WO2021172065A1 - Processing method, processing device, processing program, and end mill - Google Patents

Processing method, processing device, processing program, and end mill Download PDF

Info

Publication number
WO2021172065A1
WO2021172065A1 PCT/JP2021/005419 JP2021005419W WO2021172065A1 WO 2021172065 A1 WO2021172065 A1 WO 2021172065A1 JP 2021005419 W JP2021005419 W JP 2021005419W WO 2021172065 A1 WO2021172065 A1 WO 2021172065A1
Authority
WO
WIPO (PCT)
Prior art keywords
end mill
work material
cutting
cutting edge
timing
Prior art date
Application number
PCT/JP2021/005419
Other languages
French (fr)
Japanese (ja)
Inventor
英二 社本
健宏 早坂
凌 木村
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2021557562A priority Critical patent/JP7161254B2/en
Publication of WO2021172065A1 publication Critical patent/WO2021172065A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine

Definitions

  • This disclosure relates to a technique for forming a finished surface using an end mill.
  • Patent Document 1 discloses a technique for finishing a mold that requires a draft by using a ball end mill.
  • FIG. 1 shows a state in which a standing wall (tachikabe) of a mold having a draft is finished with a ball end mill.
  • a step of cutting the work material by feeding the ball end mill in a predetermined feed direction along the wall surface while rotating the ball end mill and a step of pick-feeding the ball end mill in a predetermined pick-feed direction are repeated.
  • the ball end mill has a hemispherical ball portion at the tip.
  • the radius of the ball portion is r and the feed amount in the pick feed direction (pick feed amount) is fp
  • the present disclosure has been made in view of such a situation, and the purpose thereof is to provide a technique for forming a finished surface with high accuracy by using an end mill.
  • the processing method of one aspect of the present disclosure is a first step of cutting a work material by feeding it relative to the work material while rotating an end mill having an R shape on the tip side. And the second step of pick-feeding the end mill with respect to the work material (moving in the pick-feed direction) are repeated to cut the work material.
  • the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
  • the formation of a part of the region is formed between the timing when one cutting edge cuts into the work material and the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by a timing close to the cutting timing.
  • Another aspect of the processing apparatus of the present disclosure is a processing apparatus for cutting a work material, which is a rotation mechanism for rotating a spindle to which an end mill having an R shape is attached to the tip side, and an end mill for the work material.
  • the first step of cutting the work material by controlling the operation of the feed mechanism and the rotation mechanism and the feed mechanism, and feeding the end mill relative to the work material while rotating the end mill, and the end mill.
  • the device is provided with a control device that repeats the second step of pick-feeding the work material.
  • the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
  • the control device cuts the formation of the part of the region from the timing when one cutting edge cuts into the work material to the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by a timing close to the timing.
  • Yet another aspect of the present disclosure is an end mill having an R shape on the tip side.
  • This end mill repeats a first step of cutting the work material by sending the end mill relative to the work material while rotating the end mill, and a second step of pick-feeding the end mill to the work material. It is used for finishing work materials and has a right-handed left-handed twisted shape or a left-handed right-handed twisted shape.
  • Yet another aspect of the present disclosure is a processing method in which the end mill is rotated and fed relative to the work material to cut the work material to form a finished surface, wherein the helix angle of the cutting edge is increased. Upcut processing is performed using a 0 degree end mill.
  • Example 1 It is a figure which shows the appearance of the ball end mill in Example 1.
  • FIG. It is a figure which shows the analysis result of the cutting force and the tool displacement at the time of machining in Example 1.
  • FIG. It is a figure which shows the analysis result of the processing error in Example 1.
  • FIG. It is a figure for demonstrating the outline of the processing method by Example 2.
  • FIG. It is a figure which shows the analysis result of the cutting force and the tool displacement at the time of machining in Example 2.
  • FIG. It is a figure which shows the analysis result of the processing error in Example 2.
  • FIG. It is a figure which shows the state which the improved ball end mill used in Example 3 cuts. It is a figure for demonstrating the outline of the processing method by a modification.
  • FIG. 2 shows the processing apparatus 1 of the embodiment.
  • the processing device 1 includes a machine tool device 10 and a control device 100.
  • the control device 100 may be an NC control device that controls the machine tool device 10 according to an NC (numerical control) program, and the machine tool device 10 may be an NC machine tool controlled by the NC control device.
  • the machine tool device 10 and the control device 100 are configured as separate bodies and may be connected by a cable or the like, but may be configured as one.
  • the machine tool device 10 includes a bed portion 12 and a column portion 14 which are main body portions.
  • a first table 16 and a second table 18 are movably supported on the bed portion 12.
  • the first table 16 is movably supported in the Y-axis direction by the rail portion formed on the bed portion 12, and the second table 18 is movable in the X-axis direction by the rail portion formed on the first table 16.
  • a work piece installation surface is provided on the upper surface of the second table 18, and the work material 62 to be processed is fixed to the work piece installation surface.
  • the work material 62 may be a metal material for a die having a standing wall before finishing, that is, a standing wall that has been pre-processed.
  • the processing apparatus 1 of the embodiment finishes the standing wall of the work material 62 to form a standing wall having a draft, but the processing technique shown in the embodiment can be used for high-precision finishing of various other objects. May be used.
  • the Y-axis motor 22 moves the first table 16 in the Y-axis direction by rotating the ball screw mechanism
  • the X-axis motor 20 moves the second table 18 in the X-axis direction by rotating the ball screw mechanism. do.
  • the Y-axis sensor 32 detects the position of the first table 16 in the Y-axis direction
  • the X-axis sensor 30 detects the position of the second table 18 in the X-axis direction.
  • a spindle 46 to which the cutting tool 50 is attached is provided.
  • an end mill tool having an R shape is attached to the chuck provided on the spindle 46 on the tip side.
  • Such end mill tools are typically ball end mills, but may be radius end mills or barrel end mills.
  • the spindle motor 40 rotates the spindle 46, and the spindle sensor 42 detects the rotation speed of the spindle motor 40.
  • the spindle 46 and the spindle motor 40 are fixed to the spindle support 44.
  • the spindle support portion 44 is movably supported in the Z-axis direction by a rail portion formed on the column portion 14 on the back side thereof.
  • the Z-axis motor 24 moves the spindle 46 in the Z-axis direction by rotating the ball screw mechanism.
  • the Z-axis sensor 34 detects the position of the spindle 46 in the Z direction.
  • the first tilt motor 52 tilts the spindle support portion 44 around the axes perpendicular to the spindle 46 and the Y axis by rotating the gear mechanism.
  • the tilt sensor 56 detects the tilt angle of the spindle 46.
  • the second tilt motor 54 tilts the spindle support portion 44 around an axis parallel to the Y axis by rotating the gear mechanism.
  • An inclination sensor (not shown) different from the inclination sensor 56 detects the inclination angle of the spindle 46.
  • the control device 100 drives and controls the X-axis motor 20, the Y-axis motor 22, the Z-axis motor 24, the first tilt motor 52, the second tilt motor 54, and the spindle motor 40 according to the NC program.
  • the control device 100 acquires the detection values detected by each of the X-axis sensor 30, the Y-axis sensor 32, the Z-axis sensor 34, the tilt sensor, and the spindle sensor 42, and reflects them in the drive control of each motor.
  • the work material 62 is moved in the X-axis direction and the Y-axis direction by the X-axis motor 20 and the Y-axis motor 22, respectively, and the cutting tool 50 is moved in the Z-axis direction by the Z-axis motor 24.
  • These movements may be relative between the cutting tool 50 and the work material 62. That is, in the machine tool device 10, the cutting tool 50 may be moved in the X-axis direction and the Y-axis direction, and the work material 62 may be moved in the Z-axis direction.
  • the cutting tool 50 is tilted with respect to the work material 62 by the first tilt motor 52 and the second tilt motor 54, but these tilt motors may be provided on the bed portion 12 side. good.
  • the cutting tool 50 and the work material 62 can move relatively in each movement direction and each rotation direction.
  • the relative between the cutting tool 50 and the work material 62 The mechanism for realizing the movement is collectively called the "feed mechanism".
  • FIG. 3 shows the appearance of the ball end mill.
  • the ball end mill has a hemispherical ball portion and a cylindrical portion connected to the ball portion. As will be described later, the ball end mill shown in FIG. 3 has a right-handed right-handed twist shape.
  • Tool parameters > ⁇ Tool diameter ⁇ Tool protrusion ⁇ Number of blades ⁇ Helix angle ⁇ Right blade / Left blade ⁇ Processing conditions> ⁇ Rotation speed ⁇ Feed direction ⁇ Feed amount per blade ⁇ Pick feed direction ⁇ Pick feed amount ⁇ Radial depth of cut ⁇ Lead angle ⁇ Tilt angle Lead angle is the tilt angle of the tool in the tool advancing direction (feed direction). Yes, the tilt angle is the tilt angle of the tool in the direction perpendicular to the tool traveling direction.
  • the helix angle in the ball end mill changes depending on the depression angle of the ball portion.
  • the helix angle is close to 0 degrees near the bottom of the ball portion, gradually approaches a constant helix angle as it approaches the cylindrical portion, and has a constant helix angle in the cylindrical portion.
  • the helix angle of a ball end mill means the helix angle of a cylindrical portion.
  • the end mill has different cutting rotation directions depending on the direction of the cutting edge.
  • the twisted blade of the end mill has a right blade and a left blade.
  • the tool that cuts in the clockwise direction of the tool is called the "right blade”, and the tool rotates.
  • a tool that cuts in a counterclockwise direction is called a "left blade”.
  • Normal end mills are right-blade tools, and there are few left-blade end mills.
  • the direction of chip discharge differs depending on the direction of twisting of the cutting edge.
  • the right-blade right-twisted end mill discharges chips upward, and the right-blade left-twisted end mill discharges chips downward.
  • the helix angle of the right twist is defined as positive, and the helix angle of the left twist is defined as negative.
  • the left blade left twist end mill discharges chips upward, and the left blade right twist end mill discharges chips downward.
  • the ball end mill shown in FIG. 3 is a right-blade right-twisting tool and has a positive helix angle.
  • right blade right twist end mills are very common, but right blade left twist end mills have an R shape on the tip side, although the right blade left twist shape is slightly present in square end mills. Does not exist. Similarly, there is no left-blade right-twisted end mill having an R shape on the tip side.
  • Contour line machining means that the height of the z-axis is constant in one machining path, feed is performed in the xy direction to cut one line, and after one line is cut, pick-feed is performed in the z-axis direction to make one line. This is a processing method that creates a finished surface by cutting and repeating this process.
  • the comparative technique uses a typical right-blade, right-twisted ball end mill.
  • 4 (a) and 4 (b) are diagrams for explaining an outline of a processing method as a comparative technique.
  • the xyz coordinate system represents the tool coordinate system fixed to the ball end mill
  • the uvw coordinate system shows the work material coordinate system fixed to the work material 62.
  • the xyz coordinate system which is the tool coordinate system, may be different from the XYZ coordinate system in the machine tool apparatus 10.
  • the u-axis is a direction perpendicular to the wall surface of the standing wall to be formed
  • the v-axis is a direction parallel to the feed direction
  • the w-axis is a direction parallel to the pick-feed direction.
  • the feed direction of the ball end mill is the negative direction of the v-axis
  • the pick-feed direction is the negative direction of the w-axis.
  • FIG. 4A shows a state in which a ball end mill is sent to cut a work material in one machining pass.
  • the ball end mill represented by the dotted line indicates the position of the cutting edge of the previous time (one blade before), and the ball end mill represented by the solid line indicates the position of the cutting edge of this time.
  • the position of the cutting edge this time is a position advanced by the feed amount per blade from the position of the previous cutting edge in the feeding direction.
  • FIG. 4B shows how the ball end mill cuts the work material in two overlapping machining passes.
  • the machined surface of the work material 62 is rotated about the v-axis by a tilt angle ⁇ T with respect to the z-axis.
  • the ball end mill represented by the dotted line indicates the position of the cutting edge in the previous machining pass (one pass before), and the ball end mill represented by the solid line indicates the position of the cutting edge in the current machining pass.
  • the position of the cutting edge in the current machining pass is a position advanced by the pick feed amount from the position of the cutting edge in the previous machining pass in the pick feed direction.
  • the error in ball end milling is determined by the relative displacement between the tool and the work material at the moment when the cutting edge creates the finished surface.
  • the term "finished surface” here is a surface formed by cutting the wall surface with a rotating cutting edge in the finishing process. In a ball end mill having a helix angle, the timing at which the finished surface is formed during cutting with one blade differs depending on the height position of the cutting edge.
  • the first cutting edge involved in cutting is near the bottom.
  • the cutting edge portion cuts into the work material and starts cutting, then the cutting edge portion at a higher position continuously cuts into the work material, and finally the uppermost cutting edge portion cuts into the work material.
  • the cutting edge part near the bottom that was cut first comes out of the work material
  • the cutting edge part at a higher position comes out of the work material in the same order as the cutting order, and finally the topmost part.
  • the cutting edge portion comes out of the work material, and cutting with one cutting edge is completed.
  • the finished surfaces are formed in order from bottom to top.
  • FIG. 5A shows the finished surface A1 formed by the cutting edge this time.
  • the Nth pass means the Nth machining pass in the finishing machining.
  • FIG. 5B shows the finished surface B1 formed by the next cutting edge in the same machining path.
  • the finished surface B1 is a hatched region.
  • the finished surface B1 is formed at a position deviated from the finished surface A1 by the amount of feed per blade in the feed direction. As shown, the finished surface B1 is formed so as to overlap most of the finished surface A1. Therefore, most of the finished surface A1 is removed, leaving a small amount of the finished surface A2.
  • FIG. 5 (c) shows the finished surface C1 formed in the next processing pass.
  • the finished surface C1 is a hatched region.
  • the (N + 1) th pass which is the machining pass of the finished surface C1
  • Tool parameters and machining conditions were set as follows.
  • Tool diameter 10 mm
  • Tool protrusion 50 mm
  • Number of blades 1 helix angle: +30 degrees (right twist)
  • Right blade ⁇ Processing conditions>
  • Feed amount per blade 0.22 mm
  • Pick feed direction -w direction
  • Pick feed amount 0.1 mm
  • Radial depth of cut 0.6 mm
  • Lead angle 0 degrees
  • Tilt angle ⁇ T +7 degrees
  • the timing (time) at which the ball end mill first contacts the work material is defined as tin
  • the timing (time) at which the final finished surface is formed is defined as tc
  • the difference time (tk-tin) is defined as Tp.
  • the final finished surface A3 has an area, and a short time is required to form the final finished surface A3.
  • the timing tc is the time when the formation of the final finished surface is completed.
  • the timing tc may be the time when the central portion of the final finished surface is formed.
  • FIG. 6 shows the analysis results of cutting force and tool displacement during machining in the comparative technique. Looking at the fluctuation of the cutting force, the cutting force starts to increase from the timing tin, then starts to decrease and becomes 0 at the timing tout. This is a timing tin, and the cutting edge involved in cutting starts cutting from the cutting edge part near the bottom to the work material, gradually cuts to the top cutting edge part, and then near the bottom. It expresses that the cutting edge portion gradually comes out of the work material, and the uppermost cutting edge portion comes out of the work material at the timing to out.
  • the machining error is one of the indexes for evaluating the machining accuracy, and is defined as the difference between the target position and the actual position of the final finished surface. From this, it can be seen that, according to the comparative technique, the cutting edge forms the final finished surface after the displacement has grown, so that the machining error is large.
  • FIG. 7 shows the analysis result of the processing error in the comparative technique.
  • the depth of cut in the radial direction is changed, and other parameters and processing conditions are kept constant.
  • a positive machining error means uncut portion, and a negative machining error means over-cut. From the analysis results shown in FIG. 7, it is confirmed that the machining error greatly fluctuates when the depth of cut in the radial direction changes.
  • FIG. 8 shows the analysis results of cutting force and tool displacement during machining in the comparative technique.
  • the cutting force and the tool displacement when the cutting depth in the radial direction is set to 0.3 mm, 0.5 mm, and 0.7 mm are analyzed.
  • the circles indicate the timing of tin
  • the squares indicate the timing of tc.
  • Tp tc-tin
  • FIG. 9 shows the finishing processing procedure in the embodiment.
  • the control device 100 controls the spindle motor 40 and the feed mechanism according to a predetermined program for finishing processing, and causes the machine tool device 10 to perform finishing processing.
  • the control device 100 and the machine tool device 10 are equipped with a computer including a circuit block, a memory, and other LSIs, and the machine tool device 10 and the control device 100 may be integrally configured as described above.
  • the control device 100 drives the spindle motor 40 to rotate the cutting tool 50 attached to the spindle 46, and drives the feed mechanism to feed the cutting tool 50 relative to the work material 62. Have.
  • the machine tool device 10 sends the cutting tool 50 relative to the work material 62 while rotating the cutting tool 50 to cut the work material 62 in the first step (S1), and the cutting tool 50 is sent to the work material 62 with respect to the work material 62.
  • the second step (S2) of pick-feeding (moving in the pick-feeding direction) is alternately repeated.
  • the first step (S1) and the second step (S2) are repeatedly executed until cutting by all machining paths is performed (N in S3), and when cutting by all machining passes is completed (Y in S3), Finishing is finished. In this finishing process, as shown in FIG. 5, a region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
  • the processing apparatus 1 covers a part of the area remaining as the final finished surface A3 from the timing when one cutting edge cuts into the work material 62 to the timing when the cutting edge comes out of the work material 62.
  • the formation is completed by a timing closer to the cutting timing than the timing at which the cutting edge comes out. This reduces the time Tp.
  • the formation of a part of the region remaining as the final finished surface A3 is preferably started from the timing when the cutting edge cuts into the work material 62.
  • the time Tp can be made very short.
  • the processing apparatus 1 sets the cutting edge located on the side opposite to the pick-feed direction to the work material 62 before the cutting edge located on the pick-feed direction side. By cutting into, Tp is realized for a short time.
  • Example 1 In the first embodiment, a shape of a ball end mill that shortens the time Tp in the finishing process is proposed.
  • FIG. 10 shows the appearance of the ball end mill in Example 1.
  • This ball end mill has a right-handed, left-handed twisted shape.
  • This ball end mill is specially designed and manufactured and is not in circulation. Due to the restrictions of the grinding machine that manufactures the ball end mill, a cutting edge is not created at the bottom of the ball portion, but this does not affect the wall surface finishing process that is the target of the embodiment.
  • a multifunctional tool may be realized by forming a cutting edge having a different twisting direction (for example, a straight blade or a right-handed twist) at the bottom of the ball portion.
  • FIG. 11 shows the analysis results of the cutting force and the tool displacement during machining in the first embodiment.
  • the parameters and processing conditions in the analysis are the same as those used in the analysis of the comparison technique described above.
  • the cutting force and the tool displacement when the radial cutting depths are set to 0.3 mm, 0.5 mm, and 0.7 mm are analyzed.
  • the circles indicate the timing of tin, and the squares indicate the timing of tc.
  • the timing to out at which the cutting edge comes out of the work material is aligned and expressed.
  • the cutting edge portion near the top of the cutting edge involved in cutting starts cutting at timing tin, and immediately after that (at timing tc).
  • the cutting edge portion near the uppermost portion makes it possible to form the final finished surface. That is, the final finished surface A3 shown in FIG. 5C can be formed immediately after the start of cutting by one cutting edge. Since the cutting force when forming the final finished surface is small, the static displacement is small and the dynamic displacement is also small. Therefore, the final finished surface can be formed before the tool displacement grows.
  • a region to be the final finished surface from the timing tin in which one cutting edge cuts into the work material to the timing to out in which the cutting edge exits the work material. Is completed by the timing tc closer to the cutting timing tin than the timing to out when the cutting edge comes out.
  • FIG. 12 shows the analysis result of the processing error in Example 1.
  • the depth of cut in the radial direction is changed, and other parameters and processing conditions are kept constant.
  • a positive machining error means uncut portion, and a negative machining error means over-cut. From the analysis results shown in FIG. 12, it is confirmed that the machining error is small and the amount of change is small even if the depth of cut in the radial direction changes.
  • the finishing process according to the first embodiment since the pick feed is in the downward direction of the wall surface, the cutting width (the width in which the blades are in contact) projected in the radial direction of the end mill is small, and chatter vibration is unlikely to occur, so that the accuracy is high. Wall processing can be realized.
  • Example 1 a right-blade left-twisted ball end mill has been described, but a left-blade right-twisted ball end mill also realizes high-precision wall surface machining.
  • the absolute value of the helix angle is, for example, preferably 10 degrees or more, and more preferably 30 degrees or more.
  • the set values of machining conditions such as the pick feed amount, radial depth of cut, and lead angle affect in addition to the helix angle, but the absolute value of the helix angle is set large. This has the advantage that the setting range of machining conditions can be expanded.
  • a lead angle that shortens the time Tp in the finishing process is proposed.
  • the lead angle is a tool tilt angle in the traveling direction (feeding direction), and a lead angle in which the entire tool is tilted forward with respect to the tool feeding direction is a positive lead angle. Therefore, the lead angle at which the ball portion advances in the feed direction ahead of the cylindrical portion with respect to the tool feed direction is a negative lead angle.
  • a negative lead angle ⁇ L is set in the ball end mill.
  • FIG. 13 is a diagram for explaining an outline of the processing method according to the second embodiment.
  • the feed direction of the ball end mill is the negative direction of the v-axis
  • the pick-feed direction is the negative direction of the w-axis.
  • FIG. 13 shows a state in which the ball end mill is fed and cut in one machining path.
  • the ball end mill represented by the dotted line shows the position of the cutting edge of the previous time (one blade before), and the ball end mill represented by the solid line this time.
  • the positions of the cutting edges are shown respectively.
  • the position of the cutting edge this time is a position advanced by the feed amount per blade from the position of the previous cutting edge in the feeding direction.
  • the top cutting edge of the cutting edges involved in cutting begins cutting, and immediately after that, the top cutting edge makes the final finished surface.
  • FIG. 14 shows the analysis results of the cutting force and the tool displacement during machining in the second embodiment.
  • the parameters and machining conditions in the analysis are the same as those in the analysis of the comparison technique described above, except for the tool twist angle and lead angle, and the lead angle ⁇ L is -30 degrees.
  • the cutting force and the tool displacement when the radial cutting depths are set to 0.3 mm, 0.5 mm, and 0.7 mm are analyzed.
  • the circles indicate the timing of tin
  • the squares indicate the timing of tc.
  • a region to be the final finished surface from the timing tin in which one cutting edge cuts into the work material to the timing to out in which the cutting edge exits the work material. Is completed by the timing tc closer to the cutting timing tin than the timing to out when the cutting edge comes out.
  • FIG. 15 shows the analysis result of the processing error in Example 2.
  • the depth of cut in the radial direction is changed, and other parameters and processing conditions are kept constant.
  • a positive machining error means uncut portion, and a negative machining error means over-cut. From the analysis results shown in FIG. 15, it is confirmed that the machining error is small and the amount of change is small even if the depth of cut in the radial direction changes.
  • the finishing process according to the second embodiment since the pick feed is in the downward direction of the wall surface, the cutting width is small and chatter vibration is unlikely to occur, so that highly accurate wall surface processing can be realized.
  • the above is premised on down-cutting, but even with up-cutting, the final finished surface can be formed immediately after the start of cutting, so high-precision wall surface machining can be realized.
  • the absolute value of the lead angle is preferably, for example, 10 degrees or more, and more preferably 30 degrees or more.
  • the set values of machining conditions such as helix angle, pick feed amount and radial depth of cut affect in addition to the lead angle, but the absolute value of the lead angle is increased.
  • the range of the helix angle and the setting range of other machining conditions can be expanded.
  • the time Tp can be shortened in a wider machining condition range, and high-precision wall surface machining can be realized.
  • the third embodiment is different from the comparative technique and the first and second embodiments, and proposes a processing method in which the pick feed direction is upward (the direction in which the w axis is positive) and the time Tp in the finishing process is shortened.
  • FIG. 16 is a diagram for explaining an outline of the processing method according to the third embodiment.
  • the feed direction of the ball end mill is the negative direction of the v-axis
  • the pick-feed direction is the positive direction of the w-axis.
  • the ball end mill shown in FIG. 16 has a right-handed right-handed twist shape.
  • FIG. 16 shows how the ball end mill cuts the work material in two overlapping machining passes.
  • the work material 62 rotates about the v-axis with respect to the z-axis by a tilt angle ⁇ T.
  • the ball end mill represented by the dotted line indicates the position of the cutting edge in the previous machining pass (one pass before), and the ball end mill represented by the solid line indicates the position of the cutting edge in the current machining pass.
  • the position of the cutting edge in the current machining pass is a position advanced by the pick feed amount from the position of the cutting edge in the previous machining pass in the pick feed direction.
  • the lower cutting edge of the cutting edges involved in cutting starts cutting, and immediately after that, the lower cutting edge forms the final finished surface.
  • the cutting edge begins to cut into the work material 62, and the final finished surface can be formed immediately. Since the cutting force when forming the final finished surface is small, the static displacement is small and the dynamic displacement is also small. Therefore, the final finished surface can be formed before the tool displacement grows.
  • the cutting width is increased because the pick feed direction is directed upward on the wall surface. Therefore, in the third embodiment, it is preferable to suppress the chatter vibration that may occur when the pick feed direction is directed upward on the wall surface.
  • FIG. 17 shows how the improved ball end mill used in Example 3 cuts the work material.
  • the work material 62 rotates about the v-axis with respect to the z-axis by a tilt angle ⁇ T.
  • the ball end mill represented by the dotted line indicates the position of the cutting edge in the previous machining pass (one pass before), and the ball end mill represented by the solid line indicates the position of the cutting edge in the current machining pass.
  • the position of the cutting edge in the current machining pass is a position advanced by the pick feed amount from the position of the cutting edge in the previous machining pass in the pick feed direction.
  • the cutting tool 50 which is an improved ball end mill, has a hemispherical ball portion at the tip of the tool, a small diameter portion connected to the ball portion of the hemisphere, and a cylindrical portion connected to the small diameter portion.
  • the small diameter portion has a circular cross section in a direction perpendicular to the tool axis direction, and the radius of the circular cross section is smaller than the radius r of the ball portion.
  • the small-diameter portion of the cutting tool 50 shown in FIG. 17 has a shape in which the top side of a hemisphere having a radius r is removed by a plane perpendicular to the axis line, and a cylindrical portion is connected to a surface cut out from the top side.
  • the improved cutting tool 50 does not cut at the cylindrical portion, and the cutting width is significantly smaller, so that chatter vibration is less likely to occur. Therefore, the stability against chatter vibration is high, and high-precision finishing can be realized.
  • ⁇ c shown in the figure must satisfy the following inequality.
  • the small diameter portion may have a shape in which the hemispherical top side of the radius r is removed in a cross section perpendicular to the axis, but the small diameter portion has a shape in which the cone having the bottom surface of the radius r is removed in a cross section perpendicular to the axis. You may.
  • the end mill having an R shape on the tip side is rotated and fed relative to the work material 62, and the work material 62 is cut by the cutting edge provided in the portion having the curvature.
  • the processing method of forming the finished surface by repeating the first step of performing the process and the second step of pick-feeding (moving in the pick-feed direction) the end mill to the work material 62 has been described. In this processing method, it is premised that the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
  • the modified example we propose a processing method that forms a finished surface by transferring the cutting edge shape to a surface perpendicular to the feed direction, mainly using the side blades of the end mill. Even in the processing method of this modified example, the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting, but by forming the finished surface using the side blade, the finished surface is formed. All or most of the line-shaped finished surface A2 in FIG. 5B is left as the final finished surface.
  • the end mill since the finished surface is formed mainly by using the side blades of the end mill, the end mill does not need to have an R shape on the tip side, and therefore the end mill is a square end mill, a tapered end mill, or the like. It's okay.
  • the end mill may have an R shape on the tip side, or may be a ball end mill, a radius end mill, a barrel end mill, or the like.
  • 18 (a) and 18 (b) are diagrams for explaining the outline of the processing method according to the modified example.
  • 18 (a) and 18 (b) show how an end mill is fed to form a finished surface.
  • the xyz coordinate system represents a tool coordinate system fixed to the end mill
  • the uvw coordinate system represents a work material coordinate system fixed to the work material 62.
  • the u-axis is a direction perpendicular to the wall surface of the standing wall to be formed
  • the v-axis is a direction parallel to the feed direction
  • the w-axis is a direction parallel to the pick-feed direction.
  • the feed direction of the end mill is the negative direction of the v-axis.
  • the machined surface of the work material 62 may be rotated about the v-axis by a tilt angle ⁇ T with respect to the z-axis.
  • the control device 100 feeds the work material 62 relative to the work material 62 while rotating the end mill to cut the work material 62 to form a finished surface.
  • the control device 100 uses an end mill in which the helix angle of the cutting edge is 0 degrees, and performs up-cut processing.
  • the helix angle of the cutting edge is 0 degrees, and the finished surface is formed by up-cut processing, so that the final finished surface is formed at the moment when the cutting edge cuts the work material 62. Therefore, the final finished surface can be formed before the tool displacement grows.
  • One aspect of the present disclosure is a first step of cutting an end mill having an R shape on the tip side by feeding the end mill relative to the work material while rotating the end mill, and picking the end mill with respect to the work material.
  • This is a processing method for cutting a work material by repeating the second step of feeding.
  • the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
  • the formation of a part of the region is cut from the timing when one cutting edge cuts into the work material to the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by a timing close to the timing. As a result, high-precision machining can be realized.
  • the formation of a part of the region may be started from the timing when the cutting edge cuts into the work material.
  • the cutting edge located on the side opposite to the pick-feed direction is used as the work material before the cutting edge located on the pick-feed direction side. It is preferable to make a cut.
  • a right-blade left-twisted end mill or a left-blade right-twisted end mill may be used.
  • a negative lead angle may be set in the end mill.
  • an end mill having a hemispherical ball portion, a small diameter portion connected to the ball portion, and a cylindrical portion connected to the small diameter portion may be used.
  • Another aspect of the processing apparatus of the present disclosure is a processing apparatus for cutting a work material, which is a rotation mechanism for rotating a spindle to which an end mill having an R shape is attached to the tip side, and an end mill for the work material.
  • the first step of cutting the work material by controlling the operation of the feed mechanism and the rotation mechanism and the feed mechanism, and feeding the end mill relative to the work material while rotating the end mill, and the end mill.
  • the device is provided with a control device that repeats the second step of pick-feeding the work material.
  • the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
  • the control device cuts a part of the region from the timing when one cutting edge cuts into the work material to the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by the timing close to. As a result, high-precision machining can be realized.
  • Yet another aspect of the present disclosure is an end mill having an R shape on the tip side.
  • This end mill repeats a first step of cutting the work material by sending the end mill relative to the work material while rotating the end mill, and a second step of pick-feeding the end mill to the work material. It is used for finishing work materials and has a right-handed left-handed twisted shape or a left-handed right-handed twisted shape. By using this end mill, high-precision machining can be realized.
  • Yet another aspect of the present disclosure is a processing method in which the end mill is rotated and fed relative to the work material to cut the work material to form a finished surface.
  • an end mill having a cutting edge helix angle of 0 degrees is used to perform up-cut processing. As a result, high-precision machining can be realized.
  • the present disclosure relates to a technique for forming a finished surface using an end mill having an R shape on the tip side.
  • Processing device 10 ... Machine tool device, 50 ... Cutting tool, 62 ... Work material, 100 ... Control device.

Abstract

This processing method cuts a workpiece by repeating a first step for cutting the workpiece by moving an end mill relative to the workpiece while rotating the end mill having an R shape on the tip side and a second step for pick-feeding the end mill to the workpiece. In this processing method, a region other than a partial region of a finished surface formed by one cutting edge is removed by the subsequent cutting. In the first step, from a timing when one cutting edge cuts into the workpiece to a timing when the cutting edge comes out of the workpiece, the formation of the partial region is completed by a timing closer to the timing when the cutting edge cuts into the workpiece than to the timing when the cutting edge comes out.

Description

加工方法、加工装置、加工プログラムおよびエンドミルMachining method, machining equipment, machining program and end mill
 本開示は、エンドミルを用いて仕上げ面を形成する技術に関する。 This disclosure relates to a technique for forming a finished surface using an end mill.
 先端側にR形状を有するボールエンドミルなどの回転工具は、仕上げ加工に利用されることが多い。特許文献1は、ボールエンドミルを用いて、抜き勾配を必要とする金型を仕上げ加工する技術を開示する。 Rotating tools such as ball end mills that have an R shape on the tip side are often used for finishing. Patent Document 1 discloses a technique for finishing a mold that requires a draft by using a ball end mill.
 図1は、抜き勾配をもつ金型の立壁(たちかべ)をボールエンドミルで仕上げ加工する様子を示す。この仕上げ加工では、ボールエンドミルを回転させながら壁面に沿って所定の送り方向に送って被削材を切削する工程と、ボールエンドミルを所定のピックフィード方向にピックフィードする工程とを繰り返す。 FIG. 1 shows a state in which a standing wall (tachikabe) of a mold having a draft is finished with a ball end mill. In this finishing process, a step of cutting the work material by feeding the ball end mill in a predetermined feed direction along the wall surface while rotating the ball end mill and a step of pick-feeding the ball end mill in a predetermined pick-feed direction are repeated.
 ボールエンドミルは先端に半球状のボール部を有する。当該ボール部の半径をrとし、ピックフィード方向の送り量(ピックフィード量)をfpとすると、立壁面の仕上げ面粗さRは、以下の式で表現される。
 R=fp/(8r)
 この式から、ピックフィード量fpを小さくすることで、ボールエンドミルの変位がない理想的な状態では、高精度かつ高品質な仕上げ面の創製を実現できることが分かる。
The ball end mill has a hemispherical ball portion at the tip. Assuming that the radius of the ball portion is r and the feed amount in the pick feed direction (pick feed amount) is fp, the finished surface roughness R of the standing wall surface is expressed by the following equation.
R = fp 2 / (8r)
From this equation, it can be seen that by reducing the pick feed amount fp, it is possible to create a finished surface with high accuracy and high quality in an ideal state where there is no displacement of the ball end mill.
特許第5963292号公報Japanese Patent No. 5963292
 金型壁面を加工する際には、長く突き出した動剛性の低い工具を使わざるを得ないことが多い。壁面などの仕上げ工程では、工具の動剛性が低い方向のたわみが加工精度に大きな影響を与えるため、高精度な加工を安定して行うことが容易でない。 When machining the wall surface of the mold, it is often necessary to use a tool that protrudes for a long time and has low dynamic rigidity. In the finishing process of a wall surface or the like, the deflection of the tool in the direction of low dynamic rigidity has a great influence on the machining accuracy, so that it is not easy to stably perform high-precision machining.
 本開示はこうした状況に鑑みてなされており、その目的とするところは、エンドミルを用いて仕上げ面を高精度に形成するための技術を提供することにある。 The present disclosure has been made in view of such a situation, and the purpose thereof is to provide a technique for forming a finished surface with high accuracy by using an end mill.
 上記課題を解決するために、本開示のある態様の加工方法は、先端側にR形状を有するエンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、エンドミルを被削材に対してピックフィード(ピックフィード方向に移動)する第2工程とを繰り返して、被削材を切削する。この加工方法では、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去される。この加工方法は、1つの切れ刃が被削材に切り込むタイミングから、当該切れ刃が被削材から抜け出るタイミングまでの間で、当該一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる。 In order to solve the above problems, the processing method of one aspect of the present disclosure is a first step of cutting a work material by feeding it relative to the work material while rotating an end mill having an R shape on the tip side. And the second step of pick-feeding the end mill with respect to the work material (moving in the pick-feed direction) are repeated to cut the work material. In this processing method, the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting. In this processing method, the formation of a part of the region is formed between the timing when one cutting edge cuts into the work material and the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by a timing close to the cutting timing.
 本開示の別の態様の加工装置は、被削材を切削する加工装置であって、先端側にR形状を有するエンドミルが取り付けられた主軸を回転させる回転機構と、被削材に対してエンドミルを相対的に移動させる送り機構と、回転機構および送り機構の動作を制御して、エンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、エンドミルを被削材に対してピックフィードする第2工程とを繰り返す制御装置と、を備える。この加工装置による加工において、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去される。制御装置は、1つの切れ刃が被削材に切り込むタイミングから、当該切れ刃が被削材から抜け出るタイミングまでの間で、当該一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる。 Another aspect of the processing apparatus of the present disclosure is a processing apparatus for cutting a work material, which is a rotation mechanism for rotating a spindle to which an end mill having an R shape is attached to the tip side, and an end mill for the work material. The first step of cutting the work material by controlling the operation of the feed mechanism and the rotation mechanism and the feed mechanism, and feeding the end mill relative to the work material while rotating the end mill, and the end mill. The device is provided with a control device that repeats the second step of pick-feeding the work material. In the processing by this processing apparatus, the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting. The control device cuts the formation of the part of the region from the timing when one cutting edge cuts into the work material to the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by a timing close to the timing.
 本開示のさらに別の態様は、先端側にR形状を有するエンドミルである。このエンドミルは、当該エンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、当該エンドミルを被削材に対してピックフィードする第2工程とを繰り返す被削材の仕上げ加工に使用され、右刃左ねじれの形状、または左刃右ねじれの形状を有する。 Yet another aspect of the present disclosure is an end mill having an R shape on the tip side. This end mill repeats a first step of cutting the work material by sending the end mill relative to the work material while rotating the end mill, and a second step of pick-feeding the end mill to the work material. It is used for finishing work materials and has a right-handed left-handed twisted shape or a left-handed right-handed twisted shape.
 本開示のさらに別の態様は、エンドミルを回転させながら被削材に対して相対的に送って被削材を切削して、仕上げ面を形成する加工方法であって、切れ刃のねじれ角が0度のエンドミルを使用し、アップカット加工を実施する。 Yet another aspect of the present disclosure is a processing method in which the end mill is rotated and fed relative to the work material to cut the work material to form a finished surface, wherein the helix angle of the cutting edge is increased. Upcut processing is performed using a 0 degree end mill.
 なお、以上の構成要素の任意の組合せ、本開示の表現を方法、装置、システムなどの間で変換したものもまた、本開示の態様として有効である。 It should be noted that any combination of the above components and the conversion of the expressions of the present disclosure between methods, devices, systems, etc. are also effective as aspects of the present disclosure.
 本開示によれば、エンドミルを用いて仕上げ面を高精度に形成するための技術を提供できる。 According to the present disclosure, it is possible to provide a technique for forming a finished surface with high accuracy by using an end mill.
金型の立壁をボールエンドミルで仕上げ加工する様子を示す図である。It is a figure which shows the state of finishing the standing wall of a mold with a ball end mill. 実施形態の加工装置を示す図である。It is a figure which shows the processing apparatus of embodiment. ボールエンドミルの外観を示す図である。It is a figure which shows the appearance of the ball end mill. 比較技術となる加工方法の概要を説明するための図である。It is a figure for demonstrating the outline of the processing method which becomes a comparative technique. 仕上げ面が除去される過程を説明するための図である。It is a figure for demonstrating the process of removing a finished surface. 比較技術における加工時の切削力と工具変位の解析結果を示す図である。It is a figure which shows the analysis result of the cutting force and tool displacement at the time of machining in the comparative technique. 比較技術における加工誤差の解析結果を示す図である。It is a figure which shows the analysis result of the processing error in the comparative technique. 比較技術における加工時の切削力と工具変位の解析結果を示す図である。It is a figure which shows the analysis result of the cutting force and tool displacement at the time of machining in the comparative technique. 実施形態における仕上げ加工手順を示す図である。It is a figure which shows the finishing process procedure in an embodiment. 実施例1におけるボールエンドミルの外観を示す図である。It is a figure which shows the appearance of the ball end mill in Example 1. FIG. 実施例1における加工時の切削力と工具変位の解析結果を示す図である。It is a figure which shows the analysis result of the cutting force and the tool displacement at the time of machining in Example 1. FIG. 実施例1における加工誤差の解析結果を示す図である。It is a figure which shows the analysis result of the processing error in Example 1. FIG. 実施例2による加工方法の概要を説明するための図である。It is a figure for demonstrating the outline of the processing method by Example 2. FIG. 実施例2における加工時の切削力と工具変位の解析結果を示す図である。It is a figure which shows the analysis result of the cutting force and the tool displacement at the time of machining in Example 2. FIG. 実施例2における加工誤差の解析結果を示す図である。It is a figure which shows the analysis result of the processing error in Example 2. 実施例3による加工方法の概要を説明するための図である。It is a figure for demonstrating the outline of the processing method by Example 3. FIG. 実施例3で使用する改良されたボールエンドミルが切削する様子を示す図である。It is a figure which shows the state which the improved ball end mill used in Example 3 cuts. 変形例による加工方法の概要を説明するための図である。It is a figure for demonstrating the outline of the processing method by a modification.
 図2は、実施形態の加工装置1を示す。加工装置1は、工作機械装置10および制御装置100を備える。制御装置100は、NC(numerical control)プログラムにしたがって工作機械装置10を制御するNC制御装置であってよく、工作機械装置10は、NC制御装置によって制御されるNC工作機械であってよい。加工装置1において、工作機械装置10および制御装置100は別体として構成され、ケーブル等により接続されてよいが、一体として構成されてもよい。 FIG. 2 shows the processing apparatus 1 of the embodiment. The processing device 1 includes a machine tool device 10 and a control device 100. The control device 100 may be an NC control device that controls the machine tool device 10 according to an NC (numerical control) program, and the machine tool device 10 may be an NC machine tool controlled by the NC control device. In the processing device 1, the machine tool device 10 and the control device 100 are configured as separate bodies and may be connected by a cable or the like, but may be configured as one.
 工作機械装置10は、本体部であるベッド部12およびコラム部14を備える。ベッド部12上には、第1テーブル16および第2テーブル18が移動可能に支持される。第1テーブル16は、ベッド部12に形成されたレール部によりY軸方向に移動可能に支持され、第2テーブル18は、第1テーブル16に形成されたレール部によりX軸方向に移動可能に支持される。第2テーブル18の上面にはワークピース設置面が設けられ、加工対象である被削材62が、ワークピース設置面に固定される。被削材62は、仕上げ加工前の立壁、つまり前加工された立壁を有する金型用の金属素材であってよい。実施形態の加工装置1は、被削材62の立壁を仕上げ加工して、抜き勾配を有する立壁を形成するが、実施形態で示す加工技術は、その他、様々な対象物の高精度仕上げ加工に利用されてよい。 The machine tool device 10 includes a bed portion 12 and a column portion 14 which are main body portions. A first table 16 and a second table 18 are movably supported on the bed portion 12. The first table 16 is movably supported in the Y-axis direction by the rail portion formed on the bed portion 12, and the second table 18 is movable in the X-axis direction by the rail portion formed on the first table 16. Be supported. A work piece installation surface is provided on the upper surface of the second table 18, and the work material 62 to be processed is fixed to the work piece installation surface. The work material 62 may be a metal material for a die having a standing wall before finishing, that is, a standing wall that has been pre-processed. The processing apparatus 1 of the embodiment finishes the standing wall of the work material 62 to form a standing wall having a draft, but the processing technique shown in the embodiment can be used for high-precision finishing of various other objects. May be used.
 Y軸モータ22はボールねじ機構を回転することで、第1テーブル16をY軸方向に移動し、X軸モータ20はボールねじ機構を回転することで、第2テーブル18をX軸方向に移動する。Y軸センサ32は、第1テーブル16のY軸方向の位置を検出し、X軸センサ30は、第2テーブル18のX軸方向の位置を検出する。 The Y-axis motor 22 moves the first table 16 in the Y-axis direction by rotating the ball screw mechanism, and the X-axis motor 20 moves the second table 18 in the X-axis direction by rotating the ball screw mechanism. do. The Y-axis sensor 32 detects the position of the first table 16 in the Y-axis direction, and the X-axis sensor 30 detects the position of the second table 18 in the X-axis direction.
 第2テーブル18の上方には、切削工具50が取り付けられる主軸46が設けられる。実施形態において、主軸46に設けられたチャックには、先端側にR形状を有するエンドミル工具が取り付けられる。このようなエンドミル工具は、典型的にはボールエンドミルであるが、ラジアスエンドミルやバレルエンドミルであってもよい。主軸モータ40は主軸46を回転し、主軸センサ42は主軸モータ40の回転速度を検出する。主軸46および主軸モータ40は主軸支持部44に固定される。 Above the second table 18, a spindle 46 to which the cutting tool 50 is attached is provided. In the embodiment, an end mill tool having an R shape is attached to the chuck provided on the spindle 46 on the tip side. Such end mill tools are typically ball end mills, but may be radius end mills or barrel end mills. The spindle motor 40 rotates the spindle 46, and the spindle sensor 42 detects the rotation speed of the spindle motor 40. The spindle 46 and the spindle motor 40 are fixed to the spindle support 44.
 主軸支持部44は、その背面側でコラム部14に形成されたレール部によりZ軸方向に移動可能に支持される。Z軸モータ24はボールねじ機構を回転することで、主軸46をZ軸方向に移動する。Z軸センサ34は、主軸46のZ方向の位置を検出する。 The spindle support portion 44 is movably supported in the Z-axis direction by a rail portion formed on the column portion 14 on the back side thereof. The Z-axis motor 24 moves the spindle 46 in the Z-axis direction by rotating the ball screw mechanism. The Z-axis sensor 34 detects the position of the spindle 46 in the Z direction.
 第1傾斜モータ52はギヤ機構を回転することで、主軸支持部44を主軸46およびY軸に垂直な軸線周りに傾斜させる。傾斜センサ56は、主軸46の傾斜角度を検出する。第2傾斜モータ54はギヤ機構を回転することで、主軸支持部44をY軸に平行な軸線周りに傾斜させる。傾斜センサ56とは別の傾斜センサ(図示せず)が、主軸46の傾斜角度を検出する。 The first tilt motor 52 tilts the spindle support portion 44 around the axes perpendicular to the spindle 46 and the Y axis by rotating the gear mechanism. The tilt sensor 56 detects the tilt angle of the spindle 46. The second tilt motor 54 tilts the spindle support portion 44 around an axis parallel to the Y axis by rotating the gear mechanism. An inclination sensor (not shown) different from the inclination sensor 56 detects the inclination angle of the spindle 46.
 制御装置100は、NCプログラムにしたがってX軸モータ20、Y軸モータ22、Z軸モータ24、第1傾斜モータ52、第2傾斜モータ54および主軸モータ40を駆動制御する。制御装置100は、X軸センサ30、Y軸センサ32、Z軸センサ34、傾斜センサおよび主軸センサ42から、それぞれで検出された検出値を取得し、各モータの駆動制御に反映する。 The control device 100 drives and controls the X-axis motor 20, the Y-axis motor 22, the Z-axis motor 24, the first tilt motor 52, the second tilt motor 54, and the spindle motor 40 according to the NC program. The control device 100 acquires the detection values detected by each of the X-axis sensor 30, the Y-axis sensor 32, the Z-axis sensor 34, the tilt sensor, and the spindle sensor 42, and reflects them in the drive control of each motor.
 図2に示す工作機械装置10では、被削材62がX軸モータ20およびY軸モータ22によってそれぞれX軸方向およびY軸方向に移動させられ、切削工具50がZ軸モータ24によってZ軸方向に移動させられるが、これらの移動は、切削工具50と被削材62との間で相対的であればよい。つまり工作機械装置10において、切削工具50がX軸方向およびY軸方向に移動させられ、被削材62がZ軸方向に移動させられてもよい。また工作機械装置10では、切削工具50が第1傾斜モータ52および第2傾斜モータ54によって被削材62に対して傾斜させられるが、これらの傾斜モータは、ベッド部12側に設けられてもよい。このように切削工具50と被削材62は、いずれが動かされるかは重要ではなく、各移動方向および各回転方向において相対的に動作できればよく、以下、切削工具50と被削材62の相対的な移動を実現するための機構を総称して「送り機構」と呼ぶ。 In the machine tool device 10 shown in FIG. 2, the work material 62 is moved in the X-axis direction and the Y-axis direction by the X-axis motor 20 and the Y-axis motor 22, respectively, and the cutting tool 50 is moved in the Z-axis direction by the Z-axis motor 24. These movements may be relative between the cutting tool 50 and the work material 62. That is, in the machine tool device 10, the cutting tool 50 may be moved in the X-axis direction and the Y-axis direction, and the work material 62 may be moved in the Z-axis direction. Further, in the machine tool device 10, the cutting tool 50 is tilted with respect to the work material 62 by the first tilt motor 52 and the second tilt motor 54, but these tilt motors may be provided on the bed portion 12 side. good. As described above, it does not matter which of the cutting tool 50 and the work material 62 is moved, and it is sufficient that the cutting tool 50 and the work material 62 can move relatively in each movement direction and each rotation direction. Hereinafter, the relative between the cutting tool 50 and the work material 62 The mechanism for realizing the movement is collectively called the "feed mechanism".
 図3は、ボールエンドミルの外観を示す。ボールエンドミルは、半球状のボール部と、ボール部に接続する円柱部とを有する。後述するが、図3に示すボールエンドミルは、右刃右ねじれの形状を有する。 FIG. 3 shows the appearance of the ball end mill. The ball end mill has a hemispherical ball portion and a cylindrical portion connected to the ball portion. As will be described later, the ball end mill shown in FIG. 3 has a right-handed right-handed twist shape.
 以下、ボールエンドミルの設計可能な工具パラメータと加工条件を示す。
<工具パラメータ>
・ 工具直径
・ 工具突出し
・ 刃数
・ ねじれ角
・ 右刃/左刃
<加工条件>
・ 回転速度
・ 送り方向
・ 1刃当たりの送り量
・ ピックフィード方向
・ ピックフィード量
・ 半径方向切込み深さ
・ リード角
・ チルト角
 リード角は、工具進行方向(送り方向)における工具の傾き角であり、チルト角は、工具進行方向に直角な方向の工具の傾き角である。
The designable tool parameters and machining conditions of the ball end mill are shown below.
<Tool parameters>
・ Tool diameter ・ Tool protrusion ・ Number of blades ・ Helix angle ・ Right blade / Left blade <Processing conditions>
・ Rotation speed ・ Feed direction ・ Feed amount per blade ・ Pick feed direction ・ Pick feed amount ・ Radial depth of cut ・ Lead angle ・ Tilt angle Lead angle is the tilt angle of the tool in the tool advancing direction (feed direction). Yes, the tilt angle is the tilt angle of the tool in the direction perpendicular to the tool traveling direction.
 図3に示すように、ボールエンドミルにおけるねじれ角は、ボール部の俯角によって変化する。ねじれ角はボール部の底付近では0度に近く、円柱部に近づくにつれて一定のねじれ角に漸近し、円柱部では一定のねじれ角を有する。通常、ボールエンドミルのねじれ角と言えば、円柱部のねじれ角を意味する。 As shown in FIG. 3, the helix angle in the ball end mill changes depending on the depression angle of the ball portion. The helix angle is close to 0 degrees near the bottom of the ball portion, gradually approaches a constant helix angle as it approaches the cylindrical portion, and has a constant helix angle in the cylindrical portion. Usually, the helix angle of a ball end mill means the helix angle of a cylindrical portion.
 エンドミルは、切れ刃の向きによって切削の回転方向が異なる。エンドミルのねじれ刃には右刃と左刃があり、エンドミルをシャンク側から先端側に向かう方向に見た場合に、工具回転方向が時計回りで切削する工具を「右刃」と呼び、工具回転方向が反時計回りで切削する工具を「左刃」と呼ぶ。通常のエンドミルは右刃工具であり、左刃のエンドミルは少ない。 The end mill has different cutting rotation directions depending on the direction of the cutting edge. The twisted blade of the end mill has a right blade and a left blade. When the end mill is viewed from the shank side to the tip side, the tool that cuts in the clockwise direction of the tool is called the "right blade", and the tool rotates. A tool that cuts in a counterclockwise direction is called a "left blade". Normal end mills are right-blade tools, and there are few left-blade end mills.
 またエンドミルでは、切れ刃のねじれの向きによって、切り屑の排出方向が異なる。右刃右ねじれのエンドミルは、切り屑が上方向に排出され、右刃左ねじれのエンドミルは、切り屑が下方向に排出される。以下、右刃に関し、右ねじれのねじれ角を正とし、左ねじれのねじれ角を負と定義する。なお左刃に関しても同様に、左刃左ねじれのエンドミルは、切り屑が上方向に排出され、左刃右ねじれのエンドミルは、切り屑が下方向に排出される。 Also, in end mills, the direction of chip discharge differs depending on the direction of twisting of the cutting edge. The right-blade right-twisted end mill discharges chips upward, and the right-blade left-twisted end mill discharges chips downward. Hereinafter, regarding the right blade, the helix angle of the right twist is defined as positive, and the helix angle of the left twist is defined as negative. Similarly for the left blade, the left blade left twist end mill discharges chips upward, and the left blade right twist end mill discharges chips downward.
 図3に示すボールエンドミルは、右刃右ねじれの工具であり、正のねじれ角をもつ。右刃に関して言えば、右刃右ねじれのエンドミルは非常に一般的であるが、右刃左ねじれの形状はスクウェアエンドミルにおいて僅かに存在するものの、先端側にR形状を有する右刃左ねじれのエンドミルは存在していない。同様に先端側にR形状を有する左刃右ねじれのエンドミルも存在していない。 The ball end mill shown in FIG. 3 is a right-blade right-twisting tool and has a positive helix angle. When it comes to right blades, right blade right twist end mills are very common, but right blade left twist end mills have an R shape on the tip side, although the right blade left twist shape is slightly present in square end mills. Does not exist. Similarly, there is no left-blade right-twisted end mill having an R shape on the tip side.
 以下、ボールエンドミルによる加工精度について考察する。まず実施形態の加工方法について説明する前に、実施形態の加工方法と対比するための比較技術を説明する。
 比較技術および実施形態では、等高線加工により立壁の壁面を仕上げ加工する。等高線加工とは、1つの加工パスの中ではz軸の高さを一定とし、xy方向に送りを行って1ラインを切削し、1ライン切削後は、z軸方向にピックフィードして1ラインを切削し、これを繰り返すことで仕上げ面を創製する加工方法である。
Hereinafter, the machining accuracy of the ball end mill will be considered. First, before explaining the processing method of the embodiment, a comparative technique for comparing with the processing method of the embodiment will be described.
In the comparative technique and the embodiment, the wall surface of the standing wall is finished by contour processing. Contour line machining means that the height of the z-axis is constant in one machining path, feed is performed in the xy direction to cut one line, and after one line is cut, pick-feed is performed in the z-axis direction to make one line. This is a processing method that creates a finished surface by cutting and repeating this process.
 比較技術では、一般的な右刃右ねじれのボールエンドミルを使用する。
 図4(a)、(b)は、比較技術となる加工方法の概要を説明するための図である。図4(a)、(b)において、xyz座標系は、ボールエンドミルに固定された工具座標系を表現し、uvw座標系は、被削材62に固定された被削材座標系を示す。工具座標系であるxyz座標系は、工作機械装置10におけるXYZ座標系と異なっていてよい。uvw座標系において、u軸は、形成する立壁の壁面に垂直な方向、v軸は、送り方向に平行な方向、w軸は、ピックフィード方向に平行な方向である。比較技術において、ボールエンドミルの送り方向は、v軸負の方向、ピックフィード方向は、w軸負の方向である。
The comparative technique uses a typical right-blade, right-twisted ball end mill.
4 (a) and 4 (b) are diagrams for explaining an outline of a processing method as a comparative technique. In FIGS. 4A and 4B, the xyz coordinate system represents the tool coordinate system fixed to the ball end mill, and the uvw coordinate system shows the work material coordinate system fixed to the work material 62. The xyz coordinate system, which is the tool coordinate system, may be different from the XYZ coordinate system in the machine tool apparatus 10. In the uvw coordinate system, the u-axis is a direction perpendicular to the wall surface of the standing wall to be formed, the v-axis is a direction parallel to the feed direction, and the w-axis is a direction parallel to the pick-feed direction. In the comparative technique, the feed direction of the ball end mill is the negative direction of the v-axis, and the pick-feed direction is the negative direction of the w-axis.
 図4(a)は、1つの加工パスにおいてボールエンドミルを送って被削材を切削する様子を示す。図中、点線で表現するボールエンドミルは前回(1刃前)の切れ刃の位置を、実線で表現するボールエンドミルは今回の切れ刃の位置をそれぞれ示す。今回の切れ刃の位置は、送り方向において、前回の切れ刃の位置から1刃当たりの送り量だけ進んだ位置にある。 FIG. 4A shows a state in which a ball end mill is sent to cut a work material in one machining pass. In the figure, the ball end mill represented by the dotted line indicates the position of the cutting edge of the previous time (one blade before), and the ball end mill represented by the solid line indicates the position of the cutting edge of this time. The position of the cutting edge this time is a position advanced by the feed amount per blade from the position of the previous cutting edge in the feeding direction.
 図4(b)は、2つの重なる加工パスにおいてボールエンドミルが被削材を切削する様子を示す。被削材62の加工される面はz軸に対してv軸周りにチルト角αだけ回転している。図中、点線で表現するボールエンドミルは前回(1パス前)の加工パスにおける切れ刃の位置を、実線で表現するボールエンドミルは今回の加工パスにおける切れ刃の位置をそれぞれ示す。今回の加工パスにおける切れ刃の位置は、ピックフィード方向において、前回の加工パスにおける切れ刃の位置からピックフィード量だけ進んだ位置にある。 FIG. 4B shows how the ball end mill cuts the work material in two overlapping machining passes. The machined surface of the work material 62 is rotated about the v-axis by a tilt angle α T with respect to the z-axis. In the figure, the ball end mill represented by the dotted line indicates the position of the cutting edge in the previous machining pass (one pass before), and the ball end mill represented by the solid line indicates the position of the cutting edge in the current machining pass. The position of the cutting edge in the current machining pass is a position advanced by the pick feed amount from the position of the cutting edge in the previous machining pass in the pick feed direction.
 ボールエンドミル加工の誤差は、切れ刃が仕上げ面を作る瞬間の工具と被削材の相対変位で決まる。なお、ここで「仕上げ面」と呼んでいるのは、仕上げ加工において、回転する切れ刃が壁面を切削したことで形成された面である。ねじれ角をもつボールエンドミルでは、1刃による切削中に、仕上げ面が形成されるタイミングは切れ刃の高さ位置によって異なる。 The error in ball end milling is determined by the relative displacement between the tool and the work material at the moment when the cutting edge creates the finished surface. The term "finished surface" here is a surface formed by cutting the wall surface with a rotating cutting edge in the finishing process. In a ball end mill having a helix angle, the timing at which the finished surface is formed during cutting with one blade differs depending on the height position of the cutting edge.
 比較技術のように、ピックフィード方向を下向き(w軸負方向)に設定して、右刃右ねじれのボールエンドミルで壁面加工する場合、切削に関与する切れ刃のうち、最初に最下部付近の切れ刃部分が被削材に切り込んで切削を開始し、それから、より高い位置にある切れ刃部分が被削材に連続して切り込み、最後に最上部の切れ刃部分が被削材に切り込む。その後、最初に切り込んだ最下部付近の切れ刃部分が被削材から抜け出ると、より高い位置にある切れ刃部分が、切り込んだ順番と同じ順番で被削材から抜け出て、最後に最上部の切れ刃部分が被削材から抜け出て、1枚の切れ刃による切削が完了する。このように比較技術によると、仕上げ面は、下から上に向けて順番に形成される。 When the pick feed direction is set downward (w-axis negative direction) and the wall surface is machined with a right-handed right-twisted ball end mill as in the comparative technique, the first cutting edge involved in cutting is near the bottom. The cutting edge portion cuts into the work material and starts cutting, then the cutting edge portion at a higher position continuously cuts into the work material, and finally the uppermost cutting edge portion cuts into the work material. After that, when the cutting edge part near the bottom that was cut first comes out of the work material, the cutting edge part at a higher position comes out of the work material in the same order as the cutting order, and finally the topmost part. The cutting edge portion comes out of the work material, and cutting with one cutting edge is completed. Thus, according to the comparative technique, the finished surfaces are formed in order from bottom to top.
 ボールエンドミル加工では、現在の切れ刃によって形成された仕上げ面のほとんどが同じ加工パスにおける次の切れ刃または1ピックフィード量送った次の加工パスにおける切れ刃で除去される。 In ball end milling, most of the finished surface formed by the current cutting edge is removed by the next cutting edge in the same machining path or the cutting edge in the next machining pass fed one pick feed amount.
 図5(a)~(c)は、仕上げ面が除去される過程を説明するための図である。
 図5(a)は、今回、切れ刃で形成した仕上げ面A1を示す。第Nパスは、仕上げ加工におけるN回目の加工パスを意味する。
5 (a) to 5 (c) are views for explaining the process of removing the finished surface.
FIG. 5A shows the finished surface A1 formed by the cutting edge this time. The Nth pass means the Nth machining pass in the finishing machining.
 図5(b)は、同じ加工パスにおける次の切れ刃で形成した仕上げ面B1を示す。図5(b)において仕上げ面B1は、ハッチングした領域である。仕上げ面B1は、仕上げ面A1から、1刃当たりの送り量だけ送り方向にずれた位置に形成される。図示されるように、仕上げ面B1は、仕上げ面A1の大部分に重ねられて形成される。そのため仕上げ面A1の大部分は除去されて、僅かに仕上げ面A2が残される。 FIG. 5B shows the finished surface B1 formed by the next cutting edge in the same machining path. In FIG. 5B, the finished surface B1 is a hatched region. The finished surface B1 is formed at a position deviated from the finished surface A1 by the amount of feed per blade in the feed direction. As shown, the finished surface B1 is formed so as to overlap most of the finished surface A1. Therefore, most of the finished surface A1 is removed, leaving a small amount of the finished surface A2.
 図5(c)は、次の加工パスにおいて形成した仕上げ面C1を示す。図5(c)において仕上げ面C1は、ハッチングした領域である。仕上げ面C1の加工パスである第(N+1)パスは、仕上げ加工における(N+1)回目の加工パスであり、第Nパスの次のパスであることを意味する。 FIG. 5 (c) shows the finished surface C1 formed in the next processing pass. In FIG. 5C, the finished surface C1 is a hatched region. The (N + 1) th pass, which is the machining pass of the finished surface C1, is the (N + 1) th machining pass in the finishing machining, and means that it is the next pass after the Nth pass.
 第(N+1)パスでは、第Nパスからピックフィード量だけボールエンドミルを下方にずらした切削が行われる。図示されるように、仕上げ面C1は、仕上げ面A2に重ねられて形成される。そのため仕上げ面A2の大部分は除去されて、僅かに仕上げ面A3が残される。(なお実際には、第(N+1)パスで仕上げ面C1が形成される前の加工で、仕上げ面A2の大部分は既に除去される。)残された仕上げ面A3は、この後、加工されることはないため、以下「最終仕上げ面」と呼ぶ。 In the (N + 1) pass, cutting is performed by shifting the ball end mill downward by the amount of pick feed from the Nth pass. As shown, the finished surface C1 is formed so as to be overlapped with the finished surface A2. Therefore, most of the finished surface A2 is removed, leaving a small amount of the finished surface A3. (Actually, most of the finished surface A2 has already been removed by the processing before the finished surface C1 is formed in the (N + 1) pass.) The remaining finished surface A3 is processed after this. Since this is not the case, it will be referred to as the "final finished surface" below.
 以上のように等高線加工では、現在の切れ刃によって形成された仕上げ面のほとんどが同じ加工パスにおける次の切れ刃または1ピックフィード量送った次の加工パスにおける切れ刃で除去され、僅かな最終仕上げ面だけが残される。最終的な製品は、最終仕上げ面を繋ぎ合わせたものであり、最終仕上げ面を高精度に仕上げることができれば、高品質の製品を創製できることになる。金型等の壁面加工では、加工中の切削力により低剛性な構造(ここでは長く突き出したエンドミル)が加振され、その結果として静的変位(静たわみ)と動的変位(強制振動)が発生する。最終仕上げ面を形成するときに発生する変位が大きければ、加工精度は悪くなり、変位が小さければ、加工精度は良好となる。 As described above, in contour machining, most of the finished surface formed by the current cutting edge is removed by the next cutting edge in the same machining path or the cutting edge in the next machining path fed by one pick feed amount, and a slight final. Only the finished surface is left. The final product is made by joining the final finished surfaces, and if the final finished surface can be finished with high precision, a high quality product can be created. In wall surface machining of dies, etc., a low-rigidity structure (here, a long protruding end mill) is vibrated by the cutting force during machining, resulting in static displacement (static deflection) and dynamic displacement (forced vibration). appear. If the displacement generated when the final finished surface is formed is large, the machining accuracy is poor, and if the displacement is small, the machining accuracy is good.
 比較技術に関する解析では、工具パラメータおよび加工条件を、以下のように設定した。
<工具パラメータ>
 工具直径:10mm
 工具突出し:50mm
 刃数:1枚
 ねじれ角:+30度(右ねじれ)
 右刃
<加工条件>
 送り方向:-v方向
 1刃当たりの送り量:0.22mm
 ピックフィード方向:-w方向
 ピックフィード量:0.1mm
 半径方向切込み深さ:0.6mm
 リード角:0度
 チルト角α:+7度
In the analysis of the comparative technique, the tool parameters and machining conditions were set as follows.
<Tool parameters>
Tool diameter: 10 mm
Tool protrusion: 50 mm
Number of blades: 1 helix angle: +30 degrees (right twist)
Right blade <Processing conditions>
Feed direction: -v direction Feed amount per blade: 0.22 mm
Pick feed direction: -w direction Pick feed amount: 0.1 mm
Radial depth of cut: 0.6 mm
Lead angle: 0 degrees Tilt angle α T : +7 degrees
 以下、ボールエンドミルが被削材に対して最初に接触するタイミング(時刻)をtin、最終仕上げ面を形成するタイミング(時刻)をtc、その差の時間(tc-tin)をTpとする。なお図5(c)に示すように、最終仕上げ面A3は面積を有し、最終仕上げ面A3を形成するには僅かな時間を必要とする。実施形態ではタイミングtcを、最終仕上げ面の形成が完了した時刻としている。なおタイミングtcは、最終仕上げ面の中央部を形成した時刻であってもよい。 Hereinafter, the timing (time) at which the ball end mill first contacts the work material is defined as tin, the timing (time) at which the final finished surface is formed is defined as tc, and the difference time (tk-tin) is defined as Tp. As shown in FIG. 5C, the final finished surface A3 has an area, and a short time is required to form the final finished surface A3. In the embodiment, the timing tc is the time when the formation of the final finished surface is completed. The timing tc may be the time when the central portion of the final finished surface is formed.
 図6は、比較技術における加工時の切削力と工具変位の解析結果を示す。切削力の変動をみると、切削力は、タイミングtinから増加し始め、その後、減少に転じてタイミングtoutで0となる。これはタイミングtinで、切削に関与する切れ刃が、その最下部付近の切れ刃部分から被削材への切り込みを開始し、最上部の切れ刃部分まで徐々に切り込んだ後、最下部付近の切れ刃部分から徐々に被削材から抜け出し、タイミングtoutで最上部の切れ刃部分が被削材から抜け出ることを表現している。 FIG. 6 shows the analysis results of cutting force and tool displacement during machining in the comparative technique. Looking at the fluctuation of the cutting force, the cutting force starts to increase from the timing tin, then starts to decrease and becomes 0 at the timing tout. This is a timing tin, and the cutting edge involved in cutting starts cutting from the cutting edge part near the bottom to the work material, gradually cuts to the top cutting edge part, and then near the bottom. It expresses that the cutting edge portion gradually comes out of the work material, and the uppermost cutting edge portion comes out of the work material at the timing to out.
 工具の変位に着目すると、タイミングtin後から変位が成長し、特に強制振動の大きな成長が確認される。タイミングtcではその変位が大きく成長している。そのためタイミングtcで形成される最終仕上げ面には、大きな加工誤差が生じることになる。なお加工誤差とは、加工精度を評価する指標の一つであって、最終仕上げ面の狙いの位置と実際の位置との差として定義される。このことから比較技術によると、変位が成長した後に切れ刃が最終仕上げ面を形成するため、加工誤差が大きいことがわかる。 Focusing on the displacement of the tool, the displacement grows after the timing tin, and especially the large growth of forced vibration is confirmed. At timing tc, the displacement grows significantly. Therefore, a large processing error will occur in the final finished surface formed at the timing tc. The machining error is one of the indexes for evaluating the machining accuracy, and is defined as the difference between the target position and the actual position of the final finished surface. From this, it can be seen that, according to the comparative technique, the cutting edge forms the final finished surface after the displacement has grown, so that the machining error is large.
 図7は、比較技術における加工誤差の解析結果を示す。この解析では、半径方向切込み深さを変化させ、他のパラメータおよび加工条件を一定としている。正の加工誤差は、削り残しを意味し、負の加工誤差は、削りすぎを意味する。図7に示す解析結果から、半径方向切込み深さが変化すると、加工誤差が大きく変動することが確認される。 FIG. 7 shows the analysis result of the processing error in the comparative technique. In this analysis, the depth of cut in the radial direction is changed, and other parameters and processing conditions are kept constant. A positive machining error means uncut portion, and a negative machining error means over-cut. From the analysis results shown in FIG. 7, it is confirmed that the machining error greatly fluctuates when the depth of cut in the radial direction changes.
 図8は、比較技術における加工時の切削力と工具変位の解析結果を示す。ここでは、半径方向切込み深さを0.3mm、0.5mm、0.7mmに設定したときの切削力と工具変位を解析している。図中、丸印は、tinのタイミングを、四角印は、tcのタイミングを示す。この解析結果に示されるように、比較技術によると、Tp(=tc-tin)が大きいために、最終仕上げ面を形成するタイミングtcで、工具変位が成長することが確認される。なお、このような変位プロファイルを利用して、工具変位が0となるTpに加工条件を設定しても、実際の加工現場では、前加工面の位置が正確には分からないなど様々な理由により、変位プロファイルにしたがった高精度制御は容易でない。 FIG. 8 shows the analysis results of cutting force and tool displacement during machining in the comparative technique. Here, the cutting force and the tool displacement when the cutting depth in the radial direction is set to 0.3 mm, 0.5 mm, and 0.7 mm are analyzed. In the figure, the circles indicate the timing of tin, and the squares indicate the timing of tc. As shown in this analysis result, according to the comparative technique, it is confirmed that the tool displacement grows at the timing tc when the final finished surface is formed because Tp (= tc-tin) is large. Even if the machining conditions are set to Tp at which the tool displacement is 0 by using such a displacement profile, the position of the premachined surface cannot be accurately known at the actual machining site for various reasons. , High-precision control according to the displacement profile is not easy.
 以上を踏まえて、実施形態の高精度加工を実現する方法について説明する。比較技術では、時間Tpが大きいために、最終仕上げ面を形成するタイミングtcで工具変位が大きくなっていた。本開示者は、この比較技術における問題点に着目し、時間Tpを短くすることで、高精度加工を実現する可能性を見いだした。 Based on the above, a method for realizing high-precision machining of the embodiment will be described. In the comparative technique, since the time Tp is large, the tool displacement is large at the timing tc when the final finished surface is formed. The present discloser has focused on the problems in this comparative technique and found the possibility of realizing high-precision machining by shortening the time Tp.
 図9は、実施形態における仕上げ加工手順を示す。加工装置1において、制御装置100は、所定の仕上げ加工用のプログラムにしたがって、主軸モータ40および送り機構を制御して、工作機械装置10に仕上げ加工を実施させる。制御装置100および工作機械装置10は、回路ブロック、メモリ、その他のLSIを含むコンピュータを搭載し、上記したように工作機械装置10と制御装置100は一体として構成されてよい。制御装置100は主軸モータ40を駆動して、主軸46に取り付けられた切削工具50を回転させつつ、送り機構を駆動して、切削工具50を被削材62に対して相対的に送る機能をもつ。 FIG. 9 shows the finishing processing procedure in the embodiment. In the processing device 1, the control device 100 controls the spindle motor 40 and the feed mechanism according to a predetermined program for finishing processing, and causes the machine tool device 10 to perform finishing processing. The control device 100 and the machine tool device 10 are equipped with a computer including a circuit block, a memory, and other LSIs, and the machine tool device 10 and the control device 100 may be integrally configured as described above. The control device 100 drives the spindle motor 40 to rotate the cutting tool 50 attached to the spindle 46, and drives the feed mechanism to feed the cutting tool 50 relative to the work material 62. Have.
 工作機械装置10は、切削工具50を回転させながら被削材62に対して相対的に送って被削材62を切削する第1工程(S1)と、切削工具50を被削材62に対してピックフィード(ピックフィード方向に移動)する第2工程(S2)とを交互に繰り返す。第1工程(S1)と第2工程(S2)は、全ての加工パスによる切削が実施されるまで(S3のN)繰り返し実行され、全ての加工パスによる切削が終了すると(S3のY)、仕上げ加工は終了する。この仕上げ加工では、図5に示したように、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去される。 The machine tool device 10 sends the cutting tool 50 relative to the work material 62 while rotating the cutting tool 50 to cut the work material 62 in the first step (S1), and the cutting tool 50 is sent to the work material 62 with respect to the work material 62. The second step (S2) of pick-feeding (moving in the pick-feeding direction) is alternately repeated. The first step (S1) and the second step (S2) are repeatedly executed until cutting by all machining paths is performed (N in S3), and when cutting by all machining passes is completed (Y in S3), Finishing is finished. In this finishing process, as shown in FIG. 5, a region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
 加工装置1は第1工程において、1つの切れ刃が被削材62に切り込むタイミングから、当該切れ刃が被削材62から抜け出るタイミングまでの間で、最終仕上げ面A3として残る一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる。これにより時間Tpを小さくする。最終仕上げ面A3として残る一部の領域の形成は、当該切れ刃が被削材62に切り込むタイミングから開始することが好ましい。これにより、時間Tpを非常に短くできる。加工装置1は、第1工程で切削に関与する切れ刃のうち、ピックフィードする方向とは逆側に位置する切れ刃を、ピックフィード方向側に位置する切れ刃よりも先に被削材62に切り込ませることで、短い時間Tpを実現する。 In the first step, the processing apparatus 1 covers a part of the area remaining as the final finished surface A3 from the timing when one cutting edge cuts into the work material 62 to the timing when the cutting edge comes out of the work material 62. The formation is completed by a timing closer to the cutting timing than the timing at which the cutting edge comes out. This reduces the time Tp. The formation of a part of the region remaining as the final finished surface A3 is preferably started from the timing when the cutting edge cuts into the work material 62. As a result, the time Tp can be made very short. Among the cutting edges involved in cutting in the first step, the processing apparatus 1 sets the cutting edge located on the side opposite to the pick-feed direction to the work material 62 before the cutting edge located on the pick-feed direction side. By cutting into, Tp is realized for a short time.
<実施例1>
 実施例1では、仕上げ加工における時間Tpを短くするボールエンドミルの形状を提案する。
<Example 1>
In the first embodiment, a shape of a ball end mill that shortens the time Tp in the finishing process is proposed.
 図10は、実施例1におけるボールエンドミルの外観を示す。このボールエンドミルは、右刃左ねじれの形状を有する。このボールエンドミルは、特別に設計、製作したものであり、流通しているものではない。なおボールエンドミルを製作する研削盤の制約により、ボール部底部に切れ刃を作成していないが、実施形態で対象とする壁面仕上げ加工に影響はない。なおボール部底部において、別のねじれ方向をもつ(たとえば直刃や右ねじれ)切れ刃を形成して、多機能工具を実現してもよい。 FIG. 10 shows the appearance of the ball end mill in Example 1. This ball end mill has a right-handed, left-handed twisted shape. This ball end mill is specially designed and manufactured and is not in circulation. Due to the restrictions of the grinding machine that manufactures the ball end mill, a cutting edge is not created at the bottom of the ball portion, but this does not affect the wall surface finishing process that is the target of the embodiment. A multifunctional tool may be realized by forming a cutting edge having a different twisting direction (for example, a straight blade or a right-handed twist) at the bottom of the ball portion.
 図11は、実施例1における加工時の切削力と工具変位の解析結果を示す。なお解析におけるパラメータおよび加工条件は、上記した比較技術の解析と同じものを使用している。実施例1では、半径方向切込み深さを0.3mm、0.5mm、0.7mmに設定したときの切削力と工具変位を解析している。図中、丸印は、tinのタイミングを、四角印は、tcのタイミングを示す。図11では、切れ刃が被削材から抜け出るタイミングtoutを揃えて表現している。 FIG. 11 shows the analysis results of the cutting force and the tool displacement during machining in the first embodiment. The parameters and processing conditions in the analysis are the same as those used in the analysis of the comparison technique described above. In the first embodiment, the cutting force and the tool displacement when the radial cutting depths are set to 0.3 mm, 0.5 mm, and 0.7 mm are analyzed. In the figure, the circles indicate the timing of tin, and the squares indicate the timing of tc. In FIG. 11, the timing to out at which the cutting edge comes out of the work material is aligned and expressed.
 実施例1の右刃左ねじれのボールエンドミルを仕上げ加工に用いると、切削に関与する切れ刃のうち、タイミングtinで最上部付近の切れ刃部分が切削を始め、その後すぐに(タイミングtcで)最上部付近の切れ刃部分により最終仕上げ面を形成することが可能となる。つまり図5(c)に示す最終仕上げ面A3を、1つの切れ刃による切削開始直後に形成することができる。最終仕上げ面を形成するときの切削力は小さいため静的変位が小さく、また動的変位も小さい。したがって、工具変位が成長する前に最終仕上げ面を形成できる。 When the right-blade left-twisted ball end mill of Example 1 is used for finishing, the cutting edge portion near the top of the cutting edge involved in cutting starts cutting at timing tin, and immediately after that (at timing tc). The cutting edge portion near the uppermost portion makes it possible to form the final finished surface. That is, the final finished surface A3 shown in FIG. 5C can be formed immediately after the start of cutting by one cutting edge. Since the cutting force when forming the final finished surface is small, the static displacement is small and the dynamic displacement is also small. Therefore, the final finished surface can be formed before the tool displacement grows.
 図11に示されるように、実施例1によると、1つの切れ刃が被削材に切り込むタイミングtinから、当該切れ刃が被削材から抜け出るタイミングtoutまでの間で、最終仕上げ面となる領域の形成を、当該切れ刃が抜け出るタイミングtoutよりも切り込むタイミングtinに近いタイミングtcまでに完了させている。Tp(=tc-tin)を非常に短くしたことで、最終仕上げ面の形成が完了するタイミングtcで、工具変位が成長していないことが確認される。 As shown in FIG. 11, according to the first embodiment, a region to be the final finished surface from the timing tin in which one cutting edge cuts into the work material to the timing to out in which the cutting edge exits the work material. Is completed by the timing tc closer to the cutting timing tin than the timing to out when the cutting edge comes out. By making Tp (= tc-tin) very short, it is confirmed that the tool displacement does not grow at the timing tc when the formation of the final finished surface is completed.
 図12は、実施例1における加工誤差の解析結果を示す。この解析では、半径方向切込み深さを変化させ、他のパラメータおよび加工条件を一定としている。正の加工誤差は、削り残しを意味し、負の加工誤差は、削りすぎを意味する。図12に示す解析結果から、半径方向切込み深さが変化しても加工誤差が小さく、その変化量も小さいことが確認される。実施例1による仕上げ加工によれば、壁面下方向のピックフィードであるため、エンドミル半径方向に投影した切削幅(刃が接触している幅)が小さく、びびり振動も生じにくいため、高精度な壁面加工を実現できる。なお以上はダウンカットを前提としているが、アップカットであっても切削開始直後に最終仕上げ面を形成するため、右刃左ねじれのボールエンドミルにより、高精度な壁面加工を実現できる。 FIG. 12 shows the analysis result of the processing error in Example 1. In this analysis, the depth of cut in the radial direction is changed, and other parameters and processing conditions are kept constant. A positive machining error means uncut portion, and a negative machining error means over-cut. From the analysis results shown in FIG. 12, it is confirmed that the machining error is small and the amount of change is small even if the depth of cut in the radial direction changes. According to the finishing process according to the first embodiment, since the pick feed is in the downward direction of the wall surface, the cutting width (the width in which the blades are in contact) projected in the radial direction of the end mill is small, and chatter vibration is unlikely to occur, so that the accuracy is high. Wall processing can be realized. Although the above is premised on down-cutting, since the final finished surface is formed immediately after the start of cutting even with up-cutting, high-precision wall surface machining can be realized by a ball end mill with a right-handed blade and a left-handed twist.
 実施例1では右刃左ねじれのボールエンドミルについて説明したが、左刃右ねじれのボールエンドミルについても同様に、高精度な壁面加工を実現する。ねじれ角の絶対値は、たとえば10度以上であることが好ましく、さらには30度以上であることが好ましい。仕上げ加工における時間Tpを短くするためには、ねじれ角以外にも、ピックフィード量や半径方向切込み深さ、リード角などの加工条件の設定値が影響するが、ねじれ角の絶対値を大きく設定することで、加工条件の設定範囲を広げられる利点がある。 In Example 1, a right-blade left-twisted ball end mill has been described, but a left-blade right-twisted ball end mill also realizes high-precision wall surface machining. The absolute value of the helix angle is, for example, preferably 10 degrees or more, and more preferably 30 degrees or more. In order to shorten the time Tp in finish machining, the set values of machining conditions such as the pick feed amount, radial depth of cut, and lead angle affect in addition to the helix angle, but the absolute value of the helix angle is set large. This has the advantage that the setting range of machining conditions can be expanded.
<実施例2>
 実施例2では、仕上げ加工における時間Tpを短くするリード角を提案する。リード角は、進行方向(送り方向)における工具傾斜角であり、工具送り方向に対して、工具全体が前傾姿勢となるリード角が、正のリード角となる。そのため工具送り方向に対して、ボール部が円柱部よりも先行して送り方向に進む姿勢となるリード角が、負のリード角となる。実施例2では、ボールエンドミルに、負のリード角αを設定する。
<Example 2>
In the second embodiment, a lead angle that shortens the time Tp in the finishing process is proposed. The lead angle is a tool tilt angle in the traveling direction (feeding direction), and a lead angle in which the entire tool is tilted forward with respect to the tool feeding direction is a positive lead angle. Therefore, the lead angle at which the ball portion advances in the feed direction ahead of the cylindrical portion with respect to the tool feed direction is a negative lead angle. In the second embodiment, a negative lead angle α L is set in the ball end mill.
 実施例2では、リード角の影響を理解しやすいように、ねじれ角のない(ねじれ角が0度)ボールエンドミルを使用する。
 図13は、実施例2による加工方法の概要を説明するための図である。実施例2において、ボールエンドミルの送り方向は、v軸負の方向、ピックフィード方向は、w軸負の方向である。図13は、1つの加工パスにおいてボールエンドミルを送って切削する様子を示しており、点線で表現するボールエンドミルは前回(1刃前)の切れ刃の位置を、実線で表現するボールエンドミルは今回の切れ刃の位置をそれぞれ示す。今回の切れ刃の位置は、送り方向において、前回の切れ刃の位置から1刃当たりの送り量だけ進んだ位置にある。
In the second embodiment, a ball end mill having no twist angle (twist angle of 0 degrees) is used so that the influence of the lead angle can be easily understood.
FIG. 13 is a diagram for explaining an outline of the processing method according to the second embodiment. In the second embodiment, the feed direction of the ball end mill is the negative direction of the v-axis, and the pick-feed direction is the negative direction of the w-axis. FIG. 13 shows a state in which the ball end mill is fed and cut in one machining path. The ball end mill represented by the dotted line shows the position of the cutting edge of the previous time (one blade before), and the ball end mill represented by the solid line this time. The positions of the cutting edges are shown respectively. The position of the cutting edge this time is a position advanced by the feed amount per blade from the position of the previous cutting edge in the feeding direction.
 ねじれ角のないボールエンドミルを使用して、負のリード角を設定すると、切削に関与する切れ刃のうち、最上部の切れ刃が切削を始め、その後すぐに最上部の切れ刃により最終仕上げ面を形成することが可能となる。つまり図5(c)に示す最終仕上げ面A3を、1つの切れ刃による切削開始直後に形成することができる。最終仕上げ面を形成するときの切削力は小さいため静的変位が小さく、また動的変位も小さい。したがって、工具変位が成長する前に最終仕上げ面を形成できる。 When a negative lead angle is set using a ball end mill with no helix angle, the top cutting edge of the cutting edges involved in cutting begins cutting, and immediately after that, the top cutting edge makes the final finished surface. Can be formed. That is, the final finished surface A3 shown in FIG. 5C can be formed immediately after the start of cutting by one cutting edge. Since the cutting force when forming the final finished surface is small, the static displacement is small and the dynamic displacement is also small. Therefore, the final finished surface can be formed before the tool displacement grows.
 図14は、実施例2における加工時の切削力と工具変位の解析結果を示す。なお解析におけるパラメータおよび加工条件は、工具ねじれ角およびリード角を除けば、上記した比較技術の解析と同じものを使用しており、リード角αは、-30度としている。実施例2では、半径方向切込み深さを0.3mm、0.5mm、0.7mmに設定したときの切削力と工具変位を解析している。図中、丸印は、tinのタイミングを、四角印は、tcのタイミングを示す。 FIG. 14 shows the analysis results of the cutting force and the tool displacement during machining in the second embodiment. The parameters and machining conditions in the analysis are the same as those in the analysis of the comparison technique described above, except for the tool twist angle and lead angle, and the lead angle α L is -30 degrees. In the second embodiment, the cutting force and the tool displacement when the radial cutting depths are set to 0.3 mm, 0.5 mm, and 0.7 mm are analyzed. In the figure, the circles indicate the timing of tin, and the squares indicate the timing of tc.
 図14に示されるように、実施例2によると、1つの切れ刃が被削材に切り込むタイミングtinから、当該切れ刃が被削材から抜け出るタイミングtoutまでの間で、最終仕上げ面となる領域の形成を、当該切れ刃が抜け出るタイミングtoutよりも切り込むタイミングtinに近いタイミングtcまでに完了させている。Tp(=tc-tin)を非常に短くしたことで、最終仕上げ面の形成が完了するタイミングtcで、工具変位が成長していないことが確認される。 As shown in FIG. 14, according to the second embodiment, a region to be the final finished surface from the timing tin in which one cutting edge cuts into the work material to the timing to out in which the cutting edge exits the work material. Is completed by the timing tc closer to the cutting timing tin than the timing to out when the cutting edge comes out. By making Tp (= tc-tin) very short, it is confirmed that the tool displacement does not grow at the timing tc when the formation of the final finished surface is completed.
 図15は、実施例2における加工誤差の解析結果を示す。この解析では、半径方向切込み深さを変化させ、他のパラメータおよび加工条件を一定としている。正の加工誤差は、削り残しを意味し、負の加工誤差は、削りすぎを意味する。図15に示す解析結果から、半径方向切込み深さが変化しても加工誤差が小さく、その変化量も小さいことが確認される。実施例2による仕上げ加工によれば、壁面下方向のピックフィードであるため、切削幅が小さく、びびり振動も生じにくいため、高精度な壁面加工を実現できる。なお以上はダウンカットを前提としているが、アップカットであっても切削開始直後に最終仕上げ面を形成できるため、高精度な壁面加工を実現できる。 FIG. 15 shows the analysis result of the processing error in Example 2. In this analysis, the depth of cut in the radial direction is changed, and other parameters and processing conditions are kept constant. A positive machining error means uncut portion, and a negative machining error means over-cut. From the analysis results shown in FIG. 15, it is confirmed that the machining error is small and the amount of change is small even if the depth of cut in the radial direction changes. According to the finishing process according to the second embodiment, since the pick feed is in the downward direction of the wall surface, the cutting width is small and chatter vibration is unlikely to occur, so that highly accurate wall surface processing can be realized. The above is premised on down-cutting, but even with up-cutting, the final finished surface can be formed immediately after the start of cutting, so high-precision wall surface machining can be realized.
 リード角の絶対値は、たとえば10度以上であることが好ましく、さらには30度以上であることが好ましい。仕上げ加工における時間Tpを短くするためには、リード角以外にも、ねじれ角や、ピックフィード量および半径方向切込み深さなどの加工条件の設定値が影響するが、リード角の絶対値を大きく設定することで、ねじれ角の範囲や、他の加工条件の設定範囲を広げられる利点がある。また実施例1に示す技術と、実施例2に示す技術とを組み合わせることで、より広い加工条件範囲で時間Tpを短くでき、高精度な壁面加工を実現することが可能である。 The absolute value of the lead angle is preferably, for example, 10 degrees or more, and more preferably 30 degrees or more. In order to shorten the time Tp in finish machining, the set values of machining conditions such as helix angle, pick feed amount and radial depth of cut affect in addition to the lead angle, but the absolute value of the lead angle is increased. By setting, there is an advantage that the range of the helix angle and the setting range of other machining conditions can be expanded. Further, by combining the technique shown in the first embodiment and the technique shown in the second embodiment, the time Tp can be shortened in a wider machining condition range, and high-precision wall surface machining can be realized.
<実施例3>
 実施例3は、比較技術、実施例1,2と異なり、ピックフィード方向を上向き(w軸正の方向)として、仕上げ加工における時間Tpを短くする加工方法を提案する。
<Example 3>
The third embodiment is different from the comparative technique and the first and second embodiments, and proposes a processing method in which the pick feed direction is upward (the direction in which the w axis is positive) and the time Tp in the finishing process is shortened.
 図16は、実施例3による加工方法の概要を説明するための図である。実施例3において、ボールエンドミルの送り方向は、v軸負の方向、ピックフィード方向は、w軸正の方向である。図16に示すボールエンドミルは、右刃右ねじれの形状を有する。 FIG. 16 is a diagram for explaining an outline of the processing method according to the third embodiment. In the third embodiment, the feed direction of the ball end mill is the negative direction of the v-axis, and the pick-feed direction is the positive direction of the w-axis. The ball end mill shown in FIG. 16 has a right-handed right-handed twist shape.
 図16は、2つの重なる加工パスにおいてボールエンドミルが被削材を切削する様子を示す。被削材62はz軸に対してv軸周りにチルト角αだけ回転している。図中、点線で表現するボールエンドミルは前回(1パス前)の加工パスにおける切れ刃の位置を、実線で表現するボールエンドミルは今回の加工パスにおける切れ刃の位置をそれぞれ示す。今回の加工パスにおける切れ刃の位置は、ピックフィード方向において、前回の加工パスにおける切れ刃の位置からピックフィード量だけ進んだ位置にある。 FIG. 16 shows how the ball end mill cuts the work material in two overlapping machining passes. The work material 62 rotates about the v-axis with respect to the z-axis by a tilt angle α T. In the figure, the ball end mill represented by the dotted line indicates the position of the cutting edge in the previous machining pass (one pass before), and the ball end mill represented by the solid line indicates the position of the cutting edge in the current machining pass. The position of the cutting edge in the current machining pass is a position advanced by the pick feed amount from the position of the cutting edge in the previous machining pass in the pick feed direction.
 ピックフィード方向を+w方向にすると、切削に関与する切れ刃のうち、下部の切れ刃が切削を始め、その後すぐに下部の切れ刃により最終仕上げ面が形成される。これにより切れ刃が被削材62に切り込み始めて、すぐに最終仕上げ面を形成できる。最終仕上げ面を形成するときの切削力は小さいため静的変位が小さく、また動的変位も小さい。したがって、工具変位が成長する前に最終仕上げ面を形成できる。 When the pick feed direction is set to the + w direction, the lower cutting edge of the cutting edges involved in cutting starts cutting, and immediately after that, the lower cutting edge forms the final finished surface. As a result, the cutting edge begins to cut into the work material 62, and the final finished surface can be formed immediately. Since the cutting force when forming the final finished surface is small, the static displacement is small and the dynamic displacement is also small. Therefore, the final finished surface can be formed before the tool displacement grows.
 このようにピックフィード方向を壁面上向きにすることで、第1工程で切削に関与する切れ刃のうち、ピックフィードする方向とは逆側に位置する切れ刃を、ピックフィード方向側に位置する切れ刃よりも先に被削材に切り込ませることが可能となる。これにより比較技術と比べると、時間Tp(=tc-tin)を非常に短くでき、高精度な仕上げ加工が実現される。一方で、図16に示すボールエンドミルでは、ピックフィード方向を壁面上向きにしたことで、切削幅が大きくなっている。そのため実施例3では、ピックフィード方向を壁面上向きにしたことにより発生しうるびびり振動を抑制することが好ましい。 By making the pick-feed direction upward on the wall surface in this way, among the cutting edges involved in cutting in the first step, the cutting edge located on the opposite side to the pick-feed direction is cut on the pick-feed direction side. It is possible to cut into the work material before the blade. As a result, the time Tp (= tc-tin) can be made very short as compared with the comparative technique, and high-precision finishing can be realized. On the other hand, in the ball end mill shown in FIG. 16, the cutting width is increased because the pick feed direction is directed upward on the wall surface. Therefore, in the third embodiment, it is preferable to suppress the chatter vibration that may occur when the pick feed direction is directed upward on the wall surface.
 図17は、実施例3で使用する改良されたボールエンドミルが被削材を切削する様子を示す。被削材62はz軸に対してv軸周りにチルト角αだけ回転している。図中、点線で表現するボールエンドミルは前回(1パス前)の加工パスにおける切れ刃の位置を、実線で表現するボールエンドミルは今回の加工パスにおける切れ刃の位置をそれぞれ示す。今回の加工パスにおける切れ刃の位置は、ピックフィード方向において、前回の加工パスにおける切れ刃の位置からピックフィード量だけ進んだ位置にある。 FIG. 17 shows how the improved ball end mill used in Example 3 cuts the work material. The work material 62 rotates about the v-axis with respect to the z-axis by a tilt angle α T. In the figure, the ball end mill represented by the dotted line indicates the position of the cutting edge in the previous machining pass (one pass before), and the ball end mill represented by the solid line indicates the position of the cutting edge in the current machining pass. The position of the cutting edge in the current machining pass is a position advanced by the pick feed amount from the position of the cutting edge in the previous machining pass in the pick feed direction.
 改良されたボールエンドミルである切削工具50は、工具先端の半球状のボール部と、半球のボール部に接続する小径部と、小径部に接続する円柱部とを有する。小径部は、工具軸線方向に垂直な方向に円形断面を有し、円形断面の半径は、ボール部の半径rよりも小さい。図17に示す切削工具50の小径部は、半径rの半球の頂部側を、軸線に垂直な面で除去した形状をもち、頂部側を切り欠いた面に円柱部が接続する。 The cutting tool 50, which is an improved ball end mill, has a hemispherical ball portion at the tip of the tool, a small diameter portion connected to the ball portion of the hemisphere, and a cylindrical portion connected to the small diameter portion. The small diameter portion has a circular cross section in a direction perpendicular to the tool axis direction, and the radius of the circular cross section is smaller than the radius r of the ball portion. The small-diameter portion of the cutting tool 50 shown in FIG. 17 has a shape in which the top side of a hemisphere having a radius r is removed by a plane perpendicular to the axis line, and a cylindrical portion is connected to a surface cut out from the top side.
 図16に示す切削工程と比較すると、改良された切削工具50は、円柱部で切削を行わず、切削幅が大幅に小さくなっているため、びびり振動が発生しにくい。そのため、びびり振動に対する安定性が高く、高精度な仕上げ加工を実現できる。なお円柱部が切削を行わないためには、図示するθcが、以下の不等式を満たす必要がある。
Figure JPOXMLDOC01-appb-M000001
 なお小径部は、半径rの半球頂部側を、軸線に垂直な断面で除去した形状を有してよいが、半径rの底面をもつ円錐を、軸線に垂直な断面で除去した形状を有してもよい。
Compared with the cutting process shown in FIG. 16, the improved cutting tool 50 does not cut at the cylindrical portion, and the cutting width is significantly smaller, so that chatter vibration is less likely to occur. Therefore, the stability against chatter vibration is high, and high-precision finishing can be realized. In order for the cylindrical portion not to be cut, θc shown in the figure must satisfy the following inequality.
Figure JPOXMLDOC01-appb-M000001
The small diameter portion may have a shape in which the hemispherical top side of the radius r is removed in a cross section perpendicular to the axis, but the small diameter portion has a shape in which the cone having the bottom surface of the radius r is removed in a cross section perpendicular to the axis. You may.
 以上、本開示を実施形態および実施例をもとに説明した。この実施形態および実施例は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。 The present disclosure has been described above based on the embodiments and examples. It will be appreciated by those skilled in the art that these embodiments and examples are exemplary and that various variations of each of these components and combinations of processing processes are possible and that such modifications are also within the scope of the present disclosure. It is about to be.
 上記した複数の実施例では、先端側にR形状を有するエンドミルを回転させながら被削材62に対して相対的に送って、曲率を有する部分に設けられた切れ刃で被削材62を切削する第1工程と、エンドミルを被削材62に対してピックフィード(ピックフィード方向に移動)する第2工程とを繰り返して、仕上げ面を形成する加工方法を説明した。この加工方法では、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去されることを前提としている。 In the plurality of embodiments described above, the end mill having an R shape on the tip side is rotated and fed relative to the work material 62, and the work material 62 is cut by the cutting edge provided in the portion having the curvature. The processing method of forming the finished surface by repeating the first step of performing the process and the second step of pick-feeding (moving in the pick-feed direction) the end mill to the work material 62 has been described. In this processing method, it is premised that the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting.
 変形例では、主としてエンドミルの側刃を用いて、送り方向に垂直な面に切れ刃形状を転写して仕上げ面を形成する加工方法を提案する。この変形例の加工方法においても、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去されるが、側刃を用いて仕上げ面を形成することで、図5(b)におけるライン状の仕上げ面A2の全部または大部分が、最終仕上げ面として残される。 In the modified example, we propose a processing method that forms a finished surface by transferring the cutting edge shape to a surface perpendicular to the feed direction, mainly using the side blades of the end mill. Even in the processing method of this modified example, the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting, but by forming the finished surface using the side blade, the finished surface is formed. All or most of the line-shaped finished surface A2 in FIG. 5B is left as the final finished surface.
 変形例の加工方法では、主としてエンドミルの側刃を用いて仕上げ面を形成するため、エンドミルは先端側にR形状を有している必要はなく、したがってエンドミルは、スクエアエンドミルやテーパエンドミル等であってよい。なお変形例においてエンドミルは先端側にR形状を有してもよく、ボールエンドミル、ラジアスエンドミル、バレルエンドミル等であってもよい。 In the processing method of the modified example, since the finished surface is formed mainly by using the side blades of the end mill, the end mill does not need to have an R shape on the tip side, and therefore the end mill is a square end mill, a tapered end mill, or the like. It's okay. In the modified example, the end mill may have an R shape on the tip side, or may be a ball end mill, a radius end mill, a barrel end mill, or the like.
 図18(a)、(b)は、変形例による加工方法の概要を説明するための図である。図18(a)、(b)は、エンドミルを送って仕上げ面を形成する様子を示す。xyz座標系は、エンドミルに固定された工具座標系を表現し、uvw座標系は、被削材62に固定された被削材座標系を示す。uvw座標系において、u軸は、形成する立壁の壁面に垂直な方向、v軸は、送り方向に平行な方向、w軸は、ピックフィード方向に平行な方向である。エンドミルの送り方向は、v軸負の方向である。たとえば抜き勾配を形成するために、被削材62の加工される面はz軸に対してv軸周りにチルト角αだけ回転していてもよい。 18 (a) and 18 (b) are diagrams for explaining the outline of the processing method according to the modified example. 18 (a) and 18 (b) show how an end mill is fed to form a finished surface. The xyz coordinate system represents a tool coordinate system fixed to the end mill, and the uvw coordinate system represents a work material coordinate system fixed to the work material 62. In the uvw coordinate system, the u-axis is a direction perpendicular to the wall surface of the standing wall to be formed, the v-axis is a direction parallel to the feed direction, and the w-axis is a direction parallel to the pick-feed direction. The feed direction of the end mill is the negative direction of the v-axis. For example, in order to form a draft, the machined surface of the work material 62 may be rotated about the v-axis by a tilt angle α T with respect to the z-axis.
 変形例の加工方法において、制御装置100は、エンドミルを回転させながら被削材62に対して相対的に送って被削材62を切削して、仕上げ面を形成する。変形例において制御装置100は、切れ刃のねじれ角が0度のエンドミルを使用し、アップカット加工を実施する。切れ刃のねじれ角が0度であり、アップカット加工で仕上げ面を形成することで、切れ刃が被削材62を切削した瞬間に、最終仕上げ面が形成される。このため工具変位が成長する前に、最終仕上げ面を形成できる。 In the processing method of the modified example, the control device 100 feeds the work material 62 relative to the work material 62 while rotating the end mill to cut the work material 62 to form a finished surface. In the modified example, the control device 100 uses an end mill in which the helix angle of the cutting edge is 0 degrees, and performs up-cut processing. The helix angle of the cutting edge is 0 degrees, and the finished surface is formed by up-cut processing, so that the final finished surface is formed at the moment when the cutting edge cuts the work material 62. Therefore, the final finished surface can be formed before the tool displacement grows.
 本開示の態様の概要は、次の通りである。本開示のある態様は、先端側にR形状を有するエンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、エンドミルを被削材に対してピックフィードする第2工程とを繰り返して、被削材を切削する加工方法である。この加工方法では、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去される。この加工方法は、1つの切れ刃が被削材に切り込むタイミングから、当該切れ刃が被削材から抜け出るタイミングまでの間で、一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる。これにより、高精度な加工を実現できる。 The outline of the aspect of the present disclosure is as follows. One aspect of the present disclosure is a first step of cutting an end mill having an R shape on the tip side by feeding the end mill relative to the work material while rotating the end mill, and picking the end mill with respect to the work material. This is a processing method for cutting a work material by repeating the second step of feeding. In this processing method, the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting. In this processing method, the formation of a part of the region is cut from the timing when one cutting edge cuts into the work material to the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by a timing close to the timing. As a result, high-precision machining can be realized.
 この加工方法では、一部の領域の形成は、切れ刃が被削材に切り込むタイミングから開始させてよい。この加工方法では、第1工程で切削に関与する切れ刃のうち、ピックフィードする方向とは逆側に位置する切れ刃を、ピックフィード方向側に位置する切れ刃よりも先に被削材に切り込ませることが好ましい。この加工方法は、右刃左ねじれのエンドミル、または左刃右ねじれのエンドミルを使用してよい。この加工方法の第1工程で、エンドミルに負のリード角を設定してよい。この加工方法は、半球状のボール部と、ボール部に接続する小径部と、小径部に接続する円柱部とを有するエンドミルを使用してよい。 In this processing method, the formation of a part of the region may be started from the timing when the cutting edge cuts into the work material. In this processing method, among the cutting edges involved in cutting in the first step, the cutting edge located on the side opposite to the pick-feed direction is used as the work material before the cutting edge located on the pick-feed direction side. It is preferable to make a cut. For this processing method, a right-blade left-twisted end mill or a left-blade right-twisted end mill may be used. In the first step of this processing method, a negative lead angle may be set in the end mill. In this processing method, an end mill having a hemispherical ball portion, a small diameter portion connected to the ball portion, and a cylindrical portion connected to the small diameter portion may be used.
 本開示の別の態様の加工装置は、被削材を切削する加工装置であって、先端側にR形状を有するエンドミルが取り付けられた主軸を回転させる回転機構と、被削材に対してエンドミルを相対的に移動させる送り機構と、回転機構および送り機構の動作を制御して、エンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、エンドミルを被削材に対してピックフィードする第2工程とを繰り返す制御装置と、を備える。この加工装置による加工において、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去される。制御装置は、1つの切れ刃が被削材に切り込むタイミングから、当該切れ刃が被削材から抜け出るタイミングまでの間で、一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる。これにより、高精度な加工を実現できる。 Another aspect of the processing apparatus of the present disclosure is a processing apparatus for cutting a work material, which is a rotation mechanism for rotating a spindle to which an end mill having an R shape is attached to the tip side, and an end mill for the work material. The first step of cutting the work material by controlling the operation of the feed mechanism and the rotation mechanism and the feed mechanism, and feeding the end mill relative to the work material while rotating the end mill, and the end mill. The device is provided with a control device that repeats the second step of pick-feeding the work material. In the processing by this processing apparatus, the region other than a part of the finished surface formed by one cutting edge is removed by the subsequent cutting. The control device cuts a part of the region from the timing when one cutting edge cuts into the work material to the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by the timing close to. As a result, high-precision machining can be realized.
 本開示のさらに別の態様は、先端側にR形状を有するエンドミルである。このエンドミルは、当該エンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、当該エンドミルを被削材に対してピックフィードする第2工程とを繰り返す被削材の仕上げ加工に使用され、右刃左ねじれの形状、または左刃右ねじれの形状を有する。このエンドミルを使用することで、高精度な加工を実現できる。 Yet another aspect of the present disclosure is an end mill having an R shape on the tip side. This end mill repeats a first step of cutting the work material by sending the end mill relative to the work material while rotating the end mill, and a second step of pick-feeding the end mill to the work material. It is used for finishing work materials and has a right-handed left-handed twisted shape or a left-handed right-handed twisted shape. By using this end mill, high-precision machining can be realized.
 本開示のさらに別の態様は、エンドミルを回転させながら被削材に対して相対的に送って被削材を切削して、仕上げ面を形成する加工方法である。この加工方法では、切れ刃のねじれ角が0度のエンドミルを使用し、アップカット加工を実施する。これにより、高精度な加工を実現できる。 Yet another aspect of the present disclosure is a processing method in which the end mill is rotated and fed relative to the work material to cut the work material to form a finished surface. In this processing method, an end mill having a cutting edge helix angle of 0 degrees is used to perform up-cut processing. As a result, high-precision machining can be realized.
 本開示は、先端側にR形状を有するエンドミルを用いて仕上げ面を形成する技術に関する。 The present disclosure relates to a technique for forming a finished surface using an end mill having an R shape on the tip side.
1・・・加工装置、10・・・工作機械装置、50・・・切削工具、62・・・被削材、100・・・制御装置。 1 ... Processing device, 10 ... Machine tool device, 50 ... Cutting tool, 62 ... Work material, 100 ... Control device.

Claims (10)

  1.  先端側にR形状を有するエンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、エンドミルを被削材に対してピックフィードする第2工程とを繰り返して、被削材を切削する加工方法であって、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去されるものであって、
     1つの切れ刃が被削材に切り込むタイミングから、当該切れ刃が被削材から抜け出るタイミングまでの間で、前記一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる、
     ことを特徴とする加工方法。
    The first step of cutting the work material by sending it relative to the work material while rotating the end mill having an R shape on the tip side, and the second step of pick-feeding the end mill to the work material. It is a processing method of repeatedly cutting a work material, in which regions other than a part of a finished surface formed by one cutting edge are removed by subsequent cutting.
    From the timing when one cutting edge cuts into the work material to the timing when the cutting edge comes out of the work material, the formation of the part of the region is closer to the cutting timing than the timing when the cutting edge comes out. To complete by
    A processing method characterized by that.
  2.  前記一部の領域の形成は、当該切れ刃が被削材に切り込むタイミングから開始させる、
     ことを特徴とする請求項1に記載の加工方法。
    The formation of the partial region is started from the timing when the cutting edge cuts into the work material.
    The processing method according to claim 1, wherein the processing method is characterized by the above.
  3.  第1工程で切削に関与する切れ刃のうち、ピックフィードする方向とは逆側に位置する切れ刃を、ピックフィード方向側に位置する切れ刃よりも先に被削材に切り込ませる、
     ことを特徴とする請求項1または2に記載の加工方法。
    Of the cutting edges involved in cutting in the first step, the cutting edge located on the side opposite to the pick-feed direction is cut into the work material before the cutting edge located on the pick-feed direction side.
    The processing method according to claim 1 or 2, wherein the processing method is characterized by the above.
  4.  右刃左ねじれのエンドミル、または左刃右ねじれのエンドミルを使用する、
     ことを特徴とする請求項1から3のいずれかに記載の加工方法。
    Use a right-blade left-twisted end mill or a left-blade right-twisted end mill,
    The processing method according to any one of claims 1 to 3, wherein the processing method is characterized by the above.
  5.  第1工程で、エンドミルに負のリード角を設定する、
     ことを特徴とする請求項1から4のいずれかに記載の加工方法。
    In the first step, set a negative lead angle on the end mill,
    The processing method according to any one of claims 1 to 4, wherein the processing method is characterized by the above.
  6.  半球状のボール部と、ボール部に接続する小径部と、小径部に接続する円柱部とを有するエンドミルを使用する、
     ことを特徴とする請求項3に記載の加工方法。
    An end mill having a hemispherical ball portion, a small diameter portion connected to the ball portion, and a cylindrical portion connected to the small diameter portion is used.
    The processing method according to claim 3, wherein the processing method is characterized by the above.
  7.  被削材を切削する加工装置であって、
     先端側にR形状を有するエンドミルが取り付けられた主軸を回転させる回転機構と、
     被削材に対してエンドミルを相対的に移動させる送り機構と、
     前記回転機構および前記送り機構の動作を制御して、エンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、エンドミルを被削材に対してピックフィードする第2工程とを繰り返す制御装置と、を備え、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去されるものであって、
     前記制御装置は、1つの切れ刃が被削材に切り込むタイミングから、当該切れ刃が被削材から抜け出るタイミングまでの間で、前記一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる、
     ことを特徴とする加工装置。
    A processing device that cuts work materials
    A rotating mechanism that rotates the spindle with an R-shaped end mill attached to the tip side,
    A feed mechanism that moves the end mill relative to the work material,
    The first step of controlling the operation of the rotation mechanism and the feed mechanism to feed the end mill relative to the work material while rotating the end mill to cut the work material, and picking the end mill with respect to the work material. A control device that repeats the second step of feeding is provided, and a region other than a part of the finished surface formed by one cutting edge is removed by subsequent cutting.
    The control device forms a part of the region between the timing when one cutting edge cuts into the work material and the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Complete by a timing close to the timing of cutting,
    A processing device characterized by this.
  8.  コンピュータに、
     先端側にR形状を有するエンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1機能と、
     エンドミルを被削材に対してピックフィードする第2機能とを、繰り返し実現させるためのプログラムであって、1つの切れ刃が形成した仕上げ面の一部の領域以外の領域は、その後の切削により除去されるものであって、
     第1機能は、1つの切れ刃が被削材に切り込むタイミングから、当該切れ刃が被削材から抜け出るタイミングまでの間で、前記一部の領域の形成を、当該切れ刃が抜け出るタイミングよりも切り込むタイミングに近いタイミングまでに完了させる機能を含む、
     ことを特徴とするプログラム。
    On the computer
    The first function of cutting the work material by sending it relative to the work material while rotating the end mill having an R shape on the tip side.
    This is a program for repeatedly realizing the second function of pick-feeding the end mill to the work material, and the area other than a part of the finished surface formed by one cutting edge is formed by subsequent cutting. To be removed,
    The first function is to form a part of the region between the timing when one cutting edge cuts into the work material and the timing when the cutting edge comes out of the work material, rather than the timing when the cutting edge comes out. Including the function to complete by the timing close to the cutting timing,
    A program characterized by that.
  9.  先端側にR形状を有するエンドミルであって、当該エンドミルを回転させながら被削材に対して相対的に送って被削材を切削する第1工程と、当該エンドミルを被削材に対してピックフィードする第2工程とを繰り返す被削材の仕上げ加工に使用され、右刃左ねじれの形状、または左刃右ねじれの形状を有するエンドミル。 An end mill having an R shape on the tip side, the first step of cutting the work material by sending it relative to the work material while rotating the end mill, and picking the end mill with respect to the work material. An end mill that is used for finishing work materials that repeats the second step of feeding, and has a right-blade left-twisted shape or a left-blade right-twisted shape.
  10.  エンドミルを回転させながら被削材に対して相対的に送って被削材を切削して、仕上げ面を形成する加工方法であって、
     切れ刃のねじれ角が0度のエンドミルを使用し、アップカット加工を実施する、
     ことを特徴とする加工方法。
    It is a processing method that forms a finished surface by cutting the work material by sending it relative to the work material while rotating the end mill.
    Perform up-cut processing using an end mill with a cutting edge with a helix angle of 0 degrees.
    A processing method characterized by that.
PCT/JP2021/005419 2020-02-28 2021-02-15 Processing method, processing device, processing program, and end mill WO2021172065A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021557562A JP7161254B2 (en) 2020-02-28 2021-02-15 Processing method, processing equipment and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020033951 2020-02-28
JP2020-033951 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172065A1 true WO2021172065A1 (en) 2021-09-02

Family

ID=77491442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005419 WO2021172065A1 (en) 2020-02-28 2021-02-15 Processing method, processing device, processing program, and end mill

Country Status (2)

Country Link
JP (1) JP7161254B2 (en)
WO (1) WO2021172065A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351333A (en) * 2022-05-24 2022-11-18 中国第一汽车股份有限公司 Numerical control machining method and system for cylinder oil duct insert

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100516A (en) * 1982-11-12 1984-06-09 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Apparatus and assembly for producing photocell element
JPH10225814A (en) * 1992-06-17 1998-08-25 Makino Milling Mach Co Ltd Cutting work method
JP2000005915A (en) * 1998-06-22 2000-01-11 Toyota Central Res & Dev Lab Inc Cutting method using ball end mill and miller control device
JP2000263308A (en) * 1999-03-12 2000-09-26 Toyoda Mach Works Ltd Cutting method
JP2003266231A (en) * 2002-03-15 2003-09-24 Mitsubishi Heavy Ind Ltd End mill and machining method and machine tool using end mill
JP2012016785A (en) * 2010-07-08 2012-01-26 Niigata Prefecture Method for cutting superalloy
JP2013151030A (en) * 2010-05-13 2013-08-08 Konica Minolta Advanced Layers Inc Mold cutting method
CN104339004A (en) * 2013-07-30 2015-02-11 常州耐之力刀具制造有限公司 Double-edged ball-end milling cutter

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100516U (en) * 1982-12-25 1984-07-06 ダイジヱツト工業株式会社 Throwaway tip for ball end mill
JPH04152014A (en) * 1990-10-15 1992-05-26 Mitsubishi Heavy Ind Ltd Machining method by means of ball end mill
JPH0596416A (en) * 1991-10-03 1993-04-20 Hitachi Tool Eng Ltd Ball end mill
JPH07115253B2 (en) * 1992-09-14 1995-12-13 栃木県 Automatic Pick-Feed Machining Method for Ball End Mill
JPH09262713A (en) * 1996-03-29 1997-10-07 Toyota Central Res & Dev Lab Inc Ball end mill
JPH1110426A (en) * 1997-06-19 1999-01-19 Tokiwa:Kk Manufacture of die for forming magnetic field
JPH11216608A (en) * 1998-01-30 1999-08-10 Hitachi Tool Eng Ltd Ball end mill
JP2000042822A (en) * 1998-07-28 2000-02-15 Nachi Fujikoshi Corp Coating end mill
JP3952853B2 (en) * 2002-05-24 2007-08-01 三菱マテリアル株式会社 Throwaway tip
JP2004114191A (en) * 2002-09-25 2004-04-15 Mitsubishi Heavy Ind Ltd End mill and machining method using the same
JP3590800B1 (en) * 2003-07-07 2004-11-17 有限会社中津川超硬刃物 End mill
JP2005153122A (en) * 2003-11-28 2005-06-16 Sango Co Ltd Ball end mill
JP2010162677A (en) * 2009-01-19 2010-07-29 Hitachi Tool Engineering Ltd Small-diameter cbn ball end mill
JP2010224549A (en) * 2010-04-26 2010-10-07 Konica Minolta Opto Inc Plastic lens
CN107407927B (en) * 2015-02-18 2019-11-05 锐必克科技有限公司 Track calculates program, processing unit (plant), track calculation method, tool and processing article
CN107614171B (en) * 2015-06-15 2019-03-01 Osg株式会社 Plug-in type tool and screw cutter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59100516A (en) * 1982-11-12 1984-06-09 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Apparatus and assembly for producing photocell element
JPH10225814A (en) * 1992-06-17 1998-08-25 Makino Milling Mach Co Ltd Cutting work method
JP2000005915A (en) * 1998-06-22 2000-01-11 Toyota Central Res & Dev Lab Inc Cutting method using ball end mill and miller control device
JP2000263308A (en) * 1999-03-12 2000-09-26 Toyoda Mach Works Ltd Cutting method
JP2003266231A (en) * 2002-03-15 2003-09-24 Mitsubishi Heavy Ind Ltd End mill and machining method and machine tool using end mill
JP2013151030A (en) * 2010-05-13 2013-08-08 Konica Minolta Advanced Layers Inc Mold cutting method
JP2012016785A (en) * 2010-07-08 2012-01-26 Niigata Prefecture Method for cutting superalloy
CN104339004A (en) * 2013-07-30 2015-02-11 常州耐之力刀具制造有限公司 Double-edged ball-end milling cutter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115351333A (en) * 2022-05-24 2022-11-18 中国第一汽车股份有限公司 Numerical control machining method and system for cylinder oil duct insert

Also Published As

Publication number Publication date
JP7161254B2 (en) 2022-10-26
JPWO2021172065A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
CN108994552B (en) Gear machining method and gear machining device
JP4740842B2 (en) Cutting method and apparatus
WO2017078174A1 (en) Manufacturing method for compound screw and manufacturing program for compound screw
WO2021117526A1 (en) Processing device, processing method, and cutting tool
WO2021172065A1 (en) Processing method, processing device, processing program, and end mill
TWI750395B (en) Thread cutting processing device and thread cutting processing method
JPS6354485B2 (en)
US4841682A (en) Process and device for producing turned parts from rods or bars
CN205438045U (en) Interior surface grinding device
JP6994838B2 (en) Machine tool controls and machine tools
KR20200124658A (en) Turning methods and turning tools for CNC lathes
US4691479A (en) Machine and process for cutting chipping-grooves into elongated peripheral milling cutters with hemispherical tips
WO2018078454A1 (en) A method for continuous machining of a surface and a tool for continuous machining of a surface
JP7289563B2 (en) Machining method, machining equipment and machining program
JP2828424B2 (en) Machining method of forming tool by numerical control
JP2000263308A (en) Cutting method
JPH06254720A (en) Machining method for screw
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
JP6565380B2 (en) Cutting device, cutting method and annular tool
JPS63127867A (en) Helical groove machining method by use of machining center
JP2000237931A (en) Curved surface working method
JP3903717B2 (en) Tapered hole machining method and tapered hole machining tool
JP2007105864A (en) Method and apparatus for lathe turning
Krcheva et al. Dependance on the required power of the electric motor on the CNC Spinner EL-510 lathe according to the depth of cut for turning and facing with CNMG 120408-PM 4325 tool insert
JP2002263903A (en) Method and tool for turning

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021557562

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759724

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759724

Country of ref document: EP

Kind code of ref document: A1