WO2021171706A1 - Optical receptacle and method for manufacturing same - Google Patents

Optical receptacle and method for manufacturing same Download PDF

Info

Publication number
WO2021171706A1
WO2021171706A1 PCT/JP2020/041156 JP2020041156W WO2021171706A1 WO 2021171706 A1 WO2021171706 A1 WO 2021171706A1 JP 2020041156 W JP2020041156 W JP 2020041156W WO 2021171706 A1 WO2021171706 A1 WO 2021171706A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
ferrule
optical
fusion
fiber
Prior art date
Application number
PCT/JP2020/041156
Other languages
French (fr)
Japanese (ja)
Inventor
ハウ フー チャン
智史 至田
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US17/801,125 priority Critical patent/US11828986B2/en
Priority to JP2022503089A priority patent/JPWO2021171706A1/ja
Publication of WO2021171706A1 publication Critical patent/WO2021171706A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3846Details of mounting fibres in ferrules; Assembly methods; Manufacture with fibre stubs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding
    • G02B6/2551Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3855Details of mounting fibres in ferrules; Assembly methods; Manufacture characterised by the method of anchoring or fixing the fibre within the ferrule
    • G02B6/3861Adhesive bonding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12192Splicing

Definitions

  • the present invention relates to an optical receptacle and a method for manufacturing the same, and particularly relates to an optical receptacle to which an optical connector plug can be connected.
  • two optical fibers may be fused and connected in order to connect different types of optical fibers.
  • the fusional connection portion is heated to thermally diffuse the dopant added to the core to the clad in order to reduce the connection loss.
  • TEC may occur. Since the strength of the fusion spliced portion subjected to such a TEC treatment is lower than that of other portions, for example, the fusion splicing portion should be reinforced by locating the fusion splicing portion inside the ferrule.
  • the fusion splicer interferes with the fiber hole when the fusion splicer is inserted into the fiber hole of the ferrule. Therefore, it is necessary to make the outer diameter of the fusion splicer smaller than the inner diameter of the fiber hole of the ferrule. Therefore, in the optical connector component disclosed in Patent Document 1, it is also proposed to reduce the outer diameter of the fusion splicing portion by heating and stretching the fusion splicing portion. However, if the outer diameter of the fusion splicing portion is reduced in this way, the strength of the fusion splicing portion may be further reduced. Another problem is that it is difficult to accurately control the outer diameter of the fusion splicer.
  • the present invention has been made in view of such problems of the prior art, and a first object of the present invention is to provide an optical receptacle capable of inexpensively and easily protecting a fusion spliced portion of an optical fiber. do.
  • a second object of the present invention is to provide a method capable of manufacturing an optical receptacle including a fusion spliced portion of an optical fiber in an inexpensive and simple process.
  • an optical receptacle capable of inexpensively and easily protecting a fusion spliced portion of an optical fiber.
  • This optical receptacle is a ferrule in which a first optical fiber, a second optical fiber fused and connected to the first optical fiber, and a fiber hole for holding an end portion of the first optical fiber are formed.
  • a housing member that houses at least a part of the ferrule, the first optical fiber, and the second optical fiber inside.
  • the fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the housing member.
  • a method capable of manufacturing an optical receptacle including a fusion spliced portion of an optical fiber in an inexpensive and simple process In this method, the first optical fiber and the second optical fiber are fused and connected.
  • a ferrule assembly having a ferrule in which fiber holes are formed and a ferrule flange for holding the ferrule is prepared.
  • the end of the first optical fiber is arranged so that the fusion spliced portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the ferrule flange. It is inserted into the fiber hole of the ferrule.
  • a receptacle flange having an insertion port into which an optical connector plug is inserted is attached to the ferrule assembly in which the end portion of the first optical fiber is inserted into the fiber hole of the ferrule.
  • FIG. 1 is a cross-sectional view schematically showing an optical receptacle according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG.
  • FIG. 2B is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG.
  • FIG. 2C is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG.
  • FIG. 2D is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG.
  • FIG. 2E is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG.
  • FIG. 2F is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG.
  • FIGS. 1 to 2F the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIGS. 1 to 2F, the scale and dimensions of each component may be exaggerated or some components may be omitted. In the following description, unless otherwise noted, terms such as “first” and “second” are only used to distinguish the components from each other and represent a particular order or order. It's not a thing.
  • FIG. 1 is a cross-sectional view schematically showing an optical receptacle 1 according to an embodiment of the present invention.
  • the optical receptacle 1 in the present embodiment includes an optical fiber 10 (first optical fiber) arranged on a side (+ X direction side) to which an optical connector plug (not shown) is connected.
  • An optical fiber 20 (second optical fiber) fused and connected to the optical fiber 10, a ferrule 30 having a fiber hole 31 for holding an end portion of the optical fiber 10, a ferrule 30, an optical fiber 10, and an optical fiber.
  • It includes a housing member 40 that houses at least a part of the fiber 20 inside.
  • the optical fiber 10 and the optical fiber 20 are fusion-bonded to each other at a fusion-bonded connection portion 50.
  • the ferrule 30 is formed of, for example, zirconia ceramics or glass.
  • the + X direction in FIG. 1 is referred to as “front” or “forward”, and the ⁇ X direction is referred to as “rear” or “rear”.
  • the optical fiber 10 has a core 11 and a clad 12 that covers the outer periphery of the core 11.
  • the refractive index of the clad 12 is lower than that of the core 11, and an optical waveguide is formed inside the core 11.
  • the optical fiber 10 extends from the rear to the front of the ferrule 30 into the fiber hole 31 of the ferrule 30, and the front end portion of the optical fiber 10 is held in the fiber hole 31 of the ferrule 30.
  • the optical fiber 20 has a core 21, a clad 22 that covers the outer circumference of the core 21, and a covering material 23 that covers the outer circumference of the clad 22.
  • the refractive index of the clad 22 is lower than that of the core 21, and an optical waveguide is formed inside the core 21.
  • the covering material 23 is removed in the vicinity of the front end portion of the optical fiber 20, that is, the fusion splicing portion 50, and the clad 22 is exposed.
  • the diameter of the core 11 of the optical fiber 10 is larger than the diameter of the core 21 of the optical fiber 20, but from the core diameter of the optical fiber 20 to the core diameter of the optical fiber 10 at the fusion splicing portion 50.
  • the core diameter is continuously increasing gradually.
  • the mode field diameter of the optical fiber 10 is larger than the mode field diameter of the optical fiber 20, and the mode field diameter of the fusion splicer 50 is light from the mode field diameter of the optical fiber 20.
  • the mode field diameter of the fiber 10 is gradually increased.
  • the diameter of the core 11 of the optical fiber 10 and the diameter of the core 21 of the optical fiber 20 may be the same, or the diameter of the core 11 of the optical fiber 10 is smaller than the diameter of the core 21 of the optical fiber 20. You may.
  • the fusion-bonded connection portion is heated by, for example, electric discharge.
  • the dopant in the core 21 of the optical fiber 20 is diffused so that the mode field diameter of the core 11 of the optical fiber 10 and the mode field diameter of the core 21 of the optical fiber 20 are substantially the same as those of the optical fiber 10.
  • the optical fiber 20 is joined.
  • the clad diameter of the fusion splicer 50 becomes larger than the outer diameter of any of the optical fibers 10 and 20.
  • the housing member 40 includes a ferrule flange 41 for holding the ferrule 30 inward in the radial direction, a receptacle flange 43 having an insertion port 42 into which an optical connector plug (not shown) is inserted, and an insertion port 42 for the receptacle flange 43. Includes a cylindrical sleeve 44 that holds the optical connector plug inserted through. These members may be integrated as needed. Further, the housing member 40 may further include, for example, a reinforcing sleeve (not shown) for reinforcing the optical fiber 20.
  • the ferrule flange 41 is formed of a highly rigid material such as an alloy steel such as stainless steel, and extends radially outward from the first cylindrical portion 411 and the first cylindrical portion 411 located radially outside the ferrule 30. It includes a flange portion 412 and a second cylindrical portion 413 extending rearward from the flange portion 412.
  • a protective tube 60 that covers a part of the outer circumference of the covering material 23 of the optical fiber 20 is arranged inside the second cylindrical portion 413 in the radial direction. The protective tube 60 can prevent the optical fiber 20 from hitting the edge of the second cylindrical portion 413 of the ferrule flange 41 and being damaged when the optical fiber 20 is bent.
  • a protective tube 60 for example, a flexible tube made of Hytrel (registered trademark) or an elastic plastic tube made of nylon or the like can be used.
  • the protective tube 60 is fixed to the ferrule flange 41 by, for example, a two-component adhesive 70A.
  • the receptacle flange 43 is mounted in front of the ferrule flange 41 and is located radially outside the first cylindrical portion 411 of the ferrule flange 41 and radially outward from the first cylindrical portion 431 and the first cylindrical portion 431. It includes an extending flange portion 432 and a second cylindrical portion 433 extending forward from the flange portion 432.
  • the sleeve 44 described above is arranged inside the second cylindrical portion 433 in the radial direction.
  • the inner diameter of the sleeve 44 is substantially the same as the inner diameter of the first cylindrical portion 411 of the ferrule flange 41, and is designed to fit the outer diameter of the ferrule 30.
  • the ferrule 30 is held inside the sleeve 44 and the first cylindrical portion 411 of the ferrule flange 41 in the radial direction.
  • An adhesive 70B is arranged in the internal space of the ferrule flange 41 located between the ferrule 30 and the protective tube 60, and the adhesive connection portion 50 is fixed to the ferrule flange 41 by the adhesive 70B.
  • the adhesive 70B is, for example, a high-temperature curable adhesive, and although not shown, the adhesive 70B is between the outer peripheral surface of the optical fiber 10 and the inner peripheral surface of the fiber hole 31 of the ferrule 30, and the outer peripheral surface of the protective tube 60. It also exists between the ferrule flange 41 and the inner peripheral surface of the second cylindrical portion 413 of the ferrule flange 41.
  • the fusion splicing portion 50 between the optical fiber 10 and the optical fiber 20 is located outside (rear) of the ferrule 30. Therefore, when assembling the optical receptacle 1, it is not necessary to reduce the outer diameter of the fusion splicer 50 so that it can be inserted into the fiber hole 31 of the ferrule 30. That is, the step of pulling the optical fiber 10 and the optical fiber 20 from each other while performing heating by electric discharge again after the optical fiber 10 and the optical fiber 20 are fused and connected becomes unnecessary. Therefore, the assembly process of the optical receptacle 1 is simplified, and the manufacturing cost of the optical receptacle 1 is reduced.
  • the fusion splicing portion 50 is located inside the housing member 40, and in the present embodiment, inside the ferrule flange 41. Therefore, the low-strength fusion-bonded connection portion 50 can be protected by the high-rigidity ferrule flange 41. Therefore, since a separate member such as a protective sleeve is not required to reinforce the fusion splicer 50, the manufacturing cost of the optical receptacle 1 is reduced. In particular, in the present embodiment, since the fusion splicing portion 50 is fixed to the ferrule flange 41 by the adhesive 70B, the fusion splicing portion 50 can be more firmly protected by the adhesive 70B.
  • the fusion splicer 50 is located outside the protective tube 60, but the fusion splicer 50 may be located inside the protective tube 60. In this case, since the fusion splicer 50 is protected not only by the ferrule flange 41 but also by the protective tube 60, the fusion splicer 50 can be protected more effectively.
  • the optical fiber 110 has, for example, a core 111 to which germanium (Ge) is added, a clad 112 that covers the outer circumference of the core 111, and a covering material 113 that covers the outer circumference of the clad 112.
  • the optical fiber 120 has, for example, a core 121 to which germanium (Ge) is added, a clad 122 that covers the outer circumference of the core 121, and a covering material 123 that covers the outer circumference of the clad 122.
  • the diameter of the core 111 of the optical fiber 110 is larger than the diameter of the core 121 of the optical fiber 120.
  • the covering material 113 at the end of the optical fiber 110 is removed over a certain length to expose the clad 112 to the outside, and the covering material 123 at the end of the optical fiber 120 is made to have a constant length (X [mm]). ]) To expose the clad 122 to the outside.
  • the end of the optical fiber 110 with the clad 112 exposed and the end of the optical fiber 120 with the clad 122 exposed are butted against each other and pressed from both sides of the optical fibers 110 and 120. Then, while pressing the optical fibers 110 and 120 against each other, the butt portion 130 of the optical fibers 110 and 120 is heated from the surroundings using, for example, an arc discharge electrode 200 or a burner. At this time, the arc discharge electrode 200 is repeatedly moved from the abutting portion 130 to the optical fiber 120 side.
  • the optical fiber 110 and the optical fiber 120 are fusion-bonded at the fusion-bonded connection portion 150.
  • the germanium added to the core 121 of the optical fiber 120 is thermally diffused to the clad 122, and the core 121 of the optical fiber 120 expands (TEC treatment).
  • the core diameter of the fusion spliced portion 150 of the optical fibers 110 and 120 is continuously and gradually increased from the core diameter of the optical fiber 120 to the core diameter of the optical fiber 110.
  • the mode field diameter of the fusion splicer 150 of the optical fibers 110 and 120 also gradually increases from the optical fiber 120 toward the optical fiber 110, so that the connection loss at the fusion splicer 150 is reduced.
  • the fusion spliced portion 150 of the optical fibers 110 and 120 has a shape slightly bulging outward in the radial direction.
  • a ferrule assembly 140 in which the ferrule 30 is mounted on the first cylindrical portion 411 of the ferrule flange 41 described above is prepared. Then, as shown in FIG. 2E, the ferrule is taken in through the fiber hole 31 of the ferrule 30 in a state where the second cylindrical portion 413 side of the ferrule flange 41 is immersed in the adhesive tank (not shown). The internal space of the fiber hole 31 and the ferrule flange 41 of 30 is filled with the adhesive 170.
  • the above-mentioned optical fibers 110 and 120 and the protective tube 60 are attached to the ferrule assembly 140.
  • the distance from the front end surface 123A of the coating material 123 of the optical fiber 120 to the rear end surface 413A of the second cylindrical portion 413 of the ferrule flange 41 is a predetermined value (Y [mm]).
  • the optical fiber 110 is inserted into the fiber hole 31 of the ferrule 30 until This predetermined value Y is Y ⁇ ZX when the distance from the rear end surface 30A of the ferrule 30 to the rear end surface 413A of the second cylindrical portion 413 of the ferrule flange 41 is Z [mm] (see FIG. 2E). Is decided.
  • the fusion connection portion 150 of the optical fibers 110 and 120 described above is located outside the ferrule 30 and inside the ferrule flange 41.
  • the fusion splicing portion 150 of the optical fibers 110 and 120 is surrounded by the adhesive material 170 in the inner space of the ferrule flange 41. Further, a part of the adhesive material 170 overflows outward from the rear end portion of the second cylindrical portion 413 of the ferrule flange 41. By curing the adhesive 170 in this state, the optical fibers 110 and 120 are fixed to the ferrule assembly 140.
  • the front end portion 110A (see FIG. 2F) of the optical fiber 110 protruding forward from the ferrule 30 is removed by polishing the front end portion of the ferrule 30.
  • the optical receptacle 1 shown in FIG. 1 is completed by attaching the receptacle flange 43 to which the sleeve 44 is attached to the ferrule assembly 140 to which the optical fibers 110 and 120 are attached. That is, the optical fibers 110 and 120 correspond to the optical fibers 10 and 20 shown in FIG. 1, respectively, and the fusion splicer 150 of the optical fibers 110 and 120 corresponds to the fusion splicer 50 shown in FIG. Corresponds to the adhesives 70A and 70B shown in FIG.
  • the fusion-bonded connection portion 150 has a shape slightly bulging outward in the radial direction (see FIG. 2C).
  • the fusion splicing portion 150 is reheated and stretched while pulling the optical fibers 110 and 120 on both sides to stretch the fusion splicing portion. It is necessary to reduce the outer diameter of 150.
  • the outer diameter of the fusion splicing portion 150 is controlled (reduced).
  • the fusion splicing portion 150 is located inside the ferrule flange 41, the fusion splicing portion 150 having low strength can be protected by the ferrule flange 41.
  • an optical receptacle capable of inexpensively and easily protecting a fusion spliced portion of an optical fiber.
  • This optical receptacle is a ferrule in which a first optical fiber, a second optical fiber fused and connected to the first optical fiber, and a fiber hole for holding an end portion of the first optical fiber are formed.
  • a housing member that houses at least a part of the ferrule, the first optical fiber, and the second optical fiber inside.
  • the fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the housing member.
  • the fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule, the outer diameter of the fusion splicing portion is adjusted when the optical receptacle is assembled. Since there is no need to control and the assembly process is simplified, the manufacturing cost of the optical receptacle can be reduced. Further, since the fusion splicing portion is located inside the housing member, the fusion splicing portion having low strength can be protected by the housing member, and another member such as a protective sleeve is used to reinforce the fusion splicing portion. Is not required, so that the fusion spliced portion of the optical fiber can be protected inexpensively and easily.
  • the fusion splicing portion may be fixed to the housing member by an adhesive material arranged in an internal space formed inside the housing member. Such an adhesive can more firmly protect the fusion spliced portion.
  • the optical receptacle may further include a protective tube in which at least a part thereof is arranged inside the housing member and covers a part of the outer circumference of the second optical fiber.
  • the second optical fiber is protected by such a protective tube.
  • the fusion splicing portion may be arranged inside the protection tube, and the fusion splicing portion may be further protected by the protection tube.
  • the first optical fiber may have a first mode field diameter
  • the second optical fiber may have a second mode field diameter different from the first mode field diameter.
  • the mode field diameter of the fusion splicer gradually changes from the second mode field diameter to the first mode field diameter from the second optical fiber toward the first optical fiber. You may be doing it.
  • the first mode field diameter may be larger than the second mode field diameter.
  • a method capable of manufacturing an optical receptacle including a fusion spliced portion of an optical fiber in an inexpensive and simple process In this method, the first optical fiber and the second optical fiber are fused and connected.
  • a ferrule assembly having a ferrule in which fiber holes are formed and a ferrule flange for holding the ferrule is prepared.
  • the end of the first optical fiber is arranged so that the fusion spliced portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the ferrule flange. It is inserted into the fiber hole of the ferrule.
  • a receptacle flange having an insertion port into which an optical connector plug is inserted is attached to the ferrule assembly in which the end portion of the first optical fiber is inserted into the fiber hole of the ferrule.
  • the fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule, the outer diameter of the fusion splicing portion is not considered.
  • the fusion splicing portion is located inside the ferrule flange, the fusion splicing portion having low strength can be protected by the ferrule flange. Therefore, since a separate member such as a protective sleeve is not required to reinforce the fusion splicing portion, an optical receptacle including the fusion splicing portion of the optical fiber can be manufactured in an inexpensive and simple process.
  • the present invention is suitably used for an optical receptacle to which an optical connector plug can be connected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

Provided is an optical receptacle that can inexpensively and easily protect a fusion-spliced section of optical fibers. An optical receptacle 1 comprises: an optical fiber 10; an optical fiber 20 that is fusion-spliced to the optical fiber 10; a ferrule 30 having formed therein a fiber hole 31 that retains an end section of the optical fiber 10; and a housing member 40 that accommodates therein at least portions of the ferrule 30, the optical fiber 10, and the optical fiber 20. A fusion-spliced section 50 between the optical fiber 10 and the optical fiber 20 is located outside of the ferrule 30 and inside of the housing member 40. The optical fiber 10 and the optical fiber 20 may have differing mode field diameters. The size of the mode field diameter of the fusion-spliced section 50 may gradually increase from the optical fiber 20 to the optical fiber 10.

Description

光レセプタクル及びその製造方法Optical receptacle and its manufacturing method
 本発明は、光レセプタクル及びその製造方法に係り、特に光コネクタプラグを接続可能な光レセプタクルに関するものである。 The present invention relates to an optical receptacle and a method for manufacturing the same, and particularly relates to an optical receptacle to which an optical connector plug can be connected.
 このような光レセプタクルにおいては、種類の異なる光ファイバ同士を接続するために2つの光ファイバ同士を融着接続することがある。特にモードフィールド径の異なる2つの光ファイバ同士を融着接続する場合などには、接続損失を小さくするために融着接続部を加熱してコアに添加されているドーパントをクラッドに熱拡散させる(TEC)ことがある。このようなTEC処理がなされた融着接続部は、他の部分に比べて強度が低くなってしまうため、例えば融着接続部をフェルールの内部に位置させることで融着接続部を補強することも行われている(例えば、特許文献1参照)。 In such an optical receptacle, two optical fibers may be fused and connected in order to connect different types of optical fibers. In particular, when two optical fibers having different mode field diameters are fused and connected to each other, the fusional connection portion is heated to thermally diffuse the dopant added to the core to the clad in order to reduce the connection loss. TEC) may occur. Since the strength of the fusion spliced portion subjected to such a TEC treatment is lower than that of other portions, for example, the fusion splicing portion should be reinforced by locating the fusion splicing portion inside the ferrule. (See, for example, Patent Document 1).
 この場合において、TEC処理された融着接続部の外径がフェルールのファイバ孔の内径以上であると、融着接続部をフェルールのファイバ孔に挿入する際に融着接続部がファイバ孔に干渉してしまうため、融着接続部の外径をフェルールのファイバ孔の内径よりも小さくする必要がある。このため、特許文献1に開示されている光コネクタ部品においては、融着接続部を加熱延伸することで融着接続部の外径を小さくすることも提案されている。しかしながら、このように融着接続部の外径を小さくすると、融着接続部の強度がさらに低下するおそれがある。また、融着接続部の外径を精度良く制御することが難しいという問題もある。 In this case, if the outer diameter of the TEC-treated fusion splicer is equal to or larger than the inner diameter of the fiber hole of the ferrule, the fusion splicer interferes with the fiber hole when the fusion splicer is inserted into the fiber hole of the ferrule. Therefore, it is necessary to make the outer diameter of the fusion splicer smaller than the inner diameter of the fiber hole of the ferrule. Therefore, in the optical connector component disclosed in Patent Document 1, it is also proposed to reduce the outer diameter of the fusion splicing portion by heating and stretching the fusion splicing portion. However, if the outer diameter of the fusion splicing portion is reduced in this way, the strength of the fusion splicing portion may be further reduced. Another problem is that it is difficult to accurately control the outer diameter of the fusion splicer.
特開2005-208113号公報Japanese Unexamined Patent Publication No. 2005-208113
 本発明は、このような従来技術の問題点に鑑みてなされたもので、光ファイバの融着接続部を安価かつ容易に保護することが可能な光レセプタクルを提供することを第1の目的とする。 The present invention has been made in view of such problems of the prior art, and a first object of the present invention is to provide an optical receptacle capable of inexpensively and easily protecting a fusion spliced portion of an optical fiber. do.
 また、本発明は、光ファイバの融着接続部を含む光レセプタクルを安価かつ簡単な工程で製造することができる方法を提供することを第2の目的とする。 A second object of the present invention is to provide a method capable of manufacturing an optical receptacle including a fusion spliced portion of an optical fiber in an inexpensive and simple process.
 本発明の第1の態様によれば、光ファイバの融着接続部を安価かつ容易に保護することが可能な光レセプタクルが提供される。この光レセプタクルは、第1の光ファイバと、上記第1の光ファイバに融着接続された第2の光ファイバと、上記第1の光ファイバの端部を保持するファイバ孔が形成されたフェルールと、上記フェルール、上記第1の光ファイバ、上記第2の光ファイバの一部を少なくとも内部に収容するハウジング部材とを備える。上記第1の光ファイバと上記第2の光ファイバとの融着接続部は、上記フェルールの外部であって、上記ハウジング部材の内部に位置する。 According to the first aspect of the present invention, there is provided an optical receptacle capable of inexpensively and easily protecting a fusion spliced portion of an optical fiber. This optical receptacle is a ferrule in which a first optical fiber, a second optical fiber fused and connected to the first optical fiber, and a fiber hole for holding an end portion of the first optical fiber are formed. And a housing member that houses at least a part of the ferrule, the first optical fiber, and the second optical fiber inside. The fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the housing member.
 本発明の第2の態様によれば、光ファイバの融着接続部を含む光レセプタクルを安価かつ簡単な工程で製造することができる方法が提供される。この方法では、第1の光ファイバと第2の光ファイバとを融着接続する。ファイバ孔が形成されたフェルールと上記フェルールを保持するフェルールフランジとを有するフェルール組立体を用意する。上記第1の光ファイバと上記第2の光ファイバとの融着接続部が、上記フェルールの外部であって、上記フェルールフランジの内部に位置するように、上記第1の光ファイバの端部を上記フェルールの上記ファイバ孔に挿入する。上記フェルールの上記ファイバ孔に上記第1の光ファイバの端部が挿入された上記フェルール組立体に、光コネクタプラグが挿入される挿入口が形成されたレセプタクルフランジを装着する。 According to the second aspect of the present invention, there is provided a method capable of manufacturing an optical receptacle including a fusion spliced portion of an optical fiber in an inexpensive and simple process. In this method, the first optical fiber and the second optical fiber are fused and connected. A ferrule assembly having a ferrule in which fiber holes are formed and a ferrule flange for holding the ferrule is prepared. The end of the first optical fiber is arranged so that the fusion spliced portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the ferrule flange. It is inserted into the fiber hole of the ferrule. A receptacle flange having an insertion port into which an optical connector plug is inserted is attached to the ferrule assembly in which the end portion of the first optical fiber is inserted into the fiber hole of the ferrule.
図1は、本発明の一実施形態における光レセプタクルを模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an optical receptacle according to an embodiment of the present invention. 図2Aは、図1に示す光レセプタクルを製造する過程を説明する模式図である。FIG. 2A is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG. 図2Bは、図1に示す光レセプタクルを製造する過程を説明する模式図である。FIG. 2B is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG. 図2Cは、図1に示す光レセプタクルを製造する過程を説明する模式図である。FIG. 2C is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG. 図2Dは、図1に示す光レセプタクルを製造する過程を説明する模式図である。FIG. 2D is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG. 図2Eは、図1に示す光レセプタクルを製造する過程を説明する模式図である。FIG. 2E is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG. 図2Fは、図1に示す光レセプタクルを製造する過程を説明する模式図である。FIG. 2F is a schematic diagram illustrating a process of manufacturing the optical receptacle shown in FIG.
 以下、本発明に係る光レセプタクルの実施形態について図1から図2Fを参照して詳細に説明する。図1から図2Fにおいて、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図2Fにおいては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。以下の説明では、特に言及がない場合には、「第1」や「第2」などの用語は、構成要素を互いに区別するために使用されているだけであり、特定の順位や順番を表すものではない。 Hereinafter, embodiments of the optical receptacle according to the present invention will be described in detail with reference to FIGS. 1 to 2F. In FIGS. 1 to 2F, the same or corresponding components are designated by the same reference numerals, and duplicate description will be omitted. Further, in FIGS. 1 to 2F, the scale and dimensions of each component may be exaggerated or some components may be omitted. In the following description, unless otherwise noted, terms such as "first" and "second" are only used to distinguish the components from each other and represent a particular order or order. It's not a thing.
 図1は、本発明の一実施形態における光レセプタクル1を模式的に示す断面図である。図1に示すように、本実施形態における光レセプタクル1は、光コネクタプラグ(図示せず)が接続される側(+X方向側)に配置される光ファイバ10(第1の光ファイバ)と、光ファイバ10に融着接続された光ファイバ20(第2の光ファイバ)と、光ファイバ10の端部を保持するファイバ孔31が形成されたフェルール30と、フェルール30、光ファイバ10、及び光ファイバ20の一部を少なくとも内部に収容するハウジング部材40とを備えている。光ファイバ10と光ファイバ20とは融着接続部50で互いに融着接続されている。フェルール30は例えばジルコニアセラミックスやガラスから形成される。なお、本実施形態では、便宜的に、図1における+X方向を「前」又は「前方」といい、-X方向を「後」又は「後方」ということとする。 FIG. 1 is a cross-sectional view schematically showing an optical receptacle 1 according to an embodiment of the present invention. As shown in FIG. 1, the optical receptacle 1 in the present embodiment includes an optical fiber 10 (first optical fiber) arranged on a side (+ X direction side) to which an optical connector plug (not shown) is connected. An optical fiber 20 (second optical fiber) fused and connected to the optical fiber 10, a ferrule 30 having a fiber hole 31 for holding an end portion of the optical fiber 10, a ferrule 30, an optical fiber 10, and an optical fiber. It includes a housing member 40 that houses at least a part of the fiber 20 inside. The optical fiber 10 and the optical fiber 20 are fusion-bonded to each other at a fusion-bonded connection portion 50. The ferrule 30 is formed of, for example, zirconia ceramics or glass. In the present embodiment, for convenience, the + X direction in FIG. 1 is referred to as “front” or “forward”, and the −X direction is referred to as “rear” or “rear”.
 光ファイバ10は、コア11と、コア11の外周を覆うクラッド12とを有している。クラッド12の屈折率はコア11の屈折率よりも低くなっており、コア11の内部に光導波路が形成されている。光ファイバ10は、フェルール30の後方から前方に向かってフェルール30のファイバ孔31の内部に延びており、光ファイバ10の前端部がフェルール30のファイバ孔31内に保持されている。 The optical fiber 10 has a core 11 and a clad 12 that covers the outer periphery of the core 11. The refractive index of the clad 12 is lower than that of the core 11, and an optical waveguide is formed inside the core 11. The optical fiber 10 extends from the rear to the front of the ferrule 30 into the fiber hole 31 of the ferrule 30, and the front end portion of the optical fiber 10 is held in the fiber hole 31 of the ferrule 30.
 光ファイバ20は、コア21と、コア21の外周を覆うクラッド22と、クラッド22の外周を覆う被覆材23とを有している。クラッド22の屈折率はコア21の屈折率よりも低くなっており、コア21の内部に光導波路が形成されている。光ファイバ20の前端部、すなわち融着接続部50の近傍においては被覆材23が除去されており、クラッド22が露出している。 The optical fiber 20 has a core 21, a clad 22 that covers the outer circumference of the core 21, and a covering material 23 that covers the outer circumference of the clad 22. The refractive index of the clad 22 is lower than that of the core 21, and an optical waveguide is formed inside the core 21. The covering material 23 is removed in the vicinity of the front end portion of the optical fiber 20, that is, the fusion splicing portion 50, and the clad 22 is exposed.
 本実施形態では、光ファイバ10のコア11の径が光ファイバ20のコア21の径よりも大きくなっているが、融着接続部50において光ファイバ20のコア径から光ファイバ10のコア径までコア径が連続的に徐々に大きくなっている。このように、本実施形態では、光ファイバ10のモードフィールド径が光ファイバ20のモードフィールド径よりも大きくなっており、融着接続部50においてモードフィールド径が光ファイバ20のモードフィールド径から光ファイバ10のモードフィールド径に徐々に大きくなっている。なお、光ファイバ10のコア11の径と光ファイバ20のコア21の径とは同一であってもよいし、あるいは光ファイバ10のコア11の径が光ファイバ20のコア21の径よりも小さくてもよい。 In the present embodiment, the diameter of the core 11 of the optical fiber 10 is larger than the diameter of the core 21 of the optical fiber 20, but from the core diameter of the optical fiber 20 to the core diameter of the optical fiber 10 at the fusion splicing portion 50. The core diameter is continuously increasing gradually. As described above, in the present embodiment, the mode field diameter of the optical fiber 10 is larger than the mode field diameter of the optical fiber 20, and the mode field diameter of the fusion splicer 50 is light from the mode field diameter of the optical fiber 20. The mode field diameter of the fiber 10 is gradually increased. The diameter of the core 11 of the optical fiber 10 and the diameter of the core 21 of the optical fiber 20 may be the same, or the diameter of the core 11 of the optical fiber 10 is smaller than the diameter of the core 21 of the optical fiber 20. You may.
 このような光ファイバ10と光ファイバ20とを融着接続する際には、融着接続部を例えば放電により加熱する。これにより光ファイバ20のコア21中のドーパントが拡散されることによって、光ファイバ10のコア11のモードフィールド径と光ファイバ20のコア21のモードフィールド径とが略一致するように光ファイバ10と光ファイバ20とが接合される。これに伴い、融着接続部50のクラッド径が光ファイバ10及び20のいずれの外径よりも大きくなる。この融着接続部50のクラッド径を小さくするためには、再度放電による加熱を行ったうえで光ファイバ10と光ファイバ20とを互いに離間する方向に引っ張ることが必要となる。 When such an optical fiber 10 and an optical fiber 20 are fusion-bonded, the fusion-bonded connection portion is heated by, for example, electric discharge. As a result, the dopant in the core 21 of the optical fiber 20 is diffused so that the mode field diameter of the core 11 of the optical fiber 10 and the mode field diameter of the core 21 of the optical fiber 20 are substantially the same as those of the optical fiber 10. The optical fiber 20 is joined. Along with this, the clad diameter of the fusion splicer 50 becomes larger than the outer diameter of any of the optical fibers 10 and 20. In order to reduce the clad diameter of the fusion splicer 50, it is necessary to heat the optical fiber by electric discharge again and then pull the optical fiber 10 and the optical fiber 20 in a direction in which they are separated from each other.
 ハウジング部材40は、半径方向内側にフェルール30を保持するフェルールフランジ41と、光コネクタプラグ(図示せず)が挿入される挿入口42が形成されたレセプタクルフランジ43と、レセプタクルフランジ43の挿入口42を通って挿入された光コネクタプラグを保持する円筒状のスリーブ44とを含んでいる。これらの部材は必要に応じて一体化されていてもよい。また、ハウジング部材40は、例えば光ファイバ20を補強するための補強スリーブ(図示せず)をさらに含んでいてもよい。 The housing member 40 includes a ferrule flange 41 for holding the ferrule 30 inward in the radial direction, a receptacle flange 43 having an insertion port 42 into which an optical connector plug (not shown) is inserted, and an insertion port 42 for the receptacle flange 43. Includes a cylindrical sleeve 44 that holds the optical connector plug inserted through. These members may be integrated as needed. Further, the housing member 40 may further include, for example, a reinforcing sleeve (not shown) for reinforcing the optical fiber 20.
 フェルールフランジ41は、例えばステンレス鋼といった合金鋼などの剛性の高い材料から形成され、フェルール30の半径方向外側に位置する第1の円筒部411と、第1の円筒部411から半径方向外側に延びるフランジ部412と、フランジ部412から後方に延びる第2の円筒部413とを含んでいる。第2の円筒部413の半径方向内側には、光ファイバ20の被覆材23の外周の一部を覆う保護チューブ60が配置されている。この保護チューブ60によって、光ファイバ20が屈曲した際などに光ファイバ20がフェルールフランジ41の第2の円筒部413の縁部に当たって損傷してしまうことなどを防止することができる。このような保護チューブ60としては、例えばハイトレル(登録商標)からなる可撓性チューブやナイロンなどからなる弾性プラスチックチューブを用いることができる。この保護チューブ60は、例えば二液性の接着材70Aによりフェルールフランジ41に固定されている。 The ferrule flange 41 is formed of a highly rigid material such as an alloy steel such as stainless steel, and extends radially outward from the first cylindrical portion 411 and the first cylindrical portion 411 located radially outside the ferrule 30. It includes a flange portion 412 and a second cylindrical portion 413 extending rearward from the flange portion 412. A protective tube 60 that covers a part of the outer circumference of the covering material 23 of the optical fiber 20 is arranged inside the second cylindrical portion 413 in the radial direction. The protective tube 60 can prevent the optical fiber 20 from hitting the edge of the second cylindrical portion 413 of the ferrule flange 41 and being damaged when the optical fiber 20 is bent. As such a protective tube 60, for example, a flexible tube made of Hytrel (registered trademark) or an elastic plastic tube made of nylon or the like can be used. The protective tube 60 is fixed to the ferrule flange 41 by, for example, a two-component adhesive 70A.
 レセプタクルフランジ43は、フェルールフランジ41の前方に装着され、フェルールフランジ41の第1の円筒部411の半径方向外側に位置する第1の円筒部431と、第1の円筒部431から半径方向外側に延びるフランジ部432と、フランジ部432から前方に延びる第2の円筒部433とを含んでいる。第2の円筒部433の半径方向内側には上述したスリーブ44が配置されている。このスリーブ44の内径は、フェルールフランジ41の第1の円筒部411の内径と略同一となっており、また、フェルール30の外径に嵌め合うように設計されている。スリーブ44とフェルールフランジ41の第1の円筒部411の半径方向内側にフェルール30が保持されている。 The receptacle flange 43 is mounted in front of the ferrule flange 41 and is located radially outside the first cylindrical portion 411 of the ferrule flange 41 and radially outward from the first cylindrical portion 431 and the first cylindrical portion 431. It includes an extending flange portion 432 and a second cylindrical portion 433 extending forward from the flange portion 432. The sleeve 44 described above is arranged inside the second cylindrical portion 433 in the radial direction. The inner diameter of the sleeve 44 is substantially the same as the inner diameter of the first cylindrical portion 411 of the ferrule flange 41, and is designed to fit the outer diameter of the ferrule 30. The ferrule 30 is held inside the sleeve 44 and the first cylindrical portion 411 of the ferrule flange 41 in the radial direction.
 フェルール30と保護チューブ60との間に位置するフェルールフランジ41の内部空間には接着材70Bが配置されており、この接着材70Bにより融着接続部50がフェルールフランジ41に固定されている。この接着材70Bは、例えば高温硬化型の接着材であり、図示はしていないが、光ファイバ10の外周面とフェルール30のファイバ孔31の内周面との間及び保護チューブ60の外周面とフェルールフランジ41の第2の円筒部413の内周面との間にも存在している。 An adhesive 70B is arranged in the internal space of the ferrule flange 41 located between the ferrule 30 and the protective tube 60, and the adhesive connection portion 50 is fixed to the ferrule flange 41 by the adhesive 70B. The adhesive 70B is, for example, a high-temperature curable adhesive, and although not shown, the adhesive 70B is between the outer peripheral surface of the optical fiber 10 and the inner peripheral surface of the fiber hole 31 of the ferrule 30, and the outer peripheral surface of the protective tube 60. It also exists between the ferrule flange 41 and the inner peripheral surface of the second cylindrical portion 413 of the ferrule flange 41.
 図1に示すように、光ファイバ10と光ファイバ20との融着接続部50はフェルール30の外部(後方)に位置している。したがって、光レセプタクル1を組み立てる際に、フェルール30のファイバ孔31に挿入できるように融着接続部50の外径を小さくしておく必要がない。すなわち、光ファイバ10と光ファイバ20とを融着接続した後に再度放電による加熱を行いつつ光ファイバ10と光ファイバ20とを互いに引っ張る工程が不要となる。したがって、光レセプタクル1の組立工程が簡単になり、光レセプタクル1の製造コストが低減される。 As shown in FIG. 1, the fusion splicing portion 50 between the optical fiber 10 and the optical fiber 20 is located outside (rear) of the ferrule 30. Therefore, when assembling the optical receptacle 1, it is not necessary to reduce the outer diameter of the fusion splicer 50 so that it can be inserted into the fiber hole 31 of the ferrule 30. That is, the step of pulling the optical fiber 10 and the optical fiber 20 from each other while performing heating by electric discharge again after the optical fiber 10 and the optical fiber 20 are fused and connected becomes unnecessary. Therefore, the assembly process of the optical receptacle 1 is simplified, and the manufacturing cost of the optical receptacle 1 is reduced.
 また、この融着接続部50は、ハウジング部材40の内部、本実施形態ではフェルールフランジ41の内部に位置している。したがって、強度の低い融着接続部50を剛性の高いフェルールフランジ41によって保護することができる。このため、融着接続部50を補強するために保護スリーブなどの別部材を必要としないため、光レセプタクル1の製造コストが低減される。特に、本実施形態では、融着接続部50が接着材70Bによりフェルールフランジ41に固定されているので、この接着材70Bによって融着接続部50をより強固に保護することができる。 Further, the fusion splicing portion 50 is located inside the housing member 40, and in the present embodiment, inside the ferrule flange 41. Therefore, the low-strength fusion-bonded connection portion 50 can be protected by the high-rigidity ferrule flange 41. Therefore, since a separate member such as a protective sleeve is not required to reinforce the fusion splicer 50, the manufacturing cost of the optical receptacle 1 is reduced. In particular, in the present embodiment, since the fusion splicing portion 50 is fixed to the ferrule flange 41 by the adhesive 70B, the fusion splicing portion 50 can be more firmly protected by the adhesive 70B.
 図1に示す例では、融着接続部50が保護チューブ60の外部に位置しているが、融着接続部50を保護チューブ60の内部に配置してもよい。この場合には、融着接続部50がフェルールフランジ41だけではなく保護チューブ60によっても保護されることになるため、より効果的に融着接続部50を保護することができる。 In the example shown in FIG. 1, the fusion splicer 50 is located outside the protective tube 60, but the fusion splicer 50 may be located inside the protective tube 60. In this case, since the fusion splicer 50 is protected not only by the ferrule flange 41 but also by the protective tube 60, the fusion splicer 50 can be protected more effectively.
 次に、このような光レセプタクルの製造方法について図2Aから図2Fを参照して説明する。まず、図2Aに示すように、2本の光ファイバ110,120を用意する。光ファイバ110は、例えばゲルマニウム(Ge)が添加されたコア111と、コア111の外周を覆うクラッド112と、クラッド112の外周を覆う被覆材113とを有している。光ファイバ120は、例えばゲルマニウム(Ge)が添加されたコア121と、コア121の外周を覆うクラッド122と、クラッド122の外周を覆う被覆材123とを有している。本実施形態では、光ファイバ110のコア111の径が光ファイバ120のコア121の径よりも大きくなっている。図2Aに示すように、光ファイバ110の端部の被覆材113を一定長にわたって除去してクラッド112を外部に露出させるとともに、光ファイバ120の端部の被覆材123を一定長(X[mm])にわたって除去してクラッド122を外部に露出させる。 Next, a method for manufacturing such an optical receptacle will be described with reference to FIGS. 2A to 2F. First, as shown in FIG. 2A, two optical fibers 110 and 120 are prepared. The optical fiber 110 has, for example, a core 111 to which germanium (Ge) is added, a clad 112 that covers the outer circumference of the core 111, and a covering material 113 that covers the outer circumference of the clad 112. The optical fiber 120 has, for example, a core 121 to which germanium (Ge) is added, a clad 122 that covers the outer circumference of the core 121, and a covering material 123 that covers the outer circumference of the clad 122. In the present embodiment, the diameter of the core 111 of the optical fiber 110 is larger than the diameter of the core 121 of the optical fiber 120. As shown in FIG. 2A, the covering material 113 at the end of the optical fiber 110 is removed over a certain length to expose the clad 112 to the outside, and the covering material 123 at the end of the optical fiber 120 is made to have a constant length (X [mm]). ]) To expose the clad 122 to the outside.
 次に、図2Bに示すように、クラッド112を露出させた光ファイバ110の端部とクラッド122を露出させた光ファイバ120の端部とを突き合わせて、光ファイバ110,120の両側から押し付ける。そして、光ファイバ110,120同士を互いに押し付けながら、光ファイバ110,120の突き合わせ部分130を例えばアーク放電用電極200やバーナーなどを用いて周囲から加熱する。このとき、アーク放電用電極200を突き合わせ部分130から光ファイバ120側に反復移動させる。 Next, as shown in FIG. 2B, the end of the optical fiber 110 with the clad 112 exposed and the end of the optical fiber 120 with the clad 122 exposed are butted against each other and pressed from both sides of the optical fibers 110 and 120. Then, while pressing the optical fibers 110 and 120 against each other, the butt portion 130 of the optical fibers 110 and 120 is heated from the surroundings using, for example, an arc discharge electrode 200 or a burner. At this time, the arc discharge electrode 200 is repeatedly moved from the abutting portion 130 to the optical fiber 120 side.
 この加熱により、図2Cに示すように、光ファイバ110と光ファイバ120とが融着接続部150において融着接続される。このとき、光ファイバ120のコア121に添加されているゲルマニウムがクラッド122に熱拡散され、光ファイバ120のコア121が拡大する(TEC処理)。これにより、光ファイバ110,120の融着接続部150におけるコア径が、光ファイバ120のコア径から光ファイバ110のコア径まで連続的に徐々に大きくなる。これに伴い、光ファイバ110,120の融着接続部150におけるモードフィールド径も光ファイバ120から光ファイバ110に向かって徐々に大きくなるため、融着接続部150での接続損失が低減される。ここで、光ファイバ110,120は両側から押されながら加熱されるため、光ファイバ110,120の融着接続部150は半径方向外側に少し膨らんだ形状となる。 By this heating, as shown in FIG. 2C, the optical fiber 110 and the optical fiber 120 are fusion-bonded at the fusion-bonded connection portion 150. At this time, the germanium added to the core 121 of the optical fiber 120 is thermally diffused to the clad 122, and the core 121 of the optical fiber 120 expands (TEC treatment). As a result, the core diameter of the fusion spliced portion 150 of the optical fibers 110 and 120 is continuously and gradually increased from the core diameter of the optical fiber 120 to the core diameter of the optical fiber 110. Along with this, the mode field diameter of the fusion splicer 150 of the optical fibers 110 and 120 also gradually increases from the optical fiber 120 toward the optical fiber 110, so that the connection loss at the fusion splicer 150 is reduced. Here, since the optical fibers 110 and 120 are heated while being pushed from both sides, the fusion spliced portion 150 of the optical fibers 110 and 120 has a shape slightly bulging outward in the radial direction.
 次に、図2Dに示すように、光ファイバ110のクラッド112を覆っている被覆材113をすべて除去するとともに、光ファイバ110を融着接続部150から所定長で切断する。そして、光ファイバ120の被覆材123の周囲に上述した保護チューブ60を装着する。 Next, as shown in FIG. 2D, all the covering material 113 covering the clad 112 of the optical fiber 110 is removed, and the optical fiber 110 is cut from the fusion splicer 150 at a predetermined length. Then, the protective tube 60 described above is attached around the covering material 123 of the optical fiber 120.
 一方で、図2Eに示すように、上述したフェルールフランジ41の第1の円筒部411にフェルール30を装着したフェルール組立体140を用意する。そして、フェルールフランジ41の第2の円筒部413側を接着材槽(図示せず)に浸漬した状態で、フェルール30のファイバ孔31を介して吸気することで、図2Eに示すように、フェルール30のファイバ孔31及びフェルールフランジ41の内部空間に接着材170を充填する。 On the other hand, as shown in FIG. 2E, a ferrule assembly 140 in which the ferrule 30 is mounted on the first cylindrical portion 411 of the ferrule flange 41 described above is prepared. Then, as shown in FIG. 2E, the ferrule is taken in through the fiber hole 31 of the ferrule 30 in a state where the second cylindrical portion 413 side of the ferrule flange 41 is immersed in the adhesive tank (not shown). The internal space of the fiber hole 31 and the ferrule flange 41 of 30 is filled with the adhesive 170.
 このフェルール組立体140に上述した光ファイバ110,120及び保護チューブ60を取り付ける。具体的には、図2Fに示すように、光ファイバ120の被覆材123の前端面123Aからフェルールフランジ41の第2の円筒部413の後端面413Aまでの距離が所定値(Y[mm])となるまで、光ファイバ110をフェルール30のファイバ孔31に挿入する。この所定値Yは、フェルール30の後端面30Aからフェルールフランジ41の第2の円筒部413の後端面413Aまでの距離をZ[mm]とすると(図2E参照)、Y<Z-Xとなるように決められる。これにより、上述した光ファイバ110,120の融着接続部150がフェルール30の外側で、且つフェルールフランジ41の内部に位置することとなる。 The above-mentioned optical fibers 110 and 120 and the protective tube 60 are attached to the ferrule assembly 140. Specifically, as shown in FIG. 2F, the distance from the front end surface 123A of the coating material 123 of the optical fiber 120 to the rear end surface 413A of the second cylindrical portion 413 of the ferrule flange 41 is a predetermined value (Y [mm]). The optical fiber 110 is inserted into the fiber hole 31 of the ferrule 30 until This predetermined value Y is Y <ZX when the distance from the rear end surface 30A of the ferrule 30 to the rear end surface 413A of the second cylindrical portion 413 of the ferrule flange 41 is Z [mm] (see FIG. 2E). Is decided. As a result, the fusion connection portion 150 of the optical fibers 110 and 120 described above is located outside the ferrule 30 and inside the ferrule flange 41.
 このとき、図2Fに示すように、光ファイバ110,120の融着接続部150は、フェルールフランジ41の内側空間内で接着材170に取り囲まれる。また、接着材170の一部はフェルールフランジ41の第2の円筒部413の後端部から外側に溢れ出す。この状態で接着材170を硬化させることにより、光ファイバ110,120がフェルール組立体140に固定される。 At this time, as shown in FIG. 2F, the fusion splicing portion 150 of the optical fibers 110 and 120 is surrounded by the adhesive material 170 in the inner space of the ferrule flange 41. Further, a part of the adhesive material 170 overflows outward from the rear end portion of the second cylindrical portion 413 of the ferrule flange 41. By curing the adhesive 170 in this state, the optical fibers 110 and 120 are fixed to the ferrule assembly 140.
 次に、フェルール30の前端部を研磨することでフェルール30から前方に飛び出した光ファイバ110の前端部110A(図2F参照)を除去する。そして、光ファイバ110,120が取り付けられたフェルール組立体140に、スリーブ44が取り付けられたレセプタクルフランジ43を取り付けることによって、図1に示す光レセプタクル1が完成する。すなわち、光ファイバ110,120がそれぞれ図1に示す光ファイバ10,20に対応し、光ファイバ110,120の融着接続部150が図1に示す融着接続部50に対応し、接着材170が図1に示す接着材70A,70Bに対応する。 Next, the front end portion 110A (see FIG. 2F) of the optical fiber 110 protruding forward from the ferrule 30 is removed by polishing the front end portion of the ferrule 30. Then, the optical receptacle 1 shown in FIG. 1 is completed by attaching the receptacle flange 43 to which the sleeve 44 is attached to the ferrule assembly 140 to which the optical fibers 110 and 120 are attached. That is, the optical fibers 110 and 120 correspond to the optical fibers 10 and 20 shown in FIG. 1, respectively, and the fusion splicer 150 of the optical fibers 110 and 120 corresponds to the fusion splicer 50 shown in FIG. Corresponds to the adhesives 70A and 70B shown in FIG.
 上述のように、光ファイバ110と光ファイバ120とを融着接続すると融着接続部150が半径方向外側に少し膨らんだ形状となるため(図2C参照)、従来のように融着接続部150をフェルール30の内部に位置させて保護する場合には、上述した融着接続処理後に、光ファイバ110,120を両側に引っ張りながら融着接続部150を再度加熱して延伸し、融着接続部150の外径を小さくする必要がある。しかしながら、本実施形態においては、光ファイバ110と光ファイバ120との融着接続部150をフェルール30の外部に位置させているので、融着接続部150の外径を制御する(小さくする)ことなく、光レセプタクル1を組み立てることができる。したがって、光レセプタクル1の組立工程が簡単になり、光レセプタクル1の製造コストが低減される。また、融着接続部150をフェルールフランジ41の内部に位置させているので、強度の低い融着接続部150をフェルールフランジ41によって保護することができる。 As described above, when the optical fiber 110 and the optical fiber 120 are fusion-bonded, the fusion-bonded connection portion 150 has a shape slightly bulging outward in the radial direction (see FIG. 2C). In the case of locating and protecting the inside of the ferrule 30, after the above-mentioned fusion splicing process, the fusion splicing portion 150 is reheated and stretched while pulling the optical fibers 110 and 120 on both sides to stretch the fusion splicing portion. It is necessary to reduce the outer diameter of 150. However, in the present embodiment, since the fusion splicing portion 150 between the optical fiber 110 and the optical fiber 120 is located outside the ferrule 30, the outer diameter of the fusion splicing portion 150 is controlled (reduced). It is possible to assemble the optical receptacle 1 without any. Therefore, the assembly process of the optical receptacle 1 is simplified, and the manufacturing cost of the optical receptacle 1 is reduced. Further, since the fusion splicing portion 150 is located inside the ferrule flange 41, the fusion splicing portion 150 having low strength can be protected by the ferrule flange 41.
 なお、本明細書において使用した用語「前」、「後」、その他の位置関係を示す用語は、図示した実施形態との関連において使用されているのであり、装置の相対的な位置関係によって変化するものである。 The terms "before", "after", and other terms indicating the positional relationship used in the present specification are used in relation to the illustrated embodiment, and change depending on the relative positional relationship of the device. Is what you do.
 本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。 Although the preferred embodiment of the present invention has been described, it goes without saying that the present invention is not limited to the above-described embodiment and may be implemented in various different forms within the scope of the technical idea.
 以上述べたように、本発明の第1の態様によれば、光ファイバの融着接続部を安価かつ容易に保護することが可能な光レセプタクルが提供される。この光レセプタクルは、第1の光ファイバと、上記第1の光ファイバに融着接続された第2の光ファイバと、上記第1の光ファイバの端部を保持するファイバ孔が形成されたフェルールと、上記フェルール、上記第1の光ファイバ、上記第2の光ファイバの一部を少なくとも内部に収容するハウジング部材とを備える。上記第1の光ファイバと上記第2の光ファイバとの融着接続部は、上記フェルールの外部であって、上記ハウジング部材の内部に位置する。 As described above, according to the first aspect of the present invention, there is provided an optical receptacle capable of inexpensively and easily protecting a fusion spliced portion of an optical fiber. This optical receptacle is a ferrule in which a first optical fiber, a second optical fiber fused and connected to the first optical fiber, and a fiber hole for holding an end portion of the first optical fiber are formed. And a housing member that houses at least a part of the ferrule, the first optical fiber, and the second optical fiber inside. The fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the housing member.
 このような構成によれば、第1の光ファイバと第2の光ファイバとの融着接続部がフェルールの外部に位置しているので、光レセプタクルを組み立てる際に融着接続部の外径を制御する必要がなく、組立工程が簡単になるため、光レセプタクルの製造コストを低減することができる。また、融着接続部がハウジング部材の内部に位置しているため、強度の低い融着接続部をハウジング部材によって保護することができ、融着接続部を補強するために保護スリーブなどの別部材を必要としないため、光ファイバの融着接続部を安価かつ容易に保護することができる。 According to such a configuration, since the fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule, the outer diameter of the fusion splicing portion is adjusted when the optical receptacle is assembled. Since there is no need to control and the assembly process is simplified, the manufacturing cost of the optical receptacle can be reduced. Further, since the fusion splicing portion is located inside the housing member, the fusion splicing portion having low strength can be protected by the housing member, and another member such as a protective sleeve is used to reinforce the fusion splicing portion. Is not required, so that the fusion spliced portion of the optical fiber can be protected inexpensively and easily.
 上記融着接続部は、上記ハウジング部材の内部に形成される内部空間に配置された接着材により上記ハウジング部材に固定されていてもよい。このような接着材により融着接続部をより強固に保護することができる。 The fusion splicing portion may be fixed to the housing member by an adhesive material arranged in an internal space formed inside the housing member. Such an adhesive can more firmly protect the fusion spliced portion.
 上記光レセプタクルは、少なくとも一部が上記ハウジング部材の内部に配置され、上記第2の光ファイバの一部の外周を覆う保護チューブをさらに備えていてもよい。このような保護チューブによって第2の光ファイバが保護される。この場合において、上記融着接続部を上記保護チューブの内部に配置し、保護チューブにより融着接続部をさらに保護するようにしてもよい。 The optical receptacle may further include a protective tube in which at least a part thereof is arranged inside the housing member and covers a part of the outer circumference of the second optical fiber. The second optical fiber is protected by such a protective tube. In this case, the fusion splicing portion may be arranged inside the protection tube, and the fusion splicing portion may be further protected by the protection tube.
 上記第1の光ファイバは、第1のモードフィールド径を有し、上記第2の光ファイバは、上記第1のモードフィールド径とは異なる第2のモードフィールド径を有していてもよい。この場合において、上記融着接続部のモードフィールド径は、上記第2の光ファイバから上記第1の光ファイバに向かって上記第2のモードフィールド径から上記第1のモードフィールド径に徐々に変化していてもよい。また、上記第1のモードフィールド径は上記第2のモードフィールド径よりも大きくてもよい。 The first optical fiber may have a first mode field diameter, and the second optical fiber may have a second mode field diameter different from the first mode field diameter. In this case, the mode field diameter of the fusion splicer gradually changes from the second mode field diameter to the first mode field diameter from the second optical fiber toward the first optical fiber. You may be doing it. Further, the first mode field diameter may be larger than the second mode field diameter.
 本発明の第2の態様によれば、光ファイバの融着接続部を含む光レセプタクルを安価かつ簡単な工程で製造することができる方法が提供される。この方法では、第1の光ファイバと第2の光ファイバとを融着接続する。ファイバ孔が形成されたフェルールと上記フェルールを保持するフェルールフランジとを有するフェルール組立体を用意する。上記第1の光ファイバと上記第2の光ファイバとの融着接続部が、上記フェルールの外部であって、上記フェルールフランジの内部に位置するように、上記第1の光ファイバの端部を上記フェルールの上記ファイバ孔に挿入する。上記フェルールの上記ファイバ孔に上記第1の光ファイバの端部が挿入された上記フェルール組立体に、光コネクタプラグが挿入される挿入口が形成されたレセプタクルフランジを装着する。 According to the second aspect of the present invention, there is provided a method capable of manufacturing an optical receptacle including a fusion spliced portion of an optical fiber in an inexpensive and simple process. In this method, the first optical fiber and the second optical fiber are fused and connected. A ferrule assembly having a ferrule in which fiber holes are formed and a ferrule flange for holding the ferrule is prepared. The end of the first optical fiber is arranged so that the fusion spliced portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the ferrule flange. It is inserted into the fiber hole of the ferrule. A receptacle flange having an insertion port into which an optical connector plug is inserted is attached to the ferrule assembly in which the end portion of the first optical fiber is inserted into the fiber hole of the ferrule.
 このような方法によれば、第1の光ファイバと第2の光ファイバとの融着接続部をフェルールの外部に位置させているので、融着接続部の外径に配慮することとなく、光レセプタクルを組み立てることができる。したがって、光レセプタクルの組立工程が簡単になり、光レセプタクルの製造コストが低減される。また、融着接続部をフェルールフランジの内部に位置させているので、強度の低い融着接続部をフェルールフランジによって保護することができる。したがって、融着接続部を補強するために保護スリーブなどの別部材が必要ないため、光ファイバの融着接続部を含む光レセプタクルを安価かつ簡単な工程で製造することができる。 According to such a method, since the fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule, the outer diameter of the fusion splicing portion is not considered. You can assemble an optical receptacle. Therefore, the process of assembling the optical receptacle is simplified, and the manufacturing cost of the optical receptacle is reduced. Further, since the fusion splicing portion is located inside the ferrule flange, the fusion splicing portion having low strength can be protected by the ferrule flange. Therefore, since a separate member such as a protective sleeve is not required to reinforce the fusion splicing portion, an optical receptacle including the fusion splicing portion of the optical fiber can be manufactured in an inexpensive and simple process.
 本出願は、2020年2月28日に提出された日本国特許出願特願2020-033564号に基づくものであり、当該出願の優先権を主張するものである。当該出願の開示は参照によりその全体が本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2020-033564 filed on February 28, 2020, and claims the priority of the application. The disclosure of such application is incorporated herein by reference in its entirety.
 本発明は、光コネクタプラグを接続可能な光レセプタクルに好適に用いられる。 The present invention is suitably used for an optical receptacle to which an optical connector plug can be connected.
  1   光レセプタクル
 10,110   (第1の)光ファイバ
 11,21,111,121   コア
 12,22,112,122   クラッド
 20,120   (第2の)光ファイバ
 23,113,123   被覆材
 30   フェルール
 31   ファイバ孔
 40   ハウジング部材
 41   フェルールフランジ
 42   挿入口
 43   レセプタクルフランジ
 44   スリーブ
 50,150   融着接続部
 60   保護チューブ
 70A,70B,170  接着材
130   突き合わせ部分
140   フェルール組立体
200   アーク放電用電極
411   第1の円筒部
412   フランジ部
413   第2の円筒部
431   第1の円筒部
432   フランジ部
433   第2の円筒部
1 Optical receptacle 10,110 (first) optical fiber 11,21,111,121 core 12,22,112,122 clad 20,120 (second) optical fiber 23,113,123 Coating material 30 ferrule 31 fiber Hole 40 Housing member 41 Ferrule flange 42 Insertion port 43 Receptacle flange 44 Sleeve 50,150 Fusion splicing part 60 Protective tube 70A, 70B, 170 Adhesive material 130 Butt part 140 Ferrule assembly 200 Arc discharge electrode 411 First cylindrical part 412 Flange part 413 Second cylindrical part 431 First cylindrical part 432 Flange part 433 Second cylindrical part

Claims (8)

  1.  第1の光ファイバと、
     前記第1の光ファイバに融着接続された第2の光ファイバと、
     前記第1の光ファイバの端部を保持するファイバ孔が形成されたフェルールと、
     前記フェルール、前記第1の光ファイバ、及び前記第2の光ファイバの一部を少なくとも内部に収容するハウジング部材と
    を備え、
     前記第1の光ファイバと前記第2の光ファイバとの融着接続部は、前記フェルールの外部であって、前記ハウジング部材の内部に位置する、
    光レセプタクル。
    With the first optical fiber
    With the second optical fiber fused and connected to the first optical fiber,
    A ferrule having a fiber hole for holding the end of the first optical fiber, and a ferrule.
    It includes the ferrule, the first optical fiber, and a housing member that houses at least a part of the second optical fiber inside.
    The fusion spliced portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the housing member.
    Optical receptacle.
  2.  前記融着接続部は、前記ハウジング部材の内部に形成される内部空間に配置された接着材により前記ハウジング部材に固定される、請求項1に記載の光レセプタクル。 The optical receptacle according to claim 1, wherein the fusion splicing portion is fixed to the housing member by an adhesive material arranged in an internal space formed inside the housing member.
  3.  少なくとも一部が前記ハウジング部材の内部に配置され、前記第2の光ファイバの一部の外周を覆う保護チューブをさらに備える、請求項1又は2に記載の光レセプタクル。 The optical receptacle according to claim 1 or 2, wherein at least a part thereof is arranged inside the housing member and further includes a protective tube that covers a part of the outer circumference of the second optical fiber.
  4.  前記融着接続部は、前記保護チューブの内部に配置される、請求項3に記載の光レセプタクル。 The optical receptacle according to claim 3, wherein the fusion splicer is arranged inside the protective tube.
  5.  前記ハウジング部材は、
      前記フェルールを保持するフェルールフランジと、
      光コネクタプラグが挿入される挿入口が形成されたレセプタクルフランジと
    を含み、
     前記融着接続部は、前記フェルールフランジの内部に配置される、
    請求項1から4のいずれか一項に記載の光レセプタクル。
    The housing member
    A ferrule flange that holds the ferrule, and
    Includes a receptacle flange with an insertion slot into which the optical connector plug is inserted,
    The fusion splicer is arranged inside the ferrule flange.
    The optical receptacle according to any one of claims 1 to 4.
  6.  前記第1の光ファイバは、第1のモードフィールド径を有し、
     前記第2の光ファイバは、前記第1のモードフィールド径とは異なる第2のモードフィールド径を有し、
     前記融着接続部のモードフィールド径は、前記第2の光ファイバから前記第1の光ファイバに向かって前記第2のモードフィールド径から前記第1のモードフィールド径に徐々に変化している、
    請求項1から5のいずれか一項に記載の光レセプタクル。
    The first optical fiber has a first mode field diameter and has a first mode field diameter.
    The second optical fiber has a second mode field diameter different from the first mode field diameter.
    The mode field diameter of the fusion splicer gradually changes from the second mode field diameter to the first mode field diameter from the second optical fiber toward the first optical fiber.
    The optical receptacle according to any one of claims 1 to 5.
  7.  前記第1のモードフィールド径は前記第2のモードフィールド径よりも大きい、請求項6に記載の光レセプタクル。 The optical receptacle according to claim 6, wherein the first mode field diameter is larger than the second mode field diameter.
  8.  第1の光ファイバと第2の光ファイバとを融着接続し、
     ファイバ孔が形成されたフェルールと前記フェルールを保持するフェルールフランジとを有するフェルール組立体を用意し、
     前記第1の光ファイバと前記第2の光ファイバとの融着接続部が、前記フェルールの外部であって、前記フェルールフランジの内部に位置するように、前記第1の光ファイバの端部を前記フェルールの前記ファイバ孔に挿入し、
     前記フェルールの前記ファイバ孔に前記第1の光ファイバの端部が挿入された前記フェルール組立体に、光コネクタプラグが挿入される挿入口が形成されたレセプタクルフランジを装着する、
    光レセプタクルの製造方法。
    The first optical fiber and the second optical fiber are fusion-bonded and connected.
    A ferrule assembly having a ferrule in which fiber holes are formed and a ferrule flange for holding the ferrule is prepared.
    The end of the first optical fiber is arranged so that the fusion splicing portion between the first optical fiber and the second optical fiber is located outside the ferrule and inside the ferrule flange. Inserted into the fiber hole of the ferrule,
    A receptacle flange having an insertion port into which an optical connector plug is inserted is attached to the ferrule assembly in which the end portion of the first optical fiber is inserted into the fiber hole of the ferrule.
    Manufacturing method of optical receptacle.
PCT/JP2020/041156 2020-02-28 2020-11-04 Optical receptacle and method for manufacturing same WO2021171706A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/801,125 US11828986B2 (en) 2020-02-28 2020-11-04 Optical receptacle and method of manufacturing the same
JP2022503089A JPWO2021171706A1 (en) 2020-02-28 2020-11-04

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-033564 2020-02-28
JP2020033564 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021171706A1 true WO2021171706A1 (en) 2021-09-02

Family

ID=77491380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041156 WO2021171706A1 (en) 2020-02-28 2020-11-04 Optical receptacle and method for manufacturing same

Country Status (3)

Country Link
US (1) US11828986B2 (en)
JP (1) JPWO2021171706A1 (en)
WO (1) WO2021171706A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226120A (en) * 2006-02-27 2007-09-06 Kyocera Corp Mode field converter and manufacturing method therefor
US20180267243A1 (en) * 2015-08-31 2018-09-20 Commscope Technologies Llc Splice-on fiber optic connector
JP2019113597A (en) * 2017-12-21 2019-07-11 日本電信電話株式会社 Optical connection structure
JP2019128466A (en) * 2018-01-25 2019-08-01 株式会社フジクラ Ferrule with fixed component, optical connector receptacle, and method for manufacturing ferrule with fixed component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497298B2 (en) * 1995-10-23 2004-02-16 株式会社フジクラ Optical fiber filter
JP2005208113A (en) 2004-01-20 2005-08-04 Nippon Telegr & Teleph Corp <Ntt> Mode field converter
US8550728B2 (en) * 2007-02-13 2013-10-08 Fujikura Ltd. Method connecting optical fiber of optical connector with optical transmission element, connector-attached optical transmission element, optical connector, and assembling method of optical connector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007226120A (en) * 2006-02-27 2007-09-06 Kyocera Corp Mode field converter and manufacturing method therefor
US20180267243A1 (en) * 2015-08-31 2018-09-20 Commscope Technologies Llc Splice-on fiber optic connector
JP2019113597A (en) * 2017-12-21 2019-07-11 日本電信電話株式会社 Optical connection structure
JP2019128466A (en) * 2018-01-25 2019-08-01 株式会社フジクラ Ferrule with fixed component, optical connector receptacle, and method for manufacturing ferrule with fixed component

Also Published As

Publication number Publication date
US11828986B2 (en) 2023-11-28
JPWO2021171706A1 (en) 2021-09-02
US20230082843A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US8317406B2 (en) Optical connector
KR101038195B1 (en) Assembliy method and optical connector for assembling in the field
JP5192094B2 (en) Optical connector
US8417079B2 (en) Method of producing a ferrule with an optical fiber
KR101361884B1 (en) Holder, fusion splicer, and method of assembling optical connector
WO2012096246A1 (en) Optical connector and method for assembling same
EP2378331B1 (en) Method for assembling optical connector
KR101203509B1 (en) Optical connector
JP2006220717A (en) Optical fiber splicing part and optical fiber splicer using the same
JP2013114001A (en) Optical fiber cable with connector and method of assembling optical fiber cable with connector
WO2012090570A1 (en) Optical connector and method for assembling optical connector
US8388237B2 (en) Optical connector and method of assembling optical connector
WO2021171706A1 (en) Optical receptacle and method for manufacturing same
WO2018105152A1 (en) Optical fiber cord with connector
JP2010039109A (en) Optical connector and assembling method therefor
TW200403458A (en) Optical fibre connector
JP5679407B2 (en) Fusion reinforcement sleeve
JP2019211557A (en) Optical connector and method for assembling optical connector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503089

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922435

Country of ref document: EP

Kind code of ref document: A1