene and 3 g of perfluoromethylcyclohexane, mixed well and allowed to stand overnight, and then the fluorine-containing solvent contained in the toluene and the perfluoromethyl were added. The fluorine-containing solvent contained in cyclohexane is measured by gas chromatography. The fluorinated solvent concentrations (unit: mL / L) of the toluene the M P, the concentration of the fluorinated solvent in the perfluoromethylcyclohexane (unit: mL / L) when the set to M F, the following equation ( the value obtained by a) a parent fluorine parameter P F.
P F = M F / M P ... (A)
 エントレーナーとして用いる含フッ素溶媒としては、例えば以下の化合物が挙げられる。
 1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン(AC-2000、AGC社製)(P=12)
 1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロオクタン(AC-6000、AGC社製)(P=5.6)
 サイトップ CT-SOLV100E(AGC社製)(P=8.2)
 サイトップ CT-SOLV180(AGC社製)(P=∞)
 HFE7300(3M社製)(P=8.2)
 1,1,1,2,2,3,4,5,5,5-Decafluoropentane(Vertre XF、Chemours社製)(P=3.7)
 1H,1H,2H,2H-ペルフルオロオクタノール(P=1.1)
 1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(AE-3000、AGC社製)(P=0.6)
 HCFC-225ca/HCFC-225cb(45/55)(P=0.3)
 ペルフルオロベンゼン(P=0.3)
 ヘキサフルオロ-2-プロパノール(P=0.24)
 1H,1H,7H-ペルフルオロヘプタノール(P=0.23)
 1H,1H,5H-ペルフルオロペンタノール(P=0.1)
Examples of the fluorine-containing solvent used as an entrainer include the following compounds.
1,1,1,2,2,3,3,4,4,5,5,6,6- tridecafluoro-hexane (manufactured by AC-2000, AGC, Inc.) (P F = 12)
1,1,1,2,2,3,3,4,4,5,5,6,6- tridecafluoro-octane (manufactured by AC-6000, AGC, Inc.) (P F = 5.6)
Sai top CT-SOLV100E (manufactured by AGC, Inc.) (P F = 8.2)
Sai top CT-SOLV180 (manufactured by AGC, Inc.) (P F = ∞)
HFE7300 (3M Co., Ltd.) (P F = 8.2)
1,1,1,2,2,3,4,5,5,5-Decafluoropentane (Vertre XF, made Chemours, Inc.) (P F = 3.7)
1H, 1H, 2H, 2H- perfluoro-octanol (P F = 1.1)
1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (manufactured by AE-3000, AGC, Inc.) (P F = 0.6)
HCFC-225ca / HCFC-225cb ( 45/55) (P F = 0.3)
Perfluorobenzene (P F = 0.3)
Hexafluoro-2-propanol (P F = 0.24)
1H, 1H, 7H- perfluoro heptanol (P F = 0.23)
1H, 1H, 5H- perfluoro-pentanol (P F = 0.1)
 抽出工程は、例えば超臨界COを用い、抽出圧力7.4MPa以上、抽出温度31℃以上の条件で行うことができる。
 抽出圧力は、30MPa以上が好ましく、50MPa以上がより好ましく、70MPa以上がさらに好ましい。抽出圧力の上限値には特に制限はないが、100MPa以下が好ましい。抽出圧力の上限値と下限値とは、任意に組み合わせることができる。
 抽出温度は、40℃以上が好ましく、80℃以上がより好ましい。また、抽出温度は、300℃以下が好ましく、200℃以下がより好ましく、100℃以下がさらに好ましい。抽出温度の上限値と下限値とは、任意に組み合わせることができる。
 上記範囲であれば、目的とする含フッ素重合体の分子量分画を効率よく行うことができる。
The extraction step can be carried out using, for example, supercritical CO 2 under the conditions of an extraction pressure of 7.4 MPa or more and an extraction temperature of 31 ° C. or more.
The extraction pressure is preferably 30 MPa or more, more preferably 50 MPa or more, and even more preferably 70 MPa or more. The upper limit of the extraction pressure is not particularly limited, but is preferably 100 MPa or less. The upper limit value and the lower limit value of the extraction pressure can be arbitrarily combined.
The extraction temperature is preferably 40 ° C. or higher, more preferably 80 ° C. or higher. The extraction temperature is preferably 300 ° C. or lower, more preferably 200 ° C. or lower, and even more preferably 100 ° C. or lower. The upper limit value and the lower limit value of the extraction temperature can be arbitrarily combined.
Within the above range, the molecular weight fractionation of the target fluorine-containing polymer can be efficiently performed.
(その他の要件)
 本実施形態の含フッ素重合体は、下記要件(4)(5)を満たすことが好ましい。
 要件(4)25℃における貯蔵弾性率が1×10Pa以上である。
 要件(5)降温速度2℃/分で含フッ素重合体を降温させたとき、貯蔵弾性率が1×10Pa未満になる温度は120℃以上である。
 含フッ素重合体が上記要件(4)(5)を満たすと、含フッ素重合体の耐熱性が高くなる。
(Other requirements)
The fluorine-containing polymer of the present embodiment preferably satisfies the following requirements (4) and (5).
Requirement (4) a storage modulus at 25 ° C. is 1 × 10 7 Pa or higher.
Requirement (5) When the fluorine-containing polymer is cooled at a temperature lowering rate of 2 ° C./min, the temperature at which the storage elastic modulus is less than 1 × 10 6 Pa is 120 ° C. or higher.
When the fluorine-containing polymer satisfies the above requirements (4) and (5), the heat resistance of the fluorine-containing polymer becomes high.
 上記要件(4)(5)を満たす含フッ素重合体は、例えば含フッ素重合体が有するPPVE単位の含有率を変更することで得られる。PPVE単位の含有率が増えると、貯蔵弾性率は低下する傾向にある。 The fluorine-containing polymer satisfying the above requirements (4) and (5) can be obtained, for example, by changing the content rate of the PPVE unit contained in the fluorine-containing polymer. As the content of PPVE units increases, the storage elastic modulus tends to decrease.
 本実施形態において、貯蔵弾性率は、動的粘弾性測定装置(例えば、アントンパール社製、MCR502)、および粘弾性測定装置用加熱炉(例えば、アントンパール社製、CTD450)を用いて測定する値を採用する。具体的には、試料(含フッ素重合体)を融点以上に加熱した後、定速降温モードで2℃/分で降温させる。上記測定装置を用い、歪み0.01%、周波数1Hzの条件で貯蔵弾性率(G’)を測定する。 In the present embodiment, the storage elastic modulus is measured using a dynamic viscoelasticity measuring device (for example, Anton Pearl Co., Ltd., MCR502) and a heating furnace for a viscoelasticity measuring device (for example, Anton Pearl Co., Ltd., CTD450). Adopt a value. Specifically, after heating the sample (fluorine-containing polymer) to a melting point or higher, the temperature is lowered at 2 ° C./min in the constant-speed temperature lowering mode. Using the above measuring device, the storage elastic modulus (G') is measured under the conditions of a strain of 0.01% and a frequency of 1 Hz.
 図2は、本実施形態の膜を示す概略断面図である。図2に示す膜10は、有機半導体と含フッ素重合体の共蒸着膜であり、基板50上に形成されている。
 膜10においては、有機半導体と含フッ素重合体とが相分離しており、有機半導体のドメイン51bと、上述した含フッ素重合体のドメイン52bとを含む。ドメイン51bとドメイン52bとは膜厚方向に連続している。
 膜10の面方向におけるドメイン52bの大きさDは、例えば10nm~20nm程度である。
 以下の説明では、膜10が有する上述のような相分離構造を、ナノドメイン構造と称することがある。
FIG. 2 is a schematic cross-sectional view showing the film of the present embodiment. The film 10 shown in FIG. 2 is a co-deposited film of an organic semiconductor and a fluorine-containing polymer, and is formed on the substrate 50.
In the film 10, the organic semiconductor and the fluorine-containing polymer are phase-separated, and include the domain 51b of the organic semiconductor and the domain 52b of the fluorine-containing polymer described above. The domain 51b and the domain 52b are continuous in the film thickness direction.
The size D of the domain 52b in the plane direction of the film 10 is, for example, about 10 nm to 20 nm.
In the following description, the above-mentioned phase-separated structure of the membrane 10 may be referred to as a nanodomain structure.
 上述の通り、本実施形態で用いられる含フッ素重合体は、融点が200℃以上であり、高い結晶性を有する。通常、高い結晶性を有する材料を用いて膜を形成した場合、耐熱性の高い膜が得られる。一方で、高い結晶性を有する材料を用いて形成した膜は、結晶化した部分が可視光を散乱するため、ヘイズが高く、透明性の低い膜となりやすい。このことから、高い結晶性を有する材料を用いて形成した膜は、透明性を必要とする光電子素子等への適用が難しかった。 As described above, the fluorine-containing polymer used in the present embodiment has a melting point of 200 ° C. or higher and has high crystallinity. Usually, when a film is formed using a material having high crystallinity, a film having high heat resistance can be obtained. On the other hand, a film formed by using a material having high crystallinity tends to have a high haze and low transparency because the crystallized portion scatters visible light. For this reason, it has been difficult to apply a film formed using a material having high crystallinity to a photoelectron device or the like that requires transparency.
 しかし、膜10は、可視光に対して十分に小さいナノドメイン構造を有している。このような膜10に含まれる含フッ素重合体の一部が結晶化したとしても、結晶化した部分の大きさは、ナノドメイン構造に収まる大きさとなる。
 そのため、膜10は、可視光を散乱させにくく、高い透明性を示す。
 さらに、膜10は、含フッ素重合体の高い結晶性に基づいて、高い耐熱性を有する。そのため、膜10は、高温下に晒されてもナノドメイン構造が保持され、高い透明性を維持し得る。
However, the film 10 has a nanodomain structure that is sufficiently small with respect to visible light. Even if a part of the fluorine-containing polymer contained in such a film 10 is crystallized, the size of the crystallized part is a size that fits in the nanodomain structure.
Therefore, the film 10 is less likely to scatter visible light and exhibits high transparency.
Further, the film 10 has high heat resistance based on the high crystallinity of the fluorine-containing polymer. Therefore, the film 10 retains the nanodomain structure even when exposed to a high temperature, and can maintain high transparency.
 膜10のヘイズおよびその耐熱性は、下記方法で測定することができる。
[ヘイズ測定用試料の作製]
 ガラス基板上に、α-NPDと、含フッ素重合体と、を共蒸着し、100nmの共蒸着膜を成膜して、ヘイズ測定用試料を得る。2つの材料の合計の蒸着速度は0.2nm/秒とする。蒸着速度を調整し、共蒸着膜におけるα-NPDと含フッ素重合体の体積比を所望の比率とする。
The haze of the film 10 and its heat resistance can be measured by the following method.
[Preparation of sample for haze measurement]
Α-NPD and a fluorine-containing polymer are co-deposited on a glass substrate to form a 100 nm co-deposited film to obtain a sample for haze measurement. The total deposition rate of the two materials is 0.2 nm / sec. The vapor deposition rate is adjusted so that the volume ratio of α-NPD to the fluorine-containing polymer in the co-deposited film is a desired ratio.
[ヘイズ測定]
 ヘイズ測定は、ヘイズメーター(東洋精機社製ヘイズガードK50-290)を用いて行う。
 ヘイズ測定用試料の初期ヘイズを測定後、サンプル試料を100℃に熱したホットプレート上で1時間加熱する。試料を常温に戻した後に、再度ヘイズを測定する。さらに、サンプル試料を120℃に熱したホットプレート上で1時間加熱し、同様にしてヘイズを測定する。
[Haze measurement]
Haze measurement is performed using a haze meter (Haze Guard K50-290 manufactured by Toyo Seiki Co., Ltd.).
After measuring the initial haze of the haze measurement sample, the sample sample is heated on a hot plate heated to 100 ° C. for 1 hour. After returning the sample to room temperature, measure the haze again. Further, the sample is heated on a hot plate heated to 120 ° C. for 1 hour, and the haze is measured in the same manner.
 得られたヘイズについて、以下のように評価する。
 〇:0.2未満、
 △:0.2以上0.5未満
 ×:0.5以上
The obtained haze is evaluated as follows.
〇: Less than 0.2,
Δ: 0.2 or more and less than 0.5 ×: 0.5 or more
 膜10を構成する含フッ素重合体と有機半導体との合計に対する含フッ素重合体の割合は、膜10全体に対するドメイン52bの体積と等しい。膜10全体に対するドメイン52bの割合は、20~80体積%が好ましい。含フッ素重合体の割合が20体積%以上であると、含フッ素重合体を有さない有機半導体の膜と比べて、十分に低屈折率化された膜となる。また、含フッ素重合体の割合が80体積%以下であると、膜10の導電性を十分に確保できる。 The ratio of the fluorinated polymer to the total of the fluorinated polymer constituting the film 10 and the organic semiconductor is equal to the volume of the domain 52b with respect to the entire film 10. The ratio of the domain 52b to the entire membrane 10 is preferably 20 to 80% by volume. When the proportion of the fluorine-containing polymer is 20% by volume or more, the film has a sufficiently low refractive index as compared with the film of the organic semiconductor having no fluorine-containing polymer. Further, when the proportion of the fluorine-containing polymer is 80% by volume or less, the conductivity of the film 10 can be sufficiently ensured.
 膜10の屈折率は、下記方法で作製した試料を用い、下記方法で測定することができる。
[屈折率測定用試料の作製]
 シリコン基板上に、α-NPDと、含フッ素重合体と、を共蒸着し、100nmの共蒸着膜を成膜して、屈折率測定用試料を得る。2つの材料の合計の蒸着速度は0.2nm/秒とする。蒸着速度を調整し、共蒸着膜におけるα-NPDと含フッ素重合体の体積比を所望の比率とする。
[屈折率測定]
 多入射角分光エリプソメトリー(例えば、ジェー・エー・ウーラム社製:M-2000U)を用いて、シリコン基板上の膜に対して、光の入射角を45~75度の範囲で5度ずつ変えて測定を行う。それぞれの角度において、波長450~800nmの範囲で約1.6nmおきにエリプソメトリーパラメータであるΨとΔを測定する。前記の測定データを用い、有機半導体の誘電関数をCauchyモデルによりフィッティング解析を行い、波長600nmの光に対する蒸着膜の屈折率を得る。
The refractive index of the film 10 can be measured by the following method using a sample prepared by the following method.
[Preparation of sample for refractive index measurement]
Α-NPD and a fluorine-containing polymer are co-deposited on a silicon substrate to form a 100 nm co-deposited film to obtain a sample for refractive index measurement. The total deposition rate of the two materials is 0.2 nm / sec. The vapor deposition rate is adjusted so that the volume ratio of α-NPD to the fluorine-containing polymer in the co-deposited film is a desired ratio.
[Refractive index measurement]
Using multi-incident angle spectroscopic ellipsometry (eg, manufactured by JA Woolam: M-2000U), the incident angle of light is changed by 5 degrees in the range of 45 to 75 degrees with respect to the film on the silicon substrate. And measure. At each angle, ellipsometry parameters Ψ and Δ are measured at wavelengths in the range of 450-800 nm at intervals of approximately 1.6 nm. Using the above measurement data, the dielectric function of the organic semiconductor is subjected to fitting analysis by the Cauchy model to obtain the refractive index of the vapor-deposited film with respect to light having a wavelength of 600 nm.
 有機半導体は、公知のものを使用可能であり、本実施形態の膜10を備える装置の機能に応じて、適切な材料を選択できる。
 例えば、有機半導体としては、有機EL素子の正孔注入層を構成する正孔注入材料、電子注入層を構成する電子注入材料、正孔輸送層を構成する正孔輸送材料、電子輸送層を構成する電子輸送材料、発光層を構成するホスト材料やゲスト材料を例示できる。
Known organic semiconductors can be used, and an appropriate material can be selected according to the function of the apparatus provided with the film 10 of the present embodiment.
For example, the organic semiconductor includes a hole injection material that constitutes a hole injection layer of an organic EL device, an electron injection material that constitutes an electron injection layer, a hole transport material that constitutes a hole transport layer, and an electron transport layer. Examples of electron transport materials, host materials and guest materials constituting the light emitting layer can be exemplified.
 正孔注入材料としては、芳香族アミン誘導体が好適に例示できる。具体例としては、下記のα-NPD、TAPC、PDA、TPD、m-MTDATA等が挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000001
As the hole injection material, an aromatic amine derivative can be preferably exemplified. Specific examples include, but are not limited to, the following α-NPD, TAPC, PDA, TPD, m-MTDATA, and the like.
Figure JPOXMLDOC01-appb-C000001
 前記以外の正孔注入材料としては、例えば、下記の、半導体材料、有機金属錯体材料、アリールアミン材料、高分子半導体材料等が挙げられる。また市販品としては下記のものが挙げられる。
 半導体材料:酸化モリブデン、酸化タングステン等の金属酸化物、フッ化アルミニウム、フッ化マグネシウム等の金属フッ化物
 有機金属錯体材料:銅フタロシアニン等
 アリールアミン材料:N,N’-ジフェニル-N,N’-ビス-[4-(フェニル-m-トリル-アミノ)-フェニル]-ビフェニル-4,4’-ジアミン(DNTPD)、N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(NPB)、4,4’,4”-トリス(N,N-ジフェニルアミノ)トリフェニルアミン(TDATA)、ジピラジノ[2,3-f:2’,3’-h]キノキサリン-2,3,6,7,10,11-ヘキサカルボニトリル(HAT-CN)、9,9’,9”-トリフェニル-9H,9’H,9”H-3,3’:6’,3”-テルカルバゾール(Tris-PCz)、4,4’,4”-トリス(N,N-2-ナフチルフェニルアミノ)トリフェニルアミン(2-TNATA)等
 高分子半導体材料:ポリアニリン/ドデシルベンゼンスルホン酸(PANI/DBSA)、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(4-スチレンスルホネート)(PEDOT/PSS)、ポリアニリンカンファースルホン酸(PANI/CSA)、またはポリアニリン/ポリ(4-スチレンスルホネート)(PANI/PSS)等
 市販品:N-(ジフェニル-4-イル)-9,9-ジメチル-N-(4-(9-フェニル-9H-カルバゾイル-3イル)フェニル)-9H-フルオレン-2-アミン(以下、「HT211」という。)、HTM081(Merck社製)、HTM163(Merck社製)、HTM222(Merck社製)、NHT-5(NoValed社製)、NHT-18(NoValed社製)、NHT-49(NoValed社製)、NHT-51(NoValed社製)、NDP-2(NoValed社製)、NDP-9(NoValed社製)等
Examples of the hole injection material other than the above include the following semiconductor materials, organometallic complex materials, arylamine materials, polymer semiconductor materials, and the like. The following are examples of commercially available products.
Semiconductor materials: Metal oxides such as molybdenum oxide and tungsten oxide, metal fluorides such as aluminum fluoride and magnesium fluoride Organic metal complex materials: Copper phthalocyanines, etc. Aarylamine materials: N, N'-diphenyl-N, N'- Bis- [4- (phenyl-m-tolyl-amino) -phenyl] -biphenyl-4,4'-diamine (DNTPD), N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine ( NPB), 4,4', 4 "-tris (N, N-diphenylamino) triphenylamine (TDATA), dipyrazino [2,3-f: 2', 3'-h] quinoxalin-2,3,6 , 7,10,11-Hexacarbonitrile (HAT-CN), 9,9', 9 "-triphenyl-9H, 9'H, 9"H-3,3':6', 3 "-tercarbazole (Tris-PCz), 4,4', 4 "-Tris (N, N-2-naphthylphenylamino) Triphenylamine (2-TNATA), etc. Polymer semiconductor materials: Polyaniline / dodecylbenzenesulfonic acid (PANI / DBSA) ), Poly (3,4-ethylenedioxythiophene) / Poly (4-styrenesulfonate) (PEDOT / PSS), Polyaniline camphorsulfonic acid (PANI / CSA), or Polyaniline / Poly (4-styrenesulfonate) (PANI / PSS) etc. Commercial products: N- (diphenyl-4-yl) -9,9-dimethyl-N- (4- (9-phenyl-9H-carbazoyl-3yl) phenyl) -9H-fluoren-2-amine ( Hereinafter referred to as "HT211"), HTM081 (manufactured by Merck), HTM163 (manufactured by Merck), HTM222 (manufactured by Merck), NHT-5 (manufactured by NoValed), NHT-18 (manufactured by NoValed), NHT- 49 (manufactured by NoValed), NHT-51 (manufactured by NoValed), NDP-2 (manufactured by NoValed), NDP-9 (manufactured by NoValed), etc.
 例示した正孔注入材料は、市販品を購入できる。これら正孔注入材料は、市販品を用いてもよいし合成品を用いてもよい。また、上記正孔注入材料は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 The hole injection material illustrated can be purchased commercially. As these hole injection materials, commercially available products or synthetic products may be used. Further, the hole injection material may be used alone or in combination of two or more.
 電子注入材料としては、公知のものを使用できる。具体例としては、LiF,CsCO,CsF等の無機化合物や、下記のAlq、PBD、TAZ、BND、OXD-7、8-ヒドロキシキノリノラト-リチウム(Liq)等が挙げられるが、これらに限定されない。他にも、NDN-1(NoValed社製)、NDN-26(NoValed社製)等の市販品を使用できる。 As the electron injection material, a known material can be used. Specific examples include inorganic compounds such as LiF, Cs 2 CO 3 , CsF, and the following Alq 3 , PBD, TAZ, BND, OXD-7, 8-hydroxyquinolinolato-lithium (Liq), and the like. , Not limited to these. In addition, commercially available products such as NDN-1 (manufactured by NoValed) and NDN-26 (manufactured by NoValed) can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 正孔輸送層の材料(正孔輸送材料)としては、例えば、前記正孔注入材料が挙げられるが、これらに限定されない。
 例えば、前記正孔注入材料として挙げたもの以外の、4,4’,4”-トリ(9-カルバゾイル)トリフェミルアミン(TCTA)、2,2’,7,7’-テトラキス(N,N-ジフェニルアミノ)-2,7-ジアミノ-9,9’-スピロビフルオレン(Spiro-TAD)、2,2’,7,7’-テトラキス(N,N-ジ-p-メトキシフェニルアミノ)-9,9’-スピロビフルオレン(Spiro-MeOTAD)等のアリールアミン材料を正孔輸送材料として使用できる。
Examples of the material of the hole transport layer (hole transport material) include, but are not limited to, the hole injection material.
For example, 4,4', 4 "-tri (9-carbazoyl) trifemilamine (TCTA), 2,2', 7,7'-tetrakis (N, N) other than those listed as the hole injection materials. -Diphenylamino) -2,7-diamino-9,9'-spirobifluorene (Spiro-TAD), 2,2', 7,7'-tetrakis (N, N-di-p-methoxyphenylamino)- Arylamine materials such as 9,9'-spirobifluorene (Spiro-MeOTAD) can be used as the hole transport material.
 前記正孔注入材料として挙げたもの以外の正孔輸送材料としては、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体等が挙げられる。なかでも、ポルフィリン化合物、芳香族第3級アミン化合物およびスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 これら正孔輸送材料は、市販品を用いてもよいし合成品を用いてもよい。また、上記正孔輸送材料は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Hole-transporting materials other than those listed as the hole-injecting materials include triazole derivatives, oxadiazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, and oxazole derivatives. , Styrylanthracene derivative, fluorenone derivative, hydrazone derivative, stilben derivative, silazane derivative and the like. Among them, it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
As these hole transporting materials, commercially available products or synthetic products may be used. Further, the hole transporting material may be used alone or in combination of two or more.
 電子輸送層の材料(電子輸送材料)としては、公知のものを使用できる。例えば、電子輸送材料としては、前記電子注入材料が挙げられるが、これらに限定されない。前記電子注入材料として挙げたもの以外の電子輸送材料としては、2,2’,2''-(1,3,5-ベンジントリイル)-トリス(1-フェニル-1-H-ベンズイミダゾール)(TPBi)、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン(BCP)、2-(4-tert-ブチルフェニル)-5-(4-ビフェニリル)-1,3,4-オキサジアゾール(t-Bu-PBD)、シロール環を有するシロール誘導体が挙げられる。 As the material of the electron transport layer (electron transport material), a known material can be used. For example, the electron transport material includes, but is not limited to, the electron injection material. Examples of the electron transporting material other than those listed as the electron injecting material include 2,2', 2''-(1,3,5-benzinetriyl) -tris (1-phenyl-1-H-benzimidazole). (TPBi), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), 2- (4-tert-butylphenyl) -5- (4-biphenylyl) -1,3,4- Examples thereof include oxadiazole (t-Bu-PBD) and a silol derivative having a silol ring.
 これら電子輸送材料は、市販品を用いてもよいし合成品を用いてもよい。また、上記電子輸送材料は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As these electron transport materials, commercially available products or synthetic products may be used. Further, the electron transport material may be used alone or in combination of two or more.
 発光層の形成材料としては、蛍光材料、熱活性化遅延蛍光(TADF)材料、りん光材料等、公知のものを採用できる。 As the material for forming the light emitting layer, known materials such as a fluorescent material, a thermal activated delayed fluorescence (TADF) material, and a phosphorescent material can be adopted.
 例えば、発光層の形成材料としては、(E)-2-(2-(4-(ジメチルアミノ)スチリル)-6-メチル-4H-ピラン-4-イリデン)マロノニトリル(DCM)、4-(ジシアノメチレン)-2-メチル-6-ジュロリジル-9-エニル-4H-ピラン(DCM)、Rubrene、Coumarin6、Ir(ppy)、(ppy)Ir(acac)等の発光ゲスト材料、4,4’-ビス(9H-カルバゾール-9-イル)ビフェニル(CBP)、3,3'-ジ(9H-カルバゾール-9-イル)-1,1'-ビフェニル(mCBP)等のりん光ホスト材料、ADN、Alq3等の蛍光ホスト材料、ポリフェニレンビニレン(PPV)、MEH-PPV等のポリマー材料が挙げられるが、これらに限定されない。 For example, examples of the material for forming the light emitting layer include (E) -2- (2- (4- (dimethylamino) styryl) -6-methyl-4H-pyran-4-iriden) malononitrile (DCM) and 4- (dicyano). Luminescent guest materials such as methylene) -2-methyl-6-juloridyl-9-enyl-4H-pyran (DCM 2 ), rubrene, polymer6, Ir (ppy) 3 , (ppy) 2 Ir (acac), 4, 4 Phosphorescent host material such as'-bis (9H-carbazole-9-yl) biphenyl (CBP), 3,3'-di (9H-carbazole-9-yl) -1,1'-biphenyl (mCBP), ADN , Fluorescent host materials such as Alq3, and polymer materials such as polyphenylene vinylene (PPV) and MEH-PPV, but are not limited thereto.
 発光層の形成材料は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。発光層の形成材料は、所望の発光波長に応じて適宜選択される。 The material for forming the light emitting layer may be used alone or in combination of two or more. The material for forming the light emitting layer is appropriately selected according to the desired emission wavelength.
 膜10の形成材料である有機半導体は、分子量が300~1000であることが好ましい。有機半導体の分子量は、400以上であることがより好ましい。また、有機半導体の分子量は900以下であることがより好ましい。
 上記有機半導体の分子量が300以上であれば、有機半導体のガラス転移点(Tg)が高くなり、有機半導体膜の耐熱性が向上する。分子量が1000以下であれば、有機半導体の蒸気圧が高くなり、熱分解温度以下で蒸着することが可能となる。
 有機半導体の分子量の上限値と下限値とは、任意に組み合わせることができる。すなわち、有機半導体の分子量は、300~900であってもよく、400~1000であってもよく、400~900であってもよい。
 有機半導体の分子量は、TOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry)を用いた測定で求めることができる。
The organic semiconductor that is the material for forming the film 10 preferably has a molecular weight of 300 to 1000. The molecular weight of the organic semiconductor is more preferably 400 or more. Further, the molecular weight of the organic semiconductor is more preferably 900 or less.
When the molecular weight of the organic semiconductor is 300 or more, the glass transition point (Tg) of the organic semiconductor becomes high, and the heat resistance of the organic semiconductor film is improved. When the molecular weight is 1000 or less, the vapor pressure of the organic semiconductor becomes high, and the vapor deposition can be performed at the thermal decomposition temperature or less.
The upper limit value and the lower limit value of the molecular weight of the organic semiconductor can be arbitrarily combined. That is, the molecular weight of the organic semiconductor may be 300 to 900, 400 to 1000, or 400 to 900.
The molecular weight of the organic semiconductor can be determined by measurement using TOF-SIMS (Time-of-Flight Second Method Ion Mass Spectrometry).
 また、膜10は、ドーパントをさらに含んでいてもよい。ドーパントは、公知のものを使用可能であり、本実施形態の膜10を備える装置の機能に応じて、適切な材料を選択できる。ドーパントを含むことにより、膜10は導電性を高めることができる。
 例えば、正孔注入材料として用いられるドーパントとしては、TCNQ、F-TCNQ、PPDN、TCNNQ、F-TCNNQ、HAT-CN、HATNA、HATNA-Cl、HATNA-F、C6036、F16-CuPc、NDP-2(Novaled社製)、NDP-9(Novaled社製)等の有機ドーパントやMoO、V、WO、ReO、CuI等の無機ドーパントが挙げられる。
 電子注入材料として用いられるドーパントとしては、8-ヒドロキシキノリノラト-リチウム(Liq)、NDN-1(Novaled社製)、NDN-26(Novaled社製)等が挙げられる。
Further, the film 10 may further contain a dopant. As the dopant, a known one can be used, and an appropriate material can be selected according to the function of the apparatus provided with the film 10 of the present embodiment. By including the dopant, the film 10 can be made more conductive.
For example, as the dopant used as a hole injection material, TCNQ, F 4 -TCNQ, PPDN , TCNNQ, F 6 -TCNNQ, HAT-CN, HATNA, HATNA-Cl 6, HATNA-F 6, C 60 F 36, F 16 -CuPc, NDP-2 ( Novaled Co.) include NDP-9 (Novaled Co.) organic dopant and MoO 3 etc., V 2 O 5, WO 3 , ReO 3, of CuI and inorganic dopants.
Examples of the dopant used as the electron injection material include 8-hydroxyquinolinolato-lithium (Liq), NDN-1 (manufactured by Novaled), NDN-26 (manufactured by Novaled) and the like.
 図3~5は、上述した膜10を製造する工程を示す模式図である。
 まず、図3に示すように、膜10を形成する基板50を用意する。このような基板50を真空蒸着装置のチャンバー500内に設置し、有機半導体の蒸着源(るつぼ)51と含フッ素重合体の蒸着源(るつぼ)52とから、有機半導体51a、含フッ素重合体52aを供給して共蒸着する。なお、図3では、有機半導体と含フッ素重合体とを別々の蒸着源から蒸着させることとして示しているが、同一の蒸着源から蒸着させることとしてもよい。
3 to 5 are schematic views showing a process of manufacturing the above-mentioned film 10.
First, as shown in FIG. 3, a substrate 50 on which the film 10 is formed is prepared. Such a substrate 50 is installed in the chamber 500 of the vacuum vapor deposition apparatus, and the organic semiconductor 51a and the fluorine-containing polymer 52a are provided from the organic semiconductor vapor deposition source (rutsubo) 51 and the fluorine-containing polymer vapor deposition source (rutsubo) 52. Is supplied and co-deposited. Although FIG. 3 shows that the organic semiconductor and the fluorine-containing polymer are vapor-deposited from different vapor deposition sources, they may be vapor-deposited from the same vapor deposition source.
 有機半導体51a、含フッ素重合体52aとしては、上述の膜10を構成する有機半導体、含フッ素重合体をそれぞれ用いることができる。
 共蒸着時には、基板50上に形成される共蒸着膜において、含フッ素重合体と有機半導体の合計に対する含フッ素重合体の比率が20~80体積%となるように、蒸着条件を設定する。
As the organic semiconductor 51a and the fluorine-containing polymer 52a, the organic semiconductor and the fluorine-containing polymer constituting the above-mentioned film 10 can be used, respectively.
At the time of co-evaporation, the vapor deposition conditions are set so that the ratio of the fluorine-containing polymer to the total of the fluorine-containing polymer and the organic semiconductor is 20 to 80% by volume in the co-deposited film formed on the substrate 50.
 有機半導体51aは、蒸着時の加熱で分解しないものが好ましい。蒸着時の加熱で分解しないことは、用いる有機半導体について、下記方法で重量減少率を求めることで判断できる。 The organic semiconductor 51a is preferably one that does not decompose by heating during vapor deposition. The fact that the organic semiconductor is not decomposed by heating during vapor deposition can be determined by determining the weight reduction rate of the organic semiconductor to be used by the following method.
(判断方法)
 真空示差熱天秤(アドバンス理工社製:VPE-9000)を用いて測定する。有機半導体50mgを内径7mmのセルに仕込み、1×10-3Pa~1×10-4Paの真空度にて、毎分2℃で500℃まで昇温した際の有機半導体の重量減少率(%)を測定し、重量減少率が50%となる温度(Td50)を求める。
 次いで、熱重量示差熱分析装置(日立ハイテクサイエンス社製:STA7200)を用いて、窒素フロー下において、毎分10℃で450℃まで昇温した際の有機半導体の重量減少率を測定し、Td50における重量減少率を求める。
(Judgment method)
Measure using a vacuum differential thermal balance (manufactured by Advance Riko Co., Ltd .: VPE-9000). The weight reduction rate of the organic semiconductor when 50 mg of the organic semiconductor is charged into a cell having an inner diameter of 7 mm and the temperature is raised to 500 ° C. at 2 ° C. per minute at a vacuum degree of 1 × 10 -3 Pa to 1 × 10 -4 Pa ( %) Is measured, and the temperature (T d50 ) at which the weight loss rate becomes 50% is determined.
Next, using a thermogravimetric differential thermal analyzer (manufactured by Hitachi High-Tech Science Co., Ltd .: STA7200), the weight loss rate of the organic semiconductor when the temperature was raised to 450 ° C. at 10 ° C. per minute under a nitrogen flow was measured, and T. The weight loss rate at d50 is calculated.
 Td50における常圧での重量減少率が1%以下であれば、減圧下のTd50において重量減少した理由が熱分解ではなく、昇華によるものであると判断する。このような有機半導体は、蒸着時の加熱で分解しない、すなわち蒸着に適した材料であると判断できる。
 一方で、Td50における常圧での重量減少率が1%を超える場合、減圧下のTd50において重量減少した理由が熱分解であると判断する。このような有機半導体は、蒸着時の加熱で分解するため、蒸着に不適であると判断できる。
If the weight loss rate at normal pressure at T d50 is 1% or less, it is determined that the reason for the weight loss at T d50 under reduced pressure is not thermal decomposition but sublimation. It can be determined that such an organic semiconductor does not decompose by heating during vapor deposition, that is, it is a material suitable for vapor deposition.
On the other hand, when the weight loss rate at normal pressure at T d50 exceeds 1%, it is determined that the reason for the weight loss at T d50 under reduced pressure is thermal decomposition. Since such an organic semiconductor is decomposed by heating during vapor deposition, it can be judged that it is not suitable for vapor deposition.
 図4に示すように、有機半導体と含フッ素重合体とを共蒸着すると、基板上では、有機半導体と含フッ素重合体とが相分離し、有機半導体のドメイン51bと、含フッ素重合体のドメイン52bとが形成されると考えられる。
 含フッ素重合体のドメイン52bの大きさ(直径)は、共蒸着を行う基板50の表面エネルギーと、含フッ素重合体の表面エネルギーとの関係によって、少ないバラツキで一定の数値範囲に収まるものと考えられる。すなわち、用いる含フッ素重合体が基板50の表面に塗れ広がりやすい場合には、ドメイン52bは大きく広がりやすいと考えられ、含フッ素重合体が基板50の表面に塗れ広がりにくい場合には、ドメイン52bの直径は小さくなりやすいと考えられる。
As shown in FIG. 4, when the organic semiconductor and the fluorine-containing polymer are co-deposited, the organic semiconductor and the fluorine-containing polymer are phase-separated on the substrate, and the domain 51b of the organic semiconductor and the domain of the fluorine-containing polymer are separated. It is considered that 52b and 52b are formed.
It is considered that the size (diameter) of the domain 52b of the fluorine-containing polymer falls within a certain numerical range with a small variation depending on the relationship between the surface energy of the substrate 50 to be co-deposited and the surface energy of the fluorine-containing polymer. Be done. That is, when the fluorine-containing polymer used is easily spread on the surface of the substrate 50, the domain 52b is considered to be large and easily spread, and when the fluorine-containing polymer is difficult to spread on the surface of the substrate 50, the domain 52b is spread. It is thought that the diameter tends to be small.
 図5に示すように、共蒸着を継続すると、蒸着源51から昇華した有機半導体51aは、ドメイン52bに堆積するよりもエネルギー的に安定であるため、有機半導体のドメイン51bに堆積すると考えられる。同様に、蒸着源52から昇華した含フッ素重合体52aは、ドメイン51bに堆積するよりもエネルギー的に安定であるため、含フッ素重合体のドメイン52bに堆積すると考えられる。
 これにより、共蒸着膜の膜厚方向に連続した有機半導体のドメイン51bと、共蒸着膜の膜厚方向に連続した含フッ素重合体のドメイン52bとが形成される。また、基板50の法線方向から共蒸着膜を見た場合、ドメイン52bの直径は、共蒸着膜の膜厚方向で大きく変化することなく、基板50表面に形成される最初のドメイン52bの大きさを反映したものとなる。
 このとき、上述の含フッ素重合体を用いることにより、ドメイン52bを構成する含フッ素重合体は分子量が狭く、蒸着の初期と終期とで物性の差が小さくなる。そのため、得られる膜10の品質が安定しやすい。
As shown in FIG. 5, when the co-evaporation is continued, the organic semiconductor 51a sublimated from the vapor deposition source 51 is energetically more stable than the deposition in the domain 52b, so that it is considered that the organic semiconductor 51a is deposited in the domain 51b of the organic semiconductor. Similarly, since the fluorine-containing polymer 52a sublimated from the vapor deposition source 52 is more energetically stable than depositing in the domain 51b, it is considered that the fluorine-containing polymer 52a is deposited in the domain 52b of the fluorine-containing polymer.
As a result, the domain 51b of the organic semiconductor continuous in the film thickness direction of the co-deposited film and the domain 52b of the fluorine-containing polymer continuous in the film thickness direction of the co-deposited film are formed. Further, when the co-deposited film is viewed from the normal direction of the substrate 50, the diameter of the domain 52b does not change significantly in the film thickness direction of the co-deposited film, and is the size of the first domain 52b formed on the surface of the substrate 50. It will reflect the above.
At this time, by using the above-mentioned fluorine-containing polymer, the fluorine-containing polymer constituting the domain 52b has a narrow molecular weight, and the difference in physical properties between the initial stage and the final stage of vapor deposition becomes small. Therefore, the quality of the obtained film 10 is likely to be stable.
 上記のようにして、膜10を製造する。
 ここで、膜10を加熱した場合には、ドメイン52bが加熱により移動しやすくなり、近接するドメイン52b同士が合一して、膜10のナノドメイン構造が崩れることがある。これに対し、用いる含フッ素重合体が上述の要件(4)(5)を満たしていると、ドメイン52bが合一し難く、ナノドメイン構造を維持しやすい膜10となる。
The film 10 is manufactured as described above.
Here, when the film 10 is heated, the domains 52b are easily moved by the heating, and the adjacent domains 52b may coalesce and the nanodomain structure of the film 10 may be destroyed. On the other hand, when the fluorine-containing polymer used satisfies the above-mentioned requirements (4) and (5), the domain 52b is difficult to unite, and the film 10 easily maintains the nanodomain structure.
 以上のような構成の含フッ素重合体によれば、耐熱性が高く、蒸着に適した含フッ素重合体を提供できる。
 また、以上のような構成の膜によれば、低屈折率化され、高透明かつ高耐熱性であり、品質の安定した膜となる。
 また、以上のような構成の膜の製造方法によれば、このような膜を容易に製造できる。
 なお、本実施形態においては、本実施形態の含フッ素重合体と有機半導体とを共蒸着して膜10を形成したが、これに限らない。本実施形態の含フッ素重合体と有機半導体とを含む膜は、塗布などのウェットプロセスによって製造してもよい。
According to the fluorine-containing polymer having the above-mentioned structure, it is possible to provide a fluorine-containing polymer having high heat resistance and suitable for vapor deposition.
Further, according to the film having the above-mentioned structure, the film has a low refractive index, high transparency, high heat resistance, and stable quality.
Further, according to the method for producing a film having the above-mentioned structure, such a film can be easily produced.
In the present embodiment, the fluorine-containing polymer of the present embodiment and the organic semiconductor are co-deposited to form the film 10, but the present invention is not limited to this. The film containing the fluorine-containing polymer and the organic semiconductor of the present embodiment may be produced by a wet process such as coating.
[第2実施形態]
 図6は、本発明の第2実施形態に係る有機光電子素子(有機EL素子)100を示す断面模式図である。有機EL素子100は、基板110、陽極111、正孔注入層112、正孔輸送層113、発光層114、電子輸送層115、電子注入層116、陰極117がこの順に積層した構造を有している。本実施形態の有機EL素子100は、発光層114で生じた光Lが、陰極117を介して外部へ射出されるトップエミッション方式を採用している。
[Second Embodiment]
FIG. 6 is a schematic cross-sectional view showing an organic photoelectronic device (organic EL device) 100 according to a second embodiment of the present invention. The organic EL element 100 has a structure in which a substrate 110, an anode 111, a hole injection layer 112, a hole transport layer 113, a light emitting layer 114, an electron transport layer 115, an electron injection layer 116, and a cathode 117 are laminated in this order. There is. The organic EL element 100 of the present embodiment employs a top emission method in which the light L generated in the light emitting layer 114 is emitted to the outside via the cathode 117.
(基板)
 基板110は、光透過性を備えていてもよく、光透過性を備えなくてもよい。基板110の形成材料としては、ガラス、石英ガラス、窒化ケイ素等の無機物や、ポリイミド樹脂、アクリル樹脂、ポリカーボネート樹脂等の有機高分子(樹脂)を用いることができる。また、表面の絶縁性が確保されるならば、基板110の形成材料として金属材料を採用することもできる。
 また、基板110は、有機EL素子に電気的に接続される不図示の各種配線、駆動素子を備えている。
(substrate)
The substrate 110 may or may not have light transmission. As the material for forming the substrate 110, an inorganic substance such as glass, quartz glass, or silicon nitride, or an organic polymer (resin) such as a polyimide resin, an acrylic resin, or a polycarbonate resin can be used. Further, if the insulating property of the surface is ensured, a metal material can be adopted as a material for forming the substrate 110.
Further, the substrate 110 includes various wirings and driving elements (not shown) that are electrically connected to the organic EL element.
(陽極)
 陽極111は、基板110上に形成され、正孔輸送層113に正孔(ホール)を供給する。また、陽極111は、発光層114から発せられた光を反射する光反射性を有する。
(anode)
The anode 111 is formed on the substrate 110 and supplies holes to the hole transport layer 113. Further, the anode 111 has a light reflectivity that reflects the light emitted from the light emitting layer 114.
 陽極111の形成材料としては、ITO(Indium Tin Oxide:インジウムドープ酸化錫)やIZO(Indium Zinc Oxide:インジウムドープ酸化亜鉛)等の導電性金属酸化物を用いることができる。また、陽極111に光反射性を付与するため、陽極111の基板110側には、金属材料を形成材料とする反射膜が設けられている。すなわち、陽極111は、導電性金属酸化物を形成材料とする層と、反射膜との積層構造を有する。
 また、陽極111の形成材料として、銀を用いることとしてもよい。
As a material for forming the anode 111, a conductive metal oxide such as ITO (Indium Tin Oxide: indium-doped tin oxide) or IZO (Indium Zinc Oxide: indium-doped zinc oxide) can be used. Further, in order to impart light reflectivity to the anode 111, a reflective film made of a metal material is provided on the substrate 110 side of the anode 111. That is, the anode 111 has a laminated structure of a layer made of a conductive metal oxide as a forming material and a reflective film.
Further, silver may be used as a material for forming the anode 111.
 陽極111の厚さは、特に制限されないが、30~300nmが好ましい。陽極111の厚さは、例えば100nmである。 The thickness of the anode 111 is not particularly limited, but is preferably 30 to 300 nm. The thickness of the anode 111 is, for example, 100 nm.
(正孔注入層)
 正孔注入層112は、陽極111と正孔輸送層113との間に形成されている。正孔注入層112は、陽極111から正孔輸送層113への正孔の注入を容易にする機能を有する。なお、正孔注入層112は形成しなくてもよい。
 正孔注入層112は、上述した正孔注入材料を用いて形成できる。
 正孔注入層112の厚さは、特に制限されないが、1~100nmが好ましい。正孔注入層112の厚さは、例えば5nmである。
(Hole injection layer)
The hole injection layer 112 is formed between the anode 111 and the hole transport layer 113. The hole injection layer 112 has a function of facilitating the injection of holes from the anode 111 into the hole transport layer 113. The hole injection layer 112 does not have to be formed.
The hole injection layer 112 can be formed by using the hole injection material described above.
The thickness of the hole injection layer 112 is not particularly limited, but is preferably 1 to 100 nm. The thickness of the hole injection layer 112 is, for example, 5 nm.
(正孔輸送層)
 正孔輸送層113は、正孔注入層112上に形成されている。正孔輸送層113は、陽極111から注入された正孔を発光層114に向けて良好に輸送する機能を有する。
 正孔輸送層113は、上述した正孔輸送材料を用いて形成できる。
 正孔輸送層113は、単層であってもよく、正孔輸送材料の層が複数積層した構成であってもよい。正孔輸送層113が正孔輸送材料の層が複数積層した積層体である場合、各層を構成する正孔輸送材料は、同じであってもよく、互いに異なっていてもよい。
(Hole transport layer)
The hole transport layer 113 is formed on the hole injection layer 112. The hole transport layer 113 has a function of satisfactorily transporting the holes injected from the anode 111 toward the light emitting layer 114.
The hole transport layer 113 can be formed by using the hole transport material described above.
The hole transport layer 113 may be a single layer, or may have a configuration in which a plurality of layers of hole transport materials are laminated. When the hole transport layer 113 is a laminated body in which a plurality of layers of hole transport materials are laminated, the hole transport materials constituting each layer may be the same or different from each other.
 正孔輸送層113は、波長域450~800nmにおける吸収係数が5000cm-1以下であることが好ましく、1000cm-1以下であることがより好ましく、上記波長域において吸収帯を有さないことが特に好ましい。
 正孔輸送層113を構成する各層の吸収係数が5000cm-1を超える場合、光が厚み100nmの正孔輸送層を1回通過すると通過前の光の全量を100%としたときに対し5%の光が吸収される。有機EL素子の内部では光の多重干渉により、正孔輸送層113を通過するときの光の吸収による損失が累積する。そのため、正孔輸送層を通過する際における光吸収が光取出し効率を大きく低減させる要因となる。光吸収が十分小さい正孔輸送層を用いることは、有機EL素子の発光効率を損なわないために極めて重要である。有機EL素子の発光効率が損なわれないことによりエネルギー利用効率が高くなり、かつ、光吸収に基づく発熱が抑制される結果として素子寿命が長くなる。
Hole transport layer 113 is preferably an absorption coefficient in the wavelength range 450 ~ 800 nm is 5000 cm -1 or less, more preferably 1000 cm -1 or less, to have no absorption band in the wavelength region in particular preferable.
When the absorption coefficient of each layer constituting the hole transport layer 113 exceeds 5000 cm-1 , once the light passes through the hole transport layer having a thickness of 100 nm, it is 5% compared to the case where the total amount of light before passing is 100%. Light is absorbed. Inside the organic EL element, the loss due to the absorption of light when passing through the hole transport layer 113 is accumulated due to the multiple interference of light. Therefore, light absorption when passing through the hole transport layer becomes a factor that greatly reduces the light extraction efficiency. It is extremely important to use a hole transport layer having sufficiently small light absorption so as not to impair the luminous efficiency of the organic EL device. Since the luminous efficiency of the organic EL element is not impaired, the energy utilization efficiency is increased, and as a result of suppressing heat generation due to light absorption, the device life is extended.
 正孔輸送層113の厚さは特に制限されないが、10~250nmが好ましく、20~150nmがより好ましい。 The thickness of the hole transport layer 113 is not particularly limited, but is preferably 10 to 250 nm, more preferably 20 to 150 nm.
(発光層)
 発光層114は、正孔輸送層113の上に形成されている。発光層114では、陽極111から注入された正孔および陰極117から注入された電子が再結合し、光子を放出して発光する。その際の発光波長は、発光層114の形成材料に応じて定まる。発光層114は、本発明における「活性層」に該当する。
 発光層114は、上述した発光層の形成材料を用いて形成できる。
 発光層の形成材料は、単独で用いてもよく、2種以上を組み合わせて用いてもよく、所望の発光波長に応じて適宜選択される。
 発光層114の厚さは、特に制限されないが、10~30nmが好ましい。発光層114の厚さは、例えば15nmである。
(Light emitting layer)
The light emitting layer 114 is formed on the hole transport layer 113. In the light emitting layer 114, the holes injected from the anode 111 and the electrons injected from the cathode 117 are recombined to emit photons to emit light. The emission wavelength at that time is determined according to the material for forming the light emitting layer 114. The light emitting layer 114 corresponds to the "active layer" in the present invention.
The light emitting layer 114 can be formed by using the above-mentioned material for forming the light emitting layer.
The material for forming the light emitting layer may be used alone or in combination of two or more, and is appropriately selected according to a desired emission wavelength.
The thickness of the light emitting layer 114 is not particularly limited, but is preferably 10 to 30 nm. The thickness of the light emitting layer 114 is, for example, 15 nm.
(電子輸送層)
 電子輸送層115は、発光層114の上に形成されている。電子輸送層115は、陰極117から注入された電子を発光層114に向けて良好に輸送する機能を有する。
 電子輸送層115は、上述した電子輸送材料を用いて形成できる。
 電子輸送層115の厚さは、特に制限されないが、30~80nmが好ましい。電子輸送層115の厚さは、例えば60nmである。
(Electronic transport layer)
The electron transport layer 115 is formed on the light emitting layer 114. The electron transport layer 115 has a function of satisfactorily transporting the electrons injected from the cathode 117 toward the light emitting layer 114.
The electron transport layer 115 can be formed by using the electron transport material described above.
The thickness of the electron transport layer 115 is not particularly limited, but is preferably 30 to 80 nm. The thickness of the electron transport layer 115 is, for example, 60 nm.
(電子注入層)
 電子注入層116は、陰極117と電子輸送層115との間に設けられている。電子注入層116は、陰極117から電子輸送層115への電子の注入を容易にする機能を有する。電子注入層116の形成材料としては、上述した電子注入材料を使用できる。
 なお、電子注入層116は形成しなくてもよい。
 電子注入層116の厚さは、特に制限されないが、0.5~2nmが好ましい。電子注入層116の厚さは、例えば1nmである。
(Electron injection layer)
The electron injection layer 116 is provided between the cathode 117 and the electron transport layer 115. The electron injection layer 116 has a function of facilitating the injection of electrons from the cathode 117 into the electron transport layer 115. As the material for forming the electron injection layer 116, the above-mentioned electron injection material can be used.
The electron injection layer 116 does not have to be formed.
The thickness of the electron injection layer 116 is not particularly limited, but is preferably 0.5 to 2 nm. The thickness of the electron injection layer 116 is, for example, 1 nm.
(陰極)
 陰極117は、電子注入層116の上に形成されている。陰極117は、電子注入層116に電子を注入する機能を有する。陰極117の形成材料としては、公知のものを採用できる。例えば、陰極117の形成材料として、MgAg電極、Al電極が挙げられる。陰極117の表面にはLiF等のバッファー層が形成されていてもよい。
 陰極117は、全体として発光層114から発せられた光の一部を反射し、残部を透過する程度に薄く形成された半透過膜である。
 陰極117の厚さは、特に制限されないが、5~30nmが好ましい。陰極117の厚さは、例えば5nmである。
(cathode)
The cathode 117 is formed on the electron injection layer 116. The cathode 117 has a function of injecting electrons into the electron injection layer 116. As a material for forming the cathode 117, a known material can be adopted. For example, examples of the material for forming the cathode 117 include an MgAg electrode and an Al electrode. A buffer layer such as LiF may be formed on the surface of the cathode 117.
The cathode 117 is a semi-transmissive film formed thin enough to reflect a part of the light emitted from the light emitting layer 114 as a whole and pass through the rest.
The thickness of the cathode 117 is not particularly limited, but is preferably 5 to 30 nm. The thickness of the cathode 117 is, for example, 5 nm.
(マイクロキャビティ構造)
 本実施形態の有機EL素子100においては、陽極111と陰極117が、陽極111と陰極117との間で光を共振させる光共振構造(マイクロキャビティ)を構成している。陽極111と陰極117との間では、発光層114で生じた光が反射を繰り返し、陽極111と陰極117との間の光路長と合致した波長の光が共振して増幅される。一方で、陽極111と陰極117との間の光路長と合致しない波長の光は減衰する。
 ここでいう「光路長」は、素子外部に射出される所望の光の波長と、当該所望の光の波長における各層の屈折率と、を用いて算出されるものとする。
(Microcavity structure)
In the organic EL element 100 of the present embodiment, the anode 111 and the cathode 117 form an optical resonance structure (microcavity) in which light is resonated between the anode 111 and the cathode 117. The light generated by the light emitting layer 114 is repeatedly reflected between the anode 111 and the cathode 117, and the light having a wavelength matching the optical path length between the anode 111 and the cathode 117 is resonated and amplified. On the other hand, light having a wavelength that does not match the optical path length between the anode 111 and the cathode 117 is attenuated.
The "optical path length" referred to here is calculated using the wavelength of the desired light emitted to the outside of the device and the refractive index of each layer at the desired wavelength of the light.
 陽極111と陰極117との間の光路長は、例えば発光層114で生じる光Lの中心波長の整数倍に設定されている。この場合、発光層114で発せられた光Lは、中心波長に近いほど増幅され、中心波長から離れるほど減衰して有機EL素子100の外部に射出される。このようにして、有機EL素子100から射出される光Lは、発光スペクトルの半値幅が狭く、色純度が向上したものとなる。 The optical path length between the anode 111 and the cathode 117 is set to, for example, an integral multiple of the center wavelength of the light L generated in the light emitting layer 114. In this case, the light L emitted by the light emitting layer 114 is amplified as it is closer to the center wavelength, attenuated as it is farther from the center wavelength, and is emitted to the outside of the organic EL element 100. In this way, the light L emitted from the organic EL element 100 has a narrow half-value width of the emission spectrum and improved color purity.
 マイクロキャビティ構造は、陰極および陽極を両端とする固定端反射による共振を利用している。そのため、「発光位置から陽極までの光路長が、素子外部に射出される所望の光の波長λの1/4の整数倍」であり、かつ「発光位置から陰極までの光路長が、素子外部に射出される所望の光の波長λの1/4の整数倍」である場合、所望のマイクロキャビティ構造を形成できる。 The microcavity structure utilizes resonance due to fixed-end reflection with the cathode and anode at both ends. Therefore, "the optical path length from the light emitting position to the anode is an integral multiple of 1/4 of the wavelength λ of the desired light emitted to the outside of the element", and "the optical path length from the light emitting position to the cathode is outside the element". If it is "an integral multiple of 1/4 of the wavelength λ of the desired light emitted into the light", the desired microcavity structure can be formed.
 本実施形態の有機EL素子100は、上述したいずれかの1層または複数層に、上述した含フッ素重合体を含む。
 本実施形態の有機EL素子100は、正孔注入層112と正孔輸送層113の少なくとも一方に、上述した含フッ素重合体を含むことが好ましい。正孔輸送層113が、正孔輸送材料の層の積層体である場合、各層のうち少なくとも1層に上述した含フッ素重合体を含む。
 また、本実施形態の有機EL素子100は、電子輸送層115と電子注入層116の少なくとも一方に、上述した含フッ素重合体を含むことが好ましい。電子輸送層115が、電子輸送材料の層の積層体である場合、各層のうち少なくとも1層に上述した含フッ素重合体を含む。
 また、本実施形態の有機EL素子100は、正孔注入層112と正孔輸送層113の少なくとも一方、および電子輸送層115と電子注入層116の少なくとも一方に、上述した含フッ素重合体を含むことが好ましい。
The organic EL device 100 of the present embodiment contains the above-mentioned fluorine-containing polymer in any one or more layers described above.
The organic EL device 100 of the present embodiment preferably contains the above-mentioned fluorine-containing polymer in at least one of the hole injection layer 112 and the hole transport layer 113. When the hole transport layer 113 is a laminate of layers of hole transport materials, at least one of the layers contains the above-mentioned fluorine-containing polymer.
Further, the organic EL element 100 of the present embodiment preferably contains the above-mentioned fluorine-containing polymer in at least one of the electron transport layer 115 and the electron injection layer 116. When the electron transport layer 115 is a laminate of layers of electron transport materials, at least one of the layers contains the above-mentioned fluorine-containing polymer.
Further, the organic EL device 100 of the present embodiment contains the above-mentioned fluorine-containing polymer in at least one of the hole injection layer 112 and the hole transport layer 113, and at least one of the electron transport layer 115 and the electron injection layer 116. Is preferable.
 上述した含フッ素重合体を含んだ各層は、これらの層が上述した含フッ素重合体を含まない場合と比べ低屈折率となる。そのため、本実施形態の有機EL素子100は、光取出し効率が向上し、外部量子効率が向上する。これにより、本実施形態の有機EL素子100は、上述した含フッ素重合体を含まない従来の有機EL素子と比べて、少ない投入電力で従来の有機EL素子と同等の発光量が得られる。
 また、上述した含フッ素重合体を含んだ各層は、耐熱性が高い。そのため、本実施形態の有機EL素子100は、信頼性が高い有機EL素子100となる。
Each layer containing the above-mentioned fluorine-containing polymer has a lower refractive index than the case where these layers do not contain the above-mentioned fluorine-containing polymer. Therefore, the organic EL element 100 of the present embodiment improves the light extraction efficiency and the external quantum efficiency. As a result, the organic EL element 100 of the present embodiment can obtain the same amount of light emission as the conventional organic EL element with a smaller input power as compared with the conventional organic EL element that does not contain the above-mentioned fluorine-containing polymer.
In addition, each layer containing the above-mentioned fluorine-containing polymer has high heat resistance. Therefore, the organic EL element 100 of the present embodiment is a highly reliable organic EL element 100.
 有機EL素子100の耐熱性は、下記の方法で評価することができる。
<耐熱性評価1>
[導電性評価用の素子1の作製]
 2mm幅の帯状にITO(酸化インジウムスズ)が成膜されたガラス基板を用いる。
 当該基板を中性洗剤、アセトン、イソプロパノールを用いて超音波洗浄し、さらにイソプロパノール中で煮沸洗浄した上で、オゾン処理によりITO膜表面の付着物を除去する。
 洗浄後の基板を真空蒸着機内に置き、圧力10-4Pa以下に減圧した上で、基板上に三酸化モリブデンを蒸着する。蒸着速度は0.1nm/秒であり、5nm成膜して正孔注入層を作製する。
The heat resistance of the organic EL element 100 can be evaluated by the following method.
<Heat resistance evaluation 1>
[Manufacturing of element 1 for conducting conductivity evaluation]
A glass substrate on which ITO (indium tin oxide) is formed in a 2 mm wide strip is used.
The substrate is ultrasonically cleaned with a neutral detergent, acetone, and isopropanol, and then boiled and washed in isopropanol, and then the deposits on the surface of the ITO film are removed by ozone treatment.
The washed substrate is placed in a vacuum vapor deposition machine, the pressure is reduced to 10 -4 Pa or less, and molybdenum trioxide is vapor-deposited on the substrate. The vapor deposition rate is 0.1 nm / sec, and a 5 nm film is formed to prepare a hole injection layer.
 次いで、正孔注入層上にα-NPDと、含フッ素重合体と、を共蒸着する。2つの材料の合計の蒸着速度は0.2nm/秒であり、100nm成膜して電荷輸送層を作製する。蒸着速度を調整し、電荷輸送層におけるα-NPDと含フッ素重合体の体積比を所望の比率とする。 Next, α-NPD and a fluorine-containing polymer are co-deposited on the hole injection layer. The total vapor deposition rate of the two materials is 0.2 nm / sec, and a 100 nm film is formed to prepare a charge transport layer. The vapor deposition rate is adjusted so that the volume ratio of α-NPD to the fluorine-containing polymer in the charge transport layer is a desired ratio.
 次いで、電荷輸送層上に2mm幅の帯状にアルミニウムを蒸着する。帯状のアルミニウム膜は、基板の垂直方向から見た視野においてITO膜と直交させる。これにより、素子面積4mm(=ITO膜2mm×アルミニウム膜2mm)の導電性評価用の素子1を得る。 Next, aluminum is deposited on the charge transport layer in the form of a strip having a width of 2 mm. The strip-shaped aluminum film is orthogonal to the ITO film in the field of view seen from the vertical direction of the substrate. As a result, an element 1 for evaluating conductivity having an element area of 4 mm 2 (= ITO film 2 mm × aluminum film 2 mm) is obtained.
[素子1の耐熱性評価]
 ソースメータ(アジレント・テクノロジー社製:B1500A)を用い、素子1のITOを陽極、アルミニウムを陰極として電圧を印加しながら電圧を変化させ、電圧毎に素子に流れる電流を測定し、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求める。
 なお、電界(E)は、電圧値を上記電荷輸送層の膜厚である100nmで割った値であり、電流密度(J)は、電流値を上記素子面積である4mmで割った値である。
[Evaluation of heat resistance of element 1]
Using a source meter (Agilent Technology Co., Ltd .: B1500A), the voltage is changed while applying a voltage using ITO of element 1 as an anode and aluminum as a cathode, and the current flowing through the element is measured for each voltage to measure the electric field (E). The current density (J) (unit: mA / cm 2 ) with respect to (unit: MV / cm) is obtained.
The electric field (E) is a value obtained by dividing the voltage value by 100 nm, which is the film thickness of the charge transport layer, and the current density (J) is a value obtained by dividing the current value by the element area of 4 mm 2. be.
 次いで、N雰囲気において、素子1を80℃のホットプレート上で60分加熱する。素子1を常温に戻した後、再度素子に流れる電流を測定し、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求める。
 次いで、N雰囲気において、同じ素子1を90℃のホットプレート上で60分加熱する。素子1を常温に戻した後、再度素子に流れる電流を測定し、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求める。
Then, the N 2 atmosphere, heating 60 minutes element 1 at 80 ° C. on a hot plate. After returning the element 1 to room temperature, the current flowing through the element is measured again to obtain the current density (J) (unit: mA / cm 2) with respect to the electric field (E) (unit: MV / cm).
Then, the N 2 atmosphere, the same element 1 is heated 60 minutes at 90 ° C. on a hot plate. After returning the element 1 to room temperature, the current flowing through the element is measured again to obtain the current density (J) (unit: mA / cm 2) with respect to the electric field (E) (unit: MV / cm).
 得られた結果から、素子1の耐熱性を以下のように評価する。
 ×:80℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 △:90℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇:90℃に加熱後、0.4MV/cmの電流密度が初期の90%以上
From the obtained results, the heat resistance of the element 1 is evaluated as follows.
×: After heating to 80 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value Δ: After heating to 90 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value 〇: Heating to 90 ° C. After that, the current density of 0.4 MV / cm is 90% or more of the initial value.
<耐熱性評価2>
[導電性評価用の素子2の作製]
 三酸化モリブデンの代わりにHAT-CN,α-NPDの代わりにHT211を用いたこと以外は、[導電性評価用の素子1の作製]と同様に行い、導電性評価用の素子2を作製する。
<Heat resistance evaluation 2>
[Manufacturing of element 2 for conducting conductivity evaluation]
HAT-CN was used instead of molybdenum trioxide, and HT211 was used instead of α-NPD. ..
[素子2の耐熱性評価]
 加熱温度を100℃、110℃、120℃、130℃とし、加熱時間をそれぞれ15分間とした以外は[素子1の耐熱性評価]と同様に行い、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求める。
 得られた結果から、素子2の耐熱性を以下のように評価する。
 ×:100℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 △:110℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇:120℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇〇:130℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇〇〇:130℃に加熱後、0.4MV/cmの電流密度が初期の90%以上
[Evaluation of heat resistance of element 2]
The heating temperature was set to 100 ° C., 110 ° C., 120 ° C., and 130 ° C., and the heating time was set to 15 minutes, respectively. The current density (J) (unit: mA / cm 2 ) with respect to is obtained.
From the obtained results, the heat resistance of the element 2 is evaluated as follows.
×: After heating to 100 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value Δ: After heating to 110 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value 〇: Heating to 120 ° C. After, the current density of 0.4 MV / cm is less than 90% of the initial value 〇 〇: After heating to 130 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value 〇 〇 〇: After heating to 130 ° C, 0 .4 MV / cm current density is 90% or more of the initial value
 また、上述した含フッ素重合体は、製造時には、各層を構成する有機半導体と共蒸着した共蒸着膜として各層に導入するとよい。具体的には、例えば正孔注入層112と正孔輸送層113とにいずれも上述した含フッ素重合体を含ませる場合、正孔注入材料と含フッ素重合体とを共蒸着して共蒸着膜(第1膜)を形成した後、正孔輸送材料と含フッ素重合体とを共蒸着して共蒸着膜(第2膜)を形成するとよい。 Further, the above-mentioned fluorine-containing polymer may be introduced into each layer as a co-deposited film co-deposited with the organic semiconductors constituting each layer at the time of production. Specifically, for example, when the hole injection layer 112 and the hole transport layer 113 both contain the above-mentioned fluorine-containing polymer, the hole injection material and the fluorine-containing polymer are co-deposited to form a co-deposit film. After forming the (first film), the hole transport material and the fluorine-containing polymer may be co-deposited to form the co-deposited film (second film).
 以上のような構成の有機EL素子100によれば、正孔注入層112と正孔輸送層113の少なくとも一方が上述した含フッ素重合体を含むことにより、外部量子効率が向上し、消費電力が少ない有機EL素子となる。 According to the organic EL device 100 having the above configuration, since at least one of the hole injection layer 112 and the hole transport layer 113 contains the above-mentioned fluorine-containing polymer, the external quantum efficiency is improved and the power consumption is increased. There are few organic EL elements.
[第3実施形態]
 図7は、本発明の第3実施形態に係る有機EL素子200の説明図であり、図6に対応する図である。
 有機EL素子200は、基板210、陽極211、正孔注入層112、正孔輸送層113、発光層114、電子輸送層115、電子注入層116、陰極217がこの順に積層した構造を有している。本実施形態の有機EL素子200は、発光層114で生じた光Lが、陽極211および基板210を介して外部へ射出されるボトムエミッション方式を採用している。
[Third Embodiment]
FIG. 7 is an explanatory diagram of the organic EL element 200 according to the third embodiment of the present invention, and is a diagram corresponding to FIG.
The organic EL element 200 has a structure in which a substrate 210, an anode 211, a hole injection layer 112, a hole transport layer 113, a light emitting layer 114, an electron transport layer 115, an electron injection layer 116, and a cathode 217 are laminated in this order. There is. The organic EL element 200 of the present embodiment employs a bottom emission method in which the light L generated in the light emitting layer 114 is emitted to the outside via the anode 211 and the substrate 210.
 基板210は、光透過性を備えている。基板210の形成材料としては、ガラス、石英ガラス、窒化ケイ素等の無機物や、ポリイミド樹脂、アクリル樹脂、ポリカーボネート樹脂等の有機高分子(樹脂)を用いることができる。また、光透過性を有するならば、上記材料を積層または混合して形成された複合材料を用いることもできる。 The substrate 210 has light transmission. As the material for forming the substrate 210, an inorganic substance such as glass, quartz glass, or silicon nitride, or an organic polymer (resin) such as a polyimide resin, an acrylic resin, or a polycarbonate resin can be used. Further, if it has light transmission property, a composite material formed by laminating or mixing the above materials can also be used.
 陽極211は、基板210上に形成され、正孔輸送層113に正孔を供給する。陽極211の形成材料としては、ITOやIZO等の光透過性を有する導電性金属酸化物を用いることができる。 The anode 211 is formed on the substrate 210 and supplies holes to the hole transport layer 113. As the material for forming the anode 211, a conductive metal oxide having light transmittance such as ITO and IZO can be used.
 陰極217は、電子注入層116の上に形成されている。陰極217は、電子注入層116に電子を注入する機能を有する。また、陰極217は、発光層114において等方的に放射される光Lを反射し、陽極211の方へ向かわせる機能を有する。陰極217の形成材料としては、MgAg、Ag、Al等を用いることができる。陰極217の表面にはLiF等のバッファー層が形成されていてもよい。
 陰極217の厚さは、特に制限されないが、30~300nmが好ましい。陰極217の厚さは、例えば100nmである。
The cathode 217 is formed on the electron injection layer 116. The cathode 217 has a function of injecting electrons into the electron injecting layer 116. Further, the cathode 217 has a function of reflecting the light L emitted isotropically in the light emitting layer 114 and directing the light L toward the anode 211. As a material for forming the cathode 217, MgAg, Ag, Al and the like can be used. A buffer layer such as LiF may be formed on the surface of the cathode 217.
The thickness of the cathode 217 is not particularly limited, but is preferably 30 to 300 nm. The thickness of the cathode 217 is, for example, 100 nm.
 このような構成の有機EL素子200においても、第2実施形態で示した有機EL素子100と同様に、上述したいずれか1層または複数層に、上述した含フッ素重合体を含むことが好ましい。詳しくは、有機EL素子200は、正孔注入層112と正孔輸送層113の少なくとも一方の層に、上述した含フッ素重合体を含むことが好ましい。
 また、有機EL素子200は、電子輸送層115と電子注入層116の少なくとも一方の層に、上述した含フッ素重合体を含むことが好ましい。
 さらに、有機EL素子200は、正孔注入層112と正孔輸送層113の少なくとも一方、および電子輸送層115と電子注入層116の少なくとも一方に、上述した含フッ素重合体を含むことが好ましい。
 これにより、有機EL素子200は、含フッ素重合体を含まない従来の有機EL素子と比べて、光取出し効率が向上する。
Similarly to the organic EL element 100 shown in the second embodiment, the organic EL element 200 having such a configuration preferably contains the above-mentioned fluorine-containing polymer in any one or more layers described above. Specifically, the organic EL element 200 preferably contains the above-mentioned fluorine-containing polymer in at least one layer of the hole injection layer 112 and the hole transport layer 113.
Further, the organic EL element 200 preferably contains the above-mentioned fluorine-containing polymer in at least one layer of the electron transport layer 115 and the electron injection layer 116.
Further, the organic EL element 200 preferably contains the above-mentioned fluorine-containing polymer in at least one of the hole injection layer 112 and the hole transport layer 113, and at least one of the electron transport layer 115 and the electron injection layer 116.
As a result, the organic EL element 200 has improved light extraction efficiency as compared with the conventional organic EL element that does not contain a fluorine-containing polymer.
 以上のような構成の有機EL素子200によっても、各層が上述した含フッ素重合体を含むことにより、外部量子効率が向上し、消費電力が少ない有機EL素子となる。
 また、上述した含フッ素重合体を含んだ各層は、耐熱性が高い。そのため、本実施形態の有機EL素子200は、信頼性が高い有機EL素子200となる。
 有機EL素子200の耐熱性は、上述の有機EL素子100の耐熱性と同様の方法で評価することができる。
 なお、有機EL素子100または有機EL素子200は、各層の間に、その他の機能層を配置してもよい。例えば、発光層と電荷輸送層の間に、正孔ブロック層や電子ブロック層を配置してもよいし、前述のマイクロキャビティ構造を形成するための調整層を配置してもよい。
Even with the organic EL device 200 having the above configuration, the external quantum efficiency is improved and the power consumption is low because each layer contains the above-mentioned fluorine-containing polymer.
In addition, each layer containing the above-mentioned fluorine-containing polymer has high heat resistance. Therefore, the organic EL element 200 of the present embodiment is a highly reliable organic EL element 200.
The heat resistance of the organic EL element 200 can be evaluated by the same method as the heat resistance of the organic EL element 100 described above.
The organic EL element 100 or the organic EL element 200 may have other functional layers arranged between the layers. For example, a hole block layer or an electron block layer may be arranged between the light emitting layer and the charge transport layer, or an adjusting layer for forming the above-mentioned microcavity structure may be arranged.
 また、有機EL素子100または有機EL素子200において、光射出方向に量子ドットを含む波長変換層を配置してもよい。このような波長変換層を有することにより、射出する光の色純度を向上させた有機EL素子となる。
 有機EL素子100または有機EL200において、発光層114の形成材料として量子ドットを用いてもよい。
 量子ドットとは、量子力学に従う独特な光学特性を持つナノスケールの半導体結晶を指す。量子ドットは、通常、2~10nmの直径の単結晶粒子である。量子ドットは、結晶サイズ(=粒径)に応じてバンドギャップが変化するため、粒径を調整することでバンドギャップを調整することができ、所望の発光波長が得られる。
Further, in the organic EL element 100 or the organic EL element 200, a wavelength conversion layer containing quantum dots may be arranged in the light emission direction. By having such a wavelength conversion layer, it becomes an organic EL element in which the color purity of the emitted light is improved.
In the organic EL element 100 or the organic EL 200, quantum dots may be used as a material for forming the light emitting layer 114.
Quantum dots refer to nanoscale semiconductor crystals with unique optical properties that follow quantum mechanics. Quantum dots are usually single crystal particles with a diameter of 2-10 nm. Since the bandgap of the quantum dot changes according to the crystal size (= particle size), the bandgap can be adjusted by adjusting the particle size, and a desired emission wavelength can be obtained.
 量子ドットとしては、溶液に分散可能なコロイド状量子ドットを用いることも可能である。このようなコロイド状量子ドットは、一般的なウェットコーティング技術を用いて成膜することが出来る。
 量子ドットの種類は特に制限はなく、ペロブスカイト量子ドット、炭素系量子ドット、合金型量子ドット、コア・シェル型量子ドット、コア型量子ドットを用いることが出来る。
As the quantum dots, colloidal quantum dots that can be dispersed in a solution can also be used. Such colloidal quantum dots can be formed by using a general wet coating technique.
The type of quantum dots is not particularly limited, and perovskite quantum dots, carbon-based quantum dots, alloy-type quantum dots, core-shell type quantum dots, and core-type quantum dots can be used.
 また、上述の実施形態においては、有機光電子素子として有機EL素子を例示して説明したが、本発明の含フッ素重合体を含む膜が適用される有機光電子素子は、有機EL素子に限らない。
 本発明の有機光電子素子は、例えば有機半導体レーザーであってもよい。有機半導体レーザーとしては公知の構成を採用できる。有機半導体レーザーを構成する有機半導体からなるいずれかの膜に上述の含フッ素重合体を含む膜を採用することにより、外部量子効率が向上した有機半導体レーザーとなる。
 また、本発明の有機光電子素子は、例えば、光センサ、太陽電池などの受光素子であってもよい。光センサおよび太陽電池としては公知の構成を採用できる。
 光センサおよび太陽電池を構成する有機半導体からなるいずれかの膜に上述の含フッ素重合体を含む膜を採用することにより、検出性能を向上させた光センサや、発電効率を向上させた太陽電池となる。
Further, in the above-described embodiment, the organic EL device has been described as an example of the organic photoelectronic device, but the organic photoelectronic device to which the film containing the fluorine-containing polymer of the present invention is applied is not limited to the organic EL device.
The organic photoelectronic device of the present invention may be, for example, an organic semiconductor laser. A known configuration can be adopted as the organic semiconductor laser. By adopting a film containing the above-mentioned fluorine-containing polymer as one of the films made of organic semiconductors constituting the organic semiconductor laser, the organic semiconductor laser having improved external quantum efficiency can be obtained.
Further, the organic photoelectron element of the present invention may be, for example, a light receiving element such as an optical sensor or a solar cell. Known configurations can be adopted for the optical sensor and the solar cell.
An optical sensor with improved detection performance and a solar cell with improved power generation efficiency by adopting a film containing the above-mentioned fluorine-containing polymer as one of the films composed of an optical sensor and an organic semiconductor constituting a solar cell. It becomes.
 以上、添付図面を参照しながら本発明に係る好適な実施の形態例について説明したが、本発明は係る例に限定されない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiment of the present invention has been described above with reference to the accompanying drawings, the present invention is not limited to such an example. The various shapes and combinations of the constituent members shown in the above-mentioned examples are examples, and can be variously changed based on design requirements and the like within a range that does not deviate from the gist of the present invention.
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。 The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
<評価方法>
 本実施形態においては、以下の各方法により評価を行った。
<Evaluation method>
In this embodiment, evaluation was performed by each of the following methods.
[含フッ素重合体の真空下における熱重量減少率の測定]
 真空示差熱天秤(アドバンス理工社製:VPE-9000)を用いて測定した。含フッ素重合体50mgを内径7mmのセルに仕込み、1×10-3Paの真空度にて、室温から500℃まで毎分2℃で昇温させた際の、含フッ素重合体の初期重量(50mg)に対する重量減少率(%)を測定した。
 重量減少率が100%となる温度(Td100)、重量減少率が10%となる温度(Td10)および重量減少率が90%となる温度(Td90)を求めた。
[Measurement of thermogravimetric reduction rate of fluorine-containing polymer under vacuum]
The measurement was performed using a vacuum differential thermal balance (manufactured by Advance Riko Co., Ltd .: VPE-9000). Were charged fluoropolymer 50mg to the cells of the inner diameter 7 mm, at 1 × 10 -3 Pa vacuum degree, when the temperature was raised per minute 2 ℃ to 500 ° C. from room temperature, the initial weight of the fluoropolymer ( The weight loss rate (%) with respect to 50 mg) was measured.
The temperature at which the weight loss rate was 100% (T d100 ), the temperature at which the weight loss rate was 10% (T d10 ), and the temperature at which the weight loss rate was 90% (T d90 ) were determined.
[融点の測定]
 示差走査熱量計(NETZSCH製:DSC 204 F1 Phoenix)を用いて測定した。含フッ素重合体9mgを試料容器に仕込み、-70℃から350まで毎分10℃で昇温させた際の熱容量を測定し、得られた融解ピークより融点を求めた。
[Measurement of melting point]
The measurement was performed using a differential scanning calorimeter (manufactured by NETZSCH: DSC 204 F1 Phoenix). 9 mg of the fluorine-containing polymer was charged in a sample container, the heat capacity when the temperature was raised from −70 ° C. to 350 at 10 ° C. per minute was measured, and the melting point was determined from the obtained melting peak.
[貯蔵弾性率の測定]
 本実施形態において、貯蔵弾性率は、動的粘弾性測定装置(アントンパール社製、MCR502)、および粘弾性測定装置用加熱炉(アントンパール社製、CTD450)を用いて測定する値を採用した。
 具体的には、試料(含フッ素重合体)を融点以上に加熱した後、定速降温モードで2℃/分で降温させた。上記測定装置を用い、歪み0.01%、周波数1Hzの条件で貯蔵弾性率(G’)を測定し、25℃におけるG’およびG’が1×10Pa未満になる温度を求めた。
[Measurement of storage elastic modulus]
In the present embodiment, the storage elastic modulus adopts a value measured using a dynamic viscoelasticity measuring device (manufactured by Anton Pearl Co., Ltd., MCR502) and a heating furnace for a viscoelasticity measuring device (manufactured by Anton Pearl Co., Ltd., CTD450). ..
Specifically, the sample (fluorine-containing polymer) was heated to a temperature equal to or higher than the melting point, and then cooled at 2 ° C./min in a constant-speed temperature lowering mode. Using the above measuring device, the storage elastic modulus (G') was measured under the conditions of a strain of 0.01% and a frequency of 1 Hz, and the temperature at which G'and G'at 25 ° C. became less than 1 × 10 6 Pa was determined.
<含フッ素重合体の合成>
 評価に用いた含フッ素重合体は、以下のように合成した。
[合成例1]
 内容積1.351Lのジャケット付きの重合槽(ステンレス鋼製)を脱気し、重合槽内に、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(AE-3000、AGC社製)を701g、ペルフルオロプロピルビニルエーテル(PPVE)を57g、テトラフルオロエチレン(TFE)を108g、メタノールを35.7g、それぞれ秤量して仕込んだ。
<Synthesis of Fluorine-Containing Polymer>
The fluorine-containing polymer used for the evaluation was synthesized as follows.
[Synthesis Example 1]
A polymerization tank (made of stainless steel) with a jacket having an internal volume of 1.351 L is degassed, and 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether (AE) is placed in the polymerization tank. 701 g of -3000 (manufactured by AGC), 57 g of perfluoropropyl vinyl ether (PPVE), 108 g of tetrafluoroethylene (TFE), and 35.7 g of methanol were weighed and charged.
 重合槽の温度を60℃に保持して、t-ブチルパーオキシピバレート(PBPV)の0.53質量%溶液(溶媒:AE-3000)の18.9mLを仕込み、重合を開始させた。
 重合中、重合の進行に伴い重合圧力が低下するため、重合圧力がほぼ一定になるように重合槽内にTFEを連続的に導入した。重合圧力は、1.04±0.04MPaG(ゲージ圧)に保持した。
 なお、「ゲージ圧」とは、大気圧を0MPaGとする相対圧力であり、真空をゼロとする絶対圧力との差を指す。
The temperature of the polymerization tank was maintained at 60 ° C., and 18.9 mL of a 0.53 mass% solution (solvent: AE-3000) of t-butylperoxypivalate (PBPV) was charged to initiate polymerization.
Since the polymerization pressure decreases as the polymerization progresses during the polymerization, TFE was continuously introduced into the polymerization tank so that the polymerization pressure became substantially constant. The polymerization pressure was maintained at 1.04 ± 0.04 MPaG (gauge pressure).
The "gauge pressure" is a relative pressure with an atmospheric pressure of 0 MPaG, and refers to a difference from an absolute pressure with a vacuum of zero.
 TFEの導入量が121gになった時点で重合を終了させ、含フッ素重合体を得た。得られた重合体の組成は、PPVE単位:TFE単位=2:98(モル%)であった。 When the amount of TFE introduced reached 121 g, the polymerization was terminated to obtain a fluorine-containing polymer. The composition of the obtained polymer was PPVE unit: TFE unit = 2:98 (mol%).
 次いで、得られた重合体を330℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで40時間加熱することで、末端基をメチルエステル基に置換し、含フッ素重合体Aを得た。 Next, the obtained polymer was heated in an oven at 330 ° C., immersed in methanol, and heated in an oven at 75 ° C. for 40 hours to replace the terminal group with a methyl ester group to obtain the fluorine-containing polymer A. Obtained.
 得られた含フッ素重合体Aの44gを上述したガラスチューブ式の昇華精製装置の原料仕込み部に仕込み、捕集部内を3.0×10-3Paに減圧した。次いで、原料仕込み部を330℃まで徐々に加温し、含フッ素重合体Aを昇華させた。昇華精製装置では、捕集部を仕込み部に近い側から310℃、280℃、250℃の設定温度で加熱した。
 このうち、設定温度280℃の捕集部に析出させた物質を回収し、精製した4gの含フッ素重合体A1を得た。
44 g of the obtained fluorine-containing polymer A was charged into the raw material charging section of the above-mentioned glass tube type sublimation purification apparatus, and the pressure inside the collecting section was reduced to 3.0 × 10 -3 Pa. Next, the raw material charging portion was gradually heated to 330 ° C. to sublimate the fluorine-containing polymer A. In the sublimation purification apparatus, the collecting portion was heated at set temperatures of 310 ° C., 280 ° C., and 250 ° C. from the side closer to the charging portion.
Of these, the substance precipitated in the collection section at the set temperature of 280 ° C. was recovered to obtain 4 g of the purified fluorine-containing polymer A1.
[合成例2]
 AE-3000を649g、PPVEを152g、TFEを109g、メタノールを15.5g、PBPVの0.79質量%溶液(溶媒:AE-3000)の18.9mL用いたこと以外は合成例1と同様にして、含フッ素重合体を得た。
 得られた含フッ素重合体の組成は、PPVE単位:TFE単位=4:96(モル%)であった。
 次いで、合成例1と同様の条件で含フッ素重合体の末端基をメチルエステル基に置換し、含フッ素重合体Bを得た。
[Synthesis Example 2]
Same as Synthesis Example 1 except that 649 g of AE-3000, 152 g of PPVE, 109 g of TFE, 15.5 g of methanol, and 18.9 mL of a 0.79 mass% solution of PBPV (solvent: AE-3000) were used. To obtain a fluorine-containing polymer.
The composition of the obtained fluorine-containing polymer was PPVE unit: TFE unit = 4: 96 (mol%).
Next, the terminal group of the fluorine-containing polymer was replaced with a methyl ester group under the same conditions as in Synthesis Example 1 to obtain a fluorine-containing polymer B.
 含フッ素重合体Bを20g用いたこと以外は合成例1と同様にして含フッ素重合体Bを昇華させた。設定温度250℃の捕集部に析出させた物質を回収し、精製した2gの含フッ素重合体B1を得た。 The fluorinated polymer B was sublimated in the same manner as in Synthesis Example 1 except that 20 g of the fluorinated polymer B was used. The substance precipitated in the collection section at a set temperature of 250 ° C. was recovered to obtain 2 g of purified fluorine-containing polymer B1.
 また、得られた含フッ素重合体Bの20gを超臨界抽出装置の圧力容器に仕込み、二酸化炭素による超臨界抽出を行った。
 抽出温度を40℃、抽出圧力30MPa、二酸化炭素流量30ml/分で(条件1)0.2gを抽出した後、抽出温度を80℃、抽出圧力を60MPaに上げ、さらにエントレーナーとしてAC-2000(AGC社製)を二酸化炭素に対して10体積%の比率で用いて(条件2)1.4gの抽出物を得た。
 条件2で得られた抽出物を、含フッ素重合体B2とした。
Further, 20 g of the obtained fluorine-containing polymer B was charged into a pressure vessel of a supercritical extraction device, and supercritical extraction was performed with carbon dioxide.
After extracting 0.2 g (Condition 1) at an extraction temperature of 40 ° C., an extraction pressure of 30 MPa, and a carbon dioxide flow rate of 30 ml / min, the extraction temperature was raised to 80 ° C. and the extraction pressure was increased to 60 MPa. (Manufactured by AGC) was used at a ratio of 10% by volume with respect to carbon dioxide (Condition 2) to obtain 1.4 g of an extract.
The extract obtained under Condition 2 was designated as a fluorine-containing polymer B2.
[合成例3]
 合成例2と同様にして製造した含フッ素重合体を330℃のオーブンで加熱した後、特開平11-152310号公報の段落[0040]に記載の方法で処理し、フッ素ガスにより含フッ素重合体の末端基を-CF基に置換して、含フッ素重合体Cを得た。
 原料仕込み部を360℃まで徐々に加温したこと以外は合成例1と同様にして含フッ素重合体Cを昇華させた。設定温度250℃および280℃の捕集部に析出させた物質を回収し、精製した6gの含フッ素重合体C1を得た。
[Synthesis Example 3]
The fluorine-containing polymer produced in the same manner as in Synthesis Example 2 is heated in an oven at 330 ° C., treated by the method described in paragraph [0040] of JP-A-11-152310, and the fluorine-containing polymer is treated with fluorine gas. The terminal group of −CF was replaced with 3 groups of −CF to obtain a fluorine-containing polymer C.
The fluorine-containing polymer C was sublimated in the same manner as in Synthesis Example 1 except that the raw material preparation portion was gradually heated to 360 ° C. The substance precipitated in the collection section at the set temperature of 250 ° C. and 280 ° C. was recovered to obtain 6 g of purified fluorine-containing polymer C1.
[合成例4]
 内容積1006mLのステンレス製オートクレーブに、PPVEを57.9g、AC2000(AGC社製)を767g、メタノールを4.13g、アゾビスイソブチロニトリル(AIBN)を1.24g仕込み、液体窒素で凍結脱気をした。
 オートクレーブを70℃に昇温した後、オートクレーブ内にTFEを48.4g導入し、重合反応を開始させた。重合の進行により、オートクレーブ内の圧力が低下するため、TFEを連続的に供給し、オートクレーブの温度と圧力を一定に保持しながら重合させた。重合開始から5時間後にオートクレーブを冷却して重合反応を停止し、系内のガスを排出して反応溶液を得た。
[Synthesis Example 4]
In a stainless steel autoclave with an internal volume of 1006 mL, 57.9 g of PPVE, 767 g of AC2000 (manufactured by AGC), 4.13 g of methanol, and 1.24 g of azobisisobutyronitrile (AIBN) were charged and frozen in liquid nitrogen. I was worried.
After the temperature of the autoclave was raised to 70 ° C., 48.4 g of TFE was introduced into the autoclave to start the polymerization reaction. Since the pressure in the autoclave decreases as the polymerization progresses, TFE was continuously supplied and the polymerization was carried out while keeping the temperature and pressure of the autoclave constant. Five hours after the start of the polymerization, the autoclave was cooled to stop the polymerization reaction, and the gas in the system was discharged to obtain a reaction solution.
 反応溶液にメタノールを800g加えて混合し反応溶液に溶解する重合体を析出させた後、層分離させ、重合体が分散している下層を回収した。得られた重合体の分散液を80℃で16時間温風乾燥し、次に100℃で16時間真空乾燥して、含フッ素重合体を19g得た。
 得られた含フッ素重合体の組成は、PPVE単位:TFE単位=6:94(モル%)であった。
800 g of methanol was added to the reaction solution and mixed to precipitate a polymer dissolved in the reaction solution, followed by layer separation, and the lower layer in which the polymer was dispersed was recovered. The dispersion of the obtained polymer was dried with warm air at 80 ° C. for 16 hours and then vacuum dried at 100 ° C. for 16 hours to obtain 19 g of a fluorine-containing polymer.
The composition of the obtained fluorine-containing polymer was PPVE unit: TFE unit = 6: 94 (mol%).
 次いで、合成例1と同様にして含フッ素重合体の末端基をメチルエステル基に置換し、含フッ素重合体Dを得た。
 合成例1と同様にして含フッ素重合体Dを昇華させた。設定温度250℃および280℃の捕集部に析出させた物質を回収し、精製した5gの含フッ素重合体D1を得た。
Next, the terminal group of the fluorine-containing polymer was replaced with a methyl ester group in the same manner as in Synthesis Example 1 to obtain a fluorine-containing polymer D.
The fluorine-containing polymer D was sublimated in the same manner as in Synthesis Example 1. The substance precipitated in the collection section at the set temperature of 250 ° C. and 280 ° C. was recovered to obtain 5 g of the purified fluorine-containing polymer D1.
[合成例5]
 PPVEを69.4g、メタノールを4.18g、AIBNを1.26g用いたこと以外は、合成例4と同様にして、含フッ素重合体を得た。
 得られた含フッ素重合体の組成は、PPVE単位:TFE単位=8:92(モル%)であった。
[Synthesis Example 5]
A fluorine-containing polymer was obtained in the same manner as in Synthesis Example 4, except that 69.4 g of PPVE, 4.18 g of methanol, and 1.26 g of AIBN were used.
The composition of the obtained fluorine-containing polymer was PPVE unit: TFE unit = 8:92 (mol%).
 次いで、合成例3と同様の条件で含フッ素重合体の末端基を-CF基に置換して、含フッ素重合体Eを得た。
 合成例2と同様にして含フッ素重合体Eを昇華させ、精製した4gの含フッ素重合体E1を得た。
Next, the terminal group of the fluorine-containing polymer was replaced with 3 -CF groups under the same conditions as in Synthesis Example 3 to obtain a fluorine-containing polymer E.
The fluorine-containing polymer E was sublimated in the same manner as in Synthesis Example 2 to obtain 4 g of the purified fluorine-containing polymer E1.
[合成例6]
 PPVEを78.9g、メタノールを4.23g、AIBNを1.27g用いたこと以外は、合成例4と同様にして、含フッ素重合体を得た。
 得られた含フッ素重合体の組成は、PPVE単位:TFE単位=9:91(モル%)であった。
[Synthesis Example 6]
A fluorine-containing polymer was obtained in the same manner as in Synthesis Example 4, except that 78.9 g of PPVE, 4.23 g of methanol and 1.27 g of AIBN were used.
The composition of the obtained fluorine-containing polymer was PPVE unit: TFE unit = 9:91 (mol%).
 次いで、合成例1と同様にして含フッ素重合体の末端基をメチルエステル基に置換し、含フッ素重合体Fを得た。
 合成例1と同様にして含フッ素重合体Fを昇華させ、精製した4gの含フッ素重合体F1を得た。
Then, the terminal group of the fluorine-containing polymer was replaced with a methyl ester group in the same manner as in Synthesis Example 1 to obtain a fluorine-containing polymer F.
The fluorine-containing polymer F was sublimated in the same manner as in Synthesis Example 1 to obtain 4 g of the purified fluorine-containing polymer F1.
[合成例7]
 PPVEを85.9g、メタノールを4.27g、AIBNを1.28g用いたこと以外は、合成例4と同様にして、含フッ素重合体を得た。
 得られた含フッ素重合体の組成は、PPVE単位:TFE単位=10:90(モル%)であった。
[Synthesis Example 7]
A fluorine-containing polymer was obtained in the same manner as in Synthesis Example 4, except that 85.9 g of PPVE, 4.27 g of methanol, and 1.28 g of AIBN were used.
The composition of the obtained fluorine-containing polymer was PPVE unit: TFE unit = 10:90 (mol%).
 次いで、合成例3と同様の条件で含フッ素重合体の末端基を-CF基に置換して、含フッ素重合体Gを得た。
 合成例3と同様にして含フッ素重合体Gを昇華させた。設定温度250℃、280℃および310℃の捕集部に析出させた物質を回収し、精製した6gの含フッ素重合体G1を得た。
Next, the terminal group of the fluorine-containing polymer was replaced with 3 -CF groups under the same conditions as in Synthesis Example 3 to obtain a fluorine-containing polymer G.
The fluorine-containing polymer G was sublimated in the same manner as in Synthesis Example 3. The substance precipitated in the collection section at the set temperature of 250 ° C., 280 ° C. and 310 ° C. was recovered to obtain 6 g of the purified fluorine-containing polymer G1.
[合成例8]
 PPVEを152.9g、メタノールを2.40g、AIBNを1.15g、TFEを56.3g用いたこと以外は、合成例4と同様にして、含フッ素重合体を得た。
 得られた含フッ素重合体の組成は、PPVE単位:TFE単位=14:86(モル%)であった。
[Synthesis Example 8]
A fluorine-containing polymer was obtained in the same manner as in Synthesis Example 4, except that 152.9 g of PPVE, 2.40 g of methanol, 1.15 g of AIBN, and 56.3 g of TFE were used.
The composition of the obtained fluorine-containing polymer was PPVE unit: TFE unit = 14:86 (mol%).
 次いで、得られた含フッ素重合体を330℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで40時間加熱することで、末端基をメチルエステル基に置換し、含フッ素重合体Hを得た。
 合成例1と同様にして含フッ素重合体Hを昇華させ、精製した4gの含フッ素重合体H1を得た。
Next, the obtained fluorine-containing polymer was heated in an oven at 330 ° C., then immersed in methanol and heated in an oven at 75 ° C. for 40 hours to replace the terminal group with a methyl ester group, and the fluorine-containing polymer was used. I got H.
The fluorine-containing polymer H was sublimated in the same manner as in Synthesis Example 1 to obtain 4 g of the purified fluorine-containing polymer H1.
[合成例9]
 ペルフルオロ(3-ブテニルビニルエーテル)を30g、AC2000(AGC社製)を30g、メタノールを0.5g、ジイソプロピルペルオキシジカーボネート(IPP)を0.44gを秤量し、内容積50mlのガラス製反応器に仕込んだ。反応器内を高純度窒素ガスにて置換した後、40℃に加熱して24時間重合を行った。
 得られた溶液を、666Pa(絶対圧)、50℃の条件で脱溶し、重合体を28g得た。
[Synthesis Example 9]
Weigh 30 g of perfluoro (3-butenyl vinyl ether), 30 g of AC2000 (manufactured by AGC), 0.5 g of methanol, and 0.44 g of diisopropyl peroxydicarbonate (IPP) into a glass reactor with an internal volume of 50 ml. I prepared it. After replacing the inside of the reactor with high-purity nitrogen gas, the mixture was heated to 40 ° C. and polymerized for 24 hours.
The obtained solution was desolubilized under the conditions of 666 Pa (absolute pressure) and 50 ° C. to obtain 28 g of a polymer.
 次いで、得られた重合体を300℃のオーブンで加熱した後、メタノールに浸漬し、75℃のオーブンで20時間加熱することで、末端基をメチルエステル基に置換し、含フッ素重合体Iを得た。
 合成例4と同様にして含フッ素重合体Iを昇華精製し、精製した4gの含フッ素重合体I1を得た。
Next, the obtained polymer was heated in an oven at 300 ° C., then immersed in methanol and heated in an oven at 75 ° C. for 20 hours to replace the terminal group with a methyl ester group to obtain the fluorine-containing polymer I. Obtained.
The fluorine-containing polymer I was sublimated and purified in the same manner as in Synthesis Example 4 to obtain 4 g of the purified fluorine-containing polymer I1.
[合成例10]
 内容積1.351Lのジャケット付きの重合槽(ステンレス鋼製)を脱気し、重合槽内に、R113(1,1,2-トリクロロ-1,2,2-トリフルオロエタン、AGC社製)331gと、メタノール1.1gと、ヘキサフルオロプロペン(HFP)765gを仕込んだ。さらに、重合槽内に、TFEを温度50℃で1.34MPaGとなるよう仕込んだ。
 次いで、ビス(ペルフルオロブチリル)ペルオキシドの1.5質量%溶液(溶媒:R113)を54.7ml仕込み、重合を開始させた。
[Synthesis Example 10]
A polymerization tank (made of stainless steel) with a jacket with an internal volume of 1.351 L is degassed, and R113 (1,1,2-trichloro-1,2,2-trifluoroethane, manufactured by AGC) is placed in the polymerization tank. 331 g, 1.1 g of methanol, and 765 g of hexafluoropropene (HFP) were charged. Further, TFE was charged in the polymerization tank so as to have a temperature of 1.34 MPaG at a temperature of 50 ° C.
Next, 54.7 ml of a 1.5% by mass solution (solvent: R113) of bis (perfluorobutyryl) peroxide was charged to initiate polymerization.
 重合の進行に伴い重合槽内の圧力が低下するため、重合圧力がほぼ一定になるようにTFEを連続的に仕込んだ。重合圧力は、1.34MPaGに保持した。
 重合槽内にビス(ペルフルオロブチリル)ペルオキシドの1.5質量%溶液(溶媒:R113)を間欠で仕込み、TFEが86g消費された時点で重合を終了させ、含フッ素共重合体Jを得た。TFEの消費量は、TFEのガスボンベの質量減少量から求めた。
Since the pressure in the polymerization tank decreases as the polymerization progresses, TFE was continuously charged so that the polymerization pressure became almost constant. The polymerization pressure was maintained at 1.34 MPaG.
A 1.5% by mass solution (solvent: R113) of bis (perfluorobutyryl) peroxide was intermittently charged in the polymerization tank, and the polymerization was terminated when 86 g of TFE was consumed to obtain a fluorine-containing copolymer J. .. The amount of TFE consumed was determined from the amount of mass loss of the TFE gas cylinder.
 得られた含フッ素重合体Jの組成は、HFP単位:TFE単位=8:92(モル%)であった。
 合成例4と同様にして含フッ素重合体Jを昇華させ、精製した4gの含フッ素重合体J1を得た。
The composition of the obtained fluorine-containing polymer J was HFP unit: TFE unit = 8:92 (mol%).
The fluorine-containing polymer J was sublimated in the same manner as in Synthesis Example 4 to obtain 4 g of the purified fluorine-containing polymer J1.
 また、市販の含フッ素重合体として、TFEとペルフルオロアルキルビニルエーテルとの共重合体(PFA)である以下の材料を用いた。
 Fluon PFA:AGC社製 Fluon PFA P-63
Further, as a commercially available fluorine-containing polymer, the following material, which is a copolymer (PFA) of TFE and perfluoroalkyl vinyl ether, was used.
Fluoron PFA: AGC's Fluoron PFA P-63
 合成した含フッ素重合体について、上述の方法で物性を測定した。測定した物性を表1に示す。
Figure JPOXMLDOC01-appb-T000003
The physical properties of the synthesized fluorine-containing polymer were measured by the above-mentioned method. The measured physical properties are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
 表1に示したとおり、含フッ素樹脂A1~G1およびJ1は、上述の実施形態で示した要件(1)~(3)を満たすが、含フッ素重合体B、HおよびFluon PFAは要件(2)、(3)を、含フッ素重合体I1、H1およびHは要件(1)を満たしていないことが分かる。なお、含フッ素重合体I1は、非晶性であり結晶性を有さないことから、融点は検出されなかった。 As shown in Table 1, the fluorine-containing resins A1 to G1 and J1 satisfy the requirements (1) to (3) shown in the above-described embodiment, while the fluorine-containing polymers B, H and FluonPFA satisfy the requirement (2). ), (3), it can be seen that the fluorine-containing polymers I1, H1 and H do not satisfy the requirement (1). Since the fluorine-containing polymer I1 is amorphous and has no crystallinity, its melting point was not detected.
 表1に示した含フッ素重合体を用い、以下評価1~5を行った。
<評価1:蒸着時のチャンバー圧変化>
[蒸着時のチャンバー圧変化の評価法]
 真空蒸着機に含フッ素重合体を0.1g仕込み、チャンバー内の圧力を10-4Pa以下に減圧した上で、含フッ素重合体を蒸着速度0.1nm/秒で200nm成膜した。この際にチャンバー内の圧力をモニターし、蒸着時における圧力の最大値を計測した。計測値を用い、下記計算式より圧力の上昇倍率を求めた。
 蒸着時のチャンバー圧力の上昇倍率=蒸着中の最大圧力/蒸着前の初期圧力
 チャンバー圧力の上昇倍率が2倍以下である含フッ素重合体は「良品」と評価し、上昇倍率が2倍を超える含フッ素重合体は「不良」と評価した。
Evaluations 1 to 5 were carried out below using the fluorine-containing polymers shown in Table 1.
<Evaluation 1: Change in chamber pressure during vapor deposition>
[Evaluation method of chamber pressure change during vapor deposition]
0.1 g of the fluorine-containing polymer was charged into a vacuum vapor deposition machine, the pressure in the chamber was reduced to 10 -4 Pa or less, and then the fluorine-containing polymer was deposited at a vapor deposition rate of 0.1 nm / sec to 200 nm. At this time, the pressure in the chamber was monitored, and the maximum value of the pressure at the time of vapor deposition was measured. Using the measured values, the pressure increase rate was calculated from the following formula.
Increase ratio of chamber pressure during vapor deposition = Maximum pressure during vapor deposition / Initial pressure before vapor deposition Fluorine-containing polymers whose chamber pressure increase ratio is 2 times or less are evaluated as "good products" and the increase ratio exceeds 2 times. The fluorine-containing polymer was evaluated as "defective".
<評価2:屈折率>
[屈折率測定用試料の作製]
 シリコン基板上に、有機半導体であるα-NPDと、含フッ素重合体と、を共蒸着し、100nmの共蒸着膜を成膜して、屈折率測定用試料を得た。2つの材料の合計の蒸着速度は0.2nm/秒とした。蒸着速度を調整し、共蒸着膜におけるα-NPDと含フッ素重合体の体積比を所望の比率とした。
<Evaluation 2: Refractive index>
[Preparation of sample for refractive index measurement]
An organic semiconductor α-NPD and a fluorine-containing polymer were co-deposited on a silicon substrate to form a 100 nm co-deposited film to obtain a sample for refractive index measurement. The total deposition rate of the two materials was 0.2 nm / sec. The vapor deposition rate was adjusted so that the volume ratio of α-NPD to the fluorine-containing polymer in the co-deposited film was set to a desired ratio.
[屈折率の測定]
 多入射角分光エリプソメトリー(ジェー・エー・ウーラム社製:M-2000U)を用いて、シリコン基板上の膜に対して、光の入射角を45~75度の範囲で5度ずつ変えて測定を行った。それぞれの角度において、波長450~800nmの範囲で約1.6nmおきにエリプソメトリーパラメータであるΨとΔを測定した。前記の測定データを用い、有機半導体の誘電関数をCauchyモデルによりフィッティング解析を行い、波長600nmの光に対する蒸着膜の屈折率を得た。
[Measurement of refractive index]
Using multi-incident angle spectroscopic ellipsometry (manufactured by JA Woolam Co., Ltd .: M-2000U), the incident angle of light is changed by 5 degrees in the range of 45 to 75 degrees with respect to the film on the silicon substrate. Was done. At each angle, ellipsometry parameters Ψ and Δ were measured at wavelengths in the range of 450-800 nm at intervals of approximately 1.6 nm. Using the above measurement data, the dielectric function of the organic semiconductor was subjected to fitting analysis by the Cauchy model to obtain the refractive index of the vapor-deposited film with respect to light having a wavelength of 600 nm.
<評価3:ヘイズ>
[ヘイズ測定用試料の作製]
 ガラス基板上に、α-NPDと、含フッ素重合体と、を共蒸着し、100nmの共蒸着膜を成膜して、ヘイズ測定用試料を得た。2つの材料の合計の蒸着速度は0.2nm/秒とした。蒸着速度を調整し、共蒸着膜におけるα-NPDと含フッ素重合体の体積比を所望の比率とした。
<Evaluation 3: Haze>
[Preparation of sample for haze measurement]
Α-NPD and a fluorine-containing polymer were co-deposited on a glass substrate to form a 100 nm co-deposited film to obtain a sample for haze measurement. The total deposition rate of the two materials was 0.2 nm / sec. The vapor deposition rate was adjusted so that the volume ratio of α-NPD to the fluorine-containing polymer in the co-deposited film was set to a desired ratio.
[ヘイズ測定]
 ヘイズ測定は、ヘイズメーター(東洋精機社製、ヘイズガードK50-290)を用いて行った。
 ヘイズ測定用試料の初期ヘイズを測定後、試料を100℃に熱したホットプレート上で1時間加熱した。試料を常温に戻した後に、再度ヘイズを測定した。さらに、試料を120℃に熱したホットプレート上で1時間加熱し、同様にしてヘイズを測定した。
[Haze measurement]
The haze measurement was performed using a haze meter (Haze Guard K50-290, manufactured by Toyo Seiki Co., Ltd.).
After measuring the initial haze of the haze measurement sample, the sample was heated on a hot plate heated to 100 ° C. for 1 hour. After returning the sample to room temperature, the haze was measured again. Further, the sample was heated on a hot plate heated to 120 ° C. for 1 hour, and the haze was measured in the same manner.
 得られたヘイズについて、以下のように評価した。
 〇:0.2未満
 △:0.2以上0.5未満
 ×:0.5以上
The obtained haze was evaluated as follows.
〇: Less than 0.2 Δ: 0.2 or more and less than 0.5 ×: 0.5 or more
<評価4:耐熱性1>
[導電性評価用の素子1の作製]
 2mm幅の帯状にITO(酸化インジウムスズ)が成膜されたガラス基板を用いた。
 当該基板を中性洗剤、アセトン、イソプロパノールを用いて超音波洗浄し、さらにイソプロパノール中で煮沸洗浄した上で、オゾン処理によりITO膜表面の付着物を除去した。
 洗浄後の基板を真空蒸着機内に置き、圧力10-4Pa以下に減圧した上で、基板上に三酸化モリブデンを蒸着した。蒸着速度は0.1nm/秒であり、5nm成膜して正孔注入層を作製した。
<Evaluation 4: Heat resistance 1>
[Manufacturing of element 1 for conducting conductivity evaluation]
A glass substrate on which ITO (indium tin oxide) was formed into a strip having a width of 2 mm was used.
The substrate was ultrasonically cleaned with a neutral detergent, acetone, and isopropanol, and then boiled and washed in isopropanol, and then the deposits on the surface of the ITO film were removed by ozone treatment.
The washed substrate was placed in a vacuum vapor deposition machine, the pressure was reduced to 10 -4 Pa or less, and molybdenum trioxide was vapor-deposited on the substrate. The vapor deposition rate was 0.1 nm / sec, and a 5 nm film was formed to prepare a hole injection layer.
 次いで、正孔注入層上にα-NPDと、含フッ素重合体と、を共蒸着した。2つの材料の合計の蒸着速度は0.2nm/秒であり、100nm成膜して電荷輸送層を作製した。蒸着速度を調整し、電荷輸送層におけるα-NPDと含フッ素重合体の体積比を所望の比率とした。
 次いで、電荷輸送層上に2mm幅の帯状にアルミニウムを蒸着した。帯状のアルミニウム膜は、基板の垂直方向から見た視野においてITO膜と直交させた。これにより、素子面積4mm(=ITO膜2mm×アルミニウム膜2mm)の導電性評価用の素子1を得た。
Next, α-NPD and a fluorine-containing polymer were co-deposited on the hole injection layer. The total vapor deposition rate of the two materials was 0.2 nm / sec, and a 100 nm film was formed to prepare a charge transport layer. The vapor deposition rate was adjusted so that the volume ratio of α-NPD to the fluorine-containing polymer in the charge transport layer was set to a desired ratio.
Next, aluminum was deposited on the charge transport layer in the form of a strip having a width of 2 mm. The strip-shaped aluminum film was orthogonal to the ITO film in the field of view seen from the vertical direction of the substrate. As a result, an element 1 for evaluating conductivity having an element area of 4 mm 2 (= ITO film 2 mm × aluminum film 2 mm) was obtained.
[素子1の耐熱性評価]
 ソースメータ(アジレント・テクノロジー社製:B1500A)を用い、素子1のITOを陽極、アルミニウムを陰極として電圧を印加しながら電圧を変化させ、電圧毎に素子に流れる電流を測定し、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求めた。
[Evaluation of heat resistance of element 1]
Using a source meter (Agilent Technology Co., Ltd .: B1500A), the voltage is changed while applying a voltage using ITO of element 1 as an anode and aluminum as a cathode, and the current flowing through the element is measured for each voltage to measure the electric field (E). The current density (J) (unit: mA / cm 2 ) with respect to (unit: MV / cm) was determined.
 次いで、N雰囲気において、素子1を80℃のホットプレート上で60分加熱した。素子1を常温に戻した後、再度素子に流れる電流を測定し、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求めた。 Then, the N 2 atmosphere and heated 60 minutes element 1 at 80 ° C. on a hot plate. After returning the element 1 to room temperature, the current flowing through the element was measured again to obtain the current density (J) (unit: mA / cm 2) with respect to the electric field (E) (unit: MV / cm).
 次いで、N雰囲気において、同じ素子1を90℃のホットプレート上で60分加熱した。素子1を常温に戻した後、再度素子に流れる電流を測定し、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求めた。 Then, the N 2 atmosphere, and the same element 1 is heated 60 minutes at 90 ° C. on a hot plate. After returning the element 1 to room temperature, the current flowing through the element was measured again to obtain the current density (J) (unit: mA / cm 2) with respect to the electric field (E) (unit: MV / cm).
 得られた結果から、素子1の耐熱性を以下のように評価した。
 ×:80℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 △:90℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇:90℃に加熱後、0.4MV/cmの電流密度が初期の90%以上
From the obtained results, the heat resistance of the element 1 was evaluated as follows.
×: After heating to 80 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value Δ: After heating to 90 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value 〇: Heating to 90 ° C. After that, the current density of 0.4 MV / cm is 90% or more of the initial value.
<評価5:耐熱性2>
[導電性評価用の素子2の作製]
 三酸化モリブデンの代わりにHAT-CN,α-NPDの代わりにHT211を用いたこと以外は、[導電性評価用の素子1の作製]と同様に行い、導電性評価用の素子2を作製した。
<Evaluation 5: Heat resistance 2>
[Manufacturing of element 2 for conducting conductivity evaluation]
Except for the fact that HAT-CN was used instead of molybdenum trioxide and HT211 was used instead of α-NPD, the same procedure as [Preparation of element 1 for conductivity evaluation] was carried out to prepare element 2 for conductivity evaluation. ..
[素子2の耐熱性評価]
 加熱温度を100℃、110℃、120℃、130℃とし、加熱時間をそれぞれ15分間とした以外は[素子1の耐熱性評価]と同様に行い、電界(E)(単位:MV/cm)に対する電流密度(J)(単位:mA/cm)を求めた。
[Evaluation of heat resistance of element 2]
The heating temperature was set to 100 ° C., 110 ° C., 120 ° C., and 130 ° C., and the heating time was set to 15 minutes, respectively. The current density (J) (unit: mA / cm 2 ) was determined.
 得られた結果から、素子2の耐熱性を以下のように評価した。
 ×:100℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 △:110℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇:120℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇〇:130℃に加熱後、0.4MV/cmの電流密度が初期の90%未満
 〇〇〇:130℃に加熱後、0.4MV/cmの電流密度が初期の90%以上
From the obtained results, the heat resistance of the element 2 was evaluated as follows.
×: After heating to 100 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value Δ: After heating to 110 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value 〇: Heating to 120 ° C. After, the current density of 0.4 MV / cm is less than 90% of the initial value 〇 〇: After heating to 130 ° C, the current density of 0.4 MV / cm is less than 90% of the initial value 〇 〇 〇: After heating to 130 ° C, 0 .4 MV / cm current density is 90% or more of the initial value
 以下の例1~18において、含フッ素重合体の具体的な評価内容を説明する。 Specific evaluation contents of the fluorine-containing polymer will be described in Examples 1 to 18 below.
[例1]
 含フッ素重合体A1を用い、上述の評価1~評価3、5を行った。
 評価2、評価3、評価5の試料作製では、有機半導体と含フッ素重合体の共蒸着において蒸着速度を調整し、有機半導体と含フッ素重合体との体積比を50:50とした。
[Example 1]
Evaluations 1 to 3 and 5 described above were carried out using the fluorine-containing polymer A1.
In the sample preparations of Evaluation 2, Evaluation 3, and Evaluation 5, the vapor deposition rate was adjusted in the co-evaporation of the organic semiconductor and the fluorine-containing polymer, and the volume ratio of the organic semiconductor and the fluorine-containing polymer was set to 50:50.
[例2]
 試料作製において、蒸着速度を調整し、有機半導体と含フッ素重合体の体積比を80:20とした以外は、例1と同様にして評価を行った。
[Example 2]
In the sample preparation, the evaluation was carried out in the same manner as in Example 1 except that the vapor deposition rate was adjusted and the volume ratio of the organic semiconductor to the fluorine-containing polymer was 80:20.
[例3]
 試料作製において蒸着速度を調整し、有機半導体と含フッ素重合体の体積比を20:80とした以外は、例1と同様にして評価を行った。
[Example 3]
The evaluation was carried out in the same manner as in Example 1 except that the vapor deposition rate was adjusted in the sample preparation and the volume ratio of the organic semiconductor to the fluorine-containing polymer was set to 20:80.
[例4]
 含フッ素重合体B1を用い、上述の評価1~評価5を行った。
 評価2~5の試料作製では、有機半導体と含フッ素重合体の共蒸着において蒸着速度を調整し、有機半導体と含フッ素重合体の体積比を50:50とした。
[Example 4]
Evaluations 1 to 5 described above were carried out using the fluorine-containing polymer B1.
In the sample preparation of evaluations 2 to 5, the vapor deposition rate was adjusted in the co-evaporation of the organic semiconductor and the fluorine-containing polymer, and the volume ratio of the organic semiconductor and the fluorine-containing polymer was set to 50:50.
[例5]
 含フッ素重合体としてB2を用いた以外は、例1と同様にして評価を行った。
[例6]
 含フッ素重合体としてC1を用いた以外は、例1と同様にして評価を行った。
[例7]
 含フッ素重合体としてD1を用いた以外は、例4と同様にして評価を行った。
[例8]
 含フッ素重合体としてE1を用いた以外は、例1と同様にして評価を行った。
[例9]
 含フッ素重合体としてF1を用いた以外は、例1と同様にして評価を行った。
[Example 5]
The evaluation was carried out in the same manner as in Example 1 except that B2 was used as the fluorine-containing polymer.
[Example 6]
The evaluation was carried out in the same manner as in Example 1 except that C1 was used as the fluorine-containing polymer.
[Example 7]
The evaluation was carried out in the same manner as in Example 4 except that D1 was used as the fluorine-containing polymer.
[Example 8]
The evaluation was carried out in the same manner as in Example 1 except that E1 was used as the fluorine-containing polymer.
[Example 9]
The evaluation was carried out in the same manner as in Example 1 except that F1 was used as the fluorine-containing polymer.
[例10]
 含フッ素重合体としてG1を用いた以外は、例1と同様にして評価を行った。
[例11]
 含フッ素重合体としてJ1を用いた以外は、例1と同様にして評価を行った。
[例12]
 含フッ素重合体としてH1を用いた以外は、例4と同様にして評価を行った。
[例13]
 含フッ素重合体としてBを用いた以外は、例1と同様にして評価を行った。
[例14]
 含フッ素重合体としてHを用いた以外は、例1と同様にして評価を行った。
[Example 10]
The evaluation was carried out in the same manner as in Example 1 except that G1 was used as the fluorine-containing polymer.
[Example 11]
The evaluation was carried out in the same manner as in Example 1 except that J1 was used as the fluorine-containing polymer.
[Example 12]
The evaluation was carried out in the same manner as in Example 4 except that H1 was used as the fluorine-containing polymer.
[Example 13]
The evaluation was carried out in the same manner as in Example 1 except that B was used as the fluorine-containing polymer.
[Example 14]
The evaluation was carried out in the same manner as in Example 1 except that H was used as the fluorine-containing polymer.
[例15]
 含フッ素重合体I1を用い、評価1~4を行った。
 評価2~4の試料作製では、有機半導体と含フッ素重合体の共蒸着において蒸着速度を調整し、有機半導体と含フッ素重合体の体積比を50:50とした。
[Example 15]
Evaluations 1 to 4 were performed using the fluorine-containing polymer I1.
In the sample preparation of evaluations 2 to 4, the vapor deposition rate was adjusted in the co-evaporation of the organic semiconductor and the fluorine-containing polymer, and the volume ratio of the organic semiconductor and the fluorine-containing polymer was set to 50:50.
[例16]
 市販の含フッ素重合体であるFluon PFAを用い、評価1:蒸着時のチャンバー圧変化を評価した。
 評価1にて蒸着時のチャンバー内上昇が著しく大きかったため、共蒸着を要する他の評価は行わなかった。
[Example 16]
Using a commercially available fluorine-containing polymer, Fluon PTFE, evaluation 1: change in chamber pressure during vapor deposition was evaluated.
In Evaluation 1, the rise in the chamber during vapor deposition was extremely large, so no other evaluation requiring co-deposition was performed.
[例17]
 含フッ素重合体を用いない例として、α-NPDの単膜を蒸着速度0.1nm/秒で成膜した試料を用い、上述の評価2~4を行った。
[Example 17]
As an example in which the fluorine-containing polymer was not used, evaluations 2 to 4 described above were carried out using a sample in which a single film of α-NPD was formed at a vapor deposition rate of 0.1 nm / sec.
[例18]
 含フッ素重合体を用いない例として、HT211の単膜を蒸着速度0.1nm/秒で成膜した試料を用い、評価5を行った。
[Example 18]
As an example in which the fluorine-containing polymer was not used, evaluation 5 was performed using a sample in which a single film of HT211 was formed at a vapor deposition rate of 0.1 nm / sec.
 上記例1~18において、例1~11が実施例に該当し、例12~18が比較例に該当する。結果を表2に示す。 In Examples 1 to 18, Examples 1 to 11 correspond to Examples, and Examples 12 to 18 correspond to Comparative Examples. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 評価の結果、例1~11においては、蒸着時のチャンバー内圧上昇が無く、安定した蒸着が可能であることが分かった。
 また、例1~11は、加熱してもヘイズ上昇が抑制されていることが分かった。
 また、例1~11の素子1,2は、耐熱性に優れていることが分かった。
 対して、例13,14,16においては、蒸着時のチャンバー内圧上昇が認められ、蒸着状態が不安定になるおそれがあることが分かった。
 また、例12,14,15および17においては、加熱することでヘイズが上昇することが分かった。例17では、加熱によりα-NPDが融解し、その後結晶化が進んだことにより散乱源が生じたと考えられる。例12、14、15では、加熱により、共蒸着膜のナノドメイン構造が変化し、共蒸着膜の内部に散乱源が生じたと考えられる。
 また、例12,14,15においては、素子1,2の耐熱性が低いことが分かった。
 以上の結果より、本発明が有用であることが確認できた。
 なお、2020年02月26日に出願された日本特許出願2020-030460号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
As a result of the evaluation, it was found that in Examples 1 to 11, stable vapor deposition was possible without an increase in the chamber internal pressure during vapor deposition.
Further, in Examples 1 to 11, it was found that the increase in haze was suppressed even when heated.
Further, it was found that the elements 1 and 2 of Examples 1 to 11 are excellent in heat resistance.
On the other hand, in Examples 13, 14 and 16, it was found that an increase in the chamber internal pressure during vapor deposition was observed, and the vapor deposition state may become unstable.
Further, in Examples 12, 14, 15 and 17, it was found that the haze was increased by heating. In Example 17, it is considered that α-NPD was melted by heating and then crystallization proceeded to generate a scattering source. In Examples 12, 14 and 15, it is considered that the nanodomain structure of the co-deposited film was changed by heating and a scattering source was generated inside the co-deposited film.
Further, in Examples 12, 14 and 15, it was found that the heat resistance of the elements 1 and 2 was low.
From the above results, it was confirmed that the present invention is useful.
The entire contents of the specification, claims, abstract and drawings of Japanese Patent Application No. 2020-030460 filed on February 26, 2020 are cited here as disclosure of the specification of the present invention. It is something to incorporate.
 10…膜、50…基板、51,52…蒸着源、51a…有機半導体、51b…(有機半導体の)ドメイン、52a…含フッ素重合体、52b…(含フッ素重合体の)ドメイン、100,200…有機EL素子(有機光電子素子)、110,210…基板、111…陽極、112…正孔注入層、113…正孔輸送層、114…発光層、115…電子輸送層、116…電子注入層、117,217…陰極、500…チャンバー 10 ... film, 50 ... substrate, 51, 52 ... vapor deposition source, 51a ... organic semiconductor, 51b ... domain (of organic semiconductor), 52a ... fluorine-containing polymer, 52b ... domain (of fluorine-containing polymer), 100,200 … Organic EL element (organic photoelectron device), 110, 210… substrate, 111… anode, 112… hole injection layer, 113… hole transport layer, 114… light emitting layer, 115… electron transport layer, 116… electron injection layer , 117, 217 ... cathode, 500 ... chamber

Claims (15)

  1.  下記(1)~(3)を満たす含フッ素重合体。
    (1)融点が200℃以上である。
    (2)1×10-3Paの圧力下において昇温速度2℃/分で昇温させたときの熱重量減少率が、400℃以下で実質的に100%に達する。
    (3)1×10-3Paの圧力下において昇温速度2℃/分で昇温させたとき、熱重量減少率が10%となる温度から90%になる温度までの温度幅が100℃以内である。
    A fluorine-containing polymer that satisfies the following (1) to (3).
    (1) The melting point is 200 ° C. or higher.
    (2) The thermogravimetric reduction rate when the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa reaches substantially 100% at 400 ° C. or lower.
    (3) When the temperature is raised at a heating rate of 2 ° C./min under a pressure of 1 × 10 -3 Pa, the temperature range from the temperature at which the thermogravimetric reduction rate is 10% to the temperature at which the temperature is 90% is 100 ° C. Within.
  2.  25℃における貯蔵弾性率が1×10Pa以上であり、
     降温速度2℃/分で降温させたときに変化する貯蔵弾性率が1×10Pa未満になる温度は120℃以上である、請求項1に記載の含フッ素重合体。
    And the storage modulus 1 × 10 7 Pa or more at 25 ° C.,
    The fluorine-containing polymer according to claim 1, wherein the temperature at which the storage elastic modulus that changes when the temperature is lowered at a temperature lowering rate of 2 ° C./min is less than 1 × 10 6 Pa is 120 ° C. or higher.
  3.  フルオロオレフィンに由来する単位を有する、請求項1または2に記載の含フッ素重合体。 The fluorine-containing polymer according to claim 1 or 2, which has a unit derived from a fluoroolefin.
  4.  少なくともテトラフルオロエチレンに由来する単位を有する、請求項3に記載の含フッ素重合体。 The fluorine-containing polymer according to claim 3, which has at least a unit derived from tetrafluoroethylene.
  5.  ペルフルオロアルキルビニルエーテルに由来する単位を有する、請求項3または4に記載の含フッ素重合体。 The fluorine-containing polymer according to claim 3 or 4, which has a unit derived from perfluoroalkyl vinyl ether.
  6.  前記ペルフルオロアルキルビニルエーテルがペルフルオロプロピルビニルエーテルである、請求項5に記載の含フッ素重合体。 The fluorine-containing polymer according to claim 5, wherein the perfluoroalkyl vinyl ether is a perfluoropropyl vinyl ether.
  7.  請求項1から6のいずれか1項に記載の含フッ素重合体と有機半導体とを含む膜。 A film containing the fluorine-containing polymer according to any one of claims 1 to 6 and an organic semiconductor.
  8.  前記含フッ素重合体と前記有機半導体との合計に対する前記含フッ素重合体の割合が、20~80体積%である、請求項7に記載の膜。 The film according to claim 7, wherein the ratio of the fluorine-containing polymer to the total of the fluorine-containing polymer and the organic semiconductor is 20 to 80% by volume.
  9.  ドーパントをさらに含む、請求項7または8に記載の膜。 The film according to claim 7 or 8, further comprising a dopant.
  10.  前記含フッ素重合体と前記有機半導体との共蒸着膜である、請求項7から9のいずれか1項に記載の膜。 The film according to any one of claims 7 to 9, which is a co-deposited film of the fluorine-containing polymer and the organic semiconductor.
  11.  請求項1から6のいずれか1項に記載の含フッ素重合体と有機半導体とを共蒸着させる工程を有する、膜の製造方法。 A method for producing a film, which comprises a step of co-depositing the fluorine-containing polymer according to any one of claims 1 to 6 and an organic semiconductor.
  12.  前記共蒸着させる工程において、ドーパントをあわせて共蒸着させる、請求項11に記載の膜の製造方法。 The method for producing a film according to claim 11, wherein in the step of co-depositing, a dopant is also co-deposited.
  13.  請求項7から10のいずれか1項に記載の膜を含む有機光電子素子。 An organic photoelectronic device including the film according to any one of claims 7 to 10.
  14.  基板と、
     前記基板に設けられた陽極と、
     前記陽極に対向する陰極と、
     前記陽極と前記陰極との間に配置された活性層と、
     前記活性層と前記陽極との間に配置された正孔輸送層と、
     前記正孔輸送層と前記陽極との間に配置された正孔注入層と、を備え、
     前記正孔輸送層および前記正孔注入層の少なくとも一方の層が前記膜である、請求項13に記載の有機光電子素子。
    With the board
    The anode provided on the substrate and
    With the cathode facing the anode,
    An active layer arranged between the anode and the cathode,
    A hole transport layer arranged between the active layer and the anode,
    A hole injection layer arranged between the hole transport layer and the anode is provided.
    The organic photoelectron device according to claim 13, wherein at least one of the hole transport layer and the hole injection layer is the film.
  15.  基板と、
     前記基板に設けられた陽極と、
     前記陽極に対向する陰極と、
     前記陽極と前記陰極との間に配置された活性層と、
     前記活性層と前記陰極との間に配置された電子輸送層と、
     前記電子輸送層と前記陰極との間に配置された電子注入層と、を備え、
     前記電子輸送層および前記電子注入層の少なくとも一方の層が前記膜である、請求項13または14に記載の有機光電子素子。
    With the board
    The anode provided on the substrate and
    With the cathode facing the anode,
    An active layer arranged between the anode and the cathode,
    An electron transport layer arranged between the active layer and the cathode,
    An electron injection layer arranged between the electron transport layer and the cathode is provided.
    The organic photoelectron device according to claim 13 or 14, wherein at least one of the electron transport layer and the electron injection layer is the film.
PCT/JP2021/006902 2020-02-26 2021-02-24 Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element WO2021172369A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022503657A JPWO2021172369A1 (en) 2020-02-26 2021-02-24
CN202180017316.XA CN115175947A (en) 2020-02-26 2021-02-24 Fluoropolymer, film, method for producing film, and organic optoelectronic element
KR1020227027079A KR20220147075A (en) 2020-02-26 2021-02-24 Fluorine-containing polymer, film, film production method and organic optoelectronic device
EP21761065.8A EP4112655A1 (en) 2020-02-26 2021-02-24 Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element
US17/817,132 US20220372186A1 (en) 2020-02-26 2022-08-03 Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030460 2020-02-26
JP2020030460 2020-02-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/817,132 Continuation US20220372186A1 (en) 2020-02-26 2022-08-03 Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element

Publications (1)

Publication Number Publication Date
WO2021172369A1 true WO2021172369A1 (en) 2021-09-02

Family

ID=77490017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006902 WO2021172369A1 (en) 2020-02-26 2021-02-24 Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element

Country Status (6)

Country Link
US (1) US20220372186A1 (en)
EP (1) EP4112655A1 (en)
JP (1) JPWO2021172369A1 (en)
KR (1) KR20220147075A (en)
CN (1) CN115175947A (en)
WO (1) WO2021172369A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239242A (en) * 1995-03-03 1996-09-17 Central Glass Co Ltd Water-repelling glass
JPH0925559A (en) * 1995-07-06 1997-01-28 Central Glass Co Ltd Production of water repellent coating film
JPH111593A (en) * 1997-06-13 1999-01-06 Sumitomo Chem Co Ltd Thin film of oriented molecule
JPH11502243A (en) * 1995-03-10 1999-02-23 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Non-aqueous polymerization of fluoromonomer
JPH11152310A (en) 1997-11-20 1999-06-08 Asahi Glass Co Ltd Preparation of polymer containing fluorine-containing aliphatic cyclic structure
WO2005100420A1 (en) * 2004-04-13 2005-10-27 Daikin Industries, Ltd. Chlorotrifluoroethylene copolymer
WO2008133088A1 (en) * 2007-04-20 2008-11-06 Asahi Glass Company, Limited Fluorine-containing polymer thin film and method for producing the same
JP2009526351A (en) * 2006-02-03 2009-07-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Transparent composite conductor with high work function
WO2009096342A1 (en) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited Curable composition, fluorine-containing cured product, optical material using the cured product, and light-emitting device
CN100557852C (en) 2005-05-31 2009-11-04 清华大学 A kind of organic electroluminescence device
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
JP2018126953A (en) * 2017-02-09 2018-08-16 株式会社リコー Apparatus for discharging liquid
JP2020030460A (en) 2018-08-20 2020-02-27 Zホールディングス株式会社 Device, method, and program for processing information

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60100055T2 (en) 2001-03-21 2003-07-24 Sanol Arznei Schwarz Gmbh New use of a class of peptide compounds for the treatment of allodynia or other types of chronic or phantom pain
JP2009155558A (en) * 2007-12-27 2009-07-16 Daikin Ind Ltd Method of manufacturing melt workable fluorine-containing polymer
CN107430341B (en) * 2015-02-05 2021-03-05 Agc株式会社 Photosensitive resin composition, method for producing resin film, and method for producing organic semiconductor element
CN110291653A (en) * 2017-02-08 2019-09-27 国立大学法人山形大学 Composition and Organic photoelectronic components and its manufacturing method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08239242A (en) * 1995-03-03 1996-09-17 Central Glass Co Ltd Water-repelling glass
JPH11502243A (en) * 1995-03-10 1999-02-23 ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Non-aqueous polymerization of fluoromonomer
JPH0925559A (en) * 1995-07-06 1997-01-28 Central Glass Co Ltd Production of water repellent coating film
JPH111593A (en) * 1997-06-13 1999-01-06 Sumitomo Chem Co Ltd Thin film of oriented molecule
JPH11152310A (en) 1997-11-20 1999-06-08 Asahi Glass Co Ltd Preparation of polymer containing fluorine-containing aliphatic cyclic structure
WO2005100420A1 (en) * 2004-04-13 2005-10-27 Daikin Industries, Ltd. Chlorotrifluoroethylene copolymer
CN100557852C (en) 2005-05-31 2009-11-04 清华大学 A kind of organic electroluminescence device
JP2009526351A (en) * 2006-02-03 2009-07-16 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Transparent composite conductor with high work function
WO2008133088A1 (en) * 2007-04-20 2008-11-06 Asahi Glass Company, Limited Fluorine-containing polymer thin film and method for producing the same
WO2009096342A1 (en) * 2008-01-28 2009-08-06 Asahi Glass Company, Limited Curable composition, fluorine-containing cured product, optical material using the cured product, and light-emitting device
WO2018016644A1 (en) * 2016-07-22 2018-01-25 旭硝子株式会社 Liquid composition, and method for manufacturing film and layered body using same
JP2018126953A (en) * 2017-02-09 2018-08-16 株式会社リコー Apparatus for discharging liquid
JP2020030460A (en) 2018-08-20 2020-02-27 Zホールディングス株式会社 Device, method, and program for processing information

Also Published As

Publication number Publication date
JPWO2021172369A1 (en) 2021-09-02
EP4112655A1 (en) 2023-01-04
CN115175947A (en) 2022-10-11
US20220372186A1 (en) 2022-11-24
KR20220147075A (en) 2022-11-02

Similar Documents

Publication Publication Date Title
US11355734B2 (en) Organic photoelectronic element comprising fluorinated polymer
JP7032740B2 (en) Compositions and organic photoelectronic devices and methods for manufacturing them
KR101176678B1 (en) A method of forming an active layer on an active surface, a composition for depositing an active material onto a surface and an organic electronic device made therefrom
US10892418B2 (en) Charge injection layer and method for its production as well as organic photoelectronic element and method for its production
US11437596B2 (en) Organic photoelectronic element having hole transport layer containing fluorinated polymer and organic semiconductor material
CN110088928B (en) Composition and organic optoelectronic element and method for producing same
WO2021172369A1 (en) Fluorine-containing polymer, film, film manufacturing method, and organic opto-electronic element
US10608183B2 (en) Charge transport layer and organic photoelectronic element
TW201230434A (en) Organic electronic device with composite electrode
WO2021079927A1 (en) Porous film, organic optoelectronic element, and porous film manufacturing method
JP2019040989A (en) Organic optoelectronic element and method of manufacturing organic optoelectronic element
JP2019040990A (en) Organic optoelectronic element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021761065

Country of ref document: EP

Effective date: 20220926