WO2021172258A1 - Glass material for use in molding - Google Patents

Glass material for use in molding Download PDF

Info

Publication number
WO2021172258A1
WO2021172258A1 PCT/JP2021/006584 JP2021006584W WO2021172258A1 WO 2021172258 A1 WO2021172258 A1 WO 2021172258A1 JP 2021006584 W JP2021006584 W JP 2021006584W WO 2021172258 A1 WO2021172258 A1 WO 2021172258A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
content
molding
glass material
Prior art date
Application number
PCT/JP2021/006584
Other languages
French (fr)
Japanese (ja)
Inventor
昂浩 庄司
智明 根岸
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN202180017312.1A priority Critical patent/CN115175881A/en
Priority to JP2022503597A priority patent/JPWO2021172258A1/ja
Publication of WO2021172258A1 publication Critical patent/WO2021172258A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to a glass material for molding.
  • Optical glass is different from conventional silicate-based glass such as window glass and bottle glass in that it not only has a specific optical constant such as refractive index and Abbe number, but also has high light transmittance and homogeneity of optical characteristics. different.
  • examples of the method for manufacturing optical glass include a reheat press manufacturing method, a round bar molding method, and an extrusion molding method in which glass is reheated and molded.
  • a production method such as these in a silicate-based optical glass in which a large amount of components that enhance optical properties such as Nb 2 O 5 , TiO 2 , or La 2 O 3 are introduced, the stability of the glass tends to decrease. In particular, there is a problem that crystallization is likely to proceed during reheating.
  • Non-Patent Document 1 Even if a cooling rate of 10 2 to 10 3 ° C./sec can be obtained by press-molding a glass melt having a thickness of 0.5 mm on a metal plate, a glass melt having a thickness of 5 mm can be obtained.
  • the cooling rate when press-molded with a metal plate remains at 10 to 20 ° C./sec. For this reason, the glass obtained by quenching is said to be a "thin section" shown in Non-Patent Document 2.
  • the glass having a thickness for molding the optical element is manufactured by continuously melting glass having a thickness of about 10 mm, and a large one having a thickness of 30 mm or 40 mm.
  • the presence of crystals inside the glass causes light to be scattered, so such glass cannot be used as an optical element.
  • the inside of the glass is not sufficiently rapidly cooled, so that crystals may be formed inside the glass.
  • the cooling conditions are made too strong in order to avoid such crystallization inside the glass, the glass surface solidifies before the inside of the glass, and as a result, cracks occur or the glass breaks. Occurs.
  • Patent Document 1 discloses a prior art that proposes different cooling conditions for optical glass. That is, for silicate-based glass containing a large amount of TiO 2 , the molten glass is cooled to room temperature and then annealed at a temperature lower than the glass transition temperature Tg to distort the strain, thereby suppressing the formation of crystals during reheating. It is disclosed that a glass material capable of being obtained can be obtained.
  • the optical glass obtained from the glass material of Patent Document 1 satisfies the demands of recent optical design such as low light transmittance in the short wavelength region of visible light, particularly blue light transmittance, and large partial dispersion ratios Pg and F. I could't.
  • the present invention has been made in view of such an actual situation, and an object of the present invention is to provide a glass material for molding, which is excellent in stability at the time of reheating.
  • the gist of the present invention is as follows.
  • [1] A glass material for molding in which the maximum value ⁇ max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] satisfy the following formula (1).
  • FIG. 1 is a graph showing the temperature of glass in a manufacturing process for an example of a glass material for molding according to the present embodiment.
  • the vertical axis is the temperature of the glass, and the horizontal axis is the time (seconds) in logarithmic display.
  • the glass composition is expressed on an oxide basis unless otherwise specified.
  • the "oxide-based glass composition” refers to a glass composition obtained by converting all glass raw materials into those that are decomposed at the time of melting and exist as oxides in glass, and the notation of each glass component is customary. Following this, it is described as SiO 2 , TiO 2 , and the like. Unless otherwise specified, the content and total content of the glass component are based on mass, and “%” means “mass%”. Further, the "glass material for molding” may be simply referred to as “glass” or "glass material”.
  • the content of the glass component can be quantified by a known method, for example, inductively coupled plasma emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), or the like. Further, in the present specification and the present invention, the content of the constituent component is 0%, which means that the constituent component is substantially not contained, and the component is allowed to be contained at an unavoidable impurity level.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • ICP-MS inductively coupled plasma mass spectrometry
  • the glass material for molding of the present invention will be described separately for the first embodiment, the second embodiment, and the third embodiment.
  • the characteristics of the glass in the second and third embodiments are the same as the characteristics of the glass in the first embodiment.
  • the action and effect of each glass component in the second and third embodiments are the same as the action and effect of each glass component in the first embodiment. Therefore, in the second and third embodiments, matters that overlap with the description of the first embodiment will be omitted as appropriate.
  • the molding glass material according to the first embodiment is The maximum value ⁇ max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] satisfy the following formula (1).
  • the maximum value ⁇ max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are expressed by the following formula (1). , Preferably satisfying the following formula (2), and more preferably satisfying the following formula (3). By satisfying the following formula, a glass material for molding having excellent stability during reheating can be obtained.
  • the maximum value ⁇ max of the coefficient of linear expansion can be controlled by adjusting the conditions for cooling the molten glass in the glass material manufacturing process described later.
  • the method for measuring the coefficient of linear expansion is based on the provisions of the Japan Institute of Engineering Standards JOGIS08.
  • the sample shall be a round bar with a length of 20 mm ⁇ 0.5 mm and a diameter of 5 mm ⁇ 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments.
  • the maximum value ⁇ max of the coefficient of linear expansion is the maximum value of the coefficient of linear expansion between room temperature and the yield point temperature (the temperature at which the sample yields and the apparent elongation stops), so that the elongation of the sample per unit temperature rise
  • the coefficient of linear expansion at the temperature at which is maximum may be obtained.
  • the maximum value ⁇ MAX of the linear expansion coefficient the maximum value of the value obtained by the moving average processing of the linear expansion coefficient at 31 measurement points may be adopted.
  • the average coefficient of linear expansion ⁇ 100-300 which will be described later, is an average value of the coefficient of linear expansion at 100 to 300 ° C.
  • the maximum value ⁇ MAX of the coefficient of linear expansion and the average coefficient of linear expansion ⁇ 100-300 are displayed up to the first integer in the unit of 10-7 ° C- 1 in accordance with the provisions of JOBIS08. That is, the maximum value ⁇ MAX of the coefficient of linear expansion and the average coefficient of linear expansion ⁇ 100-300 are expressed as integers in units of [10-7 ⁇ ° C- 1]. Further, in the present specification, the average coefficient of linear expansion ⁇ is expressed in units using [° C -1 ], but the numerical value of the average coefficient of linear expansion ⁇ is the same even when [K -1] is used as the unit. be.
  • Non-limiting examples of properties and glass composition other than the above in the molding glass material according to the present embodiment are shown below.
  • the molding glass material according to the first embodiment contains the maximum value ⁇ max of the coefficient of linear expansion, the average coefficient of linear expansion ⁇ 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display.
  • the amount [SiO 2 + ZrO 2 ] preferably satisfies the following formula (4), more preferably the following formula (5), and further preferably the following formula (5). In order to obtain a molding glass material having excellent stability during reheating, it is preferable to satisfy the following formula.
  • the maximum linear expansion coefficient ⁇ max and the average linear expansion coefficient ⁇ 100-300 can be controlled by adjusting the conditions for cooling the molten glass in the glass material manufacturing process described later.
  • the maximum value ⁇ max of the linear expansion coefficient is preferably cooled at ⁇ 30 ° C./hr for 4 hours after soaking the molding glass material at a glass transition temperature Tg. Then, it is smaller than the maximum value ⁇ max (Tg) of the coefficient of linear expansion of the glass material obtained by allowing it to cool.
  • the maximum value ⁇ max of the coefficient of linear expansion may be slightly larger than the maximum value ⁇ max (Tg) of the coefficient of linear expansion. Therefore, the difference between ⁇ max and ⁇ max (Tg) [ ⁇ max (Tg) ⁇ max ] is preferably -9 or more when displayed up to the first integer in the unit of 10-7 ⁇ ° C- 1.
  • the upper limit of the difference is not particularly limited, but is usually ⁇ max (Tg), preferably about ⁇ max (Tg) -100.
  • the maximum coefficient of linear expansion ⁇ max (Tg) is obtained for glass obtained by holding the glass material for molding so as to be homogenized at the glass transition temperature Tg and then cooling at ⁇ 30 ° C./hr for 4 hours. It is the maximum value of the coefficient of linear expansion of.
  • molding glass material according to the first embodiment has a maximum value alpha max coefficient of linear expansion, no maximum value alpha max coefficient of linear expansion (Tg).
  • Tg glass transition temperature
  • the glass material for molding When the heat is equalized at the glass transition temperature Tg, the glass material for molding may be heated to a temperature equal to or higher than Tg and then lowered to the same temperature as Tg. Alternatively, the glass material for molding may be gradually heated to reach the same temperature as Tg.
  • FIG. 1 is a graph showing the temperature of glass in a manufacturing process for an example of a glass material for molding according to the present embodiment.
  • the molding glass material according to the present embodiment is held at a temperature lower than the glass transition temperature Tg in step 2.
  • the maximum value ⁇ max (Tg) of the linear expansion coefficient is the maximum linear expansion coefficient of the glass obtained by being held at the glass transition temperature Tg in step 2 as in the comparative example (Tg1) in FIG. The value.
  • the maximum value ⁇ max (Tg) of the coefficient of linear expansion is obtained by heating the glass material for molding from room temperature and soaking the glass at the same temperature as Tg, as in the comparative example (Tg2) in FIG. It may be the maximum value of the coefficient of linear expansion of the glass obtained by cooling after the conversion.
  • the lower limit of the time required for soaking at the glass transition temperature Tg depends on the size of the sample, but the glass surface.
  • the temperature is about 30 minutes after the temperature reaches Tg, and may be 1 hour, 2 hours, or 4 hours.
  • the upper limit is not particularly limited, and is usually within 24 hours, preferably within 12 hours.
  • the thermalization time of the inside of the glass after reaching the Tg temperature may be about 10 minutes.
  • the determination as to whether or not the thermalization is sufficient can be known from the specific gravity.
  • the glass obtained by cooling after being sufficiently homogenized at the glass transition temperature Tg has almost no change in specific gravity even if the holding time in the state of being homogenized with Tg is long.
  • the inside of the glass is cooled after being sufficiently equalized with Tg. There is a difference in specific gravity between the glass and the glass obtained.
  • the specific gravity d (t 1 + K) and of the variation of glass obtained by cooling [d (t 1) -d ( The absolute value of [t 1 + K)] is preferably 0.002 or less.
  • the lower limit of the value of K is preferably 4, more preferably 8, and even more preferably 12.
  • the temperature control of the glass is sufficient heat in the holding time t 1.
  • the time required for thermalization at the glass transition temperature Tg may be t 1 or more.
  • the method of cooling the glass homogenized at the glass transition temperature Tg is not particularly limited as long as it is cooled at a temperature lowering rate of ⁇ 30 ° C./hr for 4 hours after the soaking.
  • a slow cooling furnace capable of temperature programming can be used. If the glass does not fall below the glass strain point even after cooling from the holding temperature Tg at a temperature lowering rate of -30 ° C / hr for 4 hours, cool from the holding temperature Tg at a temperature lowering rate of -30 ° C / hr for 5 to 6 hours. May be good.
  • the heating temperature at the time of reheating is usually the temperature at which the glass softens and deforms. Specifically, it is assumed that the heating temperature is about 50 ° C. higher than the glass transition temperature Tg when it is low, and about 200 to 300 ° C. higher than the glass transition temperature Tg when it is high.
  • the heating temperature at the time of reheating is low, that is, when the glass is heated at a temperature higher than the glass transition temperature Tg by about 50 ° C., the stability of the glass can be easily ensured, and the generation and devitrification of crystals can be suppressed.
  • the heating temperature during reheating is low, it is necessary to apply high pressure during molding. As a result, there is an increased possibility that the molded glass molded product (for example, a lens, a lens blank, a round bar, an extruded product, etc.) will be cracked or the glass will be cracked. Therefore, when the heating temperature at the time of reheating is low, the production yield tends to decrease, and the shape of the moldable glass molded product tends to be limited.
  • the heating temperature at the time of reheating is high, that is, when the glass is heated at a temperature about 200 to 300 ° C. higher than the glass transition temperature Tg, it can be deformed in a shorter time and the degree of freedom in the shape of the molded product can be improved.
  • Tg glass transition temperature
  • the number density D of crystals per 1 g of glass is The upper limit is 9 pieces / g, 8 pieces / g, 7 pieces / g, 6 pieces / g, 5 pieces / g, 4 pieces / g, 3 pieces / g, preferably less than 10 pieces / g. It is more preferable in the order of 2 pieces / g and 1 piece / g.
  • the number of crystals is most preferably 0 / g.
  • the number of crystals when determining the number density D is the number of bright spots recognized as crystals by an optical microscope (100 times).
  • the above number density D is calculated by the following procedure.
  • control thermometer of the heat treatment furnace is installed almost in the center of the internal space, and the glass sample is installed so as to be located within 3 cm from the control thermometer sensor unit during the heat treatment of the glass sample.
  • a ceramic plate made of alumina which is a rectangular parallelepiped hexahedron having a size of about 10.5 cm ⁇ about 3 cm ⁇ about 1 cm, is used as a saucer.
  • 0.01 to 0.3 g, preferably 0.5 g to 0.15 g, more preferably 0.1 g of a fusion inhibitor such as powdered alumina or a solid lubricant such as BN is applied to the tip of the saucer, and further. Place the glass sample on the pan and put it in the heat treatment furnace together with the saucer to heat it.
  • the saucer is placed in a heat treatment furnace and preheated for 15 minutes or more before the test.
  • the saucer is taken out of the heat treatment furnace immediately before the glass sample is charged, the glass sample is immediately placed on the saucer at the position where the anti-fusion agent or the solid lubricant is applied, and the glass sample is returned to the original position in the furnace together with the saucer.
  • the time until the saucer is taken out and returned to the original position is preferably within 10 seconds, more preferably within 8 seconds, and further preferably within 6 seconds in order to avoid a decrease in the temperature of the saucer.
  • Five minutes after the glass sample is put in the glass is taken out together with the saucer, and the glass sample is taken out from the saucer, and then cooled at a cooling rate that does not break.
  • the glass sample is taken out from the furnace and immediately (after about 3 ⁇ 1 second) is rolled down to a ceramic fiber or the like. It is advisable to cover the upper surface of the sample with ceramic fiber or the like so as not to press it, and cool it to room temperature.
  • the edge of the glass sample after cooling is optically polished, and the inside of the glass sample is observed with an optical microscope (100 times).
  • optical polishing preferably 80% or more, more preferably 85% or more of the softened glass sample is left as an observed volume.
  • the number of crystals (bright spots) inside the glass sample is counted, and the weight of the sample after optical polishing is measured and converted into the number per 1 g.
  • the content of TiO 2 in weight percentages and the content of [TiO 2] and Nb 2 O 5 [Nb 2 O 5] is preferably represented by the following formula (7) Meet. ⁇ 5 ⁇ [TiO 2 ] ⁇ / ⁇ 3 ⁇ [Nb 2 O 5 ] ⁇ ⁇ 3 ⁇ ⁇ ⁇ (7)
  • the upper limit of ⁇ 5 ⁇ [TiO 2 ] ⁇ / ⁇ 3 ⁇ [Nb 2 O 5 ] ⁇ is for the purpose of making Pg and F smaller and achieving glass stability and / or high refractive index. It is more preferably 2, and further preferably in the order of 1.25, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5.
  • the upper limit of 5 ⁇ [TiO 2 ] ⁇ / ⁇ 3 ⁇ [Nb 2 O 5 ] ⁇ is preferably 0. It is 4, and more preferably 0.3, 0.2, and 0.1 in that order.
  • the above 5 ⁇ [TiO 2 ] ⁇ / ⁇ 3 ⁇ [Nb 2 O 5 ] ⁇ can be 0.0.
  • the above ⁇ 5 ⁇ [TiO 2 ] ⁇ / ⁇ 3 ⁇ [Nb 2 O 5 ] ⁇ represents the abundance ratio of Ti ions and Nb ions in the glass material for molding. If there are too many Ti ions, the partial dispersion ratios Pg and F may increase. In addition, there is a possibility that fine crystal nuclei may be generated when the molten glass is cooled, which may hinder the production of glass, for example, the crystals may grow and the optical quality may deteriorate depending on the subsequent molding conditions. .. Therefore, it is preferable to satisfy the above formula in order to suppress an increase in the partial dispersion ratios Pg and F and suppress crystallization of glass.
  • the partial dispersion ratios Pg and F preferably satisfy the following formula (8), more preferably the following formula (9), still more preferably the following formula (10), and particularly preferably.
  • the following formula (11), most preferably the following formula (12), is satisfied.
  • the partial dispersion ratios Pg and F are expressed by the following equation (13) using the refractive indexes ng, nF and nC of the g-line, F-line and C-line.
  • Pg, F (ng-nF) / (nF-nC) ... (13)
  • the partial dispersion ratio is Pg, and F is the mass ratio described later [(Li 2 O + Na 2 O + K 2 O + Cs 2 O). ) / (SiO 2 + P 2 O 5 + B 2 O 3 )], mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )], mass ratio [ (SiO 2 + P 2 O 5 + B 2 O 3 ) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )], mass ratio [ZrO 2 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] , Adjust the mass ratio [P 2 O 5 / (SiO 2 + P 2 O 5 + B 2 O 3 )] and the mass ratio [Nb 2 O 5 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )]. Can be controlled with.
  • ⁇ Pg and F are obtained as the deviations of Pg and F with respect to the normal line as in the equation (14).
  • ⁇ Pg, F Pg, F- (0.6483-0.001802 ⁇ ⁇ d) ⁇ ⁇ ⁇ (14)
  • the molding glass material according to the first embodiment can be a highly dispersed glass having a relatively small partial dispersion ratios Pg and f.
  • Pg and f partial dispersion ratios
  • the deviation of the focal length near the g line that is, short It becomes easier to suppress the occurrence of chromatic aberration in the wavelength range.
  • the edge of the subject can be easily recognized, so that the calculation load of the image engine can be expected to be suppressed.
  • the molding glass material according to the present embodiment may have a glass composition A, a glass composition B, or a glass composition C described in detail below.
  • Glass composition A (Glass composition A)
  • the content / ratio of the glass component and the glass characteristics when the molding glass material according to the present embodiment has the glass composition A will be described.
  • the molding glass material according to the present embodiment is preferably a silicate-based glass containing mainly SiO 2 as a network-forming component of the glass.
  • the lower limit of the content of SiO 2 is preferably 0%, and more preferably, the larger the value is, the more preferable it is in the order of 6%, 11%, and 16%.
  • the lower limit of the content of SiO 2 when thermal stability is more important than the refractive index of glass is preferably 21%, and may be 24%, 26%, or 28%.
  • the upper limit of the content of SiO 2 is preferably 40%, and further, the smaller the numerical value is, the more preferable it is in the order of 38%, 35%, and 33%, and particularly when the refractive index is more important than the stability of the glass.
  • the upper limit of the content of SiO 2 in the above is preferably 30%, and may be 28%, 26%, or 25%.
  • SiO 2 has a function of improving the thermal stability, chemical durability, and weather resistance of the glass, increasing the viscosity of the molten glass, and facilitating the molding of the molten glass as a network forming component of the glass. Have. It also has the effect of increasing the thermal stability during reheating and reducing the crystal number density D. On the other hand, when the content of SiO 2 is large, the devitrification resistance of the glass tends to decrease, and Pg and F increase. Therefore, the content of SiO 2 is preferably in the above range.
  • the molding glass material according to the present embodiment preferably contains P 2 O 5 .
  • the lower limit of the content of P 2 O 5 is preferably 0%, more preferably 0.2%, 0.4%, and 0.6% in that order.
  • the upper limit of the content of P 2 O 5 is preferably 10%, more preferably 8%, 7%, 6%, 5%, and 4%.
  • the upper limit of the content of B 2 O 3 is preferably 20%, more preferably 14%, 9%, and 4% in that order. ..
  • the content of B 2 O 3 may be 0%.
  • B 2 O 3 is a network-forming component of glass in the glass composition A, and has a function of increasing the meltability of the glass and improving the thermal stability.
  • the content of B 2 O 3 is too large, the volatilization amount of the glass component may increase at the time of glass melting, and the high dispersion is hindered, and the devitrification resistance tends to decrease. Further, the viscosity of the glass may be further lowered as compared with the case where the glass is replaced with the same amount of SiO 2. If it is introduced excessively, the thermal stability at the time of reheating may be lowered. Therefore, the content of B 2 O 3 is preferably in the above range.
  • the upper limit of the content of Al 2 O 3 is preferably 20%, and further, 9%, 4%, 2%, and 1%. More preferred in order.
  • the lower limit of the content of Al 2 O 3 is preferably 0%, and further 0.02%, 0.04%, 0.08%, 0.12%, 0.14%, 0.16%. , 0.2%, and 0.3% are more preferable.
  • the content of Al 2 O 3 may be 0%.
  • Al 2 O 3 is a glass component having a function of improving the chemical durability and weather resistance of glass in the glass composition A, and can be considered as a network forming component.
  • the content of Al 2 O 3 increases, the devitrification resistance of the glass decreases.
  • the glass transition temperature Tg rises, and problems such as a decrease in thermal stability when cooling the molten glass are likely to occur.
  • the content of Al 2 O 3 is preferably in the above range.
  • the content of Al 2 O 3 can be 0.02% or more.
  • the lower limit of the total content [SiO 2 + P 2 O 5 ] of SiO 2 and P 2 O 5 is preferably 5%, and further. It is more preferable in the order of 11%, 16%, and 21%.
  • the lower limit of the total content when stability is important is preferably 24%, and may be 27% or 30%.
  • the upper limit of the total content is preferably 40%, more preferably 38%, 36%, 34%, and 33%.
  • the thermal stability at the time of reheating is enhanced, and the number density D of crystals is increased. It can be made smaller. Further, when the upper limit of the total content satisfies the above, the decrease in the refractive index and the increase in the partial dispersion ratios Pg and F can be suppressed, and the thermal stability of the glass can be maintained.
  • the lower limit of the total content [SiO 2 + P 2 O 5 + B 2 O 3 ] of SiO 2 , P 2 O 5 and B 2 O 3 is preferable. Is 5%, more preferably 10%, 15%, 18%, 21%, 22%, and 23% in that order.
  • the upper limit of the total content is preferably 50%, more preferably 45%, 40%, 37%, 35%, 34%, and 33%.
  • the upper limit of the total content when the refractive index is emphasized is preferably 30%, and may be 28%, 26%, or 25%.
  • the total content [SiO 2 + P 2 O 5 + B 2 O 3 ] is preferably in the above range from the viewpoint of maintaining stability during reheating.
  • the upper limit of the mass ratio of the content of B 2 O 3 to the content of SiO 2 [B 2 O 3 / SiO 2] is preferably 0. 8 It is 0, more preferably 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.05, 0.03.
  • the lower limit of the mass ratio is preferably 0, more preferably 0.005, 0.01, 0.015, 0.02.
  • the mass ratio may be zero.
  • the mass ratio [B 2 O 3 / SiO 2 ] is preferably in the above range from the viewpoint of suppressing an increase in the specific gravity of the glass and suppressing an increase in the coloring of the glass.
  • the mass ratio of the content of P 2 O 5 to the total content of SiO 2 and P 2 O 5 is preferably 0.00, and more preferably 0.006, 0.011, 0.016, 0.021.
  • the upper limit of the mass ratio is preferably 0.20, and more preferably 0.18, 0.16, 0.14, 0.12, and 0.11.
  • the mass ratio is preferably in the above range.
  • the mass ratio of the content of P 2 O 5 to the total content of SiO 2 , P 2 O 5 and B 2 O 3 [P 2 O 5 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably 0.00, and more preferably 0.006, 0.011, 0.016, 0.021.
  • the upper limit of the mass ratio is preferably 0.20, and more preferably 0.18, 0.16, 0.14, 0.12, and 0.11.
  • the mass ratio is preferably in the above range.
  • the lower limit of 2 O 5 + B 2 O 3 )] is preferably 0.100, and further, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, 0. It is more preferable in the order of 800, 0.820, 0.840, 0.860.
  • the upper limit of the mass ratio is preferably 1.000, and more preferably 0.995, 0.990, 0.985, 0.980, 0.978.
  • the mass ratio [SiO 2 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably in the above range from the viewpoint of maintaining stability during reheating.
  • the lower limit of the content of ZrO 2 is preferably 0%, more preferably 2%, 3%, 4% and 5% in that order. ..
  • the lower limit of the ZrO 2 content when stability is more important than the refractive index is preferably 6%, or may be 8%.
  • the upper limit of the ZrO 2 content is preferably 15%, more preferably 14%, 13%, 12%, 11%, and 10%.
  • the upper limit of the content of ZrO 2 is preferably 9%, and may be 8%, 7%, or 6%.
  • the lower limit of the content of Nb 2 O 5 is preferably 1%, and further, 11%, 21%, 26%, 31%, and so on. It is more preferable in the order of 34% and 36%.
  • the lower limit of the content of Nb 2 O 5 when the refractive index is more important than the stability is preferably 39%, and may be 41%, 46%, 49%, or 50%.
  • the upper limit of the content of Nb 2 O 5 is preferably 80%, and more preferably 70%, 64%, 59%, 56%, and 54%.
  • the upper limit of the content of Nb 2 O 5 is preferably 51%, and may be 47%, 44%, 43%, or 38%.
  • Nb 2 O 5 is also a glass component that improves the thermal stability and chemical durability of glass. If the content is low, Pg and F may increase, while if the content is excessive, the thermal stability of the glass may deteriorate. Therefore, when the upper limit of the content of Nb 2 O 5 satisfies the above, the thermal stability and chemical durability of the glass can be well maintained, and the moldability at the time of reheating can be improved.
  • the lower limit of the TiO 2 content is preferably 0%, and further, in the order of 1%, 2%, 3%, and 4%. preferable.
  • the upper limit of the TiO 2 content is preferably 20%, more preferably 15%, 11%, 8%, and 6%.
  • TiO 2 is a component that contributes to high refractive index and high dispersion in the glass composition A, and by coexisting with Nb 2 O 5 , it improves glass stability while maintaining high refractive index, and during reheating. Improves stability.
  • the partial dispersion ratios Pg and F may increase, and the transmittance of the glass in the short wavelength region may decrease.
  • crystals may be formed in a temperature range lower than the yield point of the glass, which may hinder the productivity of the glass. Therefore, the content of TiO 2 is preferably in the above range.
  • the lower limit of the total content of Nb 2 O 5 and TiO 2 [Nb 2 O 5 + TiO 2 ] is preferably 10%, and further. 20%, 30%, 35%, 38%, 39%, 40% and 41% are more preferable in this order.
  • the lower limit of the total content is preferably 45%, and may be 48%, 51%, 53%, or 55%, particularly when the refractive index is more important than stability.
  • the upper limit of the total content is preferably 80%, and more preferably 75%, 70%, 65%, 62%, 59%, and 56%.
  • the upper limit of the total content is preferably 53%, and may be 50%, 47%, 44%, or 43%.
  • the total content [Nb 2 O 5 + TiO 2 ] is preferably in the above range from the viewpoint of improving the glass stability while maintaining a high refractive index and improving the stability at the time of reheating. ..
  • the upper limit of the mass ratio of the content of TiO 2 [TiO 2 / Nb 2 O 5] with respect to the content of Nb 2 O 5 is preferably 0. It is 50, more preferably 0.40, 0.30, 0.20, 0.18, 0.16 in that order.
  • the lower limit of the mass ratio is preferably 0, more preferably 0.02, 0.04, 0.06, 0.08, 0.10.
  • the mass ratio may be zero.
  • the mass ratio [TiO 2 / Nb 2 O 5 ] is preferably in the above range from the viewpoint of suppressing an increase in the partial dispersion ratios Pg and F and increasing ⁇ 80.
  • the lower limit in the case of glass composition A the mass ratio of the content of P 2 O 5 to the content of Nb 2 O 5 [P 2 O 5 / Nb 2 O 5] , the It is preferably 0.000, and more preferably 0.005, 0.010, 0.015, and 0.020.
  • the upper limit of the mass ratio is preferably 0.200, and more preferably 0.150, 0.100, 0.090, and 0.080.
  • the mass ratio [P 2 O 5 / Nb 2 O 5 ] is preferably in the above range from the viewpoint of suppressing an increase in the partial dispersion ratios Pg and F.
  • the mass ratio of the content of P 2 O 5 to the total content of Nb 2 O 5 and TiO 2 [P 2 O 5 / (Nb 2 O 5)
  • the lower limit of + TiO 2 )] is preferably 0.000, and more preferably 0.005, 0.010, 0.015, and 0.018.
  • the upper limit of the mass ratio is preferably 0.200, and more preferably 0.150, 0.100, 0.090, and 0.080.
  • the mass ratio [P 2 O 5 / (Nb 2 O 5 + TiO 2 )] is preferably in the above range from the viewpoint of obtaining the desired high dispersibility.
  • the upper limit of the content of WO 3 is preferably 20%, and further, 17%, 14%, 11%, 8%, 6%. 4%, 3%, 2%, 1%, 0.5% and 0.2% are more preferable.
  • the lower limit of the WO 3 content is preferably 0%.
  • the content of WO 3 may be 0%.
  • WO 3 is a component in the glass composition A that improves stability during reheating.
  • WO 3 increases the partial dispersion ratios Pg and F. In addition, it tends to cause coloring of glass and lowers ⁇ 80. Therefore, the content of WO 3 is preferably in the above range.
  • the upper limit of the content of Bi 2 O 3 is preferably 20%, and further, 17%, 14%, 11%, 8%, and so on. 6%, 4%, 3%, 2%, 1%, 0.5%, 0.2% are more preferable.
  • the lower limit of the Bi 2 O 3 content is preferably 0%.
  • the content of Bi 2 O 3 may be 0%.
  • Bi 2 O 3 has a function of improving the thermal stability of glass by containing an appropriate amount in the glass composition A.
  • the content of Bi 2 O 3 is too large, the partial dispersion ratios Pg and F increase. Further, the coloring of the glass may increase and ⁇ 80 may decrease. Therefore, the content of Bi 2 O 3 is preferably in the above range.
  • the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 [Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 ]
  • the upper limit of is preferably 80%, and more preferably 75%, 70%, 65%, 62%, 59%, and 56%.
  • the upper limit of the total content is preferably 53%, and may be 50%, 47%, 44%, or 43%.
  • the lower limit of the total content is preferably 10%, more preferably 20%, 30%, 35%, 38%, 39%, 40% and 41%.
  • the lower limit of the total content is preferably 45%, and may be 48%, 51%, 53%, or 55%, particularly when the refractive index is more important than stability.
  • TiO 2 , WO 3 and Bi 2 O 3 are components that contribute to high refractive index and high dispersion together with Nb 2 O 5. Therefore, the total content [Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 ] is preferably in the above range.
  • the mass ratio of the content of Nb 2 O 5 to the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 [
  • the upper limit of Nb 2 O 5 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] maintains the thermal stability of the glass, increases the ⁇ 80 of the glass, and improves the stability during reheating. From the viewpoint, it is preferably 1, and more preferably 0.98, 0.96, 0.94, and 0.92.
  • the lower limit of the mass ratio is preferably 0.1, and more preferably 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 in that order.
  • the mass ratio of the content of ZrO 2 to the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 [ZrO 2]. / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is preferably 1 from the viewpoint of maintaining the thermal stability of the glass, and further 0.9, 0.8, 0. It is more preferable in the order of 7, 0.6, 0.5, 0.4, 0.3, 0.25.
  • the lower limit of the mass ratio [ZrO 2 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is preferably 001 from the viewpoint of increasing ⁇ 80 of the glass, and further 0.03, 0.05. , 0.08, 0.09, 0.10, 0.11 in that order.
  • the upper limit of the mass ratio [ZrO 2 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is 0.02, 0.01, or 0.00. It can also be.
  • the upper limit of the mass ratio of the content is preferably 5, and further 4, 3, It is more preferable in the order of 2, 1.5, 1.3, 1.1, 1.0, 0.9 and 0.8.
  • the upper limit of the mass ratio when the refractive index is particularly important is preferably 0.7, and may be 0.6, 0.5, or 0.45.
  • the lower limit of the mass ratio is preferably 0.013, more preferably 0.10, 0.20, 0.30, 0.35, 0.40.
  • the lower limit of the mass ratio is preferably 0.50, and may be 0.60, 0.70, or 0.75.
  • the refractive index of the glass is adjusted by setting the mass ratio [(SiO 2 + P 2 O 5 + B 2 O 3 ) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3)] in the above range. And can maintain thermal stability.
  • the upper limit of the content of Ta 2 O 5 is preferably 20%, and further 15%, 10%, 8%, 6%, 4 %, 2%, and 1% are more preferable.
  • the lower limit of the content of Ta 2 O 5 is preferably 0%.
  • the content of Ta 2 O 5 may be 0%.
  • Ta 2 O 5 is a glass component having a function of improving the thermal stability of glass in the glass composition A.
  • the content of Ta 2 O 5 is increased, the thermal stability of the glass is lowered, and when the glass is melted, unmelted glass raw material is likely to occur.
  • it is an expensive component and may increase the manufacturing cost of glass. Therefore, the content of Ta 2 O 5 is preferably in the above range.
  • the content of Ta 2 O 5 with respect to the total content of Ta 2 O 5 , Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 is preferably 0.9, and further 0.7, 0.5. , 0.3, 0.2, 0.1, 0.05 in that order.
  • the lower limit of the mass ratio is preferably 0.000.
  • the mass ratio [Ta 2 O 5 / (Ta 2 O 5 + Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3) )] Is preferably in the above range.
  • the upper limit of the Li 2 O content is preferably 10%, and further in the order of 9%, 8%, 7%, and 6%. preferable.
  • the lower limit of the Li 2 O content is preferably 0%, more preferably 1%, 2%, 3%, 3.5%, 4%, and 4.5%.
  • the upper limit of the Na 2 O content is preferably 30%, and further 25%, 20%, 18%, 16%, 14, More preferred in the order of 12%.
  • the lower limit of the Na 2 O content is preferably 0%, more preferably 1%, 2%, 3%, 3.5%, 4%, 4.5%, and 5%.
  • the upper limit of the content of K 2 O preferably 30%, even 20%, 15%, 10%, 7%, 4% It is more preferable in the order of.
  • the lower limit of the K 2 O content is preferably 0%, more preferably 0.1%, 0.2%, 0.3%, 0.4%, 0.5% in that order.
  • Li 2 O, Na 2 O and K 2 O all have a function of lowering the liquidus temperature and improving the thermal stability of the glass, but when their contents are increased, they are chemically treated. Durability and weather resistance are reduced. Therefore, the contents of Li 2 O, Na 2 O, and K 2 O are preferably in the above ranges.
  • the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably 1%. Yes, more preferably 5%, 8%, 10%, 12%, 13%, 14% in that order.
  • the upper limit of the total content is preferably 40%, more preferably 35%, 30%, 25%, 22%, 20%, 19%, 18% and 17%.
  • the meltability of the glass can be improved and an increase in the liquidus temperature can be suppressed. Further, when the upper limit of the total content satisfies the above, the viscosity of the glass can be increased, the crystallization rate of the glass melt can be reduced, and the stability at the time of reheating can be improved.
  • the mass ratio of the total contents of Li 2 O, Na 2 O and K 2 O to the total contents of Nb 2 O 5 and TiO 2 [(Li).
  • the lower limit of 2 O + Na 2 O + K 2 O) / (Nb 2 O 5 + TiO 2 )] is preferably 0.10, and further 0.15, 0.18, 0.21, 0.23, 0.25. It is more preferable in the order of.
  • the upper limit of the mass ratio is preferably 0.70, and more preferably 0.65, 0.60, 0.55, 0.50, 0.45.
  • the mass ratio [(Li 2 O + Na 2 O + K 2 O) / (Nb 2 O 5 + TiO 2 )]. Is preferably in the above range.
  • the mass ratio of the content of P 2 O 5 to the total content of Li 2 O, Na 2 O, K 2 O and Nb 2 O 5 [P
  • the upper limit of 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Nb 2 O 5 )] is preferably 0.500, and further 0.400, 0.300, 0.200, 0.100, 0.080. , 0.070, 0.060 are more preferable.
  • the lower limit of the mass ratio is preferably 0, and more preferably 0.005, 0.010, 0.011, 0.012, 0.013, 0.014.
  • the mass ratio [P 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Nb 2 O 5 )] is in the above range from the viewpoint of stabilizing the glass and suppressing an increase in the partial dispersion ratios Pg and F. Is preferable.
  • the upper limit of the content of Cs 2 O is preferably 10%, and further 8%, 6%, 4%, 3%, 2%. It is more preferable in the order of 1%.
  • the lower limit of the content of Cs 2 O is preferably 0%.
  • Cs 2 O has a function of improving the thermal stability of the glass in the glass composition A, but when the content thereof is increased, the chemical durability and the weather resistance are lowered. Therefore, the content of Cs 2 O is preferably in the above range.
  • the lower limit of the total content [Li 2 O + Na 2 O + K 2 O + Cs 2 O] of Li 2 O, Na 2 O, K 2 O and Cs 2 O is , Preferably 1%, and more preferably 5%, 8%, 10%, 12%, 13%, and 14%.
  • the upper limit of the total content is preferably 40%, more preferably 35%, 30%, 25%, 22%, 20%, 19%, 18% and 17%.
  • the total content [Li 2 O + Na 2 O + K 2 O + Cs 2 O] is preferably in the above range from the viewpoint of maintaining stability during reheating.
  • the mass ratio of the content of Li 2 O to the total content of Li 2 O, Na 2 O, K 2 O, and Cs 2 O [
  • the upper limit of Li 2 O / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 1 from the viewpoint of suppressing an increase in the liquidus temperature and suppressing a decrease in weather resistance, and further 0.9. , 0.8, 0.7, 0.6, 0.5, 0.45, 0.4 in that order.
  • the lower limit of the mass ratio is preferably 0, more preferably 0.1, 0.2, 0.25, 0.29, 0.31 and 0.33.
  • the mass ratio of the content of Na 2 O to the total content of Li 2 O, Na 2 O, K 2 O, and Cs 2 O [
  • the upper limit of Na 2 O / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 1 from the viewpoint of suppressing an increase in the liquidus temperature and suppressing a decrease in weather resistance, and further 0.95. , 0.9, 0.85, 0.80, 0.75, 0.70, 0.66 in that order.
  • the lower limit of the mass ratio is preferably 0, and more preferably 0.1, 0.2, 0.25, 0.29, 0.31, 0.33, 0.34.
  • the mass ratio of the content of K 2 O to the total content of Li 2 O, Na 2 O, K 2 O, and Cs 2 O [
  • the upper limit of K 2 O / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 1 from the viewpoint of suppressing an increase in the liquidus temperature and suppressing a decrease in weather resistance, and further 0.9.
  • the order of 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.28, 0.27 is more preferable.
  • the lower limit of the mass ratio is preferably 0, more preferably 0.1, 0.15, 0.20, 0.22, 0.24, 0.25.
  • the glass composition A in the molding glass material according to the present embodiment Li 2 O, Na 2 O, K 2 O, Cs 2 O, Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3
  • the upper limit of the mass ratio of the content of P 2 O 5 to the total content of [P 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Cs 2 O + Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is preferable. It is 1, and more preferably 0.5, 0.3, 0.1, 0.08, 0.07, 0.06 in that order.
  • the lower limit of the mass ratio is preferably 0, more preferably 0.005, 0.008, 0.011 and 0.012.
  • a desired Abbe number is obtained by appropriately introducing Li 2 O, Na 2 O, K 2 O, Cs 2 O, Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 as glass components.
  • ⁇ d and partial dispersion ratios Pg and F can be obtained.
  • P 2 O 5 is a component that improves stability during reheating.
  • the mass ratio [P 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Cs 2 O + Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is too high, the stability of the glass deteriorates and the partial dispersion ratio Pg , F may increase, and if it is too low, the stability during reheating may deteriorate. Therefore, the mass ratio is preferably in the above range.
  • the upper limit of the mass ratio of the total content of O is preferably 5, and further 4, 3, It is more preferable in the order of 2, 1.5, 1, 0.9, 0.8, 0.7, 0.6.
  • the lower limit of the mass ratio is preferably 0.02, and more preferably 0.1, 0.2, 0.3, 0.4, 0.45.
  • the glass transition point Tg increases and the meltability becomes poor. It may worsen and the partial dispersion ratios Pg and F may increase.
  • the viscosity at the time of melting the glass is lowered, the thermal stability of the melt is lowered, and the stability at the time of reheating may be deteriorated.
  • the upper limit of the total content of the mass ratio of 2 O is preferably 4, more 3 , 2, 1.5, 1, 0.9, 0.8, 0.7, 0.6, 0.5 are more preferable.
  • the lower limit of the mass ratio is preferably 0.015, more preferably 0.100, 0.200, and 0.300 in that order.
  • the glass composition A if the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is too low, the partial dispersion ratios Pg and F increase. The transmittance may deteriorate. On the other hand, if it is too high, the Abbe number becomes large, the refractive index is lowered, and the stability at the time of reheating may be deteriorated.
  • the upper limit of the MgO content is preferably 20%, and further, 14%, 9%, 4%, 2% and 1%. More preferred in order.
  • the upper limit may be 0%.
  • the lower limit of the MgO content is preferably 0%.
  • the lower limit of the MgO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, or 6%.
  • the upper limit of the CaO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order.
  • the upper limit may be 0%.
  • the lower limit of the CaO content is preferably 0%.
  • the lower limit of the CaO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%.
  • the upper limit of the SrO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order.
  • the upper limit may be 0%.
  • the lower limit of the SrO content is preferably 0%.
  • the lower limit of the SrO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%.
  • the upper limit of the BaO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order.
  • the upper limit may be 0%.
  • the lower limit of the BaO content is preferably 0%.
  • the lower limit of the BaO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%.
  • MgO, CaO, SrO, and BaO are all glass components having a function of improving the thermal stability and devitrification resistance of the glass.
  • the content of these glass components is increased, the specific gravity is increased, the high dispersibility is impaired, and the thermal stability and devitrification resistance of the glass are lowered. Therefore, the content of each of these glass components is preferably in the above range.
  • the upper limit of the ZnO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order.
  • the upper limit may be 0%.
  • the lower limit of the ZnO content is preferably 0%.
  • the lower limit of the ZnO content when increasing the specific resistance of the glass to improve the melting efficiency or lowering the glass transition point is preferably 1%, 2%, 4%, or 6%. You can also do it.
  • ZnO is a glass component having a function of improving the thermal stability of glass in the glass composition A.
  • the ZnO content is preferably in the above range.
  • the upper limit of the total content [MgO + CaO] of MgO and CaO is preferably 20%, and further, 14%, 9%, 4%, and so on. It is more preferable in the order of 2% and 1%.
  • the upper limit may be 0%.
  • the lower limit of the total content is preferably 0%. From the viewpoint of maintaining thermal stability without hindering high dispersion, the total content is preferably in the above range.
  • the upper limit of the total content [MgO + CaO + SrO + BaO + ZnO] of MgO, CaO, SrO, BaO and ZnO is preferably 20%, and further, 14 %, 9%, 4%, 2% and 1% are more preferable.
  • the upper limit may be 0%.
  • the lower limit of the total content is preferably 0%.
  • the lower limit of the total content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%.
  • the total content is preferably in the above range from the viewpoint of suppressing an increase in specific gravity and maintaining thermal stability without hindering high dispersion.
  • the upper limit of the mass ratio of the content [(MgO + CaO + SrO + BaO + ZnO) / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 20, and more preferably 18, 16 and 14.
  • the lower limit of the mass ratio is preferably 0, and more preferably 5, 8, 10, 12, and 13.
  • the mass ratio may be zero.
  • the mass ratio is determined from the viewpoint of suppressing an increase in the specific gravity of the glass, increasing the meltability and increasing the dispersion of the glass by improving the filling rate of the glass, and maintaining the specific resistance of the glass appropriately. It is preferably in the above range.
  • the upper limit of the content of La 2 O 3 is preferably 20%, more preferably 17%, 14%, and 12% in that order. ..
  • the upper limit of the La 2 O 3 content when stability is more important than the refractive index can be 9%, 7%, 5%, 3%, 2%, or 1%.
  • the upper limit may be 0%.
  • the lower limit of the content of La 2 O 3 is preferably 0%.
  • the lower limit of the content of La 2 O 3 when increasing the refractive index while maintaining the content of the glass-forming component is preferably 1%, and may be 2%, 4%, or 6%. ..
  • the content of La 2 O 3 in the glass composition A is large, the high dispersion of the glass is suppressed and the thermal stability is lowered. Therefore, the content of La 2 O 3 is preferably in the above range.
  • the upper limit of the content of Y 2 O 3 is preferably 20%, further 17%, preferably by 14%, 12% sequence ..
  • the upper limit of the content of Y 2 O 3 when stability is more important than the refractive index can be 9%, 7%, 5%, 3%, 2%, or 1%.
  • the upper limit may be 0%.
  • the lower limit of the content of Y 2 O 3 is preferably 0%.
  • the lower limit of the content of Y 2 O 3 when increasing the refractive index while maintaining the content of the glass-forming component is preferably 1%, and may be 2%, 3%, or 5%. ..
  • the content of Y 2 O 3 in the glass composition A is too large, the high dispersion of the glass is suppressed, the thermal stability is lowered, and the glass is easily devitrified during production. Therefore, the content of Y 2 O 3 is preferably in the above range.
  • the upper limit of the content of Sc 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%.
  • the upper limit may be 0%.
  • the lower limit of the Sc 2 O 3 content is preferably 0%.
  • the upper limit of the content of HfO 2 is preferably 3%, and further, 2%, 1.5%, 1%, 0.5. More preferred in order of%.
  • the upper limit may be 0%.
  • the lower limit of the HfO 2 content is preferably 0%.
  • Sc 2 O 3 and HfO 2 have a function of enhancing the high dispersibility of glass in the glass composition A, but are expensive components. Therefore, the contents of Sc 2 O 3 and HfO 2 are preferably in the above range.
  • the glass containing ZrO 2 may contain a certain amount of HfO 2 . Therefore, in molding the glass material according to the first embodiment, the case of glass composition A, the mass ratio of the content of HfO 2 to the content of ZrO 2 [HfO 2 / ZrO 2 ] may also be a predetermined range.
  • the lower limit of the mass ratio [HfO 2 / ZrO 2 ] may be 0.005, and further may be 0.010, 0.013, or 0.015.
  • the upper limit of the mass ratio may be 0.05, and may be 0.040, 0.030, 0.020, or 0.018. From the viewpoint of suppressing the components of the refractory brick from melting into the glass, the glass preferably contains a small amount of ZrO 2, and therefore the HfO 2 content is preferably in the above range.
  • the upper limit of the content of Lu 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%.
  • the upper limit may be 0%.
  • the lower limit of the content of Lu 2 O 3 is preferably 0%.
  • Lu 2 O 3 has a function of enhancing the high dispersibility of the glass in the glass composition A, but is also a glass component that increases the specific gravity of the glass due to its large molecular weight. Therefore, the content of Lu 2 O 3 is preferably in the above range.
  • the upper limit of the content of GeO 2 is preferably 3%, and further, 2%, 1.5%, 1%, 0.5. More preferred in order of%.
  • the upper limit may be 0%.
  • the lower limit of the GeO 2 content is preferably 0%.
  • GeO 2 has a function of enhancing the high dispersibility of glass in the glass composition A, but is a prominently expensive component among commonly used glass components. Therefore, from the viewpoint of reducing the manufacturing cost of glass, the content of GeO 2 is preferably in the above range.
  • the upper limit of the content of Gd 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%.
  • the upper limit may be 0%.
  • the lower limit of the content of Gd 2 O 3 is preferably 0%.
  • the content of Gd 2 O 3 is preferably in the above range from the viewpoint of suppressing an increase in specific gravity while maintaining good thermal stability of the glass.
  • the upper limit of the content of Yb 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%.
  • the upper limit may be 0%.
  • the lower limit of the content of Yb 2 O 3 is preferably 0%.
  • Yb 2 O 3 has a larger molecular weight than La 2 O 3 , Gd 2 O 3 , and Y 2 O 3, and therefore increases the specific gravity of the glass.
  • the specific gravity of glass increases, the mass of the optical element increases. For example, if a lens having a large mass is incorporated into an autofocus type imaging lens, the power required to drive the lens during autofocus increases, and the battery consumption increases. Therefore, it is desirable to reduce the content of Yb 2 O 3 to suppress the increase in the specific gravity of the glass.
  • the content of Yb 2 O 3 is preferably in the above range from the viewpoint of maintaining the transmittance in the near infrared region of the glass, preventing the decrease in thermal stability, and suppressing the increase in the specific gravity.
  • the molding glass material according to the present embodiment mainly contains the above-mentioned glass components, that is, SiO 2 , P 2 O 5 , B 2 O 3 , Al 2 O 3 , ZrO 2 , TiO 2 , Nb 2 and so on.
  • the molding glass material according to the present embodiment is preferably composed of the above glass components, but may contain other components as long as the effects of the present invention are not impaired. .. Further, in the present invention, the inclusion of unavoidable impurities is not excluded.
  • the molding glass material according to the present embodiment does not contain these elements as a glass component.
  • the molding glass material according to the present embodiment does not contain these elements as a glass component.
  • the molding glass material according to the present embodiment does not contain these elements as a glass component.
  • Sb (Sb 2 O 3 ) and Ce (CeO 2 ) are optionally addable elements that function as clarifying agents.
  • Sb (Sb 2 O 3 ) is a clarifying agent having a large clarifying effect, and also has an effect of promoting oxidation of components that are easily reduced by introduction in a small amount and increasing ⁇ 80.
  • Ce (CeO 2 ) has a smaller clarification effect than Sb (Sb 2 O 3). When Ce (CeO 2 ) is added in a large amount, the coloring of the glass tends to be strengthened.
  • the content of Sb 2 O 3 is indicated by external division. That is, when the total content of all glass components other than Sb 2 O 3 and CeO 2 is 100% by mass, the upper limit of the content of Sb 2 O 3 is preferably 1.000% by mass, and further. It is more preferable in the order of 0.500% by mass, 0.300% by mass, 0.100% by mass, 0.080% by mass, 0.060% by mass, and 0.040% by mass.
  • the lower limit of the content of Sb 2 O 3 is preferably 0.000% by mass, and further, 0.001% by mass, 0.003% by mass, 0.005% by mass, 0.010% by mass, and so on. It is more preferable in the order of 0.015% by mass and 0.020% by mass.
  • the content of Sb 2 O 3 is 0.008% by mass or less from the viewpoint of increasing the transmittance in the short wavelength region of the glass as much as possible. It may be 0.004% by mass or less, and may be 0.000% by mass.
  • the content of CeO 2 is also indicated by external division. That is, when the total content of all glass components other than CeO 2 and Sb 2 O 3 is 100% by mass, the upper limit of the content of CeO 2 is preferably 1.000% by mass, and further, 0. It is more preferable in the order of 500% by mass, 0.300% by mass, 0.100% by mass, 0.080% by mass, 0.060% by mass, and 0.040% by mass.
  • the lower limit of the content of CeO 2 is preferably 0.000% by mass, and further, in the order of 0.005% by mass, 0.010% by mass, 0.015% by mass, and 0.020% by mass. preferable.
  • the content of CeO 2 may be 0% by mass.
  • the upper limit of the Abbe number ⁇ d is preferably 50, and may be 45, 40, 35, 33, 31, or 30.
  • the lower limit of the Abbe number ⁇ d is preferably 15, and may be 17, 18, 19, 20, 21, 22, 23, or 24.
  • the Abbe number ⁇ d can be controlled by adjusting the contents of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 , which are glass components that contribute to high dispersion.
  • the lower limit of the refractive index nd can be 1.65, and further 1.70, 1.72, 1.74, 1.76, Alternatively, it can be 1.80. Further, the upper limit of the refractive index nd can be 2.30, and further, 2.10, 2.00, or 1.90.
  • the refractive index can be controlled by adjusting the contents of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 , which are glass components that contribute to increasing the refractive index.
  • the upper limit of the glass transition temperature Tg is preferably 700 ° C., 680 ° C., 670 ° C., 660 ° C., 650 ° C., 640 ° C., 630 ° C., 620 ° C. , 610 ° C, 600 ° C, 590 ° C, and 580 ° C, in that order.
  • the lower limit of the glass transition temperature Tg is not particularly limited, but is preferably 200 ° C, more preferably 300 ° C, 400 ° C, and 450 ° C.
  • the glass transition temperature Tg can be controlled by adjusting the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3)] and the like.
  • the upper limit of the glass transition temperature Tg satisfies the above, it is possible to suppress an increase in the molding temperature and the annealing temperature at the time of reheating the glass, and it is possible to reduce thermal damage to the reheating molding equipment and the annealing equipment.
  • the glass of the present invention has a desired Abbe number, refractive index or transmittance, while maintaining good moldability during reheating and thermal stability of the glass. It will be easier.
  • the upper limit of the specific gravity is preferably 4.3, and further, 4.1, 4.0, 3.9, 3.8, 3. It is more preferable in the order of 7 and 3.6.
  • the lower limit of the specific gravity is not particularly limited, but is usually 2.0, preferably 2.5.
  • the specific gravity is measured by a measuring method in which the repeated measurement accuracy is in the range of ⁇ 0.001 to ⁇ 0.002.
  • the wavelength range is 200 to 700 nm according to JOBIS17 (method for measuring the internal transmittance of optical glass).
  • the spectral transmittance is measured with ⁇ 80, and the wavelength at which the internal transmittance of a thickness of 10 mm is 80% is defined as ⁇ 80.
  • the upper limit of ⁇ 80 is preferably 395 nm, and further, the smaller the numerical value is, the more preferable it is in the order of 390 nm, 385 nm, 380 nm, 375 nm, and 370 nm.
  • the lower limit of ⁇ 80 is not particularly limited, but is usually 250 nm, and may be 300 nm or even 320 nm from the viewpoint of suppressing the transmittance of ultraviolet light.
  • the spectral transmittance of a glass sample having a thickness of 10.0 mm ⁇ 0.1 mm is measured in the wavelength range of 200 to 700 nm, and the wavelength at which the external transmittance is 70% is defined as ⁇ 70.
  • the upper limit of ⁇ 70 is preferably 445 nm, more preferably 440 nm, 430 nm, 420 nm, 410 nm, 400 nm, 390 nm, and 380 nm.
  • the lower limit of ⁇ 70 is not particularly limited, but is usually 255 nm, and may be 305 nm or 325 nm from the viewpoint of suppressing the transmittance of ultraviolet light.
  • the partial dispersion ratios Pg and f are small while having a high refractive index. Therefore, even when the cooling rate of the glass in step 3 described later is reduced to 1/10, the fluctuation of the dispersibility of the glass can be suppressed.
  • the change ⁇ d of the Abbe number is preferably larger than ⁇ 0.10 between the glass obtained by the cooling rate described later and the glass obtained when the cooling rate is reduced to 1/10. More preferably, it is larger than -0.09, and the lower limit thereof is more preferably -0.08, -0.07, -0.06, -0.05, -0.04, and -0.03.
  • the Abbe number ⁇ d of the glass material of the present embodiment is preferably 50 or less. Therefore, the upper limit of ⁇ d is +0.10, and more preferably +0.08, +0.06, +0.04, +0.02, and +0.01. In particular, when the Abbe number is 35 or less, preferably 30 or less, the upper limit of the above ⁇ d is preferably +0.005, and further, +0.00, -0.01, -0.02, or -0. It can also be 03.
  • the lower limit of the average linear expansion coefficient ⁇ L at ⁇ 30 to 70 ° C. is preferably 0.70 ⁇ 10-5 ° C. -1 , and further.
  • the upper limit of the average coefficient of linear expansion ⁇ L can be exemplified by 1.10 ⁇ 10 -5 ° C -1 from the viewpoint of maintaining the stability of the glass and obtaining desired optical characteristics, preferably 1.05 ⁇ 10 ⁇ .
  • the glass composition A by setting the average coefficient of linear expansion ⁇ L at ⁇ 30 to 70 ° C. in the above range, a glass material for molding that can be used in a wide temperature environment can be obtained.
  • the average coefficient of linear expansion ⁇ L is measured based on the provisions of JOBIS16.
  • the sample shall be a round bar with a length of 20 mm ⁇ 0.5 mm and a diameter of 5 mm ⁇ 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments.
  • the average coefficient of linear expansion ⁇ L is the average value of the coefficient of linear expansion at ⁇ 30 to 70 ° C.
  • the coefficient of linear expansion ⁇ L is expressed in units using [10-5 ⁇ ° C- 1 ], but even when [10-5 ⁇ K -1 ] is used as the unit, the average line is expressed.
  • the numerical values of the expansion coefficient ⁇ L are the same.
  • Glass composition B Next, the content / ratio of the glass component and the glass characteristics when the molding glass material according to the present embodiment has the glass composition B will be described.
  • the chemical formulas of the glass components TaO 2.5 , ScO 1.5 , HfO 2 , LuO 1.5 , GeO 2 , and YbO 1.5 other than the above are M (TaO 2.5 ) and M (ScO 1), respectively. .5 ), M (HfO 2 ), M (LuO 1.5 ), M (GeO 2 ), and M (YbO 1.5 ).
  • a glass composition B for example the oxides X y O z
  • the content by mass% can be displayed as C (X y O z).
  • cations in the oxide X y O z (cation "X") formula amount per mole i.e., a chemical formula weight of XO z / y can and M (XO z / y).
  • the formula ⁇ C (X y O z ) / M (X O z / y ) ⁇ represents the content of the cation "X" in mol% representation, that is, "X” in cation% representation. Is the content.
  • A1 ⁇ C (B 2 O 3 ) / M (BO 1.5 ) ⁇ / ⁇ C (B 2 O 3 ) / M (BO 1) .5 ) + C (SiO 2 ) / M (SiO 2 ) ⁇
  • the lower limit of A1 is preferably 1/3, and further 1.1 / 3, 1.2 / 3, 1.3 /.
  • the order of 3, 1.4 / 3, 1.5 / 3, 1.6 / 3, 1.7 / 3, 1.8 / 3, 1.9 / 3 is more preferable.
  • the upper limit of A1 is preferably 3.0 / 3, and further, 2.9 / 3, 2.8 / 3, 2.7 / 3, 2.6 / 3, 2.5 / 3, 2 It is more preferable in the order of .4 / 3, 2.3 / 3.
  • a low-dispersion glass material for molding having a large average linear expansion coefficient ⁇ L at ⁇ 30 to 70 ° C. can be obtained.
  • the temperature coefficient (dn / dT) of the relative refractive index of glass can be reduced.
  • the decrease in thermal stability of the glass can be suppressed.
  • the glass may become unstable when it contains a large amount of La 2 O 3 and Y 2 O 3 which are glass components that increase the refractive index nd and prevent the average linear expansion coefficient ⁇ L from decreasing. There is. Also, if A1 is too large, the stability, chemical durability, and mechanical properties of the glass may deteriorate.
  • B1 ⁇ C (BaO) / M (BaO) + C (SrO) / M (SrO) ⁇ / ⁇ C (Li 2 O) / M ( LiO 0.5 ) + C (Na 2 O) / M (NaO 0.5 ) + C (K 2 O) / M (KO 0.5 ) + C (Cs 2 O) / M (CsO 0.5 ) + C (MgO) ) / M (MgO) + C (CaO) / M (CaO) + C (SrO) / M (SrO) + C (BaO) / M (BaO) ⁇
  • the lower limit of B1 is preferably 0.62.
  • B1 is preferably 1.00, more preferably 0.99 and 0.98. B1 may be 1.00.
  • C1 ⁇ C (BaO) / M (BaO) + C (Li 2 O) / M (LiO 0.5 ) ⁇ / ⁇ C (Na 2).
  • the lower limit of C1 is preferably 8/9, and further 8.2 / 9, 8. The order of 4/9, 8.6 / 9, 8.8 / 9, 9.0 / 9, 9.2 / 9, 9.4 / 9, and 9.5 / 9 is more preferable.
  • the upper limit of C1 is preferably 27/9, and further, in the order of 25/9, 23/9, 21/9, 19/9, 17/9, 15/9, 13/9, 12/9. More preferred.
  • a glass material for molding having a large average linear expansion coefficient ⁇ L and a high refractive index and low dispersibility can be obtained.
  • the temperature coefficient (dn / dT) of the relative refractive index of glass can be reduced.
  • C1 is too small, the average coefficient of linear expansion ⁇ L may decrease, and the high refraction and low dispersibility of the glass may be lost. Further, if C1 is too large, the stability of the glass may decrease.
  • D1 C (Gd 2 O 3 ) + C (ZnO) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 ) + C (ZrO). 2
  • the upper limit of D1 is preferably 13.50, and further, in the order of 12.00, 11.00, 10.50, 10.00, 9.50, 9.00, 8.50. More preferred.
  • the lower limit of D1 is preferably 0, and more preferably 1, 2, 3, 4, 5, 6, 7, and 8. D1 may be 0.
  • D1 By setting D1 in the above range in the glass composition B, a decrease in the average linear expansion coefficient ⁇ L can be suppressed. Further, a glass material for molding having a high refractive index and a low dispersibility can be obtained by suppressing high dispersion. Further, there is also an effect of not increasing the temperature coefficient (dn / dT) of the relative refractive index of the glass. D1 may be 0, but D1 can be made larger than 0 in order to adjust an optical constant such as the Abbe number ⁇ d. On the other hand, if D1 is too large, the average coefficient of linear expansion ⁇ L may decrease, and the high refraction and low dispersibility of the glass may be lost.
  • E1 ⁇ C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 ) ⁇ / ⁇ C (SiO 2 ) + C
  • the lower limit of E1 is preferably 1.25, and further 1.30, 1.35, 1.40, 1.45, 1 More preferably, the order is .50, 1.55, 1.60, 1.65, 1.70.
  • the upper limit of E1 is preferably 3.00, and more preferably 2.80, 2.60, 2.40, 2.20, and 2.10.
  • F1 ⁇ C (Gd 2 O 3 ) / M (GdO 1.5 ) + C (ZnO) / M (ZnO) + C ( TIO 2 ) / M (TiO 2 ) + C (Nb 2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 ) + C (Bi 2 O 3 ) / M (BiO 1.5 ) ⁇ / ⁇ C
  • the upper limit of F1 is preferably 2.0, and further 1.8, 1.6, 1.4, 1.2, It is more preferable in the order of 1.1, 1.0, 0.9, 0.8, 0.6.
  • the lower limit of F1 is preferably 0, more preferably 0.1, 0.2, 0.3, 0.4 in that order. F1 may be 0.
  • F1 in the above range in the glass composition B, a glass material for molding having a large average linear expansion coefficient ⁇ L can be obtained. In addition, it is possible to suppress a decrease in the thermal stability of the glass.
  • F1 may be 0, but F1 can also be made larger than 0 in order to adjust an optical constant such as the Abbe number ⁇ d.
  • F1 is too large, the average coefficient of linear expansion ⁇ L may decrease, and the high refraction and low dispersibility of the glass may be lost.
  • G1 C (BaO) / M (BaO) + C (La 2 O 3 ) / M (LaO 1.5 ) + C (Li 2 O) /
  • the lower limit of G1 is preferably 0.47, and further 0.475, 0.48, 0. It is more preferable in the order of .485.
  • the upper limit of G1 is preferably 0.60, more preferably 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, 0.53.
  • G1 is preferably in the above range from the viewpoint of obtaining a molding glass material having a high refractive index and low dispersibility while suppressing a decrease in the average linear expansion coefficient ⁇ L.
  • G1 is too small, the average coefficient of linear expansion ⁇ L may decrease, and the high refraction and low dispersibility of the glass may be lost. Further, if G1 is too large, the thermal stability of the glass may decrease.
  • the lower limit of ⁇ C (B 2 O 3 ) / M (BO 1.5 ) + C (SiO 2 ) / M (SiO 2 ) ⁇ is preferably 0.35. Further, it is more preferable in the order of 0.37, 0.39, 0.41, 0.43, 0.45, 0.47.
  • the upper limit is preferably 0.75, and further in the order of 0.73, 0.71, 0.69, 0.67, 0.65, 0.63, 0.61, 0.59. preferable.
  • ⁇ C (B 2 O 3 ) / M (BO 1.5 ) + C (SiO 2 ) / M ( SiO 2 ) ⁇ is preferably in the above range.
  • the lower limit of ⁇ C (BaO) / M (BaO) + C (SrO) / M (SrO) ⁇ is preferably 0.15, and further 0.16, 0. It is more preferable in the order of .17, 0.18, 0.19, 0.20.
  • the upper limit is preferably 0.30, and more preferably 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, and 0.23.
  • ⁇ C (BaO) / M (BaO) + C (SrO) / M (SrO) ⁇ is in the above range from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient ⁇ L and a high refractive index. Is preferable.
  • ⁇ C (Li 2 O) / M (LiO 0.5 ) + C (Na 2 O) / M from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient ⁇ L and a high refractive index.
  • (NaO 0.5 ) + C (K 2 O) / M (KO 0.5 ) + C (Cs 2 O) / M (CsO 0.5 ) + C (MgO) / M (MgO) + C (CaO) / M ( CaO) + C (SrO) / M (SrO) + C (BaO) / M (BaO) ⁇ is preferably in the above range.
  • the lower limit of ⁇ C (BaO) / M ( BaO) + C (Li 2 O) / M (LiO 0.5) ⁇ is preferably 0.15, more The order of 0.16, 0.17, 0.18, 0.19, 0.20 is more preferable.
  • the upper limit thereof is preferably 0.35, and further 0.34, 0.33, 0.32, 0.31, 0.30, 0.29, 0.28, 0.27, 0. It is more preferable in the order of 26, 0.25, 0.25, 0.23.
  • ⁇ C (BaO) / M (BaO) + C (Li 2 O) / M (LiO). 0.5 ) ⁇ is preferably in the above range.
  • C (Na 2 O) / M (NaO 0.5 ) + C (K 2 O) from the viewpoint of obtaining a molding glass material having a large average linear expansion coefficient ⁇ L and a high refractive index and low dispersibility.
  • / M (KO 0.5 ) + C (SiO 2 ) / M (SiO 2 ) + C (TiO 2 ) / M (TiO 2 ) + C (Nb 2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 ) ⁇ is preferably in the above range.
  • the lower limit of is preferably 1.0, and more preferably 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, and 2.4.
  • the upper limit of the mass ratio is preferably 5.5, and further, 5.3, 5.1, 4.9, 4.7, 4.5, 4.3, 4.1, and 3.9. It is more preferable in the order of 3.7 and 3.5.
  • large average linear expansion coefficient alpha L is, in view of obtaining a molding glass material of high refractive index and low dispersion, and the temperature coefficient of the relative refractive index (dn / dT) in view of reducing the mass ratio [ It is preferable that C (BaO) / ⁇ C (SiO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 ) ⁇ ] is in the above range.
  • the lower limit of + C (WO 3 ) ⁇ ] is preferably 0.80, and further 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1 More preferred in the order of .20.
  • the upper limit of the mass ratio is preferably 1.70, and more preferably 1.65, 1.60, 1.55, 1.50, 1.45, 1.40, 1.35. ..
  • the mass ratio [C (BaO) / ⁇ C (SiO 2 ) + C (B 2 O 3 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 ) ⁇ ] is preferably in the above range.
  • the lower limit of Nb 2 O 5 ) + C (WO 3 ) ⁇ ] is preferably 0.5, and more preferably 1.0, 1.5, 2.0, 2.2, 2.4.
  • the upper limit of the mass ratio is preferably 7.0, and more preferably 6.5, 6.0, 5.5, 5.0, 4.5, 4.0, and 3.5. ..
  • the mass ratio [ ⁇ C (Li 2 O) + C (Na 2 O) + C (K 2 O) + C (Cs 2 O) + C (CaO) + C
  • the lower limit of (SrO) + C (BaO) ⁇ / ⁇ C (SiO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 ) ⁇ ] is preferably 0.5, and further 1.
  • the order of 0, 1.5, 2.0, 2.2, 2.4 is more preferable.
  • the upper limit of the mass ratio is preferably 7.0, and more preferably 6.5, 6.0, 5.5, 5.0, 4.5, 4.0, and 3.5. ..
  • the mass ratio [ ⁇ C (Li 2 O) + C (Na 2 O) + C (K 2) O) + C (Cs 2 O) + C (CaO) + C (SrO) + C (BaO) ⁇ / ⁇ C (SiO 2 ) + C (TIO 2 ) + C (Nb 2 O 5 ) + C (WO 3 ) ⁇ ] Is preferable.
  • the total content [C (ZnO) + C (Gd 2 O 3 ) + C (TIO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )]
  • the lower limit of is preferably 0, and more preferably 1, 2, 3, 4, and 5.
  • the total content may be zero.
  • the upper limit of the total content is preferably 15, and more preferably 14, 13, 12, 11, 10, 9, 8, 7, and 6.
  • the total content [C (ZnO) + C (Gd 2 O 3 ) + C (TIO 2 ) + C (Nb 2) O 5 ) + C (WO 3 )] is preferably in the above range.
  • the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3 ) + C (TIO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably 5 and more preferably 6, 7, 8 and 9.
  • the upper limit of the total content is preferably 25, and more preferably 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, and 14.
  • the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3) ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably in the above range.
  • the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3 ) + C (ZrO 2 ) + C (TiO 2 ) + C (Nb)
  • the lower limit of 2 O 5 ) + C (WO 3 )] is preferably 5, and more preferably 6, 7, 8 and 9.
  • the upper limit of the total content is preferably 25, and more preferably 24, 23, 22, 21, 20, 19, 18, 17, and 16.
  • the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3) ) + C (ZrO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably in the above range.
  • the total content [C (Al 2 O 3 ) + C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3 ) + C (ZrO 2 ) + C
  • the lower limit of (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably 5, and more preferably 6, 7, 8, and 9.
  • the upper limit of the total content is preferably 25, and more preferably 24, 23, 22, 21, 20, 19, 18, 17, and 16.
  • the total content [C (Al 2 O 3 ) + C (SiO 2 ) + C (ZnO) ) + C (Gd 2 O 3 ) + C (ZrO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably in the above range.
  • the lower limit of the total content [C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 )] is preferably 25, and further 26. , 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, in that order.
  • the upper limit of the total content is preferably 50, and more preferably 49, 48, 47, 46, 45, 44, 43.
  • the total content [C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 )] is in the above range from the viewpoint of obtaining a glass material for molding having a high refractive index and low dispersibility. Is preferable.
  • the lower limit of the total content [C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 )] is preferably 15, and further 16, 17 , 18 and 19 are more preferable.
  • the upper limit of the total content is preferably 30, and more preferably 29, 28, 27, 26, 25.
  • the total content [C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2) O 3 )] is preferably in the above range.
  • the mass ratio [ ⁇ C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 ) ⁇ / ⁇ 2 ⁇ C (SiO) 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 ) ⁇ ] is preferably 1.00, and further 1.05, 1.10, 1.15, 1.16, 1. It is more preferable in the order of 17, 1.18, 1.19, 1.20, 1.21.
  • the upper limit of the mass ratio is preferably 1.80, and further 1.75, 1.70, 1.65, 1.60, 1.55, 1.54, 1.53, 1.52. , 1.51 and 1.50 are more preferable.
  • the mass ratio [ ⁇ C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 ) ⁇ / ⁇ 2 ⁇ C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 ) ⁇ ] is preferably in the above range.
  • the lower limit of the total content [2 ⁇ C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 )] is preferably 20. Further, it is more preferable in the order of 21, 22, 23, 24, 25, 26.
  • the upper limit of the total content is preferably 45, and more preferably 44, 43, 42, 41, 40, 39, 38, 37, 36, 35 in that order.
  • the total content [2 ⁇ C (SiO 2 ) + C (B 2 O 3 ) + C ( Al 2 O 3 )] is preferably in the above range.
  • the mass ratio [ ⁇ C (La 2 O 3 ) + C (Y 2 O 3 ) ⁇ / ⁇ C (B 2 O 3 ) + C (BaO) ⁇ ] Is preferably 0.50, and more preferably 0.55, 0.60, 0.65, 0.70, 0.75, 0.80.
  • the upper limit of the mass ratio is preferably 1.30, and further, 1.25, 1.20, 1.15, 1.10, 1.05, 1.00, 0.95, 0.92. Is more preferable in this order.
  • the mass ratio [ ⁇ C (La 2 O 3 ) + C (Y 2 O 3 ) ⁇ / ⁇ C (B 2 O 3 ) + C (BaO) ⁇ ] is preferably in the above range.
  • the average linear expansion coefficient ⁇ L is large, and from the viewpoint of suppressing the decrease in the thermal stability of the glass, [C (Gd 2 O 3 ) / M (GdO 1.5 ) + C (ZnO) / M (ZnO) + C (TIO 2 ) / M (TIO 2 ) + C (Nb 2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 ) + C (Bi 2 O 3 ) / M ( BiO 1.5 )] is preferably in the above range.
  • the mass ratio [C (Y 2 O 3 ) / ⁇ C (La 2 O 3 ) + C (Y 2 O 3 ) + C (Gd 2 O 3 )) ⁇ ] Is preferably 0.20, and further 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0. 29, 0.30, 0.31, 0.32, 0.33, 0.34 are more preferable in this order.
  • the upper limit of the mass ratio is preferably 0.60, and further 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, 0.53, 0.52. , 0.51, 0.50, 0.49, 0.48, 0.47, 0.46 in that order.
  • the average linear expansion coefficient ⁇ L is large, and from the viewpoint of suppressing the decrease in thermal stability of the glass, the mass ratio [C (Y 2 O 3 ) / ⁇ C (La 2 O 3 ) + C (Y) 2 O 3 ) + C (Gd 2 O 3 ) ⁇ ] is preferably in the above range.
  • the mass ratio [C (Y 2 O 3 ) / ⁇ C (La 2 O 3 ) + C (Y 2 O 3 ) + C (TIO 2 ) ⁇ ]
  • the lower limit of is preferably 0.20, further 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, It is more preferable in the order of 0.30, 0.31 and 0.32.
  • the upper limit of the mass ratio is preferably 0.50, and more preferably 0.49, 0.48, 0.47, 0.46, 0.45.
  • the average linear expansion coefficient ⁇ L is large, and from the viewpoint of suppressing the decrease in thermal stability of the glass, the mass ratio [C (Y 2 O 3 ) / ⁇ C (La 2 O 3 ) + C (Y) 2 O 3 ) + C (TiO 2 ) ⁇ ] is preferably in the above range.
  • the lower limit of the total content [C (BaO) + C (La 2 O 3 ) + C (Y 2 O 3 )] is preferably 50. Further, the order of 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 is more preferable.
  • the upper limit of the total content is preferably 85, and more preferably 83, 81, 79, 77, 76 in that order.
  • the total content [C (BaO) + C (La 2 O 3 ) + C (Y 2 O 3 )] is preferably in the above range.
  • the lower limit of the content of SiO 2 is preferably 3.0%, and further 3.5%, 4.0%, 4.5. %, 5.0%, 5.5%, 6.0%, 6.5%, and 7.0% are more preferable.
  • the upper limit of the content of SiO 2 is preferably 15.0%, and further 14.5%, 14.0%, 13.5%, 13.0%, 12.5%, 12.0. %, 11.5%, 11.0%, 10.5%, 10.0%, and more preferably.
  • SiO 2 is a network-forming component of glass in the glass composition B, and has a function of improving the thermal stability, chemical durability, and weather resistance of the glass, increasing the viscosity of the molten glass, and facilitating the molding of the molten glass.
  • SiO 2 has a stronger function of increasing the values of ⁇ Pg and F than , for example, La 2 O 3 , Ba O, and Y 2 O 3 , which are abundantly contained in the glass composition B.
  • the content of SiO 2 is large, the average coefficient of linear expansion ⁇ L tends to decrease relatively, and the refractive index nd may decrease. Further, if the content of SiO 2 is too small, the stability at the time of reheating may be deteriorated. Therefore, the content of SiO 2 is preferably in the above range.
  • the lower limit of the content of B 2 O 3 is preferably 8.0%, and further 8.5%, 9.0%, 9
  • the order of 5.5%, 10.0%, 10.5%, 11.0%, 11.5%, and 12.0% is more preferable.
  • the upper limit of the content of B 2 O 3 is preferably 20.0%, and further 19.5%, 19.0%, 18.5%, 18.0%, 17.5%, 17 It is more preferable in the order of 0.0%, 16.5%, 16.0%, 15.5% and 15.0%.
  • B 2 O 3 is a network-forming component of glass in the glass composition B, and has a function of improving the thermal stability of the glass.
  • the network-forming components it is a component that does not lower the average coefficient of linear expansion ⁇ L.
  • the content of B 2 O 3 can be set in the above range.
  • the refractive index nd may decrease.
  • the stability at the time of reheating may be deteriorated.
  • the upper limit of the content of Al 2 O 3 is preferably 10%, and further 8%, 6%, 4%, 2%, 1 %, 0.5%, 0.2%, 0.1% are more preferable.
  • the lower limit of the content of Al 2 O 3 is preferably 0%.
  • the content of Al 2 O 3 may be 0%.
  • Al 2 O 3 is a glass component having a function of improving the chemical durability and weather resistance of glass in the glass composition B, and can be considered as a network forming component.
  • the content of Al 2 O 3 is large, the refractive index nd may be lowered, and the thermal stability and meltability of the glass may be lowered. Therefore, the content of Al 2 O 3 is preferably in the above range.
  • the upper limit of the content of P 2 O 5 is preferably 10%, even 8%, 6%, 4%, 2%, 1 %, 0.5%, 0.2%, 0.1% are more preferable.
  • the lower limit of the content of P 2 O 5 is preferably 0%.
  • the content of P 2 O 5 may be 0%.
  • P 2 O 5 is a component that lowers the refractive index nd in the glass composition B, and is also a component that lowers the thermal stability of the glass. Therefore, it is preferable that the content of P 2 O 5 is in the above range.
  • the upper limit of the Li 2 O content is preferably 10%, and further 8%, 6%, 4%, 2%, 1%. , 0.5%, 0.2%, 0.1% in that order.
  • the lower limit of the Li 2 O content is preferably 0%.
  • the content of Li 2 O may be 0%.
  • Li 2 O is a component that contributes to lowering the specific density of glass in the glass composition B, and has a function of improving the meltability of the glass and increasing the average coefficient of linear expansion ⁇ L. Further, it is a component that contributes to a decrease in the glass transition temperature Tg, and contributes to an improvement in moldability during precision press molding. Further, from the viewpoint of obtaining a glass having a high refractive index nd without impairing the low dispersibility, the content of Li 2 O can be set in the above range. On the other hand, if the content of Li 2 O is large, the devitrification resistance and acid resistance may decrease. In addition, low dispersibility may be impaired.
  • the upper limit of the Na 2 O content is preferably 10%, and further 8%, 6%, 4%, 2%, 1%. , 0.5%, 0.2%, 0.1% in that order.
  • the lower limit of the Na 2 O content is preferably 0%.
  • the content of Na 2 O may be 0%.
  • the upper limit of the content of K 2 O is preferably 10%, even 8%, 6%, 4%, 2%, 1% , 0.5%, 0.2%, 0.1% in that order.
  • the lower limit of the K 2 O content is preferably 0%.
  • the content of K 2 O may be 0%.
  • the upper limit of the total content of Na 2 O and K 2 O is preferably 10%, and further 8%, 6%, 4%, and so on. 2%, 1%, 0.5%, 0.2% and 0.1% are more preferable in this order.
  • the lower limit of the total content is preferably 0%, more preferably 0.001%, 0.01%, and 0.05%.
  • both Na 2 O and K 2 O have a function of improving the meltability of the glass. It also has the function of increasing the average coefficient of linear thermal expansion. On the other hand, when these contents are increased, thermal stability, devitrification resistance, chemical durability, and weather resistance are lowered. Therefore, the respective contents of Na 2 O and K 2 O and their total contents are preferably in the above range.
  • the upper limit of the content of Cs 2 O is preferably 10%, and further 8%, 6%, 4%, 2%, 1%. , 0.5%, 0.2%, 0.1%, more preferably.
  • the lower limit of the Cs 2 O content is preferably 0%.
  • the content of Cs 2 O may be 0%.
  • Cs 2 O has a function of improving the meltability of the glass in the glass composition B, but when the content is increased, the thermal stability and the refractive index nd of the glass are lowered, and the glass component is volatilized during melting. May increase and the desired glass may not be obtained. Therefore, the content of Cs 2 O is preferably in the above range.
  • the upper limit of the total content of Li 2 O, Na 2 O, K 2 O and Cs 2 O is preferably 10%, and further 8 %, 6%, 4%, 2%, 1%, 0.5%, 0.2%, 0.1% are more preferable.
  • the lower limit of the total content is preferably 0%.
  • the total content may be 0%. From the viewpoint of suppressing an increase in the liquidus temperature of the glass, the total content of Li 2 O, Na 2 O, K 2 O and Cs 2 O is preferably in the above range.
  • the upper limit of the MgO content is preferably 10%, further 8%, 6%, 4%, 2%, 1%, 0. It is more preferable in the order of 5.5%, 0.2%, and 0.1%.
  • the lower limit of the MgO content is preferably 0%.
  • the content of MgO may be 0%.
  • the upper limit of the CaO content is preferably 10%, further 8%, 6%, 4%, 2%, 1%, 0. It is more preferable in the order of 5.5%, 0.2%, and 0.1%.
  • the lower limit of the CaO content is preferably 0%.
  • the CaO content may be 0%.
  • the upper limit of the SrO content is preferably 10%, and further 8%, 6%, 4%, 2%, 1%, 0. It is more preferable in the order of 5.5%, 0.4%, and 0.3%.
  • the lower limit of the SrO content is preferably 0%, more preferably 0.05%, 0.10%, 0.15%, and 0.20% in that order.
  • the upper limit of the total content of MgO, CaO, and SrO is preferably 10%, and further 8%, 6%, 4%, and 2 %, 1%, 0.5%, 0.4%, 0.3% are more preferable.
  • the lower limit of the total content is preferably 0%, more preferably 0.05%, 0.10%, 0.15%, and 0.20%.
  • the total content may be 0%.
  • MgO, CaO, and SrO are all glass components having a function of improving the meltability of the glass, and also have a function of relatively increasing the average coefficient of linear expansion.
  • each content and total content of these glass components are preferably in the above range.
  • the lower limit of the BaO content is preferably 20%, and further 21%, 22%, 23%, 24%, 25%, 26. %, 27%, 28%, 29%, 30% and 31% are more preferable.
  • the upper limit of the BaO content is preferably 45%, and further 44%, 43%, 42%, 41%, 40%, 39%, 38%, 37%, 36%, 35%, 34. More preferred in order of%.
  • BaO is a glass component having a function of increasing the average linear expansion coefficient ⁇ L without impairing the high refractive index and low dispersion characteristics in the glass composition B, and is also a component that relatively reduces the values of ⁇ Pg and F. ..
  • a glass material for molding having a high refractive index and low dispersion and an improved average linear expansion coefficient ⁇ L can be obtained.
  • the content of BaO is too large, the thermal stability of the glass is lowered, the glass may be devitrified, and the stability at the time of reheating may be deteriorated.
  • the upper limit of the total content of SiO 2 and B 2 O 3 is preferably 30%, and further 29%, 28%, 27%. It is more preferable in the order of 26%, 25%, 24%, 23%, 22%, 21% and 20%.
  • the lower limit of the total content is preferably 13%, more preferably 14%, 15%, 16%, 17% and 18%.
  • the total content of SiO 2 and B 2 O 3 is preferably in the above range from the viewpoint of suppressing a decrease in the refractive index while maintaining the stability of the glass.
  • the mass ratio of the BaO content to the total content of SiO 2 and B 2 O 3 [BaO / (SiO 2 + B 2 O 3 )].
  • the upper limit of is preferably 3.00, and more preferably 2.80, 2.60, 2.40, 2.20, 2.00, 1.80, and 1.70.
  • the lower limit of the mass ratio is preferably 0.60, and more preferably 0.80, 0.90, 1.00, 1.10, 1.20, and 1.30.
  • the mass ratio is preferably in the above range from the viewpoint of obtaining a glass in which the stability of the glass is maintained and the average linear expansion coefficient ⁇ L is large.
  • the upper limit of the ZnO content is preferably 10%, further 8%, 6%, 4%, 2%, 1%, 0. The order of 5.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.05%, 0.03%, 0.02% and 0.01% is more preferable.
  • the lower limit of the ZnO content is preferably 0%.
  • the ZnO content may be 0%.
  • ZnO is a glass component having a function of improving the meltability of glass in the glass composition B.
  • the ZnO content is too high, the specific gravity of the glass may increase and the average coefficient of linear expansion ⁇ L may decrease.
  • the low dispersibility of the glass may be impaired.
  • the glass transition temperature Tg may decrease. Therefore, the ZnO content is preferably in the above range.
  • the lower limit of the content of La 2 O 3 is preferably 15%, and further 16%, 17%, 18%, 19%, 20. %, 21%, and 22% are more preferable.
  • the upper limit of the content of La 2 O 3 is preferably 40%, and further 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30. %, 29%, and 28% are more preferable.
  • La 2 O 3 is a glass component having a function of increasing the refractive index while suppressing a decrease in the Abbe number ⁇ d in the glass composition B. Further, it is a component that reduces the partial dispersion ratios Pg and F, and has a strong function of reducing the values of ⁇ Pg and F as compared with BaO. Therefore, by setting the content of La 2 O 3 in the above range, it is possible to suppress the decrease in the average linear expansion coefficient ⁇ L with high refractive index and low dispersion, and the temperature coefficient of relative refractive index (dn / dT). A glass material for molding, which suppresses the increase in the temperature coefficient, can be obtained. On the other hand, if the content of La 2 O 3 is too large, the thermal stability and devitrification resistance of the glass may be lowered, and the stability at the time of reheating may be deteriorated.
  • the upper limit of the content of Gd 2 O 3 is preferably 20%, and further 15%, 10%, 5%, 4%, 3 %, 2%, 1%, and 0.5% are more preferable.
  • the lower limit of the content of Gd 2 O 3 is preferably 0%.
  • the content of Gd 2 O 3 may be 0%.
  • Gd 2 O 3 is a component that can suppress a decrease in the average linear expansion coefficient ⁇ L with high refraction and low dispersion in the glass composition B, but in the glass of the present embodiment in which a large amount of BaO is introduced, Gd 2 O 3 is used. If the content of 3 is too high, the thermal stability and devitrification resistance of the glass will decrease, and the glass will easily devitrify during production. Further, if the content of Gd 2 O 3 becomes too large, the specific gravity of the glass increases, which is not preferable. It is also disadvantageous from the viewpoint of reducing raw material costs. Therefore, the content of Gd 2 O 3 is preferably in the above range.
  • the lower limit of the content of Y 2 O 3 is preferably 5%, further 6%, 7%, 8%, 9%, 10 %, 11%, 12%, 13% and 14% are more preferable.
  • the upper limit of the content of Y 2 O 3 is preferably 25%, even 24%, 23%, 22%, 21%, 20%, preferably by 19% order.
  • Y 2 O 3 is a component having a function of increasing the refractive index while suppressing a decrease in the Abbe number ⁇ d in the glass composition B. Further, in the glass of the present embodiment in which a relatively large amount of BaO or SrO is introduced among the alkaline component and the alkaline earth component, in order to suppress a decrease in the average linear expansion coefficient ⁇ L and impart high refractive index and low dispersion characteristics. It is an effective ingredient. It also has the function of improving the chemical durability and weather resistance of glass and raising the glass transition temperature. It is a component that reduces the partial dispersion ratios Pg and F, and also has a function of reducing the values of ⁇ Pg and F. On the other hand, if the content of Y 2 O 3 is too large, the thermal stability and devitrification resistance of the glass may decrease. Stability during reheating may deteriorate. Therefore, the content of Y 2 O 3 is preferably in the above range.
  • the upper limit of the content of ZrO 2 is preferably 10%, and further 9%, 8%, 7%, 6%, 5%, It is more preferable in the order of 4%, 3%, and 2.5%.
  • the lower limit of the content of ZrO 2 is preferably 0%, and further 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1.0%, and so on. It is more preferable in the order of 1.5% and 2.0%.
  • the content of ZrO 2 may be 0%.
  • ZrO 2 is a component having a function of increasing the refractive index in the glass composition B, and also has a function of improving the thermal stability of the glass by containing an appropriate amount.
  • ZrO 2 is a component that relatively reduces the average linear expansion coefficient ⁇ L , and is also a component that increases the temperature dependence of the temperature coefficient (dn / dT) of the relative refractive index. Also, if the content is too high, the thermal stability may be significantly reduced. Therefore, the content of ZrO 2 is preferably in the above range.
  • the upper limit of the TiO 2 content is preferably 15%, and further 14%, 13%, 12%, 11%, 10%. 9%, 8%, 7% and 6% are more preferable in this order.
  • the lower limit of the TiO 2 content is preferably 0%, more preferably 1%, 2%, 3%, 4%, and 5%.
  • the content of TiO 2 may be 0%.
  • TiO 2 is a component having a function of increasing the refractive index in the glass composition B, and also has a function of improving the thermal stability of the glass by containing an appropriate amount.
  • TiO 2 is a component that increases the partial dispersion ratios Pg and F, and has a strong function of increasing the values of Pg, F and ⁇ Pg and F as compared with Nb 2 O 5.
  • the content of TiO 2 is too large, the average coefficient of linear expansion ⁇ L may decrease, the Abbe number ⁇ d may decrease, the glass may be colored more, and the meltability may further deteriorate. There is. Stability during reheating may deteriorate. Therefore, the content of TiO 2 is preferably in the above range.
  • the upper limit of the content of Nb 2 O 5 is preferably 20%, and further 19%, 18%, 17%, 16%, 15 %, 14%, 13%, 12%, 11%, 10%, 5%, 3%, 2%, 1% are more preferable.
  • the lower limit of the content of Nb 2 O 5 is preferably 0%, and further 0.001%, 0.003%, 0.005%, 0.010%, 0.050%, 0.080. % And 0.100% are more preferable.
  • the content of Nb 2 O 5 may be 0%.
  • Nb 2 O 5 is a component having a function of increasing the refractive index in the glass composition B, and also has a function of improving the thermal stability of the glass by containing an appropriate amount.
  • Nb 2 O 5 is also a component that increases the partial dispersion ratios Pg, F and ⁇ Pg, F.
  • the content of Nb 2 O 5 is preferably in the above range.
  • the upper limit of the content of WO 3 is preferably 10%, and further 8%, 6%, 4%, 2%, 1%, It is more preferable in the order of 0.5% and 0.1%.
  • the lower limit of the WO 3 content is preferably 0%.
  • the content of WO 3 may be 0%.
  • WO 3 has a function of lowering the glass transition temperature Tg with respect to other highly dispersed components. It can be introduced for the purpose of lowering the molding temperature in order to protect the molding machine.
  • the content of WO 3 is preferably in the above range from the viewpoint of increasing the transmittance of the glass and suppressing the increase in the temperature coefficient (dn / dT) of the relative refractive index of the glass.
  • the upper limit of the content of Bi 2 O 3 is preferably 10%, and further 8%, 6%, 4%, 2%, 1 %, 0.5%, and 0.1% are more preferable.
  • the lower limit of the Bi 2 O 3 content is preferably 0%.
  • the content of Bi 2 O 3 may be 0%.
  • Bi 2 O 3 is a component in the glass composition B that increases the refractive index nd while decreasing the Abbe number ⁇ d. It is also a component that easily increases the coloring of glass. Therefore, the content of Bi 2 O 3 is preferably in the above range.
  • the upper limit of the content of Ta 2 O 5 is preferably 20%, and further 15%, 13%, 10%, 5%, 3 %, 1% is more preferable.
  • the lower limit of the content of Ta 2 O 5 is preferably 0%.
  • the content of Ta 2 O 5 may be 0%.
  • Ta 2 O 5 is a glass component having a function of improving the thermal stability and devitrification resistance of the glass in the glass composition B.
  • Ta 2 O 5 increases the refractive index and makes the glass highly dispersed. Further, when the content of Ta 2 O 5 is increased, the thermal stability of the glass is lowered, and when the glass is melted, the unmelted residue of the glass raw material is likely to occur. It is also a component that relatively lowers the average coefficient of linear expansion ⁇ L. Therefore, the content of Ta 2 O 5 is preferably in the above range. Further, Ta 2 O 5 is an extremely expensive component as compared with other glass components, and as the content of Ta 2 O 5 increases, the production cost of glass increases. Further, since Ta 2 O 5 has a larger molecular weight than other glass components, it increases the specific gravity of the glass, and as a result, increases the weight of the optical element.
  • the upper limit of the Sc 2 O 3 content is preferably 2%.
  • the lower limit of the Sc 2 O 3 content is preferably 0%.
  • the upper limit of the HfO 2 content is preferably 2%.
  • the lower limit of the HfO 2 content is preferably 0%.
  • Sc 2 O 3 and HfO 2 both have a function of increasing the refractive index nd and are expensive components. Therefore, the contents of Sc 2 O 3 and HfO 2 are preferably in the above range.
  • the upper limit of the content of Lu 2 O 3 is preferably 2%.
  • the lower limit of the content of Lu 2 O 3 is preferably 0%.
  • Lu 2 O 3 has a function of increasing the refractive index nd in the glass composition B. In addition, since it has a large molecular weight, it is also a glass component that increases the specific gravity of glass. Therefore, the content of Lu 2 O 3 is preferably in the above range.
  • the upper limit of the content of GeO 2 is preferably 2%.
  • the lower limit of the GeO 2 content is preferably 0%.
  • GeO 2 has a function of increasing the refractive index nd in the glass composition B, and is a prominently expensive component among commonly used glass components. Therefore, from the viewpoint of reducing the manufacturing cost of glass, the content of GeO 2 is preferably in the above range.
  • the upper limit of the content of La 2 O 3 is preferably 2%.
  • the lower limit of the content of La 2 O 3 is preferably 0%.
  • the content of La 2 O 3 may be 0%.
  • the content of La 2 O 3 is preferably in the above range from the viewpoint of suppressing the decrease in thermal stability and devitrification resistance.
  • the upper limit of the content of Yb 2 O 3 is preferably 2%. Further, the lower limit of the content of Yb 2 O 3 is preferably 0. %.
  • the content of Yb 2 O 3 in the glass composition B is too large, the thermal stability and devitrification resistance of the glass may decrease. Moreover, it is an expensive component among the commonly used glass components.
  • the content of Yb 2 O 3 is preferably in the above range from the viewpoint of preventing the decrease in thermal stability of the glass, suppressing the increase in the specific gravity, and suppressing the production cost of the glass.
  • the glass material for molding according to the present embodiment has a glass composition B
  • the above-mentioned glass components SiO 2 , B 2 O 3 , Al 2 O 3 , P 2 O 5 , Li 2 O, Na 2 O, K 2 are mainly used.
  • the upper limit of the content of TeO 2 is preferably 2%.
  • the lower limit of the content of TeO 2 is preferably 0%.
  • TeO 2 Since TeO 2 is toxic, it is preferable to reduce the content of TeO 2. Therefore, the content of TeO 2 is preferably in the above range.
  • the content of fluorine F is preferably 3% or less, and the upper limit thereof is in the order of 1%, 0.5%, 0.3%. preferable.
  • the content of F is preferably small, and the lower limit thereof is preferably 0%.
  • the content of F may be 0%. Also, preferably, it does not substantially contain fluorine F.
  • the molding glass material according to the present embodiment is preferably composed of the above glass components, but may contain other components as long as the effects of the present invention are not impaired. .. Further, in the present invention, the inclusion of unavoidable impurities is not excluded.
  • the molding glass material according to the present embodiment does not contain these elements as a glass component.
  • the molding glass material according to the present embodiment does not contain these elements as a glass component.
  • the molding glass material according to the present embodiment does not contain these elements as a glass component.
  • Sb (Sb 2 O 3 ) and Ce (CeO 2 ) are optionally addable elements that function as clarifying agents.
  • Sb (Sb 2 O 3 ) is a clarifying agent having a large clarifying effect.
  • the content of Sb 2 O 3 is indicated by external division. That is, when the total content of all glass components other than Sb 2 O 3 and CeO 2 is 100% by mass, the content of Sb 2 O 3 is preferably less than 1% by mass, more preferably 0.1% by mass. Is less than. Further, is preferably less than 0.05% by mass, less than 0.03% by mass, less than 0.02% by mass, and less than 0.01% in this order.
  • the content of Sb 2 O 3 may be 0% by mass.
  • the content of CeO 2 is also indicated by external division. That is, when the total content of all glass components other than CeO 2 and Sb 2 O 3 is 100% by mass, the content of CeO 2 is preferably less than 2% by mass, more preferably less than 1% by mass, and even more preferably. Is in the range of less than 0.5% by mass, more preferably less than 0.1% by mass.
  • the content of CeO 2 may be 0% by mass.
  • the refractive index nd is not particularly limited, and for example, 1.60 to 2.10 can be exemplified, preferably 1.65 to 2.00. , More preferably 1.70 to 1.88, and even more preferably 1.73 to 1.85.
  • the lower limit of the refractive index nd may be 1.65, 1.74, 1.75, 1.76, 1.77, 1.78, or 1.79, and the upper limit of the refractive index nd is 2.0, 1.9. It may be 1.84, 1.83, or 1.82.
  • the refractive index nd can be set to a desired value by appropriately adjusting the content of each glass component in the glass composition B.
  • the components (high refractive index components) that have the function of relatively increasing the refractive index nd are Nb 5+ , Ti 4+ , W 6+ , Bi 3+ , Ta 5+ , Zr 4+ , La 3+ 3, etc. (that is, in oxide display, Nb 2 O 5 , TiO 2 , WO 3 , Bi 2 O 3 , Ta 2 O 5 , ZrO 2 , La 2 O 3, etc.).
  • the components having a function of relatively lowering the refractive index nd are P 5+ , Si 4+ , B 3+ , Li + , Na + , K + and the like (that is, P in the oxide display).
  • the Abbe number ⁇ d in the molding glass material according to the present embodiment, can be 20 to 70, preferably 25 to 65, more preferably 30 to 60, and further preferably 35. ⁇ 55.
  • the lower limit of the Abbe number ⁇ d may be 23, 28, 32, 36, 37, 38, 39, or 40, and the upper limit of the Abbe number ⁇ d is 67, 63, 57, 53, 51, 49, 47, 45, 43, or It may be 42.
  • the Abbe number ⁇ d can be set to a desired value by appropriately adjusting the content of each glass component in the glass composition B.
  • Component to lower the relatively Abbe number [nu] d i.e. highly dispersed component, Nb 5+, Ti 4+, W 6+, Bi 3+, Ta 5+, Zr 4+ , etc. (i.e. the oxides display, Nb 2 O 5, TiO 2 , WO 3 , Bi 2 O 3 , Ta 2 O 5 , ZrO 2, etc.).
  • the components that relatively increase the Abbe number ⁇ d are P 5+ , Si 4+ , B 3+ , Li + , Na + , K + , La 3+ , Ba 2+ , Ca 2+ , Sr 2+, etc. (That is, in the oxide display, P 2 O 5 , SiO 2 , B 2 O 3 , Li 2 O, Na 2 O, K 2 O, La 2 O 3 , BaO, CaO, SrO, etc.).
  • the refractive index nd and the Abbe number ⁇ d preferably satisfy the following formula (1), more preferably the following formula (2), and further preferably. Satisfies the following formula (3), and particularly preferably the following formula (4).
  • the refractive index nd and the Abbe number ⁇ d satisfy the following equations, a glass material for molding having high refractive index and low dispersion characteristics can be obtained.
  • the lower limit of the average linear expansion coefficient ⁇ L at ⁇ 30 to 70 ° C. is preferably 0.80 ⁇ 10-5 ° C. -1 , and further. 0.81 ⁇ 10 -5 °C -1, 0.82 ⁇ 10 -5 °C -1, 0.83 ⁇ 10 -5 °C -1, 0.84 ⁇ 10 -5 °C -1, 0.85 ⁇ 10 - 5 ° C -1 , 0.86 ⁇ 10 -5 ° C -1 , 0.87 ⁇ 10 -5 ° C -1 , 0.88 ⁇ 10 -5 ° C -1 is more preferable.
  • the upper limit of the average coefficient of linear expansion ⁇ L can be exemplified by 1.20 ⁇ 10 ⁇ 5 ° C. -1 from the viewpoint of maintaining the stability of the glass and obtaining desired optical characteristics, and is preferably 1.10 ⁇ 10 ⁇ . It is 5 ° C -1 or less, and further 1.00 x 10-5 ° C -1 , 0.98 x 10-5 ° C -1 , 0.96 x 10-5 ° C -1 , 0.95 x 10-5. °C -1 , 0.94 ⁇ 10 -5 °C -1 , 0.93 ⁇ 10 -5 °C -1 is more preferable.
  • the glass composition B by setting the average coefficient of linear expansion ⁇ L at ⁇ 30 to 70 ° C. in the above range, a glass material for molding that can be used in a wide temperature environment can be obtained.
  • the average coefficient of linear expansion ⁇ L is measured based on the provisions of JOBIS16.
  • the sample shall be a round bar with a length of 20 mm ⁇ 0.5 mm and a diameter of 5 mm ⁇ 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments.
  • the average coefficient of linear expansion ⁇ L is the average value of the coefficient of linear expansion at ⁇ 30 to 70 ° C.
  • the coefficient of linear expansion ⁇ L is expressed in units using [10-5 ⁇ ° C- 1 ], but even when [10-5 ⁇ K -1 ] is used as the unit, the average line is expressed.
  • the numerical values of the expansion coefficient ⁇ L are the same.
  • the lower limit of the average linear expansion coefficient ⁇ 100-300 at 100 to 300 ° C. is preferably 90, and further in the order of 92, 94, 95. preferable.
  • the upper limit of the average coefficient of linear expansion ⁇ 100-300 can be exemplified by 130 from the viewpoint of maintaining the stability of the glass and obtaining desired optical characteristics, preferably 115, and further in the order of 110, 106, 104. More preferred.
  • the average coefficient of linear expansion ⁇ 100-300 is measured based on the provisions of JOBIS08.
  • the sample shall be a round bar with a length of 20 mm ⁇ 0.5 mm and a diameter of 5 mm ⁇ 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments.
  • the average coefficient of linear expansion ⁇ 100-300 is the average value of the coefficient of linear expansion at 100 to 300 ° C.
  • the coefficient of linear expansion ⁇ 100-300 is displayed in units of 10-7 ° C- 1 up to the first integer in accordance with the provisions of JOBIS08. That is, the average coefficient of linear expansion ⁇ 100-300 is expressed as an integer with [10-7 ⁇ ° C- 1 ] as a unit.
  • ⁇ Temperature coefficient of relative refractive index dn / dT> The temperature coefficient of the relative refractive index (dn / dT) of glass is determined by the Japanese Industrial Standard JISB7072-2 (Method for measuring the temperature coefficient of refractive index in optical glass-Part 2: Interferometry) for light with a wavelength of 632.8 nm.
  • the value of the temperature coefficient of the relative refractive index when the temperature is changed from ⁇ 40 ° C. to 110 ° C. is measured.
  • the temperature coefficient of relative refractive index (dn / dT) is expressed in the unit of [10-6 ⁇ ° C- 1 ], but [10-6 ⁇ K -1 ] is used as the unit. Even in this case, the value of the temperature coefficient dn / dT of the relative refractive index is the same.
  • the upper limit of the temperature coefficient dn / dT of the relative refractive index is the wavelength of the He—Ne laser (633 nm to 632.8 nm) and the temperature of 20 to 40 ° C. In the range, it is preferably 2.0 ⁇ 10 -6 °C -1 , and more preferably 1.5 ⁇ 10 -6 °C -1 , 1.0 ⁇ 10 -6 °C -1 , 0.5 ⁇ 10 -6 °C -1.
  • the wavelength of the He-Ne laser (633 nm to 632.8 nm) and the temperature in the range of 20 to 40 ° C. are preferably -13.
  • the temperature of the optical element can be increased. Since the fluctuation of the refractive index becomes small even in an environment where the fluctuation is large, the desired optical characteristics can be exhibited with high accuracy in a wider temperature range.
  • the range of temperature rise of the glass changes depending on the intensity of the light and the irradiation time. .. In this case, it may be required to reduce the temperature change of the refractive index of the glass of the present embodiment alone.
  • the upper limit of the temperature coefficient dn / dT of the relative refractive index is preferably 2.0, taking the wavelength of the He-Ne laser (633 nm to 632.8 nm) and the temperature in the range of 20 to 40 ° C. as an example.
  • ⁇ 10 -6 °C -1 and further 1.5 ⁇ 10 -6 °C -1 , 1.0 ⁇ 10 -6 °C -1 , 0.5 ⁇ 10 -6 °C -1 , 0.3 ⁇ 10 It is more preferable in the order of -6 ° C -1 and 0.1 ⁇ 10 -6 ° C -1.
  • the lower limit of the temperature coefficient dn / dT of the relative refractive index is preferably ⁇ 2.0 ⁇ 10 -6 ° C -1 , and further ⁇ 1.5 ⁇ 10 -6 ° C -1 and ⁇ 1.0. It is more preferable in the order of ⁇ 10 -6 ° C -1 , ⁇ 0.5 ⁇ 10 -6 ° C -1 , ⁇ 0.3 ⁇ 10 -6 ° C -1 , and ⁇ 0.1 ⁇ 10 -6 ° C -1.
  • the temperature coefficient dn / dT of the relative refractive index can also be 0.0 ⁇ 10 -6 ° C -1.
  • the value of the temperature coefficient (dn / dT) of the relative refractive index of the glass material for molding according to the present embodiment is appropriately selected within the above preferable range depending on the laser wavelength used in consideration of the description of the present specification. You may.
  • the glass of the present embodiment has a small temperature dependence of the temperature coefficient (dn / dT) of the relative refractive index.
  • the measurement method is as follows.
  • measurement is performed by the interferometry method.
  • the temperature is changed from ⁇ 40 ° C. to 80 ° C., and the wavelength is 632.8 nm at temperatures of ⁇ 30 ° C., ⁇ 10 ° C., + 10 ° C., + 30 ° C., + 50 ° C., and + 70 ° C. 8) is measured, an approximate straight line of the value of dn / dT @ 632.8 with respect to the temperature is obtained by the least squares method, the slope of the straight line is a, and the intercept at a temperature of 0 ° C. is b.
  • the range of the value of the inclination a is preferably 10.0 ⁇ 10 -9 to -10.0 ⁇ 10 -9 , and further. is 8.0 ⁇ 10 -9 ⁇ -8.0 ⁇ 10 -9, 6.0 ⁇ 10 -9 ⁇ -6.0 ⁇ 10 -9, 4.0 ⁇ 10 -9 ⁇ -4.0 ⁇ 10 - It is more preferable in the order of 9, 3.0 ⁇ 10 -9 to ⁇ 3.0 ⁇ 10 -9.
  • the range of the values of the section b is preferably 3.0 ⁇ 10-6 to ⁇ 3.0 ⁇ 10-6 , and further. is 2.0 ⁇ 10 -6 ⁇ -2.0 ⁇ 10 -6, 1.0 ⁇ 10 -6 ⁇ -1.0 ⁇ 10 -6, 0.5 ⁇ 10 -6 ⁇ -0.5 ⁇ 10 - It is more preferable in the order of 6. If the value of the slope a is controlled to be equal to or less than a certain value, preferably near 0, the intercept b does not necessarily have to be 0. The intercept b can be set to around 0.
  • the upper limit of the glass transition temperature Tg is preferably 730 ° C, more preferably 720 ° C, 710 ° C, and 700 ° C.
  • the lower limit of the glass transition temperature Tg is preferably 500 ° C., more preferably 550 ° C., 560 ° C., 570 ° C., and 580 ° C.
  • the upper limit of the glass transition temperature Tg satisfies the above range, it is possible to suppress an increase in the glass molding temperature and the annealing temperature, and it is possible to reduce thermal damage to the press molding equipment and the annealing equipment. Further, when the lower limit of the glass transition temperature Tg satisfies the above range, it becomes easy to maintain good thermal stability of the glass while maintaining a desired Abbe number and refractive index. In addition, good moldability can be obtained when used as a precision press material.
  • the higher the glass transition temperature Tg the smaller the amount of expansion per unit temperature change, so the degree of shape change due to thermal expansion per unit temperature change tends to be reduced. Further, if the temperature of the glass rises to near Tg or above the strain point due to heating, the optical performance may not return to the original state even if the glass is subsequently cooled. Therefore, the lower limit of Tg preferably satisfies the above range.
  • the specific gravity is preferably 5.50 or less, and more preferably 5.00 or less and 4.80 or less. If the specific gravity of the glass can be reduced, the weight of the lens can be reduced. As a result, the power consumption of the autofocus drive of the camera lens on which the lens is mounted can be reduced.
  • the light transmittance of the molding glass material according to the present embodiment can be evaluated by the degree of coloring ⁇ 5, ⁇ 70, and ⁇ 80.
  • the spectral transmittance is measured in the wavelength range of 200 to 700 nm for a glass sample having a thickness of 10.0 mm ⁇ 0.1 mm, the wavelength at which the external transmittance is 5% is set to ⁇ 5, and the external transmittance is set to ⁇ 5.
  • the wavelength at which 70% is ⁇ 70, and the wavelength at which the external transmittance is 80% is ⁇ 80.
  • ⁇ 5 is preferably 400 nm or less, more preferably 380 nm or less, further preferably 360 nm or less, and particularly preferably 350 nm or less. ..
  • ⁇ 70 is preferably 440 nm or less, more preferably 430 nm or less, and further preferably 420 nm or less.
  • ⁇ 80 is preferably 510 nm or less, more preferably 500 nm or less, and further preferably 490 nm or less.
  • Glass composition C Next, the content / ratio of the glass component and the glass characteristics when the molding glass material according to the present embodiment has the glass composition C will be described.
  • SiO 2 improves the thermal stability, reheat devitrification, chemical durability and weather resistance of the glass as a network forming component of the glass. It is an essential component that has the function of increasing the viscosity of the molten glass and facilitating the molding of the molten glass.
  • the SiO 2 content is preferably larger than the total content of B 2 O 3 and P 2 O 5 in terms of mass%.
  • it is preferably silicate glass.
  • the SiO 2 content is preferably 8.0% or more, 10.00% or more, 11.00% or more, 12.00% or more, 13.00% or more, 14.00.
  • the SiO 2 content is 50.00% or less from the viewpoint of improving the devitrification resistance of the glass, improving the meltability, and improving the partial dispersion characteristics. 45.00% or less, 40.00% or less, 35.00% or less, 30.00% or less, 28.00% or less, 26.00% or less, 25.00% or less, 24. It is more preferable in the order of 50% or less, 24.00% or less, 23.50% or less, 23.00% or less, 22.75% or less, 22.50% or less, and 22.00% or less.
  • the total content of SiO 2 and B 2 O 3 is further improved in the thermal stability of the glass.
  • it is preferably 10.00% or more, 12.00% or more, 14.00% or more, 15.00% or more, 16.00% or more, 17.00% or more, 17.75% or more, 18.00% or more, 18.25% or more, 18.50% or more, 18.60% or more are preferable, and 35.00% or less is preferable.
  • the mass ratio of SiO 2 to the total content of SiO 2 and B 2 O 3 is preferably 0.50 or more, and 0. 55 or more, 0.60 or more, 0.65 or more, 0.70 or more, 0.75 or more, 0.77 or more, 0.80 or more, more preferably 1.00 or less, and 0.99 or more.
  • 0.98 or less 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, 0.90 or less, 0.89
  • 0.88 or less it is more preferable in the order of 0.88 or less.
  • the mass ratio of the B 2 O 3 content to the SiO 2 content is improved in chemical durability and ⁇ max. It is preferably less than 1.00, preferably 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0, from the viewpoint of reducing the amount of heat and improving the reheat devitrification. .40 or less, 0.35 or less, 0.32 or less, 0.31 or less, 0.30 or less, 0.29 or less, 0.28 or less, 0.27 or less, 0.26 or less, 0.25 or less in that order More preferred.
  • the mass ratio (B 2 O 3 / SiO 2 ) is preferably 0.00 or more, 0.01 or more, 0.02 or more, 0.03 or more, 0. 04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0. It is more preferable in the order of 14 or more and 0.15 or more.
  • the B 2 O 3 content is preferably 0.00% or more, more preferably more than 0.00%, and 0. 10% or more, 0.20% or more, 0.30% or more, 0.35% or more, 0.37% or more, 0.39% or more, 0.40% or more, 0.41% or more, 0.42% Above, 0.43% or more, 0.44% or more, 0.45% or more, 0.46% or more, 0.47% or more, 0.48% or more, 0.49% or more are more preferable.
  • the B 2 O 3 content is preferably 30.00% or less, 25.00% or less, 20.00% or less, 18.00% or less, 16.00% or less, 14.00% or less.
  • the CaO content is preferably 3.00% or more from the viewpoint of improving the meltability and thermal stability of the glass, which is 4.00. % Or more, more preferably 5.00% or more, 5.10% or more, 5.20% or more, 5.30% or more, 5.40% or more, 5.50% or more, 5.60% or more. More preferably, the order is 5.70% or more, 5.80% or more, and 5.90% or more.
  • the CaO content is preferably 40.00% or less, 35.00% or less, 30.00% or less, 28.00% or less, 26.00% or less, 24.00. % Or less, 22.00% or less, 21.50% or less, 21.000% or less, 20.50% or less, 20.25% or less, 20.00% or less, 19.50% or less, in that order.
  • the total content (MgO + CaO + SrO + BaO + ZnO) of the alkaline earth metal oxides MgO, CaO, SrO and BaO and ZnO is 5.00% or more. It is preferably 7.00% or more, 10.00% or more, 11.00% or more, 12.00% or more, 13.00% or more, 13.50% or more, 14.00% or more, 14.50. % Or more, 15.00% or more, 15.30% or more, 15.50% or more, and 16.00% or more are more preferable.
  • the total content (MgO + CaO + SrO + BaO + ZnO) is preferably 50.00% or less, 45.00% or less, 40.00% or less, 39.00% or less, 38.00% or less, 37.00% or less. , 36.50% or less, 36.00% or less, 35.50% or less, 35.00% or less, 34.50% or less, 34.00% or less, in that order. It is preferable that the total content (MgO + CaO + SrO + BaO + ZnO) is in the above range from the viewpoint of maintaining thermal stability without hindering further lowering of the specific density and increasing dispersion.
  • the mass ratio of the total content of ZnO, SrO and BaO to the total content of MgO and CaO is 2.78 or less. It is preferable, and more preferably 2.77 or less, 2.76 or less, 2.75 or less, 2.74 or less, 2.73 or less.
  • the mass ratio ((ZnO + SrO + BaO) / (MgO + CaO)) is preferably 0.17 or more, in the order of 0.18 or more, 0.19 or more, and 0.20 or more. More preferred.
  • the mass ratio of the CaO content to the total content of MgO, CaO, SrO, BaO and ZnO is even higher. From the viewpoint of increasing the refractive index and further reducing the specific gravity, it is preferably 0.35 or more, 0.36 or more, 0.37 or more, 0.38 or more, 0.39 or more, 0.40 or more, 0. It is more preferable in the order of 41 or more and 0.42 or more.
  • the mass ratio (CaO / (MgO + CaO + SrO + BaO + ZnO)) is preferably 1.00 or less, 0.95 or less, 0.90 or less, 0.89 or less, 0.88 or less. , 0.87 or less, 0.86 or less, 0.85 or less, 0.84 or less, 0.83 or less, 0.80 or less, 0.78 or less, in that order.
  • the mass ratio of the total content of CaO and MgO to the total content of MgO, CaO, SrO, BaO and ZnO ((CaO + MgO) / (MgO + CaO + SrO + BaO + ZnO) ) Is preferably 0.35 or more, 0.36 or more, 0.37 or more, 0.38 or more, 0.39 or more, 0.40 or more, 0 from the viewpoint of further lowering the specific gravity. It is more preferable in the order of .41 or more and 0.42 or more.
  • the mass ratio ((CaO + MgO) / (MgO + CaO + SrO + BaO + ZnO) is preferably 1.00 or less, 0.95 or less, 0.90 or less, 0.89 or less, 0.88.
  • the alkaline earth metal oxides MgO, CaO, SrO and BaO and ZnO have a function of lowering the liquidus temperature and improving the thermal stability.
  • the chemical durability and / or weather resistance tends to decrease.
  • SiO 2 and B 2 O 3 have a function of improving thermal stability and reheating devitrification, but when their contents are increased, the meltability tends to decrease.
  • the mass ratio of the total content of SiO 2 and B 2 O 3 to the total content of MgO, CaO, SrO, BaO and ZnO ((SiO 2 + B 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO)) is determined. It is preferably 0.40 or more, 0.45 or more, 0.50 or more, 0.52 or more, 0.54 or more, 0.56 or more, 0.57 or more, 0.58 or more, 0.59 or more, It is more preferably 0.60 or more, 0.61 or more, 0.70 or more, 0.80 or more, 0.90 or more, 1.00 or more, and 1.10 or more, and preferably 2.00 or less. It is more preferable in the order of .80 or less, 1.60 or less, 1.55 or less, 1.50 or less, 1.45 or less, 1.40 or less, and 1.35 or less.
  • the MgO content is preferably 0.00% or more.
  • the MgO content is preferably 15.00% or less, 12.00% or less, 9.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4. It is more preferable in the order of 00% or less, 3.50% or less, 3.00% or less, 2.50% or less, and 2.10% or less.
  • the SrO content is preferably 0.00% or more, and 0.10% or more, 0.20% or more, 0.25% or more. , 0.26% or more, 0.27% or more, 0.28% or more, 0.29% or more, 0.30% or more, and 0.31% or more, in that order.
  • the SrO content is preferably 15.00% or less, 12.00% or less, 10.00% or less, 9.00% or less, 8.50% or less, 8.00% or less, 7. It is more preferable in the order of 50% or less, 7.00% or less, 6.50% or less, and 6.00% or less.
  • the BaO content is preferably 0.00% or more, 0.10% or more, 0.20% or more, 0.30% or more. , 0.40% or more, 0.50% or more, 0.60% or more, 0.70% or more, 0.80% or more, 0.90% or more, 1.00% or more, 1.10% or more, 1 .20% or more, more preferably 1.30% or more.
  • the BaO content is preferably 25.00% or less, 22.00% or less, 20.00% or less, 19.00% or less, 18.00% or less, 17.00% or less, 16. It is more preferable in the order of 50% or less, 16.00% or less, 15.50% or less, 15.25% or less, and 15.00% or less.
  • MgO, CaO, SrO and BaO are all glass components having a function of improving the thermal stability and devitrification resistance of glass. From the viewpoint of high dispersibility and further lowering the specific density, and from the viewpoint of improving the thermal stability and devitrification resistance of the glass, the content of each of these glass components is preferably in the above range.
  • the ZnO content is preferably 0.00% or more.
  • the ZnO content is preferably 10.00% or less, and is 9.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4. It is more preferable in the order of 00% or less, 3.00% or less, and 2.00% or less.
  • ZnO is a glass component having a function of improving the thermal stability of glass.
  • the ZnO content is preferably in the above range from the viewpoints of further lowering the specific density, improving the thermal stability of the glass, and obtaining a more desirable optical constant.
  • the total content of the rare earth oxides La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (La 2 O 3 + Gd 2 O 3 + Y).
  • 2 O 3 ) is preferably more than 0% from the viewpoint of high refractive index and low dispersibility, and is 0.50% or more, 1.00% or more, 1.33% or more, 1.50% or more. , 2.00% or more, 2.50% or more, and 3.00% or more, more preferable.
  • the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 is 30.00% or less. 29.00% or less, 28.00% or less, 26.00% or less, 24.00% or less, 22.00% or less, 20.00% or less, 18.00% or less, 16. It is more preferable in the order of 00% or less, 15.00% or less, 14.50% or less, 14.00% or less, 13.50% or less, 13.00% or less, 12.50% or less, 12.00% or less.
  • the specific gravity of the glass tends to increase as the content of these components increases.
  • the total content of BaO and the rare earth oxides La 2 O 3 , Gd 2 O 3 and Y 2 O 3 is It is preferably 30.00% or less, 29.00% or less, 28.00% or less, 27.00% or less, 26.00% or less, 25.00% or less, 24.50% or less, 24. It is more preferable in the order of 00% or less, 23.50% or less, 23.00% or less.
  • the total content of BaO, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) is 0%. It is preferably more than 1.00% or more, 2.00% or more, 3.00% or more, 4.00% or more, 5.00% or more, 6.00% or more, 7.00% or more, 7 It is more preferable in the order of .50% or more, 8.00% or more, and 8.50% or more.
  • the mass ratio of the BaO content to the content of La 2 O 3 (BaO / La 2 O 3) is preferably 8.30 or less, 8.00 or less, 7.50 or less, 7.00 or less, 6.50 or less, 6.00 or less, 5.50 or less, 5.40 or less, 5.30 or less, 5.20 or less, 5.10 or less, 5.00 or less, It is more preferable in the order of 4.90 or less, 4.80 or less, and 4.70 or less.
  • weight ratio (BaO / La 2 O 3) may be 0, or may be 0.00 or more.
  • the weight ratio (BaO / La 2 O 3) is preferably 0.00 greater, 0.01 or more, 0.02 or more, 0.03 or more, It is more preferable in the order of 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, and 0.11 or more.
  • the rare earth oxides La 2 O 3 , Gd 2 O 3 and Y 2 O 3 increase the refractive index and contribute to low dispersibility.
  • the thermal stability tends to decrease.
  • SiO 2 and B 2 O 3 have a function of improving thermal stability, but when their contents are increased, the meltability tends to decrease and the refractive index tends to decrease.
  • the mass ratio of the total content of SiO 2 and B 2 O 3 to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 ((SiO 2 + B 2 O 3 ) / ( La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, 0.25 or more, 0.50 or more, 0.75 or more, 1.00 or more, 1.25 or more. , 1.50 or more, 1.75 or more, 1.80 or more, 1.85 or more, more preferably 7.47 or less, 7.40 or less, 7.35 or less, 7.30 or less, It is more preferable in the order of 7.25 or less.
  • the mass ratio of the La 2 O 3 content to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (La 2 O 3 / (La 2).
  • O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more, 0.50 or more, 0.
  • the mass ratio (La 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 1.00 or less.
  • the mass ratio of the Gd 2 O 3 content to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (Gd 2 O 3 / (La 2 O 3). + Gd 2 O 3 + Y 2 O 3 )) is preferably less than 1.00, 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.40.
  • the mass ratio (Gd 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 0.00 or more.
  • O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably less than 1.00, 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0. It is more preferable in the order of .40 or less, 0.30 or less, and 0.25 or less.
  • the mass ratio (Y 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 0.00 or more.
  • the content of the above component is preferably in the following range.
  • the La 2 O 3 content is preferably 0.00% or more, more than 0.00%, 0.50% or more, 1.00% or more, 1.33% or more, 1.50% or more, 2 It is more preferable in the order of .00% or more, 2.50% or more, 2.75% or more, and 3.00% or more.
  • the La 2 O 3 content is preferably 30.00% or less, 25.00% or less, 20.00% or less, 18.00% or less, 16.00% or less, 15.00% or less.
  • the Gd 2 O 3 content is preferably 0.00% or more.
  • the Gd 2 O 3 content is preferably 10.00% or less, and is 9.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less. It is more preferable in the order of 4.00% or less, 3.00% or less, and 2.00% or less.
  • the Y 2 O 3 content is preferably 0.00% or more.
  • the Y 2 O 3 content is preferably 10.00% or less, and is 9.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less. It is more preferable in the order of 4.00% or less, 3.00% or less, and 2.00% or less.
  • the mass ratio of the La 2 O 3 content to the B 2 O 3 content (La 2 O 3 / B 2 O 3 ) is 1.30 or more. Is preferable, in the order of 1.35 or more, 1.40 or more, 1.45 or more, 1.50 or more, 1.55 or more, 1.60 or more, 1.65 or more, 1.70 or more, 1.72 or more. preferable.
  • the mass ratio (La 2 O 3 / B 2 O 3 ) is preferably 20.00 or less, and is 18.00 or less, 16.00 or less, and 14.00 or less. , 13.00 or less, 12.00 or less, 11.50 or less, 11.00 or less, 10.50 or less, 10.00 or less, which is more preferable.
  • the mass ratio of the B 2 O 3 content to the La 2 O 3 content is 0.79 or less. It is preferably 0.78 or less, 0.77 or less, 0.76 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.64 or less, 0.62 or less, 0.61 or less. , 0.60 or less, 0.59 or less, 0.58 or less, 0.57 or less, 0.50 or less, in that order.
  • the mass ratio (La 2 O 3 / B 2 O 3 ) is preferably 0.00 or more, and more preferably more than 0.00.
  • the rare earth oxide in the case of the glass composition C, can increase the refractive index of the glass, but when the content of the rare earth oxide increases, the thermal stability decreases. The meltability of glass tends to decrease. Therefore, while maintaining the thermal stability of the glass, from the viewpoint of increasing the refractive index even more, La 2 O 3 to the total content of BaO, La 2 O 3, Gd 2 O 3 and Y 2 O 3, Gd
  • the mass ratio of the total content of 2 O 3 and Y 2 O 3 ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is 1.00.
  • the mass ratio ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, preferably 0.05 or more.
  • 0.06 or more 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, It is more preferable in the order of 0.16 or more, 0.17 or more, 0.18 or more, and 0.20 or more.
  • the rare earth oxide in the case of the glass composition C, can increase the refractive index of the glass, but when the content thereof increases, the meltability of the glass tends to decrease.
  • alkaline earth metal oxides can increase the meltability of glass, but the refractive index tends to decrease as the content increases.
  • La 2 from the viewpoint of further increase the refractive index while maintaining melting properties of glass, MgO, CaO, SrO, BaO , ZnO, to the total content of La 2 O 3, Gd 2 O 3 and Y 2 O 3 Mass ratio of total contents of O 3 , Gd 2 O 3 and Y 2 O 3 ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) Is preferably more than 0.00, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08.
  • it is preferably 0.85 or less, 0.80 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.55 or less, 0.50 or less. , 0.45 or less, 0.44 or less, 0.43 or less, 0.42 or less, 0.41 or less, 0.40 or less, in that order.
  • the rare earth oxide in the case of the glass composition C, can increase the refractive index of the glass, but when the content thereof increases, the thermal stability of the glass tends to decrease. ..
  • B 2 O 3 can enhance the thermal stability of the glass, but the refractive index tends to decrease as the content thereof increases. Therefore, the mass of the B 2 O 3 content with respect to the total content of Ba O , La 2 O 3 , Gd 2 O 3 and Y 2 O 3 from the viewpoint of further increasing the refractive index while maintaining the thermal stability of the glass.
  • the ratio (B 2 O 3 / (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably 0.00 or more, more than 0.00, 0.01 or more, 0.02 or more, 0. It is more preferably 0.03 or more, preferably 1.00 or less, 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.55 or less, 0.50 or less, 0. It is more preferable in the order of 45 or less, 0.40 or less, and 0.35 or less.
  • La 2 O 3 , Gd 2 O 3 and Y 2 O 3 have a function of increasing the refractive index of the glass, but the total content thereof is high. The higher the amount, the lower the thermal stability tends to be.
  • B 2 O 3 has a function of improving the thermal stability of glass, but tends to lower the refractive index.
  • the mass ratio of the total content of O 3 and Y 2 O 3 ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (B 2 O 3 + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is , 0.57 or more, and more preferably 0.58 or more, 0.59 or more, 0.60 or more, 0.61 or more, 0.62 or more, 0.63 or more, and 0.64 or more.
  • the mass ratio ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (B 2 O 3 + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is It is preferably 1.00 or less, less than 1.00, 0.99 or less, 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, It is more preferable in the order of 0.92 or less, 0.91 or less, 0.90 or less, 0.89 or less, 0.88 or less, 0.87 or less, 0.86 or less, and 0.85 or less.
  • La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and ZrO 2 have a function of increasing the refractive index and improving the partial dispersion characteristics. As the content of ZrO 2 increases, the meltability of the glass tends to decrease.
  • the mass ratio of the ZrO 2 content to the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and ZrO 2 is preferably 0.01 or more, more preferably 0.02 or more, 0.03 or more, 0.04 or more, preferably 5.00 or less, and 4.00 or less. , 3.00 or less, and more preferably 2.00 or less.
  • La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and ZrO 2 are all components that increase the refractive index, but ZrO 2 is Compared with La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 , the function of increasing the refractive index is large, and the function of increasing the dispersion (the function of reducing the Abbe number) is also large.
  • the mass ratio of the content of ZrO 2 to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 is preferably 3.30 or less, 3.00 or less, 2.90 or less, 2.80 or less, 2.70 or less, 2.60 or less, 2.50 or less, 2.40 or less. 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less, 1.80 or less, 1.70 or less, 1.60 or less, 1.50 or less, 1.40 or less , 1.30 or less, and more preferably 1.25 or less.
  • the mass ratio (ZrO 2 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 0.00 or more, and from the viewpoint of further increasing the refractive index, it may be more than 0.00. It is preferable that the order is 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, and 0.06 or more.
  • the ZrO 2 content is preferably 7.63% or less from the viewpoint of realizing a desirable optical constant and improving the partial dispersion characteristics. Less than .63%, 7.60 or less, 7.50 or less, 7.40 or less, 7.30 or less, 7.20 or less, 7.10 or less, 7.00 or less, 6.90 or less, 6.80 or less, 6.70 or less, 6.60 or less, 6.50 or less, 6.40 or less, 6.30 or less, 6.20 or less, 6.10 or less, 6.00 or less, 5.95 or less, 5.90 or less, From the viewpoint of increasing reheating devitrification, it is more preferable in the order of 6.00 or less, 5.50 or less, 5.00 or less, 4.00 or less, 3.00 or less, and 2.50 or less.
  • the ZrO 2 content is preferably 0.00% or more, preferably more than 0.00%, 0.10% or more, from the viewpoint of realizing a more desirable optical constant and further improving the partial dispersion characteristics.
  • the ZrO 2 content is preferably 0.00% or more, preferably more than 0.00%, 0.10% or more, from the viewpoint of realizing a more desirable optical constant and further improving the partial dispersion characteristics.
  • MgO, CaO, SrO, BaO and ZnO have a function of improving the thermal stability of the glass, but when the content thereof is increased, the glass material is refracted. The rate tends to decrease.
  • La 2 O 3 , Gd 2 O 3 and Y 2 O 3 have a function of increasing the refractive index, but when their contents are increased, the thermal stability tends to decrease.
  • the mass ratio of the total content of MgO, CaO, SrO, BaO and ZnO to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 ((MgO + CaO + SrO + BaO + ZnO) / (La 2 O 3) + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more, 0.50 or more, 0.60. More preferably, in the order of 0.70 or more, 0.80 or more, 0.90 or more, 1.00 or more, 1.10 or more, 1.20 or more, 1.30 or more, 1.40 or more, 20.00 or less.
  • It is preferably 18.00 or less, 16.00 or less, 14.00 or less, 11.09 or less, 11.08 or less, 11.07 or less, 11.06 or less, 11.05 or less, 11.04 or less. It is more preferably 11.03 or less, 11.02 or less, 11.01 or less, and 11.000 or less.
  • the total content of SrO, BaO, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 is 9. It is preferably .00% or more, 9.50% or more, 10.00% or more, 10.50% or more, 11.00% or more, 11.50% or more, 12.00% or more, 12.50%.
  • the total content (SrO + BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) is 45 from the viewpoint of further lowering the specific density. It is preferably .00% or less, 40.00% or less, 35.00% or less, 30.00% or less, 29.00% or less, 28.00% or less, 27.00% or less, 26.00%. Hereinafter, it is more preferable in the order of 25.00% or less.
  • La 2 O 3 , Gd 2 O 3 and Y 2 O 3 are components that act to increase the refractive index, and SiO 2 is the heat of the glass. It is a component that maintains physical stability.
  • Mass ratio of the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 to the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and SiO 2 ((La 2 O 3 + Gd) 2 O 3 + Y 2 O 3 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + SiO 2 )) is preferably 0.12 or more, preferably 0.13 or more, from the viewpoint of further increasing the refractive index. Is more preferable.
  • the mass ratio ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + SiO 2 )) is It is preferably 0.70 or less, 0.60 or less, 0.50 or less, 0.49 or less, 0.48 or less, 0.47 or less, 0.46 or less, 0.45 or less, 0.44 or less, It is more preferable in the order of 0.43 or less, 0.42 or less, and 041 or less.
  • the denominator is the total content of the components that have a large effect of increasing the refractive index, and is a molecule. Is the total content of components effective for low dispersion and low specific gravity.
  • Mass ratio ((SiO 2 + CaO) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O) 3 )) is preferably 1.20 or less, 1.09 or less, 1.08 or less, 1.07 or less, 1.06 or less, 1.05 or less, 1.04 or less, 1.03 or less, It is more preferable in the order of 1.02 or less, 1.01 or less, 0.99 or less, 0.94 or less, 0.89 or less, and 0.86 or less.
  • the mass ratio ((SiO 2 + CaO) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi) 2 O 3 )) is preferably 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.42 or more, 0.44 or more, 0.46 or more, 0.48.
  • the above is more preferable in the order of 0.50 or more, 0.52 or more, 0.54 or more, and 0.55 or more.
  • ZrO 2 in the case of the glass composition C, among the components that increase the refractive index, ZrO 2 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , and Bi 2 O 3 . , ZrO 2 has a relatively small effect of increasing dispersion.
  • the mass ratio of ZrO 2 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 is preferably 0.00 or more, and more preferably 0.01 or more and 0.02 or more. From the viewpoint of maintaining the thermal stability of the glass and the devitrification resistance (stability during reheating press molding: also called reheat press moldability) when the glass is heated and softened and press-formed, the mass is used.
  • the ratio (ZrO 2 / (TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.21 or less, preferably 0.20 or less, 0.19 or less, 0.18 or less. , 0.17 or less, 0.16 or less, 0.15 or less, 0.12 or less, 0.10 or less, 0.08 or less, 0.06 or less, in that order.
  • the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably 0.1. %, More preferably 0.2%, 0.5%, 1.0%, 1.2%, 1.5% in that order.
  • the upper limit of the total content is preferably 20%, more preferably 15%, 10%, 8%, 6%, 4%, and 2%.
  • the meltability of the glass can be improved and the rise in the liquidus temperature can be suppressed. Further, when the upper limit of the total content satisfies the above, the viscosity of the glass can be increased, the crystallization rate of the glass melt can be reduced, and the stability at the time of reheating can be improved.
  • the alkali metal oxides Li 2 O, Na 2 O, K 2 O and Cs 2 O have a function of improving the partial dispersion characteristics. It also has the function of lowering the liquidus temperature and improving the thermal stability of the glass. From these viewpoints, the total content of Li 2 O, Na 2 O, K 2 O and Cs 2 O (Li 2 O + Na 2 O + K 2 O + Cs 2 O) is preferably 0.00% or more, and 0.
  • the total content (Li 2 O + Na 2 O + K 2 O + Cs 2 O) is preferably 20.00% or less, preferably 18.00% or less, 16.00.
  • % Or less 14.00% or less, 12.00% or less, 10.00% or less, 9.00% or less, 8.00% or less, 7.00% or less, 6.50% or less, 6.00% or less 5.50% or less, 5.00% or less, 4.50% or less, 3.90% or less, 2.90% or less, 2.40% or less, and more preferable.
  • the upper limit of the mass ratio of the total content is preferably 1.0, further 0.7, The order of 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08 is more preferable.
  • the lower limit of the mass ratio is preferably 0.001, and more preferably 0.01, 0.02, 0.03, 0.04, 0.05, 0.06.
  • the meltability may deteriorate.
  • the viscosity at the time of melting the glass is lowered, the thermal stability of the melt is lowered, and the stability at the time of reheating may be deteriorated.
  • the upper limit of the mass ratio of the total content [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3)] of O is preferably 1.0, further Is more preferable in the order of 0.5, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05.
  • the lower limit of the mass ratio is preferably 0.005, more preferably 0.01, 0.02, 0.03, 0.04.
  • the glass composition C if the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is too low, the partial dispersion ratios Pg and F increase. The transmittance may deteriorate. On the other hand, if it is too high, the Abbe number becomes large, the refractive index is lowered, and the stability at the time of reheating may be deteriorated.
  • the alkali metal oxide and the alkaline earth metal oxide can contribute to maintaining the meltability and thermal stability of the glass.
  • the meltability and thermal stability of the glass tend to decrease. Therefore, from the viewpoint of maintaining the meltability and thermal stability of glass, the alkali metal oxides Li 2 O, Na 2 O, K 2 O and Cs 2 O and the alkaline earth metal oxide Mg O,
  • the total content of CaO, SrO and BaO (Li 2 O + Na 2 O + K 2 O + Cs 2 O + MgO + CaO + SrO + BaO) is preferably 5.00% or more, preferably 7.00% or more, 9.00% or more and 10.00%.
  • 12.00% or more, 14.00% or more, 15.00% or more, 16.00% or more, 17.00% or more, 18.00% or more, 18.50% or more are more preferable, and 50. It is preferably 00% or less, preferably 48.00% or less, 46.00% or less, 44.00% or less, 43.00% or less, 42.00% or less, 41.00% or less, 40.00% or less. , 39.00% or less, 38.00% or less, 37.00% or less, 36.00% or less, 35.00% or less, 34.50% or less, 34.00% or less, in that order.
  • the alkali metal oxide and the alkaline earth metal oxide have a function of lowering the liquidus temperature and improving the thermal stability of the glass. Higher contents of these relative to network-forming components tend to reduce chemical durability and weather resistance. Further, SiO 2 and B 2 O 3 have a function of improving thermal stability, but as the content thereof increases, the meltability tends to decrease.
  • the mass ratio of the total content of Li 2 O, Na 2 O, K 2 O, Cs 2 O, MgO, CaO, SrO and BaO to the total content of SiO 2 and B 2 O 3 ((( Li 2 O + Na 2 O + K 2 O + Cs 2 O + MgO + CaO + SrO + BaO) / (SiO 2 + B 2 O 3 )) is preferably 0.50 or more, 0.52 or more, 0.54 or more, 0.56 or more, 0.58.
  • the mass ratio of the Li 2 O content to the total content of Li 2 O, Na 2 O and K 2 O is preferably 0.00 or more, and more preferably more than 0.00, 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more, and 0.45 or more.
  • the mass ratio (Li 2 O / (Li 2 O + Na 2 O + K 2 O)) can be, for example, 1.00 or less, and from the viewpoint of suppressing a decrease in reheat devitrification, 0. It can be 99 or less, 0.98 or less, 0.95 or less, 0.90 or less, 0.80 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less.
  • Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO and ZnO improve the thermal stability of the glass, and the glass.
  • the glass tends to be highly dispersible when the total content of Li 2 O, Na 2 O and K 2 O is increased. Therefore, from the viewpoint of obtaining more desirable dispersibility, the mass ratio of the total content of Li 2 O, Na 2 O, and K 2 O to the total content of MgO, CaO, SrO, BaO, and ZnO ((Li 2 O + Na 2 O + K 2).
  • O) / (MgO + CaO + SrO + BaO + ZnO)) is preferably 0.00 or more, in the order of more than 0.00, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more. More preferably, it is preferably 4.00 or less, and 3.50 or less, 3.00 or less, 2.50 or less, 2.00 or less, 1.50 or less, 1.00 or less, 0.90 or less, 0. It is more preferably 80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.40 or less, and 0.35 or less in that order.
  • the mass ratio of the total contents of Li 2 O, Na 2 O and K 2 O to the total contents of SiO 2 and B 2 O 3 ((( Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 )) is preferably 1.00 or less from the viewpoint of maintaining thermal stability and / or maintaining reheat press moldability, and is 0. It is more preferable in the order of .90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.40 or less, 0.35 or less, 0.30 or less, 0.25 or less.
  • the mass ratio ((Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3) )) Is preferably 0.00 or more, and more preferably more than 0.00, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, and 0.05 or more.
  • the Li 2 O content is preferably 0.00% or more, 0.05% or more, 0.10% or more, and 0.15. % Or more, 0.20% or more, 0.25% or more, 0.30% or more, 0.40% or more, 0.50% or more, 0.60% or more, in that order.
  • the Li 2 O content is preferably 14.00% or less, 12.00% or less, 10.00% or less, 8.00% or less, 7.00% or less, 6.50% or less, It is more preferable in the order of 6.00% or less, 5.50% or less, and 5.00% or less. It is preferable to set the Li 2 O content in the above range from the viewpoint of realizing a more desirable optical constant, and also from the viewpoint of maintaining chemical durability, weather resistance, and stability during reheating.
  • the Na 2 O content is preferably 0.00% or more.
  • the Na 2 O content is preferably 10.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4.00% or less, It is more preferable in the order of 3.00% or less and 2.00% or less. It is preferable to set the Na 2 O content in the above range from the viewpoint of improving the partial dispersion characteristics.
  • K 2 O content is preferably 0.00% or more. Further, K 2 O content is preferably at most 10.00%, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4.00% or less, It is more preferable in the order of 3.00% or less and 2.00% or less. It is preferable to set the K 2 O content in the above range from the viewpoint of improving the thermal stability of the glass.
  • the Cs 2 O content is preferably 5.00% or less, 4.00% or less, 3.00% or less, 2.00% or less. % Or less, 1.00% or less, 0.50% or less are more preferable, and 0% may be used.
  • the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 is preferably 30.00% or more, preferably 31.00% or more, 32.00% or more, and 33.00% or more from the viewpoint of further increasing the refractive index. , 34.00% or more, 35.00% or more, 36.00% or more, 36.50% or more, 37.00% or more, 37.55% or more, in that order.
  • the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 is preferably 60.00% or less, 58.00% or less, 56.00% or less, 54.00% or less, 52.00% or less, 51.00%.
  • the mass ratio of the total content of ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is a glass with a high refractive index while suppressing an increase in specific gravity. From the viewpoint of obtaining, it is preferably 0.75 or less.
  • the mass ratio ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta) 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.16 or more, 0.20 or more, 0.25 or more, 0.30 or more, 0.35 or more, 0.36 or more, 0. It is more preferably 37 or more, 0.38 or more, 0.39 or more, 0.40 or more, 0.41 or more, 0.42 or more, preferably 0.75 or less, 0.74 or less, 0.73.
  • SiO 2 and B 2 O 3 have a function of lowering the refractive index and lowering the dispersion (increasing the Abbe number).
  • TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 , and ZrO 2 are high refractive index and high dispersion components. From the viewpoint of further increasing the refractive index, the mass of the total content of SiO 2 and B 2 O 3 with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 and ZrO 2.
  • the ratio ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + ZrO 2 )) is preferably 0.64 or less, preferably 0.63 or less, 0. It is more preferable in the order of .62 or less, 0.61 or less, 0.60 or less, 0.59 or less, and 0.58 or less.
  • the mass ratio ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + ZrO 2 )) ) Is preferably 0.13 or more, 0.15 or more, 0.20 or more, 0.25 or more, 0.26 or more, 0.27 or more, 0.28 or more, 0.29 or more, 0. It is more preferably 30 or more, 0.31 or more, 0.32 or more, 0.33 or more, 0.34 or more, 0.35 or more, 0.36 or more, 0.37 or more, and 0.38 or more in this order.
  • the molding glass material according to the present embodiment in the case of glass composition C, Li 2 O, Na 2 O and Li 2 O, Na 2 O and Li 2 O with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3
  • the mass ratio of the total content of K 2 O ((Li 2 O + Na 2 O + K 2 O) / (TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) improves the partial dispersion characteristics and permeability. From the viewpoint, it is preferably 0.00 or more, and more preferably 0.01 or more.
  • the mass ratio ((Li 2 O + Na 2 O + K 2 O) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3) )) Is preferably 0.67 or less, in the order of 0.60 or less, 0.50 or less, 0.40 or less, 0.30 or less, 0.20 or less, 0.15 or less, 0.10 or less. More preferred.
  • MgO, CaO, SrO, BaO and ZnO have a function of improving the thermal stability of the glass, but refraction occurs when the content thereof increases. The rate tends to decrease and the glass tends to be less dispersible.
  • TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 tend to increase the refractive index and make the glass more dispersible, but the higher the content thereof, the more the thermal stability becomes. Tends to decline.
  • the mass ratio of the total content of MgO, CaO, SrO, BaO and ZnO to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 ((MgO + CaO + SrO + BaO + ZnO)).
  • TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 ) is preferably 0.09 or more, 0.10 or more, 0.15 or more, 0.20 or more, 0.21.
  • MgO and CaO suppress the increase in the specific gravity of the glass as compared with SrO, BaO and ZnO. Moreover, it is an effective component for reducing ⁇ 100-300 and ⁇ max. Therefore, from the viewpoint of suppressing the increase in specific gravity, the mass ratio of the total content of ZnO, SrO and BaO to the total content of MgO and CaO ((ZnO + SrO + BaO) / (MgO + CaO)) is 1.98 or less.
  • the mass ratio ((ZnO + SrO + BaO) / (MgO + CaO)) is preferably 0.17 or more, 0.18 or more, 0.19 or more, 0.20 or more, 0. It is more preferable in the order of .25 or more and 0.30 or more.
  • the mass ratio of the total contents of Li 2 O, Na 2 O and K 2 O to the total contents of Nb 2 O 5 and TiO 2 [(Li).
  • the lower limit of 2 O + Na 2 O + K 2 O) / (Nb 2 O 5 + TiO 2 )] is preferably 0.001, and more preferably 0.01, 0.02, 0.03, 0.04. ..
  • the upper limit of the mass ratio is preferably 1.00, more preferably 0.50, 0.30, 0.20, 0.10, 0.08, 0.06.
  • the mass ratio [(Li 2 O + Na 2 O + K 2 O) / (Nb) is obtained from the viewpoint of obtaining a desired optical constant while maintaining the melting characteristics, thermal stability, and stability at the time of reheating of the glass.
  • 2 O 5 + TiO 2 )] is preferably in the above range.
  • the mass ratio of the content may be more than 0.00. It is preferably 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, and more preferably 1.00 or less. , 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.45 or less, 0.40 or less, 0.35 or less, 0.32 or less, in that order.
  • the mass ratio of the TiO 2 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 is preferably 0.00 or more, preferably more than 0.00, from the viewpoint of high refractive index and low specific gravity.
  • the mass of Nb 2 O 5 content with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 The ratio (Nb 2 O 5 / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.00 or more, and more than 0.00, from the viewpoint of improving the partial dispersion characteristics. , 0.01 or more, 0.05 or more, 0.10 or more, 0.15 or more, 0.20 or more, 0.21 or more, 0.22 or more, 0.23 or more, 0.24 or more, 0.25 or more , 0.26 or more, more preferably 0.27 or more.
  • the value is preferably 1.00 or less, less than 1.00, 0.99 or less, 0.98 or less, and 0. 97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, 0.85 or less, 0.80 or less, 0.75 or less, 0. It is more preferable in the order of 70 or less and 0.66 or less.
  • the mass of the Ta 2 O 5 content with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 The ratio (Ta 2 O 5 / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is 1.00 or less from the viewpoint of reducing the raw material cost of glass and further reducing the specific gravity. It is preferable, more preferably 0.80 or less, 0.60 or less, 0.40 or less, 0.30 or less, 0.20 or less, 0.10 or less, and particularly preferably 0.
  • the mass ratio of WO 3 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 (WO 3 / (TIO).
  • the mass ratio of Bi 2 O 3 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 (Bi 2 O 3). / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 1.00 or less, 0.80 or less, 0.60 or less, 0.40 or less, 0.30.
  • it is more preferably 0.20 or less and 0.10 or less, and particularly preferably 0.
  • Li 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 have a function of increasing the refractive index.
  • SiO 2 , B 2 O 3 , Na 2 O, K 2 O, MgO, CaO, SrO, BaO and ZnO tend to lower the refractive index.
  • the mass ratio of SiO 2 , B 2 O 3 , Na 2 O, K 2 O, MgO, CaO, SrO, BaO and ZnO to the total content of Bi 2 O 3 ((SiO 2 + B 2 O 3 + Na 2 O + K 2) O + MgO + CaO + SrO + BaO + ZnO) / (Li 2 O + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + ZrO 2 + TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.12 or more.
  • the order is more preferably 0.15 or more, 0.20 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.45 or more, 0.50 or more, 0.55 or more, and 2.83 or less.
  • 2.80 or less 2.60 or less, 2.40 or less, 2.20 or less, 2.00 or less, 1.80 or less, 1.70 or less, 1.60 or less, 1.50 or less, 1 It is more preferable in the order of .40 or less, 1.30 or less, 1.26 or less, 1.25 or less, and 1.24 or less.
  • TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 and ZrO 2 have a function of increasing the refractive index of the glass.
  • ZrO 2 content increases, the meltability of the glass tends to decrease.
  • the mass ratio of the ZrO 2 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 and ZrO 2 is preferably 0.00 or more, more preferably 0.01 or more, more preferably 0.02 or more, and preferably 0.17 or less. , 0.16 or less, 0.15 or less, 0.14 or less, 0.13 or less, in that order.
  • the molding glass material according to the present embodiment in the case of the glass composition C, TiO 2 , Nb 2 O 5 , WO 3 and ZnO tend to increase the refractive index and make the glass more dispersible. When a large amount of the glass is contained, the thermal stability of the glass tends to decrease. On the other hand, MgO, CaO, SrO and BaO tend to make the glass less dispersible and have a function of improving thermal stability, but when they are contained in a large amount, the refractive index tends to decrease.
  • the mass ratio of the total content of MgO, CaO, SrO and BaO to the total content of TiO 2 , Nb 2 O 5 , WO 3 and ZnO ((MgO + CaO + SrO + BaO) / (TiO 2 + Nb 2 O 5 + WO 3) + ZnO)) is preferably 0.10 or more, 0.15 or more, 0.20 or more, 0.25 or more, 0.26 or more, 0.27 or more, 0.28 or more, 0.29 or more, It is more preferably 0.30 or more, 0.31 or more, and 0.32 or more, preferably 1.50 or less, and 1.30 or less, 1.20 or less, 1.10 or less, 1.00 or less, 0. It is more preferable in the order of .95 or less, 0.90 or less, and 0.87 or less.
  • the TiO 2 content is preferably 0.00% or more, more than 0.00%, 0.50% or more, and 1.00%. More preferably, 1.50% or more, 2.00% or more, 2.50% or more, 3.00% or more, 3.50% or more, 4.00% or more, and 50.00% or less. Is preferable, 45.0% or less, 40.00% or less, 38.00% or less, 36.00% or less, 35.00% or less, 34.00% or less, 32.00% or less, 31.00% or less. It is more preferable in the order of 30.00% or less, 29.50% or less, and 29.00% or less. It is preferable that the content of TiO 2 is in the above range from the viewpoint of realizing a more desirable optical constant and reducing the raw material cost of glass.
  • the Nb 2 O 5 content is preferably 0.00% or more, more than 0.00%, 1.00% or more, and 2. 00% or more, 3.00% or more, 4.00% or more, 5.00% or more, 6.00% or more, 7.00% or more, 8.00% or more, 9.00% or more, 10.00% Above, it is more preferable in the order of 10.50% or more.
  • the Nb 2 O 5 content is preferably 60.00% or less, 58.00% or less, 56.00% or less, 54.00% or less, 52.00% or less, 50.00% or less.
  • the Nb 2 O 5 content is in the above range from the viewpoint of realizing a more desirable optical constant, further lowering the specific density, and improving the partial dispersion characteristics.
  • the Ta 2 O 5 content can be 0.00% or more.
  • the Ta 2 O 5 content is preferably 5.00% or less, 4.00% or less, 3.00% or less, 2.00% or less, 1.00% or less, 0.50% or less. It is more preferable in the order of. It is preferable that the Ta 2 O 5 content is in the above range from the viewpoint of improving the thermal stability of the glass, improving the meltability, and further reducing the specific density.
  • the WO 3 content can be 0.00% or more.
  • the WO 3 content is preferably 5.00% or less, in the order of 4.00% or less, 3.00% or less, 2.00% or less, 1.00% or less, 0.50% or less. More preferred. It is preferable that the WO 3 content is in the above range from the viewpoints of improving the transmittance of the glass, improving the partial dispersion characteristics, and further reducing the specific density.
  • the Bi 2 O 3 content can be 0.00% or more.
  • the Bi 2 O 3 content is preferably 5.00% or less, 4.00% or less, 3.00% or less, 2.00% or less, 1.00% or less, 0.50% or less. It is more preferable in the order of. It is preferable that the Bi 2 O 3 content is in the above range from the viewpoint of improving the thermal stability of the glass, improving the partial dispersion characteristics, and further reducing the specific density.
  • GeO 2 has a function of increasing the refractive index, but is a very expensive component.
  • the GeO 2 content can be 0.00% or more, preferably 2.00% or less, and 1.50% or less, 1.00% or less, 0. It is more preferable in the order of .50% or less.
  • the molding glass material according to the present embodiment may further contain one or more of P 2 O 5 , Al 2 O 3, and the like in addition to the above components.
  • the P 2 O 5 content can be 0.00% or more, preferably 10.00% or less, 8.00% or less, 6.00% or less, 4.00% or less, 2.00% or less. % Or less, 1.00% or less, and 0.50% or less are more preferable. It is preferable that the P 2 O 5 content is in the above range from the viewpoint of improving the thermal stability of the glass and improving the partial dispersion characteristics.
  • the Al 2 O 3 content can be 0.00% or more, preferably 10.00% or less, 8.00% or less, 6.00% or less, 4.00% or less, 2.00% or less. % Or less, 1.00% or less, and 0.50% or less are more preferable. It is preferable that the Al 2 O 3 content is in the above range from the viewpoint of improving the devitrification resistance and thermal stability of the glass.
  • Pb, As, Cd, Tl, Be and Se are toxic respectively. Therefore, it is preferable not to contain these elements, that is, not to introduce these elements into the glass as a glass component.
  • U, Th, and Ra are all radioactive elements. Therefore, it is preferable not to contain these elements, that is, not to introduce these elements into the glass as a glass component.
  • V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Ce increase the coloring of glass and become a source of fluorescence.
  • Sb and Sn are arbitrarily addable elements that function as clarifying agents.
  • the addition amount of Sb is converted into Sb 2 O 3, when the total content of glass components other than Sb 2 O 3 is 100 mass%, preferably in the range of 0 to 0.11 wt%, It is more preferably in the range of 0.01 to 0.08% by mass, and even more preferably in the range of 0.02 to 0.05% by mass.
  • the amount of Sn added is preferably in the range of 0 to 0.50% by mass, preferably in the range of 0 to 0.50% by mass, when converted to SnO 2 and the total content of the glass components other than SnO 2 is 100% by mass. It is more preferably in the range of 20% by mass, further preferably 0% by mass.
  • the refractive index nd is preferably 1.860 or more, 1.865 or more, 1.870 or more, 1.875 or more, 1.880 or more, 1.885 or more, 1.890 or more. It is more preferable in the order of 1.895 or more and 1.900 or more.
  • the refractive index nd can be, for example, 1.950 or less, 1.945 or less, 1.940 or less, 1.935 or less, 1.930 or less, or 1.925 or less.
  • "refractive index” means “refractive index nd”.
  • the Abbe number ⁇ d is preferably 22.50 or more, 23.50 or more, from the viewpoint of usefulness as a material for an optical element.
  • the Abbe number ⁇ d is preferably 30.00 or less, 29.50 or less, 29.00 or less, 28.50 or less, 28.40 or less, 28.30 or less, 28.20 or less, 28.10 or less, 28.00 or less, 27.90 or less, 27.80 or less, 27.70 or less are more preferable.
  • the refractive index nd and the Abbe number ⁇ d satisfy one or more of the following relational expressions from the viewpoint of usefulness as a material for an optical element. It is also preferable.
  • the refractive power is determined by the refractive index of the glass constituting the optical element and the curvature of the optical functional surface (the surface on which the light beam to be controlled enters and exits) of the optical element.
  • the curvature of the optical functional surface is increased, the thickness of the optical element also increases. As a result, the optical element becomes heavy.
  • glass having a high refractive index is used, a large refractive power can be obtained without increasing the curvature of the optical functional surface. From the above, if the refractive index can be increased while suppressing the increase in the specific gravity of the glass, the weight of the optical element having a constant refractive power can be reduced.
  • the specific gravity d is preferably 4.100 or less, preferably 4.095 or less, 4.090 or less, 4.085 or less. It is more preferable in the order of 4.080 or less, 4.050 or less, 4.000 or less, 3.995 or less, 3.990 or less, and 3.985 or less. Since the lower the specific gravity is, the more preferable it is from the viewpoint of reducing the weight of the optical element, the lower limit of the specific gravity is not particularly limited. In one form, the specific density is 3.400 or more, 3.450 or more, 3.500 or more, 3.550 or more, 3.600 or more, 3.650 or more, 3.700 or more, or 3.750 or more. Can be done.
  • the value (d / nd) obtained by dividing the specific gravity d by the refractive index nd is 4. It is preferably 35 or less, preferably 4.00 or less, 3.50 or less, 3.00 or less, 2.90 or less, 2.80 or less, 2.70 or less, 2.60 or less, 2.50 or less, 2. It is more preferably 40 or less, 2.30 or less, 2.20 or less, and 2.15 or less in that order.
  • (d / nd) is, for example, 1.74 or higher, 1.76 or higher, 1.78 or higher, 1.80 or higher, 1.82 or higher, 1.84 or higher, 1.85 or higher, 1. 86 or more, 1.87 or more, 1.88 or more, 1.89 or more, 1.90 or more, 1.91 or more, 1.92 or more, 1.93 or more, 1.94 or more, or 1.95 or more. be able to.
  • the light transmittance of the glass in the case of the glass composition C, the light transmittance of the glass, specifically, the suppression of the lengthening of the light absorption edge on the short wavelength side is evaluated by the degree of coloring ⁇ 5. can do.
  • the degree of coloration ⁇ 5 represents a wavelength at which the spectral transmittance (including surface reflection loss) of a glass having a thickness of 10 mm is 5% from the ultraviolet region to the visible region.
  • the spectral transmittance means, for example, more specifically, using a glass sample having parallel planes polished to a thickness of 10.0 ⁇ 0.1 mm with respect to the polished surface.
  • the spectral transmittance obtained by incident light from the vertical direction that is, Iout / Iin when the intensity of the light incident on the glass sample is Iin and the intensity of the light transmitted through the glass sample is Iout. ..
  • the degree of coloration ⁇ 5 the absorption edge on the short wavelength side of the spectral transmittance can be quantitatively evaluated.
  • the adhesive is cured by irradiating the adhesive with ultraviolet rays through an optical element. From the viewpoint of efficiently curing the ultraviolet curable adhesive, it is preferable that the absorption edge on the short wavelength side of the spectral transmittance is in the short wavelength region.
  • the degree of coloration ⁇ 5 can be used as an index for quantitatively evaluating the absorption edge on the short wavelength side.
  • ⁇ 5 preferably 400 nm or less can be exhibited.
  • ⁇ 5 is more preferably 395 nm or less, 390 nm or less, 385 nm or less, and 380 nm or less in that order.
  • the lower the value of ⁇ 5, the more preferable, and the lower limit is not particularly limited.
  • the glass transition temperature Tg is preferably 560 ° C. or higher from the viewpoint of machinability. Glass having a high glass transition temperature is preferable because it tends to be less likely to be broken when machining glass such as cutting, cutting, grinding, and polishing. From the viewpoint of machinability, the glass transition temperature Tg is more preferably 570 ° C. or higher, and further preferably 580 ° C. or higher, 590 ° C. or higher, and 600 ° C. or higher in that order. On the other hand, from the viewpoint of reducing the burden on the annealing furnace and the molding die, the glass transition temperature Tg is preferably 800 ° C.
  • the glass transition temperature Tg is obtained as follows. In the differential scanning calorimetry, when the temperature of the glass sample is raised, the endothermic behavior accompanying the change in specific heat, that is, the endothermic peak appears, and when the temperature is further raised, the exothermic peak appears. In the differential scanning calorimetry, a differential scanning calorimetry curve (DSC curve) is obtained in which the horizontal axis represents the temperature and the vertical axis represents the amount corresponding to the exothermic endothermic reaction of the sample. The intersection of the tangent line and the baseline at the point where the slope becomes maximum when the endothermic peak appears from the baseline on this curve is defined as the glass transition temperature Tg.
  • the glass transition temperature Tg can be measured by using a sample obtained by sufficiently pulverizing glass in a mortar or the like and using a differential scanning calorimeter at a heating rate of 10 ° C./min.
  • the thermal stability of glass includes devitrification resistance when molding a glass melt and devitrification resistance when a once solidified glass is reheated.
  • the liquidus temperature LT can be used as a guide for the devitrification resistance when molding the glass melt. It can be said that the lower the liquidus temperature, the better the devitrification resistance.
  • the temperature of the glass melt that is, the molten glass must be maintained at a high temperature in order to prevent devitrification, which promotes the erosion of the crucible, which causes volatilization of easily volatile components.
  • the liquid phase temperature is preferably 1400 ° C. or lower, 1370 ° C. or lower, 1340 ° C. or lower, 1310 ° C. or lower, 1280 ° C. or lower, 1270 ° C. or lower, 1260 ° C. or lower, 1250 ° C. or lower. More preferred in order.
  • the liquidus temperature can be, for example, 1000 ° C. or higher, 1050 ° C. or higher, or 1100 ° C. or higher, but can also exceed the values exemplified here.
  • the "liquid phase temperature" in the present invention and the present specification is determined by the following method.
  • a crushed glass sample of about 0.02 ml is heated to 1350 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere while flowing nitrogen at a flow rate of 0.3 L / min using a differential scanning calorimeter.
  • the liquidus temperature is defined as the end point of the heat absorption peak generated when the crystals in the glass generated in the temperature raising process melt in a temperature range higher than the glass transition temperature and the crystallization temperature.
  • FIG. 1 is a diagram schematically showing a differential scanning calorimetry curve (DSC curve).
  • the horizontal axis is the temperature, and on the horizontal axis, the temperature is higher toward the right and lower toward the left.
  • the vertical axis corresponds to the heat generation and endothermic of the sample
  • the upper side of the baseline (dotted line) is heat generation
  • the lower side is endothermic.
  • Crystal precipitation in the temperature rise process corresponds to the exothermic peak
  • melting of the precipitated crystals corresponds to the endothermic peak.
  • the temperature at which the crystals melt and melt is the liquidus temperature.
  • the liquidus temperature is obtained as the temperature at the intersection of the tangent line on the high temperature side of the endothermic peak and the baseline.
  • the glass according to the embodiment of the present invention can be produced by blending a glass raw material so as to have the above-mentioned predetermined composition and using the blended glass raw material.
  • a glass raw material so as to have the above-mentioned predetermined composition
  • a plurality of types of compounds are mixed and sufficiently mixed to obtain a batch raw material, and the batch raw material is placed in a quartz crucible or a platinum crucible for rough melting.
  • the melt obtained by crude melting is cooled and crushed to prepare a cullet.
  • the cullet is placed in a platinum pit and heated and remelted to make molten glass, and after cooling, clarification and homogenization, the temperature of the molten glass is adjusted so that it reaches a temperature Tx of less than Tg.
  • step 1 Casting (step 1) and holding at temperature Tx (step 2). After that, the glass is cooled at ⁇ 30 ° C./hr for 4 hours so that the temperature is surely below the strain point temperature (step 3), and the glass is allowed to cool to a temperature at which it can be taken out of the furnace at a slow cooling rate that does not break the glass (step 4). ).
  • the compound used when preparing the batch raw material is not particularly limited, and examples of such a compound include oxides and carbonates. Examples thereof include salts, nitrates, hydroxides and fluorides.
  • Step 1 the molten glass is cast into a mold whose temperature is adjusted so as to reach a temperature Tx lower than the glass transition temperature Tg.
  • Tx a temperature lower than the glass transition temperature Tg.
  • the temperature of the molten glass before step 1 is usually from the liquid phase temperature of the glass to the melting temperature of the glass.
  • the glass temperature at the time of casting the molten glass into the mold is the temperature at the time of melting the glass, and is generally in the range of 1500 ° C. to 1100 ° C., preferably 1400 ° C. to 1200 ° C. Therefore, in step 1, the molten glass is cooled when it is cast into the mold.
  • the cooling at this time is usually cooling by the atmosphere. However, if the cooling rate is too fast, some parts of the inside of the glass may become so viscous or solidified that they do not flow. Then, the homogenization of the glass is hindered, the glass may be cracked, or the glass may be broken.
  • the lower limit of the cooling rate in the step 1 is preferably about 1 ° C./sec, and more preferably 3 ° C./sec and 6 ° C./sec.
  • the upper limit of the cooling rate is preferably 20 ° C./sec, more preferably 15 ° C./sec, 12 ° C./sec, and 10 ° C./sec.
  • Step 2 the molten glass is held at a temperature of Tx.
  • the holding temperature Tx in step 2 is preferably less than the glass transition temperature Tg, and the upper limit thereof is more preferably Tg-1 ° C., Tg-5 ° C., Tg-10 ° C., Tg-15 ° C., and Tg-20 ° C.
  • Tg-1 ° C., Tg-5 ° C., Tg-10 ° C., Tg-15 ° C., and Tg-20 ° C By setting the upper limit of the holding temperature Tx to the above range, the disorder of the glass structure is increased, and a glass material having excellent stability at the time of reheating can be obtained.
  • the lower limit of the holding temperature Tx in step 2 is preferably Tg-100 ° C., more preferably Tg-90 ° C., Tg-80 ° C., Tg-70 ° C., Tg-60 ° C., and Tg-50 ° C. .. In particular, it is preferable that Tx does not fall below the strain point too much, and more preferably above the strain point.
  • Tx does not fall below the strain point too much, and more preferably above the strain point.
  • the holding time in step 2 tends to increase as the thickness of the glass increases and the volume of the glass increases because the high-temperature glass cooled from the molten state is homogenized, but it is preferably 10 minutes or more. Yes, it can be 20 minutes or more, or 30 minutes or more. From the standpoint of productivity and the retention of thermal stability of the glass, an upper limit of retention time of less than 3 hours is sufficient, even less than 2 hours, less than 1.5 hours, or less than 1.0 hours. good. If the holding time is too long, the disordered state of the atomic arrangement in the molten state is not maintained, the thermal stability of the glass is lowered due to the progress of the ordering of the atomic arrangement, and ⁇ max tends to be large.
  • Step 3 the glass is cooled at ⁇ 30 ° C./hr for 4 hours to ensure that it falls below the strain point temperature during slow cooling.
  • the time required for this cooling is preferably 4 hours or more, more preferably 5 hours or more, and further preferably 6 hours or more. If the temperature Tx is lower than the strain point, it can be less than 4 hours.
  • Step 4 the glass is allowed to cool to a temperature at which it can be taken out of the furnace at a slow cooling rate that does not break.
  • the slow cooling rate in step 4 is preferably smaller than ⁇ 50 ° C./hr, and can be about ⁇ 10 ° C./hr or ⁇ 30 ° C./hr. If it is less than -1 ° C / hr, productivity may be hindered.
  • the temperature of the glass that can be taken out of the furnace depends on the state of heat insulation outside the furnace, but is preferably about 100 ° C. or lower, and more preferably 80 ° C. or lower, 60 ° C. or lower, 40 ° C. or lower, and 20 ° C. or lower.
  • the upper limit of the temperature of the glass that can be taken out of the furnace is preferably room temperature + 50 ° C., more preferably room temperature + 40 ° C., room temperature + 30 ° C., room temperature + 20 ° C., and room temperature + 10 ° C.
  • the lower limit of the temperature of the glass that can be taken out of the furnace may be room temperature.
  • a known method that can obtain the above temperature profile for example, a slow cooling furnace capable of temperature programming may be used.
  • the disorder of the glass structure is increased, and a glass material having excellent stability during reheating can be obtained. Further, by cooling and slowly cooling the glass as in steps 3 and 4, distortion of the glass can be removed and the processability of the glass in the subsequent step can be maintained.
  • the molding glass material according to the embodiment of the present invention can be used as it is.
  • a known method may be applied.
  • molten glass is poured into a mold and molded into a plate shape to produce a molding glass material according to the present invention.
  • the obtained glass material is appropriately cut, ground, and polished to prepare a molding precursor (also referred to as a cut piece) having a size and shape suitable for molding after reheating.
  • the cut piece is heated and softened and molded by a known method (reheat press, round bar molding, extrusion molding, etc.) to produce an optical element blank that approximates the shape of the optical element.
  • An optical element is manufactured by annealing an optical element blank and cutting, grinding, polishing or the like by a known method.
  • the optical functional surface of the manufactured optical element may be coated with an antireflection film, a total reflection film, or the like, depending on the purpose of use.
  • an optical element made of the above optical glass examples of the types of optical elements include lenses such as spherical lenses and aspherical lenses, prisms, and diffraction gratings.
  • the shape of the lens various shapes such as a biconvex lens, a plano-convex lens, a biconcave lens, a plano-concave lens, a convex meniscus lens, and a concave meniscus lens can be exemplified.
  • the optical element can be manufactured by a method including a step of processing a glass molded body made of the above optical glass. Examples of processing include cutting, cutting, rough grinding, fine grinding, and polishing. By using the above glass when performing such processing, damage can be reduced and high-quality optical elements can be stably supplied.
  • the molding glass material according to the 2nd embodiment is The maximum value ⁇ max of the coefficient of linear expansion, the average coefficient of linear expansion ⁇ 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are expressed by the following formulas. (4) is satisfied. ⁇ max / ⁇ 100-300 ⁇ [SiO 2 + ZrO 2 ] ⁇ 264 ⁇ ⁇ ⁇ (4)
  • the molding glass material according to the second embodiment contains the maximum value ⁇ max of the coefficient of linear expansion, the average coefficient of linear expansion ⁇ 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display.
  • the amount [SiO 2 + ZrO 2 ] satisfies the following formula (4), preferably the following formula (5), and more preferably the following formula (5).
  • the maximum value ⁇ max of the coefficient of linear expansion and the average coefficient of linear expansion ⁇ 100-300 can be controlled by adjusting the conditions for cooling the molten glass in the process of manufacturing the glass material.
  • the maximum value ⁇ max of the linear expansion coefficient and the average linear expansion coefficient ⁇ 100-300 can be measured in the same manner as in the first embodiment.
  • the maximum value ⁇ max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are preferably expressed by the following formulas (SiO 2 + ZrO 2). 1) is satisfied, the following formula (2) is more preferably satisfied, and the following formula (3) is more preferably satisfied. From the viewpoint of obtaining a molding glass material having excellent stability during reheating, it is preferable to satisfy the following formula.
  • the maximum value ⁇ max of the coefficient of linear expansion can be controlled by adjusting the conditions for cooling the molten glass in the manufacturing process of the glass material.
  • the characteristics and the glass composition other than the above can be the same as those of the first embodiment. Further, the production of the glass material and the production of the optical element and the like in the second embodiment can be the same as in the first embodiment.
  • the molding glass material according to the third embodiment is The maximum coefficient of linear expansion ⁇ max is the coefficient of linear expansion of the glass material obtained by soaking the glass material for molding at the glass transition temperature Tg, cooling it at ⁇ 30 ° C./hr for 4 hours, and then allowing it to cool. Is smaller than the maximum value ⁇ max (Tg) of.
  • the maximum value ⁇ max of the linear expansion coefficient is obtained by soaking the molding glass material at a glass transition temperature Tg and then cooling it at ⁇ 30 ° C./hr for 4 hours. It is smaller than the maximum value ⁇ max (Tg) of the coefficient of linear expansion of the glass material obtained by allowing to cool.
  • the maximum value ⁇ max of the coefficient of linear expansion may be slightly larger than the maximum value ⁇ max (Tg) of the coefficient of linear expansion. Therefore, the difference between ⁇ max and ⁇ max (Tg) [ ⁇ max (Tg) ⁇ max ] is preferably -9 or more when displayed up to the first integer in the unit of 10-7 ⁇ ° C- 1.
  • the upper limit of the difference is not particularly limited, but is usually ⁇ max (Tg), preferably about ⁇ max (Tg) -100.
  • the method for measuring the maximum value ⁇ max (Tg) is the same as that in the first embodiment.
  • the maximum value ⁇ max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are preferably expressed by the following formulas (SiO 2 + ZrO 2]. 1) is satisfied, the following formula (2) is more preferably satisfied, and the following formula (3) is more preferably satisfied. From the viewpoint of obtaining a molding glass material having excellent stability during reheating, it is preferable to satisfy the following formula.
  • the maximum value ⁇ max of the coefficient of linear expansion can be controlled by adjusting the conditions for cooling the molten glass in the manufacturing process of the glass material.
  • the characteristics and the glass composition other than the above can be the same as those of the first embodiment. Further, the production of the glass material and the production of the optical element and the like in the third embodiment can be the same as in the first embodiment.
  • Example 1-1 A glass sample having the glass composition I shown in Table 1 (1) was prepared by the following procedure, and various evaluations were performed on the obtained glass sample. The results are shown in Tables 2 (1) and 2 (2).
  • a glass sample was obtained by cooling to a temperature 120 ° C. lower than the holding temperature Tx in step 2 at a rate of ⁇ 30 ° C./hr (step 3) and then allowing to cool to room temperature in the furnace (step 4). ..
  • the amount of glass here was 150 g.
  • the holding temperature Tx in step 2 is a value obtained by rounding off the 1st place of the glass transition temperature Tg (unit: ° C.) as the Tg of the glass sample, and is set to a value 25 ° C. lower than this temperature.
  • Table 2 (2) shows the difference between the rounded Tg and the holding temperature Tx, which correspond to such a temperature difference.
  • Glass transition temperature Tg The glass transition temperature Tg was measured at a heating rate of 10 ° C./min using a differential scanning calorimetry device (DSC3300SA) manufactured by NETZSCH JAPAN.
  • Partial dispersion ratio Pg, F, ⁇ Pg, F The partial dispersion ratios Pg, F and ⁇ Pg, F were calculated based on the following formulas using the refractive indexes ng, nF, and nC of the g-line, F-line, and c-line.
  • Pg, F (ng-nF) / (nF-nC) ... (13)
  • ⁇ Pg, F Pg, F- (0.6483-0.001802 ⁇ ⁇ d) ⁇ ⁇ ⁇ (14)
  • Example 1-2 In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1 except that the holding temperature Tx in step 2 was set to a temperature 50 ° C. lower than the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1.
  • Example 1-3 In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1 except that the holding temperature Tx in step 2 was set to a temperature 100 ° C. lower than the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1.
  • Example 2-1 A glass sample having the glass composition II shown in Table 1 (1) was produced.
  • the glass sample was prepared in the same manner as in Example 1-1 except that the raw materials were prepared so as to have a glass composition II and the holding temperature Tx in step 2 was set to a temperature 60 ° C. lower than the glass transition temperature Tg. Obtained.
  • Various evaluations were performed in the same manner as in Example 1-1.
  • Example 1-1 In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1, except that the holding temperature Tx in step 2 was set to a temperature 30 ° C. higher than the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1.
  • Comparative Example 1-2 In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1, except that the holding temperature Tx in step 2 was set to the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1. The maximum value of the coefficient of linear expansion in Comparative Example 1-2 was set to ⁇ max (Tg), and the maximum value of the coefficient of linear expansion in Examples 1-1, 1-2, and 1-3 was compared with ⁇ max.
  • Comparative Example 1-3 In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1 except that the holding time in step 2 was 72 hours. Various evaluations were performed in the same manner as in Example 1-1. Although glass was obtained in Comparative Example 1-3, significant devitrification occurred in the stability test. In addition, the refractive index nd, Abbe number ⁇ d, and partial dispersion ratios Pg, F, ⁇ Pg, and F could not be measured.
  • Comparative Example 2-1 In the production of the glass sample, a glass sample was obtained in the same manner as in Example 2-1 except that the holding temperature Tx in step 2 was set to the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 2-1. The maximum value of the coefficient of linear expansion in Comparative Example 2-1 was set to ⁇ max (Tg), and the maximum value of the coefficient of linear expansion in Example 2-1 was compared with ⁇ max.
  • Example 3-1 A glass sample having the glass composition III shown in Table 1 (2) was produced.
  • the glass sample was prepared in the same manner as in Example 1-1 except that the raw materials were prepared so as to have a glass composition III and the holding temperature Tx in step 2 was set to a temperature 60 ° C. lower than the glass transition temperature Tg. Obtained.
  • Various evaluations were performed in the same manner as in Example 1-1.
  • Example 3-2 A glass sample having the glass composition III shown in Table 1 (2) was produced.
  • the glass sample was prepared in the same manner as in Example 1-1 except that the raw materials were prepared so as to have a glass composition III and the holding temperature Tx in step 2 was set to a temperature 100 ° C. lower than the glass transition temperature Tg. Obtained.
  • Various evaluations were performed in the same manner as in Example 1-1.
  • Example 4-1 A glass sample having the glass composition IV shown in Table 1 (3) was produced.
  • the raw materials were prepared so as to have a glass composition IV, and the glass sample was obtained in the same manner as in Example 1-1 except that the holding temperature Tx in step 2 was set to the same temperature as the glass transition temperature Tg. ..
  • Various evaluations were performed in the same manner as in Example 1-1.
  • Example 4-2 A glass sample having the glass composition IV shown in Table 1 (3) was produced.
  • a glass sample was obtained in the same manner as in Example 1-1, except that the raw materials were prepared so as to have a glass composition IV.
  • Various evaluations were performed in the same manner as in Example 1-1.
  • Example 3 A lens blank by a known method using each glass sample prepared in Examples 1-1, 1-2, 1-3, 2-1, 3-1, 3-2, 4-1 and 4-2. And processed the lens blank by a known method such as polishing to prepare various lenses.
  • the manufactured optical lenses are various lenses such as a biconvex lens, a biconcave lens, a plano-convex lens, a plano-concave lens, a concave meniscus lens, and a convex meniscus lens.
  • prisms were produced using various optical glasses produced in Examples 1-1, 1-2, 1-3, 2-1, 3-1, 3-2, 4-1 and 4-2. ..
  • the optical glass according to one aspect of the present invention can be produced by adjusting the composition described in the specification with respect to the glass composition exemplified above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

[Problem] To provide a glass material that is to be used in molding and that has excellent stability when being reheated. [Solution] A glass material to be used in molding, wherein the maximum value αmax of the coefficient of linear expansion of the glass material and the total content [SiO2+ZrO2] of SiO2 and ZrO2 expressed as wt% satisfy formula (1). (1): αmax×[SiO2+ZrO2]≤27900

Description

成型用ガラス素材Glass material for molding
 本発明は、成形用ガラス素材に関する。 The present invention relates to a glass material for molding.
 光学ガラスは、屈折率やアッベ数といった特定の光学常数を有するだけでなく、高い光線透過率や光学特性の均質性も有するという点で窓ガラスや瓶ガラスといった従来のケイ酸塩系ガラスとは異なる。 Optical glass is different from conventional silicate-based glass such as window glass and bottle glass in that it not only has a specific optical constant such as refractive index and Abbe number, but also has high light transmittance and homogeneity of optical characteristics. different.
 近年は、映像機器の高精細化に対応するため、撮像機器に対する高性能化要求も高まると共に、光学素子自体の低背化要求も大きい。そこで、比較的屈折率が高く、また安定性に優れる光学ガラスが求められている。 In recent years, in order to respond to higher definition of video equipment, the demand for higher performance of imaging equipment has increased, and the demand for lowering the height of the optical element itself has also increased. Therefore, there is a demand for optical glass having a relatively high refractive index and excellent stability.
 ここで、光学ガラスの製造方法として、ガラスを再加熱して成形する、リヒートプレス製法や丸棒成形法、押出成形法などが挙げられる。これらのような製法において、例えばNb、TiO、またはLaといった、光学特性を高める成分が多く導入されたケイ酸塩系光学ガラスでは、ガラスの安定性が低下しやすく、特に再加熱の際に結晶化が進行しやすいという問題があった。 Here, examples of the method for manufacturing optical glass include a reheat press manufacturing method, a round bar molding method, and an extrusion molding method in which glass is reheated and molded. In a production method such as these, in a silicate-based optical glass in which a large amount of components that enhance optical properties such as Nb 2 O 5 , TiO 2 , or La 2 O 3 are introduced, the stability of the glass tends to decrease. In particular, there is a problem that crystallization is likely to proceed during reheating.
 結晶化しやすい無機化合物の融液は、急冷することで、ガラス化が可能となることが知られている。したがって、本発明が対象とする無機ガラスは、熔融状態にある無機化合物を結晶化の進行速度よりも早い速度で冷却することによって、その熔融状態における無秩序な原子配置を室温においても保持・凍結させたものである。 It is known that a melt of an inorganic compound that easily crystallizes can be vitrified by quenching. Therefore, in the inorganic glass targeted by the present invention, the disordered atomic arrangement in the molten state is maintained and frozen even at room temperature by cooling the inorganic compound in the molten state at a rate faster than the progress rate of crystallization. It is a thing.
 しかし、少なくとも可視光に吸収を持たない光学ガラスは熔融状態にあっても熱伝導率が高くないため、ガラス全体の冷却速度はガラスの厚みが大きくなるほど低下し、その急冷効果は限定される。例えば非特許文献1に示すとおり、厚さ0.5mmのガラス融液を金属板でプレス成形すれば10~10℃/秒の冷却速度が得られるとしても、厚さ5mmのガラス融液を金属板でプレス成形した際の冷却速度は10~20℃/秒に留まる。このような理由のため、急冷により得られるガラスは、非特許文献2に示す「薄片」であるといわれている。 However, at least optical glass that does not absorb visible light does not have high thermal conductivity even in a molten state, so that the cooling rate of the entire glass decreases as the thickness of the glass increases, and its quenching effect is limited. For example, as shown in Non-Patent Document 1, even if a cooling rate of 10 2 to 10 3 ° C./sec can be obtained by press-molding a glass melt having a thickness of 0.5 mm on a metal plate, a glass melt having a thickness of 5 mm can be obtained. The cooling rate when press-molded with a metal plate remains at 10 to 20 ° C./sec. For this reason, the glass obtained by quenching is said to be a "thin section" shown in Non-Patent Document 2.
 そして、光学素子を成形するための厚みを持つガラスは、およそ10mm程度、大きいもので30mmや40mmの厚みのガラスを連続的に熔融して製造される。そして、ガラスの内部に結晶が存在すると光を散乱する原因となるので、そのようなガラスは、光学素子として使用できない。仮に、このような厚みを持つガラス表面を急冷することによってガラスを得ようとしても、ガラスの内部は十分に急冷されないため、ガラスの内部に結晶が生じてしまうことがある。また、このようなガラス内部の結晶化を避けようとして冷却条件を強くしすぎると、ガラス内部よりも先にガラス表面が固化して、その結果、クラックが発生する、あるいはガラスが割れるなどの問題が生じる。 Then, the glass having a thickness for molding the optical element is manufactured by continuously melting glass having a thickness of about 10 mm, and a large one having a thickness of 30 mm or 40 mm. The presence of crystals inside the glass causes light to be scattered, so such glass cannot be used as an optical element. Even if the glass surface having such a thickness is rapidly cooled to obtain the glass, the inside of the glass is not sufficiently rapidly cooled, so that crystals may be formed inside the glass. Further, if the cooling conditions are made too strong in order to avoid such crystallization inside the glass, the glass surface solidifies before the inside of the glass, and as a result, cracks occur or the glass breaks. Occurs.
 このように、ある程度の厚みを有するガラスを製造する場合に、通常の急冷の操作によって、結晶化せずにガラス化できるのは表面近傍のみである。さらに、一度内部に結晶が生じたガラスを再加熱しても、結晶化の傾向は消失することはなく、成形時にはふたたびガラスの結晶化が進行する可能性が大きい。それゆえ、このようにして得られたガラス素材は、加熱軟化して所望の形状を得ることもできないことから、一般的に産業界で用いられる光学ガラスとしては使用できないものであった。 In this way, when producing glass having a certain thickness, it is possible to vitrify the glass without crystallization by a normal quenching operation only in the vicinity of the surface. Further, even if the glass once crystallized inside is reheated, the tendency of crystallization does not disappear, and there is a high possibility that the crystallization of the glass will proceed again at the time of molding. Therefore, the glass material thus obtained cannot be used as an optical glass generally used in the industrial world because it cannot be softened by heating to obtain a desired shape.
 他方で特許文献1には、光学ガラスにおいて通常と異なる冷却条件を提案した先行技術が開示されている。すなわちTiOを多く含有するケイ酸塩系ガラスについて、熔融ガラスを室温まで冷却し、その後ガラス転移温度Tgよりも低い温度でアニールして除歪することで、再加熱時における結晶の生成を抑制できるガラス素材が得られることが開示されている。 On the other hand, Patent Document 1 discloses a prior art that proposes different cooling conditions for optical glass. That is, for silicate-based glass containing a large amount of TiO 2 , the molten glass is cooled to room temperature and then annealed at a temperature lower than the glass transition temperature Tg to distort the strain, thereby suppressing the formation of crystals during reheating. It is disclosed that a glass material capable of being obtained can be obtained.
 しかしながら、特許文献1のガラス素材から得られる光学ガラスでは、可視光の短波長域とりわけ青色の光線透過率が低く、部分分散比Pg,Fの値が大きいなど、近年の光学設計の要求を満たすことができなかった。 However, the optical glass obtained from the glass material of Patent Document 1 satisfies the demands of recent optical design such as low light transmittance in the short wavelength region of visible light, particularly blue light transmittance, and large partial dispersion ratios Pg and F. I couldn't.
特開2003-192384号公報Japanese Unexamined Patent Publication No. 2003-192384
 本発明は、このような実状に鑑みてなされ、再加熱時の安定性に優れる、成型用ガラス素材を提供することを目的とする。 The present invention has been made in view of such an actual situation, and an object of the present invention is to provide a glass material for molding, which is excellent in stability at the time of reheating.
 本発明の要旨は以下のとおりである。
〔1〕線膨張係数の最大値αmaxと、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とが、下記式(1)を満たす、成形用ガラス素材。
 αmax×[SiO+ZrO]≦27900 ・・・(1)
The gist of the present invention is as follows.
[1] A glass material for molding in which the maximum value α max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] satisfy the following formula (1).
α max × [SiO 2 + ZrO 2 ] ≦ 27900 ・ ・ ・ (1)
〔2〕線膨張係数の最大値αmaxと、100~300℃における平均線膨張係数α100-300と、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とが、下記式(4)を満たす、成形用ガラス素材。
 αmax/α100-300×[SiO+ZrO]≦264 ・・・(4)
[2] The maximum value α max of the coefficient of linear expansion, the average coefficient of linear expansion α 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ]. , A glass material for molding that satisfies the following formula (4).
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 264 ・ ・ ・ (4)
〔3〕線膨張係数の最大値αmaxが、当該成形用ガラス素材をガラス転移温度Tgにおいて均熱化した後-30℃/hrで4時間冷却し、その後放冷して得たガラス素材の線膨張係数の最大値αmax(Tg)よりも小さい、成形用ガラス素材。 [3] The maximum value α max of the coefficient of linear expansion of the glass material obtained by soaking the glass material for molding at a glass transition temperature Tg, cooling it at −30 ° C./hr for 4 hours, and then allowing it to cool. A glass material for molding that is smaller than the maximum coefficient of linear expansion α max (Tg).
〔4〕11mm×11mm×10.5mmのサンプルを、ガラス転移温度Tgより200℃高い温度で5分間熱処理したときの、ガラス1gあたりの結晶の数密度Dが10個/g未満である、〔1〕~〔3〕に記載の成形用ガラス素材。 [4] When a sample of 11 mm × 11 mm × 10.5 mm is heat-treated at a temperature 200 ° C. higher than the glass transition temperature Tg for 5 minutes, the number density D of crystals per 1 g of glass is less than 10 cells / g. The glass material for molding according to 1] to [3].
〔5〕質量%表示でのTiOの含有量[TiO]とNbの含有量[Nb]とが、下記式(7)を満たす、〔1〕~〔4〕に記載の成形用ガラス素材。
 {5×[TiO]}/{3×[Nb]}≦3 ・・・(7)
[5] The content of TiO 2 in weight percentages [TiO 2] and the content of Nb 2 O 5 and [Nb 2 O 5], but satisfying the following formula (7), the [1] to [4] The described molding glass material.
{5 × [TiO 2 ]} / {3 × [Nb 2 O 5 ]} ≦ 3 ・ ・ ・ (7)
〔6〕280~700nmの波長範囲において、厚さ10mmのガラスの内部透過率が80%を示す波長λτ80が395nm以下である、〔1〕~〔5〕に記載の成形用ガラス素材。 [6] The molding glass material according to [1] to [5], wherein the wavelength λτ 80 indicating an internal transmittance of 80% of a glass having a thickness of 10 mm is 395 nm or less in the wavelength range of 280 to 700 nm.
〔7〕アッベ数νdと部分分散比Pg,Fとが、下記式(8)を満たす、〔1〕~〔6〕に記載の成形用ガラス素材。
 Pg,F≦-0.00286×νd+0.68700 ・・・(8)
[7] The glass material for molding according to [1] to [6], wherein the Abbe number νd and the partial dispersion ratios Pg and F satisfy the following formula (8).
Pg, F ≦ -0.00286 × νd + 0.68700 ・ ・ ・ (8)
〔8〕上記〔1〕~〔7〕に記載の成形用ガラス素材からなる光学ガラス。 [8] An optical glass made of the molding glass material according to the above [1] to [7].
 本発明によれば、再加熱時の安定性に優れる、成型用ガラス素材を提供できる。 According to the present invention, it is possible to provide a glass material for molding having excellent stability during reheating.
図1は、本実施形態に係る成形用ガラス素材の一例について、製造工程におけるガラスの温度を示すグラフである。縦軸はガラスの温度であり、横軸は対数表示での時間(秒)である。FIG. 1 is a graph showing the temperature of glass in a manufacturing process for an example of a glass material for molding according to the present embodiment. The vertical axis is the temperature of the glass, and the horizontal axis is the time (seconds) in logarithmic display.
 本発明および本明細書において、ガラス組成は、特記しない限り、酸化物基準で表示する。ここで「酸化物基準のガラス組成」とは、ガラス原料が熔融時にすべて分解されてガラス中で酸化物として存在するものとして換算することにより得られるガラス組成をいい、各ガラス成分の表記は慣習にならい、SiO、TiOなどと記載する。ガラス成分の含有量および合計含有量は、特記しない限り質量基準であり、「%」は「質量%」を意味する。また、「成形用ガラス素材」を単に「ガラス」または「ガラス素材」と称することがある。 In the present invention and the present specification, the glass composition is expressed on an oxide basis unless otherwise specified. Here, the "oxide-based glass composition" refers to a glass composition obtained by converting all glass raw materials into those that are decomposed at the time of melting and exist as oxides in glass, and the notation of each glass component is customary. Following this, it is described as SiO 2 , TiO 2 , and the like. Unless otherwise specified, the content and total content of the glass component are based on mass, and "%" means "mass%". Further, the "glass material for molding" may be simply referred to as "glass" or "glass material".
 ガラス成分の含有量は、公知の方法、例えば、誘導結合プラズマ発光分光分析法(ICP-AES)、誘導結合プラズマ質量分析法(ICP-MS)、等の方法で定量することができる。また、本明細書および本発明において、構成成分の含有量が0%とは、この構成成分を実質的に含まないことを意味し、該成分が不可避的不純物レベルで含まれることを許容する。 The content of the glass component can be quantified by a known method, for example, inductively coupled plasma emission spectroscopy (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), or the like. Further, in the present specification and the present invention, the content of the constituent component is 0%, which means that the constituent component is substantially not contained, and the component is allowed to be contained at an unavoidable impurity level.
 以下に、本発明の成形用ガラス素材を第1実施形態、第2実施形態、第3実施形態に分けて説明する。なお、第2、3実施形態におけるガラスの特性は、第1実施形態におけるガラスの特性と同様である。また、第2、3実施形態における各ガラス成分の作用、効果は、第1実施形態における各ガラス成分の作用、効果と同様である。したがって、第2、3実施形態において、第1実施形態に関する説明と重複する事項については適宜省略する。 Hereinafter, the glass material for molding of the present invention will be described separately for the first embodiment, the second embodiment, and the third embodiment. The characteristics of the glass in the second and third embodiments are the same as the characteristics of the glass in the first embodiment. Moreover, the action and effect of each glass component in the second and third embodiments are the same as the action and effect of each glass component in the first embodiment. Therefore, in the second and third embodiments, matters that overlap with the description of the first embodiment will be omitted as appropriate.
第1実施形態
 第1実施形態に係る成形用ガラス素材は、
 線膨張係数の最大値αmaxと、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とは、下記式(1)を満たす。
 αmax×[SiO+ZrO]≦27900 ・・・(1)
First Embodiment The molding glass material according to the first embodiment is
The maximum value α max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] satisfy the following formula (1).
α max × [SiO 2 + ZrO 2 ] ≦ 27900 ・ ・ ・ (1)
 第1実施形態に係る成形用ガラス素材において、線膨張係数の最大値αmaxと、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とは、下記式(1)を満たし、好ましくは下記式(2)を満たし、より好ましくは下記式(3)を満たす。下記式を満たすことで、再加熱時の安定性に優れる成型用ガラス素材が得られる。
 αmax×[SiO+ZrO]≦27900 ・・・(1)
 αmax×[SiO+ZrO]≦27500 ・・・(2)
 αmax×[SiO+ZrO]≦27000 ・・・(3)
In the molding glass material according to the first embodiment, the maximum value α max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are expressed by the following formula (1). , Preferably satisfying the following formula (2), and more preferably satisfying the following formula (3). By satisfying the following formula, a glass material for molding having excellent stability during reheating can be obtained.
α max × [SiO 2 + ZrO 2 ] ≦ 27900 ・ ・ ・ (1)
α max × [SiO 2 + ZrO 2 ] ≦ 27500 ・ ・ ・ (2)
α max × [SiO 2 + ZrO 2 ] ≦ 27000 ・ ・ ・ (3)
 線膨張係数の最大値αmaxは、後述するガラス素材の製造工程において、熔融ガラスを冷却する条件を調整することにより、制御できる。 The maximum value α max of the coefficient of linear expansion can be controlled by adjusting the conditions for cooling the molten glass in the glass material manufacturing process described later.
 線膨張係数の測定方法は、日本工学工業会規格JOGIS08の規定に基づいて測定する。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とする。試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように加熱し、温度と試料の伸びを1秒刻みで測定する。線膨張係数の最大値αmaxは、室温~屈伏点温度(試料が屈伏して見かけ上の伸びが止まる温度)の間における線膨張係数の最大値であるので、単位温度上昇あたりの試料の伸びが極大となる温度における線膨張係数を求めればよい。線膨張係数の最大値αMAXは、測定点31個における線膨張係数の移動平均処理をして得られた値の最大値を採用してもよい。また、後述する平均線膨張係数α100-300は、100~300℃における線膨張係数の平均値である。 The method for measuring the coefficient of linear expansion is based on the provisions of the Japan Institute of Engineering Standards JOGIS08. The sample shall be a round bar with a length of 20 mm ± 0.5 mm and a diameter of 5 mm ± 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments. The maximum value α max of the coefficient of linear expansion is the maximum value of the coefficient of linear expansion between room temperature and the yield point temperature (the temperature at which the sample yields and the apparent elongation stops), so that the elongation of the sample per unit temperature rise The coefficient of linear expansion at the temperature at which is maximum may be obtained. As the maximum value α MAX of the linear expansion coefficient, the maximum value of the value obtained by the moving average processing of the linear expansion coefficient at 31 measurement points may be adopted. The average coefficient of linear expansion α 100-300 , which will be described later, is an average value of the coefficient of linear expansion at 100 to 300 ° C.
 なお、本明細書では、線膨張係数の最大値αMAXおよび平均線膨張係数α100-300は、JOGIS08の規定に従い、10-7-1の単位で、整数第1位まで表示する。すなわち、線膨張係数の最大値αMAXおよび平均線膨張係数α100-300は[10-7・℃-1]を単位とする整数で表示する。
 また、本明細書では、平均線膨張係数αを[℃-1]を用いた単位で表しているが、単位として[K-1]を用いた場合でも平均線膨張係数αの数値は同じである。
In this specification, the maximum value α MAX of the coefficient of linear expansion and the average coefficient of linear expansion α 100-300 are displayed up to the first integer in the unit of 10-7 ° C- 1 in accordance with the provisions of JOBIS08. That is, the maximum value α MAX of the coefficient of linear expansion and the average coefficient of linear expansion α 100-300 are expressed as integers in units of [10-7 · ° C- 1].
Further, in the present specification, the average coefficient of linear expansion α is expressed in units using [° C -1 ], but the numerical value of the average coefficient of linear expansion α is the same even when [K -1] is used as the unit. be.
 本実施形態に係る成形用ガラス素材における上記以外の特性およびガラス組成について、以下に非制限的な例を示す。 Non-limiting examples of properties and glass composition other than the above in the molding glass material according to the present embodiment are shown below.
 第1実施形態に係る成形用ガラス素材において、線膨張係数の最大値αmaxと、100~300℃における平均線膨張係数α100-300と、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とは、好ましくは下記式(4)を満たし、より好ましくは下記式(5)を満たし、さらに好ましくは下記式(5)を満たす。再加熱時の安定性に優れる成型用ガラス素材を得るために、下記式を満たすことが好ましい。
 αmax/α100-300×[SiO+ZrO]≦264 ・・・(4)
 αmax/α100-300×[SiO+ZrO]≦260 ・・・(5)
 αmax/α100-300×[SiO+ZrO]≦255 ・・・(6)
The molding glass material according to the first embodiment contains the maximum value α max of the coefficient of linear expansion, the average coefficient of linear expansion α 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display. The amount [SiO 2 + ZrO 2 ] preferably satisfies the following formula (4), more preferably the following formula (5), and further preferably the following formula (5). In order to obtain a molding glass material having excellent stability during reheating, it is preferable to satisfy the following formula.
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 264 ・ ・ ・ (4)
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 260 ・ ・ ・ (5)
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 255 ・ ・ ・ (6)
 線膨張係数の最大値αmaxおよび平均線膨張係数α100-300は、後述するガラス素材の製造工程において、熔融ガラスを冷却する条件を調整することにより、制御できる。 The maximum linear expansion coefficient α max and the average linear expansion coefficient α 100-300 can be controlled by adjusting the conditions for cooling the molten glass in the glass material manufacturing process described later.
 第1実施形態に係る成形用ガラス素材において、線膨張係数の最大値αmaxは、好ましくは、当該成形用ガラス素材をガラス転移温度Tgにおいて均熱化した後-30℃/hrで4時間冷却し、その後放冷して得たガラス素材の線膨張係数の最大値αmax(Tg)よりも小さい。ただし、線膨張係数の最大値αmaxは、上記線膨張係数の最大値αmax(Tg)よりわずかに大きくてもよい。したがって、αmaxとαmax(Tg)の差分[αmax(Tg)-αmax]は、10-7・℃-1の単位で整数第1位まで表示すると、好ましくは-9以上であり、さらには-4以上、0以上、5以上、10以上、20以上、40以上、60以上、80以上、100以上、120以上、140以上、160以上、180以上、200以上、250以上、300以上、350以上、400以上の順により好ましい。また、該差分の上限は特に限定されないが、通常、αmax(Tg)であり、好ましくはαmax(Tg)-100程度である。 In the molding glass material according to the first embodiment, the maximum value α max of the linear expansion coefficient is preferably cooled at −30 ° C./hr for 4 hours after soaking the molding glass material at a glass transition temperature Tg. Then, it is smaller than the maximum value α max (Tg) of the coefficient of linear expansion of the glass material obtained by allowing it to cool. However, the maximum value α max of the coefficient of linear expansion may be slightly larger than the maximum value α max (Tg) of the coefficient of linear expansion. Therefore, the difference between α max and α max (Tg) [α max (Tg) −α max ] is preferably -9 or more when displayed up to the first integer in the unit of 10-7 · ° C- 1. Furthermore, -4 or more, 0 or more, 5 or more, 10 or more, 20 or more, 40 or more, 60 or more, 80 or more, 100 or more, 120 or more, 140 or more, 160 or more, 180 or more, 200 or more, 250 or more, 300 or more. , 350 or more, and more preferably 400 or more. The upper limit of the difference is not particularly limited, but is usually α max (Tg), preferably about α max (Tg) -100.
 線膨張係数の最大値αmax(Tg)は、成形用ガラス素材を、ガラス転移温度Tgで均熱化されるように保持した後、-30℃/hrで4時間冷却して得られるガラスについての線膨張係数の最大値である。なお、第1実施形態に係る成形用ガラス素材は、線膨張係数の最大値αmaxを有し、線膨張係数の最大値αmax(Tg)を有さない。後述するとおり、第1実施形態に係る成形用ガラス素材は、ガラス転移温度Tgよりも低い温度で保持して得られるため、αmax(Tg)よりも小さいαmaxを有する。 The maximum coefficient of linear expansion α max (Tg) is obtained for glass obtained by holding the glass material for molding so as to be homogenized at the glass transition temperature Tg and then cooling at −30 ° C./hr for 4 hours. It is the maximum value of the coefficient of linear expansion of. Incidentally, molding glass material according to the first embodiment has a maximum value alpha max coefficient of linear expansion, no maximum value alpha max coefficient of linear expansion (Tg). As will be described later, molding glass material according to the first embodiment, since obtained by holding at a temperature lower than the glass transition temperature Tg, has a smaller alpha max than α max (Tg).
 ガラス転移温度Tgで均熱化する場合に、成形用ガラス素材をTg以上の温度に加熱してから、Tgと同じ温度となるように降温してもよい。または、成形用ガラス素材を徐々に加熱して、Tgと同じ温度となるようにしてもよい。 When the heat is equalized at the glass transition temperature Tg, the glass material for molding may be heated to a temperature equal to or higher than Tg and then lowered to the same temperature as Tg. Alternatively, the glass material for molding may be gradually heated to reach the same temperature as Tg.
 図1は、本実施形態に係る成形用ガラス素材の一例について、製造工程におけるガラスの温度を示すグラフである。本実施形態に係る成形用ガラス素材は、後述するとおり、工程2においてガラス転移温度Tgよりも低い温度で保持される。ここで、線膨張係数の最大値αmax(Tg)は、図1中の比較例(Tg1)のように、工程2においてガラス転移温度Tgで保持されて得られるガラスについての線膨張係数の最大値である。または、線膨張係数の最大値αmax(Tg)は、図1中の比較例(Tg2)のように、成形用ガラス素材を室温から加熱して、ガラスの温度がTgと同じ温度で均熱化した後、冷却して得られるガラスについての線膨張係数の最大値でもよい。 FIG. 1 is a graph showing the temperature of glass in a manufacturing process for an example of a glass material for molding according to the present embodiment. As will be described later, the molding glass material according to the present embodiment is held at a temperature lower than the glass transition temperature Tg in step 2. Here, the maximum value α max (Tg) of the linear expansion coefficient is the maximum linear expansion coefficient of the glass obtained by being held at the glass transition temperature Tg in step 2 as in the comparative example (Tg1) in FIG. The value. Alternatively, the maximum value α max (Tg) of the coefficient of linear expansion is obtained by heating the glass material for molding from room temperature and soaking the glass at the same temperature as Tg, as in the comparative example (Tg2) in FIG. It may be the maximum value of the coefficient of linear expansion of the glass obtained by cooling after the conversion.
 成形用ガラス素材をガラス転移温度Tgよりも高い温度に加熱した後冷却する場合の、ガラス転移温度Tgで均熱化させるのに要する時間の下限は、サンプルの大きさにもよるが、ガラス表面の温度がTgとなってからおよそ30分であり、さらには1時間、2時間、4時間としてもよい。その上限には特に制限がなく、通常は24時間以内であり、好ましくは12時間以内である。なお、ガラスの内部もTg温度に到達した後の均熱化時間は10分程度で良い。 When the glass material for molding is heated to a temperature higher than the glass transition temperature Tg and then cooled, the lower limit of the time required for soaking at the glass transition temperature Tg depends on the size of the sample, but the glass surface. The temperature is about 30 minutes after the temperature reaches Tg, and may be 1 hour, 2 hours, or 4 hours. The upper limit is not particularly limited, and is usually within 24 hours, preferably within 12 hours. The thermalization time of the inside of the glass after reaching the Tg temperature may be about 10 minutes.
 成形用ガラス素材を均熱する場合、例えばガラスの表面の温度はガラス転移点Tgとなっていても、内部の温度までTgとなっているとは限らない。ここで、均熱化が十分であるかどうかの判定は、比重により知ることができる。ガラス転移温度Tgで十分に均熱化されてから冷却して得られるガラスは、Tgで均熱化された状態の保持時間が長くなっても比重はほとんど変化しない。一方で、ガラス転移温度Tgで均熱化される前に、例えばガラス内部がガラス転移温度Tgに達する前に冷却されて得られるガラスでは、ガラス内部がTgで十分に均熱化された後に冷却されて得られるガラスとで、比重に差が生じる。 When the temperature of the glass material for molding is equalized, for example, even if the temperature of the surface of the glass is the glass transition point Tg, it is not always Tg up to the internal temperature. Here, the determination as to whether or not the thermalization is sufficient can be known from the specific gravity. The glass obtained by cooling after being sufficiently homogenized at the glass transition temperature Tg has almost no change in specific gravity even if the holding time in the state of being homogenized with Tg is long. On the other hand, in the case of glass obtained by cooling the inside of the glass before the glass transition temperature Tg is equalized, for example, before the inside of the glass reaches the glass transition temperature Tg, the inside of the glass is cooled after being sufficiently equalized with Tg. There is a difference in specific gravity between the glass and the glass obtained.
 したがって、例えば、ガラス転移温度Tgで均熱化されるように成形用ガラス素材を炉内で加熱して保持時間t(hr)保持した後、冷却して得られるガラスの比重d(t)と、ガラスを炉内で加熱して保持時間t+K(hr)保持した後、冷却して得られるガラスの比重d(t+K)との変化量[d(t)-d(t+K)]の絶対値は、0.002以下であることが好ましい。ここで、Kの値の下限は好ましくは4であり、更に好ましくは8、一層好ましくは12である。 Therefore, for example, the specific gravity d (t 1) of the glass obtained by heating the glass material for molding in a furnace so as to equalize the heat at the glass transition temperature Tg, holding the holding time t 1 (hr), and then cooling the glass material. a), after the glass holding and heated in a furnace time t 1 + K (hr) retention, the specific gravity d (t 1 + K) and of the variation of glass obtained by cooling [d (t 1) -d ( The absolute value of [t 1 + K)] is preferably 0.002 or less. Here, the lower limit of the value of K is preferably 4, more preferably 8, and even more preferably 12.
 上記変化量を満たす場合には、保持時間tでの加熱でガラスの均熱化が十分であると判断できる。この場合、ガラス転移温度Tgで均熱化に要する時間はt以上としてよい。 When satisfying the above variation, it can be determined that the temperature control of the glass is sufficient heat in the holding time t 1. In this case, the time required for thermalization at the glass transition temperature Tg may be t 1 or more.
 ガラス転移温度Tgで均熱化されたガラスを冷却する方法は、均熱後に降温速度-30℃/hrで4時間冷却する限り、特に制限されない。例えば、温度プログラムが可能な徐冷炉などを用いることができる。なお保持温度Tgから降温速度-30℃/hrで4時間冷却しても、ガラスの歪点を下回らない場合は、保持温度Tgから降温速度-30℃/hrで5時間ないし6時間冷却してもよい。 The method of cooling the glass homogenized at the glass transition temperature Tg is not particularly limited as long as it is cooled at a temperature lowering rate of −30 ° C./hr for 4 hours after the soaking. For example, a slow cooling furnace capable of temperature programming can be used. If the glass does not fall below the glass strain point even after cooling from the holding temperature Tg at a temperature lowering rate of -30 ° C / hr for 4 hours, cool from the holding temperature Tg at a temperature lowering rate of -30 ° C / hr for 5 to 6 hours. May be good.
 再加熱時の加熱温度は、通常、ガラスが軟化し変形する温度である。加熱温度として具体的には、低い場合でガラス転移温度Tgより50℃程度高い温度、高い場合でガラス転移温度Tgより200~300℃程度高い温度が想定される。再加熱時の加熱温度が低い場合、すなわち、ガラス転移温度Tgより50℃程度高い温度で加熱する場合には、ガラスの安定性を確保しやすく、結晶の発生や失透を抑制できる。 The heating temperature at the time of reheating is usually the temperature at which the glass softens and deforms. Specifically, it is assumed that the heating temperature is about 50 ° C. higher than the glass transition temperature Tg when it is low, and about 200 to 300 ° C. higher than the glass transition temperature Tg when it is high. When the heating temperature at the time of reheating is low, that is, when the glass is heated at a temperature higher than the glass transition temperature Tg by about 50 ° C., the stability of the glass can be easily ensured, and the generation and devitrification of crystals can be suppressed.
 しかし、再加熱時の加熱温度が低いと、成形時に高い圧力を加える必要がある。その結果、成形されたガラス成形品(例えばレンズやレンズブランク、丸棒、押出成形品など)にクラックが生じたり、ガラスが割れたりする可能性が高まる。そのため、再加熱時の加熱温度が低い場合には、生産の歩留まりが低下しやすく、また、成形可能なガラス成形品の形状が制限されやすい。 However, if the heating temperature during reheating is low, it is necessary to apply high pressure during molding. As a result, there is an increased possibility that the molded glass molded product (for example, a lens, a lens blank, a round bar, an extruded product, etc.) will be cracked or the glass will be cracked. Therefore, when the heating temperature at the time of reheating is low, the production yield tends to decrease, and the shape of the moldable glass molded product tends to be limited.
 一方、再加熱時の加熱温度が高い場合、すなわち、ガラス転移温度Tgより200~300℃程度高い温度で加熱する場合、より短時間で変形でき、成形品の形状の自由度が向上することもあるが、ガラスの安定性が確保しにくく、結晶が生じやすく失透しやすい。これらのことから、本発明のような組成を有するガラスにおいては、成形温度を高めるとより結晶が析出しやすく、その結晶析出を避けて成形温度を従来のガラスよりも低くする必要があるので、クラックや割れ等の変形不良が発生する可能性が高くなる。 On the other hand, when the heating temperature at the time of reheating is high, that is, when the glass is heated at a temperature about 200 to 300 ° C. higher than the glass transition temperature Tg, it can be deformed in a shorter time and the degree of freedom in the shape of the molded product can be improved. However, it is difficult to ensure the stability of the glass, and crystals are likely to form and devitrification is likely to occur. From these facts, in a glass having a composition as in the present invention, when the molding temperature is raised, crystals are more likely to precipitate, and it is necessary to avoid the crystal precipitation and lower the molding temperature as compared with the conventional glass. There is a high possibility that deformation defects such as cracks and cracks will occur.
 第1実施形態に係る成形用ガラス素材において、11mm×11mm×10.5mmのサンプルを、ガラス転移温度Tgより200℃高い温度で5分間熱処理したときの、ガラス1gあたりの結晶の数密度Dは、好ましくは10個/g未満であり、その上限は、9個/g、8個/g、7個/g、6個/g、5個/g、4個/g、3個/g、2個/g、1個/gの順により好ましい。結晶の数は、もっとも好ましくは0個/gである。 In the molding glass material according to the first embodiment, when a sample of 11 mm × 11 mm × 10.5 mm is heat-treated at a temperature 200 ° C. higher than the glass transition temperature Tg for 5 minutes, the number density D of crystals per 1 g of glass is The upper limit is 9 pieces / g, 8 pieces / g, 7 pieces / g, 6 pieces / g, 5 pieces / g, 4 pieces / g, 3 pieces / g, preferably less than 10 pieces / g. It is more preferable in the order of 2 pieces / g and 1 piece / g. The number of crystals is most preferably 0 / g.
 上記数密度Dを求める際の結晶の数は、光学顕微鏡(100倍)で結晶と認められる輝点の数とする。 The number of crystals when determining the number density D is the number of bright spots recognized as crystals by an optical microscope (100 times).
 上記数密度Dは、以下の手順で算出する。 The above number density D is calculated by the following procedure.
[サンプルの作製]
 まず、光学顕微鏡(100倍)による観察で、ガラス内部に確認可能な異物や結晶が無いことを確認する。その後、ガラスを切断、切削しておよそ11mm×11mm×10.5mmの直方体状の試料を得る。この試料の表面は全て、番手♯80~400の砥石により研削された砂摺り面とする。
[Preparation of sample]
First, by observing with an optical microscope (100 times), it is confirmed that there are no identifiable foreign substances or crystals inside the glass. Then, the glass is cut and cut to obtain a rectangular parallelepiped sample having a size of about 11 mm × 11 mm × 10.5 mm. The entire surface of this sample is a sand surface ground by a grindstone with a count of # 80 to 400.
[熱処理炉の均熱]
 ガラス転移温度Tgより200℃高い温度に設定し、炉内温度がTg+200℃に到達後15分以上均熱しておいた、内部空間体積が約25cm×約10cm×約10cmである熱処理炉に入れて加熱する。
[Heat treatment furnace soaking]
The temperature was set to 200 ° C. higher than the glass transition temperature Tg, and the temperature inside the furnace was equalized for 15 minutes or more after reaching Tg + 200 ° C. Heat.
 この際、熱処理炉の制御温度計は内部空間のほぼ中心に設置し、ガラス試料の熱処理時にはガラス試料が制御温度計センサー部から3cm以内に位置するよう設置する。 At this time, the control thermometer of the heat treatment furnace is installed almost in the center of the internal space, and the glass sample is installed so as to be located within 3 cm from the control thermometer sensor unit during the heat treatment of the glass sample.
[受け皿の予熱]
 大きさ約10.5cm×約3cm×約1cmの直方体状の六面体であるアルミナ製のセラミック板を受け皿とする。その受け皿先端に粉末アルミナ等の融着防止剤、またはBN等の固体潤滑剤を0.01~0.3g、好ましくは0.5g~0.15g、より好ましくは0.1g塗布し、その上にガラス試料を載せ、受け皿ごと熱処理炉に入れて加熱する。上記受け皿は試験前までに熱処理炉に入れて15分以上予熱しておく。
[Preheating the saucer]
A ceramic plate made of alumina, which is a rectangular parallelepiped hexahedron having a size of about 10.5 cm × about 3 cm × about 1 cm, is used as a saucer. 0.01 to 0.3 g, preferably 0.5 g to 0.15 g, more preferably 0.1 g of a fusion inhibitor such as powdered alumina or a solid lubricant such as BN is applied to the tip of the saucer, and further. Place the glass sample on the pan and put it in the heat treatment furnace together with the saucer to heat it. The saucer is placed in a heat treatment furnace and preheated for 15 minutes or more before the test.
[ガラス試料の熱処理]
 受け皿をガラス試料投入直前に熱処理炉から取り出し、直ちに当該受け皿上の融着防止剤または固体潤滑剤を塗布した位置にガラス試料を配置し、ガラス試料を受け皿とともに炉内の元の位置に戻す。受け皿を取り出し、元の位置に戻すまでの時間は、受け皿の温度低下を避けるため、好ましくは10秒以内、より好ましくは8秒以内、さらに好ましくは6秒以内に行う。ガラス試料の投入より5分後に上記ガラスを受け皿ごと取り出し、さらに受け皿よりガラス試料を取り出したのち、割れない程度の冷却速度で冷却する。このとき、ガラスの安定性に影響を与えることなく、また、効率よく冷却するために、ガラス試料を、炉より取り出して、即座に(およそ3±1秒後に)にセラミックファイバー等に転げ落とし、試料上面も圧迫しない程度にセラミックファイバー等で覆い、室温まで冷却するとよい。冷却後のガラス試料端部を光学研磨し、光学顕微鏡(100倍)でガラス試料内部を観察する。光学研磨の際には軟化させたガラス試料の好ましくは80%以上、より好ましくは85%以上を被観察体積として残す。ガラス試料内部の結晶(輝点)の数を数え、また光学研磨後の試料の重量を測定して、1gあたりの数に換算する。
[Heat treatment of glass sample]
The saucer is taken out of the heat treatment furnace immediately before the glass sample is charged, the glass sample is immediately placed on the saucer at the position where the anti-fusion agent or the solid lubricant is applied, and the glass sample is returned to the original position in the furnace together with the saucer. The time until the saucer is taken out and returned to the original position is preferably within 10 seconds, more preferably within 8 seconds, and further preferably within 6 seconds in order to avoid a decrease in the temperature of the saucer. Five minutes after the glass sample is put in, the glass is taken out together with the saucer, and the glass sample is taken out from the saucer, and then cooled at a cooling rate that does not break. At this time, in order to cool the glass efficiently without affecting the stability of the glass, the glass sample is taken out from the furnace and immediately (after about 3 ± 1 second) is rolled down to a ceramic fiber or the like. It is advisable to cover the upper surface of the sample with ceramic fiber or the like so as not to press it, and cool it to room temperature. The edge of the glass sample after cooling is optically polished, and the inside of the glass sample is observed with an optical microscope (100 times). At the time of optical polishing, preferably 80% or more, more preferably 85% or more of the softened glass sample is left as an observed volume. The number of crystals (bright spots) inside the glass sample is counted, and the weight of the sample after optical polishing is measured and converted into the number per 1 g.
 第1実施形態に係る成形用ガラス素材において、質量%表示でのTiOの含有量[TiO]とNbの含有量[Nb]とは、好ましくは下記式(7)を満たす。
 {5×[TiO]}/{3×[Nb]}≦3 ・・・(7)
In molding the glass material according to the first embodiment, the content of TiO 2 in weight percentages and the content of [TiO 2] and Nb 2 O 5 [Nb 2 O 5] is preferably represented by the following formula (7) Meet.
{5 × [TiO 2 ]} / {3 × [Nb 2 O 5 ]} ≦ 3 ・ ・ ・ (7)
 上記{5×[TiO]}/{3×[Nb]}の上限は、よりPg,Fを小さくし、かつ、ガラスの安定性および/または高屈折率を実現する目的から、より好ましくは2であり、さらには、1.25、1.1、1.0、0.9、0.8、0.7、0.6、0.5の順により好ましい。他方、特にPg,Fを小さくし、更に青色領域の透過率λτ80を向上させる観点から、上記5×[TiO]}/{3×[Nb]}の上限は、好ましくは0.4であり、さらには0.3、0.2、0.1の順により好ましい。上記5×[TiO]}/{3×[Nb]}は0.0にすることもできる。 The upper limit of {5 × [TiO 2 ]} / {3 × [Nb 2 O 5 ]} is for the purpose of making Pg and F smaller and achieving glass stability and / or high refractive index. It is more preferably 2, and further preferably in the order of 1.25, 1.1, 1.0, 0.9, 0.8, 0.7, 0.6, 0.5. On the other hand, from the viewpoint of reducing Pg and F and further improving the transmittance λτ80 in the blue region, the upper limit of 5 × [TiO 2 ]} / {3 × [Nb 2 O 5 ]} is preferably 0. It is 4, and more preferably 0.3, 0.2, and 0.1 in that order. The above 5 × [TiO 2 ]} / {3 × [Nb 2 O 5 ]} can be 0.0.
 上記{5×[TiO]}/{3×[Nb]}は、成形用ガラス素材におけるTiイオンとNbイオンとの存在比率を表す。Tiイオンが多すぎると、部分分散比Pg,Fが増大するおそれがある。また、熔融ガラスの冷却時に微細な結晶核が生成するおそれがあり、これにより、その後の成形条件によって結晶が成長して光学的な品質が低下するなど、ガラスの生産に支障をきたすおそれがある。したがって、部分分散比Pg,Fの上昇を抑制し、ガラスの結晶化を抑制するために、上記式を満たすことが好ましい。 The above {5 × [TiO 2 ]} / {3 × [Nb 2 O 5 ]} represents the abundance ratio of Ti ions and Nb ions in the glass material for molding. If there are too many Ti ions, the partial dispersion ratios Pg and F may increase. In addition, there is a possibility that fine crystal nuclei may be generated when the molten glass is cooled, which may hinder the production of glass, for example, the crystals may grow and the optical quality may deteriorate depending on the subsequent molding conditions. .. Therefore, it is preferable to satisfy the above formula in order to suppress an increase in the partial dispersion ratios Pg and F and suppress crystallization of glass.
 第1実施形態に係る成形用ガラス素材において、部分分散比Pg,Fは好ましくは下記式(8)を満たし、より好ましくは下記式(9)、さらに好ましくは下記式(10)、特に好ましくは下記式(11)、最も好ましくは下記式(12)を満たす。部分分散比Pg,Fが下記式を満たすことにより、色収差補正に好適な光学ガラスを提供することができる。
 Pg,F≦-0.00286×νd+0.68700 ・・・(8)
 Pg,F≦-0.00286×νd+0.68600 ・・・(9)
 Pg,F≦-0.00286×νd+0.68500 ・・・(10)
 Pg,F≦-0.00286×νd+0.68400 ・・・(11)
 Pg,F≦-0.00286×νd+0.68300 ・・・(12)
In the molding glass material according to the first embodiment, the partial dispersion ratios Pg and F preferably satisfy the following formula (8), more preferably the following formula (9), still more preferably the following formula (10), and particularly preferably. The following formula (11), most preferably the following formula (12), is satisfied. When the partial dispersion ratios Pg and F satisfy the following equations, it is possible to provide an optical glass suitable for chromatic aberration correction.
Pg, F ≦ -0.00286 × νd + 0.68700 ・ ・ ・ (8)
Pg, F ≦ -0.00286 × νd + 0.68600 ・ ・ ・ (9)
Pg, F ≦ -0.00286 × νd + 0.68500 ・ ・ ・ (10)
Pg, F ≦ -0.00286 × νd + 0.68400 ・ ・ ・ (11)
Pg, F ≦ -0.00286 × νd + 0.68300 ・ ・ ・ (12)
 部分分散比Pg,Fは、g線、F線、C線における各屈折率ng、nF、nCを用いて、下式(13)のように表される。
   Pg,F=(ng-nF)/(nF-nC) ・・・(13)
The partial dispersion ratios Pg and F are expressed by the following equation (13) using the refractive indexes ng, nF and nC of the g-line, F-line and C-line.
Pg, F = (ng-nF) / (nF-nC) ... (13)
 部分分散比はPg,Fは、後述する質量比[(LiO+NaO+KO+Cs
)/(SiO+P+B)]、質量比[(LiO+NaO+KO+CsO)/(Nb+TiO+WO+Bi)]、質量比[(SiO+P+B)/(Nb+TiO+WO+Bi)]、質量比[ZrO/(Nb+TiO+WO+Bi)]、質量比[P/(SiO+P+B)]、質量比[Nb/(Nb+TiO+WO+Bi)]を調整することで制御できる。
The partial dispersion ratio is Pg, and F is the mass ratio described later [(Li 2 O + Na 2 O + K 2 O + Cs 2 O).
) / (SiO 2 + P 2 O 5 + B 2 O 3 )], mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )], mass ratio [ (SiO 2 + P 2 O 5 + B 2 O 3 ) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )], mass ratio [ZrO 2 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] , Adjust the mass ratio [P 2 O 5 / (SiO 2 + P 2 O 5 + B 2 O 3 )] and the mass ratio [Nb 2 O 5 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )]. Can be controlled with.
 また、ΔPg,Fはノーマルラインに対するPg,Fの偏差として、式(14)のようにして求められる。
 ΔPg,F=Pg,F-(0.6483-0.001802×νd) ・・・(14)
Further, ΔPg and F are obtained as the deviations of Pg and F with respect to the normal line as in the equation (14).
ΔPg, F = Pg, F- (0.6483-0.001802 × νd) ・ ・ ・ (14)
 第1実施形態に係る成形用ガラス素材は、部分分散比Pg,fが比較的小さい高分散ガラスとすることができる。高分散ガラスにおいて、Pg,fの値を低減させることで、通常のF線とC線に注目した色消し(焦点距離の調整)を行う際に、g線付近の焦点距離のずれ、すなわち短波長域の色収差の発生を抑えやすくなる。また、カメラで撮影した画像を拡大した時のコントラストを改善しやすくなる。さらにはデジタル画像を電子的に認識する際にも、被写体のエッジの認識を容易にできることから、画像エンジンの計算負荷の抑制が期待できる。 The molding glass material according to the first embodiment can be a highly dispersed glass having a relatively small partial dispersion ratios Pg and f. In high-dispersion glass, by reducing the values of Pg and f, when performing achromatication (adjustment of the focal length) focusing on the normal F line and C line, the deviation of the focal length near the g line, that is, short It becomes easier to suppress the occurrence of chromatic aberration in the wavelength range. In addition, it becomes easy to improve the contrast when the image taken by the camera is enlarged. Furthermore, even when the digital image is recognized electronically, the edge of the subject can be easily recognized, so that the calculation load of the image engine can be expected to be suppressed.
 本実施形態に係る成形用ガラス素材は、以下に詳述するガラス組成A、ガラス組成B、またはガラス組成Cを有し得る。 The molding glass material according to the present embodiment may have a glass composition A, a glass composition B, or a glass composition C described in detail below.
(ガラス組成A)
 以下に、本実施形態に係る成形用ガラス素材がガラス組成Aを有する場合の、ガラス成分の含有量・比率、およびガラス特性について説明する。
(Glass composition A)
Hereinafter, the content / ratio of the glass component and the glass characteristics when the molding glass material according to the present embodiment has the glass composition A will be described.
 本実施形態に係る成形用ガラス素材は、ガラス組成のA場合、好ましくは、ガラスのネットワーク形成成分として主にSiOを含有する、ケイ酸塩系ガラスである。SiOの含有量の下限は、好ましくは0%であり、さらには、6%、11%、16%の順に、数値が大きいほどより好ましい。特に、ガラスの屈折率よりも熱的安定性を重視する場合のSiOの含有量の下限は、好ましくは21%であり、24%、26%、または28%とすることもできる。また、SiOの含有量の上限は、好ましくは40%であり、さらには38%、35%、33%の順に、数値が小さいほど好ましく、特にガラスの安定性よりも屈折率を重視する場合のSiOの含有量の上限は、好ましくは30%であり、28%、26%、または25%とすることもできる。 In the case of glass composition A, the molding glass material according to the present embodiment is preferably a silicate-based glass containing mainly SiO 2 as a network-forming component of the glass. The lower limit of the content of SiO 2 is preferably 0%, and more preferably, the larger the value is, the more preferable it is in the order of 6%, 11%, and 16%. In particular, the lower limit of the content of SiO 2 when thermal stability is more important than the refractive index of glass is preferably 21%, and may be 24%, 26%, or 28%. Further, the upper limit of the content of SiO 2 is preferably 40%, and further, the smaller the numerical value is, the more preferable it is in the order of 38%, 35%, and 33%, and particularly when the refractive index is more important than the stability of the glass. The upper limit of the content of SiO 2 in the above is preferably 30%, and may be 28%, 26%, or 25%.
 SiOは、ガラス組成Aにおいて、ガラスのネットワーク形成成分として、ガラスの熱的安定性、化学的耐久性、耐候性を改善し、熔融ガラスの粘度を高め、熔融ガラスを成形しやすくする働きを有する。再加熱時の熱的安定性も高め、結晶の数密度Dを小さくする効果を有する。一方、SiOの含有量が多いと、ガラスの耐失透性が低下する傾向があり、Pg,Fを上昇させる。そのため、したがって、SiOの含有量は上記範囲であることが好ましい。 In the glass composition A, SiO 2 has a function of improving the thermal stability, chemical durability, and weather resistance of the glass, increasing the viscosity of the molten glass, and facilitating the molding of the molten glass as a network forming component of the glass. Have. It also has the effect of increasing the thermal stability during reheating and reducing the crystal number density D. On the other hand, when the content of SiO 2 is large, the devitrification resistance of the glass tends to decrease, and Pg and F increase. Therefore, the content of SiO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材は、ガラス組成Aの場合、好ましくはPを含有する。Pの含有量の下限は、好ましくは0%であり、さらには、0.2%、0.4%、0.6%の順により好ましい。また、Pの含有量の上限は、好ましくは10%であり、さらには、8%、7%、6%、5%、4%の順により好ましい。 In the case of the glass composition A, the molding glass material according to the present embodiment preferably contains P 2 O 5 . The lower limit of the content of P 2 O 5 is preferably 0%, more preferably 0.2%, 0.4%, and 0.6% in that order. The upper limit of the content of P 2 O 5 is preferably 10%, more preferably 8%, 7%, 6%, 5%, and 4%.
 ガラス組成Aにおいて、Pの含有量の下限が上記を満たすことで、再加熱時の熱的安定性も高め、結晶の数密度Dを小さくする効果を有する。また、Pの含有量の
上限が上記を満たすことで、部分分散比Pg,Fの上昇を抑制し、再加熱時の安定性を保持できる。
When the lower limit of the content of P 2 O 5 in the glass composition A satisfies the above, it has the effect of increasing the thermal stability at the time of reheating and reducing the number density D of the crystals. Further, when the upper limit of the content of P 2 O 5 satisfies the above, the increase of the partial dispersion ratios Pg and F can be suppressed, and the stability at the time of reheating can be maintained.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Bの含有量の上限は、好ましくは20%であり、さらには、14%、9%、4%の順により好ましい。Bの含有量は0%であってもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of B 2 O 3 is preferably 20%, more preferably 14%, 9%, and 4% in that order. .. The content of B 2 O 3 may be 0%.
 Bは、ガラス組成Aにおいて、ガラスのネットワーク形成成分であり、ガラスの熔解性を高めるとともに、熱的安定性を改善する働きを有する。一方、Bの含有量が多すぎると、ガラス熔融時にガラス成分の揮発量が増加するおそれがあり、また、高分散化を妨げ、耐失透性が低下する傾向がある。さらに、同量のSiOと置換した場合と比較するとガラスの粘性がより低下するおそれがある。そして、過剰に導入すると再加熱時の熱的安定性を低下させるおそれもある。そのため、Bの含有量は上記範囲であることが好ましい。 B 2 O 3 is a network-forming component of glass in the glass composition A, and has a function of increasing the meltability of the glass and improving the thermal stability. On the other hand, if the content of B 2 O 3 is too large, the volatilization amount of the glass component may increase at the time of glass melting, and the high dispersion is hindered, and the devitrification resistance tends to decrease. Further, the viscosity of the glass may be further lowered as compared with the case where the glass is replaced with the same amount of SiO 2. If it is introduced excessively, the thermal stability at the time of reheating may be lowered. Therefore, the content of B 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Alの含有量の上限は、好ましくは20%であり、さらには、9%、4%、2%、1%の順により好ましい。Alの含有量の下限は、好ましくは0%であり、さらには、0.02%、0.04%、0.08%、0.12%、0.14%、0.16%、0.2%、0.3%の順により好ましい。Alの含有量は0%であってもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Al 2 O 3 is preferably 20%, and further, 9%, 4%, 2%, and 1%. More preferred in order. The lower limit of the content of Al 2 O 3 is preferably 0%, and further 0.02%, 0.04%, 0.08%, 0.12%, 0.14%, 0.16%. , 0.2%, and 0.3% are more preferable. The content of Al 2 O 3 may be 0%.
 Alは、ガラス組成Aにおいて、ガラスの化学的耐久性、耐候性を改善する働きを有するガラス成分であり、ネットワーク形成成分として考えることができる。一方、Alの含有量が多くなると、ガラスの耐失透性が低下する。また、ガラス転移温度Tgが上昇するほか、熔融ガラスを冷却する際の熱的安定性が低下する等の問題が生じやすい。このような問題を回避する観点から、Alの含有量は上記範囲であることが好ましい。また、ガラス融液を熔融ないし搬送する際に耐火物レンガ製の容器および/または樋を使用する場合には、Alの含有量は0.02%以上とすることもできる。 Al 2 O 3 is a glass component having a function of improving the chemical durability and weather resistance of glass in the glass composition A, and can be considered as a network forming component. On the other hand, when the content of Al 2 O 3 increases, the devitrification resistance of the glass decreases. In addition, the glass transition temperature Tg rises, and problems such as a decrease in thermal stability when cooling the molten glass are likely to occur. From the viewpoint of avoiding such a problem, the content of Al 2 O 3 is preferably in the above range. Further, when a container and / or a gutter made of refractory brick is used for melting or transporting the glass melt, the content of Al 2 O 3 can be 0.02% or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SiOおよびPの合計含有量[SiO+P]の下限は、好ましくは5%であり、さらには、11%、16%、21%の順により好ましい。特に、安定性を重視する場合の該合計含有量の下限は、好ましくは24%であり、27%、または30%とすることもできる。また、該合計含有量の上限は、好ましくは40%であり、さらには、38%、36%、34%、33%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the total content [SiO 2 + P 2 O 5 ] of SiO 2 and P 2 O 5 is preferably 5%, and further. It is more preferable in the order of 11%, 16%, and 21%. In particular, the lower limit of the total content when stability is important is preferably 24%, and may be 27% or 30%. The upper limit of the total content is preferably 40%, more preferably 38%, 36%, 34%, and 33%.
 ガラス組成Aにおいて、SiOおよびPの合計含有量[SiO+P]の下限が上記を満たすことで、再加熱時の熱的安定性を高め、結晶の数密度Dを小さくすることができる。また、該合計含有量の上限が上記を満たすことで、屈折率の低下や部分分散比Pg,Fの上昇を抑制し、また、ガラスの熱的安定性を保持できる。 In the glass composition A, when the lower limit of the total content [SiO 2 + P 2 O 5 ] of SiO 2 and P 2 O 5 satisfies the above, the thermal stability at the time of reheating is enhanced, and the number density D of crystals is increased. It can be made smaller. Further, when the upper limit of the total content satisfies the above, the decrease in the refractive index and the increase in the partial dispersion ratios Pg and F can be suppressed, and the thermal stability of the glass can be maintained.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SiO、PおよびBの合計含有量[SiO+P+B]の下限は、好ましくは5%であり、さらには10%、15%、18%、21%、22%、23%の順により好ましい。また、該合計含有量の上限は、好ましくは50%であり、さらには45%、40%、37%、35%、34%、33%の順により好ましい。特に、屈折率を重視する場合の該合計含有量の上限は、好ましくは30%であり、28%、26%、または25%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the total content [SiO 2 + P 2 O 5 + B 2 O 3 ] of SiO 2 , P 2 O 5 and B 2 O 3 is preferable. Is 5%, more preferably 10%, 15%, 18%, 21%, 22%, and 23% in that order. The upper limit of the total content is preferably 50%, more preferably 45%, 40%, 37%, 35%, 34%, and 33%. In particular, the upper limit of the total content when the refractive index is emphasized is preferably 30%, and may be 28%, 26%, or 25%.
 ガラス組成Aにおいて、再加熱時の安定性を保持する観点から、合計含有量[SiO+P+B]は上記範囲であることが好ましい。 In the glass composition A, the total content [SiO 2 + P 2 O 5 + B 2 O 3 ] is preferably in the above range from the viewpoint of maintaining stability during reheating.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SiOの含有量に対するBの含有量の質量比[B/SiO]の上限は、好ましくは0.8
0であり、さらには0.70、0.60、0.50、0.40、0.30、0.20、0.10、0.05、0.03の順により好ましい。また、該質量比の下限は、好ましくは0であり、さらには0.005、0.01、0.015、0.02の順により好ましい。該質量比は0であってもよい。
In molding the glass material according to the present embodiment, when the glass composition A, the upper limit of the mass ratio of the content of B 2 O 3 to the content of SiO 2 [B 2 O 3 / SiO 2] is preferably 0. 8
It is 0, more preferably 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.05, 0.03. The lower limit of the mass ratio is preferably 0, more preferably 0.005, 0.01, 0.015, 0.02. The mass ratio may be zero.
 ガラス組成Aにおいて、ガラスの比重の増大を抑制し、また、ガラスの着色の増大を抑制する観点から、質量比[B/SiO]は上記範囲であることが好ましい。 In the glass composition A, the mass ratio [B 2 O 3 / SiO 2 ] is preferably in the above range from the viewpoint of suppressing an increase in the specific gravity of the glass and suppressing an increase in the coloring of the glass.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SiOおよびPの合計含有量に対するPの含有量の質量比[P/(SiO+P)]の下限は、好ましくは0.00であり、さらには、0.006、0.011、0.016、0.021の順により好ましい。また、該質量比の上限は、好ましくは0.20であり、さらには、0.18、0.16、0.14、0.12、0.11の順により好ましい。 In molding the glass material according to the present embodiment, when the glass composition A, the mass ratio of the content of P 2 O 5 to the total content of SiO 2 and P 2 O 5 [P 2 O 5 / (SiO 2 + P 2 The lower limit of O 5 )] is preferably 0.00, and more preferably 0.006, 0.011, 0.016, 0.021. The upper limit of the mass ratio is preferably 0.20, and more preferably 0.18, 0.16, 0.14, 0.12, and 0.11.
 ガラス組成Aにおいて、質量比[P/(SiO+P)]が低すぎると再加熱時の安定性が悪化するおそれがあり、高すぎると部分分散比Pg,Fが上昇するおそれがある。したがって、該質量比は上記範囲であることが好ましい。 In the glass composition A, if the mass ratio [P 2 O 5 / (SiO 2 + P 2 O 5 )] is too low, the stability at the time of reheating may deteriorate, and if it is too high, the partial dispersion ratios Pg and F increase. There is a risk of Therefore, the mass ratio is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SiO、PおよびBの合計含有量に対するPの含有量の質量比[P/(SiO+P+B)]の下限は、好ましくは0.00であり、さらには、0.006、0.011、0.016、0.021の順により好ましい。また、該質量比の上限は、好ましくは0.20であり、さらには、0.18、0.16、0.14、0.12、0.11の順により好ましい。 In the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the content of P 2 O 5 to the total content of SiO 2 , P 2 O 5 and B 2 O 3 [P 2 O 5 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably 0.00, and more preferably 0.006, 0.011, 0.016, 0.021. The upper limit of the mass ratio is preferably 0.20, and more preferably 0.18, 0.16, 0.14, 0.12, and 0.11.
 ガラス組成Aにおいて、質量比[P/(SiO+P+B)]が高すぎると部分分散比Pg,Fが上昇するおそれがある。したがって、該質量比は上記範囲であることが好ましい。 In the glass composition A, if the mass ratio [P 2 O 5 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is too high, the partial dispersion ratios Pg and F may increase. Therefore, the mass ratio is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SiO、PおよびBの合計含有量に対するSiOの含有量の質量比[SiO/(SiO+P+B)]の下限は、好ましくは0.100であり、さらには、0.200、0.300、0.400、0.500、0.600、0.700、0.800、0.820、0.840、0.860の順により好ましい。また、該質量比の上限は、好ましくは1.000であり、さらには、0.995、0.990、0.985、0.980、0.978の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the mass ratio of the content of SiO 2 to the total content of SiO 2 , P 2 O 5 and B 2 O 3 [SiO 2 / (SiO 2 + P). The lower limit of 2 O 5 + B 2 O 3 )] is preferably 0.100, and further, 0.200, 0.300, 0.400, 0.500, 0.600, 0.700, 0. It is more preferable in the order of 800, 0.820, 0.840, 0.860. The upper limit of the mass ratio is preferably 1.000, and more preferably 0.995, 0.990, 0.985, 0.980, 0.978.
 ガラス組成Aにおいて、再加熱時の安定性を保持する観点から、質量比[SiO/(SiO+P+B)]は上記範囲であることが好ましい。 In the glass composition A, the mass ratio [SiO 2 / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably in the above range from the viewpoint of maintaining stability during reheating.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、ZrOの含有量の下限は、好ましくは0%であり、さらには、2%、3%、4%、5%の順に好ましい。特に屈折率よりも安定性を重視する場合のZrOの含有量の下限は、好ましくは6%であり、または8%とすることもできる。また、ZrOの含有量の上限は、好ましくは15%であり、さらには、14%、13%、12%、11%、10%の順により好ましい。
特に安定性よりも屈折率を重視する場合のZrOの含有量の上限は、好ましくは9%であり、8%、7%、または6%とすることもできる。
In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the content of ZrO 2 is preferably 0%, more preferably 2%, 3%, 4% and 5% in that order. .. In particular, the lower limit of the ZrO 2 content when stability is more important than the refractive index is preferably 6%, or may be 8%. The upper limit of the ZrO 2 content is preferably 15%, more preferably 14%, 13%, 12%, 11%, and 10%.
In particular, when the refractive index is more important than the stability, the upper limit of the content of ZrO 2 is preferably 9%, and may be 8%, 7%, or 6%.
 ガラス組成Aにおいて、ZrOの含有量の下限が上記を満たすことで、高屈性率高分散性かつ高い内部透過率λτ80を両立したガラスを得ることができる。また、ZrOの含有量の上限が上記を満たすことで、部分分散比Pg,Fの上昇を抑制し、光学素子としての欠陥の発生を抑制できるほか、ガラスの熔融性および熱的安定性を保持できる。 When the lower limit of the content of ZrO 2 in the glass composition A satisfies the above, it is possible to obtain a glass having both high bending rate and high dispersibility and high internal transmittance λτ 80. Further, when the upper limit of the ZrO 2 content satisfies the above, it is possible to suppress an increase in the partial dispersion ratios Pg and F, suppress the occurrence of defects as an optical element, and improve the meltability and thermal stability of the glass. Can be retained.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Nbの含有量の下限は、好ましくは1%であり、さらには、11%、21%、26%、31%、34%、36%の順により好ましい。特に安定性よりも屈折率を重視する場合のNbの含有量の下限は、好ましくは39%であり、41%、46%、49%、または50%とすることもできる。また、Nbの含有量の上限は、好ましくは80%であり、さらには、70%、64%、59%、56%、54%の順により好ましい。特に屈折率よりも安定性を重視する場合のNbの含有量の上限は、好ましくは51%であり、47%、44%、43%、または38%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the content of Nb 2 O 5 is preferably 1%, and further, 11%, 21%, 26%, 31%, and so on. It is more preferable in the order of 34% and 36%. The lower limit of the content of Nb 2 O 5 when the refractive index is more important than the stability is preferably 39%, and may be 41%, 46%, 49%, or 50%. The upper limit of the content of Nb 2 O 5 is preferably 80%, and more preferably 70%, 64%, 59%, 56%, and 54%. In particular, when stability is more important than refractive index, the upper limit of the content of Nb 2 O 5 is preferably 51%, and may be 47%, 44%, 43%, or 38%.
 ガラス組成Aにおいて、Nbの含有量の下限が上記を満たすことで、部分分散比Pg,Fの低減された、高屈折率高分散性のガラスを得ることができる。また、Nbは、ガラスの熱的安定性および化学的耐久性を改善するガラス成分でもある。含有量が少ないとPg,Fが上昇するおそれがある一方、過剰に含有するとガラスの熱的安定性が悪化するおそれがある。したがって、Nbの含有量の上限が上記を満たすことで、ガラスの熱的安定性および化学的耐久性を良好に保持し、再加熱時の成形性を向上できる。 When the lower limit of the content of Nb 2 O 5 in the glass composition A satisfies the above, a glass having a reduced partial dispersion ratio Pg and F and a high refractive index and high dispersibility can be obtained. Nb 2 O 5 is also a glass component that improves the thermal stability and chemical durability of glass. If the content is low, Pg and F may increase, while if the content is excessive, the thermal stability of the glass may deteriorate. Therefore, when the upper limit of the content of Nb 2 O 5 satisfies the above, the thermal stability and chemical durability of the glass can be well maintained, and the moldability at the time of reheating can be improved.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、TiOの含有量の下限は、好ましくは0%であり、さらには、1%、2%、3%、4%の順により好ましい。また、TiOの含有量の上限は、好ましくは20%であり、さらには、15%、11%、8%、6%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the TiO 2 content is preferably 0%, and further, in the order of 1%, 2%, 3%, and 4%. preferable. The upper limit of the TiO 2 content is preferably 20%, more preferably 15%, 11%, 8%, and 6%.
 TiOは、ガラス組成Aにおいて、高屈折率かつ高分散化に寄与する成分であり、Nbと共存することによって、高屈折率を維持しながらガラス安定性を改善し、再加熱時の安定性を向上させる。一方で、TiOを過剰に導入すると、部分分散比Pg,Fが上昇し、またガラスの短波長域の透過率が低下するおそれがある。また、ガラスの屈伏点よりも低い温度範囲において結晶が生成することがあり、ガラスの生産性に支障をきたすおそれがある。したがって、TiOの含有量は上記範囲であることが好ましい。 TiO 2 is a component that contributes to high refractive index and high dispersion in the glass composition A, and by coexisting with Nb 2 O 5 , it improves glass stability while maintaining high refractive index, and during reheating. Improves stability. On the other hand, if TiO 2 is excessively introduced, the partial dispersion ratios Pg and F may increase, and the transmittance of the glass in the short wavelength region may decrease. In addition, crystals may be formed in a temperature range lower than the yield point of the glass, which may hinder the productivity of the glass. Therefore, the content of TiO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、NbおよびTiOの合計含有量[Nb+TiO]の下限は、好ましくは10%であり、さらには、20%、30%、35%、38%、39%、40%、41%の順により好ましい。特に安定性よりも屈折率を重視する場合の該合計含有量の下限は、好ましくは45%であり、48%、51%、53%、または55%とすることもできる。また、該合計含有量の上限は、好ましくは80%であり、さらには、75%、70%、65%、62%、59%、56%の順により好ましい。特に屈折率よりも安定性を重視する場合の該合計含有量の上限は、好ましくは53%であり、50%、47%、44%、または43%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the total content of Nb 2 O 5 and TiO 2 [Nb 2 O 5 + TiO 2 ] is preferably 10%, and further. 20%, 30%, 35%, 38%, 39%, 40% and 41% are more preferable in this order. The lower limit of the total content is preferably 45%, and may be 48%, 51%, 53%, or 55%, particularly when the refractive index is more important than stability. The upper limit of the total content is preferably 80%, and more preferably 75%, 70%, 65%, 62%, 59%, and 56%. In particular, when stability is more important than refractive index, the upper limit of the total content is preferably 53%, and may be 50%, 47%, 44%, or 43%.
 ガラス組成Aにおいて、高屈折率を維持しながらガラス安定性を改善し、再加熱時の安定性を向上させる観点から、合計含有量[Nb+TiO]は上記範囲であることが好ましい。 In the glass composition A, the total content [Nb 2 O 5 + TiO 2 ] is preferably in the above range from the viewpoint of improving the glass stability while maintaining a high refractive index and improving the stability at the time of reheating. ..
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Nbの含有量に対するTiOの含有量の質量比[TiO/Nb]の上限は、好ましくは0.50であり、さらには0.40、0.30、0.20、0.18、0.16の順により好ましい。該質量比の下限は、好ましくは0であり、さらには0.02、0.04、0.06、0.08、0.10の順により好ましい。該質量比は0であってもよい。 In molding the glass material according to the present embodiment, when the glass composition A, the upper limit of the mass ratio of the content of TiO 2 [TiO 2 / Nb 2 O 5] with respect to the content of Nb 2 O 5 is preferably 0. It is 50, more preferably 0.40, 0.30, 0.20, 0.18, 0.16 in that order. The lower limit of the mass ratio is preferably 0, more preferably 0.02, 0.04, 0.06, 0.08, 0.10. The mass ratio may be zero.
 ガラス組成Aにおいて、部分分散比Pg,Fの上昇を抑制し、λτ80を高める観点から、質量比[TiO/Nb]は上記範囲であることが好ましい。 In the glass composition A, the mass ratio [TiO 2 / Nb 2 O 5 ] is preferably in the above range from the viewpoint of suppressing an increase in the partial dispersion ratios Pg and F and increasing λτ80.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Nbの含有量に対するPの含有量の質量比[P/Nb]の下限は、好ましくは0.000であり、さらには、0.005、0.010、0.015、0.020の順により好ましい。また、該質量比の上限は、好ましくは0.200であり、さらには、0.150、0.100、0.090、0.080の順により好ましい。 In molding the glass material according to the present embodiment, the lower limit in the case of glass composition A, the mass ratio of the content of P 2 O 5 to the content of Nb 2 O 5 [P 2 O 5 / Nb 2 O 5] , the It is preferably 0.000, and more preferably 0.005, 0.010, 0.015, and 0.020. The upper limit of the mass ratio is preferably 0.200, and more preferably 0.150, 0.100, 0.090, and 0.080.
 ガラス組成Aにおいて、部分分散比Pg,Fの上昇を抑制させる観点から、質量比[P/Nb]は上記範囲であることが好ましい。 In the glass composition A, the mass ratio [P 2 O 5 / Nb 2 O 5 ] is preferably in the above range from the viewpoint of suppressing an increase in the partial dispersion ratios Pg and F.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、NbおよびTiOの合計含有量に対するPの含有量の質量比[P/(Nb+TiO)]の下限は、好ましくは0.000であり、さらには、0.005、0.010、0.015、0.018の順により好ましい。また、該質量比の上限は、好ましくは0.200であり、さらには、0.150、0.100、0.090、0.080の順により好ましい。 In the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the content of P 2 O 5 to the total content of Nb 2 O 5 and TiO 2 [P 2 O 5 / (Nb 2 O 5) The lower limit of + TiO 2 )] is preferably 0.000, and more preferably 0.005, 0.010, 0.015, and 0.018. The upper limit of the mass ratio is preferably 0.200, and more preferably 0.150, 0.100, 0.090, and 0.080.
 ガラス組成Aにおいて、所望の高分散性を得る観点から、質量比[P/(Nb+TiO)]は上記範囲であることが好ましい。 In the glass composition A, the mass ratio [P 2 O 5 / (Nb 2 O 5 + TiO 2 )] is preferably in the above range from the viewpoint of obtaining the desired high dispersibility.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、WOの含有量の上限は、好ましくは20%であり、さらには、17%、14%、11%、8%、6%、4%、3%、2%、1%、0.5%、0.2%の順により好ましい。また、WOの含有量の下限は、好ましくは0%である。WOの含有量は0%であってもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of WO 3 is preferably 20%, and further, 17%, 14%, 11%, 8%, 6%. 4%, 3%, 2%, 1%, 0.5% and 0.2% are more preferable. The lower limit of the WO 3 content is preferably 0%. The content of WO 3 may be 0%.
 WOは、ガラス組成Aにおいて、再加熱時の安定性を向上させる成分である。一方、WOは、部分分散比Pg,Fを上昇させる。また、ガラスの着色の原因となりやすく、λτ80を低下させる。したがって、WOの含有量は上記範囲であることが好ましい。 WO 3 is a component in the glass composition A that improves stability during reheating. On the other hand, WO 3 increases the partial dispersion ratios Pg and F. In addition, it tends to cause coloring of glass and lowers λτ80. Therefore, the content of WO 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Biの含有量の上限は、好ましくは20%であり、さらには、17%、14%、11%、8%、6%、4%、3%、2%、1%、0.5%、0.2%の順により好ましい。また、Biの含有量の下限は、好ましくは0%である。Biの含有量は0%であってもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Bi 2 O 3 is preferably 20%, and further, 17%, 14%, 11%, 8%, and so on. 6%, 4%, 3%, 2%, 1%, 0.5%, 0.2% are more preferable. The lower limit of the Bi 2 O 3 content is preferably 0%. The content of Bi 2 O 3 may be 0%.
 Biは、ガラス組成Aにおいて、適量を含有させることによりガラスの熱的安定性を改善する働きを有する。一方、Biの含有量が多すぎると、部分分散比Pg,Fが上昇する。さらに、ガラスの着色が増大し、λτ80が低下するおそれがある。したがって、Biの含有量は上記範囲であることが好ましい。 Bi 2 O 3 has a function of improving the thermal stability of glass by containing an appropriate amount in the glass composition A. On the other hand, if the content of Bi 2 O 3 is too large, the partial dispersion ratios Pg and F increase. Further, the coloring of the glass may increase and λτ80 may decrease. Therefore, the content of Bi 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Nb、TiO、WOおよびBiの合計含有量[Nb+TiO+WO+Bi]の上限は、好ましくは80%であり、さらには、75%、70%、65%、62%、59%、56%の順により好ましい。特に屈折率よりも安定性を重視する場合の該合計含有量の上限は、好ましくは53%であり、50%、47%、44%、または43%とすることもできる。また、該合計含有量の下限は、好ましくは10%であり、さらには、20%、30%、35%、38%、39%、40%、41%の順により好ましい。特に安定性よりも屈折率を重視する場合の該合計含有量の下限は、好ましくは45%であり、48%、51%、53%、または55%とすることもできる。 In the case of the glass composition A in the glass material for molding according to the present embodiment, the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 [Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 ] The upper limit of is preferably 80%, and more preferably 75%, 70%, 65%, 62%, 59%, and 56%. In particular, when stability is more important than refractive index, the upper limit of the total content is preferably 53%, and may be 50%, 47%, 44%, or 43%. The lower limit of the total content is preferably 10%, more preferably 20%, 30%, 35%, 38%, 39%, 40% and 41%. The lower limit of the total content is preferably 45%, and may be 48%, 51%, 53%, or 55%, particularly when the refractive index is more important than stability.
 ガラス組成Aにおいて、TiO、WOおよびBiは、Nbとともに、高屈折率化、高分散化に寄与する成分である。したがって、合計含有量[Nb+TiO+WO+Bi]は上記範囲であることが好ましい。 In the glass composition A, TiO 2 , WO 3 and Bi 2 O 3 are components that contribute to high refractive index and high dispersion together with Nb 2 O 5. Therefore, the total content [Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 ] is preferably in the above range.
 また、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Nb、TiO、WOおよびBiの合計含有量に対するNbの含有量の質量比[Nb/(Nb+TiO+WO+Bi)]の上限は、ガラスの熱的安定性を保持し、ガラスのλτ80を高め、かつ再加熱時の安定性を向上する観点から、好ましくは1であり、さらには0.98、0.96、0.94、0.92の順により好ましい。該質量比の下限は、好ましくは0.1であり、さらには0.2、0.3、0.4、0.5、0.6、0.7、0.8の順により好ましい。 Further, in the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the content of Nb 2 O 5 to the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 [ The upper limit of Nb 2 O 5 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] maintains the thermal stability of the glass, increases the λτ80 of the glass, and improves the stability during reheating. From the viewpoint, it is preferably 1, and more preferably 0.98, 0.96, 0.94, and 0.92. The lower limit of the mass ratio is preferably 0.1, and more preferably 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 in that order.
 さらに、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Nb、TiO、WOおよびBiの合計含有量に対するZrOの含有量の質量比[ZrO/(Nb+TiO+WO+Bi)]の上限は、ガラスの熱的安定性を保持する観点から、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.25の順により好ましい。また、質量比[ZrO/(Nb+TiO+WO+Bi)]の下限は、ガラスのλτ80を高める観点から、好ましくは001であり、さらには0.03、0.05、0.08、0.09、0.10、0.11の順により好ましい。なお、ガラスの高分散性を維持する観点からは、質量比[ZrO/(Nb+TiO+WO+Bi)]の上限を0.02、0.01、または0.00とすることもできる。 Further, in the molding glass material according to the present embodiment, in the case of the glass composition A, the mass ratio of the content of ZrO 2 to the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 [ZrO 2]. / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is preferably 1 from the viewpoint of maintaining the thermal stability of the glass, and further 0.9, 0.8, 0. It is more preferable in the order of 7, 0.6, 0.5, 0.4, 0.3, 0.25. Further, the lower limit of the mass ratio [ZrO 2 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is preferably 001 from the viewpoint of increasing λτ80 of the glass, and further 0.03, 0.05. , 0.08, 0.09, 0.10, 0.11 in that order. From the viewpoint of maintaining high dispersibility of glass, the upper limit of the mass ratio [ZrO 2 / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is 0.02, 0.01, or 0.00. It can also be.
 そして、本実施形態に係るガラスにおいて、ガラス組成Aの場合、Nb、TiO、WOおよびBiの合計含有量に対するSiO、PおよびBの合計含有量の質量比[(SiO+P+B)/(Nb+TiO+WO+Bi)]の上限は、好ましくは5であり、さらには4、3、2、1.5、1.3、1.1、1.0、0.9、0.8の順により好ましい。特に屈折率を重視する場合の該質量比の上限は、好ましくは0.7であり、0.6、0.5、または0.45とすることもできる。また、該質量比の下限は、好ましくは0.013であり、さらには0.10、0.20、0.30、0.35、0.40の順により好ましい。特に安定性を重視する場合該質量比の下限は、好ましくは0.50であり、0.60、0.70、または0.75とすることもできる。 Then, in the case of the glass composition A in the glass according to the present embodiment, the total of SiO 2 , P 2 O 5 and B 2 O 3 with respect to the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3. The upper limit of the mass ratio of the content [(SiO 2 + P 2 O 5 + B 2 O 3 ) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is preferably 5, and further 4, 3, It is more preferable in the order of 2, 1.5, 1.3, 1.1, 1.0, 0.9 and 0.8. The upper limit of the mass ratio when the refractive index is particularly important is preferably 0.7, and may be 0.6, 0.5, or 0.45. The lower limit of the mass ratio is preferably 0.013, more preferably 0.10, 0.20, 0.30, 0.35, 0.40. When stability is particularly important, the lower limit of the mass ratio is preferably 0.50, and may be 0.60, 0.70, or 0.75.
 ガラス組成Aにおいて、質量比[(SiO+P+B)/(Nb+TiO+WO+Bi)]を上記範囲とすることで、ガラスの屈折率を調整し、熱的安定性を保持できる。 In the glass composition A, the refractive index of the glass is adjusted by setting the mass ratio [(SiO 2 + P 2 O 5 + B 2 O 3 ) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3)] in the above range. And can maintain thermal stability.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Taの含有量の上限は、好ましくは20%であり、さらには15%、10%、8%,6%、4%、2%、1%の順により好ましい。また、Taの含有量の下限は、好ましくは0%である。Taの含有量は0%であってもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Ta 2 O 5 is preferably 20%, and further 15%, 10%, 8%, 6%, 4 %, 2%, and 1% are more preferable. The lower limit of the content of Ta 2 O 5 is preferably 0%. The content of Ta 2 O 5 may be 0%.
 Taは、ガラス組成Aにおいて、ガラスの熱的安定性を改善する働きを有するガラス成分である。一方、Taの含有量が多くなると、ガラスの熱的安定性が低下し、ガラスを熔融するときに、ガラス原料の熔け残りが生じやすくなる。また、高価な成分であり、ガラスの製造コストが増大するおそれがある。そのため、Taの含有量は上記範囲であることが好ましい。 Ta 2 O 5 is a glass component having a function of improving the thermal stability of glass in the glass composition A. On the other hand, when the content of Ta 2 O 5 is increased, the thermal stability of the glass is lowered, and when the glass is melted, unmelted glass raw material is likely to occur. In addition, it is an expensive component and may increase the manufacturing cost of glass. Therefore, the content of Ta 2 O 5 is preferably in the above range.
 また、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Ta、Nb、TiO、WOおよびBiの合計含有量に対するTaの含有量の質量比[Ta/(Ta+Nb+TiO+WO+Bi)]の上限は、好ましくは0.9であり、さらには0.7、0.5、0.3、0.2、0.1、0.05の順により好ましい。該質量比の下限は、好ましくは0.000である。 Further, in the molding glass material according to the present embodiment, in the case of the glass composition A, the content of Ta 2 O 5 with respect to the total content of Ta 2 O 5 , Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 The upper limit of the mass ratio of the amount [Ta 2 O 5 / (Ta 2 O 5 + Nb 2 O 5 + TIO 2 + WO 3 + Bi 2 O 3 )] is preferably 0.9, and further 0.7, 0.5. , 0.3, 0.2, 0.1, 0.05 in that order. The lower limit of the mass ratio is preferably 0.000.
 ガラス組成Aにおいて、比重の増加を抑制し、またガラスの製造コストの増大を抑制する観点から、質量比[Ta/(Ta+Nb+TiO+WO+Bi)]は上記範囲であることが好ましい。 In the glass composition A, from the viewpoint of suppressing the increase in the specific gravity and the increase in the manufacturing cost of the glass, the mass ratio [Ta 2 O 5 / (Ta 2 O 5 + Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3) )] Is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiOの含有量の上限は、好ましくは10%であり、さらには9%、8%、7%、6%の順により好ましい。LiOの含有量の下限は、好ましくは0%であり、さらには1%、2%、3%、3.5%、4%、4.5%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the Li 2 O content is preferably 10%, and further in the order of 9%, 8%, 7%, and 6%. preferable. The lower limit of the Li 2 O content is preferably 0%, more preferably 1%, 2%, 3%, 3.5%, 4%, and 4.5%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、NaOの含有量の上限は、好ましくは30%であり、さらには25%、20%、18%、16%、14、12%の順により好ましい。NaOの含有量の下限は、好ましくは0%であり、さらには1%、2%、3%、3.5%、4%、4.5%、5%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the Na 2 O content is preferably 30%, and further 25%, 20%, 18%, 16%, 14, More preferred in the order of 12%. The lower limit of the Na 2 O content is preferably 0%, more preferably 1%, 2%, 3%, 3.5%, 4%, 4.5%, and 5%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、KOの含有量の上限は、好ましくは30%であり、さらには20%、15%、10%、7%、4%の順により好ましい。KOの含有量の下限は、好ましくは0%であり、さらには0.1%、0.2%、0.3%、0.4%、0.5%の順により好ましい。 In molding the glass material according to the present embodiment, when the glass composition A, the upper limit of the content of K 2 O, preferably 30%, even 20%, 15%, 10%, 7%, 4% It is more preferable in the order of. The lower limit of the K 2 O content is preferably 0%, more preferably 0.1%, 0.2%, 0.3%, 0.4%, 0.5% in that order.
 ガラス組成Aにおいて、LiO、NaOおよびKOは、いずれも液相温度を下げ、ガラスの熱的安定性を改善する働きを有するが、これらの含有量が多くなると、化学的耐久性、耐候性が低下する。そのため、LiO、NaOおよびKOの各含有量は、それぞれ上記範囲であることが好ましい。 In the glass composition A, Li 2 O, Na 2 O and K 2 O all have a function of lowering the liquidus temperature and improving the thermal stability of the glass, but when their contents are increased, they are chemically treated. Durability and weather resistance are reduced. Therefore, the contents of Li 2 O, Na 2 O, and K 2 O are preferably in the above ranges.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaOおよびKOの合計含有量[LiO+NaO+KO]の下限は、好ましくは1%であり、さらには5%、8%、10%、12%、13%、14%の順により好ましい。また、該合計含有量の上限は、好ましくは40%であり、さらには35%、30%、25%,22%、20%、19%、18%、17%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably 1%. Yes, more preferably 5%, 8%, 10%, 12%, 13%, 14% in that order. The upper limit of the total content is preferably 40%, more preferably 35%, 30%, 25%, 22%, 20%, 19%, 18% and 17%.
 ガラス組成Aにおいて、合計含有量[LiO+NaO+KO]の下限が上記を満たすことで、ガラスの熔融性を改善し、液相温度の上昇を抑制できる。また、該合計含有量の上限が上記を満たすことで、ガラスの粘性を高めてガラス融液の結晶化の速度を小さくするとともに、再加熱時の安定性を向上できる。 When the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] in the glass composition A satisfies the above, the meltability of the glass can be improved and an increase in the liquidus temperature can be suppressed. Further, when the upper limit of the total content satisfies the above, the viscosity of the glass can be increased, the crystallization rate of the glass melt can be reduced, and the stability at the time of reheating can be improved.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、NbおよびTiOの合計含有量に対するLiO、NaOおよびKOの合計含有量の質量比[(LiO+NaO+KO)/(Nb+TiO)]の下限は、好ましくは0.10であり、さらには0.15、0.18、0.21、0.23、0.25の順により好ましい。また、該質量比の上限は、好ましくは0.70であり、さらには0.65、0.60、0.55、0.50、0.45の順により好ましい。 In the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the total contents of Li 2 O, Na 2 O and K 2 O to the total contents of Nb 2 O 5 and TiO 2 [(Li). The lower limit of 2 O + Na 2 O + K 2 O) / (Nb 2 O 5 + TiO 2 )] is preferably 0.10, and further 0.15, 0.18, 0.21, 0.23, 0.25. It is more preferable in the order of. The upper limit of the mass ratio is preferably 0.70, and more preferably 0.65, 0.60, 0.55, 0.50, 0.45.
 ガラス組成Aにおいて、ガラスの熔解特性や熱的安定性を維持しながら所望の光学恒数を得る観点から、質量比[(LiO+NaO+KO)/(Nb+TiO)]は上記範囲であることが好ましい。 In the glass composition A, from the viewpoint of obtaining a desired optical constant while maintaining the melting characteristics and thermal stability of the glass, the mass ratio [(Li 2 O + Na 2 O + K 2 O) / (Nb 2 O 5 + TiO 2 )]. Is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaO、KOおよびNbの合計含有量に対するPの含有量の質量比[P/(LiO+NaO+KO+Nb)]の上限は、好ましくは0.500であり、さらには0.400、0.300、0.200、0.100、0.080、0.070、0.060の順により好ましい。また、該質量比の下限は、好ましくは0であり、さらには0.005、0.010、0.011、0.012、0.013、0.014の順により好ましい。 In the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the content of P 2 O 5 to the total content of Li 2 O, Na 2 O, K 2 O and Nb 2 O 5 [P The upper limit of 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Nb 2 O 5 )] is preferably 0.500, and further 0.400, 0.300, 0.200, 0.100, 0.080. , 0.070, 0.060 are more preferable. The lower limit of the mass ratio is preferably 0, and more preferably 0.005, 0.010, 0.011, 0.012, 0.013, 0.014.
 ガラス組成Aにおいて、ガラスを安定化させ、かつ部分分散比Pg,Fの上昇を抑制する観点から、質量比[P/(LiO+NaO+KO+Nb)]は上記範囲であることが好ましい。 In the glass composition A, the mass ratio [P 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Nb 2 O 5 )] is in the above range from the viewpoint of stabilizing the glass and suppressing an increase in the partial dispersion ratios Pg and F. Is preferable.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、CsOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%,3%、2%、1%の順により好ましい。CsOの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Cs 2 O is preferably 10%, and further 8%, 6%, 4%, 3%, 2%. It is more preferable in the order of 1%. The lower limit of the content of Cs 2 O is preferably 0%.
 CsOは、ガラス組成Aにおいて、ガラスの熱的安定性を改善する働きを有するが、これらの含有量が多くなると、化学的耐久性、耐候性が低下する。そのため、CsOの含有量は、上記範囲であることが好ましい。 Cs 2 O has a function of improving the thermal stability of the glass in the glass composition A, but when the content thereof is increased, the chemical durability and the weather resistance are lowered. Therefore, the content of Cs 2 O is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaO、KOおよびCsOの合計含有量[LiO+NaO+KO+CsO]の下限は、好ましくは1%であり、さらには5%、8%、10%、12%、13%、14%の順により好ましい。また、該合計含有量の上限は、好ましくは40%であり、さらには35%、30%、25%,22%、20%、19%、18%、17%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the total content [Li 2 O + Na 2 O + K 2 O + Cs 2 O] of Li 2 O, Na 2 O, K 2 O and Cs 2 O is , Preferably 1%, and more preferably 5%, 8%, 10%, 12%, 13%, and 14%. The upper limit of the total content is preferably 40%, more preferably 35%, 30%, 25%, 22%, 20%, 19%, 18% and 17%.
 ガラス組成Aにおいて、再加熱時の安定性を保持する観点から、合計含有量[LiO+NaO+KO+CsO]は上記範囲であることが好ましい。 In the glass composition A, the total content [Li 2 O + Na 2 O + K 2 O + Cs 2 O] is preferably in the above range from the viewpoint of maintaining stability during reheating.
 また、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaO、KO、およびCsOの合計含有量に対するLiOの含有量の質量比[LiO/(LiO+NaO+KO+CsO)]の上限は、液相温度の上昇を抑制し、耐候性の低下を抑制する観点から、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.45、0.4の順により好ましい。また、該質量比の下限は、好ましくは0であり、さらには0.1、0.2、0.25、0.29、0.31、0.33の順により好ましい。 Further, in the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the content of Li 2 O to the total content of Li 2 O, Na 2 O, K 2 O, and Cs 2 O [ The upper limit of Li 2 O / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 1 from the viewpoint of suppressing an increase in the liquidus temperature and suppressing a decrease in weather resistance, and further 0.9. , 0.8, 0.7, 0.6, 0.5, 0.45, 0.4 in that order. The lower limit of the mass ratio is preferably 0, more preferably 0.1, 0.2, 0.25, 0.29, 0.31 and 0.33.
 さらに、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaO、KO、およびCsOの合計含有量に対するNaOの含有量の質量比[NaO/(LiO+NaO+KO+CsO)]の上限は、液相温度の上昇を抑制し、耐候性の低下を抑制する観点から、好ましくは1であり、さらには0.95、0.9、0.85、0.80、0.75、0.70、0.66の順により好ましい。また、該質量比の下限は、好ましくは0であり、さらには0.1、0.2、0.25、0.29、0.31、0.33、0.34の順により好ましい。 Further, in the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the content of Na 2 O to the total content of Li 2 O, Na 2 O, K 2 O, and Cs 2 O [ The upper limit of Na 2 O / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 1 from the viewpoint of suppressing an increase in the liquidus temperature and suppressing a decrease in weather resistance, and further 0.95. , 0.9, 0.85, 0.80, 0.75, 0.70, 0.66 in that order. The lower limit of the mass ratio is preferably 0, and more preferably 0.1, 0.2, 0.25, 0.29, 0.31, 0.33, 0.34.
 そして、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaO、KO、およびCsOの合計含有量に対するKOの含有量の質量比[KO/(LiO+NaO+KO+CsO)]上限は、液相温度の上昇を抑制し、耐候性の低下を抑制する観点から、好ましくは1であり、さらには0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.28、0.27の順により好ましい。該質量比の下限は、好ましくは0であり、さらには0.1、0.15、0.20、0.22、0.24、0.25の順により好ましい。 Then, in the case of the glass composition A in the glass material for molding according to the present embodiment, the mass ratio of the content of K 2 O to the total content of Li 2 O, Na 2 O, K 2 O, and Cs 2 O [ The upper limit of K 2 O / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 1 from the viewpoint of suppressing an increase in the liquidus temperature and suppressing a decrease in weather resistance, and further 0.9. The order of 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.28, 0.27 is more preferable. The lower limit of the mass ratio is preferably 0, more preferably 0.1, 0.15, 0.20, 0.22, 0.24, 0.25.
 さらに、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaO、KO、CsO、Nb、TiO、WOおよびBiの合計含有量に対するPの含有量の質量比[P/(LiO+NaO+KO+CsO+Nb+TiO+WO+Bi)]の上限は、好ましくは1であり、さらには0.5、0.3、0.1、0.08、0.07、0.06の順により好ましい。また、該質量比の下限は、好ましくは0であり、さらには0.005、0.008、0.011、0.012の順により好ましい。 Further, in the case of the glass composition A in the molding glass material according to the present embodiment, in the case of the glass composition A, Li 2 O, Na 2 O, K 2 O, Cs 2 O, Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 The upper limit of the mass ratio of the content of P 2 O 5 to the total content of [P 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Cs 2 O + Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is preferable. It is 1, and more preferably 0.5, 0.3, 0.1, 0.08, 0.07, 0.06 in that order. The lower limit of the mass ratio is preferably 0, more preferably 0.005, 0.008, 0.011 and 0.012.
 ガラス組成Aにおいて、ガラス成分としてLiO、NaO、KO、CsO、Nb、TiO、WOおよびBiを適宜導入することにより、所望のアッベ数νdおよび部分分散比Pg,Fを得ることができる。しかし、これら成分をケイ酸塩系ガラスに導入すると再加熱時の安定性が悪化するおそれがある。一方、Pは再加熱時の安定性を向上させる成分である。したがって、質量比[P/(LiO+NaO+KO+CsO+Nb+TiO+WO+Bi)]が高すぎると、ガラスの安定性が悪化し、部分分散比Pg,Fが上昇するおそれがあり、また、低すぎても、再加熱時の安定性が悪化するおそれがある。よって、該質量比は上記範囲であることが好ましい。 In the glass composition A, a desired Abbe number is obtained by appropriately introducing Li 2 O, Na 2 O, K 2 O, Cs 2 O, Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 as glass components. νd and partial dispersion ratios Pg and F can be obtained. However, if these components are introduced into silicate-based glass, the stability during reheating may deteriorate. On the other hand, P 2 O 5 is a component that improves stability during reheating. Therefore, if the mass ratio [P 2 O 5 / (Li 2 O + Na 2 O + K 2 O + Cs 2 O + Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is too high, the stability of the glass deteriorates and the partial dispersion ratio Pg , F may increase, and if it is too low, the stability during reheating may deteriorate. Therefore, the mass ratio is preferably in the above range.
 そして、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SiO、PおよびBの合計含有量に対するLiO、NaO、KOおよびCsOの合計含有量の質量比[(LiO+NaO+KO+CsO)/(SiO+P+B)]の上限は、好ましくは5であり、さらには4、3、2、1.5、1、0.9、0.8、0.7、0.6の順により好ましい。また、該質量比の下限は、好ましくは0.02であり、さらには0.1、0.2、0.3、0.4、0.45の順により好ましい。 Then, in the case of the glass composition A in the glass material for molding according to the present embodiment, Li 2 O, Na 2 O, K 2 O and Cs 2 with respect to the total content of SiO 2 , P 2 O 5 and B 2 O 3 The upper limit of the mass ratio of the total content of O [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably 5, and further 4, 3, It is more preferable in the order of 2, 1.5, 1, 0.9, 0.8, 0.7, 0.6. The lower limit of the mass ratio is preferably 0.02, and more preferably 0.1, 0.2, 0.3, 0.4, 0.45.
 ガラス組成Aにおいて、質量比[(LiO+NaO+KO+CsO)/(SiO+P+B)]が低すぎると、ガラス転移点Tgが上昇するほか、熔解性が悪化し、部分分散比Pg,Fが上昇するおそれがある。また、高すぎると、ガラスの熔融時の粘性が低下し、融液の熱的安定性が低下するほか、再加熱時の安定性が悪化するおそれがある。 In the glass composition A, if the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (SiO 2 + P 2 O 5 + B 2 O 3 )] is too low, the glass transition point Tg increases and the meltability becomes poor. It may worsen and the partial dispersion ratios Pg and F may increase. On the other hand, if it is too high, the viscosity at the time of melting the glass is lowered, the thermal stability of the melt is lowered, and the stability at the time of reheating may be deteriorated.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Nb、TiO、WOおよびBiの合計含有量に対するLiO、NaO、KOおよびCsOの合計含有量の質量比[(LiO+NaO+KO+CsO)/(Nb+TiO+WO+Bi)]の上限は、好ましくは4であり、さらには3,2,1.5、1、0.9、0.8、0.7、0.6、0.5の順により好ましい。また、該質量比の下限は、好ましくは0.015であり、さらには0.100、0.200、0.300の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition A, Li 2 O, Na 2 O, K 2 O and Cs with respect to the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 the upper limit of the total content of the mass ratio of 2 O [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3)] is preferably 4, more 3 , 2, 1.5, 1, 0.9, 0.8, 0.7, 0.6, 0.5 are more preferable. The lower limit of the mass ratio is preferably 0.015, more preferably 0.100, 0.200, and 0.300 in that order.
 ガラス組成Aにおいて、質量比[(LiO+NaO+KO+CsO)/(Nb+TiO+WO+Bi)]が低すぎると、部分分散比Pg,Fが上昇し、透過率が悪化するおそれがある。また、高すぎると、アッベ数が大きくなり、屈折率も低下するほか、再加熱時の安定性が悪化するおそれがある。 In the glass composition A, if the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is too low, the partial dispersion ratios Pg and F increase. The transmittance may deteriorate. On the other hand, if it is too high, the Abbe number becomes large, the refractive index is lowered, and the stability at the time of reheating may be deteriorated.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、MgOの含有量の上限は、好ましくは20%であり、さらには、14%、9%、4%、2%、1%の順により好ましい。上限は0%であってもよい。また、MgOの含有量の下限は、好ましくは0%である。特に、ガラスの比抵抗を高めて熔解効率を向上させる場合のMgOの含有量の下限は、好ましくは1%であり、2%、4%、または6%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the MgO content is preferably 20%, and further, 14%, 9%, 4%, 2% and 1%. More preferred in order. The upper limit may be 0%. The lower limit of the MgO content is preferably 0%. In particular, the lower limit of the MgO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, or 6%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、CaOの含有量の上限は、好ましくは20%であり、さらには、14%、9%、4%、2%、1%の順により好ましい。上限は0%であってもよい。また、CaOの含有量の下限は、好ましくは0%である。特に、ガラスの比抵抗を高めて熔解効率を向上させる場合のCaOの含有量の下限は、好ましくは1%であり、2%、4%、6%、または8%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the CaO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order. The upper limit may be 0%. The lower limit of the CaO content is preferably 0%. In particular, the lower limit of the CaO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、SrOの含有量の上限は、好ましくは20%であり、さらには、14%、9%、4%、2%、1%の順により好ましい。上限は0%であってもよい。また、SrOの含有量の下限は、好ましくは0%である。特に、ガラスの比抵抗を高めて熔解効率を向上させる場合のSrOの含有量の下限は、好ましくは1%であり、2%、4%、6%、または8%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the SrO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order. The upper limit may be 0%. The lower limit of the SrO content is preferably 0%. In particular, the lower limit of the SrO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、BaOの含有量の上限は、好ましくは20%であり、さらには、14%、9%、4%、2%、1%の順により好ましい。上限は0%であってもよい。また、BaOの含有量の下限は、好ましくは0%である。特に、ガラスの比抵抗を高めて熔解効率を向上させる場合のBaOの含有量の下限は、好ましくは1%であり、2%、4%、6%、または8%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the BaO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order. The upper limit may be 0%. The lower limit of the BaO content is preferably 0%. In particular, the lower limit of the BaO content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%.
 ガラス組成Aにおいて、MgO、CaO、SrO、BaOは、いずれもガラスの熱的安定性および耐失透性を改善させる働きを有するガラス成分である。しかし、これらガラス成分の含有量が多くなると、比重が増加し、高分散性が損なわれ、また、ガラスの熱的安定性および耐失透性が低下する。そのため、これらガラス成分の各含有量は、それぞれ上記範囲であることが好ましい。 In the glass composition A, MgO, CaO, SrO, and BaO are all glass components having a function of improving the thermal stability and devitrification resistance of the glass. However, when the content of these glass components is increased, the specific gravity is increased, the high dispersibility is impaired, and the thermal stability and devitrification resistance of the glass are lowered. Therefore, the content of each of these glass components is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、ZnOの含有量の上限は、好ましくは20%であり、さらには、14%、9%、4%、2%、1%の順により好ましい。上限は0%であってもよい。また、ZnOの含有量の下限は、好ましくは0%である。特に、ガラスの比抵抗を高めて熔解効率を向上させる場合、あるいはガラス転移点を低下させる場合のZnOの含有量の下限は、好ましくは1%であり、2%、4%、または6%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the ZnO content is preferably 20%, and further, 14%, 9%, 4%, 2%, and 1%. More preferred in order. The upper limit may be 0%. The lower limit of the ZnO content is preferably 0%. In particular, the lower limit of the ZnO content when increasing the specific resistance of the glass to improve the melting efficiency or lowering the glass transition point is preferably 1%, 2%, 4%, or 6%. You can also do it.
 ZnOは、ガラス組成Aにおいて、ガラスの熱的安定性を改善する働きを有するガラス成分である。しかし、ZnOの含有量が多すぎると比重が上昇するおそれがある。そのため、ZnOの含有量は上記範囲であることが好ましい。 ZnO is a glass component having a function of improving the thermal stability of glass in the glass composition A. However, if the ZnO content is too high, the specific gravity may increase. Therefore, the ZnO content is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、MgOおよびCaOの合計含有量[MgO+CaO]の上限は、好ましくは20%であり、さらには、14%、9%、4%、2%、1%の順により好ましい。上限は0%であってもよい。また、該合計含有量の下限は、好ましくは0%である。高分散化を妨げることなく熱的安定性を維持する観点から、該合計含有量は上記範囲であることが好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the total content [MgO + CaO] of MgO and CaO is preferably 20%, and further, 14%, 9%, 4%, and so on. It is more preferable in the order of 2% and 1%. The upper limit may be 0%. The lower limit of the total content is preferably 0%. From the viewpoint of maintaining thermal stability without hindering high dispersion, the total content is preferably in the above range.
 また、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、MgO、CaO、SrO、BaOおよびZnOの合計含有量[MgO+CaO+SrO+BaO+ZnO]の上限は、好ましくは20%であり、さらには、14%、9%、4%、2%、1%の順により好ましい。上限は0%であってもよい。また、該合計含有量の下限は、好ましくは0%である。特に、ガラスの比抵抗を高めて熔解効率を向上させる場合の該合計含有量の下限は、好ましくは1%であり、2%、4%、6%、または8%とすることもできる。比重の増加を抑制し、また高分散化を妨げることなく熱的安定性を維持する観点から、該合計含有量は上記範囲であることが好ましい。 Further, in the case of the glass composition A in the glass material for molding according to the present embodiment, the upper limit of the total content [MgO + CaO + SrO + BaO + ZnO] of MgO, CaO, SrO, BaO and ZnO is preferably 20%, and further, 14 %, 9%, 4%, 2% and 1% are more preferable. The upper limit may be 0%. The lower limit of the total content is preferably 0%. In particular, the lower limit of the total content when increasing the specific resistance of the glass to improve the melting efficiency is preferably 1%, and may be 2%, 4%, 6%, or 8%. The total content is preferably in the above range from the viewpoint of suppressing an increase in specific gravity and maintaining thermal stability without hindering high dispersion.
 また、本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、LiO、NaO、KOおよびCsOの合計含有量に対するMgO、CaO、SrO、BaOおよびZnOの合計含有量の質量比[(MgO+CaO+SrO+BaO+ZnO)/(LiO+NaO+KO+CsO)]の上限は、好ましくは20であり、さらには18、16、14の順により好ましい。また、該質量比の下限は、好ましくは0であり、さらには5、8、10、12、13の順により好ましい。該質量比は0であってもよい。ガラスの比重の増加を抑制する観点、ガラスの充填率の向上によって、熔融性を高めながら高屈折率高分散化する観点、および、ガラスの比抵抗を適切に維持する観点から、該質量比は上記範囲であることが好ましい。 Further, in the case of the glass composition A in the glass material for molding according to the present embodiment, the total of MgO, CaO, SrO, BaO and ZnO with respect to the total content of Li 2 O, Na 2 O, K 2 O and Cs 2 O. The upper limit of the mass ratio of the content [(MgO + CaO + SrO + BaO + ZnO) / (Li 2 O + Na 2 O + K 2 O + Cs 2 O)] is preferably 20, and more preferably 18, 16 and 14. The lower limit of the mass ratio is preferably 0, and more preferably 5, 8, 10, 12, and 13. The mass ratio may be zero. The mass ratio is determined from the viewpoint of suppressing an increase in the specific gravity of the glass, increasing the meltability and increasing the dispersion of the glass by improving the filling rate of the glass, and maintaining the specific resistance of the glass appropriately. It is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Laの含有量の上限は、好ましくは20%であり、さらには、17%、14%、12%の順により好ましい。屈折率よりも安定性を重視する場合のLaの含有量の上限は、9%、7%、5%、3%、2%、または1%とすることもできる。上限は0%であってもよい。また、Laの含有量の下限は、好ましくは0%である。特に、ガラス形成成分の含有量を維持したまま屈折率を高める場合のLaの含有量の下限は、好ましくは1%であり、2%、4%、または6%とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of La 2 O 3 is preferably 20%, more preferably 17%, 14%, and 12% in that order. .. The upper limit of the La 2 O 3 content when stability is more important than the refractive index can be 9%, 7%, 5%, 3%, 2%, or 1%. The upper limit may be 0%. The lower limit of the content of La 2 O 3 is preferably 0%. In particular, the lower limit of the content of La 2 O 3 when increasing the refractive index while maintaining the content of the glass-forming component is preferably 1%, and may be 2%, 4%, or 6%. ..
 ガラス組成Aにおいて、Laの含有量が多くなると、ガラスの高分散化が抑制され、また熱的安定性が低下する。したがって、Laの含有量は上記範囲であることが好ましい。 When the content of La 2 O 3 in the glass composition A is large, the high dispersion of the glass is suppressed and the thermal stability is lowered. Therefore, the content of La 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Yの含有量の上限は、好ましくは20%であり、さらには、17%、14%、12%の順により好ましい。屈折率よりも安定性を重視する場合のYの含有量の上限は、9%、7%、5%、3%、2%、または1%とすることもできる。上限は0%であってもよい。また、Yの含有量の下限は、好ましくは0%である。特に、ガラス形成成分の含有量を維持したまま屈折率を高める場合のYの含有量の下限は、好ましくは1%であり、2%、3%、または5%とすることもできる。 In molding the glass material according to the present embodiment, when the glass composition A, the upper limit of the content of Y 2 O 3 is preferably 20%, further 17%, preferably by 14%, 12% sequence .. The upper limit of the content of Y 2 O 3 when stability is more important than the refractive index can be 9%, 7%, 5%, 3%, 2%, or 1%. The upper limit may be 0%. The lower limit of the content of Y 2 O 3 is preferably 0%. In particular, the lower limit of the content of Y 2 O 3 when increasing the refractive index while maintaining the content of the glass-forming component is preferably 1%, and may be 2%, 3%, or 5%. ..
 ガラス組成Aにおいて、Yの含有量が多くなり過ぎると、ガラスの高分散化が抑制され、また熱的安定性が低下し、製造中にガラスが失透しやすくなる。したがって、Yの含有量は上記範囲であることが好ましい。 If the content of Y 2 O 3 in the glass composition A is too large, the high dispersion of the glass is suppressed, the thermal stability is lowered, and the glass is easily devitrified during production. Therefore, the content of Y 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Scの含有量の上限は、好ましくは3%であり、さらには、2%、1.5%、1%、0.5%の順により好ましい。上限は0%であってもよい。また、Scの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Sc 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%. The upper limit may be 0%. The lower limit of the Sc 2 O 3 content is preferably 0%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、HfOの含有量の上限は、好ましくは3%であり、さらには、2%、1.5%、1%、0.5%の順により好ましい。上限は0%であってもよい。また、HfOの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of HfO 2 is preferably 3%, and further, 2%, 1.5%, 1%, 0.5. More preferred in order of%. The upper limit may be 0%. The lower limit of the HfO 2 content is preferably 0%.
 Sc、HfOは、ガラス組成Aにおいて、ガラスの高分散性を高める働きを有するが、高価な成分である。そのため、Sc、HfOの各含有量は上記範囲であることが好ましい。 Sc 2 O 3 and HfO 2 have a function of enhancing the high dispersibility of glass in the glass composition A, but are expensive components. Therefore, the contents of Sc 2 O 3 and HfO 2 are preferably in the above range.
 なお、HfOはZrOの原料に一定量含まれることがある。したがって、ZrOを含有するガラスは、一定量のHfOを含有することがある。そのため、第1実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、ZrOの含有量に対するHfOの含有量の質量比[HfO/ZrO]も所定範囲となりうる。例えば、該質量比[HfO/ZrO]の下限は、0.005であってもよく、さらには0.010、0.013、または、0.015であってもよい。一方で、該質量比の上限は、0.05であってもよく、さらには0.040、0.030、0.020、または0.018であってもよい。耐火物レンガの成分がガラス中に熔出することを抑える観点から、ガラスは少量のZrOを含有することが好ましく、そのためにHfOの含有量は上記範囲であることが好ましい。 HfO 2 may be contained in a certain amount in the raw material of ZrO 2. Therefore, the glass containing ZrO 2 may contain a certain amount of HfO 2 . Therefore, in molding the glass material according to the first embodiment, the case of glass composition A, the mass ratio of the content of HfO 2 to the content of ZrO 2 [HfO 2 / ZrO 2 ] may also be a predetermined range. For example, the lower limit of the mass ratio [HfO 2 / ZrO 2 ] may be 0.005, and further may be 0.010, 0.013, or 0.015. On the other hand, the upper limit of the mass ratio may be 0.05, and may be 0.040, 0.030, 0.020, or 0.018. From the viewpoint of suppressing the components of the refractory brick from melting into the glass, the glass preferably contains a small amount of ZrO 2, and therefore the HfO 2 content is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Luの含有量の上限は、好ましくは3%であり、さらには、2%、1.5%、1%、0.5%の順により好ましい。上限は0%であってもよい。また、Luの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Lu 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%. The upper limit may be 0%. The lower limit of the content of Lu 2 O 3 is preferably 0%.
 Luは、ガラス組成Aにおいて、ガラスの高分散性を高める働きを有するが、分子量が大きいことから、ガラスの比重を増加させるガラス成分でもある。そのため、Luの含有量は上記範囲であることが好ましい。 Lu 2 O 3 has a function of enhancing the high dispersibility of the glass in the glass composition A, but is also a glass component that increases the specific gravity of the glass due to its large molecular weight. Therefore, the content of Lu 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、GeOの含有量の上限は、好ましくは3%であり、さらには、2%、1.5%、1%、0.5%の順により好ましい。上限は0%であってもよい。また、GeOの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of GeO 2 is preferably 3%, and further, 2%, 1.5%, 1%, 0.5. More preferred in order of%. The upper limit may be 0%. The lower limit of the GeO 2 content is preferably 0%.
 GeOは、ガラス組成Aにおいて、ガラスの高分散性を高める働きを有するが、一般的に使用されるガラス成分の中で、突出して高価な成分である。したがって、ガラスの製造コストを低減する観点から、GeOの含有量は上記範囲であることが好ましい。 GeO 2 has a function of enhancing the high dispersibility of glass in the glass composition A, but is a prominently expensive component among commonly used glass components. Therefore, from the viewpoint of reducing the manufacturing cost of glass, the content of GeO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Gdの含有量の上限は、好ましくは3%であり、さらには、2%、1.5%、1%、0.5%の順により好ましい。上限は0%であってもよい。また、Gdの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Gd 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%. The upper limit may be 0%. The lower limit of the content of Gd 2 O 3 is preferably 0%.
 ガラス組成Aにおいて、Gdの含有量が多くなり過ぎるとガラスの熱的安定性が低下する。また、Gdの含有量が多くなり過ぎるとガラスの比重が増大し、好ましくない。したがって、ガラスの熱的安定性を良好に維持しつつ、比重の増大を抑制する観点から、Gdの含有量は上記範囲であることが好ましい。 In the glass composition A, if the content of Gd 2 O 3 becomes too large, the thermal stability of the glass decreases. Further, if the content of Gd 2 O 3 becomes too large, the specific gravity of the glass increases, which is not preferable. Therefore, the content of Gd 2 O 3 is preferably in the above range from the viewpoint of suppressing an increase in specific gravity while maintaining good thermal stability of the glass.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、Ybの含有量の上限は、好ましくは3%であり、さらには、2%、1.5%、1%、0.5%の順により好ましい。上限は0%であってもよい。また、Ybの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the content of Yb 2 O 3 is preferably 3%, and further, 2%, 1.5%, 1%, 0. It is more preferable in the order of 5.5%. The upper limit may be 0%. The lower limit of the content of Yb 2 O 3 is preferably 0%.
 ガラス組成Aにおいて、Ybは、La、Gd、Yと比べて分子量が大きいため、ガラスの比重を増大させる。ガラスの比重が増大すると、光学素子の質量が増大する。例えば、質量の大きいレンズをオートフォーカス式の撮像レンズに組み込むと、オートフォーカス時にレンズの駆動に要する電力が増大し、電池の消耗が激しくなる。したがって、Ybの含有量を低減させて、ガラスの比重の増大を抑えることが望ましい。 In the glass composition A, Yb 2 O 3 has a larger molecular weight than La 2 O 3 , Gd 2 O 3 , and Y 2 O 3, and therefore increases the specific gravity of the glass. As the specific gravity of glass increases, the mass of the optical element increases. For example, if a lens having a large mass is incorporated into an autofocus type imaging lens, the power required to drive the lens during autofocus increases, and the battery consumption increases. Therefore, it is desirable to reduce the content of Yb 2 O 3 to suppress the increase in the specific gravity of the glass.
 また、ガラス組成Aにおいて、Ybの含有量が多すぎるとガラスの熱的安定性が低下し、また近赤外領域に吸収を生じやすい。ガラスの近赤外領域の透過率を維持し、熱的安定性の低下を防ぎ、比重の増大を抑制する観点から、Ybの含有量は上記範囲であることが好ましい。 Further, in the glass composition A, if the content of Yb 2 O 3 is too large, the thermal stability of the glass is lowered, and absorption is likely to occur in the near infrared region. The content of Yb 2 O 3 is preferably in the above range from the viewpoint of maintaining the transmittance in the near infrared region of the glass, preventing the decrease in thermal stability, and suppressing the increase in the specific gravity.
 本実施形態に係る成形用ガラス素材は、ガラス組成Aの場合、主として上述のガラス成分、すなわちSiO、P、B、Al、ZrO、TiO、Nb、WO、Bi、Ta、LiO、NaO、KO、CsO、MgO、CaO、SrO、BaO、ZnO、La、Y、Sc、HfO、Lu、GeO、Gd、およびYbで構成されていることが好ましく、上述のガラス成分の合計含有量の下限は、好ましくは95.5%であり、さらには、96.0%、96.5%、97.0%、97.5%、98.0%、98.5%、99.0%の順により好ましい。 In the case of the glass composition A, the molding glass material according to the present embodiment mainly contains the above-mentioned glass components, that is, SiO 2 , P 2 O 5 , B 2 O 3 , Al 2 O 3 , ZrO 2 , TiO 2 , Nb 2 and so on. O 5 , WO 3 , Bi 2 O 3 , Ta 2 O 5 , Li 2 O, Na 2 O, K 2 O, Cs 2 O, MgO, CaO, SrO, BaO, ZnO, La 2 O 3 , Y 2 O It is preferably composed of 3 , Sc 2 O 3 , HfO 2 , Lu 2 O 3 , GeO 2 , Gd 2 O 3 , and Yb 2 O 3 , and the lower limit of the total content of the above-mentioned glass components is preferable. Is 95.5%, more preferably 96.0%, 96.5%, 97.0%, 97.5%, 98.0%, 98.5%, and 99.0%.
 なお、本実施形態に係る成形用ガラス素材は、基本的に上記ガラス成分により構成されることが好ましいが、本発明の作用効果を妨げない範囲において、その他の成分を含有することも可能である。また、本発明において、不可避的不純物の含有を排除するものではない。 The molding glass material according to the present embodiment is preferably composed of the above glass components, but may contain other components as long as the effects of the present invention are not impaired. .. Further, in the present invention, the inclusion of unavoidable impurities is not excluded.
(その他の成分)
 Pb、As、Cd、Tl、Be、Seは、いずれも毒性を有する。そのため、本実施形態に係る成形用ガラス素材はこれら元素をガラス成分として含有しないことが好ましい。
(Other ingredients)
Pb, As, Cd, Tl, Be and Se are all toxic. Therefore, it is preferable that the molding glass material according to the present embodiment does not contain these elements as a glass component.
 U、Th、Raはいずれも放射性元素である。そのため、本実施形態に係る成形用ガラス素材はこれら元素をガラス成分として含有しないことが好ましい。 U, Th, and Ra are all radioactive elements. Therefore, it is preferable that the molding glass material according to the present embodiment does not contain these elements as a glass component.
 V、Cr、Mn、Fe、Co、Ni、Cu、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tmは、ガラスの着色を増大させ、蛍光の発生源となり得る。そのため、本実施形態に係る成形用ガラス素材はこれら元素をガラス成分として含有しないことが好ましい。 V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm increase the coloring of glass and can be a source of fluorescence. Therefore, it is preferable that the molding glass material according to the present embodiment does not contain these elements as a glass component.
 Sb(Sb)、Ce(CeO)は清澄剤として機能する任意に添加可能な元素である。このうち、Sb(Sb)は、清澄効果の大きな清澄剤であるほか、少量の導入において還元されやすい成分の酸化を促進し、λτ80を高める効果を持つ。Ce(CeO)は、Sb(Sb)と比較し、清澄効果が小さい。Ce(CeO)は、多量に添加するとガラスの着色が強まる傾向がある。 Sb (Sb 2 O 3 ) and Ce (CeO 2 ) are optionally addable elements that function as clarifying agents. Of these, Sb (Sb 2 O 3 ) is a clarifying agent having a large clarifying effect, and also has an effect of promoting oxidation of components that are easily reduced by introduction in a small amount and increasing λτ80. Ce (CeO 2 ) has a smaller clarification effect than Sb (Sb 2 O 3). When Ce (CeO 2 ) is added in a large amount, the coloring of the glass tends to be strengthened.
 Sbの含有量は、外割り表示とする。すなわち、SbおよびCeO以外の全ガラス成分の合計含有量を100質量%としたときのSbの含有量の上限は、好ましくは1.000質量%であり、さらには、0.500質量%、0.300質量%、0.100質量%、0.080質量%、0.060質量%、0.040質量%の順により好ましい。また、Sbの含有量の下限は、好ましくは0.000質量%であり、さらには、0.001質量%、0.003質量%、0.005質量%、0.010質量%、0.015質量%、0.020質量%の順により好ましい。なおSb自身もガラスの透過吸収端を長波長シフトさせるため、ガラスの短波長域の透過率をなるべく高める観点では、Sbの含有量は0.008質量%以下であってもよく、さらには0.004質量%以下であってもよく、0.000質量%であってもよい。 The content of Sb 2 O 3 is indicated by external division. That is, when the total content of all glass components other than Sb 2 O 3 and CeO 2 is 100% by mass, the upper limit of the content of Sb 2 O 3 is preferably 1.000% by mass, and further. It is more preferable in the order of 0.500% by mass, 0.300% by mass, 0.100% by mass, 0.080% by mass, 0.060% by mass, and 0.040% by mass. The lower limit of the content of Sb 2 O 3 is preferably 0.000% by mass, and further, 0.001% by mass, 0.003% by mass, 0.005% by mass, 0.010% by mass, and so on. It is more preferable in the order of 0.015% by mass and 0.020% by mass. Since Sb 2 O 3 itself also shifts the transmission / absorption edge of the glass by a long wavelength, the content of Sb 2 O 3 is 0.008% by mass or less from the viewpoint of increasing the transmittance in the short wavelength region of the glass as much as possible. It may be 0.004% by mass or less, and may be 0.000% by mass.
 CeOの含有量も、外割り表示とする。すなわち、CeO、Sb以外の全ガラス成分の合計含有量を100質量%としたときのCeOの含有量の上限は、好ましくは1.000質量%であり、さらには、0.500質量%、0.300質量%、0.100質量%、0.080質量%、0.060質量%、0.040質量%の順により好ましい。また、CeOの含有量の下限は、好ましくは0.000質量%であり、さらには、0.005質量%、0.010質量%、0.015質量%、0.020質量%の順により好ましい。CeOの含有量は0質量%であってもよい。 The content of CeO 2 is also indicated by external division. That is, when the total content of all glass components other than CeO 2 and Sb 2 O 3 is 100% by mass, the upper limit of the content of CeO 2 is preferably 1.000% by mass, and further, 0. It is more preferable in the order of 500% by mass, 0.300% by mass, 0.100% by mass, 0.080% by mass, 0.060% by mass, and 0.040% by mass. The lower limit of the content of CeO 2 is preferably 0.000% by mass, and further, in the order of 0.005% by mass, 0.010% by mass, 0.015% by mass, and 0.020% by mass. preferable. The content of CeO 2 may be 0% by mass.
(ガラス組成Aを有する場合のガラスの特性)
<アッベ数νd>
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、アッベ数νdの上限は、好ましくは50であり、45、40、35、33、31、または30としてもよい。また、アッベ数νdの下限は、好ましくは15であり、17、18、19、20、21、22、23、または24としてもよい。
(Characteristics of glass when having glass composition A)
<Abbe number νd>
In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the Abbe number νd is preferably 50, and may be 45, 40, 35, 33, 31, or 30. The lower limit of the Abbe number νd is preferably 15, and may be 17, 18, 19, 20, 21, 22, 23, or 24.
 アッベ数νdを上記範囲とすることで、高分散性のガラスを得ることができる。
 アッベ数νdは、高分散化に寄与するガラス成分である、Nb、TiO、WOおよびBiの含有量を調整することにより制御できる。
By setting the Abbe number νd to the above range, highly dispersible glass can be obtained.
The Abbe number νd can be controlled by adjusting the contents of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 , which are glass components that contribute to high dispersion.
<屈折率nd>
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、屈折率ndの下限は1.65とすることができ、さらには1.70、1.72、1.74、1.76、または1.80とすることもできる。また、屈折率ndの上限は2.30とすることができ、さらには2.10、2.00、または1.90とすることもできる。屈折率は、高屈折率化に寄与するガラス成分である、Nb、TiO、WOおよびBiの含有量を調整することにより制御できる。
<Refractive index nd>
In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the refractive index nd can be 1.65, and further 1.70, 1.72, 1.74, 1.76, Alternatively, it can be 1.80. Further, the upper limit of the refractive index nd can be 2.30, and further, 2.10, 2.00, or 1.90. The refractive index can be controlled by adjusting the contents of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 , which are glass components that contribute to increasing the refractive index.
<ガラス転移温度Tg>
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、ガラス転移温度Tgの上限は、好ましくは700℃、680℃、670℃、660℃、650℃、640℃、630℃、620℃、610℃、600℃、590℃、580℃の順により好ましい。また、ガラス転移温度Tgの下限は、特に制限されないが、好ましくは200℃であり、さらには300℃、400℃、450℃の順により好ましい。ガラス転移温度Tgは、質量比[(LiO+NaO+KO+CsO)/(Nb+TiO+WO+Bi)]等を調整することにより制御できる。
<Glass transition temperature Tg>
In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the glass transition temperature Tg is preferably 700 ° C., 680 ° C., 670 ° C., 660 ° C., 650 ° C., 640 ° C., 630 ° C., 620 ° C. , 610 ° C, 600 ° C, 590 ° C, and 580 ° C, in that order. The lower limit of the glass transition temperature Tg is not particularly limited, but is preferably 200 ° C, more preferably 300 ° C, 400 ° C, and 450 ° C. The glass transition temperature Tg can be controlled by adjusting the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3)] and the like.
 ガラス転移温度Tgの上限が上記を満たすことにより、ガラスの再加熱時の成型温度およびアニール温度の上昇を抑制することができ、再加熱成形用設備およびアニール設備への熱的ダメージを軽減できる。 When the upper limit of the glass transition temperature Tg satisfies the above, it is possible to suppress an increase in the molding temperature and the annealing temperature at the time of reheating the glass, and it is possible to reduce thermal damage to the reheating molding equipment and the annealing equipment.
 ガラス転移温度Tgの下限が上記を満たすことにより、本発明のガラスが所望のアッベ数、屈折率あるいは透過率を備えつつ、再加熱時の成形性およびガラスの熱的安定性を良好に維持しやすくなる。 When the lower limit of the glass transition temperature Tg satisfies the above, the glass of the present invention has a desired Abbe number, refractive index or transmittance, while maintaining good moldability during reheating and thermal stability of the glass. It will be easier.
<比重>
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、比重の上限は、好ましくは4.3であり、さらには4.1、4.0、3.9、3.8、3.7、3.6の順により好ましい。比重の下限は特に制限されないが、通常2.0であり、好ましくは2.5である。
<Relative density>
In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of the specific gravity is preferably 4.3, and further, 4.1, 4.0, 3.9, 3.8, 3. It is more preferable in the order of 7 and 3.6. The lower limit of the specific gravity is not particularly limited, but is usually 2.0, preferably 2.5.
 比重は、繰り返し測定精度が±0.001~±0.002の範囲となる測定法により測定する。 The specific gravity is measured by a measuring method in which the repeated measurement accuracy is in the range of ± 0.001 to ± 0.002.
<λτ80>
 ガラス組成Aの場合、厚さ2.0mm±0.1mmおよび10.0mm±0.1mmのガラス試料を用いて、JOGIS17(光学ガラスの内部透過率の測定方法)に準じ波長200~700nmの範囲で分光透過率を測定し、厚さ10mmの内部透過率が80%となる波長をλτ80とする。
<λτ80>
In the case of glass composition A, using glass samples having a thickness of 2.0 mm ± 0.1 mm and 10.0 mm ± 0.1 mm, the wavelength range is 200 to 700 nm according to JOBIS17 (method for measuring the internal transmittance of optical glass). The spectral transmittance is measured with λτ80, and the wavelength at which the internal transmittance of a thickness of 10 mm is 80% is defined as λτ80.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、λτ80の上限は、好ましくは395nmであり、さらには、390nm、385nm、380nm、375nm、370nmの順に、数値が小さいほど好ましい。λτ80の下限は、特に制限されないが、通常250nmであり、紫外光の透過率を抑える観点からは300nmでもよく、さらには320nmでもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of λτ80 is preferably 395 nm, and further, the smaller the numerical value is, the more preferable it is in the order of 390 nm, 385 nm, 380 nm, 375 nm, and 370 nm. The lower limit of λτ80 is not particularly limited, but is usually 250 nm, and may be 300 nm or even 320 nm from the viewpoint of suppressing the transmittance of ultraviolet light.
<λ70>
 ガラス組成Aの場合、厚さ10.0mm±0.1mmのガラス試料について波長200~700nmの範囲で分光透過率を測定し、外部透過率が70%となる波長をλ70とする。
<λ70>
In the case of glass composition A, the spectral transmittance of a glass sample having a thickness of 10.0 mm ± 0.1 mm is measured in the wavelength range of 200 to 700 nm, and the wavelength at which the external transmittance is 70% is defined as λ70.
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、λ70の上限は、好ましくは445nmであり、さらには、440nm、430nm、420nm、410nm、400nm、390nm、380nmの順により好ましい。λ70の下限は、特に制限されないが、通常255nmであり、紫外光の透過率を抑える観点からは305nmでもよく、さらには325nmでもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition A, the upper limit of λ70 is preferably 445 nm, more preferably 440 nm, 430 nm, 420 nm, 410 nm, 400 nm, 390 nm, and 380 nm. The lower limit of λ70 is not particularly limited, but is usually 255 nm, and may be 305 nm or 325 nm from the viewpoint of suppressing the transmittance of ultraviolet light.
 なお、本発明では、ガラス組成Aの場合、高屈折率でありながら部分分散比Pg,fが小さい。したがって、後述する工程3でのガラスの冷却速度を10分の1にした場合でも、ガラスの分散性の変動を抑えることができる。例えば、工程3で、後述する冷却速度により得られるガラスと、その冷却速度を10分の1にしたときに得られるガラスとで、アッベ数の変化Δνdは、好ましくは-0.10より大きく、より好ましくは-0.09より大きく、さらにその下限は、-0.08、-0.07、-0.06、-0.05、-0.04、-0.03の順により好ましい。また、低分散レンズとの組み合わせにおいて効果的に色収差を補正する観点からは、本実施形態のガラス素材のアッベ数νdは好ましくは50以下となる。したがって、上記Δνdの上限は+0.10であり、さらには+0.08、+0.06、+0.04、+0.02、+0.01の順により好ましい。特にアッベ数が35以下、好ましくは30以下の場合には、上記Δνdの上限は、好ましくは+0.005であり、さらには+0.00、-0.01、-0.02、または-0.03とすることもできる。 In the present invention, in the case of the glass composition A, the partial dispersion ratios Pg and f are small while having a high refractive index. Therefore, even when the cooling rate of the glass in step 3 described later is reduced to 1/10, the fluctuation of the dispersibility of the glass can be suppressed. For example, in step 3, the change Δνd of the Abbe number is preferably larger than −0.10 between the glass obtained by the cooling rate described later and the glass obtained when the cooling rate is reduced to 1/10. More preferably, it is larger than -0.09, and the lower limit thereof is more preferably -0.08, -0.07, -0.06, -0.05, -0.04, and -0.03. Further, from the viewpoint of effectively correcting chromatic aberration in combination with a low-dispersion lens, the Abbe number νd of the glass material of the present embodiment is preferably 50 or less. Therefore, the upper limit of Δνd is +0.10, and more preferably +0.08, +0.06, +0.04, +0.02, and +0.01. In particular, when the Abbe number is 35 or less, preferably 30 or less, the upper limit of the above Δνd is preferably +0.005, and further, +0.00, -0.01, -0.02, or -0. It can also be 03.
<平均線膨張係数α
 本実施形態に係る成形用ガラス素材において、ガラス組成Aの場合、-30~70℃における平均線膨張係数αの下限は、好ましくは0.70×10-5-1であり、さらには0.71×10-5-1、0.72×10-5-1、0.73×10-5-1、0.74×10-5-1、0.75×10-5-1、0.76×10-5-1、0.77×10-5-1、0.78×10-5-1、0.79×10-5-1の順により好ましい。また、平均線膨張係数αの上限は、ガラスの安定性を保持し所望の光学特性を得る観点から、1.10×10-5-1を例示でき、好ましくは1.05×10-5-1以下であり、さらには1.00×10-5-1、0.96×10-5-1、0.92×10-5-1、0.88×10-5-1、0.84×10-5-1の順により好ましい。
<Average coefficient of linear expansion α L >
In the molding glass material according to the present embodiment, in the case of the glass composition A, the lower limit of the average linear expansion coefficient α L at −30 to 70 ° C. is preferably 0.70 × 10-5 ° C. -1 , and further. 0.71 × 10 -5 ℃ -1, 0.72 × 10 -5 ℃ -1, 0.73 × 10 -5 ℃ -1, 0.74 × 10 -5 ℃ -1, 0.75 × 10 - 5-1 , 0.76 × 10 -5-1 , 0.77 × 10 -5-1 , 0.78 × 10 -5-1 , 0.79 × 10 -5-1 More preferred. Further, the upper limit of the average coefficient of linear expansion α L can be exemplified by 1.10 × 10 -5 ° C -1 from the viewpoint of maintaining the stability of the glass and obtaining desired optical characteristics, preferably 1.05 × 10 −. 5 ° C -1 or less, and further 1.00 x 10-5 ° C -1 , 0.96 x 10-5 ° C -1 , 0.92 x 10-5 ° C -1 , 0.88 x 10-5 The order of ℃ -1 , 0.84 × 10 -5-1 is more preferable.
 ガラス組成Aの場合、-30~70℃における平均線膨張係数αを上記範囲とすることで、幅広い温度環境に使用できる成形用ガラス素材を得ることができる。 In the case of the glass composition A, by setting the average coefficient of linear expansion α L at −30 to 70 ° C. in the above range, a glass material for molding that can be used in a wide temperature environment can be obtained.
 平均線膨張係数αは、JOGIS16の規定に基づいて測定する。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とする。試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように加熱し、温度と試料の伸びを1秒刻みで測定する。平均線膨張係数αは-30~70℃における線膨張係数の平均値である。 The average coefficient of linear expansion α L is measured based on the provisions of JOBIS16. The sample shall be a round bar with a length of 20 mm ± 0.5 mm and a diameter of 5 mm ± 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments. The average coefficient of linear expansion α L is the average value of the coefficient of linear expansion at −30 to 70 ° C.
 なお、JOGIS16では、「平均線膨張係数は、10-7-1の単位で、整数部の一の位まで表示する」と規定されているが、本明細書では、平均線膨張係数αは[10-5・℃-1]を単位として表示する。 In JOBIS16, it is stipulated that "the coefficient of linear expansion is displayed in units of 10-7 ° C- 1 up to the first digit of the integer part", but in this specification, the coefficient of linear expansion α L Is displayed in units of [10-5 · ° C- 1].
 本明細書では、平均線膨張係数αについては[10-5・℃-1]を用いた単位で表しているが、単位として[10-5・K-1]を用いた場合でも平均線膨張係数αの数値は同じである。 In this specification, the coefficient of linear expansion α L is expressed in units using [10-5 · ° C- 1 ], but even when [10-5 · K -1 ] is used as the unit, the average line is expressed. The numerical values of the expansion coefficient α L are the same.
(ガラス組成B)
 次に、本実施形態に係る成形用ガラス素材がガラス組成Bを有する場合の、ガラス成分の含有量・比率、およびガラス特性ついて説明する。
(Glass composition B)
Next, the content / ratio of the glass component and the glass characteristics when the molding glass material according to the present embodiment has the glass composition B will be described.
 本実施形態では、ガラス組成Bを有する場合、酸化物基準において、ガラス成分SiO、B、Al、LiO、NaO、KO、CsO、MgO、CaO、SrO、BaO、ZnO、La、Gd、Y、ZrO、TiO、Nb、WO、およびBiの質量%表示による含有量を、それぞれC(SiO)、C(B)、C(Al)、C(LiO)、C(NaO)、C(KO)、C(CsO)、C(MgO)、C(CaO)、C(SrO)、C(BaO)、C(ZnO)、C(La)、C(Gd)、C(Y)、C(ZrO)、C(TiO)、C(Nb)、C(WO)、およびC(Bi)とする。 In the present embodiment, when the glass composition B is obtained, the glass components SiO 2 , B 2 O 3 , Al 2 O 3 , Li 2 O, Na 2 O, K 2 O, Cs 2 O, MgO, based on the oxide. The content of CaO, SrO, BaO, ZnO, La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , TiO 2 , Nb 2 O 5 , WO 3 , and Bi 2 O 3 in terms of mass%. , C (SiO 2 ), C (B 2 O 3 ), C (Al 2 O 3 ), C (Li 2 O), C (Na 2 O), C (K 2 O), C (Cs 2 O), respectively. ), C (MgO), C (CaO), C (SrO), C (BaO), C (ZnO), C (La 2 O 3 ), C (Gd 2 O 3 ), C (Y 2 O 3 ) , C (ZrO 2 ), C (TiO 2 ), C (Nb 2 O 5 ), C (WO 3 ), and C (Bi 2 O 3 ).
 上記以外のガラス成分Ta、Sc、HfO、Lu、GeO、およびYbの質量%表示による含有量は、それぞれC(Ta)、C(Sc)、C(HfO)、C(Lu)、C(GeO)、およびC(Yb)とする。 The contents of glass components other than the above, Ta 2 O 5 , Sc 2 O 3 , HfO 2 , Lu 2 O 3 , GeO 2 , and Yb 2 O 3 in terms of mass%, are C (Ta 2 O 5 ) and C, respectively. Let (Sc 2 O 3 ), C (HfO 2 ), C (Lu 2 O 3 ), C (GeO 2 ), and C (Yb 2 O 3 ).
 本実施形態では、ガラス組成Bを有する場合、SiO、BO1.5、AlO1.5、LiO0.5、NaO0.5、KO0.5、CsO0.5、MgO、CaO、SrO、BaO、ZnO、LaO1.5、GdO1.5、YO1.5、ZrO、TiO、NbO2.5、WO、およびBiO1.5の各化学式量をそれぞれM(SiO)、M(BO1.5)、M(AlO1.5)、M(LiO0.5)、M(NaO0.5)、M(KO0.5)、M(CsO0.5)、M(MgO)、M(CaO)、M(SrO)、M(BaO)、M(ZnO)、M(LaO1.5)、M(GdO1.5)、M(YO1.5)、M(ZrO)、M(TiO)、M(NbO2.5)、M(WO)、およびM(BiO1.5)とする。 In this embodiment, when the glass composition B is provided, SiO 2 , BO 1.5 , AlO 1.5 , LiO 0.5 , NaO 0.5 , KO 0.5 , CsO 0.5 , MgO, CaO, SrO , BaO, ZnO, LaO 1.5, GdO 1.5, YO 1.5, ZrO 2, TiO 2, NbO 2.5, WO 3, and the chemical formula weight of BiO 1.5, respectively M (SiO 2) , M (BO 1.5 ), M (AlO 1.5 ), M (LiO 0.5 ), M (NaO 0.5 ), M (KO 0.5 ), M (CsO 0.5 ), M (MgO), M (CaO), M (SrO), M (BaO), M (ZnO), M (LaO 1.5 ), M (GdO 1.5 ), M (YO 1.5 ), M ( ZrO 2 ), M (TiO 2 ), M (NbO 2.5 ), M (WO 3 ), and M (Bio 1.5 ).
 上記以外のガラス成分TaO2.5、ScO1.5、HfO、LuO1.5、GeO、およびYbO1.5の各化学式量は、それぞれM(TaO2.5)、M(ScO1.5)、M(HfO)、M(LuO1.5)、M(GeO)、およびM(YbO1.5)とする。 The chemical formulas of the glass components TaO 2.5 , ScO 1.5 , HfO 2 , LuO 1.5 , GeO 2 , and YbO 1.5 other than the above are M (TaO 2.5 ) and M (ScO 1), respectively. .5 ), M (HfO 2 ), M (LuO 1.5 ), M (GeO 2 ), and M (YbO 1.5 ).
 すなわち、本実施形態では、ガラス組成Bを有する場合、例えば酸化物Xについて、質量%表示による含有量をC(X)とできる。また、酸化物Xにおけるカチオン(カチオン“X”)1モル当たりの化学式量、すなわち、XOz/yにおける化学式量をM(XOz/y)とできる。そして、{C(X)/M(XOz/y)}の式で表されるのは、モル%表示でのカチオン“X”の含有量、すなわち、カチオン%表示での“X”の含有量である。 That is, in this embodiment, if a glass composition B, for example the oxides X y O z, the content by mass% can be displayed as C (X y O z). Further, cations in the oxide X y O z (cation "X") formula amount per mole, i.e., a chemical formula weight of XO z / y can and M (XO z / y). The formula {C (X y O z ) / M (X O z / y )} represents the content of the cation "X" in mol% representation, that is, "X" in cation% representation. Is the content.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、A1={C(B)/M(BO1.5)}/{C(B)/M(BO1.5)+C(SiO)/M(SiO)}とするとき、A1の下限は、好ましくは1/3であり、さらには1.1/3、1.2/3、1.3/3、1.4/3、1.5/3、1.6/3、1.7/3、1.8/3、1.9/3の順により好ましい。また、A1の上限は、好ましくは3.0/3であり、さらには2.9/3、2.8/3、2.7/3、2.6/3、2.5/3、2.4/3、2.3/3の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, A1 = {C (B 2 O 3 ) / M (BO 1.5 )} / {C (B 2 O 3 ) / M (BO 1) .5 ) + C (SiO 2 ) / M (SiO 2 )}, the lower limit of A1 is preferably 1/3, and further 1.1 / 3, 1.2 / 3, 1.3 /. The order of 3, 1.4 / 3, 1.5 / 3, 1.6 / 3, 1.7 / 3, 1.8 / 3, 1.9 / 3 is more preferable. The upper limit of A1 is preferably 3.0 / 3, and further, 2.9 / 3, 2.8 / 3, 2.7 / 3, 2.6 / 3, 2.5 / 3, 2 It is more preferable in the order of .4 / 3, 2.3 / 3.
 ガラス組成Bにおいて、A1を上記範囲とすることで、-30~70℃における平均線膨張係数αの大きい、低分散の成形用ガラス素材を得ることができる。また、ガラスの相対屈折率の温度係数(dn/dT)を低減できる。さらに、Laを多量に含有させる場合でもガラスの熱的安定性の低下を抑制できる。一方、A1が小さすぎると、屈折率ndを高め、平均線膨張係数αの低下を防ぐガラス成分であるLaおよびYを多量に含む場合にガラスが不安定になるおそれがある。またA1が大きすぎると、ガラスの安定性、化学的耐久性、および機械的特性が低下するおそれがある。 By setting A1 in the above range in the glass composition B, a low-dispersion glass material for molding having a large average linear expansion coefficient α L at −30 to 70 ° C. can be obtained. In addition, the temperature coefficient (dn / dT) of the relative refractive index of glass can be reduced. Further, even when a large amount of La 2 O 3 is contained, the decrease in thermal stability of the glass can be suppressed. On the other hand, if A1 is too small, the glass may become unstable when it contains a large amount of La 2 O 3 and Y 2 O 3 which are glass components that increase the refractive index nd and prevent the average linear expansion coefficient α L from decreasing. There is. Also, if A1 is too large, the stability, chemical durability, and mechanical properties of the glass may deteriorate.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、B1={C(BaO)/M(BaO)+C(SrO)/M(SrO)}/{C(LiO)/M(LiO0.5)+C(NaO)/M(NaO0.5)+C(KO)/M(KO0.5)+C(CsO)/M(CsO0.5)+C(MgO)/M(MgO)+C(CaO)/M(CaO)+C(SrO)/M(SrO)+C(BaO)/M(BaO)}とするとき、B1の下限は、好ましくは0.62であり、さらには0.63、0.65、0.67、0.69、0.71、0.73、0.75、0.77、0.79、0.81、0.83、0.85、0.87の順により好ましい。また、B1の上限は、好ましくは1.00であり、さらには0.99、0.98の順により好ましい。B1は1.00であってもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, B1 = {C (BaO) / M (BaO) + C (SrO) / M (SrO)} / {C (Li 2 O) / M ( LiO 0.5 ) + C (Na 2 O) / M (NaO 0.5 ) + C (K 2 O) / M (KO 0.5 ) + C (Cs 2 O) / M (CsO 0.5 ) + C (MgO) ) / M (MgO) + C (CaO) / M (CaO) + C (SrO) / M (SrO) + C (BaO) / M (BaO)}, the lower limit of B1 is preferably 0.62. , Further 0.63, 0.65, 0.67, 0.69, 0.71, 0.73, 0.75, 0.77, 0.79, 0.81, 0.83, 0.85 , 0.87 is more preferable. The upper limit of B1 is preferably 1.00, more preferably 0.99 and 0.98. B1 may be 1.00.
 ガラス組成Bにおいて、B1を上記範囲とすることで、平均線膨張係数αの大きい、高屈折率の成形用ガラス素材が得られる。また、平均線膨張係数αを大きくしつつ熱的安定性の低下を抑制できる。一方、B1が小さすぎると、平均線膨張係数αおよび屈折率ndが低下し、ガラスの安定性が損なわれるおそれがある。 By setting B1 in the above range in the glass composition B, a glass material for molding having a large average linear expansion coefficient α L and a high refractive index can be obtained. In addition, it is possible to suppress a decrease in thermal stability while increasing the average linear expansion coefficient α L. On the other hand, if B1 is too small, the average linear expansion coefficient α L and the refractive index nd may decrease, and the stability of the glass may be impaired.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、C1={C(BaO)/M(BaO)+C(LiO)/M(LiO0.5)}/{C(NaO)/M(NaO0.5)+C(KO)/M(KO0.5)+C(SiO)/M(SiO)+C(TiO)/M(TiO)+C(Nb)/M(NbO2.5)+C(WO)/M(WO)}とするとき、C1の下限は、好ましくは8/9であり、さらには8.2/9、8.4/9、8.6/9、8.8/9、9.0/9、9.2/9、9.4/9、9.5/9の順により好ましい。また、C1の上限は、好ましくは27/9であり、さらには25/9、23/9、21/9、19/9、17/9、15/9、13/9、12/9の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition B, C1 = {C (BaO) / M (BaO) + C (Li 2 O) / M (LiO 0.5 )} / {C (Na 2). O) / M (NaO 0.5 ) + C (K 2 O) / M (KO 0.5 ) + C (SiO 2 ) / M (SiO 2 ) + C (TiO 2 ) / M (TiO 2 ) + C (Nb 2) When O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 )}, the lower limit of C1 is preferably 8/9, and further 8.2 / 9, 8. The order of 4/9, 8.6 / 9, 8.8 / 9, 9.0 / 9, 9.2 / 9, 9.4 / 9, and 9.5 / 9 is more preferable. The upper limit of C1 is preferably 27/9, and further, in the order of 25/9, 23/9, 21/9, 19/9, 17/9, 15/9, 13/9, 12/9. More preferred.
 ガラス組成Bにおいて、C1を上記範囲とすることで、平均線膨張係数αの大きい、高屈折率低分散性の成形用ガラス素材が得られる。また、ガラスの相対屈折率の温度係数(dn/dT)を低減できる。一方、C1が小さすぎると、平均線膨張係数αが低下し、ガラスの高屈折低分散性が失われるおそれがある。また、C1が大きすぎるとガラスの安定性が低下するおそれがある。 By setting C1 in the above range in the glass composition B, a glass material for molding having a large average linear expansion coefficient α L and a high refractive index and low dispersibility can be obtained. In addition, the temperature coefficient (dn / dT) of the relative refractive index of glass can be reduced. On the other hand, if C1 is too small, the average coefficient of linear expansion α L may decrease, and the high refraction and low dispersibility of the glass may be lost. Further, if C1 is too large, the stability of the glass may decrease.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、D1=C(Gd)+C(ZnO)+C(TiO)+C(Nb)+C(WO)+C(ZrO)とするとき、D1の上限は、好ましくは13.50であり、さらには12.00、11.00、10.50、10.00、9.50、9.00、8.50の順により好ましい。また、D1の下限は、好ましくは0であり、さらには1、2、3、4、5、6、7、8の順により好ましい。D1は、0であってもよい。 In the molding glass material according to the present embodiment, in the case of glass composition B, D1 = C (Gd 2 O 3 ) + C (ZnO) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 ) + C (ZrO). 2 ), the upper limit of D1 is preferably 13.50, and further, in the order of 12.00, 11.00, 10.50, 10.00, 9.50, 9.00, 8.50. More preferred. The lower limit of D1 is preferably 0, and more preferably 1, 2, 3, 4, 5, 6, 7, and 8. D1 may be 0.
 ガラス組成Bにおいて、D1を上記範囲とすることで、平均線膨張係数αの低下を抑制できる。また高分散化を抑えて、高屈折率低分散性の成形用ガラス素材が得られる。さらに、ガラスの相対屈折率の温度係数(dn/dT)を増大させない効果もある。D1は0であってもよいが、アッベ数νd等の光学恒数を調整するために、D1を0より大きくすることもできる。一方、D1が大きすぎると、平均線膨張係数αが低下し、またガラスの高屈折低分散性が失われるおそれがある。 By setting D1 in the above range in the glass composition B, a decrease in the average linear expansion coefficient α L can be suppressed. Further, a glass material for molding having a high refractive index and a low dispersibility can be obtained by suppressing high dispersion. Further, there is also an effect of not increasing the temperature coefficient (dn / dT) of the relative refractive index of the glass. D1 may be 0, but D1 can be made larger than 0 in order to adjust an optical constant such as the Abbe number νd. On the other hand, if D1 is too large, the average coefficient of linear expansion α L may decrease, and the high refraction and low dispersibility of the glass may be lost.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、E1={C(La)+C(Gd)+C(Y)}/{C(SiO)+C(B)+C(Al)}とするとき、E1の下限は、好ましくは1.25であり、さらには1.30、1.35、1.40、1.45、1.50、1.55、1.60、1.65、1.70の順により好ましい。また、E1の上限は、好ましくは3.00であり、さらには2.80、2.60、2.40、2.20、2.10の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, E1 = {C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 )} / {C (SiO 2 ) + C When (B 2 O 3 ) + C (Al 2 O 3 )}, the lower limit of E1 is preferably 1.25, and further 1.30, 1.35, 1.40, 1.45, 1 More preferably, the order is .50, 1.55, 1.60, 1.65, 1.70. The upper limit of E1 is preferably 3.00, and more preferably 2.80, 2.60, 2.40, 2.20, and 2.10.
 ガラス組成Bにおいて、E1を上記範囲とすることで、高屈折率低分散性の成形用ガラス素材が得られる。一方、E1が小さすぎると、ガラスの高屈折高分散性が失われ、平均線膨張係数αが低下するおそれがある。またE1が大きすぎるとガラスの熱的安定性が低下するおそれがある。 By setting E1 in the above range in the glass composition B, a glass material for molding having a high refractive index and low dispersibility can be obtained. On the other hand, if E1 is too small, the high refraction and high dispersibility of the glass may be lost, and the average linear expansion coefficient α L may decrease. Further, if E1 is too large, the thermal stability of the glass may decrease.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、F1={C(Gd)/M(GdO1.5)+C(ZnO)/M(ZnO)+C(TiO)/M(TiO)+C(Nb)/M(NbO2.5)+C(WO)/M(WO)+C(Bi)/M(BiO1.5)}/{C(Y)/M(YO1.5)}とするとき、F1の上限は、好ましくは2.0であり、さらには1.8、1.6、1.4、1.2、1.1、1.0、0.9、0.8、0.6の順により好ましい。また、F1の下限は、好ましくは0であり、さらには0.1、0.2、0.3、0.4の順により好ましい。F1は0であってもよい。 In the molding glass material according to the present embodiment, in the case of glass composition B, F1 = {C (Gd 2 O 3 ) / M (GdO 1.5 ) + C (ZnO) / M (ZnO) + C ( TIO 2 ) / M (TiO 2 ) + C (Nb 2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 ) + C (Bi 2 O 3 ) / M (BiO 1.5 )} / {C When (Y 2 O 3 ) / M (YO 1.5 )}, the upper limit of F1 is preferably 2.0, and further 1.8, 1.6, 1.4, 1.2, It is more preferable in the order of 1.1, 1.0, 0.9, 0.8, 0.6. The lower limit of F1 is preferably 0, more preferably 0.1, 0.2, 0.3, 0.4 in that order. F1 may be 0.
 ガラス組成Bにおいて、F1を上記範囲とすることで、平均線膨張係数αの大きい成形用ガラス素材が得られる。また、ガラスの熱的安定性の低下を抑制できる。F1は0であってもよいが、アッベ数νd等の光学恒数を調整するために、F1を0より大きくすることもできる。一方、F1が大きすぎると、平均線膨張係数αが低下し、またガラスの高屈折低分散性が失われるおそれがある。 By setting F1 in the above range in the glass composition B, a glass material for molding having a large average linear expansion coefficient α L can be obtained. In addition, it is possible to suppress a decrease in the thermal stability of the glass. F1 may be 0, but F1 can also be made larger than 0 in order to adjust an optical constant such as the Abbe number νd. On the other hand, if F1 is too large, the average coefficient of linear expansion α L may decrease, and the high refraction and low dispersibility of the glass may be lost.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、G1=C(BaO)/M(BaO)+C(La)/M(LaO1.5)+C(LiO)/M(LiO0.5)+C(Y)/M(YO1.5)とするとき、G1の下限は、好ましくは0.47であり、さらには0.475、0.48、0.485の順により好ましい。また、G1の上限は、好ましくは0.60であり、さらには0.59、0.58、0.57、0.56、0.55、0.54、0.53の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition B, G1 = C (BaO) / M (BaO) + C (La 2 O 3 ) / M (LaO 1.5 ) + C (Li 2 O) / When M (LiO 0.5 ) + C (Y 2 O 3 ) / M (YO 1.5 ), the lower limit of G1 is preferably 0.47, and further 0.475, 0.48, 0. It is more preferable in the order of .485. The upper limit of G1 is preferably 0.60, more preferably 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, 0.53.
 ガラス組成Bにおいて、平均線膨張係数αの低下が抑制され、かつ高屈折率低分散性の成形用ガラス素材を得る観点から、G1を上記範囲とすることが好ましい。一方、G1が小さすぎると、平均線膨張係数αが低下し、ガラスの高屈折低分散性が失われるおそれがある。また、G1が大きすぎると、ガラスの熱的安定性が低下するおそれがある。 In the glass composition B, G1 is preferably in the above range from the viewpoint of obtaining a molding glass material having a high refractive index and low dispersibility while suppressing a decrease in the average linear expansion coefficient α L. On the other hand, if G1 is too small, the average coefficient of linear expansion α L may decrease, and the high refraction and low dispersibility of the glass may be lost. Further, if G1 is too large, the thermal stability of the glass may decrease.
 本実施形態において、ガラス組成Bの場合、{C(B)/M(BO1.5)+C(SiO)/M(SiO)}の下限は、好ましくは0.35であり、さらには0.37、0.39、0.41、0.43、0.45、0.47の順により好ましい。また、その上限は、好ましくは0.75であり、さらには0.73、0.71、0.69、0.67、0.65、0.63、0.61、0.59の順により好ましい。 In the present embodiment, in the case of the glass composition B, the lower limit of {C (B 2 O 3 ) / M (BO 1.5 ) + C (SiO 2 ) / M (SiO 2 )} is preferably 0.35. Further, it is more preferable in the order of 0.37, 0.39, 0.41, 0.43, 0.45, 0.47. The upper limit is preferably 0.75, and further in the order of 0.73, 0.71, 0.69, 0.67, 0.65, 0.63, 0.61, 0.59. preferable.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、低分散の成形用ガラス素材を得る観点から、{C(B)/M(BO1.5)+C(SiO)/M(SiO)}は上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient α L and low dispersion, {C (B 2 O 3 ) / M (BO 1.5 ) + C (SiO 2 ) / M ( SiO 2 )} is preferably in the above range.
 本実施形態において、ガラス組成Bの場合、{C(BaO)/M(BaO)+C(SrO)/M(SrO)}の下限は、好ましくは0.15であり、さらには0.16、0.17、0.18、0.19、0.20の順により好ましい。また、その上限は、好ましくは0.30であり、さらには0.29、0.28、0.27、0.26、0.25、0.24、0.23の順により好ましい。 In the present embodiment, in the case of the glass composition B, the lower limit of {C (BaO) / M (BaO) + C (SrO) / M (SrO)} is preferably 0.15, and further 0.16, 0. It is more preferable in the order of .17, 0.18, 0.19, 0.20. The upper limit is preferably 0.30, and more preferably 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, and 0.23.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率の成形用ガラス素材を得る観点から、{C(BaO)/M(BaO)+C(SrO)/M(SrO)}は上記範囲とすることが好ましい。 In the glass composition B, {C (BaO) / M (BaO) + C (SrO) / M (SrO)} is in the above range from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient α L and a high refractive index. Is preferable.
 本実施形態において、ガラス組成Bの場合、{C(LiO)/M(LiO0.5)+C(NaO)/M(NaO0.5)+C(KO)/M(KO0.5)+C(CsO)/M(CsO0.5)+C(MgO)/M(MgO)+C(CaO)/M(CaO)+C(SrO)/M(SrO)+C(BaO)/M(BaO)}の下限は、好ましくは0.15であり、さらには0.16、0.17、0.18、0.19、0.20の順により好ましい。また、その上限は、好ましくは0.35であり、さらには0.34、0.33、0.32、0.31、0.30、0.29、0.28、0.27、0.26、0.25、0.24、0.23の順により好ましい。 In the present embodiment, in the case of glass composition B, {C (Li 2 O) / M (LiO 0.5 ) + C (Na 2 O) / M (NaO 0.5 ) + C (K 2 O) / M (KO) 0.5 ) + C (Cs 2 O) / M (CsO 0.5 ) + C (MgO) / M (MgO) + C (CaO) / M (CaO) + C (SrO) / M (SrO) + C (BaO) / The lower limit of M (BaO)} is preferably 0.15, and more preferably 0.16, 0.17, 0.18, 0.19, and 0.20. The upper limit thereof is preferably 0.35, and further 0.34, 0.33, 0.32, 0.31, 0.30, 0.29, 0.28, 0.27, 0. It is more preferable in the order of 26, 0.25, 0.25, 0.23.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率の成形用ガラス素材を得る観点から、{C(LiO)/M(LiO0.5)+C(NaO)/M(NaO0.5)+C(KO)/M(KO0.5)+C(CsO)/M(CsO0.5)+C(MgO)/M(MgO)+C(CaO)/M(CaO)+C(SrO)/M(SrO)+C(BaO)/M(BaO)}は上記範囲とすることが好ましい。 In the glass composition B , {C (Li 2 O) / M (LiO 0.5 ) + C (Na 2 O) / M from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient α L and a high refractive index. (NaO 0.5 ) + C (K 2 O) / M (KO 0.5 ) + C (Cs 2 O) / M (CsO 0.5 ) + C (MgO) / M (MgO) + C (CaO) / M ( CaO) + C (SrO) / M (SrO) + C (BaO) / M (BaO)} is preferably in the above range.
 本実施形態において、ガラス組成Bの場合、{C(BaO)/M(BaO)+C(LiO)/M(LiO0.5)}の下限は、好ましくは0.15であり、さらには0.16、0.17、0.18、0.19、0.20の順により好ましい。また、その上限は、好ましくは0.35であり、さらには0.34、0.33、0.32、0.31、0.30、0.29、0.28、0.27、0.26、0.25、0.24、0.23の順により好ましい。 In the present embodiment, when the glass composition B, the lower limit of {C (BaO) / M ( BaO) + C (Li 2 O) / M (LiO 0.5)} is preferably 0.15, more The order of 0.16, 0.17, 0.18, 0.19, 0.20 is more preferable. The upper limit thereof is preferably 0.35, and further 0.34, 0.33, 0.32, 0.31, 0.30, 0.29, 0.28, 0.27, 0. It is more preferable in the order of 26, 0.25, 0.25, 0.23.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率低分散性の成形用ガラス素材を得る観点から、{C(BaO)/M(BaO)+C(LiO)/M(LiO0.5)}は上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a molding glass material having a large average linear expansion coefficient α L and a high refractive index and low dispersibility, {C (BaO) / M (BaO) + C (Li 2 O) / M (LiO). 0.5 )} is preferably in the above range.
 本実施形態において、ガラス組成Bの場合、{C(NaO)/M(NaO0.5)+C(KO)/M(KO0.5)+C(SiO)/M(SiO)+C(TiO)/M(TiO)+C(Nb)/M(NbO2.5)+C(WO)/M(WO)}の下限は、好ましくは0.05であり、さらには0.06、0.07、0.08、0.09、0.10、0.11、0.12、0.13、0.14、0.15、0.16の順により好ましい。また、その上限は、好ましくは0.30であり、さらには0.29、0.28、0.27、0.26、0.25、0.24、0.23、0.22、0.21の順により好ましい。 In the present embodiment, in the case of glass composition B, {C (Na 2 O) / M (NaO 0.5 ) + C (K 2 O) / M (KO 0.5 ) + C (SiO 2 ) / M (SiO 2) ) + C (TiO 2 ) / M (TiO 2 ) + C (Nb 2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 )} The lower limit is preferably 0.05. Further, it is more preferable in the order of 0.06, 0.07, 0.08, 0.09, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16. .. The upper limit thereof is preferably 0.30, further 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0. It is more preferable in the order of 21.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率低分散性の成形用ガラス素材を得る観点から、C(NaO)/M(NaO0.5)+C(KO)/M(KO0.5)+C(SiO)/M(SiO)+C(TiO)/M(TiO)+C(Nb)/M(NbO2.5)+C(WO)/M(WO)}は上記範囲とすることが好ましい。 In the glass composition B , C (Na 2 O) / M (NaO 0.5 ) + C (K 2 O) from the viewpoint of obtaining a molding glass material having a large average linear expansion coefficient α L and a high refractive index and low dispersibility. / M (KO 0.5 ) + C (SiO 2 ) / M (SiO 2 ) + C (TiO 2 ) / M (TiO 2 ) + C (Nb 2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 )} is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[C(BaO)/{C(SiO)+C(TiO)+C(Nb)+C(WO)}]の下限は、好ましくは1.0であり、さらには1.2、1.4、1.6、1.8、2.0、2.2、2.4の順により好ましい。また、該質量比の上限は、好ましくは5.5であり、さらには5.3、5.1、4.9、4.7、4.5、4.3、4.1、3.9、3.7、3.5の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the mass ratio [C (BaO) / {C (SiO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )}] The lower limit of is preferably 1.0, and more preferably 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, and 2.4. The upper limit of the mass ratio is preferably 5.5, and further, 5.3, 5.1, 4.9, 4.7, 4.5, 4.3, 4.1, and 3.9. It is more preferable in the order of 3.7 and 3.5.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率低分散性の成形用ガラス素材を得る観点、および相対屈折率の温度係数(dn/dT)を小さくする観点から、質量比[C(BaO)/{C(SiO)+C(TiO)+C(Nb)+C(WO)}]を上記範囲とすることが好ましい。 In the glass composition B, large average linear expansion coefficient alpha L is, in view of obtaining a molding glass material of high refractive index and low dispersion, and the temperature coefficient of the relative refractive index (dn / dT) in view of reducing the mass ratio [ It is preferable that C (BaO) / {C (SiO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )}] is in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[C(BaO)/{C(SiO)+C(B)+C(TiO)+C(Nb)+C(WO)}]の下限は、好ましくは0.80であり、さらには0.85、0.90、0.95、1.00、1.05、1.10、1.15、1.20の順により好ましい。また、該質量比の上限は、好ましくは1.70であり、さらには1.65、1.60、1.55、1.50、1.45、1.40、1.35の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the mass ratio [C (BaO) / {C (SiO 2 ) + C (B 2 O 3 ) + C (TIO 2 ) + C (Nb 2 O 5 )) The lower limit of + C (WO 3 )}] is preferably 0.80, and further 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15, 1 More preferred in the order of .20. The upper limit of the mass ratio is preferably 1.70, and more preferably 1.65, 1.60, 1.55, 1.50, 1.45, 1.40, 1.35. ..
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率低分散性の成形用ガラス素材を得る観点、および相対屈折率の温度係数(dn/dT)の温度依存性を小さくする観点から、質量比[C(BaO)/{C(SiO)+C(B)+C(TiO)+C(Nb)+C(WO)}]を上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a molding glass material having a large average linear expansion coefficient α L and a high refractive index and low dispersibility, and from the viewpoint of reducing the temperature dependence of the temperature coefficient (dn / dT) of the relative refractive index. , The mass ratio [C (BaO) / {C (SiO 2 ) + C (B 2 O 3 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )}] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[{C(BaO)+C(LiO)+C(SrO)}/{C(SiO)+C(TiO)+C(Nb)+C(WO)}]の下限は、好ましくは0.5であり、さらには1.0、1.5、2.0、2.2、2.4の順により好ましい。また、該質量比の上限は、好ましくは7.0であり、さらには6.5、6.0、5.5、5.0、4.5、4.0、3.5の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the mass ratio [{C (BaO) + C (Li 2 O) + C (SrO)} / {C (SiO 2 ) + C (TiO 2 ) + C ( The lower limit of Nb 2 O 5 ) + C (WO 3 )}] is preferably 0.5, and more preferably 1.0, 1.5, 2.0, 2.2, 2.4. The upper limit of the mass ratio is preferably 7.0, and more preferably 6.5, 6.0, 5.5, 5.0, 4.5, 4.0, and 3.5. ..
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率低分散性の成形用ガラス素材を得る観点から、質量比[{C(BaO)+C(LiO)+C(SrO)}/{C(SiO)+C(TiO)+C(Nb)+C(WO)}]を上記範囲とすることが好ましい。 In the glass composition B, large average linear expansion coefficient alpha L is, from the viewpoint of obtaining a glass material for forming a high refractive index and low dispersion, the weight ratio [{C (BaO) + C (Li 2 O) + C (SrO)} / It is preferable that {C (SiO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )}] is in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[{C(LiO)+C(NaO)+C(KO)+C(CsO)+C(CaO)+C(SrO)+C(BaO)}/{C(SiO)+C(TiO)+C(Nb)+C(WO)}]の下限は、好ましくは0.5であり、さらには1.0、1.5、2.0、2.2、2.4の順により好ましい。また、該質量比の上限は、好ましくは7.0であり、さらには6.5、6.0、5.5、5.0、4.5、4.0、3.5の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the mass ratio [{C (Li 2 O) + C (Na 2 O) + C (K 2 O) + C (Cs 2 O) + C (CaO) + C The lower limit of (SrO) + C (BaO)} / {C (SiO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )}] is preferably 0.5, and further 1. The order of 0, 1.5, 2.0, 2.2, 2.4 is more preferable. The upper limit of the mass ratio is preferably 7.0, and more preferably 6.5, 6.0, 5.5, 5.0, 4.5, 4.0, and 3.5. ..
 ガラス組成Bにおいて、平均線膨張係数αが大きく、高屈折率低分散性の成形用ガラス素材を得る観点から、質量比[{C(LiO)+C(NaO)+C(KO)+C(CsO)+C(CaO)+C(SrO)+C(BaO)}/{C(SiO)+C(TiO)+C(Nb)+C(WO)}]を上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a molding glass material having a large average linear expansion coefficient α L and a high refractive coefficient and low dispersibility, the mass ratio [{C (Li 2 O) + C (Na 2 O) + C (K 2) O) + C (Cs 2 O) + C (CaO) + C (SrO) + C (BaO)} / {C (SiO 2 ) + C (TIO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )}] Is preferable.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、合計含有量[C(ZnO)+C(Gd)+C(TiO)+C(Nb)+C(WO)]の下限は、好ましくは0であり、さらには1、2、3、4、5の順により好ましい。該合計含有量は0であってもよい。また、該合計含有量の上限は、好ましくは15であり、さらには14、13、12、11、10、9、8、7、6の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the total content [C (ZnO) + C (Gd 2 O 3 ) + C (TIO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] The lower limit of is preferably 0, and more preferably 1, 2, 3, 4, and 5. The total content may be zero. The upper limit of the total content is preferably 15, and more preferably 14, 13, 12, 11, 10, 9, 8, 7, and 6.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、分散の小さい成形用ガラス素材を得る観点から、合計含有量[C(ZnO)+C(Gd)+C(TiO)+C(Nb)+C(WO)]を上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient α L and a small dispersion, the total content [C (ZnO) + C (Gd 2 O 3 ) + C (TIO 2 ) + C (Nb 2) O 5 ) + C (WO 3 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、合計含有量[C(SiO)+C(ZnO)+C(Gd)+C(TiO)+C(Nb)+C(WO)]の下限は、好ましくは5であり、さらには6、7、8、9の順により好ましい。また、該合計含有量の上限は、好ましくは25であり、さらには24、23、22、21、20、19、18、17、16、15、14の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3 ) + C (TIO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably 5 and more preferably 6, 7, 8 and 9. The upper limit of the total content is preferably 25, and more preferably 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, and 14.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、かつ高屈折率低分散性の成形用ガラス素材を得る観点から、合計含有量[C(SiO)+C(ZnO)+C(Gd)+C(TiO)+C(Nb)+C(WO)]を上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient α L and a high refractive index and low dispersibility, the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3) ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、合計含有量[C(SiO)+C(ZnO)+C(Gd)+C(ZrO)+C(TiO)+C(Nb)+C(WO)]の下限は、好ましくは5であり、さらには6、7、8、9の順により好ましい。また、該合計含有量の上限は、好ましくは25であり、さらには24、23、22、21、20、19、18、17、16の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3 ) + C (ZrO 2 ) + C (TiO 2 ) + C (Nb) The lower limit of 2 O 5 ) + C (WO 3 )] is preferably 5, and more preferably 6, 7, 8 and 9. The upper limit of the total content is preferably 25, and more preferably 24, 23, 22, 21, 20, 19, 18, 17, and 16.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、かつ高屈折率低分散性の成形用ガラス素材を得る観点から、合計含有量[C(SiO)+C(ZnO)+C(Gd)+C(ZrO)+C(TiO)+C(Nb)+C(WO)]を上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient α L and a high refractive index and low dispersibility, the total content [C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3) ) + C (ZrO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、合計含有量[C(Al)+C(SiO)+C(ZnO)+C(Gd)+C(ZrO)+C(TiO)+C(Nb)+C(WO)]の下限は、好ましくは5であり、さらには6、7、8、9の順により好ましい。また、該合計含有量の上限は、好ましくは25であり、さらには24、23、22、21、20、19、18、17、16の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the total content [C (Al 2 O 3 ) + C (SiO 2 ) + C (ZnO) + C (Gd 2 O 3 ) + C (ZrO 2 ) + C The lower limit of (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably 5, and more preferably 6, 7, 8, and 9. The upper limit of the total content is preferably 25, and more preferably 24, 23, 22, 21, 20, 19, 18, 17, and 16.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、かつ高屈折率低分散性の成形用ガラス素材を得る観点から、合計含有量[C(Al)+C(SiO)+C(ZnO)+C(Gd)+C(ZrO)+C(TiO)+C(Nb)+C(WO)]を上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a large average linear expansion coefficient α L and a high refractive index and low dispersibility, the total content [C (Al 2 O 3 ) + C (SiO 2 ) + C (ZnO) ) + C (Gd 2 O 3 ) + C (ZrO 2 ) + C (TiO 2 ) + C (Nb 2 O 5 ) + C (WO 3 )] is preferably in the above range.
 本実施形態において、ガラス組成Bの場合、合計含有量[C(La)+C(Gd)+C(Y)]の下限は、好ましくは25であり、さらには26、27、28、29、30、31、32、33、34、35、36、37、38の順により好ましい。また、該合計含有量の上限は、好ましくは50であり、さらには49、48、47、46、45、44、43の順により好ましい。 In the present embodiment, in the case of the glass composition B, the lower limit of the total content [C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 )] is preferably 25, and further 26. , 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, in that order. The upper limit of the total content is preferably 50, and more preferably 49, 48, 47, 46, 45, 44, 43.
 ガラス組成Bにおいて、高屈折率低分散性の成形用ガラス素材を得る観点から、合計含有量[C(La)+C(Gd)+C(Y)]は上記範囲とすることが好ましい。 In the glass composition B, the total content [C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 )] is in the above range from the viewpoint of obtaining a glass material for molding having a high refractive index and low dispersibility. Is preferable.
 本実施形態において、ガラス組成Bの場合、合計含有量[C(SiO)+C(B)+C(Al)]の下限は、好ましくは15であり、さらには16、17、18、19の順により好ましい。また、該合計含有量の上限は、好ましくは30であり、さらには29、28、27、26、25の順により好ましい。 In the present embodiment, in the case of the glass composition B, the lower limit of the total content [C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 )] is preferably 15, and further 16, 17 , 18 and 19 are more preferable. The upper limit of the total content is preferably 30, and more preferably 29, 28, 27, 26, 25.
 ガラス組成Bにおいて、屈折率をなるべく低下させずに、高屈折率低分散性の成形用ガラス素材を得る観点から、合計含有量[C(SiO)+C(B)+C(Al)]は上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a high refractive index and low dispersibility without lowering the refractive index as much as possible, the total content [C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2) O 3 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[{C(La)+C(Gd)+C(Y)}/{2×C(SiO)+C(B)+C(Al)}]の下限は、好ましくは1.00であり、さらには1.05、1.10、1.15、1.16、1.17、1.18、1.19、1.20、1.21の順により好ましい。また、該質量比の上限は、好ましくは1.80であり、さらには1.75、1.70、1.65、1.60、1.55、1.54、1.53、1.52、1.51、1.50の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the mass ratio [{C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 )} / {2 × C (SiO) 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 )}] is preferably 1.00, and further 1.05, 1.10, 1.15, 1.16, 1. It is more preferable in the order of 17, 1.18, 1.19, 1.20, 1.21. The upper limit of the mass ratio is preferably 1.80, and further 1.75, 1.70, 1.65, 1.60, 1.55, 1.54, 1.53, 1.52. , 1.51 and 1.50 are more preferable.
 ガラス組成Bにおいて、高屈折率低分散性の成形用ガラス素材を得る観点から、質量比[{C(La)+C(Gd)+C(Y)}/{2×C(SiO)+C(B)+C(Al)}]は上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a high refractive index and low dispersibility, the mass ratio [{C (La 2 O 3 ) + C (Gd 2 O 3 ) + C (Y 2 O 3 )} / {2 × C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 )}] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、合計含有量[2×C(SiO)+C(B)+C(Al)]の下限は、好ましくは20であり、さらには21、22、23、24、25、26の順により好ましい。また、該合計含有量の上限は、好ましくは45であり、さらには44、43、42、41、40、39、38、37、36、35の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the total content [2 × C (SiO 2 ) + C (B 2 O 3 ) + C (Al 2 O 3 )] is preferably 20. Further, it is more preferable in the order of 21, 22, 23, 24, 25, 26. The upper limit of the total content is preferably 45, and more preferably 44, 43, 42, 41, 40, 39, 38, 37, 36, 35 in that order.
 ガラス組成Bにおいて、平均線膨張係数αの大きい、高屈折率低分散性の成形用ガラス素材を得る観点から、合計含有量[2×C(SiO)+C(B)+C(Al)]は上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a molding glass material having a large average linear expansion coefficient α L and a high refractive index and low dispersibility, the total content [2 × C (SiO 2 ) + C (B 2 O 3 ) + C ( Al 2 O 3 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[{C(La)+C(Y)}/{C(B)+C(BaO)}]の下限は、好ましくは0.50であり、さらには0.55、0.60、0.65、0.70、0.75、0.80の順により好ましい。また、該質量比の上限は、好ましくは1.30であり、さらには1.25、1.20、1.15、1.10、1.05、1.00、0.95、0.92の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the mass ratio [{C (La 2 O 3 ) + C (Y 2 O 3 )} / {C (B 2 O 3 ) + C (BaO)} ] Is preferably 0.50, and more preferably 0.55, 0.60, 0.65, 0.70, 0.75, 0.80. The upper limit of the mass ratio is preferably 1.30, and further, 1.25, 1.20, 1.15, 1.10, 1.05, 1.00, 0.95, 0.92. Is more preferable in this order.
 ガラス組成Bにおいて、高屈折率低分散性の成形用ガラス素材を得る観点から、質量比[{C(La)+C(Y)}/{C(B)+C(BaO)}]は上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a glass material for molding having a high refractive index and low dispersibility, the mass ratio [{C (La 2 O 3 ) + C (Y 2 O 3 )} / {C (B 2 O 3 ) + C (BaO)}] is preferably in the above range.
 本実施形態において、ガラス組成Bの場合、[C(Gd)/M(GdO1.5)+C(ZnO)/M(ZnO)+C(TiO)/M(TiO)+C(Nb)/M(NbO2.5)+C(WO)/M(WO)+C(Bi)/M(BiO1.5)]の下限は、好ましくは0であり、さらには0.01、0.02、0.03、0.04、0.05、0.06の順により好ましい。該値は0であってもよい。また、その上限は、好ましくは0.30であり、さらには0.25、0.20、0.18、0.16、0.14、0.12、0.10、0.08の順により好ましい。 In the present embodiment, when the glass composition B, [C (Gd 2 O 3) / M (GdO 1.5) + C (ZnO) / M (ZnO) + C (TiO 2) / M (TiO 2) + C (Nb The lower limit of [2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 ) + C (Bi 2 O 3 ) / M (BiO 1.5 )] is preferably 0, and further. Is more preferable in the order of 0.01, 0.02, 0.03, 0.04, 0.05, 0.06. The value may be 0. The upper limit is preferably 0.30, and further in the order of 0.25, 0.20, 0.18, 0.16, 0.14, 0.12, 0.10, 0.08. preferable.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、ガラスの熱的安定性の低下を抑制する観点から、[C(Gd)/M(GdO1.5)+C(ZnO)/M(ZnO)+C(TiO)/M(TiO)+C(Nb)/M(NbO2.5)+C(WO)/M(WO)+C(Bi)/M(BiO1.5)]は上記範囲とすることが好ましい。 In the glass composition B, the average linear expansion coefficient α L is large, and from the viewpoint of suppressing the decrease in the thermal stability of the glass, [C (Gd 2 O 3 ) / M (GdO 1.5 ) + C (ZnO) / M (ZnO) + C (TIO 2 ) / M (TIO 2 ) + C (Nb 2 O 5 ) / M (NbO 2.5 ) + C (WO 3 ) / M (WO 3 ) + C (Bi 2 O 3 ) / M ( BiO 1.5 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[C(Y)/{C(La)+C(Y)+C(Gd)}]の下限は、好ましくは0.20であり、さらには0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.31、0.32、0.33、0.34の順により好ましい。また、該質量比の上限は、好ましくは0.60であり、さらには0.59、0.58、0.57、0.56、0.55、0.54、0.53、0.52、0.51、0.50、0.49、0.48、0.47、0.46の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the mass ratio [C (Y 2 O 3 ) / {C (La 2 O 3 ) + C (Y 2 O 3 ) + C (Gd 2 O 3 )) }] Is preferably 0.20, and further 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0. 29, 0.30, 0.31, 0.32, 0.33, 0.34 are more preferable in this order. The upper limit of the mass ratio is preferably 0.60, and further 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, 0.53, 0.52. , 0.51, 0.50, 0.49, 0.48, 0.47, 0.46 in that order.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、ガラスの熱的安定性の低下を抑制する観点から、質量比[C(Y)/{C(La)+C(Y)+C(Gd)}]を上記範囲とすることが好ましい。 In the glass composition B, the average linear expansion coefficient α L is large, and from the viewpoint of suppressing the decrease in thermal stability of the glass, the mass ratio [C (Y 2 O 3 ) / {C (La 2 O 3 ) + C (Y) 2 O 3 ) + C (Gd 2 O 3 )}] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、質量比[C(Y)/{C(La)+C(Y)+C(TiO)}]の下限は、好ましくは0.20であり、さらには0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.31、0.32の順により好ましい。また、該質量比の上限は、好ましくは0.50であり、さらには0.49、0.48、0.47、0.46、0.45の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the mass ratio [C (Y 2 O 3 ) / {C (La 2 O 3 ) + C (Y 2 O 3 ) + C (TIO 2 )}] The lower limit of is preferably 0.20, further 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, It is more preferable in the order of 0.30, 0.31 and 0.32. The upper limit of the mass ratio is preferably 0.50, and more preferably 0.49, 0.48, 0.47, 0.46, 0.45.
 ガラス組成Bにおいて、平均線膨張係数αが大きく、ガラスの熱的安定性の低下を抑制する観点から、質量比[C(Y)/{C(La)+C(Y)+C(TiO)}]を上記範囲とすることが好ましい。 In the glass composition B, the average linear expansion coefficient α L is large, and from the viewpoint of suppressing the decrease in thermal stability of the glass, the mass ratio [C (Y 2 O 3 ) / {C (La 2 O 3 ) + C (Y) 2 O 3 ) + C (TiO 2 )}] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、合計含有量[C(BaO)+C(La)+C(Y)]の下限は、好ましくは50であり、さらには52、54、56、58、60、62、64、66、68、70の順により好ましい。また、該合計含有量の上限は、好ましくは85であり、さらには83、81、79、77、76の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the total content [C (BaO) + C (La 2 O 3 ) + C (Y 2 O 3 )] is preferably 50. Further, the order of 52, 54, 56, 58, 60, 62, 64, 66, 68, 70 is more preferable. The upper limit of the total content is preferably 85, and more preferably 83, 81, 79, 77, 76 in that order.
 ガラス組成Bにおいて、平均線膨張係数αの低下が抑制され、かつ高屈折率低分散性の成形用ガラス素材を得る観点から、合計含有量[C(BaO)+C(La)+C(Y)]を上記範囲とすることが好ましい。 In the glass composition B, from the viewpoint of obtaining a molding glass material having a high refractive index and low dispersibility while suppressing a decrease in the average linear expansion coefficient α L , the total content [C (BaO) + C (La 2 O 3 ) + C (Y 2 O 3 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、SiOの含有量の下限は、好ましくは3.0%であり、さらには3.5%、4.0%、4.5%、5.0%、5.5%、6.0%、6.5%、7.0%の順により好ましい。また、SiOの含有量の上限は、好ましくは15.0%であり、さらには14.5%、14.0%、13.5%、13.0%、12.5%、12.0%、11.5%、11.0%、10.5%、10.0%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the content of SiO 2 is preferably 3.0%, and further 3.5%, 4.0%, 4.5. %, 5.0%, 5.5%, 6.0%, 6.5%, and 7.0% are more preferable. The upper limit of the content of SiO 2 is preferably 15.0%, and further 14.5%, 14.0%, 13.5%, 13.0%, 12.5%, 12.0. %, 11.5%, 11.0%, 10.5%, 10.0%, and more preferably.
 SiOは、ガラス組成Bにおいて、ガラスのネットワーク形成成分であり、ガラスの熱的安定性、化学的耐久性、耐候性を改善し、熔融ガラスの粘度を高め、熔融ガラスを成形しやすくする働きを有する。またSiOは、たとえばガラス組成Bに多く含まれるLa、BaO、およびYと比べて、ΔPg,Fの値を大きくする働きが強い。一方、SiOの含有量が多いと、平均線膨張係数αが比較的低下しやすいほか、屈折率ndが低下するおそれがある。また、SiOの含有量が少なすぎると、再加熱時の安定性が悪化するおそれがある。そのため、SiOの含有量は上記範囲であることが好ましい。 SiO 2 is a network-forming component of glass in the glass composition B, and has a function of improving the thermal stability, chemical durability, and weather resistance of the glass, increasing the viscosity of the molten glass, and facilitating the molding of the molten glass. Has. Further, SiO 2 has a stronger function of increasing the values of ΔPg and F than , for example, La 2 O 3 , Ba O, and Y 2 O 3 , which are abundantly contained in the glass composition B. On the other hand, when the content of SiO 2 is large, the average coefficient of linear expansion α L tends to decrease relatively, and the refractive index nd may decrease. Further, if the content of SiO 2 is too small, the stability at the time of reheating may be deteriorated. Therefore, the content of SiO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Bの含有量の下限は、好ましくは8.0%であり、さらには8.5%、9.0%、9.5%、10.0%、10.5%、11.0%、11.5%、12.0%の順により好ましい。また、Bの含有量の上限は、好ましくは20.0%であり、さらには19.5%、19.0%、18.5%、18.0%、17.5%、17.0%、16.5%、16.0%、15.5%、15.0%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the content of B 2 O 3 is preferably 8.0%, and further 8.5%, 9.0%, 9 The order of 5.5%, 10.0%, 10.5%, 11.0%, 11.5%, and 12.0% is more preferable. The upper limit of the content of B 2 O 3 is preferably 20.0%, and further 19.5%, 19.0%, 18.5%, 18.0%, 17.5%, 17 It is more preferable in the order of 0.0%, 16.5%, 16.0%, 15.5% and 15.0%.
 Bは、ガラス組成Bにおいて、ガラスのネットワーク形成成分であり、ガラスの熱的安定性を改善する働きを有する。また、ネットワーク形成成分の中では比較的、平均線膨張係数αを低下させない成分である。さらに、低分散性を損なうことなく屈折率ndの高いガラスを得る観点から、Bの含有量を上記範囲とすることもできる。一方、Bの含有量が多いと、屈折率ndが低下するおそれがある。また、Bの含有量が少なすぎると、再加熱時の安定性が悪化するおそれがある。 B 2 O 3 is a network-forming component of glass in the glass composition B, and has a function of improving the thermal stability of the glass. In addition, among the network-forming components, it is a component that does not lower the average coefficient of linear expansion α L. Further, from the viewpoint of obtaining a glass having a high refractive index nd without impairing the low dispersibility, the content of B 2 O 3 can be set in the above range. On the other hand, if the content of B 2 O 3 is large, the refractive index nd may decrease. Further, if the content of B 2 O 3 is too small, the stability at the time of reheating may be deteriorated.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Alの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、Alの含有量の下限は、好ましくは0%である。Alの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of Al 2 O 3 is preferably 10%, and further 8%, 6%, 4%, 2%, 1 %, 0.5%, 0.2%, 0.1% are more preferable. The lower limit of the content of Al 2 O 3 is preferably 0%. The content of Al 2 O 3 may be 0%.
 Alは、ガラス組成Bにおいて、ガラスの化学的耐久性、耐候性を改善する働きを有するガラス成分であり、ネットワーク形成成分として考えることができる。一方、Alの含有量が多くなると、屈折率ndが低下し、ガラスの熱的安定性および熔融性が低下するおそれがある。そのため、Alの含有量は上記範囲であることが好ましい。 Al 2 O 3 is a glass component having a function of improving the chemical durability and weather resistance of glass in the glass composition B, and can be considered as a network forming component. On the other hand, if the content of Al 2 O 3 is large, the refractive index nd may be lowered, and the thermal stability and meltability of the glass may be lowered. Therefore, the content of Al 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Pの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、Pの含有量の下限は、好ましくは0%である。Pの含有量は0%でもよい。 In molding the glass material according to the present embodiment, when the glass composition B, the upper limit of the content of P 2 O 5 is preferably 10%, even 8%, 6%, 4%, 2%, 1 %, 0.5%, 0.2%, 0.1% are more preferable. The lower limit of the content of P 2 O 5 is preferably 0%. The content of P 2 O 5 may be 0%.
 Pは、ガラス組成Bにおいて、屈折率ndを低下させる成分であり、加えてガラスの熱的安定性を低下させる成分でもある。そのため、Pの含有量は上記範囲であることが好ましい。 P 2 O 5 is a component that lowers the refractive index nd in the glass composition B, and is also a component that lowers the thermal stability of the glass. Therefore, it is preferable that the content of P 2 O 5 is in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、LiOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、LiOの含有量の下限は、好ましくは0%である。LiOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the Li 2 O content is preferably 10%, and further 8%, 6%, 4%, 2%, 1%. , 0.5%, 0.2%, 0.1% in that order. The lower limit of the Li 2 O content is preferably 0%. The content of Li 2 O may be 0%.
 LiOは、ガラス組成Bにおいて、ガラスの低比重化に寄与する成分であり、ガラスの熔融性を改善し、また平均線膨張係数αを大きくする働きを有する。さらにガラス転移温度Tgの低下に寄与する成分であり、精密プレス成型の際には成形性の向上に寄与する。また、低分散性を損なうことなく屈折率ndの高いガラスを得る観点から、LiOの含有量を上記範囲とすることもできる。一方、LiOの含有量が多くなると、耐失透性や耐酸性が低下するおそれがある。また、低分散性も損なわれるおそれもある。 Li 2 O is a component that contributes to lowering the specific density of glass in the glass composition B, and has a function of improving the meltability of the glass and increasing the average coefficient of linear expansion α L. Further, it is a component that contributes to a decrease in the glass transition temperature Tg, and contributes to an improvement in moldability during precision press molding. Further, from the viewpoint of obtaining a glass having a high refractive index nd without impairing the low dispersibility, the content of Li 2 O can be set in the above range. On the other hand, if the content of Li 2 O is large, the devitrification resistance and acid resistance may decrease. In addition, low dispersibility may be impaired.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、NaOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、NaOの含有量の下限は、好ましくは0%である。NaOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the Na 2 O content is preferably 10%, and further 8%, 6%, 4%, 2%, 1%. , 0.5%, 0.2%, 0.1% in that order. The lower limit of the Na 2 O content is preferably 0%. The content of Na 2 O may be 0%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、KOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、KOの含有量の下限は、好ましくは0%である。KOの含有量は0%でもよい。 In molding the glass material according to the present embodiment, when the glass composition B, the upper limit of the content of K 2 O is preferably 10%, even 8%, 6%, 4%, 2%, 1% , 0.5%, 0.2%, 0.1% in that order. The lower limit of the K 2 O content is preferably 0%. The content of K 2 O may be 0%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、NaOおよびKOの合計含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、該合計含有量の下限は、好ましくは0%であり、さらには0.001%、0.01%、0.05%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the total content of Na 2 O and K 2 O is preferably 10%, and further 8%, 6%, 4%, and so on. 2%, 1%, 0.5%, 0.2% and 0.1% are more preferable in this order. The lower limit of the total content is preferably 0%, more preferably 0.001%, 0.01%, and 0.05%.
 ガラス組成Bにおいて、NaO、KOは、いずれもガラスの熔融性を改善する働きを有する。また平均線熱膨張係数を大きくする働きを有する。一方、これらの含有量が多くなると、熱的安定性、耐失透性、化学的耐久性、耐候性が低下する。したがって、NaO、およびKOの各含有量およびその合計含有量は上記範囲であることが好ましい。 In the glass composition B, both Na 2 O and K 2 O have a function of improving the meltability of the glass. It also has the function of increasing the average coefficient of linear thermal expansion. On the other hand, when these contents are increased, thermal stability, devitrification resistance, chemical durability, and weather resistance are lowered. Therefore, the respective contents of Na 2 O and K 2 O and their total contents are preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、CsOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、CsOの含有量の下限は、好ましくは0%である。CsOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of Cs 2 O is preferably 10%, and further 8%, 6%, 4%, 2%, 1%. , 0.5%, 0.2%, 0.1%, more preferably. The lower limit of the Cs 2 O content is preferably 0%. The content of Cs 2 O may be 0%.
 CsOは、ガラス組成Bにおいて、ガラスの熔融性を改善する働きを有するが、含有量が多くなると、ガラスの熱的安定性、屈折率ndが低下し、また熔解中にガラス成分の揮発が増加して、所望のガラスが得られなくなるおそれがある。そのため、CsOの含有量は上記範囲であることが好ましい。 Cs 2 O has a function of improving the meltability of the glass in the glass composition B, but when the content is increased, the thermal stability and the refractive index nd of the glass are lowered, and the glass component is volatilized during melting. May increase and the desired glass may not be obtained. Therefore, the content of Cs 2 O is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、LiO、NaO、KOおよびCsOの合計含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、該合計含有量の下限は、好ましくは0%である。該合計含有量は0%でもよい。ガラスの液相温度が上昇するのを抑制する観点から、LiO、NaO、KOおよびCsOの合計含有量は上記範囲とすることが好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the upper limit of the total content of Li 2 O, Na 2 O, K 2 O and Cs 2 O is preferably 10%, and further 8 %, 6%, 4%, 2%, 1%, 0.5%, 0.2%, 0.1% are more preferable. The lower limit of the total content is preferably 0%. The total content may be 0%. From the viewpoint of suppressing an increase in the liquidus temperature of the glass, the total content of Li 2 O, Na 2 O, K 2 O and Cs 2 O is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、MgOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、MgOの含有量の下限は、好ましくは0%である。MgOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the MgO content is preferably 10%, further 8%, 6%, 4%, 2%, 1%, 0. It is more preferable in the order of 5.5%, 0.2%, and 0.1%. The lower limit of the MgO content is preferably 0%. The content of MgO may be 0%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、CaOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.2%、0.1%の順により好ましい。また、CaOの含有量の下限は、好ましくは0%である。CaOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the CaO content is preferably 10%, further 8%, 6%, 4%, 2%, 1%, 0. It is more preferable in the order of 5.5%, 0.2%, and 0.1%. The lower limit of the CaO content is preferably 0%. The CaO content may be 0%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、SrOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.4%、0.3%の順により好ましい。また、SrOの含有量の下限は、好ましくは0%であり、さらには0.05%、0.10%、0.15%、0.20%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the SrO content is preferably 10%, and further 8%, 6%, 4%, 2%, 1%, 0. It is more preferable in the order of 5.5%, 0.4%, and 0.3%. The lower limit of the SrO content is preferably 0%, more preferably 0.05%, 0.10%, 0.15%, and 0.20% in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、MgO、CaO、およびSrOの合計含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.4%、0.3%の順により好ましい。また、該合計含有量の下限は、好ましくは0%であり、さらには0.05%、0.10%、0.15%、0.20%の順により好ましい。該合計含有量は0%でもよい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the upper limit of the total content of MgO, CaO, and SrO is preferably 10%, and further 8%, 6%, 4%, and 2 %, 1%, 0.5%, 0.4%, 0.3% are more preferable. The lower limit of the total content is preferably 0%, more preferably 0.05%, 0.10%, 0.15%, and 0.20%. The total content may be 0%.
 ガラス組成Bにおいて、MgO、CaO、SrOは、いずれもガラスの熔融性を改善する働きを有するガラス成分であり、平均線膨張係数を比較的大きくする働きも有する。しかし、これらガラス成分の含有量が多くなると、ガラスの熱的安定性および耐失透性が低下する。そのため、これらガラス成分の各含有量および合計含有量は、上記範囲であることが好ましい。 In the glass composition B, MgO, CaO, and SrO are all glass components having a function of improving the meltability of the glass, and also have a function of relatively increasing the average coefficient of linear expansion. However, as the content of these glass components increases, the thermal stability and devitrification resistance of the glass decrease. Therefore, each content and total content of these glass components are preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、BaOの含有量の下限は、好ましくは20%であり、さらには21%、22%、23%、24%、25%、26%、27%、28%、29%、30%、31%の順により好ましい。また、BaOの含有量の上限は、好ましくは45%であり、さらには44%、43%、42%、41%、40%、39%、38%、37%、36%、35%、34%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the BaO content is preferably 20%, and further 21%, 22%, 23%, 24%, 25%, 26. %, 27%, 28%, 29%, 30% and 31% are more preferable. The upper limit of the BaO content is preferably 45%, and further 44%, 43%, 42%, 41%, 40%, 39%, 38%, 37%, 36%, 35%, 34. More preferred in order of%.
 BaOは、ガラス組成Bにおいて、高屈折率・低分散特性を損なうことなく、平均線膨張係数αを増加させる働きを有するガラス成分であり、ΔPg,Fの値を比較的小さくする成分でもある。BaOの含有量を上記範囲とすることで、高屈折率・低分散であって、平均線膨張係数αが改善された成形用ガラス素材が得られる。一方で、BaOの含有量が多すぎると、ガラスの熱的安定性が低下し、ガラスが失透するおそれがあり、再加熱時の安定性が悪化するおそれもある。 BaO is a glass component having a function of increasing the average linear expansion coefficient α L without impairing the high refractive index and low dispersion characteristics in the glass composition B, and is also a component that relatively reduces the values of ΔPg and F. .. By setting the BaO content in the above range, a glass material for molding having a high refractive index and low dispersion and an improved average linear expansion coefficient α L can be obtained. On the other hand, if the content of BaO is too large, the thermal stability of the glass is lowered, the glass may be devitrified, and the stability at the time of reheating may be deteriorated.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、SiOおよびBの合計含有量の上限は、好ましくは30%であり、さらには29%、28%、27%、26%、25%、24%、23%、22%、21%、20%の順により好ましい。また、該合計含有量の下限は、好ましくは13%であり、さらには14%、15%、16%、17%、18%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the total content of SiO 2 and B 2 O 3 is preferably 30%, and further 29%, 28%, 27%. It is more preferable in the order of 26%, 25%, 24%, 23%, 22%, 21% and 20%. The lower limit of the total content is preferably 13%, more preferably 14%, 15%, 16%, 17% and 18%.
 ガラス組成Bにおいて、ガラスの安定性を保持しつつ、屈折率の低下を抑制する観点から、SiOおよびBの合計含有量は上記範囲とすることが好ましい。 In the glass composition B, the total content of SiO 2 and B 2 O 3 is preferably in the above range from the viewpoint of suppressing a decrease in the refractive index while maintaining the stability of the glass.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、BaOの含有量と、SiOおよびBの合計含有量との質量比[BaO/(SiO+B)]の上限は、好ましくは3.00であり、さらには2.80、2.60、2.40、2.20、2.00、1.80、1.70の順により好ましい。また、該質量比の下限は、好ましくは0.60であり、さらには0.80、0.90、1.00、1.10、1.20、1.30の順により好ましい。 In the case of the glass composition B in the glass material for molding according to the present embodiment, the mass ratio of the BaO content to the total content of SiO 2 and B 2 O 3 [BaO / (SiO 2 + B 2 O 3 )]. The upper limit of is preferably 3.00, and more preferably 2.80, 2.60, 2.40, 2.20, 2.00, 1.80, and 1.70. The lower limit of the mass ratio is preferably 0.60, and more preferably 0.80, 0.90, 1.00, 1.10, 1.20, and 1.30.
 ガラス組成Bにおいて、ガラスの安定性が保持されかつ平均線膨張係数αが大きいガラスを得る観点から、該質量比は上記範囲とすることが好ましい。 In the glass composition B, the mass ratio is preferably in the above range from the viewpoint of obtaining a glass in which the stability of the glass is maintained and the average linear expansion coefficient α L is large.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、ZnOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.4%、0.3%、0.2%、0.1%、0.05%、0.03%、0.02%、0.01%の順により好ましい。また、ZnOの含有量の下限は、好ましくは0%である。ZnOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the ZnO content is preferably 10%, further 8%, 6%, 4%, 2%, 1%, 0. The order of 5.5%, 0.4%, 0.3%, 0.2%, 0.1%, 0.05%, 0.03%, 0.02% and 0.01% is more preferable. The lower limit of the ZnO content is preferably 0%. The ZnO content may be 0%.
 ZnOは、ガラス組成Bにおいて、ガラスの熔融性を改善する働きを有するガラス成分である。しかし、ZnOの含有量が多すぎると、ガラスの比重が増大し、平均線膨張係数αが低下するおそれがある。また、ガラスの低分散性を損なうおそれもある。さらに、ガラス転移温度Tgが低下するおそれもある。そのため、ZnOの含有量は上記範囲であることが好ましい。 ZnO is a glass component having a function of improving the meltability of glass in the glass composition B. However, if the ZnO content is too high, the specific gravity of the glass may increase and the average coefficient of linear expansion α L may decrease. In addition, the low dispersibility of the glass may be impaired. Further, the glass transition temperature Tg may decrease. Therefore, the ZnO content is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Laの含有量の下限は、好ましくは15%であり、さらには16%、17%、18%、19%、20%、21%、22%の順により好ましい。また、Laの含有量の上限は、好ましくは40%であり、さらには39%、38%、37%、36%、35%、34%、33%、32%、31%、30%、29%、28%の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the content of La 2 O 3 is preferably 15%, and further 16%, 17%, 18%, 19%, 20. %, 21%, and 22% are more preferable. The upper limit of the content of La 2 O 3 is preferably 40%, and further 39%, 38%, 37%, 36%, 35%, 34%, 33%, 32%, 31%, 30. %, 29%, and 28% are more preferable.
 Laは、ガラス組成Bにおいて、アッベ数νdの減少を抑えつつ屈折率を高める働きを有するガラス成分である。また、部分分散比Pg,Fを小さくする成分であり、BaOと比べてΔPg,Fの値を小さくする働きが強い。したがって、Laの含有量を上記範囲とすることで、高屈折率・低分散であって、平均線膨張係数αの低下を抑制し、相対屈折率の温度係数(dn/dT)の増大を抑制した成形用ガラス素材が得られる。一方で、Laの含有量が多くなり過ぎると、ガラスの熱的安定性および耐失透性が低下するおそれがあり、再加熱時の安定性が悪化するおそれもある。 La 2 O 3 is a glass component having a function of increasing the refractive index while suppressing a decrease in the Abbe number νd in the glass composition B. Further, it is a component that reduces the partial dispersion ratios Pg and F, and has a strong function of reducing the values of ΔPg and F as compared with BaO. Therefore, by setting the content of La 2 O 3 in the above range, it is possible to suppress the decrease in the average linear expansion coefficient α L with high refractive index and low dispersion, and the temperature coefficient of relative refractive index (dn / dT). A glass material for molding, which suppresses the increase in the temperature coefficient, can be obtained. On the other hand, if the content of La 2 O 3 is too large, the thermal stability and devitrification resistance of the glass may be lowered, and the stability at the time of reheating may be deteriorated.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Gdの含有量の上限は、好ましくは20%であり、さらには15%、10%、5%、4%、3%、2%、1%、0.5%の順により好ましい。また、Gdの含有量の下限は、好ましくは0%である。Gdの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of Gd 2 O 3 is preferably 20%, and further 15%, 10%, 5%, 4%, 3 %, 2%, 1%, and 0.5% are more preferable. The lower limit of the content of Gd 2 O 3 is preferably 0%. The content of Gd 2 O 3 may be 0%.
 Gdは、ガラス組成Bにおいて、高屈折・低分散であって平均線膨張係数αの低下を抑制できる成分であるが、BaOを多く導入する本実施形態のガラスにおいてはGdの含有量が多くなり過ぎるとガラスの熱的安定性および耐失透性が低下し、製造中にガラスが失透しやすくなる。また、Gdの含有量が多くなり過ぎるとガラスの比重が増大し、好ましくない。また原料コスト削減の観点においても不利である。したがって、Gdの含有量は上記範囲であることが好ましい。 Gd 2 O 3 is a component that can suppress a decrease in the average linear expansion coefficient α L with high refraction and low dispersion in the glass composition B, but in the glass of the present embodiment in which a large amount of BaO is introduced, Gd 2 O 3 is used. If the content of 3 is too high, the thermal stability and devitrification resistance of the glass will decrease, and the glass will easily devitrify during production. Further, if the content of Gd 2 O 3 becomes too large, the specific gravity of the glass increases, which is not preferable. It is also disadvantageous from the viewpoint of reducing raw material costs. Therefore, the content of Gd 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Yの含有量の下限は、好ましくは5%であり、さらには6%、7%、8%、9%、10%、11%、12%、13%、14%の順により好ましい。また、Yの含有量の上限は、好ましくは25%であり、さらには24%、23%、22%、21%、20%、19%の順により好ましい。 In molding the glass material according to the present embodiment, when the glass composition B, the lower limit of the content of Y 2 O 3 is preferably 5%, further 6%, 7%, 8%, 9%, 10 %, 11%, 12%, 13% and 14% are more preferable. The upper limit of the content of Y 2 O 3 is preferably 25%, even 24%, 23%, 22%, 21%, 20%, preferably by 19% order.
 Yは、ガラス組成Bにおいて、アッベ数νdの減少を抑えつつ屈折率を高める働きを有する成分である。また、アルカリ成分やアルカリ土類成分の中でBaOまたはSrOを比較的多く導入する本実施形態のガラスにおいて、平均線膨張係数αの低下を抑制し、高屈折低分散特性を付与するために有効な成分である。また、ガラスの化学的耐久性、耐候性を改善し、ガラス転移温度を高める働きも有する。部分分散比Pg,Fを小さくする成分であり、ΔPg,Fの値を小さくする働きも有する。一方で、Yの含有量が多くなり過ぎるとガラスの熱的安定性および耐失透性が低下するおそれがある。再加熱時の安定性が悪化するおそれもある。そのため、Yの含有量は上記範囲であることが好ましい。 Y 2 O 3 is a component having a function of increasing the refractive index while suppressing a decrease in the Abbe number νd in the glass composition B. Further, in the glass of the present embodiment in which a relatively large amount of BaO or SrO is introduced among the alkaline component and the alkaline earth component, in order to suppress a decrease in the average linear expansion coefficient α L and impart high refractive index and low dispersion characteristics. It is an effective ingredient. It also has the function of improving the chemical durability and weather resistance of glass and raising the glass transition temperature. It is a component that reduces the partial dispersion ratios Pg and F, and also has a function of reducing the values of ΔPg and F. On the other hand, if the content of Y 2 O 3 is too large, the thermal stability and devitrification resistance of the glass may decrease. Stability during reheating may deteriorate. Therefore, the content of Y 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、ZrOの含有量の上限は、好ましくは10%であり、さらには9%、8%、7%、6%、5%、4%、3%、2.5%の順により好ましい。また、ZrOの含有量の下限は、好ましくは0%であり、さらには0.005%、0.01%、0.05%、0.1%、0.5%、1.0%、1.5%、2.0%の順により好ましい。ZrOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of ZrO 2 is preferably 10%, and further 9%, 8%, 7%, 6%, 5%, It is more preferable in the order of 4%, 3%, and 2.5%. The lower limit of the content of ZrO 2 is preferably 0%, and further 0.005%, 0.01%, 0.05%, 0.1%, 0.5%, 1.0%, and so on. It is more preferable in the order of 1.5% and 2.0%. The content of ZrO 2 may be 0%.
 ZrOは、ガラス組成Bにおいて、屈折率を高める働きのある成分であり、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。しかし、ZrOは平均線膨張係数αを比較的小さくする成分であるほか、相対屈折率の温度係数(dn/dT)の温度依存性を増大させる成分でもある。また、含有量があまりにも多すぎると、著しく熱的安定性が低下するおそれがある。そのため、ZrOの含有量は上記範囲であることが好ましい。 ZrO 2 is a component having a function of increasing the refractive index in the glass composition B, and also has a function of improving the thermal stability of the glass by containing an appropriate amount. However, ZrO 2 is a component that relatively reduces the average linear expansion coefficient α L , and is also a component that increases the temperature dependence of the temperature coefficient (dn / dT) of the relative refractive index. Also, if the content is too high, the thermal stability may be significantly reduced. Therefore, the content of ZrO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、TiOの含有量の上限は、好ましくは15%であり、さらには14%、13%、12%、11%、10%、9%、8%、7%、6%の順により好ましい。また、TiOの含有量の下限は、好ましくは0%であり、さらには1%、2%、3%、4%、5%の順により好ましい。TiOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the TiO 2 content is preferably 15%, and further 14%, 13%, 12%, 11%, 10%. 9%, 8%, 7% and 6% are more preferable in this order. The lower limit of the TiO 2 content is preferably 0%, more preferably 1%, 2%, 3%, 4%, and 5%. The content of TiO 2 may be 0%.
 TiOは、ガラス組成Bにおいて、屈折率を高める働きのある成分であり、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。TiOは、部分分散比Pg,Fを大きくする成分であり、かつNbと比べてPg,FおよびΔPg,Fの値を大きくする働きが強い。一方、TiOの含有量が多すぎると、平均線膨張係数αが低下するおそれがあるほか、アッベ数νdが低下するおそれがあり、またガラスの着色が強まり、さらに熔融性が悪化するおそれがある。再加熱時の安定性が悪化するおそれもある。そのため、TiOの含有量は上記範囲であることが好ましい。 TiO 2 is a component having a function of increasing the refractive index in the glass composition B, and also has a function of improving the thermal stability of the glass by containing an appropriate amount. TiO 2 is a component that increases the partial dispersion ratios Pg and F, and has a strong function of increasing the values of Pg, F and ΔPg and F as compared with Nb 2 O 5. On the other hand, if the content of TiO 2 is too large, the average coefficient of linear expansion α L may decrease, the Abbe number νd may decrease, the glass may be colored more, and the meltability may further deteriorate. There is. Stability during reheating may deteriorate. Therefore, the content of TiO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Nbの含有量の上限は、好ましくは20%であり、さらには19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、5%、3%、2%、1%の順により好ましい。また、Nbの含有量の下限は、好ましくは0%であり、さらには0.001%、0.003%、0.005%、0.010%、0.050%、0.080%、0.100%の順により好ましい。Nbの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of Nb 2 O 5 is preferably 20%, and further 19%, 18%, 17%, 16%, 15 %, 14%, 13%, 12%, 11%, 10%, 5%, 3%, 2%, 1% are more preferable. The lower limit of the content of Nb 2 O 5 is preferably 0%, and further 0.001%, 0.003%, 0.005%, 0.010%, 0.050%, 0.080. % And 0.100% are more preferable. The content of Nb 2 O 5 may be 0%.
 Nbは、ガラス組成Bにおいて、屈折率を高める働きのある成分であり、適量を含有させることにより、ガラスの熱的安定性を改善する働きも有する。また、Nbは、部分分散比Pg,FおよびΔPg,Fを大きくする成分でもある。一方、Nbの含有量が多すぎると、平均線膨張係数αが低下するおそれがあるほか、ガラスの着色が強まるおそれがある。再加熱時の安定性が悪化するおそれもある。そのため、Nbの含有量は上記範囲であることが好ましい。 Nb 2 O 5 is a component having a function of increasing the refractive index in the glass composition B, and also has a function of improving the thermal stability of the glass by containing an appropriate amount. Nb 2 O 5 is also a component that increases the partial dispersion ratios Pg, F and ΔPg, F. On the other hand, if the content of Nb 2 O 5 is too large, the average coefficient of linear expansion α L may decrease and the coloring of the glass may be strengthened. Stability during reheating may deteriorate. Therefore, the content of Nb 2 O 5 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、WOの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.1%の順により好ましい。また、WOの含有量の下限は、好ましくは0%である。WOの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of WO 3 is preferably 10%, and further 8%, 6%, 4%, 2%, 1%, It is more preferable in the order of 0.5% and 0.1%. The lower limit of the WO 3 content is preferably 0%. The content of WO 3 may be 0%.
 WOは、ガラス組成Bにおいて、他の高分散成分に対してガラス転移温度Tgを下げる働きを持つため、ガラスを軟化成形するとき、とりわけ精密プレスを実施するとき、成形型やその保護膜、成形機を保護するために成形温度を低下させる目的で導入することが出来る。一方でガラスの透過率を高める観点、およびガラスの相対屈折率の温度係数(dn/dT)の上昇を抑える観点から、WOの含有量は上記範囲であることが好ましい。 In the glass composition B, WO 3 has a function of lowering the glass transition temperature Tg with respect to other highly dispersed components. It can be introduced for the purpose of lowering the molding temperature in order to protect the molding machine. On the other hand, the content of WO 3 is preferably in the above range from the viewpoint of increasing the transmittance of the glass and suppressing the increase in the temperature coefficient (dn / dT) of the relative refractive index of the glass.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Biの含有量の上限は、好ましくは10%であり、さらには8%、6%、4%、2%、1%、0.5%、0.1%の順により好ましい。また、Biの含有量の下限は、好ましくは0%である。Biの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of Bi 2 O 3 is preferably 10%, and further 8%, 6%, 4%, 2%, 1 %, 0.5%, and 0.1% are more preferable. The lower limit of the Bi 2 O 3 content is preferably 0%. The content of Bi 2 O 3 may be 0%.
 Biは、ガラス組成Bにおいて、屈折率ndを高める一方で、アッベ数νdを低下させる成分である。また、ガラスの着色を増大させやすい成分でもある。したがって、Biの含有量は上記範囲であることが好ましい。 Bi 2 O 3 is a component in the glass composition B that increases the refractive index nd while decreasing the Abbe number νd. It is also a component that easily increases the coloring of glass. Therefore, the content of Bi 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Taの含有量の上限は、好ましくは20%であり、さらには15%、13%、10%、5%、3%、1%の順により好ましい。また、Taの含有量の下限は、好ましくは0%である。Taの含有量は0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the content of Ta 2 O 5 is preferably 20%, and further 15%, 13%, 10%, 5%, 3 %, 1% is more preferable. The lower limit of the content of Ta 2 O 5 is preferably 0%. The content of Ta 2 O 5 may be 0%.
 Taは、ガラス組成Bにおいて、ガラスの熱的安定性および耐失透性を改善する働きを有するガラス成分である。一方、Taは、屈折率を上昇させ、ガラスを高分散化させる。また、Taの含有量が多くなると、ガラスの熱的安定性が低下し、ガラスを熔融するときに、ガラス原料の熔け残りが生じやすくなる。また、平均線膨張係数αを比較的低下させる成分である。そのため、Taの含有量は上記範囲であることが好ましい。さらに、Taは、他のガラス成分と比較し、極めて高価な成分であり、Taの含有量が多くなるとガラスの生産コストが増大する。さらに、Taは他のガラス成分と比べて分子量が大きいため、ガラスの比重を増大させ、結果的に光学素子の重量を増大させる。 Ta 2 O 5 is a glass component having a function of improving the thermal stability and devitrification resistance of the glass in the glass composition B. On the other hand, Ta 2 O 5 increases the refractive index and makes the glass highly dispersed. Further, when the content of Ta 2 O 5 is increased, the thermal stability of the glass is lowered, and when the glass is melted, the unmelted residue of the glass raw material is likely to occur. It is also a component that relatively lowers the average coefficient of linear expansion α L. Therefore, the content of Ta 2 O 5 is preferably in the above range. Further, Ta 2 O 5 is an extremely expensive component as compared with other glass components, and as the content of Ta 2 O 5 increases, the production cost of glass increases. Further, since Ta 2 O 5 has a larger molecular weight than other glass components, it increases the specific gravity of the glass, and as a result, increases the weight of the optical element.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Scの含有量の上限は、好ましくは2%である。また、Scの含有量の下限は、好ましくは0%である。 In the case of the glass composition B in the molding glass material according to the present embodiment, the upper limit of the Sc 2 O 3 content is preferably 2%. The lower limit of the Sc 2 O 3 content is preferably 0%.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、HfOの含有量の上限は、好ましくは2%である。また、HfOの含有量の下限は、好ましくは0%である。 In the case of the glass composition B in the molding glass material according to the present embodiment, the upper limit of the HfO 2 content is preferably 2%. The lower limit of the HfO 2 content is preferably 0%.
 ガラス組成Bにおいて、Sc、HfOは、いずれも屈折率ndを高める働きを有し、また高価な成分である。そのため、Sc、HfOの各含有量は上記範囲であることが好ましい。 In the glass composition B, Sc 2 O 3 and HfO 2 both have a function of increasing the refractive index nd and are expensive components. Therefore, the contents of Sc 2 O 3 and HfO 2 are preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Luの含有量の上限は、好ましくは2%である。また、Luの含有量の下限は、好ましくは0%である。 In the case of the glass composition B in the molding glass material according to the present embodiment, the upper limit of the content of Lu 2 O 3 is preferably 2%. The lower limit of the content of Lu 2 O 3 is preferably 0%.
 Luは、ガラス組成Bにおいて、屈折率ndを高める働きを有する。また、分子量が大きいことから、ガラスの比重を増加させるガラス成分でもある。そのため、Luの含有量は上記範囲であることが好ましい。 Lu 2 O 3 has a function of increasing the refractive index nd in the glass composition B. In addition, since it has a large molecular weight, it is also a glass component that increases the specific gravity of glass. Therefore, the content of Lu 2 O 3 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、GeOの含有量の上限は、好ましくは2%である。また、GeOの含有量の下限は、好ましくは0%である。 In the case of the glass composition B in the molding glass material according to the present embodiment, the upper limit of the content of GeO 2 is preferably 2%. The lower limit of the GeO 2 content is preferably 0%.
 GeOは、ガラス組成Bにおいて、屈折率ndを高める働きを有し、また、一般的に使用されるガラス成分の中で、突出して高価な成分である。したがって、ガラスの製造コストを低減する観点から、GeOの含有量は上記範囲であることが好ましい。 GeO 2 has a function of increasing the refractive index nd in the glass composition B, and is a prominently expensive component among commonly used glass components. Therefore, from the viewpoint of reducing the manufacturing cost of glass, the content of GeO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Laの含有量の上限は、好ましくは2%である。また、Laの含有量の下限は、好ましくは0%である。Laの含有量は0%であってもよい。 In the case of the glass composition B in the molding glass material according to the present embodiment, the upper limit of the content of La 2 O 3 is preferably 2%. The lower limit of the content of La 2 O 3 is preferably 0%. The content of La 2 O 3 may be 0%.
 ガラス組成Bにおいて、Laの含有量が多くなるとガラスの熱的安定性および耐失透性が低下し、製造中にガラスが失透しやすくなる。したがって、熱的安定性および耐失透性の低下を抑制する観点から、Laの含有量は上記範囲であることが好ましい。 In the glass composition B, when the content of La 2 O 3 is increased, the thermal stability and devitrification resistance of the glass are lowered, and the glass is easily devitrified during production. Therefore, the content of La 2 O 3 is preferably in the above range from the viewpoint of suppressing the decrease in thermal stability and devitrification resistance.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、Ybの含有量の上限は、好ましくは2%である。また、Ybの含有量の下限は、好ましくは0
%である。
In the case of the glass composition B in the molding glass material according to the present embodiment, the upper limit of the content of Yb 2 O 3 is preferably 2%. Further, the lower limit of the content of Yb 2 O 3 is preferably 0.
%.
 ガラス組成Bにおいて、Ybの含有量が多すぎるとガラスの熱的安定性および耐失透性が低下するおそれがある。また、一般的に使用されるガラス成分の中でも、高価な成分である。ガラスの熱的安定性の低下を防ぎ、比重の増大を抑制する観点、またガラスの製造コストを抑える観点から、Ybの含有量は上記範囲であることが好ましい。 If the content of Yb 2 O 3 in the glass composition B is too large, the thermal stability and devitrification resistance of the glass may decrease. Moreover, it is an expensive component among the commonly used glass components. The content of Yb 2 O 3 is preferably in the above range from the viewpoint of preventing the decrease in thermal stability of the glass, suppressing the increase in the specific gravity, and suppressing the production cost of the glass.
 本実施形態に係る成形用ガラス素材は、ガラス組成Bの場合、主として上述のガラス成分SiO、B、Al、P、LiO、NaO、KO、CsO、MgO、CaO、SrO、BaO、ZnO、La、Gd、Y、ZrO、TiO、Nb、WO、Bi、Ta、Sc、HfO、Lu、GeO、およびYbで構成されていることが好ましく、上述のガラス成分の合計含有量は、95%以上が好ましく、98%以上より好ましく、99%以上がさらに好ましく、99.5%以上が一層好ましい。 When the glass material for molding according to the present embodiment has a glass composition B, the above-mentioned glass components SiO 2 , B 2 O 3 , Al 2 O 3 , P 2 O 5 , Li 2 O, Na 2 O, K 2 are mainly used. O, Cs 2 O, MgO, CaO, SrO, BaO, ZnO, La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , It is preferably composed of Ta 2 O 5 , Sc 2 O 3 , HfO 2 , Lu 2 O 3 , GeO 2 , and Yb 2 O 3 , and the total content of the above-mentioned glass components is preferably 95% or more. , 98% or more, more preferably 99% or more, and even more preferably 99.5% or more.
 本実施形態に係る成形用ガラス素材において、TeOの含有量の上限は、好ましくは2%である。また、TeOの含有量の下限は、好ましくは0%である。 In the molding glass material according to the present embodiment, the upper limit of the content of TeO 2 is preferably 2%. The lower limit of the content of TeO 2 is preferably 0%.
 TeOは毒性を有することから、TeOの含有量を低減させることが好ましい。そのため、TeOの含有量は上記範囲であることが好ましい。 Since TeO 2 is toxic, it is preferable to reduce the content of TeO 2. Therefore, the content of TeO 2 is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、フッ素Fの含有量は3%以下であることが好ましく、その上限は1%、0.5%、0.3%の順により好ましい。Fの含有量は少ない方が好ましく、その下限は好ましくは0%である。Fの含有量は0%でもよい。また、好ましくは、フッ素Fを実質的に含まない。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the content of fluorine F is preferably 3% or less, and the upper limit thereof is in the order of 1%, 0.5%, 0.3%. preferable. The content of F is preferably small, and the lower limit thereof is preferably 0%. The content of F may be 0%. Also, preferably, it does not substantially contain fluorine F.
 ガラス組成Bにおいて、Fの含有量を上記範囲とすることで、ガラスを熔解中の揮発を抑えることができ、屈折率の変動、脈理を抑えることができる。 By setting the content of F in the glass composition B within the above range, volatilization during melting of the glass can be suppressed, and fluctuations in the refractive index and pulse can be suppressed.
 なお、本実施形態に係る成形用ガラス素材は、基本的に上記ガラス成分により構成されることが好ましいが、本発明の作用効果を妨げない範囲において、その他の成分を含有することも可能である。また、本発明において、不可避的不純物の含有を排除するものではない。 The molding glass material according to the present embodiment is preferably composed of the above glass components, but may contain other components as long as the effects of the present invention are not impaired. .. Further, in the present invention, the inclusion of unavoidable impurities is not excluded.
<その他の成分組成>
 Pb、As、Cd、Tl、Be、Seは、いずれも毒性を有する。そのため、本実施形態に係る成形用ガラス素材がこれら元素をガラス成分として含有しないことが好ましい。
<Other ingredient composition>
Pb, As, Cd, Tl, Be and Se are all toxic. Therefore, it is preferable that the molding glass material according to the present embodiment does not contain these elements as a glass component.
 U、Th、Raはいずれも放射性元素である。そのため、本実施形態に係る成形用ガラス素材がこれら元素をガラス成分として含有しないことが好ましい。 U, Th, and Ra are all radioactive elements. Therefore, it is preferable that the molding glass material according to the present embodiment does not contain these elements as a glass component.
 V、Cr、Mn、Fe、Co、Ni、Cu、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tmは、ガラスの着色を増大させ、蛍光の発生源となり得る。そのため、本実施形態に係る成形用ガラス素材がこれら元素をガラス成分として含有しないことが好ましい。 V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm increase the coloring of glass and can be a source of fluorescence. Therefore, it is preferable that the molding glass material according to the present embodiment does not contain these elements as a glass component.
 Sb(Sb)、Ce(CeO)は清澄剤として機能する任意に添加可能な元素である。このうち、Sb(Sb)は、清澄効果の大きな清澄剤である。 Sb (Sb 2 O 3 ) and Ce (CeO 2 ) are optionally addable elements that function as clarifying agents. Of these, Sb (Sb 2 O 3 ) is a clarifying agent having a large clarifying effect.
 Sbの含有量は、外割り表示とする。すなわち、SbおよびCeO以外
の全ガラス成分の合計含有量を100質量%としたときのSbの含有量は、好ましくは1質量%未満、より好ましくは0.1質量%未満である。さらに、は0.05質量%未満、0.03質量%未満、0.02質量%未満、0.01%未満の順に好ましい。Sbの含有量は0質量%であってもよい。
The content of Sb 2 O 3 is indicated by external division. That is, when the total content of all glass components other than Sb 2 O 3 and CeO 2 is 100% by mass, the content of Sb 2 O 3 is preferably less than 1% by mass, more preferably 0.1% by mass. Is less than. Further, is preferably less than 0.05% by mass, less than 0.03% by mass, less than 0.02% by mass, and less than 0.01% in this order. The content of Sb 2 O 3 may be 0% by mass.
 CeOの含有量も、外割り表示とする。すなわち、CeO、Sb以外の全ガラス成分の合計含有量を100質量%としたときのCeOの含有量は、好ましくは2質量%未満、より好ましくは1質量%未満、さらに好ましくは0.5質量%未満、一層好ましくは0.1質量%未満の範囲である。CeOの含有量は0質量%であってもよい。CeOの含有量を上記範囲とすることによりガラスの清澄性を改善できる。 The content of CeO 2 is also indicated by external division. That is, when the total content of all glass components other than CeO 2 and Sb 2 O 3 is 100% by mass, the content of CeO 2 is preferably less than 2% by mass, more preferably less than 1% by mass, and even more preferably. Is in the range of less than 0.5% by mass, more preferably less than 0.1% by mass. The content of CeO 2 may be 0% by mass. By setting the content of CeO 2 in the above range, the clarity of the glass can be improved.
(ガラス組成Bを有する場合のガラスの特性)
<屈折率nd>
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、屈折率ndには特に制限はなく、例えば1.60~2.10を例示でき、好ましくは1.65~2.00であり、より好ましくは1.70~1.88であり、さらに好ましくは1.73~1.85である。屈折率ndの下限は1.65、1.74、1.75、1.76、1.77、1.78、または1.79でもよく、屈折率ndの上限は2.0、1.9、1.84、1.83、または1.82でもよい。
(Characteristics of glass when having glass composition B)
<Refractive index nd>
In the molding glass material according to the present embodiment, in the case of the glass composition B, the refractive index nd is not particularly limited, and for example, 1.60 to 2.10 can be exemplified, preferably 1.65 to 2.00. , More preferably 1.70 to 1.88, and even more preferably 1.73 to 1.85. The lower limit of the refractive index nd may be 1.65, 1.74, 1.75, 1.76, 1.77, 1.78, or 1.79, and the upper limit of the refractive index nd is 2.0, 1.9. It may be 1.84, 1.83, or 1.82.
 屈折率ndは、ガラス組成Bにおける各ガラス成分の含有量を適宜調整することにより所望の値にすることができる。相対的に屈折率ndを高める働きを有する成分(高屈折率化成分)は、Nb5+、Ti4+、W6+、Bi3+、Ta5+、Zr4+、La3+ 等(すなわち酸化物表示では、Nb、TiO、WO、Bi、Ta、ZrO、La等)である。一方、相対的に屈折率ndを低くする働きを有する成分(低屈折率化成分)は、P5+、Si4+、B3+、Li、Na、K等(すなわち酸化物表示では、P、SiO2、B、LiO、NaO、KO等)
である。
The refractive index nd can be set to a desired value by appropriately adjusting the content of each glass component in the glass composition B. The components (high refractive index components) that have the function of relatively increasing the refractive index nd are Nb 5+ , Ti 4+ , W 6+ , Bi 3+ , Ta 5+ , Zr 4+ , La 3+ 3, etc. (that is, in oxide display, Nb 2 O 5 , TiO 2 , WO 3 , Bi 2 O 3 , Ta 2 O 5 , ZrO 2 , La 2 O 3, etc.). On the other hand, the components having a function of relatively lowering the refractive index nd (lower refractive index component) are P 5+ , Si 4+ , B 3+ , Li + , Na + , K + and the like (that is, P in the oxide display). 2 O 5 , SiO 2 , B 2 O 3 , Li 2 O, Na 2 O, K 2 O, etc.)
Is.
<アッベ数νd>
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、アッベ数νdは、20~70を提示でき、好ましくは25~65であり、より好ましくは30~60であり、さらに好ましくは35~55である。アッベ数νdの下限は23、28、32、36、37、38、39、または40でもよく、アッベ数νdの上限は67、63、57、53、51、49、47、45、43、または42でもよい。
<Abbe number νd>
In the molding glass material according to the present embodiment, in the case of the glass composition B, the Abbe number νd can be 20 to 70, preferably 25 to 65, more preferably 30 to 60, and further preferably 35. ~ 55. The lower limit of the Abbe number νd may be 23, 28, 32, 36, 37, 38, 39, or 40, and the upper limit of the Abbe number νd is 67, 63, 57, 53, 51, 49, 47, 45, 43, or It may be 42.
 アッベ数νdは、ガラス組成Bおける各ガラス成分の含有量を適宜調整することにより所望の値にすることができる。相対的にアッベ数νdを低くする成分、すなわち高分散化成分は、Nb5+、Ti4+、W6+、Bi3+、Ta5+、Zr4+等(すなわち酸化物表示では、Nb、TiO、WO、Bi、Ta、ZrO等)である。一方、相対的にアッベ数νdを高くする成分、すなわち低分散化成分は、P5+、Si4+、B3+、Li、Na、K、La3+、Ba2+、Ca2+、Sr2+等(すなわち酸化物表示では、P、SiO2、B、LiO、NaO、KO、La、BaO、CaO、SrO等)である。 The Abbe number νd can be set to a desired value by appropriately adjusting the content of each glass component in the glass composition B. Component to lower the relatively Abbe number [nu] d, i.e. highly dispersed component, Nb 5+, Ti 4+, W 6+, Bi 3+, Ta 5+, Zr 4+ , etc. (i.e. the oxides display, Nb 2 O 5, TiO 2 , WO 3 , Bi 2 O 3 , Ta 2 O 5 , ZrO 2, etc.). On the other hand, the components that relatively increase the Abbe number νd, that is, the low dispersion components, are P 5+ , Si 4+ , B 3+ , Li + , Na + , K + , La 3+ , Ba 2+ , Ca 2+ , Sr 2+, etc. (That is, in the oxide display, P 2 O 5 , SiO 2 , B 2 O 3 , Li 2 O, Na 2 O, K 2 O, La 2 O 3 , BaO, CaO, SrO, etc.).
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、屈折率ndとアッベ数νdとは、好ましくは下記式(1)を満たし、より好ましくは下記式(2)を満たし、さらに好ましくは下記式(3)を満たし、特に好ましくは下記式(4)を満たす。屈折率ndとアッベ数νdとが下記式を満たすことで、高屈折率・低分散特性を有する成形用ガラス素材が得られる。
 nd-(-0.0183×アッベ数νd+2.502)≧0 …(1)
 nd-(-0.0183×アッベ数νd+2.512)≧0 …(2)
 nd-(-0.0183×アッベ数νd+2.522)≧0 …(3)
 nd-(-0.0183×アッベ数νd+2.532)≧0 …(4)
In the molding glass material according to the present embodiment, in the case of the glass composition B, the refractive index nd and the Abbe number νd preferably satisfy the following formula (1), more preferably the following formula (2), and further preferably. Satisfies the following formula (3), and particularly preferably the following formula (4). When the refractive index nd and the Abbe number νd satisfy the following equations, a glass material for molding having high refractive index and low dispersion characteristics can be obtained.
nd- (-0.0183 x Abbe number νd + 2.502) ≧ 0… (1)
nd- (-0.0183 x Abbe number νd + 2.512) ≧ 0… (2)
nd- (-0.0183 x Abbe number νd + 2.522) ≥ 0 ... (3)
nd- (-0.0183 x Abbe number νd + 2.532) ≧ 0… (4)
<平均線膨張係数α
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、-30~70℃における平均線膨張係数αの下限は、好ましくは0.80×10-5-1であり、さらには0.81×10-5-1、0.82×10-5-1、0.83×10-5-1、0.84×10-5-1、0.85×10-5-1、0.86×10-5-1、0.87×10-5-1、0.88×10-5-1の順により好ましい。また、平均線膨張係数αの上限は、ガラスの安定性を保持し所望の光学特性を得る観点から、1.20×10-5-1を例示でき、好ましくは1.10×10-5-1以下であり、さらには1.00×10-5-1、0.98×10-5-1、0.96×10-5-1、0.95×10-5-1、0.94×10-5-1、0.93×10-5-1の順により好ましい。
<Average coefficient of linear expansion α L >
In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the average linear expansion coefficient α L at −30 to 70 ° C. is preferably 0.80 × 10-5 ° C. -1 , and further. 0.81 × 10 -5 ℃ -1, 0.82 × 10 -5 ℃ -1, 0.83 × 10 -5 ℃ -1, 0.84 × 10 -5 ℃ -1, 0.85 × 10 - 5 ° C -1 , 0.86 × 10 -5 ° C -1 , 0.87 × 10 -5 ° C -1 , 0.88 × 10 -5 ° C -1 is more preferable. Further, the upper limit of the average coefficient of linear expansion α L can be exemplified by 1.20 × 10 −5 ° C. -1 from the viewpoint of maintaining the stability of the glass and obtaining desired optical characteristics, and is preferably 1.10 × 10 −. It is 5 ° C -1 or less, and further 1.00 x 10-5 ° C -1 , 0.98 x 10-5 ° C -1 , 0.96 x 10-5 ° C -1 , 0.95 x 10-5.-1 , 0.94 × 10 -5-1 , 0.93 × 10 -5-1 is more preferable.
 ガラス組成Bの場合、-30~70℃における平均線膨張係数αを上記範囲とすることで、幅広い温度環境に使用できる成形用ガラス素材を得ることができる。 In the case of the glass composition B, by setting the average coefficient of linear expansion α L at −30 to 70 ° C. in the above range, a glass material for molding that can be used in a wide temperature environment can be obtained.
 平均線膨張係数αは、JOGIS16の規定に基づいて測定する。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とする。試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように加熱し、温度と試料の伸びを1秒刻みで測定する。平均線膨張係数αは-30~70℃における線膨張係数の平均値である。 The average coefficient of linear expansion α L is measured based on the provisions of JOBIS16. The sample shall be a round bar with a length of 20 mm ± 0.5 mm and a diameter of 5 mm ± 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments. The average coefficient of linear expansion α L is the average value of the coefficient of linear expansion at −30 to 70 ° C.
 なお、JOGIS16では、「平均線膨張係数は、10-7-1の単位で、整数部の一の位まで表示する」と規定されているが、本明細書では、平均線膨張係数αは[10-5・℃-1]を単位として表示する。 In JOBIS16, it is stipulated that "the coefficient of linear expansion is displayed in units of 10-7 ° C- 1 up to the first digit of the integer part", but in this specification, the coefficient of linear expansion α L Is displayed in units of [10-5 · ° C- 1].
 本明細書では、平均線膨張係数αについては[10-5・℃-1]を用いた単位で表しているが、単位として[10-5・K-1]を用いた場合でも平均線膨張係数αの数値は同じである。 In this specification, the coefficient of linear expansion α L is expressed in units using [10-5 · ° C- 1 ], but even when [10-5 · K -1 ] is used as the unit, the average line is expressed. The numerical values of the expansion coefficient α L are the same.
<平均線膨張係数α100-300
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、100~300℃における平均線膨張係数α100-300の下限は、好ましくは90であり、さらには92、94、95の順により好ましい。また、平均線膨張係数α100-300の上限は、ガラスの安定性を保持し所望の光学特性を得る観点から、130を例示でき、好ましくは115であり、さらには110、106、104の順により好ましい。
<Average coefficient of linear expansion α 100-300 >
In the molding glass material according to the present embodiment, in the case of the glass composition B, the lower limit of the average linear expansion coefficient α 100-300 at 100 to 300 ° C. is preferably 90, and further in the order of 92, 94, 95. preferable. Further, the upper limit of the average coefficient of linear expansion α 100-300 can be exemplified by 130 from the viewpoint of maintaining the stability of the glass and obtaining desired optical characteristics, preferably 115, and further in the order of 110, 106, 104. More preferred.
 平均線膨張係数α100-300は、JOGIS08の規定に基づいて測定する。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とする。試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように加熱し、温度と試料の伸びを1秒刻みで測定する。平均線膨張係数α100-300は100~300℃における線膨張係数の平均値である。 The average coefficient of linear expansion α 100-300 is measured based on the provisions of JOBIS08. The sample shall be a round bar with a length of 20 mm ± 0.5 mm and a diameter of 5 mm ± 0.5 mm. With a load of 98 mN applied to the sample, it is heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample are measured in 1 second increments. The average coefficient of linear expansion α 100-300 is the average value of the coefficient of linear expansion at 100 to 300 ° C.
 なお、本明細書では、平均線膨張係数α100-300は、JOGIS08の規定に従い、10-7-1の単位で、整数第1位まで表示する。すなわち、平均線膨張係数α100-300は[10-7・℃-1]を単位とする整数で表示する。 In this specification, the coefficient of linear expansion α 100-300 is displayed in units of 10-7 ° C- 1 up to the first integer in accordance with the provisions of JOBIS08. That is, the average coefficient of linear expansion α 100-300 is expressed as an integer with [10-7 · ° C- 1 ] as a unit.
<相対屈折率の温度係数dn/dT>
 ガラスの相対屈折率の温度係数(dn/dT)は、日本産業規格JISB7072-2(光学ガラスにおける屈折率の温度係数の測定方法-第2部:干渉法)により、波長632.8nmの光についての、-40℃から110℃に温度を変化させた際における相対屈折率の温度係数の値を測定する。
 なお、本明細書では、相対屈折率の温度係数(dn/dT)を[10-6・℃-1]の単位で表しているが、単位として[10-6・K-1]を用いた場合でも相対屈折率の温度係数dn/dTの数値は同じである。
<Temperature coefficient of relative refractive index dn / dT>
The temperature coefficient of the relative refractive index (dn / dT) of glass is determined by the Japanese Industrial Standard JISB7072-2 (Method for measuring the temperature coefficient of refractive index in optical glass-Part 2: Interferometry) for light with a wavelength of 632.8 nm. The value of the temperature coefficient of the relative refractive index when the temperature is changed from −40 ° C. to 110 ° C. is measured.
In this specification, the temperature coefficient of relative refractive index (dn / dT) is expressed in the unit of [10-6 · ° C- 1 ], but [10-6 · K -1 ] is used as the unit. Even in this case, the value of the temperature coefficient dn / dT of the relative refractive index is the same.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、相対屈折率の温度係数dn/dTの上限は、He-Neレーザの波長(633nm乃至632.8nm)、温度20~40℃の範囲で、好ましくは2.0×10-6-1であり、さらには1.5×10-6-1、1.0×10-6-1、0.5×10-6-1、0.0×10-6-1、-0.5×10-6-1、-1.0×10-6-1の順により好ましい。また、該相対屈折率の温度係数dn/dTの下限に明確な制限はないが、He-Neレーザの波長(633nm乃至632.8nm)、かつ温度20~40℃の範囲で、好ましくは-13.0×10-6-1であり、さらには-10.0×10-6-1、-9.0×10-6-1、-8.0×10-6-1、-7.0×10-6-1、-6.5×10-6-1の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the temperature coefficient dn / dT of the relative refractive index is the wavelength of the He—Ne laser (633 nm to 632.8 nm) and the temperature of 20 to 40 ° C. In the range, it is preferably 2.0 × 10 -6-1 , and more preferably 1.5 × 10 -6-1 , 1.0 × 10 -6-1 , 0.5 × 10 -6 ℃ -1. -1 , 0.0 × 10 -6 ° C -1 , -0.5 × 10 -6 ° C -1 , and -1.0 × 10 -6 ° C -1 are more preferable. Further, although there is no clear limitation on the lower limit of the temperature coefficient dn / dT of the relative refractive index, the wavelength of the He-Ne laser (633 nm to 632.8 nm) and the temperature in the range of 20 to 40 ° C. are preferably -13. .0 × 10 -6-1 , and further -10.0 × 10 -6-1 , -9.0 × 10 -6-1 , -8.0 × 10 -6-1 , It is more preferable in the order of −7.0 × 10 -6 ° C -1 and −6.5 × 10 -6 ° C -1.
 dn/dTを上記範囲とし、dn/dTが正の値である光学素子、あるいはdn/dTが負の値でレンズの焦点距離の符号が異なる光学素子などと組み合わせることで、光学素子の温度が大きく変動するような環境下でも屈折率の変動が小さくなるため、より幅広い温度範囲において、所望の光学特性を高精度に発揮できる。 By combining an optical element in which dn / dT is in the above range and dn / dT is a positive value, or an optical element in which dn / dT is a negative value and the focal length of the lens has a different sign, the temperature of the optical element can be increased. Since the fluctuation of the refractive index becomes small even in an environment where the fluctuation is large, the desired optical characteristics can be exhibited with high accuracy in a wider temperature range.
 他方で、エネルギーの大きな光、たとえばレーザ光のような光や、ガラスの吸収波長に相当する光などがガラスに入射する際は、光の強度や照射時間によってガラスの温度上昇の幅が変化する。この場合、本実施形態のガラス単独で、屈折率の温度変化を小さくすることが要求されることもある。 On the other hand, when light with high energy, such as light such as laser light, or light corresponding to the absorption wavelength of glass is incident on the glass, the range of temperature rise of the glass changes depending on the intensity of the light and the irradiation time. .. In this case, it may be required to reduce the temperature change of the refractive index of the glass of the present embodiment alone.
 このような場合の相対屈折率の温度係数dn/dTの上限は、He-Neレーザの波長(633nm乃至632.8nm)、温度20~40℃の範囲を例にとると、好ましくは2.0×10-6-1であり、さらには1.5×10-6-1、1.0×10-6-1、0.5×10-6-1、0.3×10-6-1、0.1×10-6-1の順にいっそう好ましい。また、該相対屈折率の温度係数dn/dTの下限は、好ましくは-2.0×10-6-1であり、さらには-1.5×10-6-1、-1.0×10-6-1、-0.5×10-6-1、-0.3×10-6-1、-0.1×10-6-1の順にいっそう好ましい。相対屈折率の温度係数dn/dTを0.0×10-6-1にすることもできる。なお、本実施形態に係る成形用ガラス素材の相対屈折率の温度係数(dn/dT)の値は、本明細書の記載を参酌し、使用するレーザ波長によって上記の好ましい範囲の中で適宜選択してもよい。 In such a case, the upper limit of the temperature coefficient dn / dT of the relative refractive index is preferably 2.0, taking the wavelength of the He-Ne laser (633 nm to 632.8 nm) and the temperature in the range of 20 to 40 ° C. as an example. × 10 -6-1 , and further 1.5 × 10 -6-1 , 1.0 × 10 -6-1 , 0.5 × 10 -6-1 , 0.3 × 10 It is more preferable in the order of -6 ° C -1 and 0.1 × 10 -6 ° C -1. The lower limit of the temperature coefficient dn / dT of the relative refractive index is preferably −2.0 × 10 -6 ° C -1 , and further −1.5 × 10 -6 ° C -1 and −1.0. It is more preferable in the order of × 10 -6 ° C -1 , −0.5 × 10 -6 ° C -1 , −0.3 × 10 -6 ° C -1 , and −0.1 × 10 -6 ° C -1. The temperature coefficient dn / dT of the relative refractive index can also be 0.0 × 10 -6 ° C -1. The value of the temperature coefficient (dn / dT) of the relative refractive index of the glass material for molding according to the present embodiment is appropriately selected within the above preferable range depending on the laser wavelength used in consideration of the description of the present specification. You may.
<相対屈折率の温度係数dn/dTの温度依存性の測定方法>
 本実施形態のガラスは、ガラス組成Bの場合、相対屈折率の温度係数(dn/dT)の温度依存性が小さい。その測定法は以下のとおりである。
<Measurement method of temperature dependence of temperature coefficient dn / dT of relative refractive index>
In the case of the glass composition B, the glass of the present embodiment has a small temperature dependence of the temperature coefficient (dn / dT) of the relative refractive index. The measurement method is as follows.
 日本光学硝子工業会規格JOGIS18「光学ガラスの屈折率の温度係数の測定方法」に記載された方法のうち、干渉法により測定する。-40℃から80℃に温度を変化させ、温度-30℃、-10℃、+10℃、+30℃、+50℃、+70℃において波長632.8nmのdn/dT(以下、dn/dT@632.8と表記する。)を測定し、温度に対するdn/dT@632.8の値の近似直線を最小二乗法によって求め、その直線の傾きをa、温度0℃における切片をbとする。 Among the methods described in the Japan Optical Glass Industry Association standard JOGIS18 "Measurement method of temperature coefficient of refractive index of optical glass", measurement is performed by the interferometry method. The temperature is changed from −40 ° C. to 80 ° C., and the wavelength is 632.8 nm at temperatures of −30 ° C., −10 ° C., + 10 ° C., + 30 ° C., + 50 ° C., and + 70 ° C. 8) is measured, an approximate straight line of the value of dn / dT @ 632.8 with respect to the temperature is obtained by the least squares method, the slope of the straight line is a, and the intercept at a temperature of 0 ° C. is b.
 上記の傾きaが0に近いほど、温度によるdn/dTの変化量が小さいため、異なる温度域においても温度変化あたりのdn/dTの値の変化が小さくなることを意味する。つまり、光学素子の単位温度変化に対する焦点距離のずれ方が温度によらず一定になることから、受光素子側の位置調整機構を簡素化でき、高精度な結像を求められる光学素子に有効である。 The closer the slope a is to 0, the smaller the amount of change in dn / dT due to temperature, which means that the change in dn / dT value per temperature change becomes smaller even in different temperature ranges. In other words, since the deviation of the focal length with respect to the unit temperature change of the optical element becomes constant regardless of the temperature, the position adjustment mechanism on the light receiving element side can be simplified, which is effective for optical elements that require highly accurate imaging. be.
 したがって、本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、上記傾きaの値の範囲は、好ましくは10.0×10-9~-10.0×10-9であり、さらには8.0×10-9~-8.0×10-9、6.0×10-9~-6.0×10-9、4.0×10-9~-4.0×10-9、3.0×10-9~-3.0×10-9の順により好ましい。 Therefore, in the molding glass material according to the present embodiment, in the case of the glass composition B, the range of the value of the inclination a is preferably 10.0 × 10 -9 to -10.0 × 10 -9 , and further. is 8.0 × 10 -9 ~ -8.0 × 10 -9, 6.0 × 10 -9 ~ -6.0 × 10 -9, 4.0 × 10 -9 ~ -4.0 × 10 - It is more preferable in the order of 9, 3.0 × 10 -9 to −3.0 × 10 -9.
 また上記の切片bが0.0×10-6に近いほど、近似直線における0℃でのdn/dT@632.8の値が小さいため、dn/dTの値の絶対値が小さいことを意味する。したがって、単独の光学素子の単位温度変化に対する焦点距離のずれ量自体が小さくなることから、高精度な結像を求められる光学素子に有効である。 Further, the closer the intercept b is to 0.0 × 10-6 , the smaller the value of dn / dT @ 632.8 at 0 ° C. in the approximate straight line, which means that the absolute value of the dn / dT value is smaller. do. Therefore, since the amount of deviation of the focal length with respect to a unit temperature change of a single optical element becomes small, it is effective for an optical element that requires highly accurate imaging.
 したがって、本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、上記切片bの値の範囲は、好ましくは3.0×10-6~-3.0×10-6であり、さらには2.0×10-6~-2.0×10-6、1.0×10-6~-1.0×10-6、0.5×10-6~-0.5×10-6の順により好ましい。なお上記傾きaの値を一定の値以下、好ましくは0付近に制御すれば、かならずしも上記切片bが0でなくてもよい。上記切片bを0付近にすることもできる。 Therefore, in the molding glass material according to the present embodiment, in the case of the glass composition B, the range of the values of the section b is preferably 3.0 × 10-6 to −3.0 × 10-6 , and further. is 2.0 × 10 -6 ~ -2.0 × 10 -6, 1.0 × 10 -6 ~ -1.0 × 10 -6, 0.5 × 10 -6 ~ -0.5 × 10 - It is more preferable in the order of 6. If the value of the slope a is controlled to be equal to or less than a certain value, preferably near 0, the intercept b does not necessarily have to be 0. The intercept b can be set to around 0.
<ガラス転移温度Tg>
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、ガラス転移温度Tgの上限は、好ましくは730℃であり、さらには720℃、710℃、700℃の順により好ましい。また、ガラス転移温度Tgの下限は、好ましくは500℃であり、さらには550℃、560℃、570℃、580℃の順により好ましい。
<Glass transition temperature Tg>
In the molding glass material according to the present embodiment, in the case of the glass composition B, the upper limit of the glass transition temperature Tg is preferably 730 ° C, more preferably 720 ° C, 710 ° C, and 700 ° C. The lower limit of the glass transition temperature Tg is preferably 500 ° C., more preferably 550 ° C., 560 ° C., 570 ° C., and 580 ° C.
 ガラス転移温度Tgの上限が上記範囲を満たすことにより、ガラスの成型温度およびアニール温度の上昇を抑制することができ、プレス成形用設備およびアニール設備への熱的ダメージを軽減できる。また、ガラス転移温度Tgの下限が上記範囲を満たすことにより、所望のアッベ数、屈折率を維持しつつ、ガラスの熱的安定性を良好に維持しやすくなる。また、精密プレス素材として用いる際に良好な成形性を得ることができる。 When the upper limit of the glass transition temperature Tg satisfies the above range, it is possible to suppress an increase in the glass molding temperature and the annealing temperature, and it is possible to reduce thermal damage to the press molding equipment and the annealing equipment. Further, when the lower limit of the glass transition temperature Tg satisfies the above range, it becomes easy to maintain good thermal stability of the glass while maintaining a desired Abbe number and refractive index. In addition, good moldability can be obtained when used as a precision press material.
 他方で、ガラス転移温度Tgが高いほど、単位温度変化あたりの膨張量が小さくなる傾向にあるので、単位温度変化あたりの熱膨張による形状変化の度合いを軽減できる傾向がある。また、加熱によってガラスの温度がTg付近あるいは歪点以上まで上昇してしまうと、その後にガラスが冷却されても光学性能が元の状態に戻らなくなるおそれもある。したがってTgの下限は上記範囲を満たすことが好ましい。 On the other hand, the higher the glass transition temperature Tg, the smaller the amount of expansion per unit temperature change, so the degree of shape change due to thermal expansion per unit temperature change tends to be reduced. Further, if the temperature of the glass rises to near Tg or above the strain point due to heating, the optical performance may not return to the original state even if the glass is subsequently cooled. Therefore, the lower limit of Tg preferably satisfies the above range.
<ガラスの比重>
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、比重は、好ましくは5.50以下であり、さらには、5.00以下、4.80以下の順により好ましい。ガラスの比重を低減することができれば、レンズの重量を減少できる。その結果、レンズを搭載するカメラレンズのオートフォーカス駆動の消費電力を低減できる。
<Glass specific density>
In the molding glass material according to the present embodiment, in the case of the glass composition B, the specific gravity is preferably 5.50 or less, and more preferably 5.00 or less and 4.80 or less. If the specific gravity of the glass can be reduced, the weight of the lens can be reduced. As a result, the power consumption of the autofocus drive of the camera lens on which the lens is mounted can be reduced.
<ガラスの光線透過性>
 本実施形態に係る成形用ガラス素材の光線透過性は、着色度λ5、λ70、およびλ80により評価できる。
 ガラス組成Bの場合、厚さ10.0mm±0.1mmのガラス試料について波長200~700nmの範囲で分光透過率を測定し、外部透過率が5%となる波長をλ5とし、外部透過率が70%となる波長をλ70とし、外部透過率が80%となる波長をλ80とする。
<Light transmission of glass>
The light transmittance of the molding glass material according to the present embodiment can be evaluated by the degree of coloring λ5, λ70, and λ80.
In the case of glass composition B, the spectral transmittance is measured in the wavelength range of 200 to 700 nm for a glass sample having a thickness of 10.0 mm ± 0.1 mm, the wavelength at which the external transmittance is 5% is set to λ5, and the external transmittance is set to λ5. The wavelength at which 70% is λ70, and the wavelength at which the external transmittance is 80% is λ80.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、λ5は、好ましくは400nm以下であり、より好ましくは380nm以下であり、さらに好ましくは360nm以下であり、特に好ましくは350nm以下である。 In the molding glass material according to the present embodiment, in the case of the glass composition B, λ5 is preferably 400 nm or less, more preferably 380 nm or less, further preferably 360 nm or less, and particularly preferably 350 nm or less. ..
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、λ70は、好ましくは440nm以下であり、より好ましくは430nm以下であり、さらに好ましくは420nm以下である。 In the molding glass material according to the present embodiment, in the case of the glass composition B, λ70 is preferably 440 nm or less, more preferably 430 nm or less, and further preferably 420 nm or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Bの場合、λ80は、好ましくは510nm以下であり、より好ましくは500nm以下であり、さらに好ましくは490nm以下である。 In the molding glass material according to the present embodiment, in the case of the glass composition B, λ80 is preferably 510 nm or less, more preferably 500 nm or less, and further preferably 490 nm or less.
 λ5、λ70、およびλ80が上記のように短波長化された成形用ガラス素材を用いることで、好適な色再現を可能とする光学素子を提供できる。 By using a molding glass material in which λ5, λ70, and λ80 have shortened wavelengths as described above, it is possible to provide an optical element that enables suitable color reproduction.
(ガラス組成C)
 次に、本実施形態に係る成形用ガラス素材がガラス組成Cを有する場合の、ガラス成分の含有量・比率、およびガラス特性ついて説明する。
(Glass composition C)
Next, the content / ratio of the glass component and the glass characteristics when the molding glass material according to the present embodiment has the glass composition C will be described.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SiOは、ガラスのネットワーク形成成分として、ガラスの熱的安定性や再加熱失透性、化学的耐久性および耐候性を改善し、熔融ガラスの粘度を高め、熔融ガラスを成形しやすくする働きを有する必須成分である。以上の観点から、SiO含有量は、質量%表示でBとPの合計含有量よりも多いことが好ましい。ガラス組成Cの場合、ケイ酸塩ガラスであることが好ましい。ガラス組成Cの場合、SiO含有量は、8.0%以上であることが好ましく、10.00%以上、11.00%以上、12.00%以上、13.00%以上、14.00%以上、14.50%以上、15.00%以上、15.50%以上、16.00%以上、16.50%以上、16.60%以上の順により好ましい。
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、ガラスの耐失透性向上、熔融性の向上および部分分散特性改善の観点からは、SiO含有量は、50.00%以下であることが好ましく、45.00%以下、40.00%以下、35.00%以下、30.00%以下、28.00%以下、26.00%以下、25.00%以下、24.50%以下、24.00%以下、23.50%以下、23.00%以下、22.75%以下、22.50%以下、22.00%以下の順により好ましい。
In the molding glass material according to the present embodiment, in the case of the glass composition C, SiO 2 improves the thermal stability, reheat devitrification, chemical durability and weather resistance of the glass as a network forming component of the glass. It is an essential component that has the function of increasing the viscosity of the molten glass and facilitating the molding of the molten glass. From the above viewpoint, the SiO 2 content is preferably larger than the total content of B 2 O 3 and P 2 O 5 in terms of mass%. In the case of glass composition C, it is preferably silicate glass. In the case of glass composition C, the SiO 2 content is preferably 8.0% or more, 10.00% or more, 11.00% or more, 12.00% or more, 13.00% or more, 14.00. % Or more, 14.50% or more, 15.00% or more, 15.50% or more, 16.00% or more, 16.50% or more, 16.60% or more, in that order.
In the case of the glass composition C in the molding glass material according to the present embodiment, the SiO 2 content is 50.00% or less from the viewpoint of improving the devitrification resistance of the glass, improving the meltability, and improving the partial dispersion characteristics. 45.00% or less, 40.00% or less, 35.00% or less, 30.00% or less, 28.00% or less, 26.00% or less, 25.00% or less, 24. It is more preferable in the order of 50% or less, 24.00% or less, 23.50% or less, 23.00% or less, 22.75% or less, 22.50% or less, and 22.00% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SiOとBとの合計含有量(SiO+B)は、ガラスの熱的安定性の向上、より一層の低比重化およびより望ましい光学恒数を得る観点から、10.00%以上であることが好ましく、12.00%以上、14.00%以上、15.00%以上、16.00%以上、17.00%以上、17.75%以上、18.00%以上、18.25%以上、18.50%以上、18.60%以上の順により好ましく、35.00%以下であることが好ましく、32.00%以下、30.00%以下、28.00%以下、27.00%以下、26.50%以下、26.00%以下、25.50%以下、25.00%以下、24.50%以下、24.40%以下、24.30%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the total content of SiO 2 and B 2 O 3 (SiO 2 + B 2 O 3 ) is further improved in the thermal stability of the glass. From the viewpoint of lowering the specific gravity and obtaining a more desirable optical constant, it is preferably 10.00% or more, 12.00% or more, 14.00% or more, 15.00% or more, 16.00% or more, 17.00% or more, 17.75% or more, 18.00% or more, 18.25% or more, 18.50% or more, 18.60% or more are preferable, and 35.00% or less is preferable. , 32.00% or less, 30.00% or less, 28.00% or less, 27.00% or less, 26.50% or less, 26.00% or less, 25.50% or less, 25.00% or less, 24 It is more preferable in the order of .50% or less, 24.40% or less, and 24.30% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SiOとBはガラスの熱的安定性を改善する働きを有するが、SiOの含有量が多くなるとガラスの熔融性が低下する傾向がある。以上の観点から、SiOとBとの合計含有量に対するSiOの質量比(SiO/(SiO+B))は、0.50以上であることが好ましく、0.55以上、0.60以上、0.65以上、0.70以上、0.75以上、0.77以上、0.80以上の順により好ましく、1.00以下であることが好ましく、0.99以下、0.98以下、0.97以下、0.96以下、0.95以下、0.94以下、0.93以下、0.92以下、0.91以下、0.90以下、0.89以下、0.88以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, SiO 2 and B 2 O 3 have a function of improving the thermal stability of the glass, but when the content of SiO 2 increases, the glass melts. The sex tends to decrease. From the above viewpoint, the mass ratio of SiO 2 to the total content of SiO 2 and B 2 O 3 (SiO 2 / (SiO 2 + B 2 O 3 )) is preferably 0.50 or more, and 0. 55 or more, 0.60 or more, 0.65 or more, 0.70 or more, 0.75 or more, 0.77 or more, 0.80 or more, more preferably 1.00 or less, and 0.99 or more. Below, 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, 0.90 or less, 0.89 Hereinafter, it is more preferable in the order of 0.88 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SiO含有量に対するB含有量の質量比(B/SiO)は、化学的耐久性向上、αmaxの低下ならびに再加熱失透性の向上の観点から、1.00未満であることが好ましく、0.90以下、0.80以下、0.70以下、0.60以下、0.50以下、0.40以下、0.35以下、0.32以下、0.31以下、0.30以下、0.29以下、0.28以下、0.27以下、0.26以下、0.25以下の順により好ましい。熱的安定性向上の観点からは、質量比(B/SiO)は、0.00以上であることが好ましく、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、0.06以上、0.07以上、0.08以上、0.09以上、0.10以上、0.11以上、0.12以上、0.13以上、0.14以上、0.15以上の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the mass ratio of the B 2 O 3 content to the SiO 2 content (B 2 O 3 / SiO 2 ) is improved in chemical durability and α max. It is preferably less than 1.00, preferably 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0, from the viewpoint of reducing the amount of heat and improving the reheat devitrification. .40 or less, 0.35 or less, 0.32 or less, 0.31 or less, 0.30 or less, 0.29 or less, 0.28 or less, 0.27 or less, 0.26 or less, 0.25 or less in that order More preferred. From the viewpoint of improving thermal stability, the mass ratio (B 2 O 3 / SiO 2 ) is preferably 0.00 or more, 0.01 or more, 0.02 or more, 0.03 or more, 0. 04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0. It is more preferable in the order of 14 or more and 0.15 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、B含有量は、0.00%以上であることが好ましく、0.00%超であることがより好ましく、0.10%以上、0.20%以上、0.30%以上、0.35%以上、0.37%以上、0.39%以上、0.40%以上、0.41%以上、0.42%以上、0.43%以上、0.44%以上、0.45%以上、0.46%以上、0.47%以上、0.48%以上、0.49%以上の順により好ましい。また、B含有量は、30.00%以下であることが好ましく、25.00%以下、20.00%以下、18.00%以下、16.00%以下、14.00%以下、12.00%以下、10.00%以下、9.00%以下、8.00%以下、7.00%以下、6.00%以下、5.50%以下、5.20%以下、5.10%以下、5.00%以下、4.90%以下、4.80%以下の順により好ましい。B含有量を上記範囲とすることにより、ガラスの比重をより低減でき、また、ガラスの熱的安定性を改善できる。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the B 2 O 3 content is preferably 0.00% or more, more preferably more than 0.00%, and 0. 10% or more, 0.20% or more, 0.30% or more, 0.35% or more, 0.37% or more, 0.39% or more, 0.40% or more, 0.41% or more, 0.42% Above, 0.43% or more, 0.44% or more, 0.45% or more, 0.46% or more, 0.47% or more, 0.48% or more, 0.49% or more are more preferable. The B 2 O 3 content is preferably 30.00% or less, 25.00% or less, 20.00% or less, 18.00% or less, 16.00% or less, 14.00% or less. 1,12.00% or less, 10.00% or less, 9.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.50% or less, 5.20% or less, 5 It is more preferable in the order of .10% or less, 5.00% or less, 4.90% or less, and 4.80% or less. By setting the B 2 O 3 content in the above range, the specific gravity of the glass can be further reduced, and the thermal stability of the glass can be improved.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、CaO含有量は、ガラスの熔融性および熱的安定性向上の観点から、3.00%以上であることが好ましく、4.00%以上であることがより好ましく、5.00%以上、5.10%以上、5.20%以上、5.30%以上、5.40%以上、5.50%以上、5.60%以上、5.70%以上、5.80%以上、5.90%以上の順により好ましい。また、同様の観点から、CaO含有量は、40.00%以下であることが好ましく、35.00%以下、30.00%以下、28.00%以下、26.00%以下、24.00%以下、22.00%以下、21.50%以下、21.00%以下、20.50%以下、20.25%以下、20.00%以下、19.50%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the CaO content is preferably 3.00% or more from the viewpoint of improving the meltability and thermal stability of the glass, which is 4.00. % Or more, more preferably 5.00% or more, 5.10% or more, 5.20% or more, 5.30% or more, 5.40% or more, 5.50% or more, 5.60% or more. More preferably, the order is 5.70% or more, 5.80% or more, and 5.90% or more. From the same viewpoint, the CaO content is preferably 40.00% or less, 35.00% or less, 30.00% or less, 28.00% or less, 26.00% or less, 24.00. % Or less, 22.00% or less, 21.50% or less, 21.000% or less, 20.50% or less, 20.25% or less, 20.00% or less, 19.50% or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、アルカリ土類金属酸化物であるMgO、CaO、SrOおよびBaOとZnOとの合計含有量(MgO+CaO+SrO+BaO+ZnO)は、5.00%以上であることが好ましく、7.00%以上、10.00%以上、11.00%以上、12.00%以上、13.00%以上、13.50%以上、14.00%以上、14.50%以上、15.00%以上、15.30%以上、15.50%以上、16.00%以上の順により好ましい。また、合計含有量(MgO+CaO+SrO+BaO+ZnO)は、50.00%以下であることが好ましく、45.00%以下、40.00%以下、39.00%以下、38.00%以下、37.00%以下、36.50%以下、36.00%以下、35.50%以下、35.00%以下、34.50%以下、34.00%以下の順により好ましい。合計含有量(MgO+CaO+SrO+BaO+ZnO)が上記範囲であることは、より一層の低比重化、および高分散化を妨げることなく熱的安定性を維持する観点から好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the total content (MgO + CaO + SrO + BaO + ZnO) of the alkaline earth metal oxides MgO, CaO, SrO and BaO and ZnO is 5.00% or more. It is preferably 7.00% or more, 10.00% or more, 11.00% or more, 12.00% or more, 13.00% or more, 13.50% or more, 14.00% or more, 14.50. % Or more, 15.00% or more, 15.30% or more, 15.50% or more, and 16.00% or more are more preferable. The total content (MgO + CaO + SrO + BaO + ZnO) is preferably 50.00% or less, 45.00% or less, 40.00% or less, 39.00% or less, 38.00% or less, 37.00% or less. , 36.50% or less, 36.00% or less, 35.50% or less, 35.00% or less, 34.50% or less, 34.00% or less, in that order. It is preferable that the total content (MgO + CaO + SrO + BaO + ZnO) is in the above range from the viewpoint of maintaining thermal stability without hindering further lowering of the specific density and increasing dispersion.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、MgO、CaO、SrO、BaOおよびZnOの中で、MgO、CaOは、SrO、BaO、ZnOと比べてガラスの比重を抑えるうえで有効な成分である。したがって、比重の増大をより一層抑制する観点から、MgOおよびCaOの合計含有量に対するZnO、SrOおよびBaOの合計含有量の質量比((ZnO+SrO+BaO)/(MgO+CaO))は、2.78以下であることが好ましく、2.77以下、2.76以下、2.75以下、2.74以下、2.73以下の順により好ましい。
 一方、SrO、BaO、ZnOは、MgO、CaOよりも部分分散特性を改善する働きが大きい。そのため、部分分散特性を改善する観点から、質量比((ZnO+SrO+BaO)/(MgO+CaO))は、0.17以上であることが好ましく、0.18以上、0.19以上、0.20以上の順により好ましい。
In the molding glass material according to the present embodiment, in the case of the glass composition C, among MgO, CaO, SrO, BaO and ZnO, MgO and CaO are used to suppress the specific gravity of glass as compared with SrO, BaO and ZnO. It is an effective ingredient. Therefore, from the viewpoint of further suppressing the increase in specific gravity, the mass ratio of the total content of ZnO, SrO and BaO to the total content of MgO and CaO ((ZnO + SrO + BaO) / (MgO + CaO)) is 2.78 or less. It is preferable, and more preferably 2.77 or less, 2.76 or less, 2.75 or less, 2.74 or less, 2.73 or less.
On the other hand, SrO, BaO, and ZnO have a greater function of improving the partial dispersion characteristics than MgO and CaO. Therefore, from the viewpoint of improving the partial dispersion characteristics, the mass ratio ((ZnO + SrO + BaO) / (MgO + CaO)) is preferably 0.17 or more, in the order of 0.18 or more, 0.19 or more, and 0.20 or more. More preferred.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、MgO、CaO、SrO、BaOおよびZnOの合計含有量に対するCaO含有量の質量比(CaO/(MgO+CaO+SrO+BaO+ZnO))は、より一層の高屈折率化および更なる低比重化の観点から、0.35以上であることが好ましく、0.36以上、0.37以上、0.38以上、0.39以上、0.40以上、0.41以上、0.42以上の順により好ましい。熱的安定性向上の観点からは、質量比(CaO/(MgO+CaO+SrO+BaO+ZnO))は、1.00以下であることが好ましく、0.95以下、0.90以下、0.89以下、0.88以下、0.87以下、0.86以下、0.85以下、0.84以下、0.83以下、0.80以下、0.78以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the mass ratio of the CaO content to the total content of MgO, CaO, SrO, BaO and ZnO (CaO / (MgO + CaO + SrO + BaO + ZnO)) is even higher. From the viewpoint of increasing the refractive index and further reducing the specific gravity, it is preferably 0.35 or more, 0.36 or more, 0.37 or more, 0.38 or more, 0.39 or more, 0.40 or more, 0. It is more preferable in the order of 41 or more and 0.42 or more. From the viewpoint of improving thermal stability, the mass ratio (CaO / (MgO + CaO + SrO + BaO + ZnO)) is preferably 1.00 or less, 0.95 or less, 0.90 or less, 0.89 or less, 0.88 or less. , 0.87 or less, 0.86 or less, 0.85 or less, 0.84 or less, 0.83 or less, 0.80 or less, 0.78 or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、MgO、CaO、SrO、BaOおよびZnOの合計含有量に対するCaOとMgOとの合計含有量の質量比((CaO+MgO)/(MgO+CaO+SrO+BaO+ZnO))は、より一層の低比重化の観点からは、0.35以上であることが好ましく、0.36以上、0.37以上、0.38以上、0.39以上、0.40以上、0.41以上、0.42以上の順により好ましい。熱的安定性向上の観点からは、質量比((CaO+MgO)/(MgO+CaO+SrO+BaO+ZnO)は、1.00以下であることが好ましく、0.95以下、0.90以下、0.89以下、0.88以下、0.87以下、0.86以下、0.85以下、0.84以下、0.83以下、0.80以下、0.78以下の順により好ましい。 In the case of the glass composition C in the glass material for molding according to the present embodiment, the mass ratio of the total content of CaO and MgO to the total content of MgO, CaO, SrO, BaO and ZnO ((CaO + MgO) / (MgO + CaO + SrO + BaO + ZnO) ) Is preferably 0.35 or more, 0.36 or more, 0.37 or more, 0.38 or more, 0.39 or more, 0.40 or more, 0 from the viewpoint of further lowering the specific gravity. It is more preferable in the order of .41 or more and 0.42 or more. From the viewpoint of improving thermal stability, the mass ratio ((CaO + MgO) / (MgO + CaO + SrO + BaO + ZnO) is preferably 1.00 or less, 0.95 or less, 0.90 or less, 0.89 or less, 0.88. Hereinafter, it is more preferable in the order of 0.87 or less, 0.86 or less, 0.85 or less, 0.84 or less, 0.83 or less, 0.80 or less, 0.78 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、アルカリ土類金属酸化物であるMgO、CaO、SrOおよびBaOならびにZnOは、液相温度を下げ、熱的安定性を改善する働きを有する。他方、これらの含有量が多くなると、化学的耐久性および/または耐候性が低下する傾向がある。また、SiOおよびBは、熱的安定性を改善し、再加熱失透性を改善する働きを有するが、これらの含有量が多くなると熔融性が低下する傾向がある。以上の観点から、MgO、CaO、SrO、BaOおよびZnOの合計含有量に対するSiOとBとの合計含有量の質量比((SiO+B)/(MgO+CaO+SrO+BaO+ZnO))は、0.40以上であることが好ましく、0.45以上、0.50以上、0.52以上、0.54以上、0.56以上、0.57以上、0.58以上、0.59以上、0.60以上、0.61以上、0.70以上、0.80以上、0.90以上,1.00以上、1.10以上の順により好ましく、2.00以下であることが好ましく、1.80以下、1.60以下、1.55以下、1.50以下、1.45以下、1.40以下、1.35以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the alkaline earth metal oxides MgO, CaO, SrO and BaO and ZnO have a function of lowering the liquidus temperature and improving the thermal stability. Has. On the other hand, as these contents increase, the chemical durability and / or weather resistance tends to decrease. Further, SiO 2 and B 2 O 3 have a function of improving thermal stability and reheating devitrification, but when their contents are increased, the meltability tends to decrease. From the above viewpoint, the mass ratio of the total content of SiO 2 and B 2 O 3 to the total content of MgO, CaO, SrO, BaO and ZnO ((SiO 2 + B 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO)) is determined. It is preferably 0.40 or more, 0.45 or more, 0.50 or more, 0.52 or more, 0.54 or more, 0.56 or more, 0.57 or more, 0.58 or more, 0.59 or more, It is more preferably 0.60 or more, 0.61 or more, 0.70 or more, 0.80 or more, 0.90 or more, 1.00 or more, and 1.10 or more, and preferably 2.00 or less. It is more preferable in the order of .80 or less, 1.60 or less, 1.55 or less, 1.50 or less, 1.45 or less, 1.40 or less, and 1.35 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、MgO含有量は、0.00%以上であることが好ましい。また、MgO含有量は、15.00%以下であることが好ましく、12.00%以下、9.00%以下、7.00%以下、6.00%以下、5.00%以下、4.00%以下、3.50%以下、3.00%以下、2.50%以下、2.10%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the MgO content is preferably 0.00% or more. The MgO content is preferably 15.00% or less, 12.00% or less, 9.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4. It is more preferable in the order of 00% or less, 3.50% or less, 3.00% or less, 2.50% or less, and 2.10% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SrO含有量は、0.00%以上であることが好ましく、0.10%以上、0.20%以上、0.25%以上、0.26%以上、0.27%以上、0.28%以上、0.29%以上、0.30%以上、0.31%以上の順により好ましい。また、SrO含有量は、15.00%以下であることが好ましく、12.00%以下、10.00%以下、9.00%以下、8.50%以下、8.00%以下、7.50%以下、7.00%以下、6.50%以下、6.00%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the SrO content is preferably 0.00% or more, and 0.10% or more, 0.20% or more, 0.25% or more. , 0.26% or more, 0.27% or more, 0.28% or more, 0.29% or more, 0.30% or more, and 0.31% or more, in that order. The SrO content is preferably 15.00% or less, 12.00% or less, 10.00% or less, 9.00% or less, 8.50% or less, 8.00% or less, 7. It is more preferable in the order of 50% or less, 7.00% or less, 6.50% or less, and 6.00% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、BaO含有量は、0.00%以上であることが好ましく、0.10%以上、0.20%以上、0.30%以上、0.40%以上、0.50%以上、0.60%以上、0.70%以上、0.80%以上、0.90%以上、1.00%以上、1.10%以上、1.20%以上、1.30%以上の順により好ましい。また、BaO含有量は、25.00%以下であることが好ましく、22.00%以下、20.00%以下、19.00%以下、18.00%以下、17.00%以下、16.50%以下、16.00%以下、15.50%以下、15.25%以下、15.00%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the BaO content is preferably 0.00% or more, 0.10% or more, 0.20% or more, 0.30% or more. , 0.40% or more, 0.50% or more, 0.60% or more, 0.70% or more, 0.80% or more, 0.90% or more, 1.00% or more, 1.10% or more, 1 .20% or more, more preferably 1.30% or more. The BaO content is preferably 25.00% or less, 22.00% or less, 20.00% or less, 19.00% or less, 18.00% or less, 17.00% or less, 16. It is more preferable in the order of 50% or less, 16.00% or less, 15.50% or less, 15.25% or less, and 15.00% or less.
 MgO、CaO、SrOおよびBaOは、いずれもガラスの熱的安定性および耐失透性を改善させる働きを有するガラス成分である。高分散性およびより一層の低比重化の観点とガラスの熱的安定性および耐失透性の向上の観点から、これらガラス成分の各含有量は、それぞれ上記範囲であることが好ましい。 MgO, CaO, SrO and BaO are all glass components having a function of improving the thermal stability and devitrification resistance of glass. From the viewpoint of high dispersibility and further lowering the specific density, and from the viewpoint of improving the thermal stability and devitrification resistance of the glass, the content of each of these glass components is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、ZnO含有量は、0.00%以上であることが好ましい。また、ZnO含有量は、10.00%以下であることが好ましく、9.00%以下、8.00%以下、7.00%以下、6.00%以下、5.00%以下、4.00%以下、3.00%以下、2.00%以下の順により好ましい。ZnOは、ガラスの熱的安定性を改善する働きを有するガラス成分である。より一層の低比重化、ガラスの熱的安定性向上ならびにより望ましい光学恒数を得る観点から、ZnOの含有量は上記範囲であることが好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the ZnO content is preferably 0.00% or more. The ZnO content is preferably 10.00% or less, and is 9.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4. It is more preferable in the order of 00% or less, 3.00% or less, and 2.00% or less. ZnO is a glass component having a function of improving the thermal stability of glass. The ZnO content is preferably in the above range from the viewpoints of further lowering the specific density, improving the thermal stability of the glass, and obtaining a more desirable optical constant.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、希土類酸化物であるLa、GdおよびYの合計含有量(La+Gd+Y)は、高屈折率化および低分散性の観点から、0%超であることが好ましく、0.50%以上、1.00%以上、1.33%以上、1.50%以上、2.00%以上、2.50%以上、3.00%以上の順により好ましい。より一層の低比重化の観点からは、La、GdおよびYの合計含有量(La+Gd+Y)は、30.00%以下であることが好ましく、29.00%以下、28.00%以下、26.00%以下、24.00%以下、22.00%以下、20.00%以下、18.00%以下、16.00%以下、15.00%以下、14.50%以下、14.00%以下、13.50%以下、13.00%以下、12.50%以下、12.00%以下の順により好ましい。 In the case of the glass composition C in the glass material for molding according to the present embodiment, the total content of the rare earth oxides La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (La 2 O 3 + Gd 2 O 3 + Y). 2 O 3 ) is preferably more than 0% from the viewpoint of high refractive index and low dispersibility, and is 0.50% or more, 1.00% or more, 1.33% or more, 1.50% or more. , 2.00% or more, 2.50% or more, and 3.00% or more, more preferable. From the viewpoint of further lowering the specific density, the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) is 30.00% or less. 29.00% or less, 28.00% or less, 26.00% or less, 24.00% or less, 22.00% or less, 20.00% or less, 18.00% or less, 16. It is more preferable in the order of 00% or less, 15.00% or less, 14.50% or less, 14.00% or less, 13.50% or less, 13.00% or less, 12.50% or less, 12.00% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、BaOと、希土類酸化物であるLa、GdおよびYとは、いずれも低分散性に寄与する(即ち、アッベ数νdを大きくする)成分であるが、これらの含有量が多くなるとガラスの比重が高くなる傾向がある。以上の観点から、ガラス組成Cの場合、BaOと希土類酸化物La、GdおよびYとの合計含有量(BaO+La+Gd+Y)は、30.00%以下であることが好ましく、29.00%以下、28.00%以下、27.00%以下、26.00%以下、25.00%以下、24.50%以下、24.00%以下、23.50%以下、23.00%以下の順により好ましい。また、アッベ数νdをより大きくする観点から、BaO、La、GdおよびYの合計含有量(BaO+La+Gd+Y)は、0%超であることが好ましく、1.00%以上、2.00%以上、3.00%以上、4.00%以上、5.00%以上、6.00%以上、7.00%以上、7.50%以上、8.00%以上、8.50%以上の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, BaO and the rare earth oxides La 2 O 3 , Gd 2 O 3 and Y 2 O 3 all contribute to low dispersibility. Although it is a component (that is, it increases the Abbe number νd), the specific gravity of the glass tends to increase as the content of these components increases. From the above viewpoint, in the case of the glass composition C, the total content of BaO and the rare earth oxides La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) is It is preferably 30.00% or less, 29.00% or less, 28.00% or less, 27.00% or less, 26.00% or less, 25.00% or less, 24.50% or less, 24. It is more preferable in the order of 00% or less, 23.50% or less, 23.00% or less. Further, from the viewpoint of increasing the Abbe number νd, the total content of BaO, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) is 0%. It is preferably more than 1.00% or more, 2.00% or more, 3.00% or more, 4.00% or more, 5.00% or more, 6.00% or more, 7.00% or more, 7 It is more preferable in the order of .50% or more, 8.00% or more, and 8.50% or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、BaOおよびLaはいずれも低分散化成分であるが、BaOはLaと比べて屈折率を高める働きが少ない。したがって、屈折率を高める観点からは、Laの含有量に対するBaOの含有量の質量比(BaO/La)は、8.30以下であることが好ましく、8.00以下、7.50以下、7.00以下、6.50以下、6.00以下、5.50以下、5.40以下、5.30以下、5.20以下、5.10以下、5.00以下、4.90以下、4.80以下、4.70以下の順により好ましい。
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、質量比(BaO/La)は、0であってもよく、0.00以上であってもよい。ガラスの熱的安定性の維持の観点からは、質量比(BaO/La)は、0.00超であることが好ましく、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、0.06以上、0.07以上、0.08以上、0.09以上、0.10以上、0.11以上の順により好ましい。
In the molding glass material according to the present embodiment, in the case of the glass composition C, both BaO and La 2 O 3 are low-dispersion components, but BaO has less function of increasing the refractive index than La 2 O 3. .. Therefore, from the viewpoint of increasing the refractive index, the mass ratio of the BaO content to the content of La 2 O 3 (BaO / La 2 O 3) is preferably 8.30 or less, 8.00 or less, 7.50 or less, 7.00 or less, 6.50 or less, 6.00 or less, 5.50 or less, 5.40 or less, 5.30 or less, 5.20 or less, 5.10 or less, 5.00 or less, It is more preferable in the order of 4.90 or less, 4.80 or less, and 4.70 or less.
In molding the glass material according to the present embodiment, when the glass composition C, weight ratio (BaO / La 2 O 3) may be 0, or may be 0.00 or more. From the viewpoint of maintaining the thermal stability of the glass, the weight ratio (BaO / La 2 O 3) is preferably 0.00 greater, 0.01 or more, 0.02 or more, 0.03 or more, It is more preferable in the order of 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, and 0.11 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、希土類酸化物であるLa、GdおよびYは、屈折率を高め、低分散性に寄与することができるが、これらの含有量が多くなると熱的安定性が低下する傾向がある。また、SiOおよびBは熱的安定性を改善する働きを有するが、これらの含有量が多くなると熔解性が低下する傾向や屈折率が低下する傾向がある。以上の観点から、La、GdおよびYの合計含有量に対するSiOとBとの合計含有量の質量比((SiO+B)/(La+Gd+Y))は、0.00超であることが好ましく、0.25以上、0.50以上、0.75以上、1.00以上、1.25以上、1.50以上、1.75以上、1.80以上、1.85以上の順により好ましく、7.47以下であることが好ましく、7.40以下、7.35以下、7.30以下、7.25以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the rare earth oxides La 2 O 3 , Gd 2 O 3 and Y 2 O 3 increase the refractive index and contribute to low dispersibility. However, when these contents are high, the thermal stability tends to decrease. Further, SiO 2 and B 2 O 3 have a function of improving thermal stability, but when their contents are increased, the meltability tends to decrease and the refractive index tends to decrease. From the above viewpoint, the mass ratio of the total content of SiO 2 and B 2 O 3 to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 ((SiO 2 + B 2 O 3 ) / ( La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, 0.25 or more, 0.50 or more, 0.75 or more, 1.00 or more, 1.25 or more. , 1.50 or more, 1.75 or more, 1.80 or more, 1.85 or more, more preferably 7.47 or less, 7.40 or less, 7.35 or less, 7.30 or less, It is more preferable in the order of 7.25 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、La、GdおよびYは、いずれもガラスの屈折率を高めることができる成分であるが、GdおよびYは、Laと比べて比重を高くする成分である。したがって、より一層の低比重化の観点からは、La、GdおよびYの合計含有量に対するLa含有量の質量比(La/(La+Gd+Y))は、0.00超であることが好ましく、0.10以上、0.20以上、0.30以上、0.40以上、0.50以上、0.60以上、0.70以上、0.75以上の順により好ましい。質量比(La/(La+Gd+Y))は、1.00以下とすることができる。
 同様の観点から、ガラス組成Cの場合、La、GdおよびYの合計含有量に対するGd含有量の質量比(Gd/(La+Gd+Y))は、1.00未満であることが好ましく、0.90以下、0.80以下、0.70以下、0.60以下、0.50以下、0.40以下、0.30以下、0.25以下、0.20以下の順により好ましい。質量比(Gd/(La+Gd+Y))は、0.00以上とすることができる。
 また、同様の観点から、ガラス組成Cの場合、La、GdおよびYの合計含有量に対するY含有量の質量比(Y/(La+Gd+Y))は、1.00未満であることが好ましく、0.90以下、0.80以下、0.70以下、0.60以下、0.50以下、0.40以下、0.30以下、0.25以下の順により好ましい。質量比(Y/(La+Gd+Y))は、0.00以上とすることができる。
In the molding glass material according to the present embodiment, in the case of the glass composition C, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 are all components capable of increasing the refractive index of the glass, but Gd. 2 O 3 and Y 2 O 3 are components having a higher specific gravity than La 2 O 3. Therefore, from the viewpoint of further lowering the specific gravity, the mass ratio of the La 2 O 3 content to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (La 2 O 3 / (La 2). O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more, 0.50 or more, 0. It is more preferable in the order of .60 or more, 0.70 or more, and 0.75 or more. The mass ratio (La 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 1.00 or less.
From the same viewpoint, in the case of glass composition C, the mass ratio of the Gd 2 O 3 content to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (Gd 2 O 3 / (La 2 O 3). + Gd 2 O 3 + Y 2 O 3 )) is preferably less than 1.00, 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.40. Hereinafter, it is more preferable in the order of 0.30 or less, 0.25 or less, and 0.20 or less. The mass ratio (Gd 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 0.00 or more.
From the same viewpoint, in the case of glass composition C, the mass ratio of the Y 2 O 3 content to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (Y 2 O 3 / (La 2). O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably less than 1.00, 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0. It is more preferable in the order of .40 or less, 0.30 or less, and 0.25 or less. The mass ratio (Y 2 O 3 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 0.00 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、上記の観点から、希土類酸化物である上記成分の含有量は、それぞれ以下の範囲であることが好ましい。
 La含有量は、0.00%以上であることが好ましく、0.00%超、0.50%以上、1.00%以上、1.33%以上、1.50%以上、2.00%以上、2.50%以上、2.75%以上、3.00%以上の順により好ましい。また、La含有量は、30.00%以下であることが好ましく、25.00%以下、20.00%以下、18.00%以下、16.00%以下、15.00%以下、14.00%以下、13.50%以下、13.00%以下、12.50%以下、12.00%以下の順により好ましい。
 Gd含有量は、0.00%以上であることが好ましい。また、Gd含有量は、10.00%以下であることが好ましく、9.00%以下、8.00%以下、7.00%以下、6.00%以下、5.00%以下、4.00%以下、3.00%以下、2.00%以下の順により好ましい。
 Y含有量は、0.00%以上であることが好ましい。また、Y含有量は、10.00%以下であることが好ましく、9.00%以下、8.00%以下、7.00%以下、6.00%以下、5.00%以下、4.00%以下、3.00%以下、2.00%以下の順により好ましい。
In the case of the glass composition C in the glass material for molding according to the present embodiment, from the above viewpoint, the content of the above component, which is a rare earth oxide, is preferably in the following range.
The La 2 O 3 content is preferably 0.00% or more, more than 0.00%, 0.50% or more, 1.00% or more, 1.33% or more, 1.50% or more, 2 It is more preferable in the order of .00% or more, 2.50% or more, 2.75% or more, and 3.00% or more. The La 2 O 3 content is preferably 30.00% or less, 25.00% or less, 20.00% or less, 18.00% or less, 16.00% or less, 15.00% or less. , 14.00% or less, 13.50% or less, 13.00% or less, 12.50% or less, 12.00% or less, in that order.
The Gd 2 O 3 content is preferably 0.00% or more. The Gd 2 O 3 content is preferably 10.00% or less, and is 9.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less. It is more preferable in the order of 4.00% or less, 3.00% or less, and 2.00% or less.
The Y 2 O 3 content is preferably 0.00% or more. The Y 2 O 3 content is preferably 10.00% or less, and is 9.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less. It is more preferable in the order of 4.00% or less, 3.00% or less, and 2.00% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、Laはガラスの屈折率を高める働きを有し、Bはガラスの屈折率を低下させる傾向がある。したがって、より一層の高屈折率化の観点からは、B含有量に対するLa含有量の質量比(La/B)は、1.30以上であることが好ましく、1.35以上、1.40以上、1.45以上、1.50以上、1.55以上、1.60以上、1.65以上、1.70以上、1.72以上の順により好ましい。より一層の低比重化の観点からは、質量比(La/B)は、20.00以下であることが好ましく、18.00以下、16.00以下、14.00以下、13.00以下、12.00以下、11.50以下、11.00以下、10.50以下、10.00以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, La 2 O 3 has a function of increasing the refractive index of the glass, and B 2 O 3 tends to decrease the refractive index of the glass. Therefore, from the viewpoint of further increasing the refractive index, the mass ratio of the La 2 O 3 content to the B 2 O 3 content (La 2 O 3 / B 2 O 3 ) is 1.30 or more. Is preferable, in the order of 1.35 or more, 1.40 or more, 1.45 or more, 1.50 or more, 1.55 or more, 1.60 or more, 1.65 or more, 1.70 or more, 1.72 or more. preferable. From the viewpoint of further lowering the specific gravity, the mass ratio (La 2 O 3 / B 2 O 3 ) is preferably 20.00 or less, and is 18.00 or less, 16.00 or less, and 14.00 or less. , 13.00 or less, 12.00 or less, 11.50 or less, 11.00 or less, 10.50 or less, 10.00 or less, which is more preferable.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、La含有量に対するB含有量の質量比(B/La)は、0.79以下であることが好ましく、0.78以下、0.77以下、0.76以下、0.75以下、0.70以下、0.65以下、0.64以下、0.62以下、0.61以下、0.60以下、0.59以下、0.58以下、0.57以下、0.50以下の順により好ましい。質量比(La/B)は、0.00以上であることが好ましく、0.00超であることがより好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the mass ratio of the B 2 O 3 content to the La 2 O 3 content (B 2 O 3 / La 2 O 3 ) is 0.79 or less. It is preferably 0.78 or less, 0.77 or less, 0.76 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.64 or less, 0.62 or less, 0.61 or less. , 0.60 or less, 0.59 or less, 0.58 or less, 0.57 or less, 0.50 or less, in that order. The mass ratio (La 2 O 3 / B 2 O 3 ) is preferably 0.00 or more, and more preferably more than 0.00.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、希土類酸化物は、ガラスの屈折率を高めることができるが、希土類酸化物の含有量が多くなると熱的安定性が低下し、ガラスの熔融性が低下する傾向がある。したがって、ガラスの熱的安定性を維持しつつ、屈折率をより一層高める観点から、BaOとLa、GdおよびYとの合計含有量に対するLa、GdおよびYの合計含有量の質量比((La+Gd+Y)/(BaO+La+Gd+Y))は1.00以下であることが好ましく、1.00未満、0.99以下、0.98以下、0.97以下、0.96以下、0.95以下、0.94以下、0.93以下、0.92以下、0.91以下、0.90以下の順により好ましい。質量比((La+Gd+Y)/(BaO+La+Gd+Y))は、0.00超であることが好ましく、0.05以上、0.06以上、0.07以上、0.08以上、0.09以上、0.10以上、0.11以上、0.12以上、0.13以上、0.14以上、0.15以上、0.16以上、0.17以上、0.18以上、0.20以上の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the rare earth oxide can increase the refractive index of the glass, but when the content of the rare earth oxide increases, the thermal stability decreases. The meltability of glass tends to decrease. Therefore, while maintaining the thermal stability of the glass, from the viewpoint of increasing the refractive index even more, La 2 O 3 to the total content of BaO, La 2 O 3, Gd 2 O 3 and Y 2 O 3, Gd The mass ratio of the total content of 2 O 3 and Y 2 O 3 ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is 1.00. It is preferably less than or equal to 1.00 or less, 0.99 or less, 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92. Hereinafter, it is more preferable in the order of 0.91 or less and 0.90 or less. The mass ratio ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, preferably 0.05 or more. 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.10 or more, 0.11 or more, 0.12 or more, 0.13 or more, 0.14 or more, 0.15 or more, It is more preferable in the order of 0.16 or more, 0.17 or more, 0.18 or more, and 0.20 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、希土類酸化物はガラスの屈折率を高めることができるが、その含有量が多くなるとガラスの熔融性が低下する傾向がある。一方、アルカリ土類金属酸化物はガラスの熔融性を高めることができるが、その含有量が多くなると屈折率が低下する傾向がある。したがって、ガラスの熔融性を維持しつつ屈折率をより一層高める点から、MgO、CaO、SrO、BaO、ZnO、La、GdおよびYの合計含有量に対するLa、GdおよびYの合計含有量の質量比((La+Gd+Y)/(MgO+CaO+SrO+BaO+ZnO+La+Gd+Y))は、0.00超であることが好ましく、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、0.06以上、0.07以上、0.08以上の順により好ましく、0.85以下であることが好ましく、0.80以下、0.75以下、0.70以下、0.65以下、0.60以下、0.55以下、0.50以下、0.45以下、0.44以下、0.43以下、0.42以下、0.41以下、0.40以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the rare earth oxide can increase the refractive index of the glass, but when the content thereof increases, the meltability of the glass tends to decrease. On the other hand, alkaline earth metal oxides can increase the meltability of glass, but the refractive index tends to decrease as the content increases. Accordingly, La 2 from the viewpoint of further increase the refractive index while maintaining melting properties of glass, MgO, CaO, SrO, BaO , ZnO, to the total content of La 2 O 3, Gd 2 O 3 and Y 2 O 3 Mass ratio of total contents of O 3 , Gd 2 O 3 and Y 2 O 3 ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (MgO + CaO + SrO + BaO + ZnO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) Is preferably more than 0.00, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08. In the above order, it is preferably 0.85 or less, 0.80 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.55 or less, 0.50 or less. , 0.45 or less, 0.44 or less, 0.43 or less, 0.42 or less, 0.41 or less, 0.40 or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、希土類酸化物はガラスの屈折率を高めることができるが、その含有量が多くなるとガラスの熱的安定性が低下する傾向がある。一方、Bはガラスの熱的安定性を高めることができるが、その含有量が多くなると屈折率が低下する傾向がある。したがって、ガラスの熱的安定性を維持しつつ屈折率をより一層高める点から、BaO、La、GdおよびYの合計含有量に対するB含有量の質量比(B/(BaO+La+Gd+Y))は、0.00以上であることが好ましく、0.00超、0.01以上、0.02以上、0.03以上の順により好ましく、1.00以下であることが好ましく、0.90以下、0.80以下、0.70以下、0.60以下、0.55以下、0.50以下、0.45以下、0.40以下、0.35以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the rare earth oxide can increase the refractive index of the glass, but when the content thereof increases, the thermal stability of the glass tends to decrease. .. On the other hand, B 2 O 3 can enhance the thermal stability of the glass, but the refractive index tends to decrease as the content thereof increases. Therefore, the mass of the B 2 O 3 content with respect to the total content of Ba O , La 2 O 3 , Gd 2 O 3 and Y 2 O 3 from the viewpoint of further increasing the refractive index while maintaining the thermal stability of the glass. The ratio (B 2 O 3 / (BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is preferably 0.00 or more, more than 0.00, 0.01 or more, 0.02 or more, 0. It is more preferably 0.03 or more, preferably 1.00 or less, 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.55 or less, 0.50 or less, 0. It is more preferable in the order of 45 or less, 0.40 or less, and 0.35 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、La、GdおよびYは、ガラスの屈折率を高く働きを有するが、これらの合計含有量が多いと熱的安定性が低下する傾向がある。一方、Bは、ガラスの熱的安定性を改善する働きを有するが、屈折率を低下させる傾向がある。したがって、ガラスの熱的安定性を維持しながら屈折率を高める観点から、B、La、GdおよびYの合計含有量に対するLa、GdおよびYの合計含有量の質量比((La+Gd+Y)/(B+La+Gd+Y))は、0.57以上であることが好ましく、0.58以上、0.59以上、0.60以上、0.61以上、0.62以上、0.63以上、0.64以上の順により好ましい。より一層の低比重化の観点からは、質量比((La+Gd+Y)/(B+La+Gd+Y))は、1.00以下であることが好ましく,1.00未満、0.99以下、0.98以下、0.97以下、0.96以下、0.95以下、0.94以下、0.93以下、0.92以下、0.91以下、0.90以下、0.89以下、0.88以下、0.87以下、0.86以下、0.85以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 have a function of increasing the refractive index of the glass, but the total content thereof is high. The higher the amount, the lower the thermal stability tends to be. On the other hand, B 2 O 3 has a function of improving the thermal stability of glass, but tends to lower the refractive index. Therefore, from the viewpoint of increasing the refractive index while maintaining the thermal stability of the glass, B 2 O 3, La 2 O 3, Gd 2 O 3 and La 2 O 3 to the total content of Y 2 O 3, Gd 2 The mass ratio of the total content of O 3 and Y 2 O 3 ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (B 2 O 3 + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is , 0.57 or more, and more preferably 0.58 or more, 0.59 or more, 0.60 or more, 0.61 or more, 0.62 or more, 0.63 or more, and 0.64 or more. From the viewpoint of further lowering the specific gravity, the mass ratio ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (B 2 O 3 + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) is It is preferably 1.00 or less, less than 1.00, 0.99 or less, 0.98 or less, 0.97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, It is more preferable in the order of 0.92 or less, 0.91 or less, 0.90 or less, 0.89 or less, 0.88 or less, 0.87 or less, 0.86 or less, and 0.85 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、La、Gd、YおよびZrOは屈折率を高め、部分分散特性を改善する働きを有するが、ZrOの含有量が多くなると、ガラスの熔融性が低下する傾向がある。以上の観点から、La、Gd、YおよびZrOの合計含有量に対するZrO含有量の質量比(ZrO/(La+Gd+Y+ZrO))は、0.01以上であることが好ましく、0.02以上、0.03以上、0.04以上の順により好ましく、5.00以下であることが好ましく、4.00以下、3.00以下、2.00以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and ZrO 2 have a function of increasing the refractive index and improving the partial dispersion characteristics. As the content of ZrO 2 increases, the meltability of the glass tends to decrease. From the above viewpoint, the mass ratio of the ZrO 2 content to the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and ZrO 2 (ZrO 2 / (La 2 O 3 + Gd 2 O 3 + Y 2 O) 3 + ZrO 2 )) is preferably 0.01 or more, more preferably 0.02 or more, 0.03 or more, 0.04 or more, preferably 5.00 or less, and 4.00 or less. , 3.00 or less, and more preferably 2.00 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、La、Gd、YおよびZrOは、いずれも屈折率を高める成分であるが、ZrOはLa、Gd、Yと比べて、屈折率を高める働きが大きく、分散を高くする働き(アッベ数を減少させる働き)も大きい。分散を低く維持する観点から、La、GdおよびYの合計含有量に対するZrOの含有量の質量比(ZrO/(La+Gd+Y))は、3.30以下であることが好ましく、3.00以下、2.90以下、2.80以下、2.70以下、2.60以下、2.50以下、2.40以下、2.30以下、2.20以下、2.10以下、2.00以下、1.90以下、1.80以下、1.70以下、1.60以下、1.50以下、1.40以下、1.30以下、1.25以下の順により好ましい。質量比(ZrO/(La+Gd+Y))は、0.00以上とすることができ、屈折率をより高める観点からは、0.00超であることが好ましく、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、0.06以上の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and ZrO 2 are all components that increase the refractive index, but ZrO 2 is Compared with La 2 O 3 , Gd 2 O 3 , and Y 2 O 3 , the function of increasing the refractive index is large, and the function of increasing the dispersion (the function of reducing the Abbe number) is also large. From the viewpoint of keeping the dispersion low, the mass ratio of the content of ZrO 2 to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (ZrO 2 / (La 2 O 3 + Gd 2 O 3 + Y 2) O 3 )) is preferably 3.30 or less, 3.00 or less, 2.90 or less, 2.80 or less, 2.70 or less, 2.60 or less, 2.50 or less, 2.40 or less. 2.30 or less, 2.20 or less, 2.10 or less, 2.00 or less, 1.90 or less, 1.80 or less, 1.70 or less, 1.60 or less, 1.50 or less, 1.40 or less , 1.30 or less, and more preferably 1.25 or less. The mass ratio (ZrO 2 / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 )) can be 0.00 or more, and from the viewpoint of further increasing the refractive index, it may be more than 0.00. It is preferable that the order is 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, and 0.06 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、ZrO含有量は、望ましい光学恒数の実現および部分分散特性改善の観点から、7.63%以下であることが好ましく、7.63%未満、7.60以下、7.50以下、7.40以下、7.30以下、7.20以下、7.10以下、7.00以下、6.90以下、6.80以下、6.70以下、6.60以下、6.50以下、6.40以下、6.30以下、6.20以下、6.10以下、6.00以下、5.95以下、5.90以下、の順により好ましく、特に再加熱失透性を高める観点からは、6.00以下、5.50以下、5.00以下、4.00以下、3.00以下、2.50以下の順により好ましい。また、ZrO含有量は、より望ましい光学恒数の実現および部分分散特性の更なる改善の観点から、0.00%以上であることが好ましく、0.00%超、0.10%以上、0.20%以上、0.30%以上、0.40%以上、0.50%以上、0.60%以上、0.65%以上、1.10%以上、1.60%以上の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the ZrO 2 content is preferably 7.63% or less from the viewpoint of realizing a desirable optical constant and improving the partial dispersion characteristics. Less than .63%, 7.60 or less, 7.50 or less, 7.40 or less, 7.30 or less, 7.20 or less, 7.10 or less, 7.00 or less, 6.90 or less, 6.80 or less, 6.70 or less, 6.60 or less, 6.50 or less, 6.40 or less, 6.30 or less, 6.20 or less, 6.10 or less, 6.00 or less, 5.95 or less, 5.90 or less, From the viewpoint of increasing reheating devitrification, it is more preferable in the order of 6.00 or less, 5.50 or less, 5.00 or less, 4.00 or less, 3.00 or less, and 2.50 or less. .. Further, the ZrO 2 content is preferably 0.00% or more, preferably more than 0.00%, 0.10% or more, from the viewpoint of realizing a more desirable optical constant and further improving the partial dispersion characteristics. In the order of 0.20% or more, 0.30% or more, 0.40% or more, 0.50% or more, 0.60% or more, 0.65% or more, 1.10% or more, 1.60% or more. preferable.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、MgO、CaO、SrO、BaOおよびZnOは、ガラスの熱的安定性を改善する働きがあるが、これらの含有量が多くなると屈折率が低下する傾向がある。一方、La、GdおよびYは屈折率を高める働きをするが、これらの含有量が多くなると熱的安定性が低下する傾向がある。以上の観点から、La、GdおよびYの合計含有量に対するMgO、CaO、SrO、BaOおよびZnOの合計含有量の質量比((MgO+CaO+SrO+BaO+ZnO)/(La+Gd+Y))は、0.00超であることが好ましく、0.10以上、0.20以上、0.30以上、0.40以上、0.50以上、0.60以上、0.70以上、0.80以上、0.90以上、1.00以上、1.10以上、1.20以上、1.30以上、1.40以上の順により好ましく、20.00以下であることが好ましく、18.00以下、16.00以下、14.00以下、11.09以下、11.08以下、11.07以下、11.06以下、11.05以下、11.04以下、11.03以下、11.02以下、11.01以下、11.00以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, MgO, CaO, SrO, BaO and ZnO have a function of improving the thermal stability of the glass, but when the content thereof is increased, the glass material is refracted. The rate tends to decrease. On the other hand, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 have a function of increasing the refractive index, but when their contents are increased, the thermal stability tends to decrease. From the above viewpoint, the mass ratio of the total content of MgO, CaO, SrO, BaO and ZnO to the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 ((MgO + CaO + SrO + BaO + ZnO) / (La 2 O 3) + Gd 2 O 3 + Y 2 O 3 )) is preferably more than 0.00, 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more, 0.50 or more, 0.60. More preferably, in the order of 0.70 or more, 0.80 or more, 0.90 or more, 1.00 or more, 1.10 or more, 1.20 or more, 1.30 or more, 1.40 or more, 20.00 or less. It is preferably 18.00 or less, 16.00 or less, 14.00 or less, 11.09 or less, 11.08 or less, 11.07 or less, 11.06 or less, 11.05 or less, 11.04 or less. It is more preferably 11.03 or less, 11.02 or less, 11.01 or less, and 11.000 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SrO、BaO、La、GdおよびYは、いずれも低分散性を維持するうえで有効な成分である。そのため、より低分散性を維持する観点から、SrO、BaO、La、GdおよびYの合計含有量(SrO+BaO+La+Gd+Y)は9.00%以上であることが好ましく、9.50%以上、10.00%以上、10.50%以上、11.00%以上、11.50%以上、12.00%以上、12.50%以上、13.00%以上、13.50%以上、の順により好ましい。
 また、本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、より一層の低比重化の観点からは、合計含有量(SrO+BaO+La+Gd+Y)は、45.00%以下であることが好ましく、40.00%以下、35.00%以下、30.00%以下、29.00%以下、28.00%以下、27.00%以下、26.00%以下、25.00%以下の順により好ましい。
In the molding glass material according to the present embodiment, in the case of the glass composition C, SrO, BaO, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 are all effective components for maintaining low dispersibility. Is. Therefore, from the viewpoint of maintaining lower dispersibility, the total content of SrO, BaO, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 (SrO + BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) is 9. It is preferably .00% or more, 9.50% or more, 10.00% or more, 10.50% or more, 11.00% or more, 11.50% or more, 12.00% or more, 12.50%. Above, it is more preferable in the order of 13.00% or more and 13.50% or more.
Further, in the case of the glass composition C in the molding glass material according to the present embodiment, the total content (SrO + BaO + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) is 45 from the viewpoint of further lowering the specific density. It is preferably .00% or less, 40.00% or less, 35.00% or less, 30.00% or less, 29.00% or less, 28.00% or less, 27.00% or less, 26.00%. Hereinafter, it is more preferable in the order of 25.00% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、La、GdおよびYは、屈折率を高める働きをする成分であり、SiOはガラスの熱的安定性を維持する成分である。La、Gd、YおよびSiOの合計含有量に対するLa、GdおよびYの合計含有量の質量比((La+Gd+Y)/(La+Gd+Y+SiO))は、屈折率をより高める観点から、0.12以上であることが好ましく、0.13以上であることが更に好ましい。ガラスの熱的安定性を維持する観点からは、質量比((La+Gd+Y)/(La+Gd+Y+SiO))は、0.70以下であることが好ましく、0.60以下、0.50以下、0.49以下、0.48以下、0.47以下、0.46以下、0.45以下、0.44以下、0.43以下、0.42以下、041以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, La 2 O 3 , Gd 2 O 3 and Y 2 O 3 are components that act to increase the refractive index, and SiO 2 is the heat of the glass. It is a component that maintains physical stability. Mass ratio of the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 to the total content of La 2 O 3 , Gd 2 O 3 , Y 2 O 3 and SiO 2 ((La 2 O 3 + Gd) 2 O 3 + Y 2 O 3 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + SiO 2 )) is preferably 0.12 or more, preferably 0.13 or more, from the viewpoint of further increasing the refractive index. Is more preferable. From the viewpoint of maintaining the thermal stability of the glass, the mass ratio ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + SiO 2 )) is It is preferably 0.70 or less, 0.60 or less, 0.50 or less, 0.49 or less, 0.48 or less, 0.47 or less, 0.46 or less, 0.45 or less, 0.44 or less, It is more preferable in the order of 0.43 or less, 0.42 or less, and 041 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量に対するSiOとCaOとの合計含有量の質量比((SiO+CaO)/(TiO+Nb+Ta+WO+Bi))について、分母は屈折率を高める働きが大きい成分の合計含有量であり、分子は低分散化、低比重化に有効な成分の合計含有量である。高屈折率化、低分散性の維持、低比重化および熱的安定性の維持の観点から、質量比((SiO+CaO)/(TiO+Nb+Ta+WO+Bi))は、1.20以下であることが好ましく、1.09以下、1.08以下、1.07以下、1.06以下、1.05以下、1.04以下、1.03以下、1.02以下、1.01以下、0.99以下、0.94以下、0.89以下、0.86以下の順により好ましい。また、更なる高屈折率化、より一層の低分散性の維持および更なる低比重化の観点から、質量比((SiO+CaO)/(TiO+Nb+Ta+WO+Bi))は、0.25以上であることが好ましく、0.30以上、0.35以上、0.40以上、0.42以上、0.44以上、0.46以上、0.48以上、0.50以上、0.52以上、0.54以上、0.55以上の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition C, the total content of SiO 2 and CaO with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 Regarding the mass ratio of the amount ((SiO 2 + CaO) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )), the denominator is the total content of the components that have a large effect of increasing the refractive index, and is a molecule. Is the total content of components effective for low dispersion and low specific gravity. Mass ratio ((SiO 2 + CaO) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O) 3 )) is preferably 1.20 or less, 1.09 or less, 1.08 or less, 1.07 or less, 1.06 or less, 1.05 or less, 1.04 or less, 1.03 or less, It is more preferable in the order of 1.02 or less, 1.01 or less, 0.99 or less, 0.94 or less, 0.89 or less, and 0.86 or less. Further, from the viewpoint of further increasing the refractive index, maintaining further low dispersibility, and further reducing the specific gravity, the mass ratio ((SiO 2 + CaO) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi) 2 O 3 )) is preferably 0.25 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.42 or more, 0.44 or more, 0.46 or more, 0.48. The above is more preferable in the order of 0.50 or more, 0.52 or more, 0.54 or more, and 0.55 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、屈折率を高める成分であるZrO、TiO、Nb、Ta、WO、Biの中で、ZrOは、分散を高める作用が比較的小さい。そのため、より低分散性を維持する観点から、TiO、Nb、Ta、WOおよびBiの合計含有量に対するZrO含有量の質量比(ZrO/(TiO+Nb+Ta+WO+Bi))は、0.00以上であることが好ましく、0.01以上、0.02以上の順により好ましい。ガラスの熱的安定性の維持、ガラスを加熱、軟化してプレス成形する際の耐失透性(再加熱プレス成形時の安定性:リヒートプレス成形性とも言う)の維持の観点からは、質量比(ZrO/(TiO+Nb+Ta+WO+Bi))は、0.21以下であることが好ましく、0.20以下、0.19以下、0.18以下、0.17以下、0.16以下、0.15以下、0.12以下、0.10以下,0.08以下、0.06以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, among the components that increase the refractive index, ZrO 2 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , and Bi 2 O 3 . , ZrO 2 has a relatively small effect of increasing dispersion. Therefore, from the viewpoint of maintaining lower dispersibility, the mass ratio of ZrO 2 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 (ZrO 2 / (TIO) 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.00 or more, and more preferably 0.01 or more and 0.02 or more. From the viewpoint of maintaining the thermal stability of the glass and the devitrification resistance (stability during reheating press molding: also called reheat press moldability) when the glass is heated and softened and press-formed, the mass is used. The ratio (ZrO 2 / (TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.21 or less, preferably 0.20 or less, 0.19 or less, 0.18 or less. , 0.17 or less, 0.16 or less, 0.15 or less, 0.12 or less, 0.10 or less, 0.08 or less, 0.06 or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、LiO、NaOおよびKOの合計含有量[LiO+NaO+KO]の下限は、好ましくは0.1%であり、さらには0.2%、0.5%、1.0%、1.2%、1.5%、の順により好ましい。また、該合計含有量の上限は、好ましくは20%であり、さらには15%、10%、8%,6%、4%、2%の順により好ましい。 In the case of the glass composition C in the glass material for molding according to the present embodiment, the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] of Li 2 O, Na 2 O and K 2 O is preferably 0.1. %, More preferably 0.2%, 0.5%, 1.0%, 1.2%, 1.5% in that order. The upper limit of the total content is preferably 20%, more preferably 15%, 10%, 8%, 6%, 4%, and 2%.
 ガラス組成Cにおいて、合計含有量[LiO+NaO+KO]の下限が上記を満たすことで、ガラスの熔融性を改善し、液相温度の上昇を抑制できる。また、該合計含有量の上限が上記を満たすことで、ガラスの粘性を高めてガラス融液の結晶化の速度を小さくするとともに、再加熱時の安定性を向上できる。 When the lower limit of the total content [Li 2 O + Na 2 O + K 2 O] in the glass composition C satisfies the above, the meltability of the glass can be improved and the rise in the liquidus temperature can be suppressed. Further, when the upper limit of the total content satisfies the above, the viscosity of the glass can be increased, the crystallization rate of the glass melt can be reduced, and the stability at the time of reheating can be improved.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、アルカリ金属酸化物であるLiO、NaO、KOおよびCsOは、部分分散特性を改善する働きを有し、液相温度を下げ、ガラスの熱的安定性を改善する働きも有する。これらの観点から、LiO、NaO、KOおよびCsOの合計含有量(LiO+NaO+KO+CsO)は、0.00%以上であることが好ましく、0.00%超、0.05%以上、0.10%以上、0.15%以上、0.20%以上、0.25%以上、0.28%以上、0.60%以上、1.10%以上、1.30%以上、1.60%以上の順により好ましい。化学的耐久性および耐候性の向上の観点からは、合計含有量(LiO+NaO+KO+CsO)は、20.00%以下であることが好ましく、18.00%以下、16.00%以下、14.00%以下、12.00%以下、10.00%以下、9.00%以下、8.00%以下、7.00%以下、6.50%以下、6.00%以下、5.50%以下、5.00%以下、4.50%以下、3.90%以下、2.90%以下、2.40%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the alkali metal oxides Li 2 O, Na 2 O, K 2 O and Cs 2 O have a function of improving the partial dispersion characteristics. It also has the function of lowering the liquidus temperature and improving the thermal stability of the glass. From these viewpoints, the total content of Li 2 O, Na 2 O, K 2 O and Cs 2 O (Li 2 O + Na 2 O + K 2 O + Cs 2 O) is preferably 0.00% or more, and 0. Over 00%, 0.05% or more, 0.10% or more, 0.15% or more, 0.20% or more, 0.25% or more, 0.28% or more, 0.60% or more, 1.10% As mentioned above, it is more preferable in the order of 1.30% or more and 1.60% or more. From the viewpoint of improving chemical durability and weather resistance, the total content (Li 2 O + Na 2 O + K 2 O + Cs 2 O) is preferably 20.00% or less, preferably 18.00% or less, 16.00. % Or less, 14.00% or less, 12.00% or less, 10.00% or less, 9.00% or less, 8.00% or less, 7.00% or less, 6.50% or less, 6.00% or less 5.50% or less, 5.00% or less, 4.50% or less, 3.90% or less, 2.90% or less, 2.40% or less, and more preferable.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SiO、PおよびBの合計含有量に対するLiO、NaO、KOおよびCsOの合計含有量の質量比[(LiO+NaO+KO+CsO)/(SiO+P+B)]の上限は、好ましくは1.0であり、さらには0.7、0.5、0.4、0.3、0.2、0.1、0.09、0.08の順により好ましい。また、該質量比の下限は、好ましくは0.001であり、さらには0.01、0.02、0.03、0.04、0.05、0.06の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, Li 2 O, Na 2 O, K 2 O and Cs 2 O with respect to the total content of SiO 2 , P 2 O 5 and B 2 O 3 The upper limit of the mass ratio of the total content [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (SiO 2 + P 2 O 5 + B 2 O 3 )] is preferably 1.0, further 0.7, The order of 0.5, 0.4, 0.3, 0.2, 0.1, 0.09, 0.08 is more preferable. The lower limit of the mass ratio is preferably 0.001, and more preferably 0.01, 0.02, 0.03, 0.04, 0.05, 0.06.
 ガラス組成Cにおいて、質量比[(LiO+NaO+KO+CsO)/(SiO+P+B)]が低すぎると、熔解性が悪化するおそれがある。また、高すぎると、ガラスの熔融時の粘性が低下し、融液の熱的安定性が低下するほか、再加熱時の安定性が悪化するおそれがある。 If the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (SiO 2 + P 2 O 5 + B 2 O 3 )] in the glass composition C is too low, the meltability may deteriorate. On the other hand, if it is too high, the viscosity at the time of melting the glass is lowered, the thermal stability of the melt is lowered, and the stability at the time of reheating may be deteriorated.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、Nb、TiO、WOおよびBiの合計含有量に対するLiO、NaO、KOおよびCsOの合計含有量の質量比[(LiO+NaO+KO+CsO)/(Nb+TiO+WO+Bi)]の上限は、好ましくは1.0であり、さらには0.5、0.3、0.2、0.1、0.09、0.08、0.07、0.06、0.05の順により好ましい。また、該質量比の下限は、好ましくは0.005であり、さらには0.01、0.02、0.03、0.04の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, Li 2 O, Na 2 O, K 2 O and Cs with respect to the total content of Nb 2 O 5 , TiO 2 , WO 3 and Bi 2 O 3 2 the upper limit of the mass ratio of the total content [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3)] of O is preferably 1.0, further Is more preferable in the order of 0.5, 0.3, 0.2, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05. The lower limit of the mass ratio is preferably 0.005, more preferably 0.01, 0.02, 0.03, 0.04.
 ガラス組成Cにおいて、質量比[(LiO+NaO+KO+CsO)/(Nb+TiO+WO+Bi)]が低すぎると、部分分散比Pg,Fが上昇し、透過率が悪化するおそれがある。また、高すぎると、アッベ数が大きくなり、屈折率も低下するほか、再加熱時の安定性が悪化するおそれがある。 In the glass composition C, if the mass ratio [(Li 2 O + Na 2 O + K 2 O + Cs 2 O) / (Nb 2 O 5 + TiO 2 + WO 3 + Bi 2 O 3 )] is too low, the partial dispersion ratios Pg and F increase. The transmittance may deteriorate. On the other hand, if it is too high, the Abbe number becomes large, the refractive index is lowered, and the stability at the time of reheating may be deteriorated.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、アルカリ金属酸化物およびアルカリ土類金属酸化物は、ガラスの熔融性および熱的安定性を維持することに寄与できるが、これらの含有量が多くなるとガラスの熔融性および熱的安定性が低下する傾向がある。したがって、ガラスの熔融性や熱的安定性を維持する観点からは、アルカリ金属酸化物であるLiO、NaO、KOおよびCsOとアルカリ土類金属酸化物であるMgO、CaO、SrOおよびBaOとの合計含有量(LiO+NaO+KO+CsO+MgO+CaO+SrO+BaO)は、5.00%以上であることが好ましく、7.00%以上、9.00%以上、10.00%以上、12.00%以上、14.00%以上、15.00%以上、16.00%以上、17.00%以上、18.00%以上、18.50%以上の順により好ましく、50.00%以下であることが好ましく、48.00%以下、46.00%以下、44.00%以下、43.00%以下、42.00%以下、41.00%以下、40.00%以下、39.00%以下、38.00%以下、37.00%以下、36.00%以下、35.00%以下、34.50%以下、34.00%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the alkali metal oxide and the alkaline earth metal oxide can contribute to maintaining the meltability and thermal stability of the glass. As the content increases, the meltability and thermal stability of the glass tend to decrease. Therefore, from the viewpoint of maintaining the meltability and thermal stability of glass, the alkali metal oxides Li 2 O, Na 2 O, K 2 O and Cs 2 O and the alkaline earth metal oxide Mg O, The total content of CaO, SrO and BaO (Li 2 O + Na 2 O + K 2 O + Cs 2 O + MgO + CaO + SrO + BaO) is preferably 5.00% or more, preferably 7.00% or more, 9.00% or more and 10.00%. Above, 12.00% or more, 14.00% or more, 15.00% or more, 16.00% or more, 17.00% or more, 18.00% or more, 18.50% or more are more preferable, and 50. It is preferably 00% or less, preferably 48.00% or less, 46.00% or less, 44.00% or less, 43.00% or less, 42.00% or less, 41.00% or less, 40.00% or less. , 39.00% or less, 38.00% or less, 37.00% or less, 36.00% or less, 35.00% or less, 34.50% or less, 34.00% or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、アルカリ金属酸化物およびアルカリ土類金属酸化物は、液相温度を下げ、熱的安定性を改善する働きがあるが、ガラスのネットワーク形成成分に対するこれらの含有量が多くなると、化学的耐久性および耐候性が低下する傾向がある。また、SiOおよびBは熱的安定性を改善する働きを有するが、これらの含有量が多くなると熔融性が低下する傾向がある。これらの観点から、SiOとBとの合計含有量に対するLiO、NaO、KO、CsO、MgO、CaO、SrOおよびBaOの合計含有量の質量比((LiO+NaO+KO+CsO+MgO+CaO+SrO+BaO)/(SiO+B))は、0.50以上であることが好ましく、0.52以上、0.54以上、0.56以上、0.58以上、0.60以上、0.62以上、0.64以上、0.66以上、0.68以上、0.70以上、0.72以上、0.74以上、0.75以上、0.76以上、0.77以上、0.78以上、0.79以上の順により好ましく、5.00以下であることが好ましく、4.50以下、4.00以下、3.50以下、3.00以下、2.50以下、2.00以下、1.90以下、1.80以下、1.70以下、1.65以下、1.60以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the alkali metal oxide and the alkaline earth metal oxide have a function of lowering the liquidus temperature and improving the thermal stability of the glass. Higher contents of these relative to network-forming components tend to reduce chemical durability and weather resistance. Further, SiO 2 and B 2 O 3 have a function of improving thermal stability, but as the content thereof increases, the meltability tends to decrease. From these viewpoints, the mass ratio of the total content of Li 2 O, Na 2 O, K 2 O, Cs 2 O, MgO, CaO, SrO and BaO to the total content of SiO 2 and B 2 O 3 ((( Li 2 O + Na 2 O + K 2 O + Cs 2 O + MgO + CaO + SrO + BaO) / (SiO 2 + B 2 O 3 )) is preferably 0.50 or more, 0.52 or more, 0.54 or more, 0.56 or more, 0.58. 0.60 or more, 0.62 or more, 0.64 or more, 0.66 or more, 0.68 or more, 0.70 or more, 0.72 or more, 0.74 or more, 0.75 or more, 0.76 More preferably, 0.77 or more, 0.78 or more, 0.79 or more, preferably 5.00 or less, 4.50 or less, 4.00 or less, 3.50 or less, 3.00 or less. , 2.50 or less, 2.00 or less, 1.90 or less, 1.80 or less, 1.70 or less, 1.65 or less, 1.60 or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、LiO、NaOおよびKOの中で、LiOは最も屈折率を低下させにくい成分である。したがって、より一層の高屈折率化の観点からは、LiO、NaOおよびKOの合計含有量に対するLiO含有量の質量比(LiO/(LiO+NaO+KO))は、0.00以上であることが好ましく、0.00超、0.10以上、0.20以上、0.30以上、0.40以上、0.45以上の順により好ましい。他方で、質量比(LiO/(LiO+NaO+KO))は、例えば、1.00以下とすることができ、再加熱失透性の低下を抑制する観点からは、0.99以下、0.98以下、0.95以下、0.90以下、0.80以下、0.70以下、0.65以下、0.60以下、0.50以下とすることもできる。 In the molding glass material according to the present embodiment, in the case of the glass composition C, Li 2 O is the component that is most difficult to reduce the refractive index among Li 2 O, Na 2 O and K 2 O. Therefore, from the viewpoint of further increasing the refractive index, the mass ratio of the Li 2 O content to the total content of Li 2 O, Na 2 O and K 2 O (Li 2 O / (Li 2 O + Na 2 O + K 2) O)) is preferably 0.00 or more, and more preferably more than 0.00, 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more, and 0.45 or more. On the other hand, the mass ratio (Li 2 O / (Li 2 O + Na 2 O + K 2 O)) can be, for example, 1.00 or less, and from the viewpoint of suppressing a decrease in reheat devitrification, 0. It can be 99 or less, 0.98 or less, 0.95 or less, 0.90 or less, 0.80 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.50 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、LiO、NaO、KO、MgO、CaO、SrO、BaOおよびZnOはガラスの熱的安定性を改善し、ガラスの熔融性を改善する働きを有するが、LiO、NaOおよびKOの合計含有量が多くなるとガラスは高分散性傾向を示す。したがって、より望ましい分散性得る観点から、MgO、CaO、SrO、BaOおよびZnOの合計含有量に対するLiO、NaO、KOの合計含有量の質量比((LiO+NaO+KO)/(MgO+CaO+SrO+BaO+ZnO))は、0.00以上であることが好ましく、0.00超、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上の順により好ましく、4.00以下であることが好ましく、3.50以下、3.00以下、2.50以下、2.00以下、1.50以下、1.00以下、0.90以下、0.80以下、0.70以下、0.60以下、0.50以下、0.40以下、0.35以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, Li 2 O, Na 2 O, K 2 O, MgO, CaO, SrO, BaO and ZnO improve the thermal stability of the glass, and the glass. Although it has a function of improving the meltability of glass, the glass tends to be highly dispersible when the total content of Li 2 O, Na 2 O and K 2 O is increased. Therefore, from the viewpoint of obtaining more desirable dispersibility, the mass ratio of the total content of Li 2 O, Na 2 O, and K 2 O to the total content of MgO, CaO, SrO, BaO, and ZnO ((Li 2 O + Na 2 O + K 2). O) / (MgO + CaO + SrO + BaO + ZnO)) is preferably 0.00 or more, in the order of more than 0.00, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more. More preferably, it is preferably 4.00 or less, and 3.50 or less, 3.00 or less, 2.50 or less, 2.00 or less, 1.50 or less, 1.00 or less, 0.90 or less, 0. It is more preferably 80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.40 or less, and 0.35 or less in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SiOとBとの合計含有量に対するLiO、NaOおよびKOの合計含有量の質量比((LiO+NaO+KO)/(SiO+B))は、熱的安定性の維持および/またはリヒートプレス成形性の維持の観点から、1.00以下であることが好ましく、0.90以下、0.80以下、0.70以下、0.60以下、0.50以下、0.40以下、0.35以下、0.30以下、0.25以下の順により好ましい。熔融性の維持および/または部分分散比を減少させて高次の色収差補正に好適なガラスを提供する観点からは、質量比((LiO+NaO+KO)/(SiO+B))は、0.00以上であることが好ましく、0.00超、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the mass ratio of the total contents of Li 2 O, Na 2 O and K 2 O to the total contents of SiO 2 and B 2 O 3 ((( Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3 )) is preferably 1.00 or less from the viewpoint of maintaining thermal stability and / or maintaining reheat press moldability, and is 0. It is more preferable in the order of .90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.40 or less, 0.35 or less, 0.30 or less, 0.25 or less. From the viewpoint of maintaining the meltability and / or reducing the partial dispersion ratio to provide a glass suitable for high-order chromatic aberration correction, the mass ratio ((Li 2 O + Na 2 O + K 2 O) / (SiO 2 + B 2 O 3) )) Is preferably 0.00 or more, and more preferably more than 0.00, 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, and 0.05 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、LiO含有量は、0.00%以上であることが好ましく、0.05%以上、0.10%以上、0.15%以上、0.20%以上、0.25%以上、0.30%以上、0.40%以上、0.50%以上、0.60%以上の順により好ましい。また、LiO含有量は、14.00%以下であることが好ましく、12.00%以下、10.00%以下、8.00%以下、7.00%以下、6.50%以下、6.00%以下、5.50%以下、5.00%以下の順により好ましい。LiOの含有量を上記囲とすることは、より望ましい光学恒数を実現する観点から好ましく、また化学的耐久性、耐候性、再加熱時の安定性を保持する観点から好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the Li 2 O content is preferably 0.00% or more, 0.05% or more, 0.10% or more, and 0.15. % Or more, 0.20% or more, 0.25% or more, 0.30% or more, 0.40% or more, 0.50% or more, 0.60% or more, in that order. The Li 2 O content is preferably 14.00% or less, 12.00% or less, 10.00% or less, 8.00% or less, 7.00% or less, 6.50% or less, It is more preferable in the order of 6.00% or less, 5.50% or less, and 5.00% or less. It is preferable to set the Li 2 O content in the above range from the viewpoint of realizing a more desirable optical constant, and also from the viewpoint of maintaining chemical durability, weather resistance, and stability during reheating.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、NaO含有量は、0.00%以上であることが好ましい。また、NaO含有量は、10.00%以下であることが好ましく、8.00%以下、7.00%以下、6.00%以下、5.00%以下、4.00%以下、3.00%以下、2.00%以下の順により好ましい。NaOの含有量を上記範囲とすることは、部分分散特性改善の観点から好ましい。 In the case of the glass composition C in the molding glass material according to the present embodiment, the Na 2 O content is preferably 0.00% or more. The Na 2 O content is preferably 10.00% or less, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4.00% or less, It is more preferable in the order of 3.00% or less and 2.00% or less. It is preferable to set the Na 2 O content in the above range from the viewpoint of improving the partial dispersion characteristics.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、KO含有量は、0.00%以上であることが好ましい。また、KO含有量は、10.00%以下であることが好ましく、8.00%以下、7.00%以下、6.00%以下、5.00%以下、4.00%以下、3.00%以下、2.00%以下の順により好ましい。KOの含有量を上記範囲とすることは、ガラスの熱的安定性向上の観点から好ましい。 In molding the glass material according to the present embodiment, when the glass composition C, K 2 O content is preferably 0.00% or more. Further, K 2 O content is preferably at most 10.00%, 8.00% or less, 7.00% or less, 6.00% or less, 5.00% or less, 4.00% or less, It is more preferable in the order of 3.00% or less and 2.00% or less. It is preferable to set the K 2 O content in the above range from the viewpoint of improving the thermal stability of the glass.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、CsO含有量は、5.00%以下であることが好ましく、4.00%以下、3.00%以下、2.00%以下、1.00%以下、0.50%以下の順により好ましく、0%でもよい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the Cs 2 O content is preferably 5.00% or less, 4.00% or less, 3.00% or less, 2.00% or less. % Or less, 1.00% or less, 0.50% or less are more preferable, and 0% may be used.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量(TiO+Nb+Ta+WO+Bi)は、より一層の高屈折率化の観点から、30.00%以上であることが好ましく、31.00%以上、32.00%以上、33.00%以上、34.00%以上、35.00%以上、36.00%以上、36.50%以上、37.00%以上、37.55%以上の順により好ましい。より一層の低比重化および熱的安定性向上の観点からは、TiO、Nb、Ta、WOおよびBiの合計含有量(TiO+Nb+Ta+WO+Bi)は、60.00%以下であることが好ましく、58.00%以下、56.00%以下、54.00%以下、52.00%以下、51.00%以下、50.00%以下、49.50%以下、49.00%以下、48.50%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition C, the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 (TiO 2 + Nb 2 O 5 + Ta 2). O 5 + WO 3 + Bi 2 O 3 ) is preferably 30.00% or more, preferably 31.00% or more, 32.00% or more, and 33.00% or more from the viewpoint of further increasing the refractive index. , 34.00% or more, 35.00% or more, 36.00% or more, 36.50% or more, 37.00% or more, 37.55% or more, in that order. From the viewpoint of further lowering the specific density and improving the thermal stability, the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 (TiO 2 + Nb 2 O 5 + Ta 2) O 5 + WO 3 + Bi 2 O 3 ) is preferably 60.00% or less, 58.00% or less, 56.00% or less, 54.00% or less, 52.00% or less, 51.00%. Hereinafter, it is more preferable in the order of 50.00% or less, 49.50% or less, 49.00% or less, and 48.50% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量に対するSiOとBとの合計含有量の質量比((SiO+B)/(TiO+Nb+Ta+WO+Bi))は、比重の増加を抑えつつ屈折率の高いガラスを得る観点から、好ましくは0.75以下である。上記に加えて望ましいアッベ数νdを実現する観点、部分分散特性改善の観点および耐失透性向上の観点からは、質量比((SiO+B)/(TiO+Nb+Ta+WO+Bi))は、0.16以上であることが好ましく、0.20以上、0.25以上、0.30以上、0.35以上、0.36以上、0.37以上、0.38以上、0.39以上、0.40以上、0.41以上、0.42以上の順により好ましく、0.75以下であることが好ましく、0.74以下、0.73以下、0.72以下、0.71以下、0.70以下、0.69以下、0.68以下、0.67以下、0.66以下、0.65以下、0.64以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, SiO 2 and B 2 O 3 with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 The mass ratio of the total content of ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is a glass with a high refractive index while suppressing an increase in specific gravity. From the viewpoint of obtaining, it is preferably 0.75 or less. In addition to the above, from the viewpoint of achieving the desired Abbe number νd, improving the partial dispersion characteristics, and improving the devitrification resistance, the mass ratio ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta) 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.16 or more, 0.20 or more, 0.25 or more, 0.30 or more, 0.35 or more, 0.36 or more, 0. It is more preferably 37 or more, 0.38 or more, 0.39 or more, 0.40 or more, 0.41 or more, 0.42 or more, preferably 0.75 or less, 0.74 or less, 0.73. Hereinafter, it is more preferable in the order of 0.72 or less, 0.71 or less, 0.70 or less, 0.69 or less, 0.68 or less, 0.67 or less, 0.66 or less, 0.65 or less, 0.64 or less. ..
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SiOおよびBは屈折率を低下させ、分散を低下させる(アッベ数を増加させる)働きがある。一方、TiO、Nb、Ta、WO、Bi、ZrOは高屈折率高分散化成分である。より屈折率を高める観点から、TiO、Nb、Ta、WO、BiおよびZrOの合計含有量に対するSiOとBとの合計含有量の質量比((SiO+B)/(TiO+Nb+Ta+WO+Bi+ZrO))は、0.64以下であることが好ましく、0.63以下、0.62以下、0.61以下、0.60以下、0.59以下、0.58以下の順により好ましい。
 一方、ガラス組成Cの場合、高分散化を抑制する観点からは、質量比((SiO+B)/(TiO+Nb+Ta+WO+Bi+ZrO))は、0.13以上であることが好ましく、0.15以上、0.20以上、0.25以上、0.26以上、0.27以上、0.28以上、0.29以上、0.30以上、0.31以上、0.32以上、0.33以上、0.34以上、0.35以上、0.36以上、0.37以上、0.38以上の順により好ましい。
In the molding glass material according to the present embodiment, in the case of the glass composition C, SiO 2 and B 2 O 3 have a function of lowering the refractive index and lowering the dispersion (increasing the Abbe number). On the other hand, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 , and ZrO 2 are high refractive index and high dispersion components. From the viewpoint of further increasing the refractive index, the mass of the total content of SiO 2 and B 2 O 3 with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 and ZrO 2. The ratio ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + ZrO 2 )) is preferably 0.64 or less, preferably 0.63 or less, 0. It is more preferable in the order of .62 or less, 0.61 or less, 0.60 or less, 0.59 or less, and 0.58 or less.
On the other hand, in the case of the glass composition C, from the viewpoint of suppressing high dispersion, the mass ratio ((SiO 2 + B 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + ZrO 2 )) ) Is preferably 0.13 or more, 0.15 or more, 0.20 or more, 0.25 or more, 0.26 or more, 0.27 or more, 0.28 or more, 0.29 or more, 0. It is more preferably 30 or more, 0.31 or more, 0.32 or more, 0.33 or more, 0.34 or more, 0.35 or more, 0.36 or more, 0.37 or more, and 0.38 or more in this order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量に対するLiO、NaOおよびKOの合計含有量の質量比((LiO+NaO+KO)/(TiO+Nb+Ta+WO+Bi))は、部分分散特性および透過率改善の観点からは、0.00以上であることが好ましく、0.01以上であることがより好ましい。ガラスの熱的安定性および/またはリヒートプレス成形性の維持の観点からは、質量比((LiO+NaO+KO)/(TiO+Nb+Ta+WO+Bi))は、0.67以下であることが好ましく、0.60以下、0.50以下、0.40以下、0.30以下、0.20以下、0.15以下、0.10以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition C, Li 2 O, Na 2 O and Li 2 O, Na 2 O and Li 2 O with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 The mass ratio of the total content of K 2 O ((Li 2 O + Na 2 O + K 2 O) / (TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) improves the partial dispersion characteristics and permeability. From the viewpoint, it is preferably 0.00 or more, and more preferably 0.01 or more. From the viewpoint of maintaining the thermal stability and / or reheat press moldability of glass, the mass ratio ((Li 2 O + Na 2 O + K 2 O) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3) )) Is preferably 0.67 or less, in the order of 0.60 or less, 0.50 or less, 0.40 or less, 0.30 or less, 0.20 or less, 0.15 or less, 0.10 or less. More preferred.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、MgO、CaO、SrO、BaOおよびZnOは、ガラスの熱的安定性を改善する働きがあるが、これらの含有量が多くなると屈折率が低下する傾向があり、ガラスがより低分散性になる傾向がある。一方、TiO、Nb、WOおよびBiは、屈折率を高くし、ガラスをより高分散性にする傾向があるが、これらの含有量が多くなると熱的安定性が低下する傾向がある。以上の観点から、TiO、Nb、Ta、WOおよびBiの合計含有量に対するMgO、CaO、SrO、BaOおよびZnOの合計含有量の質量比((MgO+CaO+SrO+BaO+ZnO)/(TiO+Nb+Ta+WO+Bi))は、0.09以上であることが好ましく、0.10以上、0.15以上、0.20以上、0.21以上、0.22以上、0.23以上、0.24以上、0.25以上、0.26以上、0.27以上、0.28以上、0.29以上、0.30以上、0.31以上、0.32以上、0.35以上、0.40以上、0.45以上の順により好ましく、1.66以下であることが好ましく、1.60以下、1.50以下、1.40以下、1.30以下、1.20以下、1.10以下、1.00以下、0.95以下、0.90以下、0.88以下、0.80以下、0.70以下、0.60以下、0.50以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, MgO, CaO, SrO, BaO and ZnO have a function of improving the thermal stability of the glass, but refraction occurs when the content thereof increases. The rate tends to decrease and the glass tends to be less dispersible. On the other hand, TiO 2 , Nb 2 O 5 , WO 3 and Bi 2 O 3 tend to increase the refractive index and make the glass more dispersible, but the higher the content thereof, the more the thermal stability becomes. Tends to decline. From the above viewpoint, the mass ratio of the total content of MgO, CaO, SrO, BaO and ZnO to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 ((MgO + CaO + SrO + BaO + ZnO)). / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.09 or more, 0.10 or more, 0.15 or more, 0.20 or more, 0.21. 0.22 or more, 0.23 or more, 0.24 or more, 0.25 or more, 0.26 or more, 0.27 or more, 0.28 or more, 0.29 or more, 0.30 or more, 0.31 More preferably, 0.32 or more, 0.35 or more, 0.40 or more, 0.45 or more, preferably 1.66 or less, 1.60 or less, 1.50 or less, 1.40 or less. , 1.30 or less, 1.20 or less, 1.10 or less, 1.00 or less, 0.95 or less, 0.90 or less, 0.88 or less, 0.80 or less, 0.70 or less, 0.60 or less , 0.50 or less, which is more preferable.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、MgO、CaO、SrO、BaOおよびZnOの中で、MgO、CaOは、SrO、BaO、ZnOと比べてガラスの比重の増大を抑え、かつα100-300やαmaxを小さくする上で有効な成分である。したがって、比重の増大を抑制する観点から、MgOおよびCaOの合計含有量に対するZnO、SrOおよびBaOの合計含有量の質量比((ZnO+SrO+BaO)/(MgO+CaO))は、1.98以下であることが好ましく、1.96以下、1.94以下、1.92以下、1.90以下、1.88以下、1.86以下、1.85以下、1.84以下、1.83以下、1.82以下、1.81以下、1.80以下、1.79以下、1.78以下、1.50以下、1.20以下、0.95以下、0.80以下、0.70以下、0.60以下、0.50以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, among MgO, CaO, SrO, BaO and ZnO, MgO and CaO suppress the increase in the specific gravity of the glass as compared with SrO, BaO and ZnO. Moreover, it is an effective component for reducing α 100-300 and α max. Therefore, from the viewpoint of suppressing the increase in specific gravity, the mass ratio of the total content of ZnO, SrO and BaO to the total content of MgO and CaO ((ZnO + SrO + BaO) / (MgO + CaO)) is 1.98 or less. Preferably, 1.96 or less, 1.94 or less, 1.92 or less, 1.90 or less, 1.88 or less, 1.86 or less, 1.85 or less, 1.84 or less, 1.83 or less, 1.82 or less. Below, 1.81 or less, 1.80 or less, 1.79 or less, 1.78 or less, 1.50 or less, 1.20 or less, 0.95 or less, 0.80 or less, 0.70 or less, 0.60 Hereinafter, it is more preferable in the order of 0.50 or less.
 一方、本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、SrO、BaO、ZnOは、少量の導入によりガラスの安定性を高め、また屈折率を高める働きも有する。そのため、低分散性を維持する観点から、質量比((ZnO+SrO+BaO)/(MgO+CaO))は、0.17以上であることが好ましく、0.18以上、0.19以上、0.20以上、0.25以上、0.30以上の順により好ましい。 On the other hand, in the molding glass material according to the present embodiment, in the case of the glass composition C, SrO, BaO, and ZnO also have a function of increasing the stability of the glass and increasing the refractive index by introducing a small amount. Therefore, from the viewpoint of maintaining low dispersibility, the mass ratio ((ZnO + SrO + BaO) / (MgO + CaO)) is preferably 0.17 or more, 0.18 or more, 0.19 or more, 0.20 or more, 0. It is more preferable in the order of .25 or more and 0.30 or more.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、NbおよびTiOの合計含有量に対するLiO、NaOおよびKOの合計含有量の質量比[(LiO+NaO+KO)/(Nb+TiO)]の下限は、好ましくは0.001であり、さらには0.01、0.02、0.03、0.04の順により好ましい。また、該質量比の上限は、好ましくは1.00であり、さらには0.50、0.30、0.20、0.10、0.08、0.06の順により好ましい。 In the case of the glass composition C in the glass material for molding according to the present embodiment, the mass ratio of the total contents of Li 2 O, Na 2 O and K 2 O to the total contents of Nb 2 O 5 and TiO 2 [(Li). The lower limit of 2 O + Na 2 O + K 2 O) / (Nb 2 O 5 + TiO 2 )] is preferably 0.001, and more preferably 0.01, 0.02, 0.03, 0.04. .. The upper limit of the mass ratio is preferably 1.00, more preferably 0.50, 0.30, 0.20, 0.10, 0.08, 0.06.
 ガラス組成Cにおいて、ガラスの熔解特性や熱的安定性、再加熱時の安定性を維持しながら所望の光学恒数を得る観点から、質量比[(LiO+NaO+KO)/(Nb+TiO)]は上記範囲であることが好ましい。 In the glass composition C, the mass ratio [(Li 2 O + Na 2 O + K 2 O) / (Nb) is obtained from the viewpoint of obtaining a desired optical constant while maintaining the melting characteristics, thermal stability, and stability at the time of reheating of the glass. 2 O 5 + TiO 2 )] is preferably in the above range.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、分散性への寄与に関して、TiO、Nb、Ta、WOおよびBiとLa、GdおよびYとを対比すると、TiO、Nb、Ta、WOおよびBiはガラスをより低分散性にする傾向があり、La、GdおよびYはガラスをより高分散性にする傾向がある。望ましい分散性を得る観点からは、TiO、Nb、Ta、WOおよびBiの合計含有量に対するLa、GdおよびYの合計含有量の質量比((La+Gd+Y)/(TiO+Nb+Ta+WO+Bi))は、0.00超であることが好ましく、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、0.06以上、0.07以上の順により好ましく、1.00以下であることが好ましく、0.90以下、0.80以下、0.70以下、0.60以下、0.50以下、0.45以下、0.40以下、0.35以下、0.32以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, with respect to the contribution to dispersibility, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 and La 2 O 3 , When compared with Gd 2 O 3 and Y 2 O 3 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 tend to make the glass less dispersible, La 2 O. 3 , Gd 2 O 3 and Y 2 O 3 tend to make the glass more dispersible. From the viewpoint of obtaining the desired dispersibility, the sum of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3. The mass ratio of the content ((La 2 O 3 + Gd 2 O 3 + Y 2 O 3 ) / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) may be more than 0.00. It is preferably 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, and more preferably 1.00 or less. , 0.90 or less, 0.80 or less, 0.70 or less, 0.60 or less, 0.50 or less, 0.45 or less, 0.40 or less, 0.35 or less, 0.32 or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量に対するTiO含有量の質量比(TiO/(TiO+Nb+Ta+WO+Bi))は、高屈折率かつ低比重化する観点から、0.00以上であることが好ましく、0.00超、0.01以上、0.02以上、0.03以上、0.04以上、0.05以上、0.06以上、0.07以上、0.08以上、0.09以上、0.15以上、0.20以上、0.25以上、0.30以上の順により好ましい。他方でガラスの着色を抑制し、ガラスの安定性を高める観点から1.00以下であることが好ましく、1.00未満、0.95以下、0.90以下、0.85以下、0.80以下、0.75以下、0.73以下、0.60以下、0.50以下、0.45以下、0.40以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the mass ratio of the TiO 2 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 ( TiO 2 / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.00 or more, preferably more than 0.00, from the viewpoint of high refractive index and low specific gravity. 0.01 or more, 0.02 or more, 0.03 or more, 0.04 or more, 0.05 or more, 0.06 or more, 0.07 or more, 0.08 or more, 0.09 or more, 0.15 or more, It is more preferable in the order of 0.20 or more, 0.25 or more, and 0.30 or more. On the other hand, it is preferably 1.00 or less from the viewpoint of suppressing the coloring of the glass and enhancing the stability of the glass, and is less than 1.00, 0.95 or less, 0.90 or less, 0.85 or less, 0.80. Hereinafter, it is more preferable in the order of 0.75 or less, 0.73 or less, 0.60 or less, 0.50 or less, 0.45 or less, 0.40 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量に対するNb含有量の質量比(Nb/(TiO+Nb+Ta+WO+Bi))は、部分分散特性改善の観点から、0.00以上であることが好ましく、0.00超、0.01以上、0.05以上、0.10以上、0.15以上、0.20以上、0.21以上、0.22以上、0.23以上、0.24以上、0.25以上、0.26以上、0.27以上の順により好ましい。他方でガラスの熱的安定性の向上や、再加熱失透性の改善のためには1.00以下であることが好ましく、1.00未満、0.99以下、0.98以下、0.97以下、0.96以下、0.95以下、0.94以下、0.93以下、0.92以下、0.91以下、0.85以下、0.80以下、0.75以下、0.70以下、0.66以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition C, the mass of Nb 2 O 5 content with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 The ratio (Nb 2 O 5 / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.00 or more, and more than 0.00, from the viewpoint of improving the partial dispersion characteristics. , 0.01 or more, 0.05 or more, 0.10 or more, 0.15 or more, 0.20 or more, 0.21 or more, 0.22 or more, 0.23 or more, 0.24 or more, 0.25 or more , 0.26 or more, more preferably 0.27 or more. On the other hand, in order to improve the thermal stability of the glass and the reheat devitrification, the value is preferably 1.00 or less, less than 1.00, 0.99 or less, 0.98 or less, and 0. 97 or less, 0.96 or less, 0.95 or less, 0.94 or less, 0.93 or less, 0.92 or less, 0.91 or less, 0.85 or less, 0.80 or less, 0.75 or less, 0. It is more preferable in the order of 70 or less and 0.66 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量に対するTa含有量の質量比(Ta/(TiO+Nb+Ta+WO+Bi))は、ガラスの原料コスト低減およびより一層の低比重化の観点から、1.00以下であることが好ましく、0.80以下、0.60以下、0.40以下、0.30以下、0.20以下、0.10以下の順により好ましく、0であることが特に好ましい。 In the case of the glass composition C in the molding glass material according to the present embodiment, the mass of the Ta 2 O 5 content with respect to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 The ratio (Ta 2 O 5 / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is 1.00 or less from the viewpoint of reducing the raw material cost of glass and further reducing the specific gravity. It is preferable, more preferably 0.80 or less, 0.60 or less, 0.40 or less, 0.30 or less, 0.20 or less, 0.10 or less, and particularly preferably 0.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、高屈折率高分散化成分であるTiO、Nb、Ta、WOおよびBiの中で、WOおよびBiは比重を高める働きが大きい。したがって、より一層の低比重化の観点から、TiO、Nb、Ta、WOおよびBiの合計含有量に対するWO含有量の質量比(WO/(TiO+Nb+Ta+WO+Bi))は、1.00以下であることが好ましく、0.80以下、0.60以下、0.40以下、0.30以下、0.20以下、0.10以下の順により好ましく、0であることが特に好ましい。
 同様の観点から、ガラス組成Cの場合、TiO、Nb、Ta、WOおよびBiの合計含有量に対するBi含有量の質量比(Bi/(TiO+Nb+Ta+WO+Bi))は、1.00以下であることが好ましく、0.80以下、0.60以下、0.40以下、0.30以下、0.20以下、0.10以下の順により好ましく、0であることが特に好ましい。
In the molding glass material according to the present embodiment, in the case of the glass composition C, among the high refractive index and high dispersion components TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 . WO 3 and Bi 2 O 3 have a large function of increasing the specific weight. Therefore, from the viewpoint of further lowering the specific gravity, the mass ratio of WO 3 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 (WO 3 / (TIO). 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 1.00 or less, 0.80 or less, 0.60 or less, 0.40 or less, 0.30 or less, 0. It is more preferably .20 or less and 0.10 or less, and particularly preferably 0.
From the same viewpoint, in the case of glass composition C, the mass ratio of Bi 2 O 3 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 (Bi 2 O 3). / (TiO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 1.00 or less, 0.80 or less, 0.60 or less, 0.40 or less, 0.30. Hereinafter, it is more preferably 0.20 or less and 0.10 or less, and particularly preferably 0.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、Li、La、Gd、Y、ZrO、TiO、Nb、Ta、WOおよびBiは屈折率を高める働きを有する。一方、SiO、B、NaO、KO、MgO、CaO、SrO、BaOおよびZnOは屈折率を低下させる傾向がある。より一層の高屈折率化の観点からは、Li、La、Gd、Y、ZrO、TiO、Nb、Ta、WOおよびBiの合計含有量に対するSiO、B、NaO、KO、MgO、CaO、SrO、BaOおよびZnOの質量比((SiO+B+NaO+KO+MgO+CaO+SrO+BaO+ZnO)/(LiO+La+Gd+Y+ZrO+TiO+Nb+Ta+WO+Bi))は、0.12以上であることが好ましく、0.15以上、0.20以上、0.30以上、0.35以上、0.40以上、0.45以上、0.50以上、0.55以上の順により好ましく、2.83以下であることが好ましく、2.80以下、2.60以下、2.40以下、2.20以下、2.00以下、1.80以下、1.70以下、1.60以下、1.50以下、1.40以下、1.30以下、1.26以下、1.25以下、1.24以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of glass composition C, Li 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 and Bi 2 O 3 have a function of increasing the refractive index. On the other hand, SiO 2 , B 2 O 3 , Na 2 O, K 2 O, MgO, CaO, SrO, BaO and ZnO tend to lower the refractive index. From the viewpoint of further increasing the refractive index, Li 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , TIO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 And the mass ratio of SiO 2 , B 2 O 3 , Na 2 O, K 2 O, MgO, CaO, SrO, BaO and ZnO to the total content of Bi 2 O 3 ((SiO 2 + B 2 O 3 + Na 2 O + K 2) O + MgO + CaO + SrO + BaO + ZnO) / (Li 2 O + La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + ZrO 2 + TIO 2 + Nb 2 O 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 )) is preferably 0.12 or more. The order is more preferably 0.15 or more, 0.20 or more, 0.30 or more, 0.35 or more, 0.40 or more, 0.45 or more, 0.50 or more, 0.55 or more, and 2.83 or less. Preferably, 2.80 or less, 2.60 or less, 2.40 or less, 2.20 or less, 2.00 or less, 1.80 or less, 1.70 or less, 1.60 or less, 1.50 or less, 1 It is more preferable in the order of .40 or less, 1.30 or less, 1.26 or less, 1.25 or less, and 1.24 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、Ta、WO、BiおよびZrOは、ガラスの屈折率を高める働きを有するが、ZrO含有量が多くなるとガラスの熔融性が低下する傾向がある。以上の観点から、TiO、Nb、Ta、WO、BiおよびZrOの合計含有量に対するZrO含有量の質量比(ZrO/(TiO+Nb+Ta+WO+Bi+ZrO))は、0.00以上であることが好ましく、0.01以上、0.02以上の順により好ましく、0.17以下であることが好ましく、0.16以下、0.15以下、0.14以下、0.13以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 and ZrO 2 have a function of increasing the refractive index of the glass. However, as the ZrO 2 content increases, the meltability of the glass tends to decrease. From the above viewpoint, the mass ratio of the ZrO 2 content to the total content of TiO 2 , Nb 2 O 5 , Ta 2 O 5 , WO 3 , Bi 2 O 3 and ZrO 2 (ZrO 2 / (TiO 2 + Nb 2 O) 5 + Ta 2 O 5 + WO 3 + Bi 2 O 3 + ZrO 2 ))) is preferably 0.00 or more, more preferably 0.01 or more, more preferably 0.02 or more, and preferably 0.17 or less. , 0.16 or less, 0.15 or less, 0.14 or less, 0.13 or less, in that order.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO、Nb、WOおよびZnOは屈折率を高くし、ガラスをより高分散性にする傾向があるが、これらを多く含む場合、ガラスの熱的安定性が低下する傾向がある。一方、MgO、CaO、SrOおよびBaOは、ガラスをより低分散性にする傾向があり、熱的安定性を改善する働きを有するが、これらを多く含む場合、屈折率が低下する傾向がある。以上の観点から、TiO、Nb、WOおよびZnOの合計含有量に対するMgO、CaO、SrOおよびBaOの合計含有量の質量比((MgO+CaO+SrO+BaO)/(TiO+Nb+WO+ZnO))は、0.10以上であることが好ましく、0.15以上、0.20以上、0.25以上、0.26以上、0.27以上、0.28以上、0.29以上、0.30以上、0.31以上、0.32以上の順により好ましく、1.50以下であることが好ましく、1.30以下、1.20以下、1.10以下、1.00以下、0.95以下、0.90以下、0.87以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, TiO 2 , Nb 2 O 5 , WO 3 and ZnO tend to increase the refractive index and make the glass more dispersible. When a large amount of the glass is contained, the thermal stability of the glass tends to decrease. On the other hand, MgO, CaO, SrO and BaO tend to make the glass less dispersible and have a function of improving thermal stability, but when they are contained in a large amount, the refractive index tends to decrease. From the above viewpoint, the mass ratio of the total content of MgO, CaO, SrO and BaO to the total content of TiO 2 , Nb 2 O 5 , WO 3 and ZnO ((MgO + CaO + SrO + BaO) / (TiO 2 + Nb 2 O 5 + WO 3) + ZnO)) is preferably 0.10 or more, 0.15 or more, 0.20 or more, 0.25 or more, 0.26 or more, 0.27 or more, 0.28 or more, 0.29 or more, It is more preferably 0.30 or more, 0.31 or more, and 0.32 or more, preferably 1.50 or less, and 1.30 or less, 1.20 or less, 1.10 or less, 1.00 or less, 0. It is more preferable in the order of .95 or less, 0.90 or less, and 0.87 or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、TiO含有量は、0.00%以上であることが好ましく、0.00%超、0.50%以上、1.00%以上、1.50%以上、2.00%以上、2.50%以上、3.00%以上、3.50%以上、4.00%以上の順により好ましく、50.00%以下であることが好ましく、45.0%以下、40.00%以下、38.00%以下、36.00%以下、35.00%以下、34.00%以下、32.00%以下、31.00%以下、30.00%以下、29.50%以下、29.00%以下の順により好ましい。TiOの含有量が上記範囲であることは、より望ましい光学恒数の実現し、またガラスの原料コストを低減する観点から好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the TiO 2 content is preferably 0.00% or more, more than 0.00%, 0.50% or more, and 1.00%. More preferably, 1.50% or more, 2.00% or more, 2.50% or more, 3.00% or more, 3.50% or more, 4.00% or more, and 50.00% or less. Is preferable, 45.0% or less, 40.00% or less, 38.00% or less, 36.00% or less, 35.00% or less, 34.00% or less, 32.00% or less, 31.00% or less. It is more preferable in the order of 30.00% or less, 29.50% or less, and 29.00% or less. It is preferable that the content of TiO 2 is in the above range from the viewpoint of realizing a more desirable optical constant and reducing the raw material cost of glass.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、Nb含有量は、0.00%以上であることが好ましく、0.00%超、1.00%以上、2.00%以上、3.00%以上、4.00%以上、5.00%以上、6.00%以上、7.00%以上、8.00%以上、9.00%以上、10.00%以上、10.50%以上の順により好ましい。また、Nb含有量は、60.00%以下であることが好ましく、58.00%以下、56.00%以下、54.00%以下、52.00%以下、50.00%以下、49.00%以下、48.00%以下、47.00%以下、46.00%以下、45.00%以下、44.00%以下の順により好ましい。Nb含有量が上記範囲であることは、より望ましい光学恒数の実現、より一層の低比重化および部分分散特性の改善の観点から好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, the Nb 2 O 5 content is preferably 0.00% or more, more than 0.00%, 1.00% or more, and 2. 00% or more, 3.00% or more, 4.00% or more, 5.00% or more, 6.00% or more, 7.00% or more, 8.00% or more, 9.00% or more, 10.00% Above, it is more preferable in the order of 10.50% or more. The Nb 2 O 5 content is preferably 60.00% or less, 58.00% or less, 56.00% or less, 54.00% or less, 52.00% or less, 50.00% or less. , 49.00% or less, 48.00% or less, 47.00% or less, 46.00% or less, 45.00% or less, 44.00% or less, in that order. It is preferable that the Nb 2 O 5 content is in the above range from the viewpoint of realizing a more desirable optical constant, further lowering the specific density, and improving the partial dispersion characteristics.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、Ta含有量は、0.00%以上とすることができる。また、Ta含有量は、5.00%以下であることが好ましく、4.00%以下、3.00%以下、2.00%以下、1.00%以下、0.50%以下の順により好ましい。Ta含有量が上記範囲であることは、ガラスの熱的安定性向上、融性向上およびより一層の低比重化の観点から好ましい。 In the case of the glass composition C in the molding glass material according to the present embodiment, the Ta 2 O 5 content can be 0.00% or more. The Ta 2 O 5 content is preferably 5.00% or less, 4.00% or less, 3.00% or less, 2.00% or less, 1.00% or less, 0.50% or less. It is more preferable in the order of. It is preferable that the Ta 2 O 5 content is in the above range from the viewpoint of improving the thermal stability of the glass, improving the meltability, and further reducing the specific density.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、WO含有量は、0.00%以上とすることができる。また、WO含有量は、5.00%以下であることが好ましく、4.00%以下、3.00%以下、2.00%以下、1.00%以下、0.50%以下の順により好ましい。WO含有量が上記範囲であることは、ガラスの透過率向上、部分分散特性改善およびより一層の低比重化の観点から好ましい。 In the case of the glass composition C in the molding glass material according to the present embodiment, the WO 3 content can be 0.00% or more. The WO 3 content is preferably 5.00% or less, in the order of 4.00% or less, 3.00% or less, 2.00% or less, 1.00% or less, 0.50% or less. More preferred. It is preferable that the WO 3 content is in the above range from the viewpoints of improving the transmittance of the glass, improving the partial dispersion characteristics, and further reducing the specific density.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、Bi含有量は、0.00%以上とすることができる。また、Bi含有量は、5.00%以下であることが好ましく、4.00%以下、3.00%以下、2.00%以下、1.00%以下、0.50%以下の順により好ましい。Bi含有量が上記範囲であることは、ガラスの熱的安定性向上、部分分散特性の改善およびより一層の低比重化の観点から好ましい。 In the case of the glass composition C in the molding glass material according to the present embodiment, the Bi 2 O 3 content can be 0.00% or more. The Bi 2 O 3 content is preferably 5.00% or less, 4.00% or less, 3.00% or less, 2.00% or less, 1.00% or less, 0.50% or less. It is more preferable in the order of. It is preferable that the Bi 2 O 3 content is in the above range from the viewpoint of improving the thermal stability of the glass, improving the partial dispersion characteristics, and further reducing the specific density.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、GeOは、屈折率を高める働きをするが、非常に高価な成分である。ガラスの製造コストを抑える観点から、GeO含有量は、0.00%以上とすることができ、2.00%以下であることが好ましく、1.50%以下、1.00%以下、0.50%以下の順により好ましい。 In the molding glass material according to the present embodiment, in the case of the glass composition C, GeO 2 has a function of increasing the refractive index, but is a very expensive component. From the viewpoint of suppressing the production cost of glass, the GeO 2 content can be 0.00% or more, preferably 2.00% or less, and 1.50% or less, 1.00% or less, 0. It is more preferable in the order of .50% or less.
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、更に、上記成分に加えて、P、Al等の一種以上を含むこともできる。
 P含有量は、0.00%以上とすることができ、好ましくは10.00%以下であり、8.00%以下、6.00%以下、4.00%以下、2.00%以下、1.00%以下、0.50%以下の順により好ましい。P含有量が上記範囲であることは、ガラスの熱的安定性向上および部分分散特性改善の観点から好ましい。
 Al含有量は、0.00%以上であることができ、好ましくは10.00%以下であり、8.00%以下、6.00%以下、4.00%以下、2.00%以下、1.00%以下、0.50%以下の順により好ましい。Al含有量が上記範囲であることは、ガラスの耐失透性および熱的安定性向上の観点から好ましい。
In the case of the glass composition C, the molding glass material according to the present embodiment may further contain one or more of P 2 O 5 , Al 2 O 3, and the like in addition to the above components.
The P 2 O 5 content can be 0.00% or more, preferably 10.00% or less, 8.00% or less, 6.00% or less, 4.00% or less, 2.00% or less. % Or less, 1.00% or less, and 0.50% or less are more preferable. It is preferable that the P 2 O 5 content is in the above range from the viewpoint of improving the thermal stability of the glass and improving the partial dispersion characteristics.
The Al 2 O 3 content can be 0.00% or more, preferably 10.00% or less, 8.00% or less, 6.00% or less, 4.00% or less, 2.00% or less. % Or less, 1.00% or less, and 0.50% or less are more preferable. It is preferable that the Al 2 O 3 content is in the above range from the viewpoint of improving the devitrification resistance and thermal stability of the glass.
 Pb、As、Cd、Tl、Be、Seは、それぞれ毒性を有する。そのため、これらの元素を含有させないこと、すなわち、これら元素をガラス成分としてガラス中に導入しないことが好ましい。
 U、Th、Raはいずれも放射性元素である。そのため、これらの元素を含有させないこと、すなわち、これら元素をガラス成分としてガラス中に導入しないことが好ましい。
 V、Cr、Mn、Fe、Co、Ni、Cu、Pr,Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ceは、ガラスの着色を増大させたり、蛍光の発生源となり、光学素子用のガラスに含有させる元素としては好ましくない。そのため、これらの元素を含有させないこと、すなわち、これら元素をガラス成分としてガラス中に導入しないことが好ましい。
Pb, As, Cd, Tl, Be and Se are toxic respectively. Therefore, it is preferable not to contain these elements, that is, not to introduce these elements into the glass as a glass component.
U, Th, and Ra are all radioactive elements. Therefore, it is preferable not to contain these elements, that is, not to introduce these elements into the glass as a glass component.
V, Cr, Mn, Fe, Co, Ni, Cu, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Ce increase the coloring of glass and become a source of fluorescence. , It is not preferable as an element contained in glass for an optical element. Therefore, it is preferable not to contain these elements, that is, not to introduce these elements into the glass as a glass component.
 Sb、Snは清澄剤として機能する任意に添加可能な元素である。
 Sbの添加量は、Sbに換算し、Sb以外のガラス成分の含有量の合計を100質量%としたとき、0~0.11質量%の範囲にすることが好ましく、0.01~0.08質量%の範囲にすることがより好ましく、0.02~0.05質量%の範囲にすることが更に好ましい。
 Snの添加量は、SnOに換算し、SnO以外のガラス成分の含有量の合計を100質量%としたとき、0~0.50質量%の範囲にすることが好ましく、0~0.20質量%の範囲にすることがより好ましく、0質量%にすることが更に好ましい。
Sb and Sn are arbitrarily addable elements that function as clarifying agents.
The addition amount of Sb is converted into Sb 2 O 3, when the total content of glass components other than Sb 2 O 3 is 100 mass%, preferably in the range of 0 to 0.11 wt%, It is more preferably in the range of 0.01 to 0.08% by mass, and even more preferably in the range of 0.02 to 0.05% by mass.
The amount of Sn added is preferably in the range of 0 to 0.50% by mass, preferably in the range of 0 to 0.50% by mass, when converted to SnO 2 and the total content of the glass components other than SnO 2 is 100% by mass. It is more preferably in the range of 20% by mass, further preferably 0% by mass.
<ガラス物性>
(屈折率nd)
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、屈折率の高いガラスとすることができる。ガラス組成Cの場合、屈折率ndは、1.860以上であることが好ましく、1.865以上、1.870以上、1.875以上、1.880以上、1.885以上、1.890以上、1.895以上、1.900以上の順により好ましい。また、屈折率ndは、例えば、1.950以下、1.945以下、1.940以下、1.935以下、1.930以下、または1.925以下とすることができる。本発明および本明細書において、「屈折率」は、「屈折率nd」を意味する。
<Glass properties>
(Refractive index nd)
In the molding glass material according to the present embodiment, in the case of glass composition C, glass having a high refractive index can be obtained. In the case of glass composition C, the refractive index nd is preferably 1.860 or more, 1.865 or more, 1.870 or more, 1.875 or more, 1.880 or more, 1.885 or more, 1.890 or more. It is more preferable in the order of 1.895 or more and 1.900 or more. The refractive index nd can be, for example, 1.950 or less, 1.945 or less, 1.940 or less, 1.935 or less, 1.930 or less, or 1.925 or less. In the present invention and the present specification, "refractive index" means "refractive index nd".
(アッベ数νd)
 アッベ数νdは分散性に関する性質を表す値であり、d線、F線、C線における各屈折率nd、nF、nCを用いてνd=(nd-1)/(nF-nC)と表される。本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、光学素子用材料としての有用性の観点から、アッベ数νdは、22.00以上であることが好ましく、22.50以上、23.00以上、23.50以上、24.00以上、24.20以上、24.40以上、24.60以上、24.70以上、24.80以上、25.00以上、25.50以上、25.60以上、25.80以上、26.00以上の順により好ましい。同様の観点から、アッベ数νdは、30.00以下であることが好ましく、29.50以下、29.00以下、28.50以下、28.40以下、28.30以下、28.20以下、28.10以下、28.00以下、27.90以下、27.80以下、27.70以下の順により好ましい。
(Abbe number νd)
The Abbe number νd is a value representing a property related to dispersibility, and is expressed as νd = (nd-1) / (nF-nC) using the refractive indexes nd, nF, and nC of the d-line, F-line, and C-line. NS. In the molding glass material according to the present embodiment, in the case of the glass composition C, the Abbe number νd is preferably 22.50 or more, 23.50 or more, from the viewpoint of usefulness as a material for an optical element. .00 or more, 23.50 or more, 24.00 or more, 24.20 or more, 24.40 or more, 24.60 or more, 24.70 or more, 24.80 or more, 25.00 or more, 25.50 or more, 25 It is more preferable in the order of .60 or more, 25.80 or more, and 26.00 or more. From the same viewpoint, the Abbe number νd is preferably 30.00 or less, 29.50 or less, 29.00 or less, 28.50 or less, 28.40 or less, 28.30 or less, 28.20 or less, 28.10 or less, 28.00 or less, 27.90 or less, 27.80 or less, 27.70 or less are more preferable.
 また、本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、光学素子用材料としての有用性の観点から、屈折率ndとアッベ数νdとが、下記関係式の1つ以上を満たすことも好ましい。
 nd≧-0.0025νd+1.925
 nd≧-0.0025νd+1.935
 nd≦-0.0025νd+1.995
 nd≦-0.0025νd+2.005
Further, in the molding glass material according to the present embodiment, in the case of the glass composition C, the refractive index nd and the Abbe number νd satisfy one or more of the following relational expressions from the viewpoint of usefulness as a material for an optical element. It is also preferable.
nd ≧ -0.0025νd + 1.925
nd ≧ -0.0025νd + 1.935
nd≤-0.0025νd + 1.995
nd ≦ -0.0025νd + 2.005
(比重d)
 光学系を構成する光学素子では、光学素子を構成するガラスの屈折率と光学素子の光学機能面(制御しようとする光線が入射、出射する面)の曲率によって、屈折力が決まる。光学機能面の曲率を大きくしようとすると、光学素子の厚みも増加する。その結果、光学素子が重くなる。これに対し、屈折率の高いガラスを使用すれば、光学機能面の曲率を大きくしなくても大きな屈折力を得ることができる。
 以上より、ガラスの比重の増加を抑えつつ、屈折率を高めることができれば、一定の屈折力を有する光学素子の軽量化が可能となる。
 以上の観点から、本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、比重dは、4.100以下であることが好ましく、4.095以下、4.090以下、4.085以下、4.080以下、4.050以下、4.000以下、3.995以下、3.990以下、3.985以下の順により好ましい。比重が低いほど光学素子の軽量化の観点から好ましいため、比重について、下限は特に限定されない。一形態では、比重は、3.400以上、3.450以上、3.500以上、3.550以上、3.600以上、3.650以上、3.700以上、または3.750以上とすることができる。
(Relative density d)
In the optical element constituting the optical system, the refractive power is determined by the refractive index of the glass constituting the optical element and the curvature of the optical functional surface (the surface on which the light beam to be controlled enters and exits) of the optical element. When the curvature of the optical functional surface is increased, the thickness of the optical element also increases. As a result, the optical element becomes heavy. On the other hand, if glass having a high refractive index is used, a large refractive power can be obtained without increasing the curvature of the optical functional surface.
From the above, if the refractive index can be increased while suppressing the increase in the specific gravity of the glass, the weight of the optical element having a constant refractive power can be reduced.
From the above viewpoint, in the molding glass material according to the present embodiment, in the case of the glass composition C, the specific gravity d is preferably 4.100 or less, preferably 4.095 or less, 4.090 or less, 4.085 or less. It is more preferable in the order of 4.080 or less, 4.050 or less, 4.000 or less, 3.995 or less, 3.990 or less, and 3.985 or less. Since the lower the specific gravity is, the more preferable it is from the viewpoint of reducing the weight of the optical element, the lower limit of the specific gravity is not particularly limited. In one form, the specific density is 3.400 or more, 3.450 or more, 3.500 or more, 3.550 or more, 3.600 or more, 3.650 or more, 3.700 or more, or 3.750 or more. Can be done.
(d/nd)
 比重dに関して先に記載した点と同様の観点から、本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、比重dを屈折率ndで除した値(d/nd)は、4.35以下であることが好ましく、4.00以下、3.50以下、3.00以下、2.90以下、2.80以下、2.70以下、2.60以下、2.50以下、2.40以下、2.30以下、2.20以下、2.15以下の順により好ましい。(d/nd)の値が小さいほど光学素子の軽量化の観点から好ましいため、(d/nd)について、下限は特に限定されない。一形態では、(d/nd)は、例えば、1.74以上、1.76以上、1.78以上、1.80以上、1.82以上、1.84以上、1.85以上、1.86以上、1.87以上、1.88以上、1.89以上、1.90以上、1.91以上、1.92以上、1.93以上、1.94以上、または1.95以上とすることができる。
(D / nd)
From the same viewpoint as the point described above regarding the specific gravity d, in the case of the glass composition C in the molding glass material according to the present embodiment, the value (d / nd) obtained by dividing the specific gravity d by the refractive index nd is 4. It is preferably 35 or less, preferably 4.00 or less, 3.50 or less, 3.00 or less, 2.90 or less, 2.80 or less, 2.70 or less, 2.60 or less, 2.50 or less, 2. It is more preferably 40 or less, 2.30 or less, 2.20 or less, and 2.15 or less in that order. Since the smaller the value of (d / nd) is, the more preferable it is from the viewpoint of weight reduction of the optical element, the lower limit of (d / nd) is not particularly limited. In one form, (d / nd) is, for example, 1.74 or higher, 1.76 or higher, 1.78 or higher, 1.80 or higher, 1.82 or higher, 1.84 or higher, 1.85 or higher, 1. 86 or more, 1.87 or more, 1.88 or more, 1.89 or more, 1.90 or more, 1.91 or more, 1.92 or more, 1.93 or more, 1.94 or more, or 1.95 or more. be able to.
(着色度λ5)
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、ガラスの光線透過性、詳しくは、短波長側の光吸収端の長波長化が抑制されていることは、着色度λ5により評価することができる。着色度λ5とは、紫外域から可視域にかけて、厚さ10mmのガラスの分光透過率(表面反射損失を含む)が5%となる波長を表す。ガラス組成Cの場合、分光透過率とは、例えばより詳しくは、10.0±0.1mmの厚さに研磨された互いに平行な平面を有するガラス試料を用い、上記研磨された面に対して垂直方向から光を入射して得られる分光透過率、すなわち、上記ガラス試料に入射する光の強度をIin、上記ガラス試料を透過した光の強度をIoutとしたときのIout/Iinのことである。
 着色度λ5によれば、分光透過率の短波長側の吸収端を定量的に評価することができる。接合レンズ作製のためにレンズ同士を紫外線硬化型接着剤により接合する際等には、光学素子を通して接着剤に紫外線を照射し接着剤を硬化させることが行われる。効率よく紫外線硬化型接着剤の硬化を行う観点からは、分光透過率の短波長側の吸収端が短い波長域にあることが好ましい。この短波長側の吸収端を定量的に評価する指標として、着色度λ5を用いることができる。ガラス組成Cの場合、好ましくは400nm以下のλ5を示すことができる。λ5は、395nm以下、390nm以下、385nm以下、380nm以下の順により好ましい。λ5は、低いほど好ましく、下限は特に限定されるものではない。
(Coloring degree λ5)
In the molding glass material according to the present embodiment, in the case of the glass composition C, the light transmittance of the glass, specifically, the suppression of the lengthening of the light absorption edge on the short wavelength side is evaluated by the degree of coloring λ5. can do. The degree of coloration λ5 represents a wavelength at which the spectral transmittance (including surface reflection loss) of a glass having a thickness of 10 mm is 5% from the ultraviolet region to the visible region. In the case of the glass composition C, the spectral transmittance means, for example, more specifically, using a glass sample having parallel planes polished to a thickness of 10.0 ± 0.1 mm with respect to the polished surface. The spectral transmittance obtained by incident light from the vertical direction, that is, Iout / Iin when the intensity of the light incident on the glass sample is Iin and the intensity of the light transmitted through the glass sample is Iout. ..
According to the degree of coloration λ5, the absorption edge on the short wavelength side of the spectral transmittance can be quantitatively evaluated. When joining lenses to each other with an ultraviolet curable adhesive for producing a bonded lens, the adhesive is cured by irradiating the adhesive with ultraviolet rays through an optical element. From the viewpoint of efficiently curing the ultraviolet curable adhesive, it is preferable that the absorption edge on the short wavelength side of the spectral transmittance is in the short wavelength region. The degree of coloration λ5 can be used as an index for quantitatively evaluating the absorption edge on the short wavelength side. In the case of the glass composition C, λ5 of preferably 400 nm or less can be exhibited. λ5 is more preferably 395 nm or less, 390 nm or less, 385 nm or less, and 380 nm or less in that order. The lower the value of λ5, the more preferable, and the lower limit is not particularly limited.
(ガラス転移温度Tg)
 本実施形態に係る成形用ガラス素材において、ガラス組成Cの場合、ガラス転移温度Tgは、機械加工性の観点からは、好ましくは560℃以上である。ガラス転移温度が高いガラスは、切断、切削、研削、研磨等のガラスの機械加工を行う際に破損しにくい傾向があり好ましい。機械加工性の観点からは、ガラス転移温度Tgは、570℃以上であることがより好ましく、580℃以上、590℃以上、600℃以上の順に更に好ましい。一方、アニール炉や成形型への負担軽減の観点からは、ガラス転移温度Tgは、800℃以下であることが好ましく、790℃以下、780℃以下、770℃以下、760℃以下、750℃以下、740℃以下の順により好ましい。
(Glass transition temperature Tg)
In the molding glass material according to the present embodiment, in the case of the glass composition C, the glass transition temperature Tg is preferably 560 ° C. or higher from the viewpoint of machinability. Glass having a high glass transition temperature is preferable because it tends to be less likely to be broken when machining glass such as cutting, cutting, grinding, and polishing. From the viewpoint of machinability, the glass transition temperature Tg is more preferably 570 ° C. or higher, and further preferably 580 ° C. or higher, 590 ° C. or higher, and 600 ° C. or higher in that order. On the other hand, from the viewpoint of reducing the burden on the annealing furnace and the molding die, the glass transition temperature Tg is preferably 800 ° C. or lower, 790 ° C. or lower, 780 ° C. or lower, 770 ° C. or lower, 760 ° C. or lower, 750 ° C. or lower. , 740 ° C. or lower, which is more preferable.
 ガラス転移温度Tgは、次のようにして求められる。示差走査熱量分析において、ガラス試料を昇温すると比熱の変化に伴う吸熱挙動、即ち、吸熱ピークが現れ、更に昇温すると発熱ピークが現れる。示差走査熱量分析では横軸を温度、縦軸を試料の発熱吸熱に対応する量とする示差走査熱量曲線(DSC曲線)が得られる。この曲線でベースラインから吸熱ピークが現れる際に傾きが最大になる点における接線と上記ベースラインの交点をガラス転移温度Tgとする。ガラス転移温度Tgの測定は、ガラスを乳鉢等で十分粉砕したものを試料とし、示差走査熱量計を使用して、昇温速度を10℃/分として行うことができる。 The glass transition temperature Tg is obtained as follows. In the differential scanning calorimetry, when the temperature of the glass sample is raised, the endothermic behavior accompanying the change in specific heat, that is, the endothermic peak appears, and when the temperature is further raised, the exothermic peak appears. In the differential scanning calorimetry, a differential scanning calorimetry curve (DSC curve) is obtained in which the horizontal axis represents the temperature and the vertical axis represents the amount corresponding to the exothermic endothermic reaction of the sample. The intersection of the tangent line and the baseline at the point where the slope becomes maximum when the endothermic peak appears from the baseline on this curve is defined as the glass transition temperature Tg. The glass transition temperature Tg can be measured by using a sample obtained by sufficiently pulverizing glass in a mortar or the like and using a differential scanning calorimeter at a heating rate of 10 ° C./min.
(液相温度)
 ガラスの熱的安定性には、ガラス融液を成形する際の耐失透性と、一度固化したガラスを再加熱したときの耐失透性とがある。
 ガラス融液を成形する際の耐失透性については、液相温度LTを目安にすることができる。液相温度が低いほど優れた耐失透性を有しているということができる。液相温度が高いガラスでは、失透を防止するために、ガラス融液、即ち、熔融ガラスの温度を高温に保持しなければならず、易揮発成分の揮発が生じる、坩堝の侵蝕が助長される、特に貴金属製坩堝の場合は貴金属イオンがガラス融液に溶け込んでガラスが着色する、成形時の粘性が低くなって均質性の高いガラスを成形することが難しくなる等の現象が発生し得る。そのため、ガラス組成Cの場合、液相温度は、1400℃以下であることが好ましく、1370℃以下、1340℃以下、1310℃以下、1280℃以下、1270℃以下、1260℃以下、1250℃以下の順により好ましい。また、液相温度は、例えば、1000℃以上、1050℃以上または1100℃以上とすることができるが、ここに例示した値を上回ることもできる。
(Liquid phase temperature)
The thermal stability of glass includes devitrification resistance when molding a glass melt and devitrification resistance when a once solidified glass is reheated.
The liquidus temperature LT can be used as a guide for the devitrification resistance when molding the glass melt. It can be said that the lower the liquidus temperature, the better the devitrification resistance. In glass with a high liquidus temperature, the temperature of the glass melt, that is, the molten glass must be maintained at a high temperature in order to prevent devitrification, which promotes the erosion of the crucible, which causes volatilization of easily volatile components. In the case of a crucible made of precious metal, the precious metal ions dissolve in the glass melt to color the glass, and the viscosity at the time of molding becomes low, making it difficult to mold highly homogeneous glass. .. Therefore, in the case of glass composition C, the liquid phase temperature is preferably 1400 ° C. or lower, 1370 ° C. or lower, 1340 ° C. or lower, 1310 ° C. or lower, 1280 ° C. or lower, 1270 ° C. or lower, 1260 ° C. or lower, 1250 ° C. or lower. More preferred in order. The liquidus temperature can be, for example, 1000 ° C. or higher, 1050 ° C. or higher, or 1100 ° C. or higher, but can also exceed the values exemplified here.
 本発明および本明細書における「液相温度」は、以下の方法によって求められる。
 示差走査熱量計を用いて、流量0.3L/minの窒素を流しながら窒素雰囲気中で、およそ0.02mlの粉砕したガラス試料を昇温速度10℃/minで1350℃まで昇温したときに、昇温過程で生じたガラス中の結晶が、ガラス転移温度や結晶化温度よりも高い温度域において融解するときに生じる吸熱ピークの終点を液相温度とする。図1は、示差走査熱量曲線(DSC曲線)を模式的に示した図である。横軸が温度で、横軸上で右にいくほど高温、左にいくほど低温である。縦軸は試料の発熱・吸熱に対応し、ベースライン(点線)よりも上側が発熱、下側が吸熱である。昇温過程における結晶析出が発熱ピーク、析出した結晶の融解が吸熱ピークに対応する。結晶が融解して融液化する温度が、液相温度である。液相温度は、吸熱ピークの高温側の接線とベースラインの交点の温度として求められる。
The "liquid phase temperature" in the present invention and the present specification is determined by the following method.
When a crushed glass sample of about 0.02 ml is heated to 1350 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere while flowing nitrogen at a flow rate of 0.3 L / min using a differential scanning calorimeter. The liquidus temperature is defined as the end point of the heat absorption peak generated when the crystals in the glass generated in the temperature raising process melt in a temperature range higher than the glass transition temperature and the crystallization temperature. FIG. 1 is a diagram schematically showing a differential scanning calorimetry curve (DSC curve). The horizontal axis is the temperature, and on the horizontal axis, the temperature is higher toward the right and lower toward the left. The vertical axis corresponds to the heat generation and endothermic of the sample, the upper side of the baseline (dotted line) is heat generation, and the lower side is endothermic. Crystal precipitation in the temperature rise process corresponds to the exothermic peak, and melting of the precipitated crystals corresponds to the endothermic peak. The temperature at which the crystals melt and melt is the liquidus temperature. The liquidus temperature is obtained as the temperature at the intersection of the tangent line on the high temperature side of the endothermic peak and the baseline.
(ガラス素材の製造)
 本発明の実施形態に係るガラスは、上記所定の組成となるようにガラス原料を調合し、調合したガラス原料により作製できる。例えば、複数種の化合物を調合し、十分混合してバッチ原料とし、バッチ原料を石英坩堝や白金坩堝中に入れて粗熔解(ラフメルト)する。粗熔解によって得られた熔融物を冷却、粉砕してカレットを作製する。さらにカレットを白金坩堝中に入れて加熱、再熔融(リメルト)して熔融ガラスとし、さらに冷却清澄、均質化した後に、熔融ガラスがTg未満の温度Txに達するように温度調整された金型に鋳込み(工程1)、温度Txで保持する(工程2)。その後、ガラスの歪み点温度確実に下回るよう-30℃/hrで4時間冷却し(工程3)、ガラスが割れない程度の徐冷速度で、炉外に取り出せる温度にまで放冷する(工程4)。
(Manufacturing of glass material)
The glass according to the embodiment of the present invention can be produced by blending a glass raw material so as to have the above-mentioned predetermined composition and using the blended glass raw material. For example, a plurality of types of compounds are mixed and sufficiently mixed to obtain a batch raw material, and the batch raw material is placed in a quartz crucible or a platinum crucible for rough melting. The melt obtained by crude melting is cooled and crushed to prepare a cullet. Furthermore, the cullet is placed in a platinum pit and heated and remelted to make molten glass, and after cooling, clarification and homogenization, the temperature of the molten glass is adjusted so that it reaches a temperature Tx of less than Tg. Casting (step 1) and holding at temperature Tx (step 2). After that, the glass is cooled at −30 ° C./hr for 4 hours so that the temperature is surely below the strain point temperature (step 3), and the glass is allowed to cool to a temperature at which it can be taken out of the furnace at a slow cooling rate that does not break the glass (step 4). ).
 なお、ガラス中に所望のガラス成分を所望の含有量となるように導入することができれば、バッチ原料を調合するときに使用する化合物は特に限定されないが、このような化合物として、酸化物、炭酸塩、硝酸塩、水酸化物、フッ化物等が挙げられる。 As long as a desired glass component can be introduced into the glass so as to have a desired content, the compound used when preparing the batch raw material is not particularly limited, and examples of such a compound include oxides and carbonates. Examples thereof include salts, nitrates, hydroxides and fluorides.
 以下、工程1~4について説明する。 Hereinafter, steps 1 to 4 will be described.
(工程1)
 工程1では、熔融ガラスは、ガラス転移温度Tg未満の温度Txに達するように温度調整された金型に鋳込まれる。熔融ガラスの温度を上記のように制御することで、ガラスに加える熱エネルギーを抑え、ガラス内の原子の動きを抑えることができる。その結果、ガラス内の原子間の結合距離や結合角といったガラス内部の構造因子が均質化される前に原子の移動が規制される。そして、融液状態のような乱雑なガラス構造を維持することにより、再加熱時の安定性に優れるガラス素材が得られる。
(Step 1)
In step 1, the molten glass is cast into a mold whose temperature is adjusted so as to reach a temperature Tx lower than the glass transition temperature Tg. By controlling the temperature of the molten glass as described above, it is possible to suppress the heat energy applied to the glass and suppress the movement of atoms in the glass. As a result, the movement of atoms is regulated before structural factors inside the glass, such as bond distances and bond angles between atoms in the glass, are homogenized. Then, by maintaining a messy glass structure such as in a molten state, a glass material having excellent stability during reheating can be obtained.
 なお、工程1の前の熔解ガラスの温度は、通常、ガラスの液相温度~ガラスの熔解温度である。また、工程1において、熔融ガラスを金型に鋳込む際のガラス温度は、ガラスの熔融時の温度であり、おおむね1500℃~1100℃、好ましくは1400℃~1200℃の範囲である。したがって、工程1では、熔融ガラスは金型に鋳込まれる際に冷却される。このときの冷却は、通常は、大気による放冷である。しかし、あまりにも冷却速度が速すぎると、ガラスの内部の一部の箇所が流動しないほど高粘度化あるいは固化するそれがある。そうすると、ガラスの均質化に支障をきたし、またガラスにクラックが生じたり、ガラスが破断するおそれもある。したがって、工程1における冷却速度の下限は、好ましくはおおむね1℃/秒であり、さらには3℃/秒、6℃/秒の順により好ましい。冷却速度の上限は、好ましくは20℃/秒であり、さらには15℃/秒、12℃/秒、10℃/秒の順により好ましい。 The temperature of the molten glass before step 1 is usually from the liquid phase temperature of the glass to the melting temperature of the glass. Further, in step 1, the glass temperature at the time of casting the molten glass into the mold is the temperature at the time of melting the glass, and is generally in the range of 1500 ° C. to 1100 ° C., preferably 1400 ° C. to 1200 ° C. Therefore, in step 1, the molten glass is cooled when it is cast into the mold. The cooling at this time is usually cooling by the atmosphere. However, if the cooling rate is too fast, some parts of the inside of the glass may become so viscous or solidified that they do not flow. Then, the homogenization of the glass is hindered, the glass may be cracked, or the glass may be broken. Therefore, the lower limit of the cooling rate in the step 1 is preferably about 1 ° C./sec, and more preferably 3 ° C./sec and 6 ° C./sec. The upper limit of the cooling rate is preferably 20 ° C./sec, more preferably 15 ° C./sec, 12 ° C./sec, and 10 ° C./sec.
(工程2)
 工程2では、熔融ガラスは温度Txで保持される。工程2における保持温度Txは、好ましくはガラス転移温度Tg未満であり、その上限はTg-1℃、Tg-5℃、Tg-10℃、Tg-15℃、Tg-20℃の順により好ましい。保持温度Txの上限を上記範囲とすることで、ガラス構造の乱雑性が高まり、再加熱時の安定性に優れるガラス素材が得られる。
(Step 2)
In step 2, the molten glass is held at a temperature of Tx. The holding temperature Tx in step 2 is preferably less than the glass transition temperature Tg, and the upper limit thereof is more preferably Tg-1 ° C., Tg-5 ° C., Tg-10 ° C., Tg-15 ° C., and Tg-20 ° C. By setting the upper limit of the holding temperature Tx to the above range, the disorder of the glass structure is increased, and a glass material having excellent stability at the time of reheating can be obtained.
 工程2における保持温度Txの下限は、好ましくはTg-100℃であり、さらには、Tg-90℃、Tg-80℃、Tg-70℃、Tg-60℃、Tg-50℃の順により好ましい。特に、Txが歪点を下回りすぎないことが好ましく、歪点以上であることがより好ましい。保持温度Txの下限を上記範囲とすることで、過剰なガラスの内部歪を除去することができ、後工程におけるガラスの加工性の悪化を抑制し、あるいはガラスバルク体の破損を防止することができる。後工程におけるガラスの加工性の悪化を問わないプロセスの場合、工程2の温度の下限は特に規定されない。 The lower limit of the holding temperature Tx in step 2 is preferably Tg-100 ° C., more preferably Tg-90 ° C., Tg-80 ° C., Tg-70 ° C., Tg-60 ° C., and Tg-50 ° C. .. In particular, it is preferable that Tx does not fall below the strain point too much, and more preferably above the strain point. By setting the lower limit of the holding temperature Tx to the above range, it is possible to remove the excessive internal strain of the glass, suppress the deterioration of the workability of the glass in the subsequent process, or prevent the glass bulk body from being damaged. can. In the case of a process in which the workability of the glass is not deteriorated in the subsequent process, the lower limit of the temperature in the step 2 is not particularly specified.
 工程2における保持時間は、熔融状態から冷却された高温のガラスを均熱化させるため、ガラスの厚みが大きいほど、またガラスの体積が大きいほど長くなる傾向があるが、好ましくは10分以上であり、20分以上、または30分以上とすることもできる。生産性の観点およびガラスの熱的安定性保持の観点からは、保持時間の上限は3時間未満で十分であり、さらには2時間未満、1.5時間未満、または1.0時間未満としてもよい。保持時間が長すぎると、熔融状態における原子配置の無秩序な状態が保持されず、原子配置の秩序化が進むことによりガラスの熱的安定性が低下し、αmaxも大きくなる傾向がある。 The holding time in step 2 tends to increase as the thickness of the glass increases and the volume of the glass increases because the high-temperature glass cooled from the molten state is homogenized, but it is preferably 10 minutes or more. Yes, it can be 20 minutes or more, or 30 minutes or more. From the standpoint of productivity and the retention of thermal stability of the glass, an upper limit of retention time of less than 3 hours is sufficient, even less than 2 hours, less than 1.5 hours, or less than 1.0 hours. good. If the holding time is too long, the disordered state of the atomic arrangement in the molten state is not maintained, the thermal stability of the glass is lowered due to the progress of the ordering of the atomic arrangement, and α max tends to be large.
(工程3)
 工程3では、ガラスは、徐冷中に歪み点温度を確実に下回るよう-30℃/hrで4時間冷却される。この冷却に要する時間は、温度Txが歪点よりも高い場合は、好ましくは4時間以上であり、より好ましくは5時間以上、さらに好ましくは6時間以上である。温度Txが歪点よりも低い場合は、4時間未満とすることもできる。
(Step 3)
In step 3, the glass is cooled at −30 ° C./hr for 4 hours to ensure that it falls below the strain point temperature during slow cooling. When the temperature Tx is higher than the strain point, the time required for this cooling is preferably 4 hours or more, more preferably 5 hours or more, and further preferably 6 hours or more. If the temperature Tx is lower than the strain point, it can be less than 4 hours.
(工程4)
 工程4では、ガラスは、割れない程度の徐冷速度で、炉外に取り出せる温度にまで放冷される。工程4における徐冷速度は、おおむね-50℃/hrより小さいことが好ましく、-10℃/hrあるいは-30℃/hr程度とすることができる。-1℃/hrより小さいと生産性に支障をきたすおそれがある。また炉外に取り出せるガラスの温度は、炉外の断熱の状況によるが、好ましくはおよそ100℃以下であり、さらには80℃以下、60℃以下、40℃以下、20℃以下の順により好ましい。室温との差で表すと、炉外に取り出せるガラスの温度の上限は、好ましくは室温+50℃であり、さらには室温+40℃、室温+30℃、室温+20℃、室温+10℃の順により好ましい。炉外に取り出せるガラスの温度の下限は室温とすればよい。
(Step 4)
In step 4, the glass is allowed to cool to a temperature at which it can be taken out of the furnace at a slow cooling rate that does not break. The slow cooling rate in step 4 is preferably smaller than −50 ° C./hr, and can be about −10 ° C./hr or −30 ° C./hr. If it is less than -1 ° C / hr, productivity may be hindered. The temperature of the glass that can be taken out of the furnace depends on the state of heat insulation outside the furnace, but is preferably about 100 ° C. or lower, and more preferably 80 ° C. or lower, 60 ° C. or lower, 40 ° C. or lower, and 20 ° C. or lower. Expressed in terms of the difference from room temperature, the upper limit of the temperature of the glass that can be taken out of the furnace is preferably room temperature + 50 ° C., more preferably room temperature + 40 ° C., room temperature + 30 ° C., room temperature + 20 ° C., and room temperature + 10 ° C. The lower limit of the temperature of the glass that can be taken out of the furnace may be room temperature.
 ガラスの徐冷には、上記の温度プロファイルが得られるような公知の方法、たとえば温度プログラムが可能な徐冷炉などを用いればよい。 For the slow cooling of the glass, a known method that can obtain the above temperature profile, for example, a slow cooling furnace capable of temperature programming may be used.
 工程1における冷却速度、および工程2における保持温度Txを上記範囲とすることで、ガラス構造の乱雑性が高まり、再加熱時の安定性に優れるガラス素材が得られる。また、工程3、工程4のようにガラスを冷却、徐冷することにより、ガラスの歪を取り除き、後工程におけるガラスの加工性を維持することができる。 By setting the cooling rate in step 1 and the holding temperature Tx in step 2 within the above ranges, the disorder of the glass structure is increased, and a glass material having excellent stability during reheating can be obtained. Further, by cooling and slowly cooling the glass as in steps 3 and 4, distortion of the glass can be removed and the processability of the glass in the subsequent step can be maintained.
 本発明の実施形態に係る光学ガラスとして、本発明の実施形態に係る成形用ガラス素材をそのまま用いることができる。 As the optical glass according to the embodiment of the present invention, the molding glass material according to the embodiment of the present invention can be used as it is.
(光学素子等の製造)
 本発明の実施形態に係る成形用ガラス素材を使用して光学素子を作製するには、公知の方法を適用すればよい。例えば、上記ガラス素材の製造において、熔融ガラスを鋳型に流し込んで板状に成形し、本発明に係る成形用ガラス素材を作製する。得られたガラス素材を適宜、切断、研削、研磨し、再加熱後の成形に適した大きさおよび形状を有する成形前駆体(カットピースともいう)を作製する。カットピースを加熱、軟化して、公知の方法で成形(リヒートプレス、丸棒成形、押出成形等)し、光学素子の形状に近似する光学素子ブランクを作製する。光学素子ブランクをアニールし、公知の方法で切断、研削、研磨等することにより光学素子を作製する。
(Manufacturing of optical elements, etc.)
In order to produce an optical element using the molding glass material according to the embodiment of the present invention, a known method may be applied. For example, in the production of the above glass material, molten glass is poured into a mold and molded into a plate shape to produce a molding glass material according to the present invention. The obtained glass material is appropriately cut, ground, and polished to prepare a molding precursor (also referred to as a cut piece) having a size and shape suitable for molding after reheating. The cut piece is heated and softened and molded by a known method (reheat press, round bar molding, extrusion molding, etc.) to produce an optical element blank that approximates the shape of the optical element. An optical element is manufactured by annealing an optical element blank and cutting, grinding, polishing or the like by a known method.
 作製した光学素子の光学機能面には使用目的に応じて、反射防止膜、全反射膜などをコーティングしてもよい。 The optical functional surface of the manufactured optical element may be coated with an antireflection film, a total reflection film, or the like, depending on the purpose of use.
 本発明の一態様によれば、上記光学ガラスからなる光学素子を提供することができる。光学素子の種類としては、球面レンズ、非球面レンズ等のレンズ、プリズム、回折格子等を例示することができる。レンズの形状としては、両凸レンズ、平凸レンズ、両凹レンズ、平凹レンズ、凸メニスカスレンズ、凹メニスカスレンズ等の諸形状を例示することができる。光学素子は、上記光学ガラスからなるガラス成形体を加工する工程を含む方法により製造することができる。加工としては、切断、切削、粗研削、精研削、研磨等を例示することができる。こうした加工を行う際、上記ガラスを使用することにより、破損を軽減することができ、高品質の光学素子を安定して供給することができる。 According to one aspect of the present invention, it is possible to provide an optical element made of the above optical glass. Examples of the types of optical elements include lenses such as spherical lenses and aspherical lenses, prisms, and diffraction gratings. As the shape of the lens, various shapes such as a biconvex lens, a plano-convex lens, a biconcave lens, a plano-concave lens, a convex meniscus lens, and a concave meniscus lens can be exemplified. The optical element can be manufactured by a method including a step of processing a glass molded body made of the above optical glass. Examples of processing include cutting, cutting, rough grinding, fine grinding, and polishing. By using the above glass when performing such processing, damage can be reduced and high-quality optical elements can be stably supplied.
第2実施形態
 第2実施形態に係る成形用ガラス素材は、
 線膨張係数の最大値αmaxと、100~300℃における平均線膨張係数α100-300と、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とが、下記式(4)を満たす。
 αmax/α100-300×[SiO+ZrO]≦264 ・・・(4)
2nd Embodiment The molding glass material according to the 2nd embodiment is
The maximum value α max of the coefficient of linear expansion, the average coefficient of linear expansion α 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are expressed by the following formulas. (4) is satisfied.
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 264 ・ ・ ・ (4)
 第2実施形態に係る成形用ガラス素材において、線膨張係数の最大値αmaxと、100~300℃における平均線膨張係数α100-300と、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とは、下記式(4)を満たし、好ましくは下記式(5)を満たし、より好ましくは下記式(5)を満たす。下記式を満たすことで、再加熱時の安定性に優れる成型用ガラス素材が得られる。
 αmax/α100-300×[SiO+ZrO]≦264 ・・・(4)
 αmax/α100-300×[SiO+ZrO]≦260 ・・・(5)
 αmax/α100-300×[SiO+ZrO]≦255 ・・・(6)
The molding glass material according to the second embodiment contains the maximum value α max of the coefficient of linear expansion, the average coefficient of linear expansion α 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display. The amount [SiO 2 + ZrO 2 ] satisfies the following formula (4), preferably the following formula (5), and more preferably the following formula (5). By satisfying the following formula, a glass material for molding having excellent stability during reheating can be obtained.
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 264 ・ ・ ・ (4)
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 260 ・ ・ ・ (5)
α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 255 ・ ・ ・ (6)
 線膨張係数の最大値αmaxおよび平均線膨張係数α100-300は、ガラス素材の製造工程において、熔融ガラスを冷却する条件を調整することにより、制御できる。 The maximum value α max of the coefficient of linear expansion and the average coefficient of linear expansion α 100-300 can be controlled by adjusting the conditions for cooling the molten glass in the process of manufacturing the glass material.
 線膨張係数の最大値αmaxおよび平均線膨張係数α100-300は、第1実施形態と同様にして測定できる。 The maximum value α max of the linear expansion coefficient and the average linear expansion coefficient α 100-300 can be measured in the same manner as in the first embodiment.
 第2実施形態に係る成形用ガラス素材において、線膨張係数の最大値αmaxと、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とは、好ましくは下記式(1)を満たし、より好ましくは下記式(2)を満たし、さらに好ましくは下記式(3)を満たす。再加熱時の安定性に優れる成型用ガラス素材を得る観点から、下記式を満たすことが好ましい。
 αmax×[SiO+ZrO]≦27900 ・・・(1)
 αmax×[SiO+ZrO]≦27500 ・・・(2)
 αmax×[SiO+ZrO]≦27000 ・・・(3)
In the molding glass material according to the second embodiment, the maximum value α max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are preferably expressed by the following formulas (SiO 2 + ZrO 2). 1) is satisfied, the following formula (2) is more preferably satisfied, and the following formula (3) is more preferably satisfied. From the viewpoint of obtaining a molding glass material having excellent stability during reheating, it is preferable to satisfy the following formula.
α max × [SiO 2 + ZrO 2 ] ≦ 27900 ・ ・ ・ (1)
α max × [SiO 2 + ZrO 2 ] ≦ 27500 ・ ・ ・ (2)
α max × [SiO 2 + ZrO 2 ] ≦ 27000 ・ ・ ・ (3)
 線膨張係数の最大値αmaxは、ガラス素材の製造工程において、熔融ガラスを冷却する条件を調整することにより、制御できる。 The maximum value α max of the coefficient of linear expansion can be controlled by adjusting the conditions for cooling the molten glass in the manufacturing process of the glass material.
 第2実施形態に係る成形用ガラス素材において、上記以外の特性およびガラス組成については、第1実施形態と同様とすることができる。また、第2実施形態におけるガラス素材の製造および光学素子等の製造についても、第1実施形態と同様とすることができる。 In the molding glass material according to the second embodiment, the characteristics and the glass composition other than the above can be the same as those of the first embodiment. Further, the production of the glass material and the production of the optical element and the like in the second embodiment can be the same as in the first embodiment.
第3実施形態
 第3実施形態に係る成形用ガラス素材は、
 線膨張係数の最大値αmaxが、当該成形用ガラス素材をガラス転移温度Tgにおいて均熱化した後-30℃/hrで4時間冷却し、その後放冷して得たガラス素材の線膨張係数の最大値αmax(Tg)よりも小さい。
Third Embodiment The molding glass material according to the third embodiment is
The maximum coefficient of linear expansion α max is the coefficient of linear expansion of the glass material obtained by soaking the glass material for molding at the glass transition temperature Tg, cooling it at −30 ° C./hr for 4 hours, and then allowing it to cool. Is smaller than the maximum value α max (Tg) of.
 第3実施形態に係る成形用ガラス素材において、線膨張係数の最大値αmaxは、当該成形用ガラス素材をガラス転移温度Tgにおいて均熱化した後-30℃/hrで4時間冷却し、その後放冷して得たガラス素材の線膨張係数の最大値αmax(Tg)よりも小さい。ただし、線膨張係数の最大値αmaxは、上記線膨張係数の最大値αmax(Tg)よりわずかに大きくてもよい。したがって、αmaxとαmax(Tg)の差分[αmax(Tg)-αmax]は、10-7・℃-1の単位で整数第1位まで表示すると、好ましくは-9以上であり、さらには-4以上、0以上、5以上、10以上、20以上、40以上、60以上、80以上、100以上、120以上、140以上、160以上、180以上、200以上、250以上、300以上の順により好ましい。また、該差分の上限は特に限定されないが、通常、αmax(Tg)であり、好ましくはαmax(Tg)-100程度である。 In the molding glass material according to the third embodiment, the maximum value α max of the linear expansion coefficient is obtained by soaking the molding glass material at a glass transition temperature Tg and then cooling it at −30 ° C./hr for 4 hours. It is smaller than the maximum value α max (Tg) of the coefficient of linear expansion of the glass material obtained by allowing to cool. However, the maximum value α max of the coefficient of linear expansion may be slightly larger than the maximum value α max (Tg) of the coefficient of linear expansion. Therefore, the difference between α max and α max (Tg) [α max (Tg) −α max ] is preferably -9 or more when displayed up to the first integer in the unit of 10-7 · ° C- 1. Furthermore, -4 or more, 0 or more, 5 or more, 10 or more, 20 or more, 40 or more, 60 or more, 80 or more, 100 or more, 120 or more, 140 or more, 160 or more, 180 or more, 200 or more, 250 or more, 300 or more. Is more preferable in this order. The upper limit of the difference is not particularly limited, but is usually α max (Tg), preferably about α max (Tg) -100.
 第3実施形態に係る成形用ガラス素材において、最大値αmax(Tg)の測定方法は、第1実施形態と同様である。 In the molding glass material according to the third embodiment , the method for measuring the maximum value α max (Tg) is the same as that in the first embodiment.
 第3実施形態に係る成形用ガラス素材において、線膨張係数の最大値αmaxと、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とは、好ましくは下記式(1)を満たし、より好ましくは下記式(2)を満たし、さらに好ましくは下記式(3)を満たす。再加熱時の安定性に優れる成型用ガラス素材を得る観点から、下記式を満たすことが好ましい。
 αmax×[SiO+ZrO]≦27900 ・・・(1)
 αmax×[SiO+ZrO]≦27500 ・・・(2)
 αmax×[SiO+ZrO]≦27000 ・・・(3)
In the molding glass material according to the third embodiment, the maximum value α max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are preferably expressed by the following formulas (SiO 2 + ZrO 2]. 1) is satisfied, the following formula (2) is more preferably satisfied, and the following formula (3) is more preferably satisfied. From the viewpoint of obtaining a molding glass material having excellent stability during reheating, it is preferable to satisfy the following formula.
α max × [SiO 2 + ZrO 2 ] ≦ 27900 ・ ・ ・ (1)
α max × [SiO 2 + ZrO 2 ] ≦ 27500 ・ ・ ・ (2)
α max × [SiO 2 + ZrO 2 ] ≦ 27000 ・ ・ ・ (3)
 線膨張係数の最大値αmaxは、ガラス素材の製造工程において、熔融ガラスを冷却する条件を調整することにより、制御できる。 The maximum value α max of the coefficient of linear expansion can be controlled by adjusting the conditions for cooling the molten glass in the manufacturing process of the glass material.
 第3実施形態に係る成形用ガラス素材において、上記以外の特性およびガラス組成については、第1実施形態と同様とすることができる。また、第3実施形態におけるガラス素材の製造および光学素子等の製造についても、第1実施形態と同様とすることができる。 In the molding glass material according to the third embodiment, the characteristics and the glass composition other than the above can be the same as those of the first embodiment. Further, the production of the glass material and the production of the optical element and the like in the third embodiment can be the same as in the first embodiment.
 以下に、本発明を実施例によりさらに詳細に説明する。ただし、本発明は実施例に示す態様に限定されるものではない。 Hereinafter, the present invention will be described in more detail by way of examples. However, the present invention is not limited to the embodiments shown in the examples.
(実施例1-1)
 表1(1)に示すガラス組成Iを有するガラスサンプルを以下の手順で作製し、得られたガラスサンプルについて各種評価を行った。結果を表2(1)、2(2)に示す。
(Example 1-1)
A glass sample having the glass composition I shown in Table 1 (1) was prepared by the following procedure, and various evaluations were performed on the obtained glass sample. The results are shown in Tables 2 (1) and 2 (2).
[ガラスサンプルの製造]
 まず、ガラスの構成成分に対応する酸化物、水酸化物、炭酸塩、および硝酸塩を原材料として準備し、得られる光学ガラスのガラス組成が、表1(1)に示す組成Iとなるように上記原材料を秤量、調合して、原材料を十分に混合した。こうして得られた調合原料(バッチ原料)を、白金坩堝に投入し、1350℃~1450℃で2時間加熱して熔融ガラスとし、攪拌して均質化を図り、清澄してから、熔融ガラスを適当な温度に予熱した金型に鋳込んで急冷し(工程1)。鋳込んだガラスを、ガラス転移温度Tgより25℃低い保持温度Txで30分間保持(工程2)した。そして、工程2の保持温度Txより120℃低い温度まで‐30℃/hrの速度で冷却し(工程3)、その後炉内で室温まで放冷する(工程4)ことにより、ガラスサンプルを得た。ここでのガラスの量は150gとした。
[Manufacturing of glass samples]
First, oxides, hydroxides, carbonates, and nitrates corresponding to the constituents of the glass are prepared as raw materials, and the glass composition of the obtained optical glass is the composition I shown in Table 1 (1). The raw materials were weighed and blended and the raw materials were thoroughly mixed. The compounding raw material (batch raw material) thus obtained is put into a platinum crucible and heated at 1350 ° C. to 1450 ° C. for 2 hours to obtain molten glass. It is cast into a mold preheated to a suitable temperature and rapidly cooled (step 1). The cast glass was held for 30 minutes at a holding temperature Tx 25 ° C. lower than the glass transition temperature Tg (step 2). Then, a glass sample was obtained by cooling to a temperature 120 ° C. lower than the holding temperature Tx in step 2 at a rate of −30 ° C./hr (step 3) and then allowing to cool to room temperature in the furnace (step 4). .. The amount of glass here was 150 g.
 ここで、工程2の保持温度Txは、ガラス転移温度Tg(単位:℃)の1の位を四捨五入した値をそのガラスサンプルのTgとし、この温度より25℃低い値とした。表2(2)には、このような温度差に相当する、四捨五入されたTgと、保持温度Txの差分を表示している。このようにすることで、Tgの測定値の多少のばらつきによらず同じ保持温度Txを設定することができ、複数のサンプルを一度に保持することができるので、本発明のガラスの生産効率が向上する。 Here, the holding temperature Tx in step 2 is a value obtained by rounding off the 1st place of the glass transition temperature Tg (unit: ° C.) as the Tg of the glass sample, and is set to a value 25 ° C. lower than this temperature. Table 2 (2) shows the difference between the rounded Tg and the holding temperature Tx, which correspond to such a temperature difference. By doing so, the same holding temperature Tx can be set regardless of slight variations in the measured values of Tg, and a plurality of samples can be held at one time, so that the production efficiency of the glass of the present invention can be improved. improves.
[ガラス成分組成の確認]
 得られたガラスサンプルについて、誘導結合プラズマ発光分光分析法(ICP-AES)で各ガラス成分の含有量を測定した。表1(1)に示す組成Iのとおりであることを確認した。
[Confirmation of glass component composition]
The content of each glass component of the obtained glass sample was measured by inductively coupled plasma emission spectroscopy (ICP-AES). It was confirmed that the composition was as shown in Table 1 (1).
[ガラス転移温度Tg]
 ガラス転移温度Tgは、NETZSCH JAPAN社製の示差走査熱量分析装置(DSC3300SA)を使用し、昇温速度10℃/分にて測定した。
[Glass transition temperature Tg]
The glass transition temperature Tg was measured at a heating rate of 10 ° C./min using a differential scanning calorimetry device (DSC3300SA) manufactured by NETZSCH JAPAN.
[安定性試験]
 得られたガラスサンプルを、光学顕微鏡(100倍)で内部に異物が無いことを確認した後に切断、切削し11mm×11mm×10.5mmの試料を得た。この試料を、Tgより200℃高い温度に設定した熱処理炉に入れて加熱し、5分後に取り出し、ガラス試料を冷却した。冷却後のガラス試料端部を光学研磨し、光学顕微鏡(100倍)でガラス試料内部を観察した。このガラス試料全体から観察された結晶(輝点)の数を数えて、1gあたりの数に換算した。結晶は1~300μmの範囲の大きさとした。なお、ガラス試料にヒビ、脈理は見られなかった。
[Stability test]
The obtained glass sample was cut and cut after confirming that there was no foreign matter inside with an optical microscope (100 times) to obtain a sample of 11 mm × 11 mm × 10.5 mm. This sample was placed in a heat treatment furnace set to a temperature 200 ° C. higher than Tg and heated, and after 5 minutes, it was taken out and the glass sample was cooled. The edge of the glass sample after cooling was optically polished, and the inside of the glass sample was observed with an optical microscope (100 times). The number of crystals (bright spots) observed from the entire glass sample was counted and converted into the number per 1 g. The crystals had a size in the range of 1 to 300 μm. No cracks or veins were found in the glass sample.
[線膨張係数]
 得られたガラスサンプルについて、JOGIS08の規定を参照して平均線膨張係数を測定した。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とした。試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように加熱し、温度と試料の伸びを1秒刻みで測定した。室温~屈伏点温度(試料が屈伏して見かけ上の伸びが止まる温度)の間において、単位温度上昇あたりの試料の伸びが極大となる温度における線膨張係数の最大値をαmaxとした。なお、αmaxは、測定点31個における線膨張係数の移動平均処理をして得られた値の最大値を採用した。また、100~300℃における線膨張係数の平均値を平均線膨張係数α100-300とした。
[Coefficient of linear expansion]
For the obtained glass sample, the average coefficient of linear expansion was measured with reference to the specification of JOBIS08. The sample was a round bar having a length of 20 mm ± 0.5 mm and a diameter of 5 mm ± 0.5 mm. With a load of 98 mN applied to the sample, the sample was heated so as to rise at a constant rate of 4 ° C. every minute, and the temperature and elongation of the sample were measured in 1 second increments. The maximum value of the coefficient of linear expansion at the temperature at which the sample elongation per unit temperature rise is maximized between the room temperature and the yield point temperature (the temperature at which the sample yields and the apparent elongation stops) is defined as α max . For α max , the maximum value obtained by performing the moving average processing of the coefficient of linear expansion at 31 measurement points was adopted. The average value of the coefficient of linear expansion at 100 to 300 ° C. was defined as the coefficient of linear expansion α 100-300 .
 線膨張係数の最大値αmaxと、工程2での保持温度Txをガラス転移温度としたガラスの線膨張係数の最大値αmax(Tg)とを測定し、その差分Q:αmax(Tg)-αmaxを算出した。 The maximum value α max of the coefficient of linear expansion and the maximum value α max (Tg) of the coefficient of linear expansion of glass with the holding temperature Tx in step 2 as the glass transition temperature were measured, and the difference Q: α max (Tg). -Α max was calculated.
[平均線膨張係数α
 得られたガラスサンプルについて、JOGIS16の規定を参照して平均線膨張係数を測定した。平均線膨張係数はNETZSCH JAPAN社製の熱機械分析装置(TMA4000SE)を使用し測定した。試料は長さ20mm±0.5mm、直径5mm±0.5mmの丸棒とした。まず、液体窒素を用いて試料温度が-80℃以下になるまで冷却し、20分間保持した後、測定を開始した。測定中は試料に98mNの荷重を印加した状態で、4℃毎分の一定速度で上昇するように320℃まで昇温させながら、温度と試料の伸びを1秒刻みで測定した。-30~70℃における線膨張係数の平均値を平均線膨張係数αとした。
[Average coefficient of linear expansion α L ]
For the obtained glass sample, the average coefficient of linear expansion was measured with reference to the specification of JOBIS16. The coefficient of linear expansion was measured using a thermomechanical analyzer (TMA4000SE) manufactured by NETZSCH JAPAN. The sample was a round bar having a length of 20 mm ± 0.5 mm and a diameter of 5 mm ± 0.5 mm. First, the sample was cooled to −80 ° C. or lower using liquid nitrogen, held for 20 minutes, and then the measurement was started. During the measurement, a load of 98 mN was applied to the sample, and the temperature and elongation of the sample were measured in 1 second increments while raising the temperature to 320 ° C. so as to rise at a constant rate of 4 ° C. every minute. The average value of the coefficient of linear expansion at −30 to 70 ° C. was defined as the coefficient of linear expansion α L.
[光学特性の測定]
 得られたガラスサンプルについて、屈折率nd、ng、nFおよびnC、アッベ数νd、部分分散比Pg,F、ΔPg,Fを測定した。結果を表2(1)、2(2)に示す。
[Measurement of optical characteristics]
The refractive indexes nd, ng, nF and nC, the Abbe number νd, and the partial dispersion ratios Pg, F, ΔPg, and F were measured for the obtained glass sample. The results are shown in Tables 2 (1) and 2 (2).
(i)屈折率nd、ng、nF、nCおよびアッベ数νd
 上記ガラスサンプルについて、日本産業規格 JIS B 7071-1の屈折率測定法により、屈折率nd、ng、nF、nCを測定し、下記式に基づきアッベ数νdを算出した。
   νd=(nd-1)/(nF-nC)
(I) Refractive index nd, ng, nF, nC and Abbe number νd
For the above glass sample, the refractive indexes nd, ng, nF, and nC were measured by the refractive index measuring method of Japanese Industrial Standard JIS B 7071-1, and the Abbe number νd was calculated based on the following formula.
νd = (nd-1) / (nF-nC)
(ii)部分分散比Pg,F、ΔPg,F
 g線、F線、c線における各屈折率ng、nF、nCを用いて、下記式に基づき部分分散比Pg,FおよびΔPg,Fを算出した。
 Pg,F=(ng-nF)/(nF-nC) ・・・(13)
 ΔPg,F=Pg,F-(0.6483-0.001802×νd) ・・・(14)
(Ii) Partial dispersion ratio Pg, F, ΔPg, F
The partial dispersion ratios Pg, F and ΔPg, F were calculated based on the following formulas using the refractive indexes ng, nF, and nC of the g-line, F-line, and c-line.
Pg, F = (ng-nF) / (nF-nC) ... (13)
ΔPg, F = Pg, F- (0.6483-0.001802 × νd) ・ ・ ・ (14)
[光透過性の評価]
(i)λτ80
 厚さ2.0mm±0.1mmおよび10.0mm±0.1mmのガラス試料を用いて、JOGIS17(光学ガラスの内部透過率の測定方法)に準じ波長200~700nmの範囲で分光透過率を測定した。厚さ10mmの内部透過率が80%となる波長をλτ80とした。結果を表2(1)に示す。
[Evaluation of light transmission]
(I) λτ80
Using glass samples with a thickness of 2.0 mm ± 0.1 mm and 10.0 mm ± 0.1 mm, the spectral transmittance is measured in the wavelength range of 200 to 700 nm according to JOGIS17 (measurement method of internal transmittance of optical glass). bottom. The wavelength at which the internal transmittance of a thickness of 10 mm is 80% was defined as λτ80. The results are shown in Table 2 (1).
(ii)λ70
 厚さ10.0mm±0.1mmのガラス試料について波長200~700nmの範囲で分光透過率を測定した。外部透過率が70%となる波長をλ70とした。結果を表2(1)に示す。
(Ii) λ70
The spectral transmittance of a glass sample having a thickness of 10.0 mm ± 0.1 mm was measured in the wavelength range of 200 to 700 nm. The wavelength at which the external transmittance is 70% was defined as λ70. The results are shown in Table 2 (1).
[比重]
 比重は、アルキメデス法により測定した。結果を表2(1)に示す。
[specific gravity]
The specific gravity was measured by the Archimedes method. The results are shown in Table 2 (1).
(実施例1-2)
 ガラスサンプルの製造において、工程2における保持温度Txをガラス転移温度Tgより50℃低い温度とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Example 1-2)
In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1 except that the holding temperature Tx in step 2 was set to a temperature 50 ° C. lower than the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1.
(実施例1-3)
 ガラスサンプルの製造において、工程2における保持温度Txをガラス転移温度Tgより100℃低い温度とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Example 1-3)
In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1 except that the holding temperature Tx in step 2 was set to a temperature 100 ° C. lower than the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1.
(実施例2-1)
 表1(1)に示すガラス組成IIを有するガラスサンプルを製造した。ガラスサンプルの製造において、ガラス組成IIとなるように原材料を調合し、工程2における保持温度Txをガラス転移温度Tgより60℃低い温度とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Example 2-1)
A glass sample having the glass composition II shown in Table 1 (1) was produced. In the production of the glass sample, the glass sample was prepared in the same manner as in Example 1-1 except that the raw materials were prepared so as to have a glass composition II and the holding temperature Tx in step 2 was set to a temperature 60 ° C. lower than the glass transition temperature Tg. Obtained. Various evaluations were performed in the same manner as in Example 1-1.
(比較例1-1)
 ガラスサンプルの製造において、工程2における保持温度Txをガラス転移温度Tgより30℃高い温度とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Comparative Example 1-1)
In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1, except that the holding temperature Tx in step 2 was set to a temperature 30 ° C. higher than the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1.
(比較例1-2)
 ガラスサンプルの製造において、工程2における保持温度Txをガラス転移温度Tgとした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。なお、比較例1-2における線膨張係数の最大値をαmax(Tg)とし、実施例1-1、1-2、1-3における線膨張係数の最大値αmaxと比較した。
(Comparative Example 1-2)
In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1, except that the holding temperature Tx in step 2 was set to the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 1-1. The maximum value of the coefficient of linear expansion in Comparative Example 1-2 was set to α max (Tg), and the maximum value of the coefficient of linear expansion in Examples 1-1, 1-2, and 1-3 was compared with α max.
(比較例1-3)
 ガラスサンプルの製造において、工程2における保持時間を72時間とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。なお、比較例1-3ではガラスが得られたものの、安定性試験においては著しい失透を生じた。また屈折率nd、アッベ数νd、部分分散比Pg,F、ΔPg,Fを測定できなかった。
(Comparative Example 1-3)
In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1 except that the holding time in step 2 was 72 hours. Various evaluations were performed in the same manner as in Example 1-1. Although glass was obtained in Comparative Example 1-3, significant devitrification occurred in the stability test. In addition, the refractive index nd, Abbe number νd, and partial dispersion ratios Pg, F, ΔPg, and F could not be measured.
(比較例2-1)
 ガラスサンプルの製造において、工程2における保持温度Txをガラス転移温度Tgとした他は、実施例2-1と同様にガラスサンプルを得た。実施例2-1と同様に、各種評価を行った。なお、比較例2-1における線膨張係数の最大値をαmax(Tg)とし、実施例2-1における線膨張係数の最大値αmaxと比較した。
(Comparative Example 2-1)
In the production of the glass sample, a glass sample was obtained in the same manner as in Example 2-1 except that the holding temperature Tx in step 2 was set to the glass transition temperature Tg. Various evaluations were performed in the same manner as in Example 2-1. The maximum value of the coefficient of linear expansion in Comparative Example 2-1 was set to α max (Tg), and the maximum value of the coefficient of linear expansion in Example 2-1 was compared with α max.
(実施例3-1)
 表1(2)に示すガラス組成IIIを有するガラスサンプルを製造した。ガラスサンプルの製造において、ガラス組成IIIとなるように原材料を調合し、工程2における保持温度Txをガラス転移温度Tgより60℃低い温度とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Example 3-1)
A glass sample having the glass composition III shown in Table 1 (2) was produced. In the production of the glass sample, the glass sample was prepared in the same manner as in Example 1-1 except that the raw materials were prepared so as to have a glass composition III and the holding temperature Tx in step 2 was set to a temperature 60 ° C. lower than the glass transition temperature Tg. Obtained. Various evaluations were performed in the same manner as in Example 1-1.
(実施例3-2)
 表1(2)に示すガラス組成IIIを有するガラスサンプルを製造した。ガラスサンプルの製造において、ガラス組成IIIとなるように原材料を調合し、工程2における保持温度Txをガラス転移温度Tgより100℃低い温度とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Example 3-2)
A glass sample having the glass composition III shown in Table 1 (2) was produced. In the production of the glass sample, the glass sample was prepared in the same manner as in Example 1-1 except that the raw materials were prepared so as to have a glass composition III and the holding temperature Tx in step 2 was set to a temperature 100 ° C. lower than the glass transition temperature Tg. Obtained. Various evaluations were performed in the same manner as in Example 1-1.
(実施例4-1)
 表1(3)に示すガラス組成IVを有するガラスサンプルを製造した。ガラスサンプルの製造において、ガラス組成IVとなるように原材料を調合し、工程2における保持温度Txをガラス転移温度Tgと同じ温度とした他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Example 4-1)
A glass sample having the glass composition IV shown in Table 1 (3) was produced. In the production of the glass sample, the raw materials were prepared so as to have a glass composition IV, and the glass sample was obtained in the same manner as in Example 1-1 except that the holding temperature Tx in step 2 was set to the same temperature as the glass transition temperature Tg. .. Various evaluations were performed in the same manner as in Example 1-1.
(実施例4-2)
 表1(3)に示すガラス組成IVを有するガラスサンプルを製造した。ガラスサンプルの製造において、ガラス組成IVとなるように原材料を調合した他は、実施例1-1と同様にガラスサンプルを得た。実施例1-1と同様に、各種評価を行った。
(Example 4-2)
A glass sample having the glass composition IV shown in Table 1 (3) was produced. In the production of the glass sample, a glass sample was obtained in the same manner as in Example 1-1, except that the raw materials were prepared so as to have a glass composition IV. Various evaluations were performed in the same manner as in Example 1-1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(実施例3)
 実施例1-1、1-2、1-3、2-1、3-1、3-2、4-1、4-2において作製した各ガラスサンプルを用いて、公知の方法により、レンズブランクを作製し、レンズブランクを研磨等の公知方法により加工して各種レンズを作製した。
 作製した光学レンズは、両凸レンズ、両凹レンズ、平凸レンズ、平凹レンズ、凹メニスカスレンズ、凸メニスカスレンズ等の各種レンズである。
 各種レンズは、他種の光学ガラスからなるレンズと組合せることにより、二次の色収差を良好に補正することができた。
(Example 3)
A lens blank by a known method using each glass sample prepared in Examples 1-1, 1-2, 1-3, 2-1, 3-1, 3-2, 4-1 and 4-2. And processed the lens blank by a known method such as polishing to prepare various lenses.
The manufactured optical lenses are various lenses such as a biconvex lens, a biconcave lens, a plano-convex lens, a plano-concave lens, a concave meniscus lens, and a convex meniscus lens.
By combining various lenses with lenses made of other types of optical glass, secondary chromatic aberration could be satisfactorily corrected.
 同様にして、実施例1-1、1-2、1-3、2-1、3-1、3-2、4-1、4-2で作製した各種光学ガラスを用いてプリズムを作製した。 Similarly, prisms were produced using various optical glasses produced in Examples 1-1, 1-2, 1-3, 2-1, 3-1, 3-2, 4-1 and 4-2. ..
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the scope of claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 例えば、上記に例示されたガラス組成に対し、明細書に記載の組成調整を行うことにより、本発明の一態様にかかる光学ガラスを作製することができる。
 また、明細書に例示または好ましい範囲として記載した事項の2つ以上を任意に組み合わせることは、もちろん可能である。
For example, the optical glass according to one aspect of the present invention can be produced by adjusting the composition described in the specification with respect to the glass composition exemplified above.
In addition, it is of course possible to arbitrarily combine two or more of the items described in the specification as an example or a preferable range.

Claims (8)

  1.  線膨張係数の最大値αmaxと、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とが、下記式(1)を満たす、成形用ガラス素材。
     αmax×[SiO+ZrO]≦27900 ・・・(1)
    A glass material for molding in which the maximum value α max of the coefficient of linear expansion and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] satisfy the following formula (1).
    α max × [SiO 2 + ZrO 2 ] ≦ 27900 ・ ・ ・ (1)
  2.  線膨張係数の最大値αmaxと、100~300℃における平均線膨張係数α100-300と、質量%表示でのSiOおよびZrOの合計含有量[SiO+ZrO]とが、下記式(4)を満たす、成形用ガラス素材。
     αmax/α100-300×[SiO+ZrO]≦264 ・・・(4)
    The maximum value α max of the coefficient of linear expansion, the average coefficient of linear expansion α 100-300 at 100 to 300 ° C., and the total content of SiO 2 and ZrO 2 in mass% display [SiO 2 + ZrO 2 ] are expressed by the following formulas. A glass material for molding that satisfies (4).
    α max / α 100-300 × [SiO 2 + ZrO 2 ] ≦ 264 ・ ・ ・ (4)
  3.  線膨張係数の最大値αmaxが、当該成形用ガラス素材をガラス転移温度Tgにおいて均熱化した後-30℃/hrで4時間冷却し、その後放冷して得たガラス素材の線膨張係数の最大値αmax(Tg)よりも小さい、成形用ガラス素材。 The maximum coefficient of linear expansion α max is the coefficient of linear expansion of the glass material obtained by soaking the glass material for molding at the glass transition temperature Tg, cooling it at −30 ° C./hr for 4 hours, and then allowing it to cool. A glass material for molding that is smaller than the maximum value of α max (Tg).
  4.  11mm×11mm×10.5mmのサンプルを、ガラス転移温度Tgより200℃高い温度で5分間熱処理したときの、ガラス1gあたりの結晶の数密度Dが10個/g未満である、請求項1~3に記載の成形用ガラス素材。 When a sample of 11 mm × 11 mm × 10.5 mm is heat-treated at a temperature 200 ° C. higher than the glass transition temperature Tg for 5 minutes, the number density D of crystals per 1 g of glass is less than 10 cells / g, claims 1 to 1. The glass material for molding according to 3.
  5.  質量%表示でのTiOの含有量[TiO]とNbの含有量[Nb]とが、下記式(7)を満たす、請求項1~4に記載の成形用ガラス素材。
     {5×[TiO]}/{3×[Nb]}≦3 ・・・(7)
    The content of TiO 2 in weight percentages content of [TiO 2] and Nb 2 O 5 and [Nb 2 O 5], but satisfying the following formula (7), a glass molding according to claims 1 to 4, material.
    {5 × [TiO 2 ]} / {3 × [Nb 2 O 5 ]} ≦ 3 ・ ・ ・ (7)
  6.  280~700nmの波長範囲において、厚さ10mmのガラスの内部透過率が80%を示す波長λτ80が395nm以下である、請求項1~5に記載の成形用ガラス素材。 The molding glass material according to claim 1 to 5, wherein in the wavelength range of 280 to 700 nm, the wavelength λτ 80 showing an internal transmittance of 80% of a glass having a thickness of 10 mm is 395 nm or less.
  7.  アッベ数νdと部分分散比Pg,Fとが、下記式(8)を満たす、請求項1~6に記載の成形用ガラス素材。
     Pg,F≦-0.00286×νd+0.68700 ・・・(8)
    The glass material for molding according to claims 1 to 6, wherein the Abbe number νd and the partial dispersion ratios Pg and F satisfy the following formula (8).
    Pg, F ≦ -0.00286 × νd + 0.68700 ・ ・ ・ (8)
  8.  請求項1~7に記載の成形用ガラス素材からなる光学ガラス。 Optical glass made of the molding glass material according to claims 1 to 7.
PCT/JP2021/006584 2020-02-28 2021-02-22 Glass material for use in molding WO2021172258A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180017312.1A CN115175881A (en) 2020-02-28 2021-02-22 Glass material for molding
JP2022503597A JPWO2021172258A1 (en) 2020-02-28 2021-02-22

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP2020034271 2020-02-28
JP2020-034271 2020-02-28
JP2020034272 2020-02-28
JP2020-034272 2020-02-28
JP2020034273 2020-02-28
JP2020-034273 2020-02-28
JP2020063203 2020-03-31
JP2020-063203 2020-03-31
JP2020-208163 2020-12-16
JP2020-208160 2020-12-16
JP2020208160 2020-12-16
JP2020208163 2020-12-16

Publications (1)

Publication Number Publication Date
WO2021172258A1 true WO2021172258A1 (en) 2021-09-02

Family

ID=77491047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006584 WO2021172258A1 (en) 2020-02-28 2021-02-22 Glass material for use in molding

Country Status (4)

Country Link
JP (1) JPWO2021172258A1 (en)
CN (1) CN115175881A (en)
TW (1) TW202136820A (en)
WO (1) WO2021172258A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029773A (en) * 2000-07-06 2002-01-29 Senyo Glass Kogyo Kk Glass composition
WO2015111524A1 (en) * 2014-01-24 2015-07-30 旭硝子株式会社 Glass composition for tempering, tempered glass article and method for producing same
WO2018021221A1 (en) * 2016-07-28 2018-02-01 旭硝子株式会社 Optical glass and optical component
WO2019017404A1 (en) * 2017-07-18 2019-01-24 Agc株式会社 Reinforced glass
WO2019155755A1 (en) * 2018-02-08 2019-08-15 株式会社 オハラ Optical glass, preform, and optical element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4113753B2 (en) * 2001-10-15 2008-07-09 Hoya株式会社 Manufacturing method of glass material for press molding, manufacturing method of glass press molded product, manufacturing method of optical element
TWI649292B (en) * 2012-06-29 2019-02-01 日商小原股份有限公司 Optical glass, optical element and preform
JP2014111521A (en) * 2012-10-31 2014-06-19 Ohara Inc Optical glass, preform, and optical element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002029773A (en) * 2000-07-06 2002-01-29 Senyo Glass Kogyo Kk Glass composition
WO2015111524A1 (en) * 2014-01-24 2015-07-30 旭硝子株式会社 Glass composition for tempering, tempered glass article and method for producing same
WO2018021221A1 (en) * 2016-07-28 2018-02-01 旭硝子株式会社 Optical glass and optical component
WO2019017404A1 (en) * 2017-07-18 2019-01-24 Agc株式会社 Reinforced glass
WO2019155755A1 (en) * 2018-02-08 2019-08-15 株式会社 オハラ Optical glass, preform, and optical element

Also Published As

Publication number Publication date
TW202136820A (en) 2021-10-01
JPWO2021172258A1 (en) 2021-09-02
CN115175881A (en) 2022-10-11

Similar Documents

Publication Publication Date Title
JP5650371B2 (en) Optical glass
JP7226927B2 (en) Glasses, optical glasses and optical elements
JP2023017903A (en) Optical glass and optical element
TWI773862B (en) Optical Glass and Optical Components
CN115175882B (en) Optical glass and optical element
JP2012224501A (en) Optical glass, optical element and preform
JP7401236B2 (en) Optical glass and optical elements
CN112159098A (en) Optical glass, optical element and optical instrument
JP7383375B2 (en) Optical glass and optical elements
TWI836089B (en) Optical glass and optical components
WO2021172258A1 (en) Glass material for use in molding
JP7142118B2 (en) Optical glasses and optical elements
WO2018221678A1 (en) Glass, optical glass, and optical element
JP7320110B2 (en) Optical glasses and optical elements
JP7488878B2 (en) Optical Glass and Optical Elements
JP2019182716A (en) Optical glass and optical element
JP7481847B2 (en) Optical Glass and Optical Elements
JP7305317B2 (en) Optical glasses, optical element blanks and optical elements
JP7086726B2 (en) Optical glass and optical elements
JP7089933B2 (en) Optical glass and optical elements
JP2022158909A (en) Optical glass and optical element
JP2020132510A (en) Optical glass and optical element
JP2022108395A (en) Optical glass, and optical element
JP2022021586A (en) Optical glass, and optical element
JP2023005424A (en) Optical glass and optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21761336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503597

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21761336

Country of ref document: EP

Kind code of ref document: A1